WO2019096049A1 - 唤醒电路及电池管理系统 - Google Patents

唤醒电路及电池管理系统 Download PDF

Info

Publication number
WO2019096049A1
WO2019096049A1 PCT/CN2018/114385 CN2018114385W WO2019096049A1 WO 2019096049 A1 WO2019096049 A1 WO 2019096049A1 CN 2018114385 W CN2018114385 W CN 2018114385W WO 2019096049 A1 WO2019096049 A1 WO 2019096049A1
Authority
WO
WIPO (PCT)
Prior art keywords
wake
output
thermistor
comparator
battery
Prior art date
Application number
PCT/CN2018/114385
Other languages
English (en)
French (fr)
Inventor
陆群
刘文秀
Original Assignee
北京长城华冠汽车科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京长城华冠汽车科技股份有限公司 filed Critical 北京长城华冠汽车科技股份有限公司
Publication of WO2019096049A1 publication Critical patent/WO2019096049A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of the automobile industry, and in particular to a wake-up circuit and a battery management system.
  • the electric vehicle uses the battery management system (BMS) to detect the battery temperature in real time during operation. When the temperature is too high, an alarm signal is issued, and the high voltage output is cut off when necessary.
  • BMS battery management system
  • the battery When the electric vehicle is in the parking state (the key is powered off), the battery may also have an excessive temperature, such as a short circuit inside the battery or an abnormal discharge of the battery. Therefore, it is also necessary to detect the temperature of the battery at this time, and at this time, the battery management system is in a dormant state. In this state, it is usually GPRS remotely waking up periodically or the battery management system itself wakes up periodically, and the battery management system after waking up is performed again. The detection of the cell voltage and temperature, if the temperature of the battery is within the normal range, the battery management system continues to enter the sleep state, otherwise an alarm signal is issued. However, the timing wake-up needs to set the timing duration. When the battery temperature is too high, the alarm cannot be issued at the first time. It may be that the timing has not reached when the danger occurs, so the battery management system in the prior art cannot be effective. The detection of the battery in the parking state does not protect the battery and protect the safety of the electric vehicle.
  • the main purpose of the present application is to provide a wake-up circuit and a battery management system.
  • the technical problem to be solved is to effectively monitor the temperature of the battery when the electric vehicle key is powered off to avoid spontaneous combustion due to excessive battery temperature. The accident happened.
  • a wake-up circuit according to the present application comprising:
  • the first output is used to connect with a management module of the battery management system to transmit a voltage signal to the management module;
  • the wake-up circuit when the thermistor detects that the temperature of the battery is higher than a predetermined value, the wake-up circuit outputs a voltage signal of a predetermined magnitude to the management module as a wake-up signal through the first output end.
  • the thermistor is a negative temperature coefficient thermistor
  • one end of the negative temperature coefficient thermistor is connected to a power source, and the other end of the negative temperature coefficient thermistor is opposite to the first One end of the fixed value resistor is connected, and the other end of the first fixed value resistor is grounded.
  • the thermistor is a positive temperature coefficient thermistor
  • one end of the first fixed value resistor is connected to a power source, and the other end of the first fixed value resistor is opposite to the positive temperature
  • One end of the coefficient thermistor is connected, and the other end of the positive temperature coefficient thermistor is grounded.
  • the wake-up circuit of the foregoing wherein the wake-up circuit further comprises: a second fixed value resistor, a third fixed value resistor, and a comparator, the resistance of the second fixed value resistor and the first fixed value resistor The resistance values are equal, and the third constant value resistance is set to a predetermined resistance value;
  • the second fixed value resistor and the third fixed value resistor are connected in series between the power source and the ground, and the second output terminal is disposed between the second fixed value resistor and the third fixed value resistor.
  • the two electrical connections of the comparator are respectively connected to the power supply and the ground, and the first output and the second output are respectively connected to the two signal inputs of the comparator.
  • the thermistor is a negative temperature coefficient thermistor
  • the negative temperature coefficient thermistor and the first fixed value resistor are sequentially connected between a power source and a ground end
  • the third fixed value resistor and the second fixed value resistor are sequentially connected between the power source and the ground end;
  • the first output is connected to a positive signal input of the comparator, the second output is connected to a negative signal input of the comparator; or the first output is compared to the first output
  • the negative signal input of the device is connected, and the second output is connected to the positive signal input of the comparator.
  • the thermistor is a negative temperature coefficient thermistor
  • the first fixed value resistor and the negative temperature coefficient thermistor are sequentially connected between a power source and a ground end
  • a second fixed value resistor and the third fixed value resistor are sequentially connected between the power source and the ground end;
  • the first output is connected to a negative signal input of the comparator, the second output is connected to a positive signal input of the comparator; or the first output is compared to the first output
  • the positive signal input of the device is coupled, and the second output is coupled to the negative signal input of the comparator.
  • the thermistor is a positive temperature coefficient thermistor
  • the positive temperature coefficient thermistor and the first fixed value resistor are sequentially connected between a power source and a ground end
  • the third fixed value resistor and the second fixed value resistor are sequentially connected between the power source and the ground end;
  • the first output is connected to a negative signal input of the comparator, the second output is connected to a positive signal input of the comparator; or the first output is compared to the first output
  • the positive signal input of the device is coupled, and the second output is coupled to the negative signal input of the comparator.
  • the thermistor is a positive temperature coefficient thermistor
  • the first fixed value resistor and the positive temperature coefficient thermistor are sequentially connected between a power source and a ground end
  • the second fixed value resistor and the third fixed value resistor are sequentially connected between the power source and the ground end;
  • the first output is connected to a positive signal input of the comparator, the second output is connected to a negative signal input of the comparator; or the first output is compared to the first output
  • the negative signal input of the device is connected, and the second output is connected to the positive signal input of the comparator.
  • a battery management system comprising:
  • the management module is configured to be connected to a battery
  • the wake-up circuit includes: a thermistor connected in series between the power source and the ground, and a first fixed value resistor, wherein the first output end is disposed between the thermistor and the first fixed value resistor, the heat a responsive resistor is configured to detect a temperature of the battery, and the first output is configured to be connected to a management module of the battery management system to transmit a voltage signal to the management module;
  • the wake-up circuit when the thermistor detects that the temperature of the battery is higher than a predetermined value, the wake-up circuit outputs a voltage signal of a predetermined magnitude to the management module as a wake-up signal through the first output end;
  • the first output end of the wake-up circuit is connected to the management module, and transmits a voltage signal to the management module;
  • the management module when the voltage signal transmitted by the first output end of the wake-up circuit to the management module is a predetermined size, the management module is woken up.
  • the wake-up circuit and the battery management system of the present application have at least the following advantages:
  • the wake-up circuit can issue a wake-up signal when the battery temperature is higher than a predetermined value, and send the wake-up signal to the management module of the battery management system.
  • the battery management system when the electric vehicle is powered off by the key, the battery management system is in a dormant state. In this state, the battery management system is usually awakened by GPRS remote timing or the battery management system itself wakes up periodically. Then check the voltage and temperature of the cell, but the timed wakeup needs to set the timing time. When the battery temperature is too high, the alarm cannot be issued at the first time.
  • the wake-up circuit provided by the present application can monitor the temperature of the battery when the vehicle is in a parking state, and when the temperature of the battery changes, the resistance value of the thermistor in the wake-up circuit changes, and is connected to the thermistor and the first The voltage at the first output between the fixed resistors changes accordingly.
  • the voltage at the first output connected between the thermistor and the first fixed resistor can wake up management.
  • the module can wake up the battery management system as a whole, so that the battery management system can comprehensively detect the battery. If the temperature of the battery is higher than a preset value, the battery management system can send a signal to the control system of the electric vehicle, thereby starting the electric vehicle. The automatic fire extinguishing device can also send an alarm signal to the user's mobile terminal to prompt the user that the car battery is in an excessive temperature state.
  • the wake-up circuit provided by the present application is added to the battery management system, the battery management system can not only detect the battery when the electric vehicle is powered on, but also monitor the temperature of the battery when the electric vehicle key is powered off. It ensures the safe use of the battery and avoids the self-ignition of the electric vehicle caused by overheating of the battery.
  • FIG. 1 is a schematic structural diagram of a wake-up circuit according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another wake-up circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another wake-up circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another wake-up circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another wake-up circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another wake-up circuit provided by an embodiment of the present application.
  • a wake-up circuit includes a thermistor and a first fixed value resistor connected in series between a power source and a ground, and a first output is disposed between the thermistor and the first fixed resistor a thermistor is configured to detect a temperature of the battery, and the first output end is configured to be connected to the management module of the battery management system to transmit a voltage signal to the management module; wherein, when the thermistor detects that the temperature of the battery is higher than a predetermined At the time of the value, the wake-up circuit outputs a voltage signal of a predetermined magnitude to the management module as a wake-up signal through the first output.
  • the thermistor in the wake-up circuit needs to be disposed on the battery, preferably in the position where the battery is most prone to heat, and then connected in the wake-up circuit through the connecting wire; the wake-up circuit can be only the thermistor and the first set
  • the circuit composed of the value resistor, the resistance value of the first constant value resistor is determined by the set battery heating temperature, and the wake-up signal sent to the management module by the first output terminal is a voltage signal, which may be an analog signal or a high or low level.
  • the wake-up circuit can directly use the battery of the electric vehicle as a power source, or it can be a separately provided power source, for example, a single battery that is not used to drive the electric vehicle.
  • the wake-up circuit can issue a wake-up signal when the battery temperature is higher than a predetermined value, and send the wake-up signal to the management module of the battery management system.
  • the battery management system when the electric vehicle is powered off by the key, the battery management system is in a dormant state. In this state, the battery management system is usually awakened by GPRS remote timing or the battery management system itself wakes up periodically. Then check the voltage and temperature of the cell, but the timed wakeup needs to set the timing time. When the battery temperature is too high, the alarm cannot be issued at the first time.
  • the wake-up circuit provided by the present application can monitor the temperature of the battery when the vehicle is in a parking state, and when the temperature of the battery changes, the resistance value of the thermistor in the wake-up circuit changes, and is connected to the thermistor and the first The voltage at the first output between the fixed resistors changes accordingly.
  • the voltage at the first output connected between the thermistor and the first fixed resistor can wake up management.
  • the module can wake up the battery management system as a whole, so that the battery management system can comprehensively detect the battery. If the temperature of the battery is higher than a preset value, the battery management system can send a signal to the control system of the electric vehicle, thereby starting the electric vehicle. The automatic fire extinguishing device can also send an alarm signal to the user's mobile terminal to prompt the user that the car battery is in an excessive temperature state.
  • the wake-up circuit provided by the present application is added to the battery management system, the battery management system can not only detect the battery when the electric vehicle is powered on, but also monitor the temperature of the battery when the electric vehicle key is powered off. It ensures the safe use of the battery and avoids the self-ignition of the electric vehicle caused by overheating of the battery.
  • the thermistor can be a negative temperature coefficient thermistor (NTC) or a positive temperature coefficient thermistor
  • NTC negative temperature coefficient thermistor
  • the wake-up circuit is as shown in FIG.
  • One end of the temperature coefficient thermistor R4 is connected to the power supply VBAT, the other end of the negative temperature coefficient thermistor R4 is connected to one end of the first fixed value resistor R3, and the other end of the first fixed value resistor R3 is grounded; when the thermistor is positive
  • the wake-up circuit is as shown in FIG.
  • the signal outputted by the first output terminal is a voltage signal loaded on the first constant value resistor, and when the battery temperature rises, the negative temperature coefficient is The resistance of the thermistor is lowered, the corresponding voltage applied to the first fixed value resistor is increased, and the voltage outputted by the first output terminal is increased, so that the wake-up voltage of the management module can be set to a predetermined value, for example, 5v.
  • the battery temperature when waking up the management module is also set to a predetermined value, for example, 50 degrees, and the resistance value of the first fixed value resistor is set to a predetermined value according to the change rule of the resistance value of the negative temperature coefficient thermistor in the temperature change.
  • the voltage applied to the first fixed value resistor is the voltage of the wake-up management module, thereby achieving the purpose of waking up the circuit to wake up the management module when the battery temperature rises to a predetermined value.
  • the thermistor is a positive temperature coefficient thermistor
  • the first fixed value resistor can also be set to the required size according to specific needs.
  • the wake-up circuit wakes up the management module at the set wake-up temperature
  • the wake-up circuit may further include: a second fixed value resistor, a third fixed value resistor, and a comparator,
  • the resistance of the second constant resistor is equal to the resistance of the first constant resistor
  • the third constant resistor is set to a predetermined resistance; wherein the second constant resistor and the third constant resistor are connected in series at the power supply and the ground.
  • a second output end is disposed, and the two electrical connection ends of the comparator are respectively connected to the power source and the ground end, and the first output end and the second output end are respectively compared with each other.
  • the two signal inputs of the device are connected.
  • the wake-up circuit can use the comparator to perform the wake-up signal output by using a voltage comparison method, wherein the third custom resistor can be set to a set value according to the temperature change of the thermistor, so that the third custom resistor can be set.
  • the value is greater than or equal to the resistance value of the thermistor in the normal temperature state, so that the voltage signals sent to the comparator by the first output terminal and the second output terminal at normal temperature can be outputted with a high level or a low level after comparison.
  • the connection manner of the wake-up circuit can be as shown in FIG. 3, when the thermistor is a negative temperature coefficient thermistor.
  • the negative temperature coefficient thermistor R4 and the first fixed value resistor R3 are sequentially connected between the power source VBAT and the ground GND, and the third fixed value resistor R2 and the second fixed value resistor R1 are sequentially connected to the power source VBAT and the ground GND.
  • first output is coupled to the positive signal input of the comparator, the second output is coupled to the negative signal input of the comparator; or the first output is coupled to the negative signal input of the comparator, the second output The terminal is connected to the positive signal input of the comparator.
  • the resistance value of the third constant value resistor needs to be smaller than the resistance value of the negative temperature coefficient thermistor in the normal temperature state, when the first output end is connected with the positive signal input end of the comparator, and the second output end and the comparator are connected.
  • the comparator output is low when the battery temperature does not exceed the temperature required to wake up the management module. At this time, the low level is a non-wake signal, and the battery temperature is higher than the need to wake up.
  • the output of the comparator is high, and the high level is the wake-up signal.
  • the high level of the comparator output is a non-wake-up signal
  • the comparator The low level of the output is the wake-up signal
  • the connection mode of the wake-up circuit can also be as shown in FIG.
  • the fixed value resistor R3 and the negative temperature coefficient thermistor R4 are sequentially connected between the power source VBAT and the ground GND, and the second fixed value resistor R1 and the third fixed value resistor R2 are sequentially connected between the power source VBAT and the ground GND; Wherein, the first output end is connected to the negative signal input end of the comparator, the second output end is connected to the positive signal input end of the comparator; or the first output end is connected to the positive signal input end of the comparator, and the second output end is connected Connected to the negative signal input of the comparator.
  • the working principle of the wake-up circuit shown in FIG. 4 is the same as that of the wake-up circuit in FIG. 3, and details are not described herein again.
  • the comparator uses the wake-up circuit shown in Figure 4, when the first output is connected to the negative signal input of the comparator and the second output is connected to the positive signal input of the comparator, the comparator outputs a high level.
  • the wake-up signal is used when the first output terminal is connected to the positive signal input terminal of the comparator and the second output terminal is connected to the negative signal input terminal of the comparator.
  • the connection mode of the wake-up circuit can be as shown in FIG.
  • the thermistor is a positive temperature coefficient thermistor R5, and the positive temperature coefficient thermistor R5 and the first fixed value resistor R3 are sequentially connected between the power source VBAT and the ground GND, and the third fixed value resistor R2 and the second constant value
  • the resistor R1 is sequentially connected between the power source VBAT and the ground GND; wherein the first output terminal is connected to the negative signal input end of the comparator, and the second output terminal is connected to the positive signal input end of the comparator; or, the first output end It is connected to the positive signal input of the comparator, and the second output is connected to the negative signal input of the comparator.
  • the resistance of the third fixed value resistor needs to be greater than the resistance value of the positive temperature coefficient thermistor in the normal temperature state, when the first output end is connected with the negative signal input end of the comparator, and the second output end and the comparator are connected.
  • the comparator output is low when the battery temperature does not exceed the temperature required to wake up the management module. At this time, the low level is a non-wake signal, and the battery temperature is higher than the need to wake up.
  • the output of the comparator is high, and the high level is the wake-up signal.
  • the high level of the comparator output is a non-wake-up signal
  • the comparator outputs Low level is the wake-up signal
  • the connection mode of the wake-up circuit can be as shown in FIG.
  • the fixed value resistor R3 and the positive temperature coefficient thermistor R5 are sequentially connected between the power source VBAT and the ground GND, and the second fixed value resistor R1 and the third fixed resistor R2 are sequentially connected between the power source VBAT and the ground GND;
  • the first output end is connected to the positive signal input end of the comparator, the second output end is connected to the negative signal input end of the comparator; or the first output end is connected to the negative signal input end of the comparator, and the second output end is connected Connected to the positive signal input of the comparator.
  • the working principle of the wake-up circuit shown in FIG. 6 is the same as that of the wake-up circuit in FIG. 5, and details are not described herein.
  • the comparator uses the wake-up circuit shown in Figure 6, when the first output is connected to the positive signal input of the comparator and the second output is connected to the negative signal input of the comparator, the comparator outputs a high level.
  • the wake-up signal when the first output terminal is connected to the negative signal input terminal of the comparator, and the second output terminal is connected to the positive signal input terminal of the comparator, the low level of the comparator output is the wake-up signal.
  • a battery management system includes: a management module and a wake-up circuit; the management module is configured to be connected to a battery; and the wake-up circuit includes: a thermistor connected in series between the power source and the ground and the first The fixed value resistor, the first output end is disposed between the thermistor and the first fixed value resistor, the thermistor is used for detecting the temperature of the battery, and the first output end is used for connecting with the management module of the battery management system to the management module Transmitting a voltage signal; wherein, when the thermistor detects that the temperature of the battery is higher than a predetermined value, the wake-up circuit outputs a voltage signal of a predetermined magnitude to the management module as a wake-up signal through the first output; the first output of the wake-up circuit And connecting to the management module, transmitting a voltage signal to the management module; wherein, when the voltage signal transmitted by the first output end of the wake-up circuit to the management module is a pre
  • the wake-up circuit described in the second embodiment can directly use the wake-up circuit provided in the foregoing Embodiment 1.
  • the management module can have all the functions of the wake-up circuit in the prior art, and the configuration of the structure can be set by referring to the wake-up circuit in the prior art, and details are not described herein; the functions of the management module include detecting the physical parameters of the battery.
  • Functions such as detecting battery capacity, internal resistance, and cell voltage; the function of the management module also includes detecting various operating state parameters when the battery is discharged, for example, detecting discharge current, voltage, temperature, and charge when the battery is in operation Status, discharge rate, and depth of discharge; the functions of the management module also include managing battery charging and discharging, preventing overcharging and overdischarging of the battery, and transmitting the operating state of the battery to the vehicle controller of the electric vehicle; It needs to be connected to the battery and to the control system of the electric vehicle.
  • the wake-up circuit can issue a wake-up signal when the battery temperature is higher than a predetermined value, and send the wake-up signal to the management module of the battery management system.
  • the battery management system when the electric vehicle is powered off by the key, the battery management system is in a dormant state. In this state, the battery management system is usually awakened by GPRS remote timing or the battery management system itself wakes up periodically. Then check the voltage and temperature of the cell, but the timed wakeup needs to set the timing time. When the battery temperature is too high, the alarm cannot be issued at the first time.
  • the wake-up circuit provided by the present application can monitor the temperature of the battery when the vehicle is in a parking state, and when the temperature of the battery changes, the resistance value of the thermistor in the wake-up circuit changes, and is connected to the thermistor and the first The voltage at the first output between the fixed resistors changes accordingly.
  • the voltage at the first output connected between the thermistor and the first fixed resistor can wake up management.
  • the module can wake up the battery management system as a whole, so that the battery management system can comprehensively detect the battery. If the temperature of the battery is higher than a preset value, the battery management system can send a signal to the control system of the electric vehicle, thereby starting the electric vehicle. The automatic fire extinguishing device can also send an alarm signal to the user's mobile terminal to prompt the user that the car battery is in an excessive temperature state.
  • the wake-up circuit provided by the present application is added to the battery management system, the battery management system can not only detect the battery when the electric vehicle is powered on, but also monitor the temperature of the battery when the electric vehicle key is powered off. It ensures the safe use of the battery and avoids the self-ignition of the electric vehicle caused by overheating of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

一种唤醒电路及电池管理系统,涉及汽车工业技术领域。主要采用的技术方案为:一种唤醒电路,其包括:串联在电源(VBAT)和接地端(GND)之间的热敏电阻(R4、R5)和第一定值电阻(R3),所述热敏电阻(R4、R5)与所述第一定值电阻(R3)之间设置有第一输出端,所述热敏电阻(R4、R5)用于检测电池的温度,所述第一输出端用于与电池管理系统的管理模块连接,向所述管理模块传输电压信号;其中,当所述热敏电阻(R4、R5)检测到电池的温度高于预定值时,所述唤醒电路通过所述第一输出端向所述管理模块输出预定大小的电压信号作为唤醒信号。

Description

唤醒电路及电池管理系统
相关申请的交叉引用
本申请要求北京长城华冠汽车科技股份有限公司于2017年11月20日提交的、申请名称为“唤醒电路及电池管理系统”的、中国专利申请号“201711156881.6”的优先权。
技术领域
本申请涉及汽车工业技术领域,特别是涉及一种唤醒电路及电池管理系统。
背景技术
目前,为了保护人类的生活环境,减少汽车尾气的排放,越来越多的清洁能源应用到汽车中,其中发展前景最好的为使用电力能源的电动汽车。
由于电动汽车的驱动能源全部来自于电池,所以电池的安全使用是影响电动汽车安全的一项重要因素,而电动汽车中的电池温度是影响电池使用安全的一项关键因素,因为电池温度持续过高则预示着电池即将发生失效,有可能会引起着火风险。所以,电动汽车在运行过程中使用电池管理系统(BMS)对电池温度进行实时检测,当发生温度过高时,会发出报警信号,必要时刻切断高压输出。
当电动汽车在停车状态(钥匙下电)时,电池也有可能出现温度过高的情况,例如电池内部短路,或者电池异常放电等。所以此时也需要对电池的温度进行检测,而此时电池管理系统处于休眠状态,在此种状态时通常是通过GPRS远程定时唤醒或电池管理系统自身定时唤醒,唤醒后的电池管理系统再进行单体电压和温度的检测,如果电池的温度在正常范围内,则电池管理系统继续进入休眠状态,否则发出报警信号。但是,定时唤醒需要设置定时时长,当电池温度发生过高时,并不能第一时间发出报警,有可能在危险发生时,还没有到达定时时长,所以现有技术中的电池管理系统不能够有效的对停车状态的电池进行检测,无法起到保护电池安全以及保护电动汽车安全的目的。
申请内容
本申请的主要目的在于,提供一种唤醒电路及电池管理系统,所要解决的技术问题是在电动汽车钥匙下电状态时,对电池的温度进行有效的监控,避免因电池温度过高而导致自燃的意外情况发生。
本申请的目的及解决其技术问题是采用以下技术方案来实现的。依据本申请提出的一种唤醒电路,其包括:
串联在电源和接地端之间的热敏电阻和第一定值电阻,所述热敏电阻与所述第一定值电阻之间设置有第一输出端,所述热敏电阻用于检测电池的温度,所述第一输出端用于与电池管理系统的管理模块连接,向所述管理模块传输电压信号;
其中,当所述热敏电阻检测到所述电池的温度高于预定值时,所述唤醒电路通过所述第一输出端向所述管理模块输出预定大小的电压信号作为唤醒信号。
本申请的目的及解决其技术问题还可采用以下技术措施进一步实现。
优选的,前述的唤醒电路,其中所述热敏电阻为负温度系数热敏电阻,所述负温度系数热敏电阻一端与电源连接,所述负温度系数热敏电阻的另一端与所述第一定值电阻的一端连接,所述第一定值电阻的另一端接地。
优选的,前述的唤醒电路,其中所述热敏电阻为正温度系数热敏电阻,所述第一定值电阻的一端与电源连接,所述第一定值电阻的另一端与所述正温度系数热敏电阻的一端连接,所述正温度系数热敏电阻的另一端接地。
优选的,前述的唤醒电路,其中所述唤醒电路还包括:第二定值电阻、第三定值电阻以及比较器,所述第二定值电阻的阻值与所述第一定值电阻的阻值相等,所述第三定值电阻设定为预定阻值;
其中,所述第二定值电阻与所述第三定值电阻串联在电源与接地端之间,所述第二定值电阻与第三定值电阻之间设置有第二输出端,所述比较器的两个电连接端分别与所述电源和接地端连接,所述第一输出端和第二输出端分别与所述比较器的两个信号输入端连接。
优选的,前述的唤醒电路,其中所述热敏电阻为负温度系数热敏电阻,所述负温度系数热敏电阻与所述第一定值电阻依次连接在电源与接地端之间,所述第三定值电阻与第二定值电阻依次连接在所述电源与接地端之间;
其中,所述第一输出端与所述比较器的正信号输入端连接,所述第二输出端与所述比较器的负信号输入端连接;或,所述第一输出端与所述比较器的负信号输入端连接,所述第二输出端与所述比较器的正信号输入端连接。
优选的,前述的唤醒电路,其中所述热敏电阻为负温度系数热敏电阻,所述第一定值电阻与所述负温度系数热敏电阻依次连接在电源与接地端之间,所述第二定值电阻与所述第三定值电阻依次连接在所述电源与接地端之间;
其中,所述第一输出端与所述比较器的负信号输入端连接,所述第二输出端与所述比较器的正信号输入端连接;或,所述第一输出端与所述比较器的正信号输入端连接,所述第二输出端与所述比较器的负信号输入端连接。
优选的,前述的唤醒电路,其中所述热敏电阻为正温度系数热敏电阻,所述正温度系数热敏电阻与所述第一定值电阻依次连接在电源与接地端之间,所述第三定值电阻与第二定 值电阻依次连接在所述电源与接地端之间;
其中,所述第一输出端与所述比较器的负信号输入端连接,所述第二输出端与所述比较器的正信号输入端连接;或,所述第一输出端与所述比较器的正信号输入端连接,所述第二输出端与所述比较器的负信号输入端连接。
优选的,前述的唤醒电路,其中所述热敏电阻为正温度系数热敏电阻,所述第一定值电阻与所述正温度系数热敏电阻依次连接在电源与接地端之间,所述第二定值电阻与第三定值电阻依次连接在所述电源与接地端之间;
其中,所述第一输出端与所述比较器的正信号输入端连接,所述第二输出端与所述比较器的负信号输入端连接;或,所述第一输出端与所述比较器的负信号输入端连接,所述第二输出端与所述比较器的正信号输入端连接。
本申请的目的及解决其技术问题还可以采用以下技术方案来实现的。依据本申请提出的一种电池管理系统,其包括:
管理模块,所述管理模块用于与电池连接;
唤醒电路;
所述唤醒电路包括:串联在电源和接地端之间的热敏电阻和第一定值电阻,所述热敏电阻与所述第一定值电阻之间设置有第一输出端,所述热敏电阻用于检测电池的温度,所述第一输出端用于与电池管理系统的管理模块连接,向所述管理模块传输电压信号;
其中,当所述热敏电阻检测到电池的温度高于预定值时,所述唤醒电路通过所述第一输出端向所述管理模块输出预定大小的电压信号作为唤醒信号;
所述唤醒电路的第一输出端与管理模块连接,向所述管理模块传输电压信号;
其中,当所述唤醒电路的第一输出端传输给管理模块的电压信号为预定大小时,所述管理模块被唤醒。
借由上述技术方案,本申请唤醒电路及电池管理系统至少具有下列优点:
本申请技术方案中,唤醒电路能够在电池温度高于预定值时发出唤醒信号,并将该唤醒信号发送给电池管理系统的管理模块。相比于现有技术中,当电动汽车在钥匙下电时,电池管理系统处于休眠状态,在此种状态时通常是通过GPRS远程定时唤醒或电池管理系统自身定时唤醒,唤醒后的电池管理系统再进行单体电压和温度的检测,但定时唤醒需要设置定时时长,当电池温度发生过高时,并不能第一时间发出报警,有可能在危险发生时,还没有到达定时时长,所以现有技术中的电池管理系统不能够有效的对停车状态的电池进行检测,无法起到保护电池安全以及保护电动汽车安全的目的。而本申请提供的唤醒电路,其能够在停车状态时对电池的温度进行监控,当电池的温度发生变化时,唤醒电路中的热敏电阻的阻值发生改变,连接在热敏电阻和第一定值电阻之间的第一输出端的电压随之变 化,当电池的温度高于预设的安全值时,连接在热敏电阻和第一定值电阻之间的第一输出端的电压能够唤醒管理模块,即可以将电池管理系统整体唤醒,使电池管理系统对电池进行全面的检测,如果电池的温度高于预设值,则电池管理系统能够向电动汽车的控制系统发出信号,进而启动电动汽车的自动灭火装置,也可以向用户的移动终端上发出警报信号,提示用户汽车电池处于温度过高状态。综上,如在电池管理系统中增设本申请提供的唤醒电路,则电池管理系统不仅能够在电动汽车上电运行时对电池进行检测,还可以在电动汽车钥匙下电时对电池的温度进行监测,保证了电池的使用安全,避免了电池过热引起电动汽车自燃情况的发生。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请的实施例提供的一种唤醒电路的结构示意图;
图2是本申请的实施例提供的另一种唤醒电路的结构示意图;
图3是本申请的实施例提供的另一种唤醒电路的结构示意图;
图4是本申请的实施例提供的另一种唤醒电路的结构示意图;
图5是本申请的实施例提供的另一种唤醒电路的结构示意图;
图6是本申请的实施例提供的另一种唤醒电路的结构示意图。
具体实施方式
为更进一步阐述本申请为达成预定申请目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本申请提出的唤醒电路及电池管理系统,其具体实施方式、方法、结构、特征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
实施例一
本申请的实施例一提出的一种唤醒电路,其包括串联在电源和接地端之间的热敏电阻和第一定值电阻,热敏电阻与第一定值电阻之间设置有第一输出端,热敏电阻用于检测电池的温度,第一输出端用于与电池管理系统的管理模块连接,向所述管理模块传输电压信号;其中,当热敏电阻检测到电池的温度高于预定值时,唤醒电路通过第一输出端向管理模块输出预定大小的电压信号作为唤醒信号。
具体的,唤醒电路中的热敏电阻需要设置在电池上,最好设置在电池最易发热的位置, 然后通过连接线材连接在唤醒电路中;唤醒电路可以是仅由热敏电阻和第一定值电阻组成的电路,第一定值电阻的阻值由设定的电池发热温度决定,第一输出端输送给管理模块的唤醒信号为电压信号,可以是模拟信号也可以是高、低电平信号;当电池的温度达到警报值时,热敏电阻在电池热量的作用下,发生对应的阻值变化,使第一输出端输出能够唤醒电池管理系统的预定大小的电压信号。唤醒电路可以直接使用电动汽车的电池作为电源,也可以是单独设置的电源,例如单独的一个非用于驱动电动汽车的电池。
本申请技术方案中,唤醒电路能够在电池温度高于预定值时发出唤醒信号,并将该唤醒信号发送给电池管理系统的管理模块。相比于现有技术中,当电动汽车在钥匙下电时,电池管理系统处于休眠状态,在此种状态时通常是通过GPRS远程定时唤醒或电池管理系统自身定时唤醒,唤醒后的电池管理系统再进行单体电压和温度的检测,但定时唤醒需要设置定时时长,当电池温度发生过高时,并不能第一时间发出报警,有可能在危险发生时,还没有到达定时时长,所以现有技术中的电池管理系统不能够有效的对停车状态的电池进行检测,无法起到保护电池安全以及保护电动汽车安全的目的。而本申请提供的唤醒电路,其能够在停车状态时对电池的温度进行监控,当电池的温度发生变化时,唤醒电路中的热敏电阻的阻值发生改变,连接在热敏电阻和第一定值电阻之间的第一输出端的电压随之变化,当电池的温度高于预设的安全值时,连接在热敏电阻和第一定值电阻之间的第一输出端的电压能够唤醒管理模块,即可以将电池管理系统整体唤醒,使电池管理系统对电池进行全面的检测,如果电池的温度高于预设值,则电池管理系统能够向电动汽车的控制系统发出信号,进而启动电动汽车的自动灭火装置,也可以向用户的移动终端上发出警报信号,提示用户汽车电池处于温度过高状态。综上,如在电池管理系统中增设本申请提供的唤醒电路,则电池管理系统不仅能够在电动汽车上电运行时对电池进行检测,还可以在电动汽车钥匙下电时对电池的温度进行监测,保证了电池的使用安全,避免了电池过热引起电动汽车自燃情况的发生。
在具体实施当中,其中热敏电阻可以为负温度系数热敏电阻(NTC)或者正温度系数热敏电阻,当热敏电阻为负温度系数热敏电阻时唤醒电路如图1所示,其中负温度系数热敏电阻R4一端与电源VBAT连接,负温度系数热敏电阻R4的另一端与第一定值电阻R3的一端连接,第一定值电阻R3的另一端接地;当热敏电阻为正温度系数热敏电阻时,唤醒电路如图2所示,其中第一定值电阻R3的一端与电源VBAT连接,第一定值电阻R3的另一端与正温度系数热敏电阻R5的一端连接,正温度系数热敏电阻R5的另一端接地。
具体的,当热敏电阻为负温度系数热敏电阻时,如图1可知第一输出端输出的信号是加载在第一定值电阻上的电压信号,当电池温度升高时,负温度系数热敏电阻的阻值降低,对应的加载在第一定值电阻上的电压升高,第一输出端输出的电压升高,这样可以将管理 模块的唤醒电压设置为预定值,例如5v,将唤醒管理模块时的电池温度也设定成预定值,例如50度,并根据负温度系数热敏电阻在温度变化时阻值的变化规律,将第一定值电阻的阻值设定为预定值,保证在电池温度上升到需要唤醒管理模块的温度时,加载在第一定值电阻上的电压为唤醒管理模块的电压,进而实现电池温度升高到预定值时唤醒电路唤醒管理模块的目的。同理,当热敏电阻为正温度系数热敏电阻时,也可以根据具体需要将第一定值电阻设置为所需要的大小。
在具体实施当中,为了能够准确的设定唤醒温度,使唤醒电路在设定的唤醒温度下唤醒管理模块,唤醒电路还可以包括:第二定值电阻、第三定值电阻以及比较器,第二定值电阻的阻值与第一定值电阻的阻值相等,第三定值电阻设定为预定阻值;其中,第二定值电阻与第三定值电阻串联在电源与接地端之间,第二定值电阻与第三定值电阻之间设置有第二输出端,比较器的两个电连接端分别与电源和接地端连接,第一输出端和第二输出端分别与比较器的两个信号输入端连接。
具体的,唤醒电路可以采用电压比较的方式利用比较器进行唤醒信号的输出,其中可以将第三定制电阻根据热敏电阻随温度的变化情况设置成设定值,使第三定制电阻的设定值大于或者等于热敏电阻在常温状态下的阻值,这样第一输出端和第二输出端在常温下输送给比较器的电压信号,经比较后能够输出一个高电平或者低电平,可以设定此时发出的高电平或者低电平为非唤醒信号;当电池温度升高到需要唤醒管理模块的温度时,第一输出端和第二输出端输送给比较器的电压信号,经比较后能够输出与非唤醒信号相反的低电平或者高电平,此时的低电平或者高电平作为唤醒管理模块的唤醒信号。
在具体实施当中,其中唤醒电路增加了第二定值电阻、第三定值电阻以及比较器之后,唤醒电路的连接方式可以如图3所示,当热敏电阻为负温度系数热敏电阻时,负温度系数热敏电阻R4与第一定值电阻R3依次连接在电源VBAT与接地端GND之间,第三定值电阻R2与第二定值电阻R1依次连接在电源VBAT与接地端GND之间;其中,第一输出端与比较器的正信号输入端连接,第二输出端与比较器的负信号输入端连接;或第一输出端与比较器的负信号输入端连接,第二输出端与比较器的正信号输入端连接。
具体的,第三定值电阻的阻值需要小于负温度系数热敏电阻在常温状态下的阻值,当采用第一输出端与比较器的正信号输入端连接,第二输出端与比较器的负信号输入端连接的连接方式后,在电池温度不超过需要唤醒管理模块的温度时,比较器输出的为低电平,此时低电平为非唤醒信号,在电池温度高于需要唤醒管理模块的温度时,比较器输出的为高电平,此时高电平为唤醒信号。此外,当采用第一输出端与比较器的负信号输入端连接,第二输出端与比较器的正信号输入端连接的连接方式时,比较器输出的高电平为非唤醒信号,比较器输出的低电平为唤醒信号。
进一步的,其中唤醒电路增加了第二定值电阻、第三定值电阻以及比较器之后,热敏电阻为负温度系数热敏电阻时,唤醒电路的连接方式还可以如图4所示,第一定值电阻R3与负温度系数热敏电阻R4依次连接在电源VBAT与接地端GND之间,第二定值电阻R1与第三定值电阻R2依次连接在电源VBAT与接地端GND之间;其中,第一输出端与比较器的负信号输入端连接,第二输出端与比较器的正信号输入端连接;或,第一输出端与比较器的正信号输入端连接,第二输出端与比较器的负信号输入端连接。
具体的,图4中所示唤醒电路的工作原理与图3中唤醒电路的工作原理相同,此处不再赘述。使用图4中所示唤醒电路,当采用第一输出端与比较器的负信号输入端连接,第二输出端与比较器的正信号输入端连接的连接方式时,比较器输出的高电平为唤醒信号;当采用第一输出端与比较器的正信号输入端连接,第二输出端与比较器的负信号输入端连接的连接方式时,比较器输出的低电平为唤醒信号。
在具体实施当中,其中唤醒电路增加了第二定值电阻、第三定值电阻以及比较器之后,当热敏电阻为正温度系数热敏电阻时,唤醒电路的连接方式可以如图5所示,热敏电阻为正温度系数热敏电阻R5,正温度系数热敏电阻R5与第一定值电阻R3依次连接在电源VBAT与接地端GND之间,第三定值电阻R2与第二定值电阻R1依次连接在电源VBAT与接地端GND之间;其中,第一输出端与比较器的负信号输入端连接,第二输出端与比较器的正信号输入端连接;或,第一输出端与比较器的正信号输入端连接,第二输出端与比较器的负信号输入端连接。
具体的,第三定值电阻的阻值需要大于正温度系数热敏电阻在常温状态下的阻值,当采用第一输出端与比较器的负信号输入端连接,第二输出端与比较器的正信号输入端连接的连接方式后,在电池温度不超过需要唤醒管理模块的温度时,比较器输出的为低电平,此时低电平为非唤醒信号,在电池温度高于需要唤醒管理模块的温度时,比较器输出的为高电平,此时高电平为唤醒信号。当采用第一输出端与比较器的正信号输入端连接,第二输出端与比较器的负信号输入端连接的连接方式时,比较器输出的高电平为非唤醒信号,比较器输出的低电平为唤醒信号。
进一步的,其中唤醒电路增加了第二定值电阻、第三定值电阻以及比较器之后,当热敏电阻为正温度系数热敏电阻时,唤醒电路的连接方式可以如图6所示,第一定值电阻R3与正温度系数热敏电阻R5依次连接在电源VBAT与接地端GND之间,第二定值电阻R1与第三定值电阻R2依次连接在电源VBAT与接地端GND之间;其中,第一输出端与比较器的正信号输入端连接,第二输出端与比较器的负信号输入端连接;或,第一输出端与比较器的负信号输入端连接,第二输出端与比较器的正信号输入端连接。
具体的,图6中所示唤醒电路的工作原理与图5中唤醒电路的工作原理相同,此处不 再赘述。使用图6中所示唤醒电路,当采用第一输出端与比较器的正信号输入端连接,第二输出端与比较器的负信号输入端连接的连接方式时,比较器输出的高电平为唤醒信号;当采用第一输出端与比较器的负信号输入端连接,第二输出端与比较器的正信号输入端连接的连接方式时,比较器输出的低电平为唤醒信号。
在具体实施当中,其中为了保护唤醒电路可以参考现有技术中保护电容的设置方式,在唤醒电路中设置保护电容。
实施例二
本申请的实施例二提出的一种电池管理系统,其包括:管理模块和唤醒电路;管理模块用于与电池连接;唤醒电路包括:串联在电源和接地端之间的热敏电阻和第一定值电阻,热敏电阻与第一定值电阻之间设置有第一输出端,热敏电阻用于检测电池的温度,第一输出端用于与电池管理系统的管理模块连接,向管理模块传输电压信号;其中,当热敏电阻检测到电池的温度高于预定值时,唤醒电路通过第一输出端向所述管理模块输出预定大小的电压信号作为唤醒信号;唤醒电路的第一输出端与管理模块连接,向管理模块传输电压信号;其中,当唤醒电路的第一输出端传输给管理模块的电压信号为预定大小时,管理模块被唤醒。
具体的,本实施例二中所述的唤醒电路可直接使用上述实施例一提供的唤醒电路,具体的实现结构可参见上述实施例一中描述的相关内容,此处不再赘述。管理模块可以具备现有技术中唤醒电路的全部功能,其结构的设置可以参考现有技术中的唤醒电路进行设定,此处不再赘述;管理模块的功能包括对电池的物理参数进行检测的功能,例如检测电池的容量、内阻以及单体电压等;管理模块的功能还包括对电池放电工作时的各个工作状态参数进行检测,例如检测电池工作时的放电电流、电压、温度、荷电状态、放电倍率以及放电深度等;管理模块的功能还包括管理电池的充电和放电,防止电池的过充和过放,以及将电池的运行状态传送给电动汽车的整车控制器等;管理模块需要与电池连接,以及与电动汽车的控制系统连接。
本申请技术方案中,唤醒电路能够在电池温度高于预定值时发出唤醒信号,并将该唤醒信号发送给电池管理系统的管理模块。相比于现有技术中,当电动汽车在钥匙下电时,电池管理系统处于休眠状态,在此种状态时通常是通过GPRS远程定时唤醒或电池管理系统自身定时唤醒,唤醒后的电池管理系统再进行单体电压和温度的检测,但定时唤醒需要设置定时时长,当电池温度发生过高时,并不能第一时间发出报警,有可能在危险发生时,还没有到达定时时长,所以现有技术中的电池管理系统不能够有效的对停车状态的电池进行检测,无法起到保护电池安全以及保护电动汽车安全的目的。而本申请提供的唤醒电路,其能够在停车状态时对电池的温度进行监控,当电池的温度发生变化时,唤醒电路中的热 敏电阻的阻值发生改变,连接在热敏电阻和第一定值电阻之间的第一输出端的电压随之变化,当电池的温度高于预设的安全值时,连接在热敏电阻和第一定值电阻之间的第一输出端的电压能够唤醒管理模块,即可以将电池管理系统整体唤醒,使电池管理系统对电池进行全面的检测,如果电池的温度高于预设值,则电池管理系统能够向电动汽车的控制系统发出信号,进而启动电动汽车的自动灭火装置,也可以向用户的移动终端上发出警报信号,提示用户汽车电池处于温度过高状态。综上,如在电池管理系统中增设本申请提供的唤醒电路,则电池管理系统不仅能够在电动汽车上电运行时对电池进行检测,还可以在电动汽车钥匙下电时对电池的温度进行监测,保证了电池的使用安全,避免了电池过热引起电动汽车自燃情况的发生。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (9)

  1. 一种唤醒电路,其特征在于,其包括:
    串联在电源和接地端之间的热敏电阻和第一定值电阻,所述热敏电阻与所述第一定值电阻之间设置有第一输出端,所述热敏电阻用于检测电池的温度,所述第一输出端用于与电池管理系统的管理模块连接,向所述管理模块传输电压信号;
    其中,当所述热敏电阻检测到电池的温度高于预定值时,所述唤醒电路通过所述第一输出端向所述管理模块输出预定大小的电压信号作为唤醒信号。
  2. 根据权利要求1中所述唤醒电路,其特征在于,
    所述热敏电阻为负温度系数热敏电阻,所述负温度系数热敏电阻一端与电源连接,所述负温度系数热敏电阻的另一端与所述第一定值电阻的一端连接,所述第一定值电阻的另一端接地。
  3. 根据权利要求1中所述唤醒电路,其特征在于,
    所述热敏电阻为正温度系数热敏电阻,所述第一定值电阻的一端与电源连接,所述第一定值电阻的另一端与所述正温度系数热敏电阻的一端连接,所述正温度系数热敏电阻的另一端接地。
  4. 根据权利要求1中所述唤醒电路,其特征在于,所述唤醒电路还包括:
    第二定值电阻、第三定值电阻以及比较器,所述第二定值电阻的阻值与所述第一定值电阻的阻值相等,所述第三定值电阻设定为预定阻值;
    其中,所述第二定值电阻与所述第三定值电阻串联在电源与接地端之间,所述第二定值电阻与第三定值电阻之间设置有第二输出端,所述比较器的两个电连接端分别与所述电源和接地端连接,所述第一输出端和第二输出端分别与所述比较器的两个信号输入端连接。
  5. 根据权利要求4中所述唤醒电路,其特征在于,
    所述热敏电阻为负温度系数热敏电阻,所述负温度系数热敏电阻与所述第一定值电阻依次连接在电源与接地端之间,所述第三定值电阻与第二定值电阻依次连接在所述电源与接地端之间;
    其中,所述第一输出端与所述比较器的正信号输入端连接,所述第二输出端与所述比较器的负信号输入端连接;或,所述第一输出端与所述比较器的负信号输入端连接,所述第二输出端与所述比较器的正信号输入端连接。
  6. 根据权利要求4中所述唤醒电路,其特征在于,
    所述热敏电阻为负温度系数热敏电阻,所述第一定值电阻与所述负温度系数热敏电阻依次连接在电源与接地端之间,所述第二定值电阻与所述第三定值电阻依次连接在所述电 源与接地端之间;
    其中,所述第一输出端与所述比较器的负信号输入端连接,所述第二输出端与所述比较器的正信号输入端连接;或,所述第一输出端与所述比较器的正信号输入端连接,所述第二输出端与所述比较器的负信号输入端连接。
  7. 根据权利要求4中所述唤醒电路,其特征在于,
    所述热敏电阻为正温度系数热敏电阻,所述正温度系数热敏电阻与所述第一定值电阻依次连接在电源与接地端之间,所述第三定值电阻与第二定值电阻依次连接在所述电源与接地端之间;
    其中,所述第一输出端与所述比较器的负信号输入端连接,所述第二输出端与所述比较器的正信号输入端连接;或,所述第一输出端与所述比较器的正信号输入端连接,所述第二输出端与所述比较器的负信号输入端连接。
  8. 根据权利要求4中所述唤醒电路,其特征在于,
    所述热敏电阻为正温度系数热敏电阻,所述第一定值电阻与所述正温度系数热敏电阻依次连接在电源与接地端之间,所述第二定值电阻与第三定值电阻依次连接在所述电源与接地端之间;
    其中,所述第一输出端与所述比较器的正信号输入端连接,所述第二输出端与所述比较器的负信号输入端连接;或,所述第一输出端与所述比较器的负信号输入端连接,所述第二输出端与所述比较器的正信号输入端连接。
  9. 一种电池管理系统,其特征在于,其包括:
    管理模块,所述管理模块用于与电池连接;
    上述权利要求1-8中任一所述唤醒电路,所述唤醒电路的第一输出端与管理模块连接,向所述管理模块传输电压信号;
    其中,当所述唤醒电路的第一输出端传输给管理模块的电压信号为预定大小时,所述管理模块被唤醒。
PCT/CN2018/114385 2017-11-20 2018-11-07 唤醒电路及电池管理系统 WO2019096049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711156881.6 2017-11-20
CN201711156881.6A CN107968232A (zh) 2017-11-20 2017-11-20 唤醒电路及电池管理系统

Publications (1)

Publication Number Publication Date
WO2019096049A1 true WO2019096049A1 (zh) 2019-05-23

Family

ID=62001286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114385 WO2019096049A1 (zh) 2017-11-20 2018-11-07 唤醒电路及电池管理系统

Country Status (2)

Country Link
CN (1) CN107968232A (zh)
WO (1) WO2019096049A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161635A (zh) * 2021-04-26 2021-07-23 东方醒狮储能电池有限公司 一种基于射频感应的锂动力电池组热监测管理系统
CN114384843A (zh) * 2021-12-31 2022-04-22 厦门芯阳科技股份有限公司 一种带有唤醒和检测功能的电路及控制方法、电子设备
DE102021100768A1 (de) 2021-01-15 2022-07-21 Audi Aktiengesellschaft Messschaltung für ein Batteriemodul, Batteriemodul und Verfahren zum Überwachen eines Batteriemoduls
EP4099474A4 (en) * 2020-11-03 2024-01-10 LG Energy Solution, Ltd. BATTERY RACK MANAGEMENT DEVICE

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968232A (zh) * 2017-11-20 2018-04-27 北京长城华冠汽车科技股份有限公司 唤醒电路及电池管理系统
CN111044912B (zh) * 2018-10-12 2021-10-01 宁德时代新能源科技股份有限公司 休眠监测系统和方法
CN109980718A (zh) * 2019-03-01 2019-07-05 安徽力高新能源技术有限公司 一种待机低损耗的电池管理系统
CN109955737B (zh) * 2019-04-28 2021-10-12 广州小鹏汽车科技有限公司 动力电池温度控制装置、方法及电动汽车
CN110967635A (zh) * 2019-05-17 2020-04-07 宁德时代新能源科技股份有限公司 温度检测电路和检测方法、电池管理系统
CN110967634A (zh) * 2019-05-17 2020-04-07 宁德时代新能源科技股份有限公司 温度检测电路和检测方法、电池管理系统
CN113696779A (zh) * 2020-05-22 2021-11-26 惠州比亚迪电池有限公司 电池包监控方法、系统、汽车及计算机设备
CN111907329B (zh) * 2020-06-29 2022-04-29 东风汽车集团有限公司 可进行动力电池全时段热失控预警的监测系统及监测方法
CN111959345A (zh) * 2020-07-23 2020-11-20 蜂巢能源科技有限公司 电池状态监测电路、方法、装置、系统及车辆
CN113147478B (zh) * 2021-04-26 2024-04-16 东方醒狮储能电池有限公司 一种基于射频感应的电动汽车供电管理系统
CN113448638B (zh) * 2021-07-12 2023-07-28 度普(苏州)新能源科技有限公司 一种唤醒源识别方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373893A (zh) * 2007-08-24 2009-02-25 鹏智科技(深圳)有限公司 电池过温保护电路
CN203672513U (zh) * 2013-08-28 2014-06-25 东莞赛微微电子有限公司 一种温度检测电路及电子设备
CN104362595A (zh) * 2014-11-10 2015-02-18 深圳市卓能新能源科技有限公司 电池组过温保护供电电路
CN104634472A (zh) * 2013-11-07 2015-05-20 中兴通讯股份有限公司 终端电池温度检测装置,终端与过温保护方法
CN205610288U (zh) * 2016-05-11 2016-09-28 江苏博强新能源科技有限公司 具有硬件二级保护的电池管理装置
CN206339636U (zh) * 2016-11-25 2017-07-18 深圳市诚业通信技术有限公司 用于idc的不间断电源检测系统
CN107968232A (zh) * 2017-11-20 2018-04-27 北京长城华冠汽车科技股份有限公司 唤醒电路及电池管理系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373893A (zh) * 2007-08-24 2009-02-25 鹏智科技(深圳)有限公司 电池过温保护电路
CN203672513U (zh) * 2013-08-28 2014-06-25 东莞赛微微电子有限公司 一种温度检测电路及电子设备
CN104634472A (zh) * 2013-11-07 2015-05-20 中兴通讯股份有限公司 终端电池温度检测装置,终端与过温保护方法
CN104362595A (zh) * 2014-11-10 2015-02-18 深圳市卓能新能源科技有限公司 电池组过温保护供电电路
CN205610288U (zh) * 2016-05-11 2016-09-28 江苏博强新能源科技有限公司 具有硬件二级保护的电池管理装置
CN206339636U (zh) * 2016-11-25 2017-07-18 深圳市诚业通信技术有限公司 用于idc的不间断电源检测系统
CN107968232A (zh) * 2017-11-20 2018-04-27 北京长城华冠汽车科技股份有限公司 唤醒电路及电池管理系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4099474A4 (en) * 2020-11-03 2024-01-10 LG Energy Solution, Ltd. BATTERY RACK MANAGEMENT DEVICE
DE102021100768A1 (de) 2021-01-15 2022-07-21 Audi Aktiengesellschaft Messschaltung für ein Batteriemodul, Batteriemodul und Verfahren zum Überwachen eines Batteriemoduls
CN113161635A (zh) * 2021-04-26 2021-07-23 东方醒狮储能电池有限公司 一种基于射频感应的锂动力电池组热监测管理系统
CN113161635B (zh) * 2021-04-26 2024-02-06 东方醒狮储能电池有限公司 一种基于射频感应的锂动力电池组热监测管理系统
CN114384843A (zh) * 2021-12-31 2022-04-22 厦门芯阳科技股份有限公司 一种带有唤醒和检测功能的电路及控制方法、电子设备
CN114384843B (zh) * 2021-12-31 2024-03-29 厦门芯阳科技股份有限公司 一种带有唤醒和检测功能的电路及电子设备

Also Published As

Publication number Publication date
CN107968232A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
WO2019096049A1 (zh) 唤醒电路及电池管理系统
JP2016514443A (ja) 充電方法
US9573476B2 (en) Method and apparatus for controller wakeup using control pilot signal from charge port
WO2020043128A1 (zh) 确定电池的充电状态的方法、装置、芯片、电池及飞行器
CN111319466B (zh) 蓄电池补电方法、装置及系统
KR20180092091A (ko) 전기 자동차의 충전을 위한 충전 제어 장치
CN209373380U (zh) 电动汽车安全监控系统
CN208232982U (zh) 一种蓄电池电量的监测装置及汽车
CN208596954U (zh) 一种汽车启动电源电路
CN113147503B (zh) 一种电动车辆电源管理方法
KR102617933B1 (ko) 지능형 제어 시스템, 비상 시동 전원 및 지능형 배터리 클램프
CN111002784B (zh) 一种电量智能控制方法、计算机可读存储介质及空调
CN108666713B (zh) 用于双车加热的电池组加热装置与控制方法
CN113043914B (zh) 电池加热方法、装置及电动汽车
CN104052092A (zh) 车载动力电池的充电系统及其车载动力电池的充电方法
WO2021143743A1 (zh) 混动车辆的电池包的保护方法和装置
CN111823866A (zh) 一种电动汽车高压动力蓄电池巡检控制方法及装置
CN114211961A (zh) 动力电池包热失控防护方法及防护系统
CN105048010B (zh) 一种电动汽车电池包的监控方法及系统
CN115214502A (zh) 一种基于网关的车辆亏电检测及处理方法、装置及系统
CN113696779A (zh) 电池包监控方法、系统、汽车及计算机设备
CN209409961U (zh) 一种点火唤醒检测电路及车载设备
CN116278752A (zh) 热失控检查方法、装置、唤醒电路及非易失性存储介质
CN214374209U (zh) 一种热失控预警传感器
CN206313507U (zh) 汽车应急启动电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878051

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18878051

Country of ref document: EP

Kind code of ref document: A1