JP2019142821A - Method of synthesizing organic compound having fused carbazole skeleton - Google Patents

Method of synthesizing organic compound having fused carbazole skeleton Download PDF

Info

Publication number
JP2019142821A
JP2019142821A JP2018030085A JP2018030085A JP2019142821A JP 2019142821 A JP2019142821 A JP 2019142821A JP 2018030085 A JP2018030085 A JP 2018030085A JP 2018030085 A JP2018030085 A JP 2018030085A JP 2019142821 A JP2019142821 A JP 2019142821A
Authority
JP
Japan
Prior art keywords
abbreviation
light
phenyl
layer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2018030085A
Other languages
Japanese (ja)
Other versions
JP2019142821A5 (en
Inventor
朋広 久保田
Tomohiro Kubota
朋広 久保田
寛太 安部
Kanta Abe
寛太 安部
隼人 山脇
Hayato Yamawaki
隼人 山脇
英子 吉住
Eiko Yoshizumi
英子 吉住
瀬尾 哲史
Tetsushi Seo
哲史 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2018030085A priority Critical patent/JP2019142821A/en
Publication of JP2019142821A publication Critical patent/JP2019142821A/en
Publication of JP2019142821A5 publication Critical patent/JP2019142821A5/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Indole Compounds (AREA)

Abstract

To provide a synthesis method that increases the yield of an organic compound having a fused carbazole skeleton.SOLUTION: In synthesis of an organic compound having a fused carbazole skeleton, the chlorine content in a compound having a fused carbazole skeleton used as an ingredient is made 10 ppm or less thereby allowing increase of the yield of the organic compound having the fused carbazole skeleton.SELECTED DRAWING: None

Description

本発明の一態様は、縮合カルバゾール骨格を有する有機化合物の合成方法に関する。特に、従来よりも高い収率で合成可能な縮合カルバゾール骨格を有する有機化合物の合成方法に関する。なお、本発明の一態様は、上記の技術分野に限定されない。すなわち、本発明の一態様は、物、方法、製造方法、または駆動方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。また、具体的には、半導体装置、表示装置、液晶表示装置などを一例として挙げることができる。 One embodiment of the present invention relates to a method for synthesizing an organic compound having a condensed carbazole skeleton. In particular, the present invention relates to a method for synthesizing an organic compound having a condensed carbazole skeleton that can be synthesized at a higher yield than conventional. Note that one embodiment of the present invention is not limited to the above technical field. That is, one embodiment of the present invention relates to an object, a method, a manufacturing method, or a driving method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Specifically, a semiconductor device, a display device, a liquid crystal display device, and the like can be given as examples.

一対の電極間に発光物質を含むEL層を挟んで形成される有機EL素子(発光素子)の発光機構は、キャリア注入型である。すなわち、電極間に電圧を印加することにより、電極から注入された電子およびホールが再結合して発光物質が励起状態となり、その励起状態が基底状態に戻る際に発光する。なお、励起状態の種類としては、一重項励起状態(S)と三重項励起状態(T)とがあり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光が燐光と呼ばれている。また、発光素子におけるそれらの統計的な生成比率は、S:T=1:3であると考えられている。 A light emitting mechanism of an organic EL element (light emitting element) formed by sandwiching an EL layer containing a light emitting substance between a pair of electrodes is a carrier injection type. That is, when a voltage is applied between the electrodes, electrons and holes injected from the electrodes are recombined to make the luminescent substance in an excited state and emit light when the excited state returns to the ground state. The types of excited states include a singlet excited state (S * ) and a triplet excited state (T * ). Light emitted from the singlet excited state is fluorescent, and light emitted from the triplet excited state is phosphorescent. being called. In addition, the statistical generation ratio of the light emitting elements is considered to be S * : T * = 1: 3.

また、上記発光物質のうち、一重項励起状態におけるエネルギーを発光に変換することが可能な化合物は蛍光性化合物(蛍光材料)と呼ばれ、三重項励起状態におけるエネルギーを発光に変換することが可能な化合物は燐光性化合物(燐光材料)と呼ばれる。 Among the above luminescent substances, compounds that can convert energy in singlet excited state into light emission are called fluorescent compounds (fluorescent materials), and can convert energy in triplet excited state into light emission. Such a compound is called a phosphorescent compound (phosphorescent material).

また、この様な発光素子は、上記発光物質に加えて、複数種の有機化合物を用いて作製されることが多く、その素子特性を向上させる上で有効であり、様々な報告がなされている(例えば、特許文献1参照。)。 Such light-emitting elements are often produced using a plurality of types of organic compounds in addition to the above light-emitting substances, and are effective in improving the element characteristics, and various reports have been made. (For example, refer to Patent Document 1).

特開2010−182699号公報JP 2010-182699 A

発光素子に用いる有機化合物は、その合成方法が非常に多様化しており、同じ物質を合成する場合でも異なる合成方法を用いることが可能である。しかし、合成方法が異なる場合、用いる原料や触媒等も異なるため、生成物の収率や純度に違いが出るなどの問題が生じる。合成収率の高い有機化合物を発光素子に用いることで発光素子のコストダウンを図ることができるため、本発明の一態様では、縮合カルバゾール骨格を有する有機化合物の収率を高める合成方法を提供することを目的とする。また、発光素子に用いる有機化合物の純度は、発光素子の特性に影響を与えるため、本発明の一態様では、効率良く高純度な縮合カルバゾール骨格を有する有機化合物の合成方法を提供することを目的とする。なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。 Organic compounds used for light-emitting elements have a variety of synthesis methods, and different synthesis methods can be used even when the same substance is synthesized. However, when the synthesis method is different, since the raw materials, catalysts, and the like to be used are different, problems such as differences in the yield and purity of the product arise. Since the cost of a light-emitting element can be reduced by using an organic compound with a high synthesis yield for the light-emitting element, one embodiment of the present invention provides a synthesis method for increasing the yield of an organic compound having a condensed carbazole skeleton. For the purpose. In addition, since the purity of the organic compound used for the light-emitting element affects the characteristics of the light-emitting element, an object of one embodiment of the present invention is to provide a method for efficiently synthesizing an organic compound having a condensed carbazole skeleton with high purity. And Note that the description of these problems does not disturb the existence of other problems. Note that one embodiment of the present invention does not necessarily have to solve all of these problems. Issues other than these will be apparent from the description of the specification, drawings, claims, etc., and other issues can be extracted from the descriptions of the specification, drawings, claims, etc. It is.

本発明の一態様は、縮合カルバゾール骨格を有する有機化合物の合成において、原料に用いる縮合カルバゾール骨格を有する化合物中の塩素含有量を低減することにより、縮合カルバゾール骨格を有する有機化合物の収率を高めることができる合成方法である。 In one embodiment of the present invention, in the synthesis of an organic compound having a condensed carbazole skeleton, the yield of the organic compound having a condensed carbazole skeleton is increased by reducing the chlorine content in the compound having the condensed carbazole skeleton used as a raw material. It is a synthesis method that can.

通常、原料となる縮合カルバゾール骨格を有する化合物は、酸化剤を用いた酸化反応により得られるが、発明者らは原料の合成においてどのような酸化剤を用いるかが、縮合カルバゾール骨格を有する有機化合物の合成の収率に影響を与えることを見出した。すなわち、塩素を含まない酸化剤を用いて塩素含有量が10ppm以下である縮合カルバゾール骨格を有する化合物を合成し、これを原料として用いることにより、縮合カルバゾール骨格を有する有機化合物の収率を高めることができる。 Usually, a compound having a condensed carbazole skeleton as a raw material is obtained by an oxidation reaction using an oxidant, but the inventors have determined what kind of oxidant is used in the synthesis of the raw material, and an organic compound having a condensed carbazole skeleton. It was found to affect the yield of synthesis. That is, by synthesizing a compound having a condensed carbazole skeleton having a chlorine content of 10 ppm or less using an oxidizing agent not containing chlorine, and using this as a raw material, the yield of an organic compound having a condensed carbazole skeleton is increased. Can do.

従って、本発明の一態様は、塩素の含有量が10ppm以下である縮合カルバゾール骨格を有する化合物と、ハロゲン化アリール化合物またはハロゲン化ヘテロアリール化合物と、をカップリングさせることを特徴とする縮合カルバゾール骨格を有する有機化合物の合成方法である。 Accordingly, one embodiment of the present invention is a condensed carbazole skeleton characterized by coupling a compound having a condensed carbazole skeleton having a chlorine content of 10 ppm or less and a halogenated aryl compound or a halogenated heteroaryl compound. A method for synthesizing an organic compound having

なお、上記構成において、塩素の含有量が5ppm以下である縮合カルバゾール骨格を有する化合物を用いると、より好ましい。 Note that in the above structure, it is more preferable to use a compound having a condensed carbazole skeleton with a chlorine content of 5 ppm or less.

また、本発明の別の一態様は、塩素の含有量が10ppm以下である下記一般式(G0)で示す縮合カルバゾール骨格を有する化合物と、ハロゲン化アリール化合物またはハロゲン化ヘテロアリール化合物と、をカップリングさせることを特徴とする縮合カルバゾール骨格を有する有機化合物の合成方法である。 Another embodiment of the present invention is to combine a compound having a condensed carbazole skeleton represented by the following general formula (G0) with a chlorine content of 10 ppm or less, and a halogenated aryl compound or a halogenated heteroaryl compound. It is a method for synthesizing an organic compound having a condensed carbazole skeleton characterized by ringing.

一般式(G0)中、a乃至cの位置、またはg乃至iの位置の少なくとも一は、置換もしくは無置換のベンゼン環による縮合構造を有する。また、R1〜8は、それぞれ独立に、水素、炭素数1乃至6のアルキル基、または置換もしくは無置換の炭素数6乃至18のアリール基を表し、nおよびmは、それぞれ1乃至4の整数を表す。 In General Formula (G0), at least one of positions a to c or g to i has a condensed structure with a substituted or unsubstituted benzene ring. R 1 to 8 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, and n and m each represent 1 to 4 Represents an integer.

また、本発明の別の一態様は、塩素を含まない酸化剤を用いた合成方法により得られた縮合カルバゾール骨格を有する化合物と、ハロゲン化アリール化合物またはハロゲン化ヘテロアリール化合物と、をカップリングさせることを特徴とする縮合カルバゾール骨格を有する有機化合物の合成方法である。 Another embodiment of the present invention is to couple a compound having a condensed carbazole skeleton obtained by a synthesis method using a chlorine-free oxidizing agent and a halogenated aryl compound or a halogenated heteroaryl compound. This is a method for synthesizing an organic compound having a condensed carbazole skeleton.

なお、塩素を含まない酸化剤としては、塩素を含まないキノン系酸化剤を用いることができる。また、塩素を含まない酸化剤の具体例としては、例えば、1,4−ベンゾキノンなどのキノン類、二酸化マンガン、過酸化ニッケル、硫黄、ジメチルスルホキシドと共存下の硫黄等が挙げられる。 In addition, as an oxidizing agent which does not contain chlorine, a quinone oxidizing agent which does not contain chlorine can be used. Specific examples of the oxidizing agent not containing chlorine include quinones such as 1,4-benzoquinone, manganese dioxide, nickel peroxide, sulfur, sulfur in the presence of dimethyl sulfoxide, and the like.

本発明の一態様では、縮合カルバゾール骨格を有する有機化合物の収率を高める合成方法を提供することができる。また、本発明の別の一態様では、効率良く高純度な縮合カルバゾール骨格を有する有機化合物の合成方法を提供することができる。なお、これらの効果の記載は、他の課題の存在を妨げるものではない。また、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。また、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。 In one embodiment of the present invention, a synthesis method for increasing the yield of an organic compound having a condensed carbazole skeleton can be provided. In another embodiment of the present invention, a method for synthesizing an organic compound having a highly purified condensed carbazole skeleton can be provided. Note that the description of these effects does not disturb the existence of other problems. One embodiment of the present invention does not necessarily have to solve all of these problems. In addition, problems other than these will be apparent from the description of the specification, drawings, claims, etc., and other problems can be extracted from the description of the specifications, drawings, claims, etc. It is.

発光素子の構造について説明する図。4A and 4B illustrate a structure of a light-emitting element. 発光装置について説明する図。FIG. 6 illustrates a light-emitting device. 発光装置について説明する図。FIG. 6 illustrates a light-emitting device. 電子機器について説明する図。6A and 6B illustrate electronic devices. 電子機器について説明する図。6A and 6B illustrate electronic devices. 自動車について説明する図。The figure explaining a motor vehicle. 照明装置について説明する図。The figure explaining an illuminating device. 7H−ジベンゾ[c,g]カルバゾールの1H−NMRチャート。1H-NMR chart of 7H-dibenzo [c, g] carbazole. 7H−ジベンゾ[c,g]カルバゾールの1H−NMRチャート。1H-NMR chart of 7H-dibenzo [c, g] carbazole. cgDBCzPAの1H−NMRチャート。1H-NMR chart of cgDBCzPA. cgDBCzPAの1H−NMRチャート。1H-NMR chart of cgDBCzPA. MSスペクトルを示す図。The figure which shows MS spectrum.

以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and various changes can be made in form and details without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.

なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。 Note that the position, size, range, and the like of each component illustrated in the drawings and the like may not represent the actual position, size, range, or the like for easy understanding. Therefore, the disclosed invention is not necessarily limited to the position, size, range, or the like disclosed in the drawings and the like.

また、本明細書等において、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異なる図面間でも共通して用いる。 Further, in this specification and the like, in describing the structure of the invention with reference to the drawings, the same reference numerals are used in different drawings.

(実施の形態1)
本実施の形態では、本発明の一態様である、縮合カルバゾール骨格を有する有機化合物の合成方法について説明する。なお、本実施の形態で示す、縮合カルバゾール骨格を有する有機化合物は、下記一般式(G1)で表される。
(Embodiment 1)
In this embodiment, a method for synthesizing an organic compound having a condensed carbazole skeleton, which is one embodiment of the present invention, will be described. Note that the organic compound having a condensed carbazole skeleton shown in this embodiment is represented by the following general formula (G1).

一般式(G1)中、a乃至cの位置、またはg乃至iの位置の少なくとも一は、置換もしくは無置換のベンゼン環による縮合構造を有する。また、R1〜8は、それぞれ独立に、水素、炭素数1乃至6のアルキル基、または置換もしくは無置換の炭素数6乃至18のアリール基を表し、nおよびmは、それぞれ1乃至4の整数を表す。また、R’は、炭素数6乃至14のアリーレン基を介して、置換もしくは無置換の炭素数10乃至30の縮合環または複素環基を有する基を表す。 In general formula (G1), at least one of positions a to c or g to i has a condensed structure with a substituted or unsubstituted benzene ring. R 1 to 8 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, and n and m each represent 1 to 4 Represents an integer. R ′ represents a group having a substituted or unsubstituted condensed ring or heterocyclic group having 10 to 30 carbon atoms via an arylene group having 6 to 14 carbon atoms.

上記一般式(G1)で表される、縮合カルバゾール骨格を有する有機化合物の合成において、原料として用いる縮合カルバゾール骨格を有する化合物(G0)の二重結合を形成するため、下記合成スキーム(A−1)に示すような酸化剤を用いた酸化反応を行う。 In the synthesis of the organic compound having a condensed carbazole skeleton represented by the above general formula (G1), a double bond of the compound (G0) having a condensed carbazole skeleton used as a raw material is formed. The oxidation reaction using an oxidizing agent as shown in FIG.

上記合成スキーム(A−1)中、各物質の一般式中のa乃至cの位置、またはg乃至iの位置の少なくとも一は、置換もしくは無置換のベンゼン環による縮合構造を有する。また、R1〜8は、それぞれ独立に、水素、炭素数1乃至6のアルキル基、または置換もしくは無置換の炭素数6乃至18のアリール基を表し、nおよびmは、それぞれ1乃至4の整数を表す。 In the above synthesis scheme (A-1), at least one of the positions a to c or g to i in the general formula of each substance has a condensed structure with a substituted or unsubstituted benzene ring. R 1 to 8 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, and n and m each represent 1 to 4 Represents an integer.

なお、本発明の一態様である、縮合カルバゾール骨格を有する有機化合物の合成方法では、合成スキーム(A−1)で示される反応において、塩素を含まない酸化剤を用いることを特徴とする。塩素を含まない酸化剤としては、例えば、キノン系酸化剤を用いることができる。また、塩素を含まない酸化剤の具体例としては、例えば、1,4−ベンゾキノンなどのキノン類、二酸化マンガン、過酸化ニッケル、硫黄、ジメチルスルホキシドと共存下の硫黄等が挙げられる。 Note that the method for synthesizing an organic compound having a condensed carbazole skeleton which is one embodiment of the present invention is characterized in that an oxidizing agent containing no chlorine is used in the reaction shown in the synthesis scheme (A-1). As the oxidizing agent not containing chlorine, for example, a quinone oxidizing agent can be used. Specific examples of the oxidizing agent not containing chlorine include quinones such as 1,4-benzoquinone, manganese dioxide, nickel peroxide, sulfur, sulfur in the presence of dimethyl sulfoxide, and the like.

次に、縮合カルバゾール骨格を有する化合物(G0)とハロゲン化物(R’−X)とをカップリングさせることにより、下記合成スキーム(A−2)に示すように縮合カルバゾール骨格を有する有機化合物(G1)を合成することができる。 Next, by coupling the compound (G0) having a condensed carbazole skeleton and the halide (R′-X), as shown in the following synthesis scheme (A-2), an organic compound (G1 ) Can be synthesized.

上記合成スキーム(A−2)中、各物質の一般式中のa乃至cの位置、またはg乃至iの位置の少なくとも一は、置換もしくは無置換のベンゼン環による縮合構造を有する。また、R1〜8は、それぞれ独立に、水素、炭素数1乃至6のアルキル基、または置換もしくは無置換の炭素数6乃至18のアリール基を表し、nおよびmは、それぞれ1乃至4の整数を表す。また、R’は、炭素数6乃至14のアリーレン基を介して、置換もしくは無置換の炭素数10乃至30の縮合環または複素環基を有する基を表す。また、Xは、ハロゲンを表す。 In the above synthesis scheme (A-2), at least one of positions a to c or g to i in the general formula of each substance has a condensed structure with a substituted or unsubstituted benzene ring. R 1 to 8 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, and n and m each represent 1 to 4 Represents an integer. R ′ represents a group having a substituted or unsubstituted condensed ring or heterocyclic group having 10 to 30 carbon atoms via an arylene group having 6 to 14 carbon atoms. X represents halogen.

なお、本発明の一態様である、縮合カルバゾール骨格を有する有機化合物の合成方法では、合成スキーム(A−2)で示される反応において、ハロゲン化物(R’−X)を用いる。ハロゲン化物(R’−X)としては、ハロゲン化アリール化合物またはハロゲン化ヘテロアリール化合物が挙げられる。なお、ハロゲン化アリール化合物またはハロゲン化ヘテロアリール化合物の具体例としては、例えば、9−(4−ブロモフェニル)10−フェニルアントラセン、9−(4−ブロモフェニル)10−(1−ナフチル)アントラセン等が挙げられる。 Note that in the method for synthesizing an organic compound having a condensed carbazole skeleton which is one embodiment of the present invention, a halide (R′-X) is used in the reaction shown in the synthesis scheme (A-2). Examples of the halide (R′-X) include a halogenated aryl compound and a halogenated heteroaryl compound. Specific examples of the halogenated aryl compound or the halogenated heteroaryl compound include 9- (4-bromophenyl) 10-phenylanthracene, 9- (4-bromophenyl) 10- (1-naphthyl) anthracene, and the like. Is mentioned.

なお、上記一般式(G0)、一般式(G1)、または合成スキーム(A−1)および合成スキーム(A−2)中に示される物質における、置換もしくは無置換のベンゼン環、置換もしくは無置換の炭素数6乃至18のアリール基、置換もしくは無置換の炭素数10乃至30の縮合環または複素環、がそれぞれ置換基を有する場合、該置換基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基のような炭素数1乃至7のアルキル基や、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、8,9,10−トリノルボルナニル基のような炭素数5〜7のシクロアルキル基や、フェニル基、ナフチル基、ビフェニル基のような炭素数6乃至12のアリール基等が挙げられる Note that a substituted or unsubstituted benzene ring, substituted or unsubstituted in the above-described general formula (G0), the general formula (G1), or the substances shown in the synthesis scheme (A-1) and the synthesis scheme (A-2). When the aryl group having 6 to 18 carbon atoms and the substituted or unsubstituted condensed ring or heterocyclic ring having 10 to 30 carbon atoms each have a substituent, the substituent includes a methyl group, an ethyl group, a propyl group, and isopropyl. Group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, alkyl group having 1 to 7 carbon atoms, cyclopentyl group, cyclohexyl group, cycloheptyl group, 8,9, C5-C7 cycloalkyl group such as 10-trinorbornanyl group, 6-carbon group such as phenyl group, naphthyl group and biphenyl group And an aryl group of 12

また、上記一般式(G0)、一般式(G1)、または合成スキーム(A−1)および合成スキーム(A−2)中に示される物質における、炭素数1乃至6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、3−メチルペンチル基、2−メチルペンチル基、2−エチルブチル基、1,2−ジメチルブチル基、2,3−ジメチルブチル基、等が挙げられる。 Specific examples of the alkyl group having 1 to 6 carbon atoms in the substances represented by the general formula (G0), the general formula (G1), or the synthesis scheme (A-1) and the synthesis scheme (A-2) Are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, pentyl, isopentyl, sec-pentyl, tert-pentyl, neopentyl, hexyl Group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 2-ethylbutyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, and the like.

また、上記一般式(G0)、一般式(G1)、または合成スキーム(A−1)および合成スキーム(A−2)中に示される物質における、炭素数6乃至18のアリール基の具体例としては、フェニル基、o−トリル基、m−トリル基、p−トリル基、メシチル基、o−ビフェニル基、m−ビフェニル基、p−ビフェニル基、1−ナフチル基、2−ナフチル基、フルオレニル基、トリフェニレニル基等が挙げられる。 Specific examples of the aryl group having 6 to 18 carbon atoms in the substances represented by the above general formula (G0), general formula (G1), or the synthesis scheme (A-1) and the synthesis scheme (A-2) Are phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, mesityl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 1-naphthyl group, 2-naphthyl group, fluorenyl group And triphenylenyl group.

また、上記一般式(G1)または合成スキーム(A−2)中のR’における、炭素数6乃至14のアリーレン基の具体例としては、フェニレン基、ビフェニレン基、アントリレン基、またはフェナントレン基などが挙げられる。 Specific examples of the arylene group having 6 to 14 carbon atoms in R ′ in the general formula (G1) or the synthesis scheme (A-2) include a phenylene group, a biphenylene group, an anthrylene group, and a phenanthrene group. Can be mentioned.

また、上記一般式(G1)または合成スキーム(A−2)中のR’における、炭素数10乃至30の縮合環または複素環基を有する基の具体例としては、アントラセン、ジフェニルアントラセン、または9−[4−(1−ナフチル)フェニル]アントラセンなどが挙げられる。 Specific examples of the group having a condensed ring or heterocyclic group having 10 to 30 carbon atoms in R ′ in the general formula (G1) or the synthesis scheme (A-2) include anthracene, diphenylanthracene, and 9 -[4- (1-naphthyl) phenyl] anthracene and the like.

次に、上述した本発明の一態様である、縮合カルバゾール骨格を有する有機化合物の合成方法により合成される、縮合カルバゾール骨格を有する有機化合物の具体的な構造式を下記に示す。ただし、本発明はこれらに限定されることはない。 Next, a specific structural formula of an organic compound having a condensed carbazole skeleton, which is synthesized by the method for synthesizing an organic compound having a condensed carbazole skeleton, which is one embodiment of the present invention described above, is shown below. However, the present invention is not limited to these.

以上、本実施の形態では、本発明の一態様である縮合カルバゾール骨格を有する有機化合物の合成方法、及びその合成方法により合成される、縮合カルバゾール骨格を有する有機化合物の一例について説明した。 As described above, in this embodiment, an example of a method for synthesizing an organic compound having a condensed carbazole skeleton, which is one embodiment of the present invention, and an example of an organic compound having a condensed carbazole skeleton synthesized by the synthesis method have been described.

本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

(実施の形態2)
本実施の形態では、実施の形態1で示した合成方法により合成された有機化合物を適用することができる発光素子について図1を用いて説明する。
(Embodiment 2)
In this embodiment, a light-emitting element to which the organic compound synthesized by the synthesis method described in Embodiment 1 can be applied is described with reference to FIGS.

≪発光素子の基本的な構造≫
まず、発光素子の基本的な構造について説明する。図1(A)には、一対の電極間に発光層を含むEL層を有する発光素子の一例を示す。具体的には、第1の電極101と第2の電極102との間にEL層103が挟まれた構造を有する。
≪Basic structure of light emitting element≫
First, the basic structure of the light emitting element will be described. FIG. 1A illustrates an example of a light-emitting element having an EL layer including a light-emitting layer between a pair of electrodes. Specifically, the EL layer 103 is sandwiched between the first electrode 101 and the second electrode 102.

また、図1(B)には、一対の電極間に複数(図1(B)では、2層)のEL層(103a、103b)を有し、EL層の間に電荷発生層104を有する積層構造(タンデム構造)の発光素子の一例を示す。タンデム構造の発光素子は、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。 In FIG. 1B, a plurality of (two layers in FIG. 1B) EL layers (103a and 103b) are provided between a pair of electrodes, and the charge generation layer 104 is provided between the EL layers. An example of a light-emitting element having a stacked structure (tandem structure) is shown. A light-emitting element having a tandem structure can realize a light-emitting device that can be driven at a low voltage and has low power consumption.

電荷発生層104は、第1の電極101と第2の電極102に電圧を印加したときに、一方のEL層(103aまたは103b)に電子を注入し、他方のEL層(103bまたは103a)に正孔を注入する機能を有する。従って、図1(B)において、第1の電極101に第2の電極102よりも電位が高くなるように電圧を印加すると、電荷発生層104からEL層103aに電子が注入され、EL層103bに正孔が注入される。 When a voltage is applied to the first electrode 101 and the second electrode 102, the charge generation layer 104 injects electrons into one EL layer (103a or 103b) and the other EL layer (103b or 103a). It has a function of injecting holes. Therefore, in FIG. 1B, when a voltage is applied to the first electrode 101 so that the potential is higher than that of the second electrode 102, electrons are injected from the charge generation layer 104 into the EL layer 103a, and the EL layer 103b. Holes are injected into the.

なお、電荷発生層104は、光の取り出し効率の点から、可視光に対して透光性を有する(具体的には、電荷発生層104に対する可視光の透過率が、40%以上)ことが好ましい。また、電荷発生層104は、第1の電極101や第2の電極102よりも低い導電率であっても機能する。 Note that the charge generation layer 104 has a property of transmitting visible light in terms of light extraction efficiency (specifically, the visible light transmittance of the charge generation layer 104 is 40% or more). preferable. In addition, the charge generation layer 104 functions even when it has lower conductivity than the first electrode 101 or the second electrode 102.

図1(C)には、図1(A)に示したEL層103(図1(B)のEL層(103a、103b)が積層構造を有する場合も同様)が、積層構造を有する場合の一例を示す。但し、この場合、第1の電極101は陽極として機能するものとする。EL層103は、第1の電極101上に、正孔(ホール)注入層111、正孔(ホール)輸送層112、発光層113、電子輸送層114、電子注入層115が順次積層された構造を有する。なお、図1(B)のように複数のEL層を有する場合、各EL層は、陽極側から順次積層される構造を有する。また、第1の電極101が陰極で、第2の電極102が陽極の場合、EL層の積層順は逆になる。 FIG. 1C illustrates a case where the EL layer 103 illustrated in FIG. 1A (the same applies to the case where the EL layers (103a and 103b) in FIG. 1B have a stacked structure) has a stacked structure. An example is shown. However, in this case, the first electrode 101 functions as an anode. The EL layer 103 has a structure in which a hole injection layer 111, a hole transport layer 112, a light-emitting layer 113, an electron transport layer 114, and an electron injection layer 115 are sequentially stacked over the first electrode 101. Have Note that in the case where a plurality of EL layers are provided as illustrated in FIG. 1B, each EL layer has a structure in which layers are sequentially stacked from the anode side. Further, when the first electrode 101 is a cathode and the second electrode 102 is an anode, the stacking order of the EL layers is reversed.

EL層(103、103a、103b)に含まれる発光層113は、それぞれ発光物質や複数の物質を適宜組み合わせて有し、所望の発光色を呈する蛍光発光や燐光発光が得られる構成とすることができる。また、発光層113を発光色の異なる積層構造としてもよい。なお、この場合、積層された各発光層に用いる発光物質やその他の物質は、それぞれ異なる材料を用いればよい。また、図1(B)に示す複数のEL層(103a、103b)から、それぞれ異なる発光色が得られる構成としても良い。この場合も各発光層に用いる発光物質やその他の物質を異なる材料とすればよい。 The light-emitting layer 113 included in each of the EL layers (103, 103a, and 103b) includes a light-emitting substance and a plurality of substances as appropriate, and has a structure in which fluorescence emission or phosphorescence emission having a desired emission color can be obtained. it can. Alternatively, the light-emitting layer 113 may have a stacked structure with different emission colors. Note that in this case, different materials may be used for the light-emitting substance and other substances used for the stacked light-emitting layers. Alternatively, different light emission colors may be obtained from the plurality of EL layers (103a and 103b) illustrated in FIG. In this case as well, the light-emitting substance and other substances used for each light-emitting layer may be different materials.

また、発光素子において、例えば、図1(C)に示す第1の電極101を反射電極とし、第2の電極102を半透過・半反射電極とし、微小光共振器(マイクロキャビティ)構造とすることにより、EL層103に含まれる発光層113から得られる発光を両電極間で共振させ、第2の電極102から得られる発光を強めることができる。 In the light-emitting element, for example, the first electrode 101 illustrated in FIG. 1C is a reflective electrode, the second electrode 102 is a semi-transmissive / semi-reflective electrode, and a micro optical resonator (microcavity) structure is formed. Thus, light emission obtained from the light-emitting layer 113 included in the EL layer 103 can be resonated between both electrodes, and light emission obtained from the second electrode 102 can be strengthened.

なお、発光素子の第1の電極101が、反射性を有する導電性材料と透光性を有する導電性材料(透明導電膜)との積層構造からなる反射電極である場合、透明導電膜の膜厚を制御することにより光学調整を行うことができる。具体的には、発光層113から得られる光の波長λに対して、第1の電極101と、第2の電極102との電極間距離がmλ/2(ただし、mは自然数)近傍となるように調整するのが好ましい。 Note that in the case where the first electrode 101 of the light-emitting element is a reflective electrode having a stacked structure of a reflective conductive material and a light-transmitting conductive material (transparent conductive film), a film of the transparent conductive film Optical adjustment can be performed by controlling the thickness. Specifically, the distance between the first electrode 101 and the second electrode 102 is near mλ / 2 (where m is a natural number) with respect to the wavelength λ of light obtained from the light-emitting layer 113. It is preferable to adjust as follows.

また、発光層113から得られる所望の光(波長:λ)を増幅させるために、第1の電極101から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、第2の電極102から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、をそれぞれ(2m’+1)λ/4(ただし、m’は自然数)近傍となるように調節するのが好ましい。なお、ここでいう発光領域とは、発光層113における正孔(ホール)と電子との再結合領域を示す。 Further, in order to amplify desired light (wavelength: λ) obtained from the light emitting layer 113, an optical distance from the first electrode 101 to a region (light emitting region) where the desired light of the light emitting layer 113 can be obtained, The optical distance from the second electrode 102 to the region (light emitting region) where desired light can be obtained from the light emitting layer 113 is adjusted to be close to (2m ′ + 1) λ / 4 (where m ′ is a natural number). It is preferable to do this. Note that the light emitting region herein refers to a recombination region between holes and electrons in the light emitting layer 113.

このような光学調整を行うことにより、発光層113から得られる特定の単色光のスペクトルを狭線化させ、色純度の良い発光を得ることができる。 By performing such optical adjustment, the spectrum of specific monochromatic light obtained from the light emitting layer 113 can be narrowed, and light emission with good color purity can be obtained.

但し、上記の場合、第1の電極101と第2の電極102との光学距離は、厳密には第1の電極101における反射領域から第2の電極102における反射領域までの総厚ということができる。しかし、第1の電極101や第2の電極102における反射領域を厳密に決定することは困難であるため、第1の電極101と第2の電極102の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができるものとする。また、第1の電極101と、所望の光が得られる発光層との光学距離は、厳密には第1の電極101における反射領域と、所望の光が得られる発光層における発光領域との光学距離であるということができる。しかし、第1の電極101における反射領域や、所望の光が得られる発光層における発光領域を厳密に決定することは困難であるため、第1の電極101の任意の位置を反射領域、所望の光が得られる発光層の任意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。 However, in the above case, the optical distance between the first electrode 101 and the second electrode 102 is strictly the total thickness from the reflective region of the first electrode 101 to the reflective region of the second electrode 102. it can. However, since it is difficult to precisely determine the reflection region in the first electrode 101 or the second electrode 102, it is assumed that any position of the first electrode 101 and the second electrode 102 is the reflection region. The above-mentioned effect can be sufficiently obtained. Strictly speaking, the optical distance between the first electrode 101 and the light emitting layer from which desired light can be obtained is the optical distance between the reflective region in the first electrode 101 and the light emitting region in the light emitting layer from which desired light can be obtained. It can be said that it is a distance. However, since it is difficult to strictly determine the reflection region in the first electrode 101 and the light-emitting region in the light-emitting layer from which desired light can be obtained, any position of the first electrode 101 can be set as the reflection region, the desired region. It is assumed that the above-described effect can be sufficiently obtained by assuming an arbitrary position of the light emitting layer from which light is obtained as a light emitting region.

なお、図1(C)に示す発光素子がマイクロキャビティ構造を有する場合、同じEL層を有していても異なる波長の光(単色光)を取り出すことができる。従って、異なる発光色を得るための塗り分け(例えば、RGB)が不要となる。また、高精細化を実現することが容易である。また、着色層(カラーフィルタ)との組み合わせも可能である。さらに、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。 Note that in the case where the light-emitting element illustrated in FIG. 1C has a microcavity structure, light having different wavelengths (monochromatic light) can be extracted even if the light-emitting element has the same EL layer. Accordingly, there is no need for separate coloring (for example, RGB) for obtaining different emission colors. Moreover, it is easy to realize high definition. A combination with a colored layer (color filter) is also possible. Furthermore, since it is possible to increase the emission intensity of the specific wavelength in the front direction, it is possible to reduce power consumption.

図1(E)に示す発光素子は、図1(B)に示したタンデム構造の発光素子の一例であり、図に示すように、3つのEL層(103a、103b、103c)が電荷発生層(104a、104b)を挟んで積層される構造を有する。なお、3つのEL層(103a、103b、103c)は、それぞれに発光層(113a、113b、113c)を有しており、各発光層の発光色は、自由に組み合わせることができる。例えば、発光層113aを青色、発光層113bを赤色、緑色、または黄色のいずれか、発光層113cを青色とすることができるが、発光層113aを赤色、発光層113bを青色、緑色、または黄色のいずれか、発光層113cを赤色とすることもできる。 The light-emitting element illustrated in FIG. 1E is an example of the light-emitting element having the tandem structure illustrated in FIG. 1B. As illustrated, three EL layers (103a, 103b, and 103c) are charge generation layers. (104a, 104b). Note that the three EL layers (103a, 103b, and 103c) each have a light emitting layer (113a, 113b, and 113c), and the light emission colors of the light emitting layers can be freely combined. For example, the light-emitting layer 113a can be blue, the light-emitting layer 113b can be red, green, or yellow, and the light-emitting layer 113c can be blue, but the light-emitting layer 113a can be red and the light-emitting layer 113b can be blue, green, or yellow. In any case, the light emitting layer 113c may be red.

なお、上述した発光素子において、第1の電極101と第2の電極102の少なくとも一方は、透光性を有する電極(透明電極、半透過・半反射電極など)とする。透光性を有する電極が透明電極の場合、透明電極の可視光の透過率は、40%以上とする。また、半透過・半反射電極の場合、半透過・半反射電極の可視光の反射率は、20%以上80%以下、好ましくは40%以上70%以下とする。また、これらの電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。 Note that in the above light-emitting element, at least one of the first electrode 101 and the second electrode 102 is a light-transmitting electrode (a transparent electrode, a semi-transmissive / semi-reflective electrode, or the like). When the light-transmitting electrode is a transparent electrode, the transparent electrode has a visible light transmittance of 40% or more. In the case of a semi-transmissive / semi-reflective electrode, the visible light reflectance of the semi-transmissive / semi-reflective electrode is 20% to 80%, preferably 40% to 70%. These electrodes preferably have a resistivity of 1 × 10 −2 Ωcm or less.

また、上述した発光素子において、第1の電極101と第2の電極102の一方が、反射性を有する電極(反射電極)である場合、反射性を有する電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、この電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。 In the above light-emitting element, when one of the first electrode 101 and the second electrode 102 is a reflective electrode (reflective electrode), the reflectance of visible light of the reflective electrode is 40 % To 100%, preferably 70% to 100%. The electrode preferably has a resistivity of 1 × 10 −2 Ωcm or less.

≪発光素子の具体的な構造および作製方法≫
次に、図1に示す発光素子の具体的な構造および作製方法について説明する。なお、ここでは、図1(A)や図1(C)に示すようにEL層103が単層構造である発光素子だけでなく、図1(B)、図1(D)及び図1(E)に示すタンデム構造の発光素子についても、まとめて説明する。なお、図1に示す各発光素子がマイクロキャビティ構造を有する場合、例えば、第1の電極101を反射電極として形成し、第2の電極102を半透過・半反射電極として形成すればよい。また、所望の電極材料を単数または複数用い、単層または積層して形成することができる。また、第2の電極102は、EL層(103、103b)を形成した後、上記と同様に材料を選択して形成する。また、これらの電極の作製には、スパッタ法や真空蒸着法を用いることができる。
<< Specific structure and manufacturing method of light-emitting element >>
Next, a specific structure and manufacturing method of the light-emitting element illustrated in FIGS. Note that here, not only the light-emitting element in which the EL layer 103 has a single-layer structure as shown in FIGS. 1A and 1C, but also FIGS. 1B, 1D, and 1C. The light-emitting element having the tandem structure shown in E) will be described together. In the case where each light-emitting element shown in FIG. 1 has a microcavity structure, for example, the first electrode 101 may be formed as a reflective electrode, and the second electrode 102 may be formed as a semi-transmissive / semi-reflective electrode. Further, a desired electrode material can be formed by using a single layer or a plurality of layers and forming a single layer or a stacked layer. The second electrode 102 is formed by selecting a material in the same manner as described above after the EL layer (103, 103b) is formed. In addition, a sputtering method or a vacuum evaporation method can be used for manufacturing these electrodes.

<第1の電極および第2の電極>
第1の電極101および第2の電極102を形成する材料としては、上述した両電極の機能が満たせるのであれば、以下に示す材料を適宜組み合わせて用いることができる。例えば、金属、合金、電気伝導性化合物、およびこれらの混合物などを適宜用いることができる。具体的には、In−Sn酸化物(ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、In−Zn酸化物、In−W−Zn酸化物が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、およびこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属およびこれらを適宜組み合わせて含む合金、その他グラフェン等を用いることができる。
<First electrode and second electrode>
As materials for forming the first electrode 101 and the second electrode 102, the following materials can be used in appropriate combination as long as the functions of both electrodes described above can be satisfied. For example, a metal, an alloy, an electrically conductive compound, a mixture thereof, and the like can be used as appropriate. Specifically, an In—Sn oxide (also referred to as ITO), an In—Si—Sn oxide (also referred to as ITSO), an In—Zn oxide, and an In—W—Zn oxide can be given. In addition, aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), gallium (Ga), zinc (Zn ), Indium (In), tin (Sn), molybdenum (Mo), tantalum (Ta), tungsten (W), palladium (Pd), gold (Au), platinum (Pt), silver (Ag), yttrium (Y ), A metal such as neodymium (Nd), and an alloy containing an appropriate combination thereof. In addition, elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above (for example, lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium Rare earth metals such as (Yb), alloys containing these in appropriate combinations, other graphene, and the like can be used.

第1の電極101が陽極である場合、第1の電極101上にEL層(103、103a)の正孔注入層(111、111a)および正孔輸送層(112、112a)が真空蒸着法により順次積層形成される。なお、図1(D)に示すタンデム構造の発光素子の場合には、EL層103aおよび電荷発生層104が順次形成された後、電荷発生層104上にEL層103bの正孔注入層111bおよび正孔輸送層112bが同様に順次積層形成される。 When the first electrode 101 is an anode, the hole injection layer (111, 111a) and the hole transport layer (112, 112a) of the EL layer (103, 103a) are formed on the first electrode 101 by a vacuum deposition method. The layers are sequentially stacked. Note that in the case of the light-emitting element having a tandem structure illustrated in FIG. 1D, after the EL layer 103a and the charge generation layer 104 are sequentially formed, the hole injection layer 111b of the EL layer 103b and the charge generation layer 104 are formed. Similarly, the hole transport layer 112b is sequentially stacked.

<正孔注入層および正孔輸送層>
正孔注入層(111、111a、111b)は、陽極である第1の電極101や電荷発生層(104)からEL層(103、103a、103b)に正孔(ホール)を注入する層であり、正孔注入性の高い材料を含む層である。
<Hole injection layer and hole transport layer>
The hole injection layer (111, 111a, 111b) is a layer for injecting holes from the first electrode 101 serving as an anode or the charge generation layer (104) into the EL layers (103, 103a, 103b). , A layer containing a material having a high hole injection property.

正孔注入性の高い材料としては、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等の遷移金属酸化物が挙げられる。この他、フタロシアニン(略称:HPc)や銅フタロシアニン(略称:CuPC)等のフタロシアニン系の化合物、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)等の芳香族アミン化合物、またはポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(略称:PEDOT/PSS)等の高分子等を用いることができる。 Examples of the material having a high hole injection property include transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide. In addition, phthalocyanine compounds such as phthalocyanine (abbreviation: H 2 Pc) and copper phthalocyanine (abbreviation: CuPC), 4,4′-bis [N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl ( Abbreviation: DPAB), N, N′-bis {4- [bis (3-methylphenyl) amino] phenyl} -N, N′-diphenyl- (1,1′-biphenyl) -4,4′-diamine ( An aromatic amine compound such as abbreviation (DNTPD) or a polymer such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (abbreviation: PEDOT / PSS) can be used.

また、正孔注入性の高い材料としては、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料を用いることもできる。この場合、アクセプター性材料により正孔輸送性材料から電子が引き抜かれて正孔注入層(111、111a、111b)で正孔が発生し、正孔輸送層(112、112a、112b)を介して発光層(113、113a、113b)に正孔が注入される。なお、正孔注入層(111、111a、111b)は、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料からなる単層で形成しても良いが、正孔輸送性材料とアクセプター性材料(電子受容性材料)とをそれぞれ別の層で積層して形成しても良い。 As a material having a high hole-injecting property, a composite material including a hole-transporting material and an acceptor material (electron-accepting material) can also be used. In this case, electrons are extracted from the hole transporting material by the acceptor material, and holes are generated in the hole injection layer (111, 111a, 111b), via the hole transporting layer (112, 112a, 112b). Holes are injected into the light emitting layer (113, 113a, 113b). Note that the hole injection layer (111, 111a, 111b) may be formed as a single layer made of a composite material including a hole transporting material and an acceptor material (electron accepting material). The material and the acceptor material (electron-accepting material) may be stacked in separate layers.

正孔輸送層(112、112a、112b)は、正孔注入層(111、111a、111b)によって、第1の電極101や電荷発生層104から注入された正孔を発光層(113、113a、113b)に輸送する層である。なお、正孔輸送層(112、112a、112b)は、正孔輸送性材料を含む層である。正孔輸送層(112、112a、112b)に用いる正孔輸送性材料は、特に正孔注入層(111、111a、111b)のHOMO準位と同じ、あるいは近いHOMO準位を有するものを用いることが好ましい。 The hole transport layer (112, 112a, 112b) is configured to transfer holes injected from the first electrode 101 or the charge generation layer 104 by the hole injection layer (111, 111a, 111b) to the light emitting layer (113, 113a, 113b). Note that the hole transport layers (112, 112a, 112b) are layers containing a hole transport material. As the hole transporting material used for the hole transport layer (112, 112a, 112b), a material having a HOMO level that is the same as or close to the HOMO level of the hole injection layer (111, 111a, 111b) should be used. Is preferred.

正孔注入層(111、111a、111b)に用いるアクセプター性材料としては、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。その他、キノジメタン誘導体やクロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを用いることができる。電子吸引基(ハロゲン基やシアノ基)を有するものとしては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略量:HAT−CN)、1,3,4,5,7,8−ヘキサフルオロテトラシアノ−ナフトキノジメタン(略称:F6−TCNNQ)等を挙げることができる。特に、HAT−CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’−1,2,3−シクロプロパントリイリデントリス[4−シアノ−2,3,5,6−テトラフルオロベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,6−ジクロロ−3,5−ジフルオロ−4−(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,3,4,5,6−ペンタフルオロベンゼンアセトニトリル]などが挙げられる。 As an acceptor material used for the hole-injection layer (111, 111a, 111b), an oxide of a metal belonging to Groups 4 to 8 in the periodic table can be used. Specific examples include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide. Among these, molybdenum oxide is especially preferable because it is stable in the air, has a low hygroscopic property, and is easy to handle. In addition, organic acceptors such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can be used. As those having an electron-withdrawing group (halogen group or cyano group), 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil, 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (approximately: HAT-CN), 1,3,4,5,7,8- And hexafluorotetracyano-naphthoquinodimethane (abbreviation: F6-TCNNQ). In particular, a compound in which an electron withdrawing group is bonded to a condensed aromatic ring having a plurality of heteroatoms such as HAT-CN is preferable because it is thermally stable. [3] Radialene derivatives having an electron-withdrawing group (particularly a halogen group such as a fluoro group or a cyano group) are preferable because of their very high electron-accepting properties. Specifically, α, α ′, α ″ − 1,2,3-cyclopropanetriylidenetris [4-cyano-2,3,5,6-tetrafluorobenzeneacetonitrile], α, α ′, α ″ -1,2,3-cyclopropanetriylidenetris [2,6-dichloro-3,5-difluoro-4- (trifluoromethyl) benzeneacetonitrile], α, α ′, α ″ -1,2,3-cyclopropanetriylidentris [2,3,4 , 5,6-pentafluorobenzeneacetonitrile] and the like.

正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いる正孔輸送性材料としては、10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いることができる。 As a hole transporting material used for the hole injection layer (111, 111a, 111b) and the hole transport layer (112, 112a, 112b), a substance having a hole mobility of 10 −6 cm 2 / Vs or more is used. preferable. Note that other than these substances, any substance that has a property of transporting more holes than electrons can be used.

正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体やインドール誘導体)や芳香族アミン化合物が好ましく、具体例としては、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、4,4’−ジフェニル−4’’−(9−フェニル−9−H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン骨格を有する化合物、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)などのカルバゾール骨格を有する化合物、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)などのフラン骨格を有する化合物が挙げられる。 As the hole transporting material, a π-electron rich heteroaromatic compound (for example, a carbazole derivative or an indole derivative) or an aromatic amine compound is preferable. As a specific example, 4,4′-bis [N- (1-naphthyl) is preferable. ) -N-phenylamino] biphenyl (abbreviation: NPB or α-NPD), N, N′-bis (3-methylphenyl) -N, N′-diphenyl- [1,1′-biphenyl] -4,4 '-Diamine (abbreviation: TPD), 4,4'-bis [N- (spiro-9,9'-bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB), 4-phenyl-4 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP), 4-phenyl-3'-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: m BPAFLP), 4-phenyl-4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBA1BP), 3- [4- (9-phenanthryl) -phenyl] -9-phenyl- 9H-carbazole (abbreviation: PCPPn), N- (4-biphenyl) -N- (9,9-dimethyl-9H-fluoren-2-yl) -9-phenyl-9H-carbazol-3-amine (abbreviation: PCBiF) ), N- (1,1′-biphenyl-4-yl) -N- [4- (9-phenyl-9H-carbazol-3-yl) phenyl] -9,9-dimethyl-9H-fluorene-2- Amine (abbreviation: PCBBiF), 4,4′-diphenyl-4 ″-(9-phenyl-9-H-carbazol-3-yl) triphenylamine (abbreviation: PCBBi1B) ), 4- (1-naphthyl) -4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBANB), 4,4′-di (1-naphthyl) -4 ″ -(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBNBB), 9,9-dimethyl-N-phenyl-N- [4- (9-phenyl-9H-carbazol-3-yl) ) Phenyl] -fluoren-2-amine (abbreviation: PCBAF), N-phenyl-N- [4- (9-phenyl-9H-carbazol-3-yl) phenyl] spiro-9,9′-bifluoren-2- Amine (abbreviation: PCBASF), 4,4 ′, 4 ″ -tris (carbazol-9-yl) triphenylamine (abbreviation: TCTA), 4,4 ′, 4 ″ -tris (N, N-diphe) Ruamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA), 4,4′- A compound having an aromatic amine skeleton such as bis [N- (spiro-9,9′-bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB), 1,3-bis (N-carbazolyl) Benzene (abbreviation: mCP), 4,4′-di (N-carbazolyl) biphenyl (abbreviation: CBP), 3,6-bis (3,5-diphenylphenyl) -9-phenylcarbazole (abbreviation: CzTP), 3 , 3′-bis (9-phenyl-9H-carbazole) (abbreviation: PCCP), 3- [N- (9-phenylcarbazol-3-yl) -N-phenylamino]- 9-phenylcarbazole (abbreviation: PCzPCA1), 3,6-bis [N- (9-phenylcarbazol-3-yl) -N-phenylamino] -9-phenylcarbazole (abbreviation: PCzPCA2), 3- [N- (1-naphthyl) -N- (9-phenylcarbazol-3-yl) amino] -9-phenylcarbazole (abbreviation: PCzPCN1), 1,3,5-tris [4- (N-carbazolyl) phenyl] benzene ( Abbreviations: TCPB), 9- [4- (10-phenyl-9-anthracenyl) phenyl] -9H-carbazole (abbreviation: CzPA) and other compounds having a carbazole skeleton, 4,4 ′, 4 ″-(benzene- 1,3,5-triyl) tri (dibenzothiophene) (abbreviation: DBT3P-II), 2,8-diphenyl-4- [4- (9 Phenyl-9H-fluoren-9-yl) phenyl] dibenzothiophene (abbreviation: DBTFLP-III), 4- [4- (9-phenyl-9H-fluoren-9-yl) phenyl] -6-phenyldibenzothiophene (abbreviation) : DBTFLP-IV) and other compounds having a thiophene skeleton, 4,4 ′, 4 ″-(benzene-1,3,5-triyl) tri (dibenzofuran) (abbreviation: DBF3P-II), 4- {3- And compounds having a furan skeleton such as [3- (9-phenyl-9H-fluoren-9-yl) phenyl] phenyl} dibenzofuran (abbreviation: mmDBFFLBi-II).

さらに、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物を用いることもできる。 Further, poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4- {N ′-[4- (4-diphenylamino)] Phenyl] phenyl-N′-phenylamino} phenyl) methacrylamide] (abbreviation: PTPDMA) poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine] (abbreviation: Poly High molecular compounds such as -TPD) can also be used.

但し、正孔輸送性材料は、上記に限られることなく公知の様々な材料を1種または複数種組み合わせて正孔輸送性材料として正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いることができる。なお、正孔輸送層(112、112a、112b)は、各々複数の層から形成されていても良い。すなわち、第1の正孔輸送層と第2の正孔輸送層とが積層されていても良い。 However, the hole transporting material is not limited to the above, and a hole injection layer (111, 111a, 111b) and a hole transporting layer may be used as a hole transporting material by combining one or more known various materials. (112, 112a, 112b). Note that each of the hole transport layers (112, 112a, 112b) may be formed of a plurality of layers. That is, the first hole transport layer and the second hole transport layer may be laminated.

図1に示す発光素子において、EL層(103、103a)の正孔輸送層(112、112a)上に発光層(113、113a)が真空蒸着法により形成される。なお、図1(D)に示すタンデム構造の発光素子の場合には、EL層103aおよび電荷発生層104が形成された後、EL層103bの正孔輸送層112b上にも発光層113bが真空蒸着法により形成される。 In the light emitting element shown in FIG. 1, the light emitting layers (113, 113a) are formed on the hole transport layers (112, 112a) of the EL layers (103, 103a) by a vacuum deposition method. Note that in the case of the light-emitting element having a tandem structure illustrated in FIG. 1D, after the EL layer 103a and the charge generation layer 104 are formed, the light-emitting layer 113b is also formed on the hole-transport layer 112b of the EL layer 103b. It is formed by a vapor deposition method.

<発光層>
発光層(113、113a、113b、113c)は、発光物質を含む層である。なお、発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、複数の発光層(113a、113b、113c)に異なる発光物質を用いることにより異なる発光色を呈する構成(例えば、補色の関係にある発光色を組み合わせて得られる白色発光)とすることができる。さらに、一つの発光層が異なる発光物質を有する積層構造であっても良い。
<Light emitting layer>
The light emitting layers (113, 113a, 113b, 113c) are layers containing a light emitting substance. Note that as the light-emitting substance, a substance exhibiting a luminescent color such as blue, purple, blue-violet, green, yellow-green, yellow, orange, or red is appropriately used. In addition, by using different light emitting substances for the plurality of light emitting layers (113a, 113b, 113c), a structure exhibiting different light emission colors (for example, white light emission obtained by combining light emission colors having complementary colors) can be obtained. . Furthermore, a stacked structure in which one light emitting layer includes different light emitting substances may be used.

また、発光層(113、113a、113b、113c)は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料)を有していても良い。また、1種または複数種の有機化合物としては、本実施の形態で説明する正孔輸送性材料や電子輸送性材料の一方または両方を用いることができる。 Further, the light emitting layer (113, 113a, 113b, 113c) may include one or more organic compounds (host material, assist material) in addition to the light emitting substance (guest material). As the one or more kinds of organic compounds, one or both of a hole transporting material and an electron transporting material described in this embodiment can be used.

発光層(113、113a、113b、113c)に用いることができる発光物質としては、一重項励起エネルギーを可視光領域の発光に変える発光物質、または三重項励起エネルギーを可視光領域の発光に変える発光物質を用いることができる。 As a light-emitting substance that can be used for the light-emitting layers (113, 113a, 113b, and 113c), a light-emitting substance that changes singlet excitation energy into light emission in the visible light region, or light emission that changes triplet excitation energy into light emission in the visible light region. Substances can be used.

なお、他の発光物質としては、例えば、以下のようなものが挙げられる。 Examples of other luminescent substances include the following.

一重項励起エネルギーを発光に変える発光物質としては、蛍光を発する物質(蛍光材料)が挙げられ、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。特にピレン誘導体は発光量子収率が高いので好ましい。ピレン誘導体の具体例としては、N,N’−ビス(3−メチルフェニル)−N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フェニル〕ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、(N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン)(略称:1,6FLPAPrn)、N,N’−ビス(ジベンゾフラン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6FrAPrn)、N,N’−ビス(ジベンゾチオフェン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6ThAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−6−アミン](略称:1,6BnfAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−02)、N,N’−(ピレン−1,6−ジイル)ビス[(6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)などが挙げられる。 Examples of the light-emitting substance that converts singlet excitation energy into light emission include substances that emit fluorescence (fluorescent materials). For example, pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzos Examples include quinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives. In particular, a pyrene derivative is preferable because of its high emission quantum yield. Specific examples of the pyrene derivative include N, N′-bis (3-methylphenyl) -N, N′-bis [3- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6. -Diamine (abbreviation: 1,6 mM emFLPAPrn), (N, N'-diphenyl-N, N'-bis [4- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6-diamine) (Abbreviation: 1,6FLPAPrn), N, N′-bis (dibenzofuran-2-yl) -N, N′-diphenylpyrene-1,6-diamine (abbreviation: 1,6FrAPrn), N, N′-bis ( Dibenzothiophen-2-yl) -N, N′-diphenylpyrene-1,6-diamine (abbreviation: 1,6ThAPrn), N, N ′-(pyrene-1,6-diyl) bis [(N-phenylbenzo [ ] Naphtho [1,2-d] furan) -6-amine] (abbreviation: 1,6BnfAPrn), N, N ′-(pyrene-1,6-diyl) bis [(N-phenylbenzo [b] naphtho [ 1,2-d] furan) -8-amine] (abbreviation: 1,6BnfAPrn-02), N, N ′-(pyrene-1,6-diyl) bis [(6, N-diphenylbenzo [b] naphtho And [1,2-d] furan) -8-amine] (abbreviation: 1,6BnfAPrn-03).

その他にも、5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、4−[4−(10−フェニル−9−アントリル)フェニル]−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPBA)、ペリレン、2,5,8,11−テトラ−tert−ブチルペリレン(略称:TBP)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)等を用いることができる。 In addition, 5,6-bis [4- (10-phenyl-9-anthryl) phenyl] -2,2′-bipyridine (abbreviation: PAP2BPy), 5,6-bis [4 ′-(10-phenyl-) 9-anthryl) biphenyl-4-yl] -2,2′-bipyridine (abbreviation: PAPP2BPy), N, N′-bis [4- (9H-carbazol-9-yl) phenyl] -N, N′-diphenyl Stilbene-4,4′-diamine (abbreviation: YGA2S), 4- (9H-carbazol-9-yl) -4 ′-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA), 4- ( 9H-carbazol-9-yl) -4 ′-(9,10-diphenyl-2-anthryl) triphenylamine (abbreviation: 2YGAPPA), N, 9-diphenyl-N- [4- (10 Phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: PCAPA), 4- (10-phenyl-9-anthryl) -4 ′-(9-phenyl-9H-carbazol-3-yl) Triphenylamine (abbreviation: PCBAPA), 4- [4- (10-phenyl-9-anthryl) phenyl] -4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBAPBA) Perylene, 2,5,8,11-tetra-tert-butylperylene (abbreviation: TBP), N, N ″-(2-tert-butylanthracene-9,10-diyldi-4,1-phenylene) bis [N, N ′, N′-triphenyl-1,4-phenylenediamine] (abbreviation: DPABPA), N, 9-diphenyl-N- [4- (9 10-diphenyl-2-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: 2PCAPPA), N- [4- (9,10-diphenyl-2-anthryl) phenyl] -N, N ′, N ′ -Triphenyl-1,4-phenylenediamine (abbreviation: 2DPAPPA) or the like can be used.

また、三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光を発する物質(燐光材料)や熱活性化遅延蛍光を示す熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。 Examples of the light-emitting substance that converts triplet excitation energy into light emission include a substance that emits phosphorescence (phosphorescent material) and a thermally activated delayed fluorescence (TADF) material that exhibits thermally activated delayed fluorescence. .

燐光材料としては、有機金属錯体、金属錯体(白金錯体)、希土類金属錯体等が挙げられる。これらは、物質ごとに異なる発光色(発光ピーク)を示すため、必要に応じて適宜選択して用いる。 Examples of phosphorescent materials include organometallic complexes, metal complexes (platinum complexes), and rare earth metal complexes. Since these exhibit different emission colors (emission peaks) for each substance, they are appropriately selected and used as necessary.

青色または緑色を呈し、発光スペクトルのピーク波長が450nm以上570nm以下である燐光材料としては、以下のような物質が挙げられる。 Examples of phosphorescent materials that exhibit blue or green color and whose emission spectrum peak wavelength is 450 nm or more and 570 nm or less include the following substances.

例えば、トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:[Ir(mpptz−dmp)])、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz−3b)])、トリス[3−(5−ビフェニル)−5−イソプロピル−4−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPr5btz)])、のような4H−トリアゾール骨格を有する有機金属錯体、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1−mp)])、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1−Me)])のような1H−トリアゾール骨格を有する有機金属錯体、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt−Me)])のようなイミダゾール骨格を有する有機金属錯体、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のように電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体等が挙げられる。 For example, tris {2- [5- (2-methylphenyl) -4- (2,6-dimethylphenyl) -4H-1,2,4-triazol-3-yl-κN2] phenyl-κC} iridium (III ) (Abbreviation: [Ir (mpppz-dmp) 3 ]), tris (5-methyl-3,4-diphenyl-4H-1,2,4-triazolato) iridium (III) (abbreviation: [Ir (Mptz) 3 ], Tris [4- (3-biphenyl) -5-isopropyl-3-phenyl-4H-1,2,4-triazolate] iridium (III) (abbreviation: [Ir (iPrptz-3b) 3 ]), tris [3- (5-biphenyl) -5-isopropyl-4-phenyl-4H-1,2,4-triazolato] iridium (III) (abbreviation: [Ir (iPr5btz) 3] ), like An organometallic complex having a 4H-triazole skeleton, tris [3-methyl-1- (2-methylphenyl) -5-phenyl-1H-1,2,4-triazolato] iridium (III) (abbreviation: [Ir (Mptz1 -Mp) 3 ]), tris (1-methyl-5-phenyl-3-propyl-1H-1,2,4-triazolate) iridium (III) (abbreviation: [Ir (Prptz1-Me) 3 ]) An organometallic complex having a 1H-triazole skeleton, fac-tris [1- (2,6-diisopropylphenyl) -2-phenyl-1H-imidazole] iridium (III) (abbreviation: [Ir (iPrpmi) 3 ]), Tris [3- (2,6-dimethylphenyl) -7-methylimidazo [1,2-f] phenanthridinato] iridium (III) (abbreviated : [Ir (dmpimpt-Me) 3] an organometallic complex having an imidazole skeleton, such as), bis [2- (4 ', 6'-difluorophenyl) pyridinato -N, C 2'] iridium (III) tetrakis ( 1-pyrazolyl) borate (abbreviation: FIr6), bis [2- (4 ′, 6′-difluorophenyl) pyridinato-N, C 2 ′ ] iridium (III) picolinate (abbreviation: FIrpic), bis {2- [3 ', 5'-bis (trifluoromethyl) phenyl] pyridinato-N, C 2' } iridium (III) picolinate (abbreviation: [Ir (CF 3 ppy) 2 (pic)]), bis [2- (4 ′ , 6'-difluorophenyl) pyridinato -N, C 2 '] iridium (III) acetylacetonate (abbreviation: FIr (acac) an electron withdrawing group such as) Organometallic complexes of phenylpyridine derivative as a ligand are exemplified.

緑色または黄色を呈し、発光スペクトルのピーク波長が495nm以上590nm以下である燐光材料としては、以下のような物質が挙げられる。 Examples of the phosphorescent material which exhibits green or yellow and has an emission spectrum peak wavelength of 495 nm or more and 590 nm or less include the following substances.

例えば、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6−(2−ノルボルニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス{4,6−ジメチル−2−[6−(2,6−ジメチルフェニル)−4−ピリミジニル−κN3]フェニル−κC}イリジウム(III)(略称:[Ir(dmppm−dmp)(acac)])、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−Me)(acac)])、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−iPr)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])、ビス[2−(2−ピリジニル−κN)フェニル−κC][2−(4−フェニル−2−ピリジニル−κN)フェニル−κC]イリジウム(III)(略称:[Ir(ppy)(4dppy)])、ビス[2−(2−ピリジニル−κN)フェニル−κC][2−(4−メチル−5−フェニル−2−ピリジニル−κN)フェニル−κC]のようなピリジン骨格を有する有機金属イリジウム錯体、ビス(2,4−ジフェニル−1,3−オキサゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(dpo)(acac)])、ビス{2−[4’−(パーフルオロフェニル)フェニル]ピリジナト−N,C2’}イリジウム(III)アセチルアセトナート(略称:[Ir(p−PF−ph)(acac)])、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(bt)(acac)])などの有機金属錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。 For example, tris (4-methyl-6-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (mppm) 3 ]), tris (4-t-butyl-6-phenylpyrimidinato) iridium (III) (Abbreviation: [Ir (tBupppm) 3 ]), (acetylacetonato) bis (6-methyl-4-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (mppm) 2 (acac)]), ( Acetylacetonato) bis (6-tert-butyl-4-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (tBupppm) 2 (acac)]), (acetylacetonato) bis [6- (2- Norbornyl) -4-phenylpyrimidinato] iridium (III) (abbreviation: [Ir (nbppm) 2 (acac)]), (acetylacetona G) Bis [5-methyl-6- (2-methylphenyl) -4-phenylpyrimidinato] iridium (III) (abbreviation: [Ir (mpmppm) 2 (acac)]), (acetylacetonato) bis { 4,6-dimethyl-2- [6- (2,6-dimethylphenyl) -4-pyrimidinyl-κN3] phenyl-κC} iridium (III) (abbreviation: [Ir (dmppm-dmp) 2 (acac)]) , (Acetylacetonato) bis (4,6-diphenylpyrimidinato) iridium (III) (abbreviation: [Ir (dppm) 2 (acac)]), an organometallic iridium complex having a pyrimidine skeleton, isocyanatomethyl) bis (3,5-dimethyl-2-phenylpyrazinato) iridium (III) (abbreviation: [Ir (mppr-Me) 2 (acac ]), (Acetylacetonato) bis (5-isopropyl-3-methyl-2-phenylpyrazinato) iridium (III) (abbreviation: [Ir (mppr-iPr) pyrazine skeleton, such as 2 (acac)]) , Tris (2-phenylpyridinato-N, C 2 ′ ) iridium (III) (abbreviation: [Ir (ppy) 3 ]), bis (2-phenylpyridinato-N, C 2 ′ ) iridium (III) acetylacetonate (abbreviation: [Ir (ppy) 2 (acac)]), bis (benzo [h] quinolinato) iridium (III) acetylacetonate (abbreviation: [Ir (bzq) 2 ( acac)]), tris (benzo [h] quinolinato) iridium (III) (abbreviation: [Ir (bzq) 3] ), tris (2-Fenirukinori DOO -N, C 2 ') iridium (III) (abbreviation: [Ir (pq) 3] ), bis (2-phenylquinolinato--N, C 2') iridium (III) acetylacetonate (abbreviation: [Ir (Pq) 2 (acac)]), bis [2- (2-pyridinyl-κN) phenyl-κC] [2- (4-phenyl-2-pyridinyl-κN) phenyl-κC] iridium (III) (abbreviation: [Ir (ppy) 2 (4dppy)]), bis [2- (2-pyridinyl-κN) phenyl-κC] [2- (4-methyl-5-phenyl-2-pyridinyl-κN) phenyl-κC] An organometallic iridium complex having such a pyridine skeleton, bis (2,4-diphenyl-1,3-oxazolate-N, C 2 ′ ) iridium (III) acetylacetonate (abbreviation: [Ir (dpo) 2 (Acac)]), bis {2- [4 ′-(perfluorophenyl) phenyl] pyridinato-N, C 2 ′ } iridium (III) acetylacetonate (abbreviation: [Ir (p-PF-ph) 2 ( acac)]), bis (2-phenylbenzothiazolate-N, C 2 ′ ) iridium (III) acetylacetonate (abbreviation: [Ir (bt) 2 (acac)]) And a rare earth metal complex such as tris (acetylacetonato) (monophenanthroline) terbium (III) (abbreviation: [Tb (acac) 3 (Phen)]).

黄色または赤色を呈し、発光スペクトルのピーク波長が570nm以上750nm以下である燐光材料としては、以下のような物質が挙げられる。 Examples of the phosphorescent material which exhibits yellow or red and has an emission spectrum peak wavelength of 570 nm or more and 750 nm or less include the following substances.

例えば、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、(ジピバロイルメタナト)ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト]イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機金属錯体、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、ビス{4,6−ジメチル−2−[3−(3,5−ジメチルフェニル)−5−フェニル−2−ピラジニル−κN]フェニル−κC}(2,6−ジメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdppr−P)(dibm)])、ビス{4,6−ジメチル−2−[5−(4−シアノ−2,6−ジメチルフェニル)−3−(3,5−ジメチルフェニル)−2−ピラジニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdppr−dmCP)(dpm)])、(アセチルアセトナト)ビス[2−メチル−3−フェニルキノキサリナト−N,C2’]イリジウム(III)(略称:[Ir(mpq)(acac)])、(アセチルアセトナト)ビス(2,3−ジフェニルキノキサリナト−N,C2’)イリジウム(III)(略称:[Ir(dpq)(acac)])、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])、ビス[4,6−ジメチル−2−(2−キノリニル−κN)フェニル−κC](2,4−ペンタンジオナト−κO,O’)イリジウム(III)のようなピリジン骨格を有する有機金属錯体、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:[PtOEP])のような白金錯体、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。 For example, (diisobutyrylmethanato) bis [4,6-bis (3-methylphenyl) pyrimidinato] iridium (III) (abbreviation: [Ir (5 mdppm) 2 (divm)]), bis [4,6-bis ( 3-methylphenyl) pyrimidinato] (dipivaloylmethanato) iridium (III) (abbreviation: [Ir (5 mdppm) 2 (dpm)]), (dipivaloylmethanato) bis [4,6-di (naphthalene- Organometallic complexes having a pyrimidine skeleton such as 1-yl) pyrimidinato] iridium (III) (abbreviation: [Ir (d1npm) 2 (dpm)]), (acetylacetonato) bis (2,3,5-triphenyl) Pirajinato) iridium (III) (abbreviation: [Ir (tppr) 2 ( acac)]), bis (2,3,5-triphenylpyrazinato (Dipivaloylmethanato) iridium (III) (abbreviation: [Ir (tppr) 2 ( dpm)]), bis {4,6-dimethyl-2- [3- (3,5-dimethylphenyl) -5- Phenyl-2-pyrazinyl-κN] phenyl-κC} (2,6-dimethyl-3,5-heptanedionato-κ 2 O, O ′) iridium (III) (abbreviation: [Ir (dmdppr-P) 2 (divm) ], Bis {4,6-dimethyl-2- [5- (4-cyano-2,6-dimethylphenyl) -3- (3,5-dimethylphenyl) -2-pyrazinyl-κN] phenyl-κC} (2,2,6,6-tetramethyl-3,5-heptanedionato-κ 2 O, O ′) iridium (III) (abbreviation: [Ir (dmdppr-dmCP) 2 (dpm)]), (acetylacetonato ) Screw [2 -Methyl-3-phenylquinoxalinato-N, C 2 ′ ] iridium (III) (abbreviation: [Ir (mpq) 2 (acac)]), (acetylacetonato) bis (2,3-diphenylquinoxalinato -N, C2 ' ) iridium (III) (abbreviation: [Ir (dpq) 2 (acac)]), (acetylacetonato) bis [2,3-bis (4-fluorophenyl) quinoxalinato] iridium (III) (Abbreviation: [Ir (Fdpq) 2 (acac)]) or an organometallic complex having a pyrazine skeleton, or tris (1-phenylisoquinolinato-N, C 2 ′ ) iridium (III) (abbreviation: [Ir (Piq) 3 ]), bis (1-phenylisoquinolinato-N, C 2 ′ ) iridium (III) acetylacetonate (abbreviation: [Ir (piq) 2 (aca c)])), pyridine such as bis [4,6-dimethyl-2- (2-quinolinyl-κN) phenyl-κC] (2,4-pentanedionato-κ 2 O, O ′) iridium (III) Organometallic complexes having a skeleton, platinum complexes such as 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphyrin platinum (II) (abbreviation: [PtOEP]), tris (1 , 3-diphenyl-1,3-propanedionate) (monophenanthroline) europium (III) (abbreviation: [Eu (DBM) 3 (Phen)]), tris [1- (2-thenoyl) -3,3, Rare earth metal complexes such as 3-trifluoroacetonato] (monophenanthroline) europium (III) (abbreviation: [Eu (TTA) 3 (Phen)]).

発光層(113、113a、113b、113c)に用いる有機化合物(ホスト材料、アシスト材料)としては、発光物質(ゲスト材料)のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。発光層(113、113a、113b、113c)に複数の有機化合物を用いる場合、励起錯体を形成する化合物を燐光発光物質と混合して用いることが好ましい。なお、このような構成とすることにより、励起錯体から発光物質へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を得ることができる。この場合、様々な有機化合物を適宜組み合わせて用いることができるが、効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。 As the organic compound (host material, assist material) used for the light emitting layer (113, 113a, 113b, 113c), one or more kinds of substances having an energy gap larger than that of the light emitting substance (guest material) are selected. Use it. When a plurality of organic compounds are used for the light-emitting layers (113, 113a, 113b, and 113c), it is preferable to use a compound that forms an exciplex mixed with a phosphorescent material. Note that with such a structure, light emission using ExTET (Exciplex-Triple Energy Transfer), which is energy transfer from the exciplex to the light-emitting substance, can be obtained. In this case, various organic compounds can be used in appropriate combination. However, in order to efficiently form an exciplex, a compound that easily receives holes (hole transporting material) and a compound that easily receives electrons (electrons) A combination with a transportable material) is particularly preferred.

発光物質が蛍光材料である場合、ホスト材料としては一重項励起状態のエネルギー準位が大きく、三重項励起状態のエネルギー準位が小さい有機化合物を用いるのが好ましい。例えば、アントラセン誘導体やテトラセン誘導体を用いるのが好ましい。具体的には、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6−[3−(9,10−ジフェニル−2−アントリル)フェニル]−ベンゾ[b]ナフト[1,2−d]フラン(略称:2mBnfPPA)、9−フェニル−10−{4−(9−フェニル−9H−フルオレン−9−イル)−ビフェニル−4’−イル}−アントラセン(略称:FLPPA)、5,12−ジフェニルテトラセン、5,12−ビス(ビフェニル−2−イル)テトラセンなどが挙げられる。 When the light-emitting substance is a fluorescent material, it is preferable to use an organic compound having a large singlet excited state energy level and a small triplet excited state energy level as the host material. For example, it is preferable to use an anthracene derivative or a tetracene derivative. Specifically, 9-phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: PCzPA), 3- [4- (1-naphthyl) -phenyl] -9 -Phenyl-9H-carbazole (abbreviation: PCPN), 9- [4- (10-phenyl-9-anthracenyl) phenyl] -9H-carbazole (abbreviation: CzPA), 7- [4- (10-phenyl-9- Anthryl) phenyl] -7H-dibenzo [c, g] carbazole (abbreviation: cgDBCzPA), 6- [3- (9,10-diphenyl-2-anthryl) phenyl] -benzo [b] naphtho [1,2-d ] Furan (abbreviation: 2 mBnfPPA), 9-phenyl-10- {4- (9-phenyl-9H-fluoren-9-yl) -biphenyl-4'-yl} -anthra Emissions (abbreviation: FLPPA), 5,12 diphenyltetracene, 5,12-bis (biphenyl-2-yl) tetracene, and the like.

発光物質が燐光材料である場合、ホスト材料としては、発光物質の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有機化合物を選択すれば良い。なお、この場合には、亜鉛やアルミニウム系金属錯体の他、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ピリミジン誘導体、トリアジン誘導体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体等の他、芳香族アミンやカルバゾール誘導体等を用いることができる。 When the light-emitting substance is a phosphorescent material, an organic compound having a triplet excitation energy larger than the triplet excitation energy (energy difference between the ground state and the triplet excited state) of the light-emitting substance may be selected as the host material. In this case, in addition to zinc and aluminum-based metal complexes, oxadiazole derivatives, triazole derivatives, benzimidazole derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, pyrimidine derivatives, triazine derivatives, pyridine derivatives In addition to bipyridine derivatives and phenanthroline derivatives, aromatic amines and carbazole derivatives can be used.

ホスト材料として、より具体的には、例えば以下の正孔輸送性材料および電子輸送性材料を用いることができる。 More specifically, for example, the following hole transporting materials and electron transporting materials can be used as the host material.

これら正孔輸送性の高いホスト材料としては、例えば、N,N’−ジ(p−トリル)−N,N’−ジフェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)等の芳香族アミン化合物を挙げることができる。 Examples of these host materials having a high hole transporting property include N, N′-di (p-tolyl) -N, N′-diphenyl-p-phenylenediamine (abbreviation: DTDPPA), 4,4′-bis [ N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl (abbreviation: DPAB), N, N′-bis {4- [bis (3-methylphenyl) amino] phenyl} -N, N′-diphenyl -(1,1′-biphenyl) -4,4′-diamine (abbreviation: DNTPD), 1,3,5-tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B) An aromatic amine compound such as

また、3−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA1)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA2)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−(1−ナフチル)アミノ]−9−フェニルカルバゾール(略称:PCzTPN2)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等のカルバゾール誘導体を挙げることができる。また、カルバゾール誘導体としては、他に、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、1,4−ビス[4−(N−カルバゾリル)フェニル]−2,3,5,6−テトラフェニルベンゼン等を用いることもできる。 In addition, 3- [N- (4-diphenylaminophenyl) -N-phenylamino] -9-phenylcarbazole (abbreviation: PCzDPA1), 3,6-bis [N- (4-diphenylaminophenyl) -N-phenyl Amino] -9-phenylcarbazole (abbreviation: PCzDPA2), 3,6-bis [N- (4-diphenylaminophenyl) -N- (1-naphthyl) amino] -9-phenylcarbazole (abbreviation: PCzTPN2), 3 -[N- (9-phenylcarbazol-3-yl) -N-phenylamino] -9-phenylcarbazole (abbreviation: PCzPCA1), 3,6-bis [N- (9-phenylcarbazol-3-yl)- N-phenylamino] -9-phenylcarbazole (abbreviation: PCzPCA2), 3- [N- (1-naphthyl) -N- (9 Phenyl-3-yl) amino] phenyl carbazole (abbreviation: PCzPCNl) can be mentioned carbazole derivatives such. As other carbazole derivatives, 4,4′-di (N-carbazolyl) biphenyl (abbreviation: CBP), 1,3,5-tris [4- (N-carbazolyl) phenyl] benzene (abbreviation: TCPB) ), 1,4-bis [4- (N-carbazolyl) phenyl] -2,3,5,6-tetraphenylbenzene and the like can also be used.

また、正孔輸送性の高いホスト材料としては、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)やN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4,4’,4’’−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミン(略称:1’−TNATA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:m−MTDATA)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、N−(9,9f−ジメチル−9H−フルオレン−2−イル)−N−{9,9−ジメチル−2−[N’−フェニル−N’−(9,9−ジメチル−9H−フルオレン−2−イル)アミノ]−9H−フルオレン−7−イル}フェニルアミン(略称:DFLADFL)、N−(9,9−ジメチル−2−ジフェニルアミノ−9H−フルオレン−7−イル)ジフェニルアミン(略称:DPNF)、2−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPASF)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、4−フェニルジフェニル−(9−フェニル−9H−カルバゾール−3−イル)アミン(略称:PCA1BP)、N,N’−ビス(9−フェニルカルバゾール−3−イル)−N,N’−ジフェニルベンゼン−1,3−ジアミン(略称:PCA2B)、N,N’,N’’−トリフェニル−N,N’,N’’−トリス(9−フェニルカルバゾール−3−イル)ベンゼン−1,3,5−トリアミン(略称:PCA3B)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、2,7−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−スピロ−9,9’−ビフルオレン(略称:DPA2SF)、N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(4−フェニル)フェニルアニリン(略称:YGA1BP)、N,N’−ビス[4−(カルバゾール−9−イル)フェニル]−N,N’−ジフェニル−9,9−ジメチルフルオレン−2,7−ジアミン(略称:YGA2F)などの芳香族アミン化合物等を用いることができる。また、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、1,3,5−トリ(ジベンゾチオフェン−4−イル)−ベンゼン(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)、4−[3−(トリフェニレン−2−イル)フェニル]ジベンゾチオフェン(略称:mDBTPTp−II)等のカルバゾール化合物、チオフェン化合物、フラン化合物、フルオレン化合物、トリフェニレン化合物、フェナントレン化合物等を用いることができる。 As a host material having a high hole-transport property, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB or α-NPD), N, N ′ -Bis (3-methylphenyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 4,4 ', 4 "-tris (carbazole- 9-yl) triphenylamine (abbreviation: TCTA), 4,4 ′, 4 ″ -tris [N- (1-naphthyl) -N-phenylamino] triphenylamine (abbreviation: 1′-TNATA), 4 , 4 ′, 4 ″ -tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino ] Triphenylamine (abbreviation m-MTDATA), 4,4′-bis [N- (spiro-9,9′-bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB), 4-phenyl-4 ′-(9 -Phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP), 4-phenyl-3 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: mBPAFLP), N- (9,9f- Dimethyl-9H-fluoren-2-yl) -N- {9,9-dimethyl-2- [N′-phenyl-N ′-(9,9-dimethyl-9H-fluoren-2-yl) amino] -9H -Fluoren-7-yl} phenylamine (abbreviation: DFLADFL), N- (9,9-dimethyl-2-diphenylamino-9H-fluoren-7-yl) diphenylamine (abbreviation: DPNF), 2- [N- (4-diphenylaminophenyl) -N-phenylamino] spiro-9,9′-bifluorene (abbreviation: DPASF), 4-phenyl-4 ′-(9-phenyl-9H-carbazole) -3-yl) triphenylamine (abbreviation: PCBA1BP), 4,4′-diphenyl-4 ″-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBBi1BP), 4- ( 1-naphthyl) -4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBBANB), 4,4′-di (1-naphthyl) -4 ″-(9-phenyl) -9H-carbazol-3-yl) triphenylamine (abbreviation: PCBNBB), 4-phenyldiphenyl- (9-phenyl-9H-carbazole-3- ) Amine (abbreviation: PCA1BP), N, N′-bis (9-phenylcarbazol-3-yl) -N, N′-diphenylbenzene-1,3-diamine (abbreviation: PCA2B), N, N ′, N ″ -triphenyl-N, N ′, N ″ -tris (9-phenylcarbazol-3-yl) benzene-1,3,5-triamine (abbreviation: PCA3B), N- (4-biphenyl)- N- (9,9-dimethyl-9H-fluoren-2-yl) -9-phenyl-9H-carbazol-3-amine (abbreviation: PCBiF), N- (1,1′-biphenyl-4-yl)- N- [4- (9-phenyl-9H-carbazol-3-yl) phenyl] -9,9-dimethyl-9H-fluoren-2-amine (abbreviation: PCBBiF), 9,9-dimethyl-N-phenyl- N- [ -(9-phenyl-9H-carbazol-3-yl) phenyl] fluoren-2-amine (abbreviation: PCBAF), N-phenyl-N- [4- (9-phenyl-9H-carbazol-3-yl) phenyl ] Spiro-9,9′-bifluoren-2-amine (abbreviation: PCBASF), 2- [N- (9-phenylcarbazol-3-yl) -N-phenylamino] spiro-9,9′-bifluorene (abbreviation) : PCASF), 2,7-bis [N- (4-diphenylaminophenyl) -N-phenylamino] -spiro-9,9'-bifluorene (abbreviation: DPA2SF), N- [4- (9H-carbazole- 9-yl) phenyl] -N- (4-phenyl) phenylaniline (abbreviation: YGA1BP), N, N′-bis [4- (carbazol-9-yl) phenyl An aromatic amine compound such as —N, N′-diphenyl-9,9-dimethylfluorene-2,7-diamine (abbreviation: YGA2F) can be used. 3- [4- (1-naphthyl) -phenyl] -9-phenyl-9H-carbazole (abbreviation: PCPN), 3- [4- (9-phenanthryl) -phenyl] -9-phenyl-9H-carbazole (Abbreviation: PCPPn), 3,3′-bis (9-phenyl-9H-carbazole) (abbreviation: PCCP), 1,3-bis (N-carbazolyl) benzene (abbreviation: mCP), 3,6-bis ( 3,5-diphenylphenyl) -9-phenylcarbazole (abbreviation: CzTP), 4- {3- [3- (9-phenyl-9H-fluoren-9-yl) phenyl] phenyl} dibenzofuran (abbreviation: mmDBFFLBi-II) ), 4,4 ′, 4 ″-(benzene-1,3,5-triyl) tri (dibenzofuran) (abbreviation: DBF3P-II), 1,3,5-tri (di) Nzothiophen-4-yl) -benzene (abbreviation: DBT3P-II), 2,8-diphenyl-4- [4- (9-phenyl-9H-fluoren-9-yl) phenyl] dibenzothiophene (abbreviation: DBTFLP-III) ), 4- [4- (9-phenyl-9H-fluoren-9-yl) phenyl] -6-phenyldibenzothiophene (abbreviation: DBTFLP-IV), 4- [3- (triphenylene-2-yl) phenyl] A carbazole compound such as dibenzothiophene (abbreviation: mDBTPTp-II), a thiophene compound, a furan compound, a fluorene compound, a triphenylene compound, a phenanthrene compound, or the like can be used.

電子輸送性の高いホスト材料としては、例えば、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等である。また、この他ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)や、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)のようなオキサジアゾール誘導体や、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)のようなトリアゾール誘導体や、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)のようなイミダゾール骨格を有する化合物(特にベンゾイミダゾール誘導体)や、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs)などのオキサゾール骨格を有する化合物(特にベンゾオキサゾール誘導体)や、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)などのフェナントロリン誘導体や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)などのジアジン骨格を有する複素環化合物や、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)などのトリアジン骨格を有する複素環化合物や、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物も用いることができる。また、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。 Examples of the host material having a high electron transporting property include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (III) (abbreviation: Almq 3 ), and bis. (10-hydroxybenzo [h] quinolinato) beryllium (II) (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis ( Metal complexes having a quinoline skeleton or a benzoquinoline skeleton, such as 8-quinolinolato) zinc (II) (abbreviation: Znq). In addition, bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), etc. A metal complex having an oxazole-based or thiazole-based ligand can also be used. In addition to metal complexes, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5 -(P-tert-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 9- [4- (5-phenyl-1,3,4-oxa) Oxadiazole derivatives such as diazol-2-yl) phenyl] -9H-carbazole (abbreviation: CO11), and 3- (4-biphenylyl) -4-phenyl-5- (4-tert-butylphenyl)- Triazole derivatives such as 1,2,4-triazole (abbreviation: TAZ) and 2,2 ′, 2 ″-(1,3,5-benzenetriyl) tris (1-phenyl-1H-benzimidazole) (Abbreviation: TPBI 2- [3- (dibenzothiophen-4-yl) phenyl] -1-phenyl-1H-benzimidazole (abbreviation: mDBTBIm-II), a compound having an imidazole skeleton (particularly a benzimidazole derivative), Compounds having an oxazole skeleton such as 4′-bis (5-methylbenzoxazol-2-yl) stilbene (abbreviation: BzOs) (particularly benzoxazole derivatives), bathophenanthroline (abbreviation: Bphen), bathocuproin (abbreviation: BCP) Phenanthroline derivatives such as 2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline (abbreviation: NBphen), and 2- [3- (dibenzothiophen-4-yl) phenyl ] Dibenzo [f, h] quinoxaline (abbreviation: 2mDB) PDBq-II), 2- [3 ′-(dibenzothiophen-4-yl) biphenyl-3-yl] dibenzo [f, h] quinoxaline (abbreviation: 2mDBTBPDBq-II), 2- [3 ′-(9H-carbazole) -9-yl) biphenyl-3-yl] dibenzo [f, h] quinoxaline (abbreviation: 2mCzBPDBq), 2- [4- (3,6-diphenyl-9H-carbazol-9-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 2CzPDBq-III), 7- [3- (dibenzothiophen-4-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 7mDBTPDBq-II), and 6- [3- (dibenzothiophene) -4-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 6mDBTPDBq-II), 4,6-bis [ 3- (phenanthrene-9-yl) phenyl] pyrimidine (abbreviation: 4,6mPnP2Pm), 4,6-bis [3- (4-dibenzothienyl) phenyl] pyrimidine (abbreviation: 4,6mDBTP2Pm-II), 4,6 A heterocyclic compound having a diazine skeleton such as -bis [3- (9H-carbazol-9-yl) phenyl] pyrimidine (abbreviation: 4,6mCzP2Pm), 2- {4- [3- (N-phenyl-9H- A heterocyclic compound having a triazine skeleton such as carbazol-3-yl) -9H-carbazol-9-yl] phenyl} -4,6-diphenyl-1,3,5-triazine (abbreviation: PCCzPTzn); -Bis [3- (9H-carbazol-9-yl) phenyl] pyridine (abbreviation: 35DCzPPy), 1,3,5-tri [3- ( - pyridyl) phenyl] benzene (abbreviation: TmPyPB) can also be used a heterocyclic compound having a pyridine skeleton such. In addition, poly (2,5-pyridinediyl) (abbreviation: PPy), poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py), poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy) Molecular compounds can also be used.

また、ホスト材料として、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物が挙げられ、具体的には、9,10−ジフェニルアントラセン(略称:DPAnth)、N,N−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:CzA1PA)、4−(10−フェニル−9−アントリル)トリフェニルアミン(略称:DPhPA)、YGAPA、PCAPA、N,9−ジフェニル−N−{4−[4−(10−フェニル−9−アントリル)フェニル]フェニル}−9H−カルバゾール−3−アミン(略称:PCAPBA)、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、6,12−ジメトキシ−5,11−ジフェニルクリセン、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、3,6−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:DPCzPA)、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、9,9’−ビアントリル(略称:BANT)、9,9’−(スチルベン−3,3’−ジイル)ジフェナントレン(略称:DPNS)、9,9’−(スチルベン−4,4’−ジイル)ジフェナントレン(略称:DPNS2)、1,3,5−トリ(1−ピレニル)ベンゼン(略称:TPB3)などを用いることができる。 Examples of the host material include condensed polycyclic aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, and dibenzo [g, p] chrysene derivatives. Specifically, 9,10-diphenylanthracene ( Abbreviations: DPAnth), N, N-diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: CzA1PA), 4- (10-phenyl-9- Anthryl) triphenylamine (abbreviation: DPhPA), YGAPA, PCAPA, N, 9-diphenyl-N- {4- [4- (10-phenyl-9-anthryl) phenyl] phenyl} -9H-carbazol-3-amine (Abbreviation: PCAPBA), N- (9,10-diphenyl-2-anthryl) -N, 9-di Enyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), 6,12-dimethoxy-5,11-diphenylchrysene, N, N, N ′, N ′, N ″, N ″, N ′ ″ , N ′ ″-octaphenyldibenzo [g, p] chrysene-2,7,10,15-tetraamine (abbreviation: DBC1), 9- [4- (10-phenyl-9-anthracenyl) phenyl] -9H— Carbazole (abbreviation: CzPA), 3,6-diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: DPCzPA), 9,10-bis (3,5-diphenyl) Phenyl) anthracene (abbreviation: DPPA), 9,10-di (2-naphthyl) anthracene (abbreviation: DNA), 2-tert-butyl-9,10-di (2-naphthyl) Nthracene (abbreviation: t-BuDNA), 9,9′-bianthryl (abbreviation: BANT), 9,9 ′-(stilbene-3,3′-diyl) diphenanthrene (abbreviation: DPNS), 9,9 ′-( Stilbene-4,4′-diyl) diphenanthrene (abbreviation: DPNS2), 1,3,5-tri (1-pyrenyl) benzene (abbreviation: TPB3), or the like can be used.

また、発光層(113、113a、113b、113c)に有機化合物を複数用いる場合、励起錯体を形成する2種類の化合物(第1の化合物および第2の化合物)と、有機金属錯体とを混合して用いてもよい。この場合、様々な有機化合物を適宜組み合わせて用いることができるが、効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。なお、正孔輸送性材料および電子輸送性材料の具体例については、本実施の形態で示す材料を用いることができる。 In the case where a plurality of organic compounds are used for the light-emitting layer (113, 113a, 113b, 113c), two types of compounds (first compound and second compound) that form an exciplex are mixed with an organometallic complex. May be used. In this case, various organic compounds can be used in appropriate combination. However, in order to efficiently form an exciplex, a compound that easily receives holes (hole transporting material) and a compound that easily receives electrons (electrons) A combination with a transportable material) is particularly preferred. Note that as specific examples of the hole-transport material and the electron-transport material, the materials described in this embodiment can be used.

TADF材料とは、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈する材料のことである。また、熱活性化遅延蛍光が効率良く得られる条件としては、三重項励起準位と一重項励起準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、10−6秒以上、好ましくは10−3秒以上である。 TADF material is a material that can up-convert triplet excited state to singlet excited state with a little thermal energy (interverse crossing) and efficiently emits light (fluorescence) from singlet excited state. is there. As a condition for efficiently obtaining thermally activated delayed fluorescence, the energy difference between the triplet excited level and the singlet excited level is 0 eV or more and 0.2 eV or less, preferably 0 eV or more and 0.1 eV or less. Can be mentioned. In addition, delayed fluorescence in the TADF material refers to light emission having a remarkably long lifetime while having a spectrum similar to that of normal fluorescence. The lifetime is 10 −6 seconds or longer, preferably 10 −3 seconds or longer.

TADF材料としては、例えば、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。金属含有ポルフィリンとしては、例えば、プロトポルフィリン−フッ化スズ錯体(略称:SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(略称:SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(略称:SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(略称:SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(略称:SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(略称:SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(略称:PtClOEP)等が挙げられる。 Examples of the TADF material include fullerene and derivatives thereof, acridine derivatives such as proflavine, and eosin. In addition, metal-containing porphyrins including magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), palladium (Pd), and the like can be given. Examples of the metal-containing porphyrin include a protoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Proto IX)), a mesoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Meso IX)), and hematoporphyrin-tin fluoride. Complex (abbreviation: SnF 2 (Hemato IX)), coproporphyrin tetramethyl ester-tin fluoride complex (abbreviation: SnF 2 (Copro III-4Me)), octaethylporphyrin-tin fluoride complex (abbreviation: SnF 2 (OEP) )), Etioporphyrin-tin fluoride complex (abbreviation: SnF 2 (Etio I)), octaethylporphyrin-platinum chloride complex (abbreviation: PtCl 2 OEP), and the like.

その他にも、2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)、等のπ電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物を用いることができる。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好ましい。 In addition, 2- (biphenyl-4-yl) -4,6-bis (12-phenylindolo [2,3-a] carbazol-11-yl) -1,3,5-triazine (abbreviation: PIC) -TRZ), 2- {4- [3- (N-phenyl-9H-carbazol-3-yl) -9H-carbazol-9-yl] phenyl} -4,6-diphenyl-1,3,5-triazine (Abbreviation: PCCzPTzn), 2- [4- (10H-phenoxazin-10-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (abbreviation: PXZ-TRZ), 3- [4- (5-phenyl-5,10-dihydrophenazin-10-yl) phenyl] -4,5-diphenyl-1,2,4-triazole (abbreviation: PPZ-3TPT), 3- (9,9-dimethyl-9H -Acridine- 0-yl) -9H-xanthen-9-one (abbreviation: ACRXTN), bis [4- (9,9-dimethyl-9,10-dihydroacridine) phenyl] sulfone (abbreviation: DMAC-DPS), 10-phenyl -10H, 10'H-spiro [acridine-9,9'-anthracene] -10'-one (abbreviation: ACRSA), etc., a heterocyclic ring having a π-electron rich heteroaromatic ring and a π-electron deficient heteroaromatic ring Compounds can be used. In addition, a substance in which a π-electron rich heteroaromatic ring and a π-electron deficient heteroaromatic ring are directly bonded increases both the donor property of the π-electron rich heteroaromatic ring and the acceptor property of the π-electron deficient heteroaromatic ring. This is particularly preferable because the energy difference between the singlet excited state and the triplet excited state becomes small.

なお、TADF材料を用いる場合、他の有機化合物と組み合わせて用いることもできる。 In addition, when using TADF material, it can also be used in combination with another organic compound.

図1に示す発光素子において、EL層(103、103a)の発光層(113、113a)上に電子輸送層(114、114a)が真空蒸着法により形成される。なお、図1(D)に示すタンデム構造の発光素子の場合には、EL層103aおよび電荷発生層104が形成された後、EL層103bの発光層113b上にも電子輸送層114bが真空蒸着法により形成される。 In the light emitting element shown in FIG. 1, the electron transport layer (114, 114a) is formed on the light emitting layer (113, 113a) of the EL layer (103, 103a) by a vacuum deposition method. Note that in the case of the light-emitting element having a tandem structure illustrated in FIG. 1D, after the EL layer 103a and the charge generation layer 104 are formed, the electron transport layer 114b is vacuum-deposited on the light-emitting layer 113b of the EL layer 103b. Formed by law.

<電子輸送層>
電子輸送層(114、114a、114b)は、電子注入層(115、115a、115b)によって、第2の電極102から注入された電子を発光層(113、113a、113b)に輸送する層である。なお、電子輸送層(114、114a、114b)は、電子輸送性材料を含む層である。電子輸送層(114、114a、114b)に用いる電子輸送性材料は、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものを用いることができる。
<Electron transport layer>
The electron transport layer (114, 114a, 114b) is a layer that transports electrons injected from the second electrode 102 to the light emitting layer (113, 113a, 113b) by the electron injection layer (115, 115a, 115b). . Note that the electron transport layers (114, 114a, 114b) are layers containing an electron transport material. The electron transporting material used for the electron transporting layer (114, 114a, 114b) is preferably a substance having an electron mobility of 1 × 10 −6 cm 2 / Vs or higher. Note that other than these substances, any substance that has a property of transporting more electrons than holes can be used.

電子輸送性材料としては、キノリン配位子、ベンゾキノリン配位子、オキサゾール配位子、あるいはチアゾール配位子を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ピリジン誘導体、ビピリジン誘導体などが挙げられる。その他、含窒素複素芳香族化合物のようなπ電子不足型複素芳香族化合物を用いることもできる。 Examples of electron transporting materials include metal complexes having quinoline ligand, benzoquinoline ligand, oxazole ligand, or thiazole ligand, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, pyridine derivatives, bipyridine derivatives, etc. Is mentioned. In addition, a π-electron deficient heteroaromatic compound such as a nitrogen-containing heteroaromatic compound can also be used.

具体的には、Alq、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、ビス[2−(2−ヒドロキシフェニル)ベンゾオキサゾラト]亜鉛(II)(略称:Zn(BOX))、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ))などの金属錯体、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、OXD−7、3−(4’−tert−ブチルフェニル)−4−フェニル−5−(4’’−ビフェニリル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs)などの複素芳香族化合物、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)等のキノキサリンないしはジベンゾキノキサリン誘導体を用いることができる。 Specifically, Alq 3 , tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ), BAlq, bis [2 -(2-hydroxyphenyl) benzoxazolate] zinc (II) (abbreviation: Zn (BOX) 2 ), bis [2- (2-hydroxyphenyl) benzothiazolate] zinc (abbreviation: Zn (BTZ) 2 ), etc. Metal complex, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), OXD-7, 3- (4′-tert-butyl) Phenyl) -4-phenyl-5- (4 ''-biphenylyl) -1,2,4-triazole (abbreviation: TAZ), 3- (4-tert-butylphenyl)- 4- (4-ethylphenyl) -5- (4-biphenylyl) -1,2,4-triazole (abbreviation: p-EtTAZ), bathophenanthroline (abbreviation: Bphen), bathocuproin (abbreviation: BCP), 4,4 Heteroaromatic compounds such as' -bis (5-methylbenzoxazol-2-yl) stilbene (abbreviation: BzOs), 2- [3- (dibenzothiophen-4-yl) phenyl] dibenzo [f, h] quinoxaline ( Abbreviation: 2mDBTPDBq-II), 2- [3 ′-(dibenzothiophen-4-yl) biphenyl-3-yl] dibenzo [f, h] quinoxaline (abbreviation: 2mDBTBPDBq-II), 2- [4- (3 6-diphenyl-9H-carbazol-9-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 2CzPDBq-I) I), 7- [3- (dibenzothiophen-4-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 7mDBTPDBq-II), 6- [3- (dibenzothiophen-4-yl) phenyl] dibenzo [ f, h] quinoxaline or dibenzoquinoxaline derivatives such as quinoxaline (abbreviation: 6mDBTPDBq-II) can be used.

また、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。 In addition, poly (2,5-pyridinediyl) (abbreviation: PPy), poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py), poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy) Molecular compounds can also be used.

また、電子輸送層(114、114a、114b)は、単層のものだけでなく、上記物質からなる層が2層以上積層した構造であってもよい。 Further, the electron-transport layer (114, 114a, 114b) is not limited to a single layer, and may have a structure in which two or more layers made of the above substances are stacked.

図1に示す発光素子において、EL層(103、103a)の電子輸送層(114、114a)上に電子注入層(114、114a)が真空蒸着法により形成される。なお、図1(D)に示すタンデム構造の発光素子の場合には、EL層103aおよび電荷発生層104が形成された後、EL層103bの電子輸送層114b上にも電子注入層114bが真空蒸着法により形成される。 In the light emitting element shown in FIG. 1, the electron injection layer (114, 114a) is formed on the electron transport layer (114, 114a) of the EL layer (103, 103a) by a vacuum deposition method. Note that in the case of the light-emitting element having a tandem structure illustrated in FIG. 1D, after the EL layer 103a and the charge generation layer 104 are formed, the electron-injection layer 114b is also formed on the electron-transport layer 114b of the EL layer 103b. It is formed by a vapor deposition method.

<電子注入層>
電子注入層(115、115a、115b)は、電子注入性の高い物質を含む層である。電子注入層(115、115a、115b)には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiO)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。また、電子注入層(115、115a、115b)にエレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層(114、114a、114b)を構成する物質を用いることもできる。
<Electron injection layer>
The electron injection layers (115, 115a, 115b) are layers containing a substance having a high electron injection property. The electron injection layer (115, 115a, 115b) includes an alkali metal such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiO x ), or the like. Earth metals or their compounds can be used. Alternatively, a rare earth metal compound such as erbium fluoride (ErF 3 ) can be used. Further, electride may be used for the electron injection layer (115, 115a, 115b). Examples of the electride include a substance obtained by adding a high concentration of electrons to a mixed oxide of calcium and aluminum. In addition, the substance which comprises the electron carrying layer (114, 114a, 114b) mentioned above can also be used.

また、電子注入層(115、115a、115b)に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層(114、114a、114b)に用いる電子輸送性材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。 Alternatively, a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer (115, 115a, 115b). Such a composite material is excellent in electron injecting property and electron transporting property because electrons are generated in the organic compound by the electron donor. In this case, the organic compound is preferably a material excellent in transporting the generated electrons. Specifically, for example, an electron transport material (metal complex) used for the electron transport layer (114, 114a, 114b) described above, for example. Or a heteroaromatic compound). The electron donor may be any substance that exhibits an electron donating property to the organic compound. Specifically, alkali metals, alkaline earth metals, and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given. Alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxide, calcium oxide, barium oxide, and the like can be given. A Lewis base such as magnesium oxide can also be used. Alternatively, an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.

なお、例えば、発光層113bから得られる光を増幅させる場合には、第2の電極102と、発光層103bとの光学距離が、発光層103bが呈する光の波長に対してλ/4未満となるように形成するのが好ましい。この場合、電子輸送層114bまたは電子注入層115bの膜厚を変えることにより、調整することができる。 For example, in the case of amplifying light obtained from the light-emitting layer 113b, the optical distance between the second electrode 102 and the light-emitting layer 103b is less than λ / 4 with respect to the wavelength of light exhibited by the light-emitting layer 103b. It is preferable to form such that In this case, adjustment can be performed by changing the film thickness of the electron transport layer 114b or the electron injection layer 115b.

<電荷発生層>
電荷発生層104は、第1の電極(陽極)101と第2の電極(陰極)102との間に電圧を印加したときに、EL層103aに電子を注入し、EL層103bに正孔を注入する機能を有する。なお、電荷発生層104は、正孔輸送性材料に電子受容体(アクセプター)が添加された構成であっても、電子輸送性材料に電子供与体(ドナー)が添加された構成であってもよい。また、これらの両方の構成が積層されていても良い。なお、上述した材料を用いて電荷発生層104を形成することにより、EL層が積層された場合における駆動電圧の上昇を抑制することができる。
<Charge generation layer>
The charge generation layer 104 injects electrons into the EL layer 103a and applies holes into the EL layer 103b when a voltage is applied between the first electrode (anode) 101 and the second electrode (cathode) 102. Has the function of injecting. Note that the charge generation layer 104 may have a structure in which an electron acceptor is added to a hole transporting material or a structure in which an electron donor (donor) is added to an electron transporting material. Good. Moreover, both these structures may be laminated | stacked. Note that by forming the charge generation layer 104 using the above-described material, an increase in driving voltage in the case where an EL layer is stacked can be suppressed.

電荷発生層104において、正孔輸送性材料に電子受容体が添加された構成とする場合、正孔輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子受容体としては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル等を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムなどが挙げられる。 In the case where the charge generation layer 104 has a structure in which an electron acceptor is added to a hole-transporting material, the materials described in this embodiment can be used as the hole-transporting material. Examples of the electron acceptor include 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil, and the like. In addition, oxides of metals belonging to Groups 4 to 8 in the periodic table can be given. Specific examples include vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and rhenium oxide.

電荷発生層104において、電子輸送性材料に電子供与体が添加された構成とする場合、電子輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属または元素周期表における第2、第13族に属する金属およびその酸化物、炭酸塩を用いることができる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、炭酸セシウムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化合物を電子供与体として用いてもよい。 In the case where the charge generation layer 104 has a structure in which an electron donor is added to an electron transporting material, the materials described in this embodiment can be used as the electron transporting material. As the electron donor, an alkali metal, an alkaline earth metal, a rare earth metal, a metal belonging to Groups 2 and 13 of the periodic table, or an oxide or carbonate thereof can be used. Specifically, lithium (Li), cesium (Cs), magnesium (Mg), calcium (Ca), ytterbium (Yb), indium (In), lithium oxide, cesium carbonate, or the like is preferably used. An organic compound such as tetrathianaphthacene may be used as an electron donor.

なお、図1(E)のEL層103cは、上述したEL層(103、103a、103b)と同様の構成とすればよい。また、中間層104a、104bについても、上述した中間層104と同様の構成とすればよい。 Note that the EL layer 103c in FIG. 1E may have a structure similar to that of the above-described EL layers (103, 103a, and 103b). In addition, the intermediate layers 104a and 104b may have the same structure as the intermediate layer 104 described above.

<基板>
本実施の形態で示した発光素子は、様々な基板上に形成することができる。なお、基板の種類は、特定のものに限定されることはない。基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどが挙げられる。
<Board>
The light-emitting element described in this embodiment can be formed over various substrates. In addition, the kind of board | substrate is not limited to a specific thing. As an example of the substrate, a semiconductor substrate (for example, a single crystal substrate or a silicon substrate), an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a stainless steel substrate, a substrate having stainless steel foil, a tungsten substrate, Examples include a substrate having a tungsten foil, a flexible substrate, a laminated film, a paper containing a fibrous material, or a base film.

なお、ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどが挙げられる。また、可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチック、アクリル樹脂等の合成樹脂、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニル、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、又は紙類などが挙げられる。 Note that examples of the glass substrate include barium borosilicate glass, aluminoborosilicate glass, and soda lime glass. Moreover, as an example of a flexible substrate, a laminated film, a base film, etc., plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethersulfone (PES), acrylic resin, etc. Synthetic resin, polypropylene, polyester, polyvinyl fluoride, or polyvinyl chloride, polyamide, polyimide, aramid, epoxy, inorganic vapor deposition film, paper, and the like can be given.

なお、本実施の形態で示す発光素子の作製には、蒸着法などの真空プロセスや、スピンコート法やインクジェット法などの溶液プロセスを用いることができる。蒸着法を用いる場合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)や、化学蒸着法(CVD法)等を用いることができる。特に発光素子のEL層に含まれる機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b)、および電荷発生層(104、104a、104b))については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコンタクト法等)などの方法により形成することができる。 Note that for manufacturing the light-emitting element described in this embodiment, a vacuum process such as an evaporation method or a solution process such as a spin coating method or an inkjet method can be used. When vapor deposition is used, physical vapor deposition (PVD) such as sputtering, ion plating, ion beam vapor deposition, molecular beam vapor deposition, or vacuum vapor deposition, or chemical vapor deposition (CVD) is used. be able to. In particular, functional layers (hole injection layer (111, 111a, 111b), hole transport layer (112, 112a, 112b), light-emitting layer (113, 113a, 113b, 113c), electron transport included in the EL layer of the light-emitting element. For the layers (114, 114a, 114b), the electron injection layer (115, 115a, 115b), and the charge generation layer (104, 104a, 104b)), a vapor deposition method (vacuum vapor deposition method, etc.), a coating method (dip coating method) , Die coating method, bar coating method, spin coating method, spray coating method, etc.), printing method (inkjet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic (letter printing) method, gravure method, microcontact And the like.

なお、本実施の形態で示す発光素子のEL層(103、103a、103b)を構成する各機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b)や電荷発生層(104、104a、104b))は、上述した材料に限られることはなく、それ以外の材料であっても各層の機能を満たせるものであれば組み合わせて用いることができる。一例としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分子と高分子の中間領域の化合物:分子量400乃至4000)、無機化合物(量子ドット材料等)等を用いることができる。なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。 Note that each functional layer (a hole injection layer (111, 111a, 111b), a hole transport layer (112, 112a, 112b) included in the EL layer (103, 103a, 103b) of the light-emitting element described in this embodiment mode. The light emitting layer (113, 113a, 113b, 113c), the electron transport layer (114, 114a, 114b), the electron injection layer (115, 115a, 115b) and the charge generation layer (104, 104a, 104b)) are described above. The material is not limited, and other materials can be used in combination as long as they can satisfy the function of each layer. For example, a high molecular compound (oligomer, dendrimer, polymer, etc.), a medium molecular compound (compound in the middle region between a low molecule and a high molecule: molecular weight 400 to 4000), an inorganic compound (quantum dot material, etc.), etc. are used. it can. As the quantum dot material, a colloidal quantum dot material, an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

(実施の形態3)
本実施の形態では、発光装置について説明する。なお、図2(A)に示す発光装置は、第1の基板201上のトランジスタ(FET)202と発光素子(203R、203G、203B、203W)が電気的に接続されてなるアクティブマトリクス型の発光装置であり、複数の発光素子(203R、203G、203B、203W)は、共通のEL層204を有し、また、各発光素子の発光色に応じて、各発光素子の電極間の光学距離が調整されたマイクロキャビティ構造を有する。また、EL層204から得られた発光が第2の基板205に形成されたカラーフィルタ(206R、206G、206B)を介して射出されるトップエミッション型の発光装置である。
(Embodiment 3)
In this embodiment, a light-emitting device will be described. 2A is an active matrix light-emitting device in which a transistor (FET) 202 over a first substrate 201 and light-emitting elements (203R, 203G, 203B, and 203W) are electrically connected to each other. The plurality of light emitting elements (203R, 203G, 203B, 203W) have a common EL layer 204, and the optical distance between the electrodes of each light emitting element depends on the emission color of each light emitting element. It has a tuned microcavity structure. In addition, the light-emitting device is a top-emission light-emitting device in which light emission obtained from the EL layer 204 is emitted through color filters (206R, 206G, and 206B) formed over the second substrate 205.

図2(A)に示す発光装置は、第1の電極207を反射電極として機能するように形成する。また、第2の電極208を半透過・半反射電極として機能するように形成する。なお、第1の電極207および第2の電極208を形成する電極材料としては、他の実施形態の記載を参照し、適宜用いればよい。 In the light-emitting device illustrated in FIG. 2A, the first electrode 207 is formed so as to function as a reflective electrode. Further, the second electrode 208 is formed so as to function as a semi-transmissive / semi-reflective electrode. Note that an electrode material for forming the first electrode 207 and the second electrode 208 may be used as appropriate with reference to the description of the other embodiments.

また、図2(A)において、例えば、発光素子203Rを赤色発光素子、発光素子203Gを緑色発光素子、発光素子203Bを青色発光素子、発光素子203Wを白色発光素子とする場合、図2(B)に示すように発光素子203Rは、第1の電極207と第2の電極208との間が光学距離200Rとなるように調整し、発光素子203Gは、第1の電極207と第2の電極208との間が光学距離200Gとなるように調整し、発光素子203Bは、第1の電極207と第2の電極208との間が光学距離200Bとなるように調整する。なお、図2(B)に示すように、発光素子203Rにおいて導電層210Rを第1の電極207に積層し、発光素子203Gにおいて導電層210Gを積層することにより、光学調整を行うことができる。 In FIG. 2A, for example, when the light emitting element 203R is a red light emitting element, the light emitting element 203G is a green light emitting element, the light emitting element 203B is a blue light emitting element, and the light emitting element 203W is a white light emitting element, FIG. ), The light emitting element 203R is adjusted so that the optical distance 200R is between the first electrode 207 and the second electrode 208, and the light emitting element 203G includes the first electrode 207 and the second electrode. The light emitting element 203B is adjusted so that the optical distance 200B is between the first electrode 207 and the second electrode 208. Note that as illustrated in FIG. 2B, optical adjustment can be performed by stacking the conductive layer 210R over the first electrode 207 in the light-emitting element 203R and stacking the conductive layer 210G in the light-emitting element 203G.

第2の基板205には、カラーフィルタ(206R、206G、206B)が形成されている。なお、カラーフィルタは、可視光のうち特定の波長域を通過させ、特定の波長域を阻止するフィルタである。従って、図2(A)に示すように、発光素子203Rと重なる位置に赤の波長域のみを通過させるカラーフィルタ206Rを設けることにより、発光素子203Rから赤色発光を得ることができる。また、発光素子203Gと重なる位置に緑の波長域のみを通過させるカラーフィルタ206Gを設けることにより、発光素子203Gから緑色発光を得ることができる。また、発光素子203Bと重なる位置に青の波長域のみを通過させるカラーフィルタ206Bを設けることにより、発光素子203Bから青色発光を得ることができる。但し、発光素子203Wは、カラーフィルタを設けることなく白色発光を得ることができる。なお、1種のカラーフィルタの端部には、黒色層(ブラックマトリックス)209が設けられていてもよい。さらに、カラーフィルタ(206R、206G、206B)や黒色層209は、透明な材料を用いたオーバーコート層で覆われていても良い。 On the second substrate 205, color filters (206R, 206G, 206B) are formed. The color filter is a filter that passes a specific wavelength range of visible light and blocks the specific wavelength range. Therefore, as shown in FIG. 2A, red light emission can be obtained from the light emitting element 203R by providing the color filter 206R that allows only the red wavelength region to pass through the position overlapping the light emitting element 203R. In addition, by providing the color filter 206G that allows only the green wavelength region to pass at a position overlapping the light emitting element 203G, green light emission can be obtained from the light emitting element 203G. Further, by providing the color filter 206B that allows only the blue wavelength region to pass at a position overlapping the light emitting element 203B, blue light emission can be obtained from the light emitting element 203B. However, the light emitting element 203W can obtain white light emission without providing a color filter. Note that a black layer (black matrix) 209 may be provided at an end of one type of color filter. Further, the color filters (206R, 206G, 206B) and the black layer 209 may be covered with an overcoat layer using a transparent material.

図2(A)では、第2の基板205側に発光を取り出す構造(トップエミッション型)の発光装置を示したが、図2(C)に示すようにFET202が形成されている第1の基板201側に光を取り出す構造(ボトムエミッション型)の発光装置としても良い。なお、ボトムエミッション型の発光装置の場合には、第1の電極207を半透過・半反射電極として機能するように形成し、第2の電極208を反射電極として機能するように形成する。また、第1の基板201は、少なくとも透光性の基板を用いる。また、カラーフィルタ(206R’、206G’、206B’)は、図2(C)に示すように発光素子(203R、203G、203B)よりも第1の基板201側に設ければよい。 In FIG. 2A, a light emitting device having a structure for extracting light emission to the second substrate 205 side (top emission type) is shown, but the first substrate on which the FET 202 is formed as shown in FIG. A light emitting device having a structure for extracting light to the 201 side (bottom emission type) may be used. Note that in the case of a bottom emission type light-emitting device, the first electrode 207 is formed to function as a semi-transmissive / semi-reflective electrode, and the second electrode 208 is formed to function as a reflective electrode. The first substrate 201 is at least a light-transmitting substrate. Further, the color filters (206R ′, 206G ′, and 206B ′) may be provided on the first substrate 201 side with respect to the light emitting elements (203R, 203G, and 203B) as shown in FIG.

また、図2(A)において、発光素子が、赤色発光素子、緑色発光素子、青色発光素子、白色発光素子の場合について示したが、その構成に限られることはなく、黄色の発光素子や橙色の発光素子を有する構成であっても良い。なお、これらの発光素子を作製するためにEL層(発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層など)に用いる材料としては、他の実施形態の記載を参照し、適宜用いればよい。なお、その場合には、また、発光素子の発光色に応じてカラーフィルタを適宜選択する必要がある。 2A illustrates the case where the light-emitting element is a red light-emitting element, a green light-emitting element, a blue light-emitting element, or a white light-emitting element, the structure is not limited thereto, and a yellow light-emitting element or an orange light-emitting element is used. The structure which has this light emitting element may be sufficient. In addition, as a material used for EL layers (a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, etc.) for manufacturing these light emitting elements, other embodiments are used. May be used as appropriate with reference to the description. In this case, it is necessary to select a color filter as appropriate in accordance with the emission color of the light emitting element.

以上のような構成とすることにより、複数の発光色を呈する発光素子を備えた発光装置を得ることができる。 With the above structure, a light-emitting device including a light-emitting element that exhibits a plurality of emission colors can be obtained.

なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。 Note that the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

(実施の形態4)
本実施の形態では、発光装置について説明する。
(Embodiment 4)
In this embodiment, a light-emitting device will be described.

他の実施形態において説明した発光素子の素子構成を適用することで、アクティブマトリクス型の発光装置やパッシブマトリクス型の発光装置を作製することができる。なお、アクティブマトリクス型の発光装置は、発光素子とトランジスタ(FET)とを組み合わせた構成を有する By applying the element structure of the light-emitting element described in the other embodiments, an active matrix light-emitting device or a passive matrix light-emitting device can be manufactured. Note that an active matrix light-emitting device has a structure in which a light-emitting element and a transistor (FET) are combined.

本実施の形態では、アクティブマトリクス型の発光装置について図3を用いて説明する。 In this embodiment, an active matrix light-emitting device is described with reference to FIGS.

なお、図3(A)は発光装置21を示す上面図であり、図3(B)は図3(A)を鎖線A−A’で切断した断面図である。アクティブマトリクス型の発光装置は、第1の基板301上に設けられた画素部302、駆動回路部(ソース線駆動回路)303と、駆動回路部(ゲート線駆動回路)(304a、304b)を有する。画素部302および駆動回路部(303、304a、304b)は、シール材305によって、第1の基板301と第2の基板306との間に封止される。 3A is a top view showing the light-emitting device 21, and FIG. 3B is a cross-sectional view taken along the chain line A-A 'in FIG. 3A. The active matrix light-emitting device includes a pixel portion 302, a driver circuit portion (source line driver circuit) 303, and driver circuit portions (gate line driver circuits) (304a and 304b) provided over the first substrate 301. . The pixel portion 302 and the driver circuit portions (303, 304a, and 304b) are sealed between the first substrate 301 and the second substrate 306 by a sealant 305.

また、第1の基板301上には、引き回し配線307が設けられる。引き回し配線307は、外部入力端子であるFPC308と電気的に接続される。なお、FPC308は、駆動回路部(303、304a、304b)に外部からの信号(例えば、ビデオ信号、クロック信号、スタート信号、リセット信号等)や電位を伝達する。また、FPC308にはプリント配線基板(PWB)が取り付けられていても良い。なお、これらFPCやのPWBが取り付けられた状態は、発光装置に含まれる。 A lead wiring 307 is provided over the first substrate 301. The lead wiring 307 is electrically connected to the FPC 308 which is an external input terminal. Note that the FPC 308 transmits signals (eg, a video signal, a clock signal, a start signal, a reset signal, and the like) and a potential from the outside to the driving circuit units (303, 304a, and 304b). Further, a printed wiring board (PWB) may be attached to the FPC 308. Note that the state in which the FPC or PWB is attached is included in the light emitting device.

次に、図3(B)に断面構造を示す。 Next, a cross-sectional structure is shown in FIG.

画素部302は、FET(スイッチング用FET)311、FET(電流制御用FET)312、およびFET312と電気的に接続された第1の電極313を有する複数の画素により形成される。なお、各画素が有するFETの数は、特に限定されることはなく、必要に応じて適宜設けることができる。 The pixel portion 302 is formed by a plurality of pixels including a FET (switching FET) 311, a FET (current control FET) 312, and a first electrode 313 electrically connected to the FET 312. Note that the number of FETs included in each pixel is not particularly limited, and can be appropriately provided as necessary.

FET309、310、311、312は、特に限定されることはなく、例えば、スタガ型や逆スタガ型などのトランジスタを適用することができる。また、トップゲート型やボトムゲート型などのトランジスタ構造であってもよい。 The FETs 309, 310, 311, and 312 are not particularly limited, and for example, a staggered type transistor or an inverted staggered type transistor can be applied. Further, a transistor structure such as a top gate type or a bottom gate type may be used.

なお、これらのFET309、310、311、312に用いることのできる半導体の結晶性については特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。なお、結晶性を有する半導体を用いることで、トランジスタ特性の劣化を抑制できるため好ましい。 Note that there is no particular limitation on the crystallinity of the semiconductor that can be used for these FETs 309, 310, 311, and 312; an amorphous semiconductor, a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, Alternatively, a semiconductor having a crystal region in part) may be used. Note that it is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.

また、これらの半導体としては、例えば、第14族の元素、化合物半導体、酸化物半導体、有機半導体などを用いることができる。代表的には、シリコンを含む半導体、ガリウムヒ素を含む半導体、インジウムを含む酸化物半導体などを適用することができる。 As these semiconductors, for example, Group 14 elements, compound semiconductors, oxide semiconductors, organic semiconductors, and the like can be used. Typically, a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used.

駆動回路部303は、FET309とFET310とを有する。なお、FET309とFET310は、単極性(N型またはP型のいずれか一方のみ)のトランジスタを含む回路で形成されても良いし、N型のトランジスタとP型のトランジスタを含むCMOS回路で形成されても良い。また、外部に駆動回路を有する構成としても良い。 The drive circuit unit 303 includes an FET 309 and an FET 310. Note that the FET 309 and the FET 310 may be formed of a circuit including a unipolar transistor (N-type or P-type only) or a CMOS circuit including an N-type transistor and a P-type transistor. May be. In addition, a configuration in which a drive circuit is provided outside may be employed.

第1の電極313の端部は、絶縁物314により覆われている。なお、絶縁物314には、ネガ型の感光性樹脂や、ポジ型の感光性樹脂(アクリル樹脂)などの有機化合物や、酸化シリコン、酸化窒化シリコン、窒化シリコン等の無機化合物を用いることができる。絶縁物314の上端部または下端部には、曲率を有する曲面を有するのが好ましい。これにより、絶縁物314の上層に形成される膜の被覆性を良好なものとすることができる。 An end portion of the first electrode 313 is covered with an insulator 314. Note that the insulator 314 can be formed using an organic compound such as a negative photosensitive resin or a positive photosensitive resin (acrylic resin), or an inorganic compound such as silicon oxide, silicon oxynitride, or silicon nitride. . It is preferable that an upper end portion or a lower end portion of the insulator 314 have a curved surface having a curvature. Thereby, the coverage of the film formed on the upper layer of the insulator 314 can be improved.

第1の電極313上には、EL層315及び第2の電極316が積層形成される。EL層315は、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層等を有する。 An EL layer 315 and a second electrode 316 are stacked over the first electrode 313. The EL layer 315 includes a light-emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, and the like.

なお、本実施の形態で示す発光素子317の構成は、他の実施の形態で説明した構成や材料を適用することができる。なお、ここでは図示しないが、第2の電極316は外部入力端子であるFPC308に電気的に接続されている。 Note that the structures and materials described in the other embodiments can be applied to the structure of the light-emitting element 317 described in this embodiment. Although not shown here, the second electrode 316 is electrically connected to the FPC 308 which is an external input terminal.

また、図3(B)に示す断面図では発光素子317を1つのみ図示しているが、画素部302において、複数の発光素子がマトリクス状に配置されているものとする。画素部302には、3種類(R、G、B)の発光が得られる発光素子をそれぞれ選択的に形成し、フルカラー表示可能な発光装置を形成することができる。また、3種類(R、G、B)の発光が得られる発光素子の他に、例えば、ホワイト(W)、イエロー(Y)、マゼンタ(M)、シアン(C)等の発光が得られる発光素子を形成してもよい。例えば、3種類(R、G、B)の発光が得られる発光素子に上述の数種類の発光が得られる発光素子を追加することにより、色純度の向上、消費電力の低減等の効果が得ることができる。また、カラーフィルタと組み合わせることによってフルカラー表示可能な発光装置としてもよい。なお、カラーフィルタの種類としては、赤(R)、緑(G)、青(B)、シアン(C)、マゼンタ(M)、イエロー(Y)等を用いることができる。 3B illustrates only one light-emitting element 317, it is assumed that a plurality of light-emitting elements are arranged in a matrix in the pixel portion 302. In the pixel portion 302, light emitting elements capable of emitting three types (R, G, and B) of light emission can be selectively formed, so that a light emitting device capable of full color display can be formed. In addition to the light emitting element that can obtain three types of light emission (R, G, B), for example, light emission that can emit light such as white (W), yellow (Y), magenta (M), and cyan (C). An element may be formed. For example, by adding the above-described light emitting elements capable of obtaining several types of light emission (R, G, B) to the light emitting elements capable of obtaining three types of light emission (R, G, B), effects such as improvement in color purity and reduction in power consumption can be obtained. Can do. Alternatively, a light emitting device capable of full color display may be obtained by combining with a color filter. Note that as types of color filters, red (R), green (G), blue (B), cyan (C), magenta (M), yellow (Y), and the like can be used.

第1の基板301上のFET(309、310、311、312)や、発光素子317は、第2の基板306と第1の基板301とをシール材305により貼り合わせることにより、第1の基板301、第2の基板306、およびシール材305で囲まれた空間318に備えられた構造を有する。なお、空間318には、不活性気体(窒素やアルゴン等)や有機物(シール材305を含む)で充填されていてもよい。 The FETs (309, 310, 311 and 312) and the light emitting element 317 over the first substrate 301 are bonded to each other by attaching the second substrate 306 and the first substrate 301 with the sealant 305. 301, the second substrate 306, and a structure provided in a space 318 surrounded by the sealant 305. Note that the space 318 may be filled with an inert gas (such as nitrogen or argon) or an organic substance (including the sealant 305).

シール材305には、エポキシ系樹脂やガラスフリットを用いることができる。なお、シール材305には、できるだけ水分や酸素を透過しない材料を用いることが好ましい。また、第2の基板306は、第1の基板301に用いることができるものを同様に用いることができる。従って、他の実施形態で説明した様々な基板を適宜用いることができるものとする。基板としてガラス基板や石英基板の他、FRP(Fiber−Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いることができる。シール材としてガラスフリットを用いる場合には、接着性の観点から第1の基板301及び第2の基板306はガラス基板であることが好ましい。 As the sealant 305, an epoxy resin or glass frit can be used. Note that it is preferable to use a material that does not transmit moisture and oxygen as much as possible for the sealant 305. In addition, as the second substrate 306, a substrate that can be used for the first substrate 301 can be used as well. Therefore, various substrates described in other embodiments can be used as appropriate. In addition to a glass substrate or a quartz substrate, a plastic substrate made of FRP (Fiber-Reinforced Plastics), PVF (polyvinyl fluoride), polyester, acrylic resin, or the like can be used as the substrate. In the case where glass frit is used as the sealing material, the first substrate 301 and the second substrate 306 are preferably glass substrates from the viewpoint of adhesiveness.

以上のようにして、アクティブマトリクス型の発光装置を得ることができる。 As described above, an active matrix light-emitting device can be obtained.

また、アクティブマトリクス型の発光装置を可撓性基板に形成する場合、可撓性基板上にFETと発光素子とを直接形成しても良いが、剥離層を有する別の基板にFETと発光素子を形成した後、熱、力、レーザ照射などを与えることによりFETと発光素子を剥離層で剥離し、さらに可撓性基板に転載して作製しても良い。なお、剥離層としては、例えば、タングステン膜と酸化シリコン膜との無機膜の積層や、ポリイミド等の有機樹脂膜等を用いることができる。また可撓性基板としては、トランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などが挙げられる。これらの基板を用いることにより、耐久性や耐熱性に優れ、軽量化および薄型化を図ることができる。 In the case where an active matrix light-emitting device is formed over a flexible substrate, the FET and the light-emitting element may be directly formed over the flexible substrate, but the FET and the light-emitting element are formed over another substrate having a release layer. After forming, the FET and the light-emitting element may be peeled off by a peeling layer by applying heat, force, laser irradiation, and transferred to a flexible substrate. Note that as the peeling layer, for example, a laminated inorganic film of a tungsten film and a silicon oxide film, an organic resin film such as polyimide, or the like can be used. In addition to substrates that can form transistors, flexible substrates include paper substrates, cellophane substrates, aramid film substrates, polyimide film substrates, fabric substrates (natural fibers (silk, cotton, hemp), synthetic fibers ( Nylon, polyurethane, polyester) or recycled fibers (including acetate, cupra, rayon, recycled polyester), leather substrates, rubber substrates, and the like. By using these substrates, it is excellent in durability and heat resistance, and can be reduced in weight and thickness.

なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができる。 Note that the structure described in this embodiment can be combined with any of the structures described in other embodiments as appropriate.

(実施の形態5)
本実施の形態では、発光装置や表示装置等を適用して完成させた様々な電子機器や自動車の一例について、説明する。
(Embodiment 5)
In this embodiment, examples of various electronic devices and automobiles completed by applying a light-emitting device, a display device, and the like will be described.

図4(A)乃至図4(E)に示す電子機器は、筐体7000、表示部7001、スピーカ7003、LEDランプ7004、操作キー7005(電源スイッチ、又は操作スイッチを含む)、接続端子7006、センサ7007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン7008、等を有することができる。 An electronic device illustrated in FIGS. 4A to 4E includes a housing 7000, a display portion 7001, a speaker 7003, an LED lamp 7004, operation keys 7005 (including a power switch or an operation switch), a connection terminal 7006, Sensor 7007 (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity , Including a function of measuring inclination, vibration, odor, or infrared light), a microphone 7008, and the like.

図4(A)はモバイルコンピュータであり、上述したものの他に、スイッチ7009、赤外線ポート7010、等を有することができる。 FIG. 4A illustrates a mobile computer, which can include a switch 7009, an infrared port 7010, and the like in addition to the above objects.

図4(B)は記録媒体を備えた携帯型の画像再生装置(たとえば、DVD再生装置)であり、上述したものの他に、第2表示部7002、記録媒体読込部7011、等を有することができる。 FIG. 4B illustrates a portable image reproducing device (eg, a DVD reproducing device) provided with a recording medium, which includes a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.

図4(C)はゴーグル型ディスプレイであり、上述したものの他に、第2表示部7002、支持部7012、イヤホン7013、等を有することができる。 FIG. 4C illustrates a goggle type display which can include a second display portion 7002, a support portion 7012, an earphone 7013, and the like in addition to the above components.

図4(D)はテレビ受像機能付きデジタルカメラであり、上述したものの他に、アンテナ7014、シャッターボタン7015、受像部7016、等を有することができる。 FIG. 4D illustrates a digital camera with a television receiving function, which can include an antenna 7014, a shutter button 7015, an image receiving portion 7016, and the like in addition to the above objects.

図4(E)は携帯電話機(スマートフォンを含む)であり、筐体7000に、表示部7001、マイクロフォン7008、スピーカ7003、カメラ7020、外部接続部7021、操作用ボタン7022、等を有することができる。 FIG. 4E illustrates a mobile phone (including a smartphone), which can include a display portion 7001, a microphone 7008, a speaker 7003, a camera 7020, an external connection portion 7021, an operation button 7022, and the like in a housing 7000. .

図4(F)は、大型のテレビジョン装置(テレビ、又はテレビジョン受信機ともいう)であり、筐体7000、表示部7001、等を有することができる。また、ここでは、スタンド7018により筐体7000を支持した構成を示している。また、テレビジョン装置の操作は、別体のリモコン操作機7111、等により行うことができる。なお、表示部7001にタッチセンサを備えていてもよく、指等で表示部7001に触れることで操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7001に表示される画像を操作することができる。 FIG. 4F illustrates a large television device (also referred to as a television or a television receiver) which can include a housing 7000, a display portion 7001, and the like. Here, a configuration in which the casing 7000 is supported by a stand 7018 is shown. The television device can be operated by a separate remote controller 7111 or the like. Note that the display portion 7001 may be provided with a touch sensor, and may be operated by touching the display portion 7001 with a finger or the like. The remote controller 7111 may include a display unit that displays information output from the remote controller 7111. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 7111, and an image displayed on the display portion 7001 can be operated.

図4(A)乃至図4(F)に示す電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。さらに、複数の表示部を有する電子機器においては、一つの表示部を主として画像情報を表示し、別の一つの表示部を主として文字情報を表示する機能、または、複数の表示部に視差を考慮した画像を表示することで立体的な画像を表示する機能、等を有することができる。さらに、受像部を有する電子機器においては、静止画を撮影する機能、動画を撮影する機能、撮影した画像を自動または手動で補正する機能、撮影した画像を記録媒体(外部又はカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有することができる。なお、図4(A)乃至図4(F)に示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有することができる。 The electronic devices illustrated in FIGS. 4A to 4F can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, etc., a function for controlling processing by various software (programs) , Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded in recording medium A function of displaying on the display portion can be provided. Further, in an electronic device having a plurality of display units, one display unit mainly displays image information and another one display unit mainly displays character information, or the plurality of display units consider parallax. It is possible to have a function of displaying a three-dimensional image, etc. by displaying the obtained image. Furthermore, in an electronic device having an image receiving unit, a function for capturing a still image, a function for capturing a moving image, a function for correcting a captured image automatically or manually, and a captured image on a recording medium (externally or incorporated in a camera) A function of saving, a function of displaying a photographed image on a display portion, and the like can be provided. Note that the functions of the electronic devices illustrated in FIGS. 4A to 4F are not limited to these, and the electronic devices can have various functions.

図4(G)は、スマートウオッチであり、筐体7000、表示部7001、操作用ボタン7022、7023、接続端子7024、バンド7025、留め金7026、等を有する。 FIG. 4G illustrates a smart watch, which includes a housing 7000, a display portion 7001, operation buttons 7022 and 7023, a connection terminal 7024, a band 7025, a clasp 7026, and the like.

ベゼル部分を兼ねる筐体7000に搭載された表示部7001は、非矩形状の表示領域を有している。表示部7001は、時刻を表すアイコン7027、その他のアイコン7028等を表示することができる。また、表示部7001は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。 A display portion 7001 mounted on a housing 7000 that also serves as a bezel portion has a non-rectangular display region. The display portion 7001 can display an icon 7027 representing time, other icons 7028, and the like. The display unit 7001 may be a touch panel (input / output device) equipped with a touch sensor (input device).

なお、図4(G)に示すスマートウオッチは、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。 Note that the smart watch illustrated in FIG. 4G can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, etc., a function for controlling processing by various software (programs) , Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded in recording medium A function of displaying on the display portion can be provided.

また、筐体7000の内部に、スピーカ、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン等を有することができる。 In addition, a speaker, a sensor (force, displacement, position, velocity, acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current are included in the housing 7000. , Voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared measurement function), microphone, and the like.

また、発光装置を適用した電子機器として、図5(A)乃至(C)に示すような折りたたみ可能な携帯情報端末が挙げられる。図5(A)には、展開した状態の携帯情報端末9310を示す。また、図5(B)には、展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。さらに、図5(C)には、折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。 In addition, as an electronic device to which the light-emitting device is applied, a foldable portable information terminal as illustrated in FIGS. FIG. 5A illustrates the portable information terminal 9310 in a developed state. FIG. 5B illustrates the portable information terminal 9310 in a state of changing from one of the expanded state and the folded state to the other. Further, FIG. 5C illustrates the portable information terminal 9310 in a folded state. The portable information terminal 9310 is excellent in portability in the folded state and excellent in display listability due to a seamless wide display area in the expanded state.

表示部9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示部9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示部9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。なお、発光装置を表示部9311に用いることができる。表示部9311における表示領域9312は折りたたんだ状態の携帯情報端末9310の側面に位置する表示領域である。表示領域9312には、情報アイコンや使用頻度の高いアプリやプログラムのショートカットなどを表示させることができ、情報の確認やアプリなどの起動をスムーズに行うことができる。 The display portion 9311 is supported by three housings 9315 connected by a hinge 9313. Note that the display unit 9311 may be a touch panel (input / output device) equipped with a touch sensor (input device). In addition, the display portion 9311 can be reversibly deformed from the expanded state to the folded state by bending the two housings 9315 via the hinge 9313. Note that a light-emitting device can be used for the display portion 9311. A display region 9312 in the display portion 9311 is a display region located on a side surface of the portable information terminal 9310 in a folded state. In the display area 9312, information icons, frequently used applications, program shortcuts, and the like can be displayed, so that information can be confirmed and applications can be activated smoothly.

また、発光装置を適用した自動車について、図6(A)(B)に示す。すなわち、発光装置を、自動車と一体にして設けることができる。具体的には、図6(A)に示す自動車の外側のライト5101(車体後部も含む)、タイヤのホイール5102、ドア5103の一部または全体などに適用することができる。また、図6(B)に示す自動車の内側の表示部5104、ハンドル5105、シフトレバー5106、座席シート5107、インナーリアビューミラー5108等に適用することができる。その他、ガラス窓の一部に適用してもよい。 FIGS. 6A and 6B illustrate an automobile to which the light-emitting device is applied. That is, the light emitting device can be provided integrally with the automobile. Specifically, the present invention can be applied to a light 5101 (including a rear part of a vehicle body), a wheel 5102 of a tire, a part of or the whole of a door 5103 shown in FIG. Further, the present invention can be applied to a display portion 5104, a handle 5105, a shift lever 5106, a seat seat 5107, an inner rear view mirror 5108, and the like inside the automobile shown in FIG. In addition, you may apply to some glass windows.

以上のようにして、発光装置や表示装置を適用した電子機器や自動車を得ることができる。なお、適用できる電子機器や自動車は、本実施の形態に示したものに限らず、あらゆる分野において適用することが可能である。 As described above, an electronic device or an automobile to which the light-emitting device or the display device is applied can be obtained. Note that applicable electronic devices and automobiles are not limited to those described in this embodiment, and can be applied in any field.

なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。 Note that the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

(実施の形態6)
本実施の形態では、発光装置等を適用して作製される照明装置の構成について図7を用いて説明する。
(Embodiment 6)
In this embodiment, a structure of a lighting device manufactured using a light-emitting device or the like will be described with reference to FIGS.

図7(A)、(B)は、照明装置の断面図の一例を示す。なお、図7(A)は基板側に光を取り出すボトムエミッション型の照明装置であり、図7(B)は、封止基板側に光を取り出すトップエミッション型の照明装置である。 7A and 7B illustrate examples of cross-sectional views of the lighting device. Note that FIG. 7A illustrates a bottom emission type illumination device that extracts light to the substrate side, and FIG. 7B illustrates a top emission type illumination device that extracts light to the sealing substrate side.

図7(A)に示す照明装置4000は、基板4001上に発光素子4002を有する。また、基板4001の外側に凹凸を有する基板4003を有する。発光素子4002は、第1の電極4004と、EL層4005と、第2の電極4006を有する。 A lighting device 4000 illustrated in FIG. 7A includes a light-emitting element 4002 over a substrate 4001. In addition, a substrate 4003 having unevenness is provided outside the substrate 4001. The light-emitting element 4002 includes a first electrode 4004, an EL layer 4005, and a second electrode 4006.

第1の電極4004は、電極4007と電気的に接続され、第2の電極4006は電極4008と電気的に接続される。また、第1の電極4004と電気的に接続される補助配線4009を設けてもよい。なお、補助配線4009上には、絶縁層4010が形成されている。 The first electrode 4004 is electrically connected to the electrode 4007, and the second electrode 4006 is electrically connected to the electrode 4008. Further, an auxiliary wiring 4009 that is electrically connected to the first electrode 4004 may be provided. Note that an insulating layer 4010 is formed over the auxiliary wiring 4009.

また、基板4001と封止基板4011は、シール材4012で接着されている。また、封止基板4011と発光素子4002の間には、乾燥剤4013が設けられていることが好ましい。なお、基板4003は、図7(A)のような凹凸を有するため、発光素子4002で生じた光の取り出し効率を向上させることができる。 In addition, the substrate 4001 and the sealing substrate 4011 are bonded with a sealant 4012. In addition, a desiccant 4013 is preferably provided between the sealing substrate 4011 and the light-emitting element 4002. Note that since the substrate 4003 has unevenness as illustrated in FIG. 7A, the light extraction efficiency of the light-emitting element 4002 can be improved.

図7(B)の照明装置4200は、基板4201上に発光素子4202を有する。発光素子4202は第1の電極4204と、EL層4205と、第2の電極4206とを有する。 A lighting device 4200 in FIG. 7B includes a light-emitting element 4202 over a substrate 4201. The light-emitting element 4202 includes a first electrode 4204, an EL layer 4205, and a second electrode 4206.

第1の電極4204は、電極4207と電気的に接続され、第2の電極4206は電極4208と電気的に接続される。また第2の電極4206と電気的に接続される補助配線4209を設けてもよい。また、補助配線4209の下部に、絶縁層4210を設けてもよい。 The first electrode 4204 is electrically connected to the electrode 4207, and the second electrode 4206 is electrically connected to the electrode 4208. Further, an auxiliary wiring 4209 that is electrically connected to the second electrode 4206 may be provided. Further, an insulating layer 4210 may be provided below the auxiliary wiring 4209.

基板4201と凹凸のある封止基板4211は、シール材4212で接着されている。また、封止基板4211と発光素子4202の間にバリア膜4213および平坦化膜4214を設けてもよい。なお、封止基板4211は、図7(B)のような凹凸を有するため、発光素子4202で生じた光の取り出し効率を向上させることができる。 The substrate 4201 and the uneven sealing substrate 4211 are bonded with a sealant 4212. Further, a barrier film 4213 and a planarization film 4214 may be provided between the sealing substrate 4211 and the light-emitting element 4202. Note that the sealing substrate 4211 has unevenness as illustrated in FIG. 7B; thus, extraction efficiency of light generated in the light-emitting element 4202 can be improved.

また、これらの照明装置の応用例としては、室内の照明用であるシーリングライトが挙げられる。シーリングライトには、天井直付型や天井埋め込み型等がある。なお、このような照明装置は、発光装置を筐体やカバーと組み合わせることにより構成される。 Moreover, as an application example of these lighting devices, a ceiling light for indoor lighting can be cited. Ceiling lights include a direct ceiling type and a ceiling embedded type. Note that such an illumination device is configured by combining a light emitting device with a housing or a cover.

その他にも床面に灯りを照射し、足元の安全性を高めることができる足元灯などへの応用も可能である。足元灯は、例えば、寝室や階段や通路などに使用するのが有効である。その場合、部屋の広さや構造に応じて適宜サイズや形状を変えることができる。また、発光装置と支持台とを組み合わせて構成される据え置き型の照明装置とすることも可能である。 In addition, it can be applied to a foot lamp that can illuminate the floor surface and enhance the safety of the foot. For example, the foot lamp is effective for use in a bedroom, a staircase, a passage, or the like. In that case, the size and shape can be appropriately changed according to the size and structure of the room. In addition, a stationary illumination device configured by combining a light emitting device and a support base can be provided.

また、シート状の照明装置(シート状照明)として応用することも可能である。シート状照明は、壁面に張り付けて使用するため、場所を取らず幅広い用途に用いることができる。なお、大面積化も容易である。なお、曲面を有する壁面や筐体に用いることもできる。 Moreover, it is also possible to apply as a sheet-like illumination device (sheet-like illumination). Since the sheet-like illumination is used by being attached to the wall surface, it can be used for a wide range of applications without taking up space. It is easy to increase the area. In addition, it can also be used for the wall surface and housing | casing which have a curved surface.

なお、上記以外にも室内に備えられた家具の一部に発光装置等を適用し、家具としての機能を備えた照明装置とすることができる。 In addition to the above, a lighting device or the like can be applied to part of furniture provided in the room, whereby a lighting device having a function as furniture can be obtained.

以上のように、発光装置を適用した様々な照明装置が得られる。 As described above, various lighting devices to which the light-emitting device is applied can be obtained.

また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

本実施例では、本発明の一態様である、縮合カルバゾール骨格を有する有機化合物の合成方法の一例として、下記構造式(100)で表される、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)の合成方法について説明する。なお、cgDBCzPAの構造を以下に示す。 In this example, as an example of a method for synthesizing an organic compound having a condensed carbazole skeleton which is one embodiment of the present invention, 7- [4- (10-phenyl-9-] represented by the following structural formula (100) is used. An anthryl) phenyl] -7H-dibenzo [c, g] carbazole (abbreviation: cgDBCzPA) synthesis method is described. The structure of cgDBCzPA is shown below.

<ステップ1:6,7,8,9−テトラヒドロ−5H−ジベンゾ[c,g]カルバゾールの合成>
5L三口フラスコに、β−テトラロン800g(5.5mol)と、ヒドラジン一水和物152mL(2.5mol 79%)と、ジブチルヒドロキシトルエン(BHT)29g(0.13mol)と、エタノール(EtOH)2.7Lと、酢酸(AcOH)6.3mL(54mmol)を入れた。この混合物を減圧しながら撹拌することで脱気し、脱気後フラスコ内を窒素置換した。
<Step 1: Synthesis of 6,7,8,9-tetrahydro-5H-dibenzo [c, g] carbazole>
In a 5 L three-necked flask, 800 g (5.5 mol) of β-tetralone, 152 mL (2.5 mol 79%) of hydrazine monohydrate, 29 g (0.13 mol) of dibutylhydroxytoluene (BHT), and ethanol (EtOH) 2 0.7 L and acetic acid (AcOH) 6.3 mL (54 mmol) were added. The mixture was degassed by stirring it under reduced pressure, and the atmosphere in the flask was replaced with nitrogen after degassing.

次に、この混合物を窒素気流下、室温で一晩撹拌したのち、85℃で15.5時間撹拌した。混合物を氷浴にて約0℃まで冷やしてから、吸引ろ過により固体を濾別し、目的物の赤色固体を収量588g、収率88%で得た。 Next, the mixture was stirred overnight at room temperature under a nitrogen stream, and then stirred at 85 ° C. for 15.5 hours. The mixture was cooled to about 0 ° C. in an ice bath, and the solid was separated by suction filtration to obtain the target red solid in a yield of 588 g and a yield of 88%.

上記と同様の工程を複数回繰り返して得られた目的物の赤色固体1393gを50Lの反応容器に入れ、トルエン15.4Lを加えた。この混合物を減圧しながら撹拌することで脱気し、脱気後容器内を窒素置換した。この混合物を、還流するまで加熱しながら撹拌させて固体を溶解させたあと、約60℃まで冷やした。得られた混合物を濃縮した後、氷浴にて約0℃まで冷やしながら撹拌したのち、吸引ろ過により粉末を濾別し、目的の薄紫色粉末を収量1153g、収率72%で得た。ステップ1の合成スキーム(a−1)を以下に示す。 1393 g of the target red solid obtained by repeating the same process as described above a plurality of times was placed in a 50 L reaction vessel, and 15.4 L of toluene was added. The mixture was degassed by stirring it under reduced pressure, and after degassing, the inside of the container was purged with nitrogen. The mixture was stirred while heating to reflux to dissolve the solid, and then cooled to about 60 ° C. The resulting mixture was concentrated and stirred while cooling to about 0 ° C. in an ice bath, and then the powder was separated by suction filtration to obtain the desired pale purple powder in a yield of 1153 g and a yield of 72%. A synthesis scheme (a-1) of Step 1 is shown below.

なお、核磁気共鳴法(NMR)により、上記ステップ1で得られた化合物が、合成スキーム(a−1)に示す目的物、6,7,8,9−テトラヒドロ−5H−ジベンゾ[c,g]カルバゾールであることを確認した。 Note that the compound obtained in Step 1 above was converted into the target product shown in Synthesis Scheme (a-1), 6,7,8,9-tetrahydro-5H-dibenzo [c, g by nuclear magnetic resonance (NMR). It was confirmed to be carbazole.

次に、ステップ1で合成した、6,7,8,9−テトラヒドロ−5H−ジベンゾ[c,g]カルバゾールを用い、7H−ジベンゾ[c,g]カルバゾールを合成する方法についてステップ2(ステップ2−1、ステップ2−2)で説明する。なお、ステップ2−1には、酸化剤として塩素を含む酸化剤(クロラニル:テトラクロロ−1,4−ベンゾキノン)を用いた場合を示し、ステップ2−2では、酸化剤として塩素を含まない酸化剤(1,4ベンゾキノン)を用いた場合について説明する。 Next, a method for synthesizing 7H-dibenzo [c, g] carbazole using 6,7,8,9-tetrahydro-5H-dibenzo [c, g] carbazole synthesized in Step 1 is described in Step 2 (Step 2). -1, step 2-2). Step 2-1 shows the case where an oxidizing agent containing chlorine as an oxidizing agent (chloranil: tetrachloro-1,4-benzoquinone) is used, and step 2-2 shows an oxidizing not containing chlorine as an oxidizing agent. The case where an agent (1,4 benzoquinone) is used will be described.

<ステップ2−1:クロラニル(テトラクロロ−1,4−ベンゾキノン)を用いた7H−ジベンゾ[c,g]カルバゾールの合成>
50Lの反応容器に上記ステップ1で得られた、6,7,8,9−テトラヒドロ−5H−ジベンゾ[c,g]カルバゾール570g(2.1mol)と、クロラニル1033g(4.2mol)と、ジブチルヒドロキシトルエン(BHT)4.6g(0.21mol)と、を入れ、キシレン10.5Lを加えた。この混合物を減圧しながら撹拌して脱気した後、容器内を窒素置換させた。この混合物を、40℃で4.5時間、130℃で4.5時間、それぞれ撹拌した。
<Step 2-1: Synthesis of 7H-dibenzo [c, g] carbazole using chloranil (tetrachloro-1,4-benzoquinone)>
In a 50 L reaction vessel, 570 g (2.1 mol) of 6,7,8,9-tetrahydro-5H-dibenzo [c, g] carbazole obtained in Step 1 above, 1033 g (4.2 mol) of chloranil, and dibutyl 4.6 g (0.21 mol) of hydroxytoluene (BHT) was added and 10.5 L of xylene was added. The mixture was stirred and degassed under reduced pressure, and then the atmosphere in the container was replaced with nitrogen. The mixture was stirred at 40 ° C. for 4.5 hours and 130 ° C. for 4.5 hours.

この混合物を60℃に加熱しつつ、1mol/Lの水酸化ナトリウム水溶液12.5Lで2回、飽和炭酸水素ナトリウム水溶液4.5Lで1回、飽和食塩水4.5Lで1回、それぞれ洗浄した。洗浄後、混合物中の有機層を約3Lになるまで濃縮させ、これにトルエンを5L加え、濃縮させた。次に、この混合物にトルエン5Lを加えて60℃に加熱して固体をすべて溶かして溶液とし、この溶液をセライト(和光純薬工業株式会社、カタログ番号:531−16855)とアルミナを用いて精製した。 While this mixture was heated to 60 ° C., it was washed twice with 12.5 L of a 1 mol / L aqueous sodium hydroxide solution, once with 4.5 L of a saturated aqueous sodium bicarbonate solution, and once with 4.5 L of a saturated saline solution. . After washing, the organic layer in the mixture was concentrated to about 3 L, and 5 L of toluene was added thereto and concentrated. Next, 5 L of toluene is added to this mixture and heated to 60 ° C. to dissolve all solids to form a solution. This solution is purified using Celite (Wako Pure Chemical Industries, Ltd., catalog number: 531-16855) and alumina. did.

精製により得られた黄色溶液を濃縮させた後、トルエン5Lを加え、60℃に加熱しつつ1mol/Lの水酸化ナトリウム水溶液12.5Lで2回洗浄した。その後、この溶液を濃縮させ、エタノールとヘキサンを用いて再結晶することにより、目的物の薄紫色固体を収量507g、収率90%で得た。 After concentrating the yellow solution obtained by purification, 5 L of toluene was added, and the mixture was washed twice with 12.5 L of a 1 mol / L sodium hydroxide aqueous solution while heating to 60 ° C. Then, this solution was concentrated and recrystallized using ethanol and hexane to obtain a target light purple solid in a yield of 507 g and a yield of 90%.

得られた薄紫色固体505gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力0.88Pa、アルゴン流量100mL/minの条件で、薄紫色固体を215℃で加熱して行った。昇華精製後、目的物の白色固体を収量468g、回収率93%で得た。ステップ2−1の合成スキーム(a−2−1)を以下に示す。 505 g of the obtained light purple solid was purified by sublimation by the train sublimation method. The sublimation purification was performed by heating the light purple solid at 215 ° C. under the conditions of a pressure of 0.88 Pa and an argon flow rate of 100 mL / min. After purification by sublimation, a target white solid was obtained in a yield of 468 g and a recovery rate of 93%. A synthesis scheme (a-2-1) of Step 2-1 is shown below.

得られた白色固体のH NMRデータを以下に示す。H NMR(CDCl,500MHz):δ=7.53(t、J=7.5Hz、2H)、7.66(d、J=8.6Hz、2H)、7.70(ddd、J=7.5,7,5、1.2Hz、2H)、7.87(d、J=9.1Hz、2H)、8.05(d、J=8.0Hz、2H)、8.71(s、1H)、9.23(d、J=8.6Hz、2H)。 The 1 H NMR data of the obtained white solid is shown below. 1 H NMR (CDCl 3 , 500 MHz): δ = 7.53 (t, J = 7.5 Hz, 2H), 7.66 (d, J = 8.6 Hz, 2H), 7.70 (ddd, J = 7.5, 7, 5, 1.2 Hz, 2H), 7.87 (d, J = 9.1 Hz, 2H), 8.05 (d, J = 8.0 Hz, 2H), 8.71 (s) 1H), 9.23 (d, J = 8.6 Hz, 2H).

また、H NMRチャートを図8に示す。測定結果から、上記ステップ2−1で得られた化合物が、合成スキーム(a−2−1)に示す目的物、7H−ジベンゾ[c,g]カルバゾールであることが確認された。 Further, the 1 H NMR chart is shown in FIG. From the measurement results, it was confirmed that the compound obtained in Step 2-1 was the target product shown in Synthesis Scheme (a-2-1), 7H-dibenzo [c, g] carbazole.

ここで、得られた7H−ジベンゾ[c,g]カルバゾールの純度分析をウォーターズ社製ACQUITY Ultra Performance LC(以下UPLC)により行った。この結果、7H−ジベンゾ[c,g]カルバゾール以外の不純物として質量電荷の比(m/z)=371の物質が面積比で0.1%検出され、純度が99.9%と算出された。また、面積比で0.1%に満たない別の不純物として、質量電荷の比(m/z)=301の物質が含まれていた。なお、質量電荷の比(m/z)=301の物質は、7H−ジベンゾ[c,g]カルバゾールのいずれか一の水素原子が塩素原子と置換された、一塩素置換7H−ジベンゾ[c,g]カルバゾールと推定することができる。なお、得られたMSスペクトルを図12に示す。 Here, the purity analysis of the obtained 7H-dibenzo [c, g] carbazole was performed by ACQUITY Ultra Performance LC (hereinafter, UPLC) manufactured by Waters. As a result, a substance having a mass-to-charge ratio (m / z) = 371 as an impurity other than 7H-dibenzo [c, g] carbazole was detected in an area ratio of 0.1%, and the purity was calculated to be 99.9%. . Further, as another impurity whose area ratio is less than 0.1%, a substance having a mass-to-charge ratio (m / z) = 301 was included. Note that a substance having a mass to charge ratio (m / z) = 301 is a monochlorinated 7H-dibenzo [c, 7H-dibenzo [c, g] carbazole in which any one hydrogen atom is substituted with a chlorine atom. g] It can be estimated as carbazole. In addition, the obtained MS spectrum is shown in FIG.

次に、7H−ジベンゾ[c,g]カルバゾール中に含まれる、これらの不純物を精度良く確認するために、燃焼イオンクロマトグラフィーを用いて測定した。その結果、7H−ジベンゾ[c,g]カルバゾール中の塩素の含有量は、11ppmであることがわかった。 Next, in order to accurately confirm these impurities contained in 7H-dibenzo [c, g] carbazole, measurement was performed using combustion ion chromatography. As a result, it was found that the content of chlorine in 7H-dibenzo [c, g] carbazole was 11 ppm.

そこで、7H−ジベンゾ[c,g]カルバゾール中に含まれる塩素について、さらにガスクロマトグラフィーによる分析を行った。その結果、燃焼イオンクロマトグラフィーで検出された塩素は、合成スキーム(a−2−1)に示す反応において、酸化剤として用いたクロラニルではなく、原料である7H−ジベンゾ[c,g]カルバゾールのいずれか一の水素原子が塩素原子と置換された、一塩素置換7H−ジベンゾ[c,g]カルバゾールに由来するものであると推定された。 Therefore, chlorine contained in 7H-dibenzo [c, g] carbazole was further analyzed by gas chromatography. As a result, the chlorine detected by combustion ion chromatography was not the chloranil used as the oxidizing agent in the reaction shown in the synthesis scheme (a-2-1), but the 7H-dibenzo [c, g] carbazole as the raw material. It was presumed to be derived from a monochlorine-substituted 7H-dibenzo [c, g] carbazole in which any one hydrogen atom was substituted with a chlorine atom.

<ステップ2−2:ベンゾキノンを用いた7H−ジベンゾ[c,g]カルバゾールの合成>
50Lの反応容器に、上記ステップ1で得られた6,7,8,9−テトラヒドロ−5H−ジベンゾ[c,g]カルバゾール570g(2.1mol)と、1,4−ベンゾキノン908g(8.4mol)と、ジブチルヒドロキシトルエン(BHT)4.6g(0.21mol)と、を入れ、キシレン10.5Lを加えた。この混合物を減圧しながら撹拌して脱気した後、容器内を窒素置換させた。この混合物を、130℃で25時間撹拌した。
<Step 2-2: Synthesis of 7H-dibenzo [c, g] carbazole using benzoquinone>
In a 50 L reaction vessel, 570 g (2.1 mol) of 6,7,8,9-tetrahydro-5H-dibenzo [c, g] carbazole obtained in Step 1 above and 908 g (8.4 mol) of 1,4-benzoquinone were obtained. ) And 4.6 g (0.21 mol) of dibutylhydroxytoluene (BHT) were added, and 10.5 L of xylene was added. The mixture was stirred and degassed under reduced pressure, and then the atmosphere in the container was replaced with nitrogen. The mixture was stirred at 130 ° C. for 25 hours.

この混合物を60℃に加熱しつつ、1mol/Lの水酸化ナトリウム水溶液25Lで1回、0.5mol/Lの水酸化ナトリウム水溶液25Lで1回、さらに飽和食塩水4.5Lで1回、それぞれ洗浄した。洗浄後、混合物中の有機層を約3Lになるまで濃縮させ、これにトルエンを5L加え、濃縮させた。次に、この混合物にトルエン5Lを加えて60℃に加熱して固体をすべて溶かして溶液とし、この溶液をセライト(和光純薬工業株式会社、カタログ番号:531−16855)とアルミナを用いて精製した。 While heating this mixture to 60 ° C., once with 25 L of 1 mol / L aqueous sodium hydroxide, once with 25 L of 0.5 mol / L aqueous sodium hydroxide, and once with 4.5 L of saturated saline, Washed. After washing, the organic layer in the mixture was concentrated to about 3 L, and 5 L of toluene was added thereto and concentrated. Next, 5 L of toluene is added to this mixture and heated to 60 ° C. to dissolve all solids to form a solution. This solution is purified using Celite (Wako Pure Chemical Industries, Ltd., catalog number: 531-16855) and alumina. did.

精製により得られた黄色溶液を濃縮させた後、エタノールとヘキサンを用いて再結晶することにより、目的物の薄紫色固体を収量459g、収率82%で得た。 The yellow solution obtained by the purification was concentrated and then recrystallized using ethanol and hexane to obtain a target light purple solid in a yield of 459 g and a yield of 82%.

得られた薄紫色固体459gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力0.85Pa、アルゴン流量100mL/minの条件で、薄紫色固体を205℃で加熱して行った。昇華精製後、目的物の白色固体を収量414g、回収率90%で得た。ステップ2−2の合成スキーム(a−2−2)を以下に示す。 Sublimation purification of 459 g of the obtained pale purple solid was performed by a train sublimation method. Sublimation purification was performed by heating a light purple solid at 205 ° C. under conditions of a pressure of 0.85 Pa and an argon flow rate of 100 mL / min. After purification by sublimation, a target white solid was obtained in a yield of 414 g and a recovery rate of 90%. A synthesis scheme (a-2-2) of Step 2-2 is shown below.

得られた白色固体のH NMRデータを以下に示す。H NMR(CDCl,500MHz):δ=7.53(t、J=7.5Hz、2H)、7.66(d、J=8.6Hz、2H)、7.70(ddd、J=7.7,7,7、1.2Hz、2H)、7.87(d、J=8.6Hz、2H)、8.05(d、J=8.0Hz、2H)、8.71(s、1H)、9.22(d、J=8.0Hz、2H)。 The 1 H NMR data of the obtained white solid is shown below. 1 H NMR (CDCl 3 , 500 MHz): δ = 7.53 (t, J = 7.5 Hz, 2H), 7.66 (d, J = 8.6 Hz, 2H), 7.70 (ddd, J = 7.7, 7, 7, 1.2 Hz, 2H), 7.87 (d, J = 8.6 Hz, 2H), 8.05 (d, J = 8.0 Hz, 2H), 8.71 (s) 1H), 9.22 (d, J = 8.0 Hz, 2H).

また、H NMRチャートを図9に示す。測定結果から、上記ステップ2−2で得られた化合物が、合成スキーム(a−2−2)に示す目的物、7H−ジベンゾ[c,g]カルバゾールであることが確認された。 Further, the 1 H NMR chart is shown in FIG. From the measurement results, it was confirmed that the compound obtained in Step 2-2 was the target product shown in Synthesis Scheme (a-2-2), 7H-dibenzo [c, g] carbazole.

ここで、得られた7H−ジベンゾ[c,g]カルバゾールの純度分析をUPLCにより行った。この結果、7H−ジベンゾ[c,g]カルバゾール以外の不純物として面積比で0.1%以上含まれる不純物は検出されず、純度は99.9%以上と算出された。なお、マススペクトルを用いた分析では、ステップ2−1の場合と同様に質量電荷の比(m/z)=371の物質が不純物として検出されたが、7H−ジベンゾ[c,g]カルバゾールのいずれか一の水素原子が塩素と置換された構造の不純物と思われるm/z=301の物質は検出されなかった。 Here, purity analysis of the obtained 7H-dibenzo [c, g] carbazole was performed by UPLC. As a result, impurities contained in an area ratio of 0.1% or more as impurities other than 7H-dibenzo [c, g] carbazole were not detected, and the purity was calculated to be 99.9% or more. In the analysis using the mass spectrum, a substance having a mass-to-charge ratio (m / z) = 371 was detected as an impurity as in Step 2-1, but 7H-dibenzo [c, g] carbazole A substance with m / z = 301 which is considered to be an impurity having a structure in which any one hydrogen atom is replaced with chlorine was not detected.

次に、7H−ジベンゾ[c,g]カルバゾール中に含まれる不純物を精度良く確認するために、燃焼イオンクロマトグラフィーを用いて測定した。その結果、7H−ジベンゾ[c,g]カルバゾール中の塩素の含有量は、1ppmであることがわかった。 Next, in order to confirm the impurities contained in 7H-dibenzo [c, g] carbazole with high accuracy, measurement was performed using combustion ion chromatography. As a result, the chlorine content in 7H-dibenzo [c, g] carbazole was found to be 1 ppm.

そこで、7H−ジベンゾ[c,g]カルバゾール中に含まれる塩素を含有する不純物について、さらにガスクロマトグラフィーによる分析を行った。しかし、塩素を含有する不純物は検出されなかった。また、合成スキーム(a−2−2)に示す反応において酸化剤として用いたベンゾキノンの含有量は、検出下限以下であることがわかった。 Thus, chlorine-containing impurities contained in 7H-dibenzo [c, g] carbazole were further analyzed by gas chromatography. However, no chlorine-containing impurities were detected. Moreover, it turned out that content of the benzoquinone used as an oxidizing agent in reaction shown to a synthetic scheme (a-2-2) is below a detection minimum.

以上より、上記ステップ2−1およびステップ2−2の合成方法において、いずれも反応後の目的物には、合成に用いた酸化剤がほとんど含まれないことがわかった。 From the above, it was found that in the synthesis methods of Step 2-1 and Step 2-2, the target product after the reaction hardly contains the oxidizing agent used for the synthesis.

しかし、上記燃焼イオンクロマトグラフィーによる分析では、合成反応に用いる酸化剤の違い(ステップ2−1およびステップ2−2における違い)により、7H−ジベンゾ[c,g]カルバゾール中に含まれる塩素の含有量に差が見られた。 However, in the analysis by the above-mentioned combustion ion chromatography, the content of chlorine contained in 7H-dibenzo [c, g] carbazole due to the difference in the oxidizing agent used in the synthesis reaction (difference in Step 2-1 and Step 2-2). There was a difference in quantity.

この結果から、酸化剤に塩素が含まれる場合、7H−ジベンゾ[c,g]カルバゾールに塩素が付加して不純物(以下、クロロ付加体とする)が生成されるため、塩素が多く検出されると推定することができる。なお、ステップ2−1およびステップ2−2で原料として用いた、6,7,8,9−テトラヒドロ−5H−ジベンゾ[c,g]カルバゾールには上述のステップ1において、同じバッチで合成し、精製したものを用いた。 From this result, when chlorine is contained in the oxidant, chlorine is added to 7H-dibenzo [c, g] carbazole to generate impurities (hereinafter referred to as chloro adducts), and thus a large amount of chlorine is detected. Can be estimated. The 6,7,8,9-tetrahydro-5H-dibenzo [c, g] carbazole used as a raw material in Step 2-1 and Step 2-2 was synthesized in the same batch in Step 1 above. The purified product was used.

<ステップ3−1:cgDBCzPAの合成(1)>
ステップ3−1では、原料として上記ステップ2−1で合成した7H−ジベンゾ[c,g]カルバゾールを用いて、cgDBCzPAを合成した。
<Step 3-1: Synthesis of cgDBCzPA (1)>
In Step 3-1, cgDBCzPA was synthesized using 7H-dibenzo [c, g] carbazole synthesized in Step 2-1 as a raw material.

50Lの反応容器に、上記ステップ2−1で得られた7H−ジベンゾ[c,g]カルバゾール460g(1.7mol)、9−(4−ブロモフェニル)−10−フェニルアントラセン704g(1.7mol)、ナトリウムtert−ブトキシド486g(5.1mol)を入れ、メシチレン10.5Lを加えて、この混合物を減圧しながら撹拌して脱気した後、容器内を窒素置換させた。 In a 50 L reaction vessel, 460 g (1.7 mol) of 7H-dibenzo [c, g] carbazole obtained in Step 2-1 above, 704 g (1.7 mol) of 9- (4-bromophenyl) -10-phenylanthracene were obtained. Then, 486 g (5.1 mol) of sodium tert-butoxide was added, 10.5 L of mesitylene was added, the mixture was stirred while depressurizing and deaerated, and then the atmosphere in the container was replaced with nitrogen.

この混合物を窒素気流下で60℃まで加熱し、これに、脱気したメシチレンにアリルパラジウム(II)クロリドダイマー6.4g(17mmol)、ジ−tert−ブチル(1−メチル−2,2−ジフェニルシクロプロピル)ホスフィン(cBRIDP(登録商標))24g(69mmol)を混合させてなる混合物を加え、再度、減圧しながら撹拌することで脱気し、脱気後容器内を窒素置換した。この混合物を窒素気流下、155℃で9時間撹拌した。 This mixture was heated to 60 ° C. under a nitrogen stream, and 6.4 g (17 mmol) of allyl palladium (II) chloride dimer and di-tert-butyl (1-methyl-2,2-diphenyl) were added to the degassed mesitylene. A mixture obtained by mixing 24 g (69 mmol) of cyclopropyl) phosphine (cBRIDP (registered trademark)) was added, and the mixture was again deaerated by stirring while reducing the pressure. This mixture was stirred at 155 ° C. for 9 hours under a nitrogen stream.

次に、メシチレン10Lと水18Lを加え、撹拌しながら還流を行い、60℃まで冷却した後、水層を分液して取り除いた。その後、室温まで放冷し、得られた溶液を約5L程度になるまで濃縮させた。これにさらにトルエンを5L加えてこれを濃縮させる操作を2度行った。この混合物にトルエン10Lを加えて還流を行い、この溶液をセライト(和光純薬工業株式会社、カタログ番号:531−16855)、アルミナ、フロリジール(和光純薬工業株式会社、カタログ番号:540−00135)により精製した。精製により得られた濾液を濃縮させ、これを氷浴にて約0℃まで冷やしながら撹拌した後、吸引ろ過により固体を濾別して目的の淡黄色固体を収量446g、収率43%で得た。 Next, 10 L of mesitylene and 18 L of water were added and refluxed while stirring. After cooling to 60 ° C., the aqueous layer was separated and removed. Thereafter, the mixture was allowed to cool to room temperature, and the obtained solution was concentrated to about 5 L. The operation of adding 5 L of toluene to this and concentrating it was performed twice. The mixture was refluxed by adding 10 L of toluene, and this solution was treated with Celite (Wako Pure Chemical Industries, Ltd., catalog number: 531-1855), alumina, Florisil (Wako Pure Chemical Industries, Ltd., catalog number: 540-00135). Purified by The filtrate obtained by purification was concentrated and stirred while cooling to about 0 ° C. in an ice bath, and then the solid was separated by suction filtration to obtain the desired pale yellow solid in a yield of 446 g and a yield of 43%.

得られた淡黄色固体444gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力0.9Pa、アルゴン流量100mL/minの条件で、淡黄色固体を355℃で加熱して行った。昇華精製後、目的物の淡黄色固体を収量332g、回収率75%で得た。ステップ3−1の合成スキーム(a−3)を以下に示す。 Sublimation purification of 444 g of the obtained pale yellow solid was performed by a train sublimation method. Sublimation purification was performed by heating a light yellow solid at 355 ° C. under conditions of a pressure of 0.9 Pa and an argon flow rate of 100 mL / min. After the sublimation purification, the target pale yellow solid was obtained in a yield of 332 g with a recovery rate of 75%. A synthesis scheme (a-3) of Step 3-1 is shown below.

得られた淡黄色固体のH NMRデータを以下に示す。 The 1 H NMR data of the obtained pale yellow solid is shown below.

H NMR(CDCl,500MHz):δ=7.39−7.42(m、2H)、7.46−7.50(m、2H)、7.53(d、J=7.2Hz、1H)、7.56−7.60(m、12H)、7.96(d、J=9.1Hz、2H)、8.10(d、J=7.4Hz、2H)、9.31(d、J=8.0Hz、2H)。 1 H NMR (CDCl 3 , 500 MHz): δ = 7.39-7.42 (m, 2H), 7.46-7.50 (m, 2H), 7.53 (d, J = 7.2 Hz, 1H), 7.56-7.60 (m, 12H), 7.96 (d, J = 9.1 Hz, 2H), 8.10 (d, J = 7.4 Hz, 2H), 9.31 ( d, J = 8.0 Hz, 2H).

また、H NMRチャートを図10に示す。測定結果から、上記ステップ3−1で得られた化合物が、合成スキーム(a−3)に示す目的物、cgDBCzPAであることが確認された。 Further, the 1 H NMR chart is shown in FIG. From the measurement results, it was confirmed that the compound obtained in Step 3-1 was the target product, cgDBCzPA, shown in Synthesis Scheme (a-3).

<ステップ3−2:cgDBCzPAの合成(2)>
ステップ3−2では、原料として上記ステップ2−2で合成した7H−ジベンゾ[c,g]カルバゾールを用いて、cgDBCzPAの合成を行う。
<Step 3-2: Synthesis of cgDBCzPA (2)>
In Step 3-2, cgDBCzPA is synthesized using 7H-dibenzo [c, g] carbazole synthesized in Step 2-2 as a raw material.

50Lの反応容器に、上記ステップ2−2で得られた7H−ジベンゾ[c,g]カルバゾール400g(1.5mol)、上記ステップ3−1と同じロットの9−(4−ブロモフェニル)−10−フェニルアントラセン612g(1.5mol)、ナトリウムtert−ブトキシド431g(4.5mol)を入れ、メシチレン10Lを加えて、この混合物を減圧しながら撹拌して脱気した後、容器内を窒素置換させた。この混合物を窒素気流下で60℃まで加熱し、脱気したメシチレンにアリルパラジウム(II)クロリドダイマー6.9g(19mmol)、cBRIDP(登録商標)18g(52mmol)を懸濁させた混合物を加え、再度、減圧しながら撹拌することで脱気し、脱気後容器内を窒素置換した。この混合物を窒素気流下、135℃で4時間、さらに155℃で3時間撹拌した。 In a 50 L reaction vessel, 400 g (1.5 mol) of 7H-dibenzo [c, g] carbazole obtained in Step 2-2 above, 9- (4-bromophenyl) -10 in the same lot as in Step 3-1. -612 g (1.5 mol) of phenylanthracene and 431 g (4.5 mol) of sodium tert-butoxide were added, 10 L of mesitylene was added, this mixture was stirred and degassed while reducing the pressure, and then the inside of the container was purged with nitrogen. . The mixture was heated to 60 ° C. under a nitrogen stream, and a mixture of 6.9 g (19 mmol) of allyl palladium (II) chloride dimer and 18 g (52 mmol) of cBRIDP (registered trademark) in degassed mesitylene was added, Again, deaeration was performed by stirring while reducing the pressure, and the inside of the container was purged with nitrogen after deaeration. This mixture was stirred under a nitrogen stream at 135 ° C. for 4 hours and further at 155 ° C. for 3 hours.

その後、トルエン17Lと水10Lを加え、撹拌しながら還流を行い、75℃まで冷却した後、水層を分液して取り除いた。その後、室温まで放冷し、得られた溶液を約5L程度になるまで濃縮させた。これにさらにトルエンを5L加え、濃縮させた。この混合物にトルエン15Lを加えて還流を行い、この溶液をセライト(和光純薬工業株式会社、カタログ番号:531−16855)、アルミナ、フロリジール(和光純薬工業株式会社、カタログ番号:540−00135)により精製した。精製により得られた濾液を濃縮させ、これを氷浴にて約0℃まで冷やしながら撹拌した後、吸引ろ過により固体を濾別して目的の淡黄色固体を収量654g、収率73%で得た。 Thereafter, 17 L of toluene and 10 L of water were added and refluxed with stirring. After cooling to 75 ° C., the aqueous layer was separated and removed. Thereafter, the mixture was allowed to cool to room temperature, and the obtained solution was concentrated to about 5 L. To this was further added 5 L of toluene and concentrated. To this mixture, 15 L of toluene was added to perform reflux, and this solution was celite (Wako Pure Chemical Industries, Ltd., catalog number: 531-1855), alumina, Florisil (Wako Pure Chemical Industries, Ltd., catalog number: 540-00135). Purified by The filtrate obtained by purification was concentrated and stirred while cooling to about 0 ° C. in an ice bath, and then the solid was separated by suction filtration to obtain the desired pale yellow solid in a yield of 654 g and a yield of 73%.

得られた淡黄色固体324gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力0.9Pa、アルゴン流量100mL/minの条件で、淡黄色固体を355℃で加熱して行った。昇華精製後、目的物の淡黄色固体を収量230g、回収率70%で得た。ステップ3−2の合成スキーム(a−3’)を以下に示す。 324 g of the obtained pale yellow solid was purified by sublimation by a train sublimation method. Sublimation purification was performed by heating a light yellow solid at 355 ° C. under conditions of a pressure of 0.9 Pa and an argon flow rate of 100 mL / min. After purification by sublimation, the target pale yellow solid was obtained in a yield of 230 g and a recovery rate of 70%. A synthesis scheme (a-3 ′) of Step 3-2 is shown below.

得られた淡黄色固体のH NMRデータを以下に示す。 The 1 H NMR data of the obtained pale yellow solid is shown below.

H NMR(CDCl,500MHz):δ=7.39−7.42(m、2H)、7.46−7.50(m、2H)、7.53(d、J=7.2Hz、1H)、7.56−7.60(m、12H)、7.96(d、J=9.1Hz、2H)、8.10(d、J=6.9Hz、2H)、9.31(d、J=8.6Hz、2H)。 1 H NMR (CDCl 3 , 500 MHz): δ = 7.39-7.42 (m, 2H), 7.46-7.50 (m, 2H), 7.53 (d, J = 7.2 Hz, 1H), 7.56-7.60 (m, 12H), 7.96 (d, J = 9.1 Hz, 2H), 8.10 (d, J = 6.9 Hz, 2H), 9.31 ( d, J = 8.6 Hz, 2H).

また、H NMRチャートを図11に示す。測定結果から、上記ステップ3−2で得られた化合物が、合成スキーム(a−3’)に示す目的物、cgDBCzPAであることが確認された。 Further, the 1 H NMR chart is shown in FIG. From the measurement results, it was confirmed that the compound obtained in Step 3-2 was the target product, cgDBCzPA, shown in the synthesis scheme (a-3 ′).

上記の結果から、ステップ3(ステップ3−1およびステップ3−2)のうち、ステップ3−1では、ステップ3−2に比べて反応速度が遅く、合成物(cgDBCzPA)の収率も大幅に低下した。 From the above results, among Step 3 (Step 3-1 and Step 3-2), in Step 3-1, the reaction rate is slower than in Step 3-2, and the yield of the synthesized product (cgDBCzPA) is greatly increased. Declined.

なお、上記ステップ3(ステップ3−1およびステップ3−2)では、上記ステップ2(ステップ2−1およびステップ2−2)で得られた7H−ジベンゾ[c,g]カルバゾールを原料として用いるため、ステップ2−1で合成された、7H−ジベンゾ[c,g]カルバゾールを原料として用いるステップ3−1の場合には、7H−ジベンゾ[c,g]カルバゾールが不純物であるクロロ付加体を多く含むため、ステップ3−1の合成反応が阻害されると考えられる。 In Step 3 (Step 3-1 and Step 3-2), 7H-dibenzo [c, g] carbazole obtained in Step 2 (Step 2-1 and Step 2-2) is used as a raw material. In the case of Step 3-1, which uses 7H-dibenzo [c, g] carbazole synthesized in Step 2-1, as a raw material, there are many chloro adducts in which 7H-dibenzo [c, g] carbazole is an impurity. Therefore, it is considered that the synthesis reaction in Step 3-1 is inhibited.

すなわち、ステップ3(ステップ3−1およびステップ3−2)のうち、ステップ3−1の場合における反応速度の低下や合成物(cgDBCzPA)の収率の低下が、ステップ3−1の合成に用いた7H−ジベンゾ[c,g]カルバゾールに起因するものであり、具体的にはこの7H−ジベンゾ[c,g]カルバゾールをステップ2−1で合成した際、酸化剤として塩素を含むクロラニルを用いたことで生成したクロロ付加体により、ステップ3−1の反応が影響を受けたものと考えられる。 That is, among Step 3 (Step 3-1 and Step 3-2), the decrease in the reaction rate and the decrease in the yield of the synthesized product (cgDBCzPA) in Step 3-1 are used for the synthesis in Step 3-1. In particular, when synthesizing 7H-dibenzo [c, g] carbazole in Step 2-1, chloranil containing chlorine as an oxidizing agent was used. It is considered that the reaction of Step 3-1 was affected by the chloro adduct produced by the reaction.

本実施例に示す上記の結果は、本発明の一態様である、縮合カルバゾール骨格を有する有機化合物の合成方法の効果を裏付けるものであり、原料である縮合カルバゾール骨格を有する化合物の合成に用いる酸化剤として、塩素を含まない酸化剤を用いて酸化させることにより、合成物である縮合カルバゾール骨格を有する有機化合物の収率が高まることを示すものである。 The above results shown in this example confirm the effect of the method for synthesizing an organic compound having a condensed carbazole skeleton, which is one embodiment of the present invention, and are used for the synthesis of a compound having a condensed carbazole skeleton as a raw material. It shows that the yield of an organic compound having a condensed carbazole skeleton, which is a synthetic product, is increased by oxidizing using an oxidizing agent not containing chlorine as an agent.

101 第1の電極
102 第2の電極
103 EL層
103a、103b EL層
104 電荷発生層
111、111a、111b 正孔注入層
112、112a、112b 正孔輸送層
113、113a、113b 発光層
114、114a、114b 電子輸送層
115、115a、115b 電子注入層
200R、200G、200B 光学距離
201 第1の基板
202 トランジスタ(FET)
203R、203G、203B、203W 発光素子
204 EL層
205 第2の基板
206R、206G、206B カラーフィルタ
206R’、206G’、206B’ カラーフィルタ
207 第1の電極
208 第2の電極
209 黒色層(ブラックマトリックス)
210R、210G 導電層
301 第1の基板
302 画素部
303 駆動回路部(ソース線駆動回路)
304a、304b 駆動回路部(ゲート線駆動回路)
305 シール材
306 第2の基板
307 引き回し配線
308 FPC
309 FET
310 FET
311 FET
312 FET
313 第1の電極
314 絶縁物
315 EL層
316 第2の電極
317 発光素子
318 空間
900 基板
901 第1の電極
902 EL層
903 第2の電極
911 正孔注入層
912 正孔輸送層
913 発光層
914 電子輸送層
915 電子注入層
4000 照明装置
4001 基板
4002 発光素子
4003 基板
4004 第1の電極
4005 EL層
4006 第2の電極
4007 電極
4008 電極
4009 補助配線
4010 絶縁層
4011 封止基板
4012 シール材
4013 乾燥剤
4015 拡散板
4200 照明装置
4201 基板
4202 発光素子
4204 第1の電極
4205 EL層
4206 第2の電極
4207 電極
4208 電極
4209 補助配線
4210 絶縁層
4211 封止基板
4212 シール材
4213 バリア膜
4214 平坦化膜
4215 拡散板
5101 ライト
5102 ホイール
5103 ドア
5104 表示部
5105 ハンドル
5106 シフトレバー
5107 座席シート
5108 インナーリアビューミラー
7000 筐体
7001 表示部
7002 第2表示部
7003 スピーカ
7004 LEDランプ
7005 操作キー
7006 接続端子
7007 センサ
7008 マイクロフォン
7009 スイッチ
7010 赤外線ポート
7011 記録媒体読込部
7012 支持部
7013 イヤホン
7014 アンテナ
7015 シャッターボタン
7016 受像部
7018 スタンド
7020 カメラ
7021 外部接続部
7022、7023 操作用ボタン
7024 接続端子
7025 バンド、
7026 留め金
7027 時刻を表すアイコン
7028 その他のアイコン
9310 携帯情報端末
9311 表示部
9312 表示領域
9313 ヒンジ
9315 筐体
101 First electrode 102 Second electrode 103 EL layer 103a, 103b EL layer 104 Charge generation layer 111, 111a, 111b Hole injection layer 112, 112a, 112b Hole transport layer 113, 113a, 113b Light emitting layer 114, 114a , 114b Electron transport layers 115, 115a, 115b Electron injection layers 200R, 200G, 200B Optical distance 201 First substrate 202 Transistor (FET)
203R, 203G, 203B, 203W Light emitting element 204 EL layer 205 Second substrate 206R, 206G, 206B Color filter 206R ′, 206G ′, 206B ′ Color filter 207 First electrode 208 Second electrode 209 Black layer (black matrix )
210R, 210G Conductive layer 301 First substrate 302 Pixel portion 303 Drive circuit portion (source line drive circuit)
304a, 304b Drive circuit section (gate line drive circuit)
305 Sealing material 306 Second substrate 307 Route wiring 308 FPC
309 FET
310 FET
311 FET
312 FET
313 First electrode 314 Insulator 315 EL layer 316 Second electrode 317 Light emitting element 318 Space 900 Substrate 901 First electrode 902 EL layer 903 Second electrode 911 Hole injection layer 912 Hole transport layer 913 Light emitting layer 914 Electron transport layer 915 Electron injection layer 4000 Lighting device 4001 Substrate 4002 Light emitting element 4003 Substrate 4004 First electrode 4005 EL layer 4006 Second electrode 4007 Electrode 4008 Electrode 4009 Auxiliary wiring 4010 Insulating layer 4011 Sealing substrate 4012 Sealing material 4013 Desiccant 4015 Diffuser 4200 Lighting device 4201 Substrate 4202 Light emitting element 4204 First electrode 4205 EL layer 4206 Second electrode 4207 Electrode 4208 Electrode 4209 Auxiliary wiring 4210 Insulating layer 4211 Sealing substrate 4212 Sealing material 4213 Barrier film 4214 Flat Chemical film 4215 Diffusion plate 5101 Light 5102 Wheel 5103 Door 5104 Display unit 5105 Handle 5106 Shift lever 5107 Seat seat 5108 Inner rear view mirror 7000 Case 7001 Display unit 7002 Second display unit 7003 Speaker 7004 LED lamp 7005 Operation key 7006 Connection terminal 7007 Sensor 7008 Microphone 7009 Switch 7010 Infrared port 7011 Recording medium reading unit 7012 Support unit 7013 Earphone 7014 Antenna 7015 Shutter button 7016 Image receiving unit 7018 Stand 7020 Camera 7021 External connection unit 7022 and 7023 Operation button 7024 Connection terminal 7025 Band,
7026 Clasp 7027 Icon 7028 Other Time Icon 9310 Portable Information Terminal 9311 Display Unit 9312 Display Area 9313 Hinge 9315 Case

Claims (4)

塩素の含有量が10ppm以下である縮合カルバゾール骨格を有する化合物と、ハロゲン化アリール化合物またはハロゲン化ヘテロアリール化合物と、をカップリングさせることを特徴とする縮合カルバゾール骨格を有する有機化合物の合成方法。   A method for synthesizing an organic compound having a condensed carbazole skeleton, comprising coupling a compound having a condensed carbazole skeleton having a chlorine content of 10 ppm or less and a halogenated aryl compound or a halogenated heteroaryl compound. 請求項1において、
前記縮合カルバゾール骨格を有する化合物の塩素の含有量が5ppm以下であることを特徴とする縮合カルバゾール骨格を有する有機化合物の合成方法。
In claim 1,
The method for synthesizing an organic compound having a condensed carbazole skeleton, wherein the compound having the condensed carbazole skeleton has a chlorine content of 5 ppm or less.
塩素の含有量が10ppm以下であり、かつ一般式(G0)で示す縮合カルバゾール骨格を有する化合物と、ハロゲン化アリール化合物またはハロゲン化ヘテロアリール化合物と、をカップリングさせることを特徴とする縮合カルバゾール骨格を有する有機化合物の合成方法。

(式中、a乃至cの位置、またはg乃至iの位置の少なくとも一は、置換もしくは無置換のベンゼン環による縮合構造を有する。また、R1〜8は、それぞれ独立に、水素、炭素数1乃至6のアルキル基、または置換もしくは無置換の炭素数6乃至18のアリール基を表し、nおよびmは、それぞれ1乃至4の整数を表す。)
A condensed carbazole skeleton characterized by coupling a compound having a chlorine content of 10 ppm or less and having a condensed carbazole skeleton represented by the general formula (G0) with a halogenated aryl compound or a halogenated heteroaryl compound A method for synthesizing an organic compound having

(In the formula, at least one of positions a to c or g to i has a condensed structure with a substituted or unsubstituted benzene ring. In addition, R 1 to 8 each independently represent hydrogen or carbon number. A 1 to 6 alkyl group or a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, and n and m each represents an integer of 1 to 4)
塩素を含まない酸化剤を用いた合成方法により得られた縮合カルバゾール骨格を有する化合物と、ハロゲン化アリール化合物またはハロゲン化ヘテロアリール化合物と、をカップリングさせることを特徴とする縮合カルバゾール骨格を有する有機化合物の合成方法。   An organic compound having a condensed carbazole skeleton, characterized by coupling a compound having a condensed carbazole skeleton obtained by a synthesis method using an oxidizing agent containing no chlorine and a halogenated aryl compound or a halogenated heteroaryl compound. Compound synthesis method.
JP2018030085A 2018-02-22 2018-02-22 Method of synthesizing organic compound having fused carbazole skeleton Withdrawn JP2019142821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018030085A JP2019142821A (en) 2018-02-22 2018-02-22 Method of synthesizing organic compound having fused carbazole skeleton

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018030085A JP2019142821A (en) 2018-02-22 2018-02-22 Method of synthesizing organic compound having fused carbazole skeleton

Publications (2)

Publication Number Publication Date
JP2019142821A true JP2019142821A (en) 2019-08-29
JP2019142821A5 JP2019142821A5 (en) 2021-04-01

Family

ID=67771821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018030085A Withdrawn JP2019142821A (en) 2018-02-22 2018-02-22 Method of synthesizing organic compound having fused carbazole skeleton

Country Status (1)

Country Link
JP (1) JP2019142821A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047283A (en) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd Compound
JP2015227324A (en) * 2013-09-13 2015-12-17 株式会社半導体エネルギー研究所 Dibenzo[f,h]quinoxaline derivative, method of synthesizing the same, light-emitting element, light-emitting device, electronic appliance, and lighting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047283A (en) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd Compound
JP2015227324A (en) * 2013-09-13 2015-12-17 株式会社半導体エネルギー研究所 Dibenzo[f,h]quinoxaline derivative, method of synthesizing the same, light-emitting element, light-emitting device, electronic appliance, and lighting device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRAUDE, E.A., J.CHEM.SOC., JPN6021047219, 1954, pages 3648 - 3563, ISSN: 0004649054 *
HASSAN, FATHY, TETRAHEDRON LETTERS, vol. 59, JPN6021047221, 2018, pages 99 - 102, ISSN: 0004649053 *
KATRITZKY, ALAN R., J.HETEROCYCLIC CHEM., vol. 25, JPN6021047223, 1988, pages 671 - 675, ISSN: 0004649052 *

Similar Documents

Publication Publication Date Title
JP6487103B1 (en) Organic compound, light emitting element, light emitting device, electronic device, and lighting device
JP7458452B2 (en) light emitting element
JP7143310B2 (en) organic compounds, light-emitting elements, light-emitting devices, electronic devices, and lighting devices
US20200199135A1 (en) Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
WO2019229583A1 (en) Organic compounds, light-emitting element, light-emitting device, electronic device, and illumination device
WO2019229584A1 (en) Organic compound, light-emitting element, light-emitting device, electronic equipment, and lighting device
US20230263055A1 (en) Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP2023025011A (en) Light-emitting element
JP2019189540A (en) Organic compound, light emitting element, light emitting device, electronic apparatus, and illumination device
JP7297758B2 (en) Light-emitting elements, light-emitting devices, electronic devices, and lighting devices
JP2023113638A (en) Light-emitting element
WO2018178818A1 (en) Organic compound, light emitting element, light emitting device, electronic equipment, and lighting device
JP7225097B2 (en) organic compounds, light-emitting elements, light-emitting devices, electronic devices, and lighting devices
JP7498113B2 (en) Organic compound, light-emitting device, light-emitting apparatus, electronic device, and lighting apparatus
JP7287953B2 (en) Organometallic complex, light-emitting device, light-emitting device, electronic device, and lighting device
JP2019142821A (en) Method of synthesizing organic compound having fused carbazole skeleton
WO2018189623A1 (en) Organic metal complex, light emitting element, light emitting device, electronic device, and lighting device
WO2020109922A1 (en) Composition for light emitting devices
JP2020066609A (en) Organic compound, light-emitting device, light-emitting apparatus, electronic equipment and lighting apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220628

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20220916