WO2019095693A1 - 结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机 - Google Patents

结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机 Download PDF

Info

Publication number
WO2019095693A1
WO2019095693A1 PCT/CN2018/092429 CN2018092429W WO2019095693A1 WO 2019095693 A1 WO2019095693 A1 WO 2019095693A1 CN 2018092429 W CN2018092429 W CN 2018092429W WO 2019095693 A1 WO2019095693 A1 WO 2019095693A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference plane
model
volume
plane
vertical projection
Prior art date
Application number
PCT/CN2018/092429
Other languages
English (en)
French (fr)
Inventor
陈伟
向东清
Original Assignee
珠海赛纳打印科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳打印科技股份有限公司 filed Critical 珠海赛纳打印科技股份有限公司
Priority to JP2020524282A priority Critical patent/JP6928175B2/ja
Priority to EP18879863.1A priority patent/EP3711951A4/en
Publication of WO2019095693A1 publication Critical patent/WO2019095693A1/zh
Priority to US15/931,424 priority patent/US11674836B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads

Definitions

  • the present application relates to the field of 3D printing technologies, and in particular, to a method and device for acquiring a structure volume, a non-transitory computer readable storage medium, and a printer.
  • 3DP 3D Printing
  • AM additive Manufacturing
  • RP Rapid Prototyping
  • FDM Frequency Division Multiple Access
  • SLA Stereo Lithography Apparatus
  • SLS Selective Laser Sintering, selective laser sintering technology
  • DLP Digital Light Processing
  • LOM Laminated Object Manufacturing
  • the supporting structure needs to be provided for the suspended portion in the modeling stage before the layering, and the suspended portion is related to the placement posture of the model, and different placement postures may form different floating portions, and then Different support structures are formed.
  • the support structure needs to be made of a supporting material. Under different placement postures of the model, the volumes of different supporting structures are different from each other, and the amount of supporting materials is also different from each other. Due to the variability of the placement posture of the model, the amount of the specific support material of the model cannot be determined under the uncertainty of the support structure volume.
  • the 3D printing service involves the quotation of the printed model, and the supporting structure is included as part of the printing process, and the amount of supporting material is also included in the quotation, so when the amount of the supporting material is uncertain, it cannot be determined.
  • the quotation of the printed model therefore, the volume of the support structure is a problem that needs to be solved urgently.
  • the embodiments of the present application provide a method and a device for acquiring a structure volume, a non-transitory computer readable storage medium, and a printer for realizing the volume of the support structure.
  • an embodiment of the present application provides a method for acquiring a structure volume, including:
  • the volume of the support structure of the model is obtained.
  • At least one vertical projected area including:
  • the vertical projected area of the model above each datum is obtained on the datum to obtain at least one vertical projected area.
  • At least one vertical projected area including:
  • the target reference plane is the topmost reference plane of the at least one reference plane, obtain the area of the first vertical projection as the vertical projection area;
  • the target reference plane is not the topmost reference plane of the at least one reference plane, obtain an area of the first vertical projection as a vertical projected area corresponding to each reference plane below the target reference plane, and acquire separately a vertical projected area corresponding to each of the reference planes above the target reference plane.
  • any possible implementation manner further provide an implementation manner of acquiring a target reference plane in a reference plane other than the bottommost reference plane, including:
  • any possible implementation manner further provide an implementation manner of acquiring a target reference plane in a reference plane other than the bottommost reference plane, including:
  • acquiring the area of the vertical projection comprises:
  • the area of the vertical projection is obtained based on the product of the specified area and the number.
  • the total volume is obtained from the sum of the at least one sub-volumes.
  • the aspect as described above and any possible implementations further provide an implementation for obtaining a volume of the support structure of the model based on the total volume and the volume of the model, including: according to the total volume The difference between the volumes of the model gives the volume of the support structure of the model.
  • evaluation data for printing the model is obtained.
  • the evaluation data for printing the model is obtained based on the amount of the first material, the amount of the second material, and the amount of the waste.
  • the amount of waste is determined according to a ratio between the estimated layer height and the predetermined layer height.
  • any of the possible implementations further provide an implementation, before the volume of the support structure of the model is obtained based on the total volume and the volume of the model, the method further comprising:
  • any possible implementation manner further provide an implementation manner of acquiring the volume of the model, including:
  • the volume of the model is obtained.
  • a vertical projection of the model on the reference surface is obtained by setting a reference plane, thereby calculating a total volume based on the area of the vertical projection, the total volume corresponding to the volume including the model.
  • the volume of the supporting structure and then according to the volume of the given model, the volume of the supporting structure can be obtained, and the volume calculation of the supporting structure of the model in the current attitude is realized.
  • the embodiment of the present application provides a device for acquiring a structure volume, including:
  • a reference plane determining module configured to determine at least one reference plane in a direction parallel to the designated plane for a model placed on a specified plane
  • An area obtaining module configured to acquire, for the at least one reference plane, a vertical projected area of the model above the reference plane on the reference plane to obtain at least one vertical projected area
  • a volume calculation module for obtaining a total volume based on the at least one vertical projected area; and, based on the total volume and the volume of the model, obtaining a volume of the support structure of the model.
  • an embodiment of the present application provides a non-transitory computer readable storage medium, including: the non-transitory computer readable storage medium storing computer instructions, wherein the computer instructions are used to cause the computer to execute the following process :
  • the volume of the support structure of the model is obtained.
  • an embodiment of the present application provides a printer, including:
  • a memory for storing one or more sets of program code
  • a processor coupled to the memory for calling program code stored in the memory to perform the following process:
  • the volume of the support structure of the model is obtained.
  • a vertical projection of the model on the reference surface is obtained by setting a reference plane, thereby calculating a total volume based on the area of the vertical projection, the total volume corresponding to the volume including the model.
  • the volume of the supporting structure and then according to the volume of the given model, the volume of the supporting structure can be obtained, and the volume calculation of the supporting structure of the model in the current attitude is realized.
  • FIG. 1 is a schematic flow chart of a method for acquiring a structure volume according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a model provided by an embodiment of the present application.
  • Figure 3 is a schematic view of the support structure required for printing in the model placement mode shown in Figure 2;
  • Figure 4 is a schematic view of the reference planes P 1 , P 2 ... P n of the model shown in Figure 2;
  • Figure 5 is a schematic view showing the structure of the model shown in Figure 2 when it is placed on the side;
  • Figure 6 is a schematic view of the support structure required for printing in the model placement mode shown in Figure 5;
  • Figure 7 is a schematic view of the reference planes P 1 , P 2 ... P n of the model shown in Figure 5;
  • FIG. 8 is a schematic flow chart of an implementation manner of obtaining a vertical projected area in an embodiment of the present application.
  • Figure 9 is a schematic view showing the first vertical projection when the model placement mode shown in Figure 5 is placed on a designated plane;
  • Figure 10 is a schematic view showing an equally divided reference plane P m between the bottommost reference plane P 1 and the topmost reference plane P n ;
  • 11 is a schematic plane equally divided between the top plane P m P n P k most aliquot reference plane;
  • Figure 12 is a schematic view showing the manner in which the model placement mode shown in Figure 5 is different in the lower portion of the target reference plane;
  • Figure 13 is a first vertical projected area view of the model placement mode shown in Figure 2;
  • FIG. 14 is a functional block diagram of an apparatus for acquiring a structure volume according to an embodiment of the present application.
  • 15 is a functional block diagram of a printer provided by an embodiment of the present application.
  • FIG. 16 is a schematic flow chart of another method for acquiring a structure volume according to an embodiment of the present application.
  • first, second, third, etc. may be used to describe the amount of material in the embodiments of the present application, the amounts of these materials should not be limited to these terms. These terms are only used to distinguish the amounts of materials from each other.
  • the amount of the first material may also be referred to as the second amount of material without departing from the scope of the embodiments of the present application.
  • the amount of the second material may also be referred to as the amount of the first material.
  • the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • FIG. 1 it is a schematic flowchart of a method for acquiring a structure volume according to an embodiment of the present application, which includes the following steps:
  • S101 Determine, for a model placed on a specified plane, at least one reference plane in a direction parallel to the designated plane.
  • the 3D printing process mainly includes the following three steps:
  • the target object when the target object is modeled in step a, the target object is first converted into a data structure.
  • the information of the target object can be obtained by scanning.
  • the information of the target object is format converted, so that the converted data can be recognized by the layered slice technology, and these formats may include, but are not limited to, an STL format, a PLY format, or a WRL format.
  • the information of the target object may be in units of layers.
  • model and the support structure are sliced and layered by the layered slicing technique to obtain a layer image, and each layer image is parsed to obtain layer data of each layer.
  • the specified plane involved in the embodiment of the present application may be a plane actually existing or a plane indicated by the space coordinate system.
  • the plane where the bottom is located when the model is placed in the current placement manner may be set as the designated plane, or, for example, any plane (X-Y plane, Y-Z plane, or X-Z plane) in the space coordinate system X-Y-Z may be used as the designated plane.
  • the bottom plane is set to the specified plane when the model is placed in the current placement mode
  • the side on which the model is placed on the specified plane is referred to as the top of the specified plane
  • the specified plane is also the bottommost
  • the reference plane is one of at least one reference plane.
  • the determined at least one reference plane is located above the designated plane (the bottommost reference plane) and placed on the same side of the model.
  • the vertical projection area involved in the embodiment of the present application refers to a vertical projection of the model above the reference plane on the reference plane by using the corresponding reference plane as a projection surface. Above the face is the side of the datum away from the specified plane (the bottom datum).
  • the projected outline of the model may be different on different datums, so the model projection of a datum can be considered as a print layer.
  • the number of layers printed by a model determines the printing accuracy of the model. For models of the same shape, the more the number of datums, the higher the printing accuracy.
  • FIG. 2 is a schematic structural diagram of a model provided by an embodiment of the present application.
  • the structure of the model can be regarded as a structure composed of two truncated cone-shaped objects, wherein a circular plane with a smaller area of an upright truncated cone object and a circular plane with a smaller area of an inverted truncated cone-shaped object contact.
  • FIG. 3 is a schematic diagram of a support structure required for printing in the model placement mode shown in FIG. 2.
  • the model shown in Fig. 2 is placed on the plane in which X-Y is located.
  • the black portion in Fig. 3 indicates the support structure required in the current placement mode.
  • FIG. 4 is a schematic diagram of the reference planes P 1 , P 2 . . . P n of the model shown in FIG. 2 .
  • the reference planes P 1 , P 2 , ... P n are all parallel to the plane of XY, where P 1 serves as the bottommost reference plane and P n serves as the topmost reference plane of the model.
  • the distance between two adjacent reference faces is expressed as h.
  • the distance (h) between every two adjacent reference faces is equal or unequal in the direction perpendicular to the specified plane.
  • any one of the following cases may be included: the distance between any two adjacent reference planes is equal; or the distance between any two adjacent reference planes is unequal; or, the adjacent adjacent reference planes The distances between the two are equal and the distance between some of the reference planes is not equal.
  • the distances between the adjacent reference planes may be arranged in an ascending order, in descending order or according to other preset rules.
  • the arrangement and the like are not particularly limited in the embodiment of the present application.
  • the vertical projection of each reference plane can be used as a printing layer, and the number of printing layers determines the printing precision of the model. That is, the magnitude of h is related to the accuracy and speed of the model.
  • the vertical projected area of the model above each datum is obtained on the datum to obtain at least one vertical projected area.
  • n vertical projection areas which can be expressed as S 1 , S 2 , . . . , S n , where S 1 is located at the reference plane.
  • S 1 above the portion of the model in the area of the vertical projection on the reference plane P, S 2 is part of the model is located above the reference plane P 2 in the area of the vertical projection plane 2 P, S n P n is located above the reference plane.
  • the vertical projected area of the partial model on the reference plane P n is located above the reference plane.
  • the resulting vertical projected areas S 1 , S 2 , . . . S n may be the same or different depending on the model structure.
  • the embodiment of the present application may be used to obtain the volume of the support structure and the amount of material used, and under certain conditions, the required volume of the support structure may not need to be made to the same height as the entire model.
  • FIG. 5 is a structural schematic diagram of the model shown in FIG. 2 when it is placed in a side touch manner
  • FIG. 6 is required when printing in the model placement manner shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of the reference planes P 1 , P 2 . . . P n of the model shown in FIG. 5 .
  • the reference planes P 1 , P 2 , ... P n are all parallel to the plane of XY, where P 1 serves as the bottommost reference plane and P n serves as the topmost reference plane of the model.
  • the distance between two adjacent reference faces is denoted by h.
  • the embodiment of the present application further provides a second manner of acquiring at least one vertical projected area.
  • FIG. 8 is a schematic flowchart of an implementation manner of obtaining a vertical projected area according to an embodiment of the present application, including the following steps:
  • S1021 Acquire a vertical projection of the model above the reference plane on the reference plane as a first vertical projection based on a bottommost reference plane of the at least one reference plane.
  • S1022 Acquire a target reference plane on a reference plane other than the bottommost reference plane, and the target reference plane is a reference plane in which the corresponding vertical projection coincides with the first vertical projection.
  • the target datum may be any datum other than the bottom datum.
  • S1023a and S1023b there are two possible cases of S1023a and S1023b.
  • the area of the first vertical projection is obtained as the vertical projection area.
  • S1023a and S1023b are two steps implemented in parallel, with an "or" relationship between them, after executing S1022, executing S1023a or executing S1023b, and executing S1023a or S1023b. After that, S1024 is executed.
  • the embodiment of the present application further provides the following implementation manners when the step of acquiring the target reference plane is performed in S1022:
  • Implementation A starting from the topmost reference plane of the at least one reference plane, sequentially obtaining and judging whether the vertical projection of the model on the reference plane coincides with the first vertical projection according to the direction from the top to the bottom, until obtaining The reference plane to which the vertical projection coincides with the first vertical projection is used as the target reference plane.
  • the first reference plane P1 of the vertical projection of the bottommost be printed, then, according to P n, P n-1, P n-2 ?? P 2 is the sequence of the reference plane, the reference plane of each projection Comparing with the first vertical projection one by one until the vertical projection coincident with the first vertical projection is acquired in the reference planes P n , P n-1 , P n-2 , . . . , P 2 As the target datum.
  • the target reference plane may be any one of P n , P n-1 , P n-2 . . . , P 2 .
  • Embodiment B if the vertical projection of the topmost reference plane of the at least one reference plane does not coincide with the first vertical projection, determine an halved reference plane in the topmost reference plane and the bottommost reference plane, and then, Determining whether the vertical projection on the aliquot plane coincides with the first vertical projection, and thus, if (the vertical projection on the aliquot plane coincides with the first vertical projection), at the bisector plane and the topmost Determine another bisecting reference plane between the reference planes, and determine whether the vertical projection on the other bisecting reference plane coincides with the vertical projection on the bisecting reference plane, and so on, until the first vertical is obtained The reference plane on which the vertical projections of the projection coincide; or, if no (the vertical projection on the aliquot plane does not coincide with the first vertical projection), determine between the halved reference plane and the bottommost reference plane Another halving reference plane, and determining whether the vertical projection on the other halved reference plane coincides with the first vertical projection, and so on, until the
  • FIG. 9 is a schematic diagram of a first vertical projection when placed on a designated plane in the manner of the model placement shown in FIG. 5 .
  • the first vertical projection shown in Fig. 9 is a hexagon on the XY plane, and the hexagon is cut away from the central axis of its X-axis direction (dashed line in Fig. 9), and the hexagon can be used as two A combination of trapezoids, and the two trapezoidal uppers are in contact.
  • FIG. 10 is a schematic diagram of the equally divided reference plane P m between the bottommost reference plane P 1 and the topmost reference plane P n . 10, extending in the Y-axis direction, the reference plane P m aliquot of the bottommost plane and the reference plane P 1 P n topmost aliquots.
  • FIG. 11 is a schematic diagram of the equally divided reference plane P k between the equal reference plane P m and the topmost reference plane P n .
  • the reference plane P k aliquot aliquot datum plane P m and P n topmost aliquots.
  • the reference plane is the target reference plane.
  • the target reference plane is determined by S1022
  • the vertical projection between the target datum plane and the bottommost datum plane may be equated with the first vertical projection, and the volume corresponding to the partial vertical projection includes the volume of the first portion of the model to be printed and the volume of the support material;
  • the volume of the portion is the volume of the second portion of the model, and the volume of the first portion is common to the volume of the second portion. The volume that makes up the model.
  • the interval h1 between the reference planes above the target reference plane and the interval h2 between the reference planes below the target reference plane may be different.
  • FIG. 12 is a schematic diagram showing the manner in which the model placement mode shown in FIG. 5 is different in the lower portion of the target reference plane.
  • the target plane model P j upward segment of the target plane P j r 12 R portion below the portion of the target plane P j.
  • the projection profiles of the model on the reference plane corresponding to the r portion are different from each other, and in the R portion, the projection contour of the model on the reference plane corresponding to the r portion is equal to the first vertical projected area. Therefore, the interval between the reference faces in the r portion is smaller than the interval between the reference faces in the R portion, that is, h1 ⁇ h2.
  • the contours of the vertical projections on the respective reference faces are different, and h1 is set to a relatively small value, and the corresponding r-part object will have relatively high precision.
  • the spacing distance can be set to a relatively large value corresponding to the printed R portion object.
  • the formation has a relatively high efficiency, such that the processing is the same, that is, the printing contours between the respective printing layers are the same, and the influence on the printing accuracy can be neglected or even negligible.
  • the target reference plane is the top reference plane P n
  • the first vertical projection of the bottommost reference plane P 1 coincides with the vertical projection of the topmost reference plane P n
  • the target reference plane is not the topmost reference plane P n , and if the target reference plane is P j and k is an integer greater than 1 and less than n, then the target reference plane P j can be the most
  • the vertical projection area on the reference plane needs to be acquired in S1024.
  • the embodiment of the present application also provides an implementation manner of acquiring the vertical projection area as follows:
  • the area of the vertical projection is obtained.
  • FIG. 13 is a schematic diagram of a first vertical projected area when the model is placed in the mode shown in FIG. 2 .
  • the bottommost reference plane P 1 is divided into A square of the same size and area a
  • At least one sub-volume is obtained based on the at least one vertical projected area and the distance between each two reference planes; then, the total volume is obtained from the sum of the at least one sub-volumes.
  • V 1 S 1 ⁇ j ⁇ h1
  • the total volume obtained by the above steps includes: the volume of the model and the volume of the support structure of the model.
  • the method for acquiring the structure volume provided by the embodiment of the present application can also be used to obtain evaluation data of the print model.
  • the evaluation data of the printed model includes: the amount of the first material used in the support structure and the amount of the second material required to print the model.
  • the method can also include the following steps:
  • the evaluation data of the printed model is obtained based on the amount of the first material and the amount of the second material.
  • each print layer can be leveled using a leveling device such that the height of the actual print layer is equal to the set layer height and on the other hand the entire print layer is smoothed.
  • the evaluation data of the print model may include: the first material amount of the support structure, and the second material amount required for printing the model. With the amount of waste.
  • the method can also include the following steps:
  • the evaluation data of the printed model is obtained based on the amount of the first material, the amount of the second material, and the amount of the waste.
  • the materials of the first material and the second material are not particularly limited, and the two materials may be two different materials, or may be the same material.
  • the second implementation manner described above relates to the amount of waste used in determining the printing model.
  • the following determination method is given in the embodiment of the present application:
  • the amount of waste is determined based on the ratio between the estimated floor height and the preset floor height.
  • the printing consumables involved in the embodiments of the present application may include, but are not limited to, ink.
  • the physical parameters thereof may include at least one of the size of the ink droplets and the state of the ink droplets.
  • the size of the ink droplets can be characterized by, but not limited to, the diameter of the ink droplets
  • the state of the ink droplets can be characterized by, but not limited to, the viscosity of the ink droplets, the temperature at which it is placed, and the like.
  • the method for estimating the layer height may include the steps of: at a different temperature or viscosity, actually printing a test model having a print layer height of n without leveling, and measuring the minimum height h of the model ( Since the surface is not smooth, the surface of the layer is not smooth, and it has unevenness, so it has different heights.
  • the estimated layer height is h/n.
  • the method of estimating the layer height may be: determining the size (diameter) of the ink droplets according to the print head and the printed material parameters, and superimposing a print layer in a direction perpendicular to the printing plane.
  • the number of ink droplets, and further, the estimated layer height is obtained based on the product of the droplet diameter and the number of ink droplets.
  • the amount of waste removed during the leveling process can be determined based on the estimated layer height and the ratio of the set layer height.
  • the amount of waste is also included in the total amount of materials for processing, which can make the evaluation data more perfect.
  • the order of execution of the steps S1031 and S103 is not particularly limited, and may be performed at the same time, or may be sequentially performed as shown in FIG. 16, or S1031 may be executed first, and then S103 is executed. .
  • the volume of the model is known data
  • the known data can be directly retrieved without repeated acquisition.
  • the S1031 step can be performed as follows:
  • the volume of the model is obtained.
  • the contour area represents the area of the contour formed by the intersection of the reference plane and the outer surface of the model, and the calculation method of the contour area is similar to the calculation method of the vertical projection area, and details are not described herein again.
  • the model volume can be obtained, and the calculation method of the model volume is similar to the calculation method of the total volume, and will not be described again.
  • the difference between the total volume and the model volume is obtained, and the support structure volume can be obtained. Moreover, the more the number of datums obtained, the more accurate the calculated model volume.
  • the embodiment of the present invention obtains the contour area by acquiring the contour of each reference plane intersecting the model, thereby automatically calculating the model volume when the model volume is unknown, and realizing the volume of the support structure of the model in the current posture. Calculation. Based on this, the workload of manually acquiring the model volume can be reduced to a certain extent, and the operation steps are simplified.
  • the embodiment of the present application further provides a non-transitory computer readable storage medium, where the non-transitory computer readable storage medium stores computer instructions, and the computer instructions are used to make a computer. Perform the following process:
  • the volume of the support structure of the model is obtained.
  • a vertical projection of the model on the reference surface is obtained by setting a reference plane, thereby calculating a total volume based on the area of the vertical projection, the total volume corresponding to the volume including the model.
  • the volume of the supporting structure and then according to the volume of the given model, the volume of the supporting structure can be obtained, and the volume calculation of the supporting structure of the model in the current attitude is realized.
  • the embodiment of the present application further provides an apparatus embodiment for implementing the steps and methods in the foregoing method embodiments.
  • FIG. 14 is a functional block diagram of a device for acquiring a structure volume according to an embodiment of the present application.
  • the device 1400 includes:
  • a reference plane determining module 141 configured to determine at least one reference plane in a direction parallel to the designated plane for the model placed on the designated plane;
  • An area obtaining module 142 configured to acquire, for at least one reference plane, a vertical projected area of the model above each reference plane on the reference plane to obtain at least one vertical projected area;
  • a volume calculation module 143 is configured to obtain a total volume based on at least one vertical projected area; and, based on the total volume and the volume of the model, obtain a volume of the support structure of the model.
  • FIG. 15 is a functional block diagram of a printer according to an embodiment of the present application.
  • the printer 1500 includes:
  • a memory 151 configured to store one or more sets of program codes
  • the processor 152 is coupled to the memory 151 for calling program code stored in the memory 151 to perform the following process:
  • the volume of the support structure of the model is obtained.
  • the memory 151 involved in the embodiment of the present application may include, but is not limited to, a random access memory (RAM), a flash memory, a read-only memory (ROM), and an erasable programmable read only memory ( Erasable Programmable Read Only Memory (EPROM) memory, hard disk, or any other form of storage medium known in the art.
  • RAM random access memory
  • ROM read-only memory
  • EPROM Erasable Programmable Read Only Memory
  • the memory 151 may be integrated with the processor 152, set in such a manner that the memory 151 is a component of the processor 152, or both the memory 151 and the processor 152 are disposed in an application specific integrated circuit (Application) Specific Integrated Circuit (ASIC).
  • ASIC Application Specific integrated circuit
  • the processor 152 involved in the embodiment of the present application may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or a field programmable gate array (Field) capable of implementing specific functions.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • Field field programmable gate array
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • it can also be implemented by a combination of computing devices, such as a combination of a DSP and a microprocessor, a combination of multiple microprocessors, a combination of one or more microprocessors in conjunction with DSP communications, and the like.
  • a vertical projection of the model on the reference surface is obtained by setting a reference plane, thereby calculating a total volume based on the area of the vertical projection, the total volume corresponding to the volume including the model.
  • the volume of the supporting structure and then according to the volume of the given model, the volume of the supporting structure can be obtained, and the volume calculation of the supporting structure of the model in the current attitude is realized.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present application. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fluid Mechanics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)

Abstract

一种结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机。该方法通过针对在指定平面上放置的模型,在平行于所述指定平面的方向上确定至少一个基准面(S101),然后,针对至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积(S102),从而,基于所述至少一个垂直投影面积,得到总体积(S103),进而,基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积(S104)。

Description

结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机
本申请要求于2017年11月15日提交中国专利局、申请号为201711126951.3、申请名称为“结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及3D打印技术领域,尤其涉及一种结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机。
背景技术
3DP(3D Printing,3D打印)技术又称为AM(Additive Manufacturing,增材制造)技术或RP(Rapid Prototyping,快速成型)技术,是基于离散-堆积原理,通过将模型分层,在支撑平台上逐层打印,然后再进行多层叠加,最终制成目标3D物体的立体构造技术,主要包括FDM(Fused Deposition Modeling,熔融沉积)技术、SLA(Stereo Lithography Apparatus,立体光固化)技术、SLS(Selective Laser Sintering,选择性激光烧结)技术、DLP(Digital Light Processing,数字光处理)技术、LOM(Laminated Object Manufacturing,分层实体制造)技术、喷墨技术等。
3D打印时,若模型具有悬空部分,在上述分层前的建模阶段需要针对该悬空部分提供支撑结构,而悬空部分与模型的放置姿势相关,不同的放置姿势可能形成不同的悬空部分,进而形成不同的支撑结构。支撑结构需要由支撑材料制成,在模型不同的放置姿势下,不同支撑结构的体积互不相同,导致支撑材料的用量也互不相同。由于模型放置姿势的可变性,在不确定支撑结构体积下,无法明确模型具体的支撑材料的用量。
现有技术中,3D打印服务中涉及到对所打印模型的报价,支撑结构作为打印过程中的一部分,其支撑材料用量也包括在所述报价 当中,因此在支撑材料用量不确定时,无法确定打印模型的报价,因此,获取支撑结构的体积是需要亟待解决的问题。
申请内容
有鉴于此,本申请实施例提供了一种结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机,用以实现获取支撑结构的体积。
第一方面,本申请实施例提供了一种结构体积的获取方法,包括:
针对在指定平面上放置的模型,在平行于所述指定平面的方向上确定至少一个基准面;
针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
基于所述至少一个垂直投影面积,得到总体积;
基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,在垂直于所述指定平面方向上,每两个相邻基准面之间的距离相等或者不等。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积,包括:
针对至少一个基准面中每个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积,包括:
基于至少一个基准面中最底部的基准面,获取位于该基准面上 方的模型在该基准面上的垂直投影,以作为第一垂直投影;
在除所述最底部的基准面以外的基准面中,获取目标基准面,所述目标基准面为对应的垂直投影与所述第一垂直投影重合的基准面;
若所述目标基准面为至少一个基准面中最顶部的基准面,获取所述第一垂直投影的面积,以作为各垂直投影面积;或者,
若所述目标基准面不是至少一个基准面中最顶部的基准面,获取所述第一垂直投影的面积,以作为所述目标基准面以下各基准面对应的垂直投影面积,以及,分别获取所述目标基准面以上各基准面对应的垂直投影面积。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,在除所述最底部的基准面以外的基准面中,获取目标基准面,包括:
从至少一个基准面中最顶部的基准面开始,按照从最顶部到最底部的方向,依次获取并判断所述模型在该基准面上的垂直投影与所述第一垂直投影是否重合,直至获取到与所述第一垂直投影相重合的垂直投影所在的基准面,以作为所述目标基准面。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,在除所述最底部的基准面以外的基准面中,获取目标基准面,包括:
若至少一个基准面中最顶部的基准面上的垂直投影与所述第一垂直投影不重合,在最顶部的基准面与最底部的基准面中,确定一等分基准面;
判断该等分基准面上的垂直投影与第一垂直投影是否重合;
如果是,在该等分基准面与最顶部的基准面之间再确定另一等分基准面,并判断该另一等分基准面上的垂直投影与该等分基准面上的垂直投影是否重合,以此类推,直至获取到与所述第一垂直投影相重合的垂直投影所在的基准面;如果否,在该等分基准面与最底部的基准面之间再确定另一等分基准面,并判断该另一等分基准 面上的垂直投影与第一垂直投影是否重合,以此类推,直至获取到与所述第一垂直投影相重合的垂直投影所在的基准面。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,获取垂直投影的面积包括:
将垂直投影所在基准面平均分割成指定面积的若干方块区域;
确定所述垂直投影所覆盖的方块区域的数量;
根据所述指定面积和所述数量的乘积,得到所述垂直投影的面积。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述基于所述至少一个垂直投影面积,得到总体积,包括:
根据至少一个垂直投影面积以及每两个基准面之间的距离,得到至少一个子体积;
根据至少一个子体积的累加和,得到所述总体积。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积,包括:根据所述总体积与所述模型的体积之间的差值,得到所述模型的支撑结构的体积。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法还包括:
根据所述模型的支撑结构的体积,确定打印当前放置姿态下所述支撑结构所需的第一材料用量;
根据所述模型的体积,确定打印所述模型所需的第二材料用量;
根据所述第一材料用量和所述第二材料用量,获得打印所述模型的评估数据。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法还包括:
根据所述模型的支撑结构的体积,确定打印当前放置姿态下所述支撑结构所需的第一材料用量;
根据所述模型的体积,确定打印所述模型所需的第二材料用量;
确定打印所述模型时的废料用量;
根据所述第一材料用量、所述第二材料用量和所述废料用量,获得打印所述模型的评估数据。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,确定打印所述模型时的废料用量,包括:
在对所述模型分层时,确定每个打印层的预设层高;
根据对所述模型进行打印时所使用的墨滴的属性信息,确定每个打印层的预估层高;
根据所述预估层高与所述预设层高之间的比例,确定所述废料用量。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积之前,所述方法还包括:
获取所述模型的体积。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,获取所述模型的体积,包括:
针对所述至少一个基准面,获取模型与每个基准面相交的轮廓,得到至少一个轮廓面积;
根据所述至少一个轮廓面积,得到所述模型的体积。
上述技术方案中的一个技术方案具有如下有益效果:
本申请实施例所提供的结构体积的获取方法中,通过设置基准面,从而得到在基准面上模型的垂直投影,从而基于垂直投影的面积计算得到总体积,该总体积相当于包括模型的体积和支撑结构的体积,进而根据给定的模型的体积,可以得到支撑结构的体积,实现了模型在当前姿态下支撑结构的体积计算。
第二方面,本申请实施例提供了一种结构体积的获取装置,包括:
基准面确定模块,用于针对在指定平面上放置的模型,在平行于所述指定平面的方向上确定至少一个基准面;
面积获取模块,用于针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
体积计算模块,用于基于所述至少一个垂直投影面积,得到总体积;以及,基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积。
第三方面,本申请实施例提供了一种非暂态计算机可读存储介质,包括:所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行以下流程:
针对在指定平面上放置的模型,在平行于所述指定平面的方向上确定至少一个基准面;
针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
基于所述至少一个垂直投影面积,得到总体积;
基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积。
第四方面,本申请实施例提供了一种打印机,包括:
存储器,用于存储一组或多组程序代码;
处理器,与所述存储器耦合,用于调用存储器中存储的程序代码,以执行以下流程:
针对在指定平面上放置的模型,在平行于所述指定平面的方向上确定至少一个基准面;
针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
基于所述至少一个垂直投影面积,得到总体积;
基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积。
上述技术方案中的一个技术方案具有如下有益效果:
本申请实施例所提供的结构体积的获取方法中,通过设置基准 面,从而得到在基准面上模型的垂直投影,从而基于垂直投影的面积计算得到总体积,该总体积相当于包括模型的体积和支撑结构的体积,进而根据给定的模型的体积,可以得到支撑结构的体积,实现了模型在当前姿态下支撑结构的体积计算。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例所提供的一种结构体积的获取方法的流程示意图;
图2是本申请实施例所提供的模型结构示意图;
图3是以图2所示模型放置方式进行打印时所需要的支撑结构的示意图;
图4是图2所示模型的基准面P 1、P 2……P n的示意图;
图5是图2所示模型以侧面触地的方式放置时的结构示意图;
图6是以图5所示模型放置方式进行打印时所需要的支撑结构的示意图;
图7是图5所示模型的基准面P 1、P 2……P n的示意图;
图8是本申请实施例中获取垂直投影面积的一种实现方式的流程示意图;
图9是以图5所示模型放置方式放置在指定平面上时第一垂直投影的示意图;
图10是最底部的基准面P 1与最顶部的基准面P n之间的等分基准面P m的示意图;
图11是等分基准面P m与最顶部的基准面P n之间的等分基准面P k的示意图;
图12是图5所示模型放置方式在目标基准面上下部分间隔不同的示意图;
图13是为图2所示模型放置方式时的第一垂直投影面积示意图;
图14是本申请实施例所提供的一种结构体积的获取装置的功能方块图;
图15是本申请实施例所提供的一种打印机的功能方块图;
图16是本申请实施例所提供的另一结构体积的获取方法的流程示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述材料用量,但这些材料用量不应限于这些术语。这些术语仅用来将材料用量彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一材料用量也可以被称为第二材料用量,类似地,第二材料用量也可以被称为第一材料用量。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。 类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
实施例一
本申请实施例给出一种结构体积的获取方法,请参考图1,其为本申请实施例所提供的一种结构体积的获取方法的流程示意图,包括以下步骤:
S101,针对在指定平面上放置的模型,在平行于指定平面的方向上确定至少一个基准面。
S102,针对至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积。
S103,基于至少一个垂直投影面积,得到总体积。
S104,基于总体积以及模型的体积,得到模型的支撑结构的体积。
为了便于理解,本申请实施例对3D打印技术进行简单说明。3D打印过程主要包括以下三个步骤:
a、对目标物体进行建模形成模型,并对模型进行分层处理;
b、基于每层的层数据控制打印头进行打印;
c、多个层叠加形成目标物体。
其中,在步骤a中对目标物体进行建模时,先将目标物体转换为数据结构。例如,可以通过扫描的方式获取目标物体的信息。
然后,将目标物体的信息进行格式转换,使得转换后的数据能够被分层切片技术识别,这些格式可以包括但不限于:STL格式、PLY格式或者WRL格式等。在具体实现时,目标物体的信息可以以层为单位。
之后,通过分层切片技术对模型及支撑结构进行切片分层处理,得到层图像,并对每个层图像进行解析得到每层的层数据。
在上述步骤中的建模后、分层处理前,需要根据模型的悬空部 分生成支撑结构。
以下,对本申请实时所提供的结构体积的获取方法中的各步骤分别进行说明。
本申请实施例所涉及的指定平面可以为实际存在的平面,也可以为空间坐标系所指的平面。例如,可以将模型以当前放置方式放置时底部所在平面设定为指定平面,或者,又例如,可以将空间坐标系X-Y-Z中的任意平面(X-Y平面、Y-Z平面或者X-Z平面)作为指定平面。
为了便于表述,当将模型以当前放置方式放置时底部所在平面设定为指定平面时,将指定平面上放置有模型的一侧称为指定平面的上方,并且,该指定平面同时作为最底部的基准面,为至少一个基准面中的一个。此时,确定的至少一个基准面都位于指定平面(最底部的基准面)的上方,与模型同侧放置。
同时,为了便于表述,本申请实施例中所涉及到的垂直投影面积是指,以相应基准面为投影面,获取在该基准面上方的模型在该基准面上的垂直投影,此时,基准面上方是指该基准面远离指定平面(最底部的基准面)的一侧。
在不同基准面上,模型的投影轮廓可能存在不同,因此,可以将一个基准面的模型投影视为一个打印层。一个模型打印层数的多少决定了模型的打印精度。对于同一形状的模型而言,基准面的数量越多,其打印精度越高。
为了便于表述,以下,将结合图2所示的模型的结构对该结构体积的获取方法进行说明。
请参考图2,其为本申请实施例所提供的模型结构示意图。该模型的结构可以看作两个圆台形物体结合组成的结构,其中,一个正置的圆台形物体的面积较小的圆形平面与一个倒置的圆台形物体的面积较小的圆形平面相接触。
请参考图3,其为以图2所示模型放置方式进行打印时所需要的支撑结构的示意图。如图3所示,图2所示的模型放置在X-Y所 在平面上。并且,图3中黑色部分即表示当前放置方式下所需要的支撑结构。
请参考图4,其为图2所示模型的基准面P 1、P 2……P n的示意图。如图4所示,此时,基准面P 1、P 2……P n均与X-Y所在平面平行,其中,P 1作为最底部的基准面,P n作为该模型的最顶部的基准面。如图4所示的结构中,相邻的两个基准面之间的距离表示为h。
在垂直于指定平面方向上,每两个相邻基准面之间的距离(h)相等或者不等。
此时,可以包括以下情况中的任意一种:任意两个相邻基准面之间的距离相等;或者,任意两个相邻基准面之间的距离不等;或者,部分相邻基准面之间的距离相等且部分基准面之间的距离不等。
其中,当这些基准面中存在距离不相等的相邻基准面时,还可以根据需要将这些相邻基准面之间的距离按照递增顺序排列、按照递减顺序排列或者按照其他可预设规则的方式排列等,本申请实施例对此无特别限定。
当利用本方案实现3D打印时,可将每一个基准面的垂直投影作为一个打印层,打印层数的多少决定了模型的打印精度。也就是说,h的数值大小与模型的精度和速度相关。
具体的,对于一个确定的模型,h越小,则确定的基准面的数量越多,打印精度越高,打印速度越慢;或者,h越大,则基准面的数量越少,打印精度越低打印速度越快。
在实现S102时,本申请实施例提供以下两种可行的实现方式:
第一种,针对至少一个基准面中每个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积。
此时,对于n个基准面P 1、P 2……P n而言,则需要获取n个垂直投影面积,可以表示为S 1、S 2……S n,其中,S 1为位于基准面P 1上方的部分模型在基准面P 1上的垂直投影面积,S 2为位于基准面P 2上方的部分模型在基准面P 2上的垂直投影面积,S n为位于基准面P n 上方的部分模型在基准面P n上的垂直投影面积。
基于模型结构的不同,得到的垂直投影面积S 1、S 2……S n可能相同,也可能不同。
通过这种实现方式获取至少一个垂直投影面积时,获取到的基准面的数目越多,则打印精度越高。
第二种,考虑到本申请实施例可能会用于获取支撑结构的体积及其材料用量,并且,在一定的条件下,支撑结构所需体积可能不需要做成与整个模型相同的高度。
此时,可以参考图5与图6,其中,图5为图2所示模型以侧面触地的方式放置时的结构示意图,图6为以图5所示模型放置方式进行打印时所需要的支撑结构的示意图。
如图6所示,当以图5所示的模型放置在X-Y所在平面上时,图6中黑色部分表示的当前放置方式下所需要的支撑结构的高度远小于该模型的高度。
请参考图7,其为图5所示模型的基准面P 1、P 2……P n的示意图。如图7所示,此时,基准面P 1、P 2……P n均与X-Y所在平面平行,其中,P 1作为最底部的基准面,P n作为该模型的最顶部的基准面。如图7所示的结构中,相邻的两个基准面之间的距离表示为h。
基于以上情况,本申请实施例还提供了第二种获取至少一个垂直投影面积的方式。
请参考图8,其为本申请实施例中获取垂直投影面积的一种实现方式的流程示意图,包括以下步骤:
S1021,基于至少一个基准面中最底部的基准面,获取位于该基准面上方的模型在该基准面上的垂直投影,以作为第一垂直投影。
S1022,在除最底部的基准面以外的基准面中,获取目标基准面,目标基准面为对应的垂直投影与第一垂直投影重合的基准面。
此时,目标基准面可能为除最底部的基准面之外的任意一个基准面。如此,就存在S1023a与S1023b两种可能的情况。
S1023a,若目标基准面为至少一个基准面中最顶部的基准面, 获取第一垂直投影的面积,以作为各垂直投影面积。
S1023b,若目标基准面不是至少一个基准面中最顶部的基准面,获取第一垂直投影的面积,以作为目标基准面以下各基准面对应的垂直投影面积。
S1024,分别获取目标基准面以上各基准面对应的垂直投影面积。
在如图3所示的实现方式中,S1023a和S1023b为平行实现的两个步骤,二者之间为“或者”的关系,在执行完S1022后执行S1023a或者执行S1023b,并在执行S1023a或者S1023b之后,执行S1024。
其中,在执行S1022获取目标基准面的步骤时,本申请实施例还提供了以下几种实现方式:
实现方式A:从至少一个基准面中最顶部的基准面开始,按照从最顶部到最底部的方向,依次获取并判断模型在该基准面上的垂直投影与第一垂直投影是否重合,直至获取到与第一垂直投影相重合的垂直投影所在的基准面,以作为目标基准面。
以图5-图7所示结构为例对S1022进行说明。该待打印的最底部的基准面P1的第一垂直投影,那么,将各基准面按照P n、P n-1、P n-2……P 2的顺序,将每个基准面上的投影分别逐个与第一垂直投影进行比对,直至在基准面P n、P n-1、P n-2……P 2中获取到与第一垂直投影相重合的垂直投影,就将这个基准面作为目标基准面。此时,目标基准面可以为P n、P n-1、P n-2……P 2中的任意一个基准面。
实现方式B:若至少一个基准面中最顶部的基准面上的垂直投影与第一垂直投影不重合,在最顶部的基准面与最底部的基准面中,确定一等分基准面,然后,判断该等分基准面上的垂直投影与第一垂直投影是否重合,从而,如果是(该等分基准面上的垂直投影与第一垂直投影重合),在该等分基准面与最顶部的基准面之间再确定另一等分基准面,并判断该另一等分基准面上的垂直投影与该等分基准面上的垂直投影是否重合,以此类推,直至获取到与第一垂直投影相重合的垂直投影所在的基准面;或者,如果否(该等分基准 面上的垂直投影与第一垂直投影不重合),在该等分基准面与最底部的基准面之间再确定另一等分基准面,并判断该另一等分基准面上的垂直投影与第一垂直投影是否重合,以此类推,直至获取到与第一垂直投影相重合的垂直投影所在的基准面。
仍以图5-图7所示结构为例对S1022进行说明。
首先,请参考图9,其为以图5所示模型放置方式放置在指定平面上时第一垂直投影的示意图。图9所示第一垂直投影为位于X-Y平面上的一个六边形,将这个六边形从其X轴方向的中轴线(图9中虚线)剖开,可以将这个六边形作为两个梯形的结合图,并且,这两个梯形的上底相接触。
该待打印的最底部的基准面P 1的第一垂直投影与最顶部的基准面P n的投影不重合,那么,在基准面P n-1、P n-2……P 2中确定等分基准面P m。此时,请参考图10,其为最底部的基准面P 1与最顶部的基准面P n之间的等分基准面P m的示意图。如图10所示,在Y轴的延伸方向上,等分基准面P m将最底部的基准面P 1与最顶部的基准面P n等分。
之后,将等分基准面P m上的垂直投影与第一垂直投影比对。
若二者重合,则确定等分基准面P m为目标基准面。
若二者不重合,则在等分基准面P m与最顶部的基准面P n之间确定另一个等分基准面P k。此时,请参考图11,其为等分基准面P m与最顶部的基准面P n之间的等分基准面P k的示意图。如图11所示,在Y轴的延伸方向上,等分基准面P k将等分基准面P m与最顶部的基准面P n等分。
之后,将等分基准面P k上的垂直投影与图9所示的第一垂直投影比对。
重复上述步骤。
直至获取到与第一垂直投影重合的基准面上的垂直投影,则确定该基准面为目标基准面。
本申请实施例中,在通过S1022确定目标基准面之后,需要基 于确定的目标基准面,该目标基准面可以认为是支撑结构的上表面,因此,在计算总体积时为了简化计算步骤并提高处理效率,可以将目标基准面与最底部的基准面之间的垂直投影都等同于第一垂直投影,这部分等同的垂直投影对应的体积包括待打印的模型的第一部分体积与支撑材料的体积;另一方面,在支撑结构的上表面,只需要计算每个基准面上的垂直投影的面积即可,此时,这部分体积为模型的第二部分体积,第一部分体积与第二部分体积共同构成模型的体积。
在一个具体的实现过程中,目标基准面以上各基准面之间的间隔h1与目标基准面以下各基准面之间的间隔h2可以不同。
请参考图12,其为图5所示模型放置方式在目标基准面上下部分间隔不同的示意图。如图12所示,目标基准面P j将模型分段为目标基准面P j上方的r部分与目标基准面P j下方的R部分。
在r部分中,模型在对应r部分的基准面上的投影轮廓相互之间各不相同,而在R部分中模型在对应r部分的基准面上的投影轮廓均等同于第一垂直投影面积,因此,r部分中各基准面之间的间隔小于R部分中各基准面之间的间隔,也即:h1﹤h2。
这样设置,是考虑到在r部分中,各基准面上的垂直投影的轮廓各不相同,将h1设置为相对较小的数值,对应打印而成的r部分物体将具有相对较高的精度,更为接近模型设计;而在R部分中,由于投影相互之间的轮廓均与第一垂直投影的轮廓等同,可以将其间隔距离设置为相对较大的数值,对应打印而成的R部分物体的形成具有相对较高的效率,这样处理是由于投影轮廓相同,即各个打印层之间的打印轮廓相同,对于打印精度的影响可以忽略较小,甚至可以忽略不计。
基于此,在执行S1023a时,目标基准面是顶部的基准面P n,此时,最底部的基准面P 1的第一垂直投影与最顶部的基准面P n的垂直投影相重合,则将二者之间的全部基准面上的垂直投影都等同于该第一垂直投影,其垂直投影面积也全部相等,即S 1=S 2=……=S n
基于此,在执行S1023b时,目标基准面不是最顶部的基准面P n,若目标基准面为P j,且k为大于1且小于n的整数,那么,可以将目标基准面P j与最底部的基准面P 1之间的垂直投影均等同于该第一垂直投影,其垂直投影面积也全部相等,即S 1=S 2=……=S j,其中,S j为目标基准面P j上的垂直投影面积。
基于上述流程,在S1024中还需要对基准面上的垂直投影面积进行获取,本申请实施例还给出了如下获取垂直投影的面积的实现方式:
将垂直投影所在基准面平均分割成指定面积的若干方块区域;
确定垂直投影所覆盖的方块区域的数量;
根据指定面积和数量的乘积,得到垂直投影的面积。
具体的,参考图13,其为图2所示模型放置方式时的第一垂直投影面积示意图,以下,以图13所示第一垂直投影面积为例,将最底部的基准面P 1分割为大小相同,面积为a的方格,图13中的圆形表示第一垂直投影T 1。因此,基于图13所示的分割示意图,只需要获取该圆形区域所覆盖的方块的数量即可,得到该第一垂直投影的面积。例如,若该圆形区域所覆盖的方块的数量为i,则可以得到第一垂直投影的面积S 1=i×a。
当以该方式获取基准面上的垂直投影面积时,方块的体积越小,其数量越多,得到的垂直投影面积的精确度越高。
本申请实施例中,还需要执行S103中基于至少一个垂直投影面积,得到总体积的步骤。此时,可以参考如下方式:
根据至少一个垂直投影面积以及每两个基准面之间的距离,得到至少一个子体积;然后,根据至少一个子体积的累加和,得到总体积。
在该总体思路的引导下,针对S102中两种获取垂直投影面积的方式,给出如下两种具体的实现方式:
第一种,通过获取每一个基准面P 1、P 2……P n上的每一个垂直投影面积S 1、S 2……S n,并且,当任意相邻的两个基准面之间的距离 均为h时,计算得到的总体积可以表达为:V=(S 1+S 2+……+S n)×h。
第二种,通过获取目标基准面P j,那么,目标基准面P j与最底部基准面P 1之间的体积可以表示为:V 1=S 1×j×h1,目标基准面P j与最顶部基准面P n之间的体积可以表示为:V 2=(S j+1+S j+2+……+S n)×h2。那么,总体积V=V 1+V 2
本申请实施例中,上述步骤得到的总体积包括:模型的体积与该模型的支撑结构的体积。
基于此,在模型的体积已知的情况下,得到该模型的支撑结构的体积可以通过如下方式实现:根据总体积与模型的体积之间的差值,得到模型的支撑结构的体积。此时,可以用下式表示:V S=V-V M,其中,V S表示模型的支撑结构的体积,V M表示模型的体积,V表示总体积。
本申请实施例提供的结构体积的获取方法,还可以用于获得打印模型的评估数据。
在一个具体的实现过程中,打印模型的评估数据包括:支撑结构的第一材料用量与打印模型所需的第二材料用量。
因此,该方法还可以包括以下步骤:
根据模型的支撑结构的体积,确定打印当前放置姿态下支撑结构所需的第一材料用量;
根据模型的体积,确定打印模型所需的第二材料用量;
根据第一材料用量和第二材料用量,获得打印模型的评估数据。
在实际进行打印的过程中,需要根据预设的每个打印层的层高(基准面之间的距离h)与打印耗材物理参数预估每个打印层的高度,并且,一般情况下,打印层的预估层高通常大于设定层高。如此,在打印过程中,可以使用校平装置对每个打印层进行校平,一方面使得实际打印层的高度等于设定的层高,另一方面得以平滑整个打印层。而通过校平过程去掉的部分材料即为打印过程中产生的废料。
因此,在另一个具体的实现过程中,考虑到实际进行打印的过程中还会存在一些废料,打印模型的评估数据可以包括:支撑结构的第一材料用量、打印模型所需的第二材料用量与废料用量。
因此,该方法还可以包括以下步骤:
根据模型的支撑结构的体积,确定打印当前放置姿态下支撑结构所需的第一材料用量;
根据模型的体积,确定打印模型所需的第二材料用量;
确定打印模型时的废料用量;
根据第一材料用量、第二材料用量和废料用量,获得打印模型的评估数据。
本申请实施例中,对于第一材料与第二材料的材质无特别限定,二者可以为两种不同的材料,或者,也可以为相同的材料。
针对上述第二种实现方式涉及到确定打印模型时的废料用量,本申请实施例给出以下确定方法:
在对模型分层时,确定每个打印层的预设层高;
根据对模型进行打印时所使用的墨滴的属性信息,确定每个打印层的预估层高;
根据预估层高与预设层高之间的比例,确定废料用量。
本申请实施例中所涉及的打印耗材可以包括但不限于:油墨。
其中,当打印耗材为油墨时,其物理参数可以包括:墨滴的大小和墨滴状态中的至少一个。其中,墨滴的大小可以通过但不限于墨滴的直径进行表征,墨滴的状态可以通过但不限于墨滴的粘度、所处的温度等进行表征。
在一个具体的实现过程中,预估层高的方法可以包括以下步骤:在不同温度或粘度下,不经过校平实际打印一个打印层高度为n的测试模型,测量该模型的最小高度h(因不经过校平,层表面不光滑,具有凹凸现象,因此具有不同高度),预估层高即为h/n。
或者,在另一个实现过程中,对层高的预估方法还可以为:根据打印头和打印材料参数,确定墨滴的大小(直径),以及一个打印 层在与打印平面垂直的方向上叠加的墨滴的数量,进而,根据该墨滴直径与墨滴数量之积,得到预估层高。
基于上述步骤确定的预估层高,就可以根据预估层高和设定层高的比例,可以确定校平过程中所去除的废料用量。本申请实施例中,将废料用量也纳入材料总量进行处理,可以使得评估数据更加完善。
本发明实施例中,在具体执行S104之前,请参考图16,还可以包括如下步骤:
S1031,获取模型的体积。
需要说明的是,本发明实施例对于S1031步骤与S103步骤的执行顺序无特别限定,可以同时执行,或者,可以如图16所示的方式顺序执行,或者,也可以先执行S1031,再执行S103。
以及,需要说明的是,在具体的实现过程中,模型的体积若是已知的数据,则直接调取已知数据即可,无需重复获取。
当模型的体积未知时,可以按照如下方式执行S1031步骤:
针对所述至少一个基准面,获取模型与每个基准面相交的轮廓,得到至少一个轮廓面积;
根据所述至少一个轮廓面积,得到所述模型的体积。
其中,轮廓面积表示基准面与模型外表面相交形成的轮廓的面积,轮廓面积的计算方式与垂直投影面积的计算方式相似,在此不再赘述。此外,根据至少一个轮廓面积,可以得到模型体积,模型体积的计算方式与总体积的计算方式相似,同样不再赘述。
基于此,获取总体积与模型体积之差,即可得到支撑结构体积。并且,所得到的基准面数量越多,那么计算得到的模型体积便越精确。
基于此,本发明实施例通过获取每个基准面与模型相交的轮廓得到轮廓面积,从而,能够在模型体积未知的情况下,自动计算得到模型体积,实现了模型在当前姿态下支撑结构的体积计算。基于此,能够在一定程度上降低人工获取模型体积的工作量,简化操作 步骤。
基于本申请实施例所提供的结构体积的获取方法,本申请实施例还提供了一种非暂态计算机可读存储介质,非暂态计算机可读存储介质存储计算机指令,计算机指令用于使计算机执行以下流程:
针对在指定平面上放置的模型,在平行于指定平面的方向上确定至少一个基准面;
针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
基于至少一个垂直投影面积,得到总体积;
基于总体积以及模型的体积,得到模型的支撑结构的体积。
本申请实施例的技术方案具有以下有益效果:
本申请实施例所提供的结构体积的获取方法中,通过设置基准面,从而得到在基准面上模型的垂直投影,从而基于垂直投影的面积计算得到总体积,该总体积相当于包括模型的体积和支撑结构的体积,进而根据给定的模型的体积,可以得到支撑结构的体积,实现了模型在当前姿态下支撑结构的体积计算。
实施例二
基于上述实施例一所提供的结构体积的获取方法,本申请实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。
请参考图14,其为本申请实施例所提供的一种结构体积的获取装置的功能方块图,该装置1400包括:
基准面确定模块141,用于针对在指定平面上放置的模型,在平行于指定平面的方向上确定至少一个基准面;
面积获取模块142,用于针对至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
体积计算模块143,用于基于至少一个垂直投影面积,得到总体积;以及,基于总体积以及模型的体积,得到模型的支撑结构的体积。
请参考图15,其为本申请实施例所提供的一种打印机的功能方块图,该打印机1500包括:
存储器151,用于存储一组或多组程序代码;
处理器152,与存储器151耦合,用于调用存储器151中存储的程序代码,以执行以下流程:
针对在指定平面上放置的模型,在平行于指定平面的方向上确定至少一个基准面;
针对至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
基于至少一个垂直投影面积,得到总体积;
基于总体积以及模型的体积,得到模型的支撑结构的体积。
本申请实施例所涉及的存储器151可以包括但不限于:随机存取存储器(random access memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)存储器、硬盘、或本领域已知的任何其他形式的存储介质。
在实际应用本方案时,存储器151可以与处理器152集成在一起,按照存储器151作为处理器152的组成部分的方式进行设置,或者,将存储器151与处理器152均设置于专用集成电路(Application Specific Integrated Circuit,ASIC)上。
本申请实施例所涉及的处理器152,其硬件可以是能够实现具体功能的通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或其他可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件或以上这些硬件的组合。作为一种变化,还可以通过计算设备的组合实现,例如,DSP和微处理器的组合、多个微处理器的组合、与DSP通信结合的一个或者多个微处理器的组合等。
由于本实施例中的各单元能够执行图1所示的方法,本实施例 未详细描述的部分,可参考对图1的相关说明。
本申请实施例的技术方案具有以下有益效果:
本申请实施例所提供的结构体积的获取方法中,通过设置基准面,从而得到在基准面上模型的垂直投影,从而基于垂直投影的面积计算得到总体积,该总体积相当于包括模型的体积和支撑结构的体积,进而根据给定的模型的体积,可以得到支撑结构的体积,实现了模型在当前姿态下支撑结构的体积计算。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介 质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (17)

  1. 一种结构体积的获取方法,其特征在于,所述方法包括:
    针对在指定平面上放置的模型,在平行于所述指定平面的方向上确定至少一个基准面;
    针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
    基于所述至少一个垂直投影面积,得到总体积;
    基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积。
  2. 根据权利要求1所述的方法,其特征在于,在垂直于所述指定平面方向上,每两个相邻基准面之间的距离相等或者不等。
  3. 根据权利要求1所述的方法,其特征在于,所述针对至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积,包括:
    针对至少一个基准面中每个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积。
  4. 根据权利要求1所述的方法,其特征在于,所述针对至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积,包括:
    基于至少一个基准面中最底部的基准面,获取位于该基准面上方的模型在该基准面上的垂直投影,以作为第一垂直投影;
    在除所述最底部的基准面以外的基准面中,获取目标基准面,所述目标基准面为对应的垂直投影与所述第一垂直投影重合的基准面;
    若所述目标基准面为至少一个基准面中最顶部的基准面,获取所述第一垂直投影的面积,以作为各垂直投影面积;或者,
    若所述目标基准面不是至少一个基准面中最顶部的基准面,获取所述第一垂直投影的面积,以作为所述目标基准面以下各基准面对应的垂直投影面积,以及,分别获取所述目标基准面以上各基准面对应的垂直投影面积。
  5. 根据权利要求4所述的方法,其特征在于,在除所述最底部的基准面以外的基准面中,获取目标基准面,包括:
    从至少一个基准面中最顶部的基准面开始,按照从最顶部到最底部的方向,依次获取并判断所述模型在该基准面上的垂直投影与所述第一垂直投影是否重合,直至获取到与所述第一垂直投影相重合的垂直投影所在的基准面,以作为所述目标基准面。
  6. 根据权利要求4所述的方法,其特征在于,在除所述最底部的基准面以外的基准面中,获取目标基准面,包括:
    若至少一个基准面中最顶部的基准面上的垂直投影与所述第一垂直投影不重合,在最顶部的基准面与最底部的基准面中,确定一等分基准面;
    判断该等分基准面上的垂直投影与第一垂直投影是否重合;
    如果是,在该等分基准面与最顶部的基准面之间再确定另一等分基准面,并判断该另一等分基准面上的垂直投影与该等分基准面上的垂直投影是否重合,以此类推,直至获取到与所述第一垂直投影相重合的垂直投影所在的基准面;如果否,在该等分基准面与最底部的基准面之间再确定另一等分基准面,并判断该另一等分基准面上的垂直投影与第一垂直投影是否重合,以此类推,直至获取到与所述第一垂直投影相重合的垂直投影所在的基准面。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,获取垂直投影的面积包括:
    将垂直投影所在基准面平均分割成指定面积的若干方块区域;
    确定所述垂直投影所覆盖的方块区域的数量;
    根据所述指定面积和所述数量的乘积,得到所述垂直投影的面积。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,所述基于所述至少一个垂直投影面积,得到总体积,包括:
    根据至少一个垂直投影面积以及每两个基准面之间的距离,得到至少一个子体积;
    根据至少一个子体积的累加和,得到所述总体积。
  9. 根据权利要求1至6中任一项所述的方法,其特征在于,基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积,包括:根据所述总体积与所述模型的体积之间的差值,得到所述模型的支撑结构的体积。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述模型的支撑结构的体积,确定打印当前放置姿态下所述支撑结构所需的第一材料用量;
    根据所述模型的体积,确定打印所述模型所需的第二材料用量;
    根据所述第一材料用量和所述第二材料用量,获得打印所述模型的评估数据。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述模型的支撑结构的体积,确定打印当前放置姿态下所述支撑结构所需的第一材料用量;
    根据所述模型的体积,确定打印所述模型所需的第二材料用量;
    确定打印所述模型时的废料用量;
    根据所述第一材料用量、所述第二材料用量和所述废料用量,获得打印所述模型的评估数据。
  12. 根据权利要求11所述的方法,其特征在于,确定打印所述模型时的废料用量,包括:
    在对所述模型分层时,确定每个打印层的预设层高;
    根据对所述模型进行打印时所使用的墨滴的属性信息,确定每个打印层的预估层高;
    根据所述预估层高与所述预设层高之间的比例,确定所述废料用量。
  13. 根据权利要求1所述的方法,其特征在于,基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积之前,所述方法还包括:
    获取所述模型的体积。
  14. 根据权利要求13所述的方法,其特征在于,获取所述模型的体积,包括:
    针对所述至少一个基准面,获取模型与每个基准面相交的轮廓,得到至少一个轮廓面积;
    根据所述至少一个轮廓面积,得到所述模型的体积。
  15. 一种结构体积的获取装置,其特征在于,所述装置包括:
    基准面确定模块,用于针对在指定平面上放置的模型,在平行于所述指定平面的方向上确定至少一个基准面;
    面积获取模块,用于针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
    体积计算模块,用于基于所述至少一个垂直投影面积,得到总体积;以及,基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积。
  16. 一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行以下流程:
    针对在指定平面上放置的模型,在平行于所述指定平面的方向上确定至少一个基准面;
    针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
    基于所述至少一个垂直投影面积,得到总体积;
    基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积。
  17. 一种打印机,其特征在于,所述打印机包括:
    存储器,用于存储一组或多组程序代码;
    处理器,与所述存储器耦合,用于调用存储器中存储的程序代码,以执行以下流程:
    针对在指定平面上放置的模型,在平行于所述指定平面的方向上 确定至少一个基准面;
    针对所述至少一个基准面,获取位于每个基准面上方的模型在该基准面上的垂直投影面积,得到至少一个垂直投影面积;
    基于所述至少一个垂直投影面积,得到总体积;
    基于所述总体积以及所述模型的体积,得到所述模型的支撑结构的体积。
PCT/CN2018/092429 2017-11-15 2018-06-22 结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机 WO2019095693A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020524282A JP6928175B2 (ja) 2017-11-15 2018-06-22 構造体積取得方法及び装置、非一時的なコンピュータ可読記憶媒体並びにプリンタ
EP18879863.1A EP3711951A4 (en) 2017-11-15 2018-06-22 STRUCTURAL VOLUME ACQUISITION PROCESS AND DEVICE, STORAGE MEDIA READABLE BY NON-TRANSITIONAL COMPUTER AND PRINTER
US15/931,424 US11674836B2 (en) 2017-11-15 2020-05-13 Method and device for acquiring volume of structure, non-transitory computer-readable storage medium and printer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711126951.3A CN107727189B (zh) 2017-11-15 2017-11-15 结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机
CN201711126951.3 2017-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/931,424 Continuation US11674836B2 (en) 2017-11-15 2020-05-13 Method and device for acquiring volume of structure, non-transitory computer-readable storage medium and printer

Publications (1)

Publication Number Publication Date
WO2019095693A1 true WO2019095693A1 (zh) 2019-05-23

Family

ID=61215900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092429 WO2019095693A1 (zh) 2017-11-15 2018-06-22 结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机

Country Status (5)

Country Link
US (1) US11674836B2 (zh)
EP (1) EP3711951A4 (zh)
JP (1) JP6928175B2 (zh)
CN (1) CN107727189B (zh)
WO (1) WO2019095693A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112150350A (zh) * 2020-09-23 2020-12-29 深圳市创想三维科技有限公司 模型平面布局方法、系统以及计算机设备
CN113370526A (zh) * 2021-06-03 2021-09-10 深圳市创必得科技有限公司 切片预处理3d模型悬空检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727189B (zh) * 2017-11-15 2020-01-14 珠海赛纳打印科技股份有限公司 结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机
CN109130192B (zh) * 2018-09-10 2021-02-12 湖南华曙高科技有限责任公司 3d打印供粉量确定方法、装置、计算机设备和存储介质
CN109334011B (zh) * 2018-11-02 2020-05-05 珠海赛纳打印科技股份有限公司 彩色3d打印方法、打印装置及终端设备
CN109684735A (zh) * 2018-12-26 2019-04-26 中民筑友科技投资有限公司 构件模型内加强筋模型生成方法、系统、装置及存储介质
JPWO2022244370A1 (zh) * 2021-05-18 2022-11-24
CN113478835A (zh) * 2021-07-29 2021-10-08 江苏乾度智造高科技有限公司 一种3d打印模型切片方法
CN115195117B (zh) * 2022-06-09 2024-04-16 深圳市纵维立方科技有限公司 一种3d打印机的调平控制方法、3d打印机及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103568325A (zh) * 2013-11-08 2014-02-12 中国科学技术大学 一种三维打印方法
CN104647753A (zh) * 2013-11-18 2015-05-27 三纬国际立体列印科技股份有限公司 立体打印方法
CN106373184A (zh) * 2016-08-30 2017-02-01 苏州紫金港智能制造装备有限公司 一种三维打印模型摆放所需支撑量快速估算方法
CN107727189A (zh) * 2017-11-15 2018-02-23 珠海赛纳打印科技股份有限公司 结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907307B2 (en) * 2002-07-02 2005-06-14 3D Systems, Inc. Support volume calculation for a CAD model
WO2008107866A1 (en) * 2007-03-07 2008-09-12 Objet Geometries Ltd. Rapid production apparatus
EP2429802B1 (en) * 2009-05-12 2013-10-02 3D Systems, Inc. Compositions for selective deposition modeling
JP5615668B2 (ja) * 2010-11-01 2014-10-29 株式会社キーエンス 三次元造形装置用の設定データ作成装置、三次元造形装置用の設定データ作成方法及び三次元造形装置用の設定データ作成プログラム並びにコンピュータで読み取り可能な記録媒体
US8818544B2 (en) * 2011-09-13 2014-08-26 Stratasys, Inc. Solid identification grid engine for calculating support material volumes, and methods of use
US10354304B2 (en) * 2013-03-15 2019-07-16 Kemeera Inc. Systems and methods for creating 3D objects
TWI629162B (zh) * 2014-03-25 2018-07-11 Dws有限責任公司 一種電腦實施方法、設備、及電腦程式製品,用於界定一藉由光固化製造的三度空間物體的支撐結構
US20160085882A1 (en) * 2014-09-19 2016-03-24 Siemens Product Lifecycle Management Software Inc. Build orientations for additive manufacturing
US20160274572A1 (en) * 2015-03-19 2016-09-22 Michael G. Littrell Three Dimensional (3D) Printing and CAD File Quoting System
WO2017023284A1 (en) * 2015-07-31 2017-02-09 Hewlett-Packard Development Company, L.P. Parts arrangement determination for a 3d printer build envelope
WO2017025956A1 (en) * 2015-08-10 2017-02-16 Stratasys Ltd. 3d printing using preformed reuseable support structure
US10613496B2 (en) * 2016-09-19 2020-04-07 Wisconsin Alumni Research Foundation Support structure constrained topology optimization for additive manufacturing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103568325A (zh) * 2013-11-08 2014-02-12 中国科学技术大学 一种三维打印方法
CN104647753A (zh) * 2013-11-18 2015-05-27 三纬国际立体列印科技股份有限公司 立体打印方法
CN106373184A (zh) * 2016-08-30 2017-02-01 苏州紫金港智能制造装备有限公司 一种三维打印模型摆放所需支撑量快速估算方法
CN107727189A (zh) * 2017-11-15 2018-02-23 珠海赛纳打印科技股份有限公司 结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3711951A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112150350A (zh) * 2020-09-23 2020-12-29 深圳市创想三维科技有限公司 模型平面布局方法、系统以及计算机设备
CN113370526A (zh) * 2021-06-03 2021-09-10 深圳市创必得科技有限公司 切片预处理3d模型悬空检测方法
CN113370526B (zh) * 2021-06-03 2024-02-02 深圳市创必得科技有限公司 切片预处理3d模型悬空检测方法

Also Published As

Publication number Publication date
JP2021501071A (ja) 2021-01-14
EP3711951A4 (en) 2021-08-25
EP3711951A1 (en) 2020-09-23
US11674836B2 (en) 2023-06-13
US20200271502A1 (en) 2020-08-27
CN107727189B (zh) 2020-01-14
CN107727189A (zh) 2018-02-23
JP6928175B2 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2019095693A1 (zh) 结构体积的获取方法及装置、非暂态计算机可读存储介质及打印机
TWI548535B (zh) 立體列印方法
US11207852B2 (en) Three dimensional printing on three dimensional objects
US20210362426A1 (en) Method for creating 2d slicing polyline based support structure for 3d printing
US11701834B2 (en) Determining a printing anomaly related to a 3D printed object
US20170337748A1 (en) Three-dimensional data generation device, three-dimensional shaping device, and non-transitory computer readable medium
JP6763993B2 (ja) 3dプリンタのオブジェクト境界を検出する方法
US11931965B2 (en) 3D printing method and device
US10671766B2 (en) Evaluating the stability of three-dimensional models
JP6711394B2 (ja) 情報処理装置、プログラム、情報処理方法、造形システム
TW201545858A (zh) 立體列印裝置的控制方法與立體列印系統
US10528308B2 (en) Aided design method of print layers for 3D printing
US20180052433A1 (en) Systems and methods for generating slice files from native cad geometries
US10442178B2 (en) Information processing apparatus, information processing method, and three-dimensional solid object
JP2017138109A (ja) 空中写真測量および三次元立体モデル生成用標識、空中写真測量方法
US20190184645A1 (en) Data processing apparatus and storage medium
US20130060533A1 (en) Information processing apparatus and information processing method
JP6852487B2 (ja) 情報処理装置及び情報処理プログラム
CN110057320A (zh) 异常事件事发地点显示方法及装置、终端设备、存储介质
EP4080395A2 (en) Systems, devices, and methods for generating a lattice support structure outside of an exclusion area
US20220379379A1 (en) Generating supports
CN115284598A (zh) 一种三维打印方法、装置、设备及存储介质
CN116061432A (zh) 用于3d打印的方法及装置
CN115195117A (zh) 一种3d打印机的调平控制方法、3d打印机及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524282

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018879863

Country of ref document: EP

Effective date: 20200615