WO2019095623A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2019095623A1
WO2019095623A1 PCT/CN2018/083234 CN2018083234W WO2019095623A1 WO 2019095623 A1 WO2019095623 A1 WO 2019095623A1 CN 2018083234 W CN2018083234 W CN 2018083234W WO 2019095623 A1 WO2019095623 A1 WO 2019095623A1
Authority
WO
WIPO (PCT)
Prior art keywords
cpe
central office
office device
signal
division multiplexing
Prior art date
Application number
PCT/CN2018/083234
Other languages
English (en)
French (fr)
Inventor
陈仕才
殷慧
李莹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18878068.8A priority Critical patent/EP3700157A1/en
Publication of WO2019095623A1 publication Critical patent/WO2019095623A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and device.
  • the G.fast project is used to study the fiber to the distribution point (FTTdp) scenario, using copper wire to provide the final high-speed access, with the goal of providing more than 500Mbps in a range of 100 meters. Incoming rate.
  • FTTdp fiber to the distribution point
  • ITU-T international telecommunication union-telecommunication standardization sector
  • the G.fast standard number is G.9701.
  • TDD time division duplexing
  • TDD is a half-duplex multiplexing mode, in which both uplink and downlink occupy all subcarriers of the entire frequency band to transmit information, and the system allocates time slots respectively.
  • the transceiver at one end can only transmit or receive, and the transceiver at the opposite end can only take the opposite operation in the time slot.
  • the G.fast standard uses a super frame structure as shown in FIG.
  • a superframe includes a plurality of TDD frames, and a first frame in the superframe is a TDD sync frame, and the TDD sync frame includes a DS sync symbol and a US sync symbol.
  • TDD sync frame and the TDD frame are both T F
  • M SF the number of TDD frames and TDD sync frames included in one super frame
  • Ds represents downlink transmission
  • Us represents uplink transmission.
  • the ITU adopted the G.mgfast standard in June 2017.
  • P2MP point-to-multipoint
  • the telephone line connects one port of the central office equipment (CO) and multiple customer premises equipment (CPE), and the CPE enters the network by communicating with the CO.
  • CO central office equipment
  • CPE customer premises equipment
  • CPE can also be called customer premise equipment.
  • G.994.1 G.994.1 standard that specifies the handshake process between the CPE and the central office equipment.
  • the G.994.1 standard only supports point-to-point (P2P) mode, and the transmitting and receiving parties use frequency division multiplexing to exchange messages. Therefore, under the G.994.1 standard, one port of the central office device only handshakes with one CPE. In the P2MP mode, the central office device may be connected to multiple CPEs. If one port of the central office device only has a handshake with one CPE, multiple CPEs cannot access the local device.
  • P2P point-to-point
  • the embodiment of the present application provides a communication method and device, which are used to enable a central office device to perform handshake with multiple CPEs.
  • a communication method is provided, the method being applicable to a communication network, the communication network comprising a central office device, a user node, and a plurality of CPEs, wherein the central office device connects the user through a twisted pair a node, the user node is connected to the multiple CPEs, at least one CPE of the plurality of CPEs is in a showtime state, and the CPE in the showtime state communicates with the central office device by means of time division multiplexing;
  • the method is performed by a first CPE of the multiple CPEs, where the first CPE may be a CPE that is not in a showtime state.
  • the method includes: the first CPE is configured to obtain basic configuration information, the first CPE is one of the multiple CPEs, and the first CPE is in a silent state; the first CPE sends the first CPE to the central office device a signal, the first CPE indicating, by the phase change of the at least one symbol included in the first signal, whether the first CPE supports the basic configuration information.
  • a communication method is provided, which is applicable to a communication network, where the communication network includes a central office device, a user node, and a plurality of CPEs, wherein the central office device is connected through a twisted pair
  • the user node is connected to the plurality of CPEs, and the plurality of CPEs communicate with the central office device in a time division multiplexing manner, and the central office device is in a showtime state.
  • the method may be performed by the central office device, the method comprising: the central office device receiving a first signal from a first CPE, wherein a phase change of the at least one symbol included in the first signal indicates whether the first CPE is The basic configuration information is supported, and the first CPE is a CPE that is requested to go online in the multiple CPEs.
  • the central office device is connected to multiple CPEs through the user node, and at least one CPE in the plurality of CPEs is in communication with the central office device, and the CPE and the central office device can communicate by time division multiplexing. Therefore, the first CPE can also send the first signal to the central office device, which is equivalent to applying for handshake with the central office device, that is, the central office device and the multiple CPEs can communicate by time division multiplexing, so that the central office device
  • the device can communicate with multiple CPEs to prevent the central office device from being able to communicate with only one CPE. Therefore, multiple CPEs can access the central office device and access the network to meet the connection requirements of the CPE.
  • the first signal in a case where the phase of the at least one symbol included in the first signal is changed in the first manner, the first signal is used to indicate that the first CPE supports the basic configuration Information, and for indicating that the first CPE request enters an initialization phase; or, in a case where a phase of the at least one symbol included in the first signal changes in a second manner, the first signal is used
  • the first CPE is instructed not to support the basic configuration information, and is used to indicate that the first CPE request enters a handshake phase.
  • the first signal indicates whether the first CPE supports the basic configuration information by the phase change of the at least one symbol included in the first signal, so the first signal may indicate two meanings: the first CPE supports basic configuration information, or the first CPE Basic configuration information is not supported.
  • the phase of the at least one symbol included in the first signal may be changed in different manners, and the different manners represent different meanings, so that the central office device receives at least the first signal according to the first signal.
  • the manner in which the phase of a symbol changes can determine whether the first signal indicates whether the first CPE supports the basic configuration information or whether the first CPE does not support the basic configuration information. The method is simple and straightforward.
  • the first CPE in a case where the phase of the at least one symbol included in the first signal changes according to the first manner, the first CPE is on the first time division multiplexing time unit
  • the central office device performs information interaction in the initialization phase; or, in a case where the phase of the at least one symbol included in the first signal changes according to the second manner, the first CPE is in the first
  • the information exchange of the handshake phase is performed on the second time division multiplexing time unit with the central office device.
  • the central office device in a case where a phase of the at least one symbol included in the first signal is changed according to the first manner, the central office device is on the first time division multiplexing time unit and the first The CPE performs information exchange in the initialization phase; or, in a case where the phase of the at least one symbol included in the first signal changes according to the second manner, the central office device is in a second time division multiplexing The information exchange with the first CPE on the time unit is performed on the time unit.
  • the central office device can perform a different interaction process with the first CPE according to the request of the first CPE, so as to implement communication between the central office device and the first CPE.
  • the first time division multiplexing time unit may be a time division multiplexing time unit that does not include the reserved time period, or the first time division multiplexing time unit may also be a time division multiplexing time unit including the reserved time period.
  • the reserved time period in the first time division multiplexing time unit only occupies a part of the time period of the uplink data transmission time period of the first time division multiplexing time unit, and the central office equipment is in the first time division multiplexing time unit.
  • the second time division multiplexing time unit may be a time division multiplexing time unit that does not include the reserved time period, or the second time division multiplexing time unit may also be a time division multiplexing time unit including the reserved time period, then
  • the reserved time period in the second time division multiplexing time unit only occupies a part of the time period in the uplink data transmission time period of the second time division multiplexing time unit, and the central office equipment is in the second time division multiplexing time unit and the first CPE.
  • the remaining time periods of the time period that is not set to be reserved in the uplink data transmission time period of the second time division multiplexing time unit are used to interact.
  • the first CPE receives a first broadcast message from the central office device, and the first broadcast message is used to indicate the first time division multiplexing time unit or the second time division Multiple time unit.
  • the central office device sends a first broadcast message, where the first broadcast message is used to indicate the first time division multiplexing time unit or the second time division multiplexing time unit.
  • the central office device needs to first notify the first CPE, for example, the central office device can send the first broadcast message, and the first CPE can receive the first A broadcast message is used to indicate a first time division multiplexing time unit, such as information indicating a location of the first time division multiplexing time unit. Then, the first CPE may determine the first time division multiplexing time unit according to the first broadcast message, so that the first time division multiplexing time unit and the central office device perform information interaction in the initialization phase.
  • the central office device needs to first notify the first CPE, for example, the central office device can send the first broadcast message, and the first CPE can receive the first
  • the broadcast message is used to indicate a second time division multiplexing time unit, such as information indicating the location of the second time division multiplexing time unit.
  • the first CPE may determine the second time division multiplexing time unit according to the first broadcast message, so that the second time division multiplexing time unit performs information interaction with the central office device in the handshake phase. That is, the first broadcast message in the embodiment of the present application may be used to indicate the first time division multiplexing time unit or the second time division multiplexing time unit.
  • the first CPE sends a first signal to the central office device, including but not limited to the following three modes: the first CPE sends the first CPE to the central office device on the first subcarrier.
  • the first signal, the first subcarrier is a subcarrier reserved for the CPE to interact with the central office device in a time division multiplexing manner; or, the first CPE is in a reserved time period, Transmitting, by the first subcarrier, the first signal to the central office device, where the first subcarrier is a subcarrier reserved for the CPE to interact with the central office device in a time division multiplexing manner; or Sending, by the first CPE, the first signal to the central office device on a second subcarrier, where the second subcarrier uses frequency division multiplexing for the CPE and the central office device.
  • the central office device receives the first signal from the first CPE, including but not limited to the following three modes: the central office device receives the first one from the central office device on the first subcarrier a signal, the first subcarrier is a subcarrier reserved for the CPE to interact with the central office device in a time division multiplexing manner; or, the central office device is in the first subcarrier within a reserved time period.
  • the central office device Receiving the first signal from the first CPE, where the first subcarrier is a subcarrier reserved for the CPE to interact with the central office device in a time division multiplexing manner; or the central office device Receiving, by the second subcarrier, the first signal from the first CPE in a reserved time period, where the second subcarrier is a handshake between the CPE and the central office device by using frequency division multiplexing Reserved subcarriers.
  • the receiving mode of the central office device corresponds to the sending mode of the first CPE.
  • the first CPE may send the first signal to the central office device on the second subcarrier within the reserved time period, and the reserved time period may be specifically for the CPE under the P2MP. The time reserved by the end device handshake.
  • the reserved time period may include a subset of uplink data transmission time periods of at least one time division multiplexing time unit, that is, a partial duration or a total duration in an uplink data transmission time period including at least one time division multiplexing time unit.
  • the first CPE can send the first signal to the central office device by occupying the second subcarrier in the reserved time period, so that the first signal can be prevented from colliding with the signal under the P2P, and the child specified in G.994.1 can also be reused. Carriers, without the need to redefine subcarriers, can improve resource utilization.
  • the first CPE may send the first signal to the central office device by using the first subcarrier, where the first subcarrier is a subcarrier reserved for the CPE to interact with the central office device in a time division multiplexing manner, and then The first sub-carrier transmission can avoid collision with the signal under the P2P as much as possible. Therefore, when the first sub-carrier is used to transmit the first signal, it can be selected to be sent in the reserved time period, so that the central office device can only be in the reserved time.
  • the segment monitors the first subcarrier to save power, or the first CPE can be sent at any time, which is more flexible.
  • the reserved time period includes a subset of uplink data transmission time periods of at least one time division multiplexing time unit.
  • a part of the time period may be reserved in the uplink data transmission time period of each time division multiplexing time unit as a reserved time period, and a reserved time period is set in each time division multiplexing time unit, and then Try to prevent the CPE from being unable to send the first signal due to the inability to know in which time period the reserved time period is multiplexed, and improve the success rate of the CPE sending the first signal.
  • a part of the time period of the uplink data transmission time period is set to a reserved time period, and the remaining time period in the uplink data transmission time period can continue to be used to send uplink data, and the uplink is ensured as much as possible. Normal transmission of data.
  • a part of the time period may be reserved in the uplink data transmission time period of the partial time division multiplexing time unit as the reserved time period.
  • the reserved time period is set in the part time division multiplexing time unit, which can ensure that the CPE can send the first signal to the central office device and ensure the normal interaction of other information.
  • all of the uplink data transmission time periods of the partial time division multiplexing time unit may be used as the reserved time period. This method is more suitable for situations where the service is not busy or requires a long time to send a chain signal.
  • How to set the reserved time period can be specified by the protocol or determined by the base station.
  • the first CPE receives a second broadcast message from the central office device, and the second broadcast message is used to indicate the reserved time period.
  • the central office device sends a second broadcast message, where the second broadcast message is used to indicate the reserved time period.
  • the reserved time period may appear according to a certain rule, or may be randomly assigned by the central office device according to the current service. If the reserved time period is in a certain regularity, the reserved time period may be specified by the protocol, or may be notified by the central office device, and if the reserved time period is that the central office device randomly assigns according to the current service. The reserved time period is notified by the central office device. In the case that the reserved time period is notified by the central office device, the central office device may send the second broadcast message in the broadcast channel, and the CPE to be online receives the second broadcast message, and the second broadcast message is used to indicate the reservation. Time period. After receiving the second broadcast message, the CPE to be online can determine information such as which time division multiplexing time unit the reserved time period is located, and the position of the reserved time period in the time division multiplexing time unit.
  • the first CPE obtains basic configuration information, including but not limited to the following two modes: the first CPE receives a third broadcast message from the central office device, and the third broadcast message is used for Instructing the basic configuration information; or the first CPE queries the stored basic configuration information.
  • the central office device further sends a third broadcast message, where the third broadcast message is used to indicate the basic configuration information.
  • the basic configuration information may be defined by the protocol, and may be stored in the terminal device in advance.
  • the first CPE can obtain basic configuration information by querying, and reduce the interaction process between the CPE and the central office device.
  • the basic configuration information can also be sent by the central office device.
  • the CPE does not need to store more information, which helps save the storage space of the CPE.
  • a CPE has the function of implementing the first CPE in the design of the above method. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the CPE may include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a central office device has the function of implementing the central office device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the central office device may include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a CPE has the function of implementing the first CPE in the design of the above method. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the CPE may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a central office device has the function of implementing the central office device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the central office equipment may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a communication device may be the first CPE in the above method design or the chip disposed in the first CPE.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions that, when executed by the processor, cause the communication device to perform the method performed by the first CPE in any of the possible aspects of the first aspect or the first aspect described above.
  • a communication device may be a central office device in the above method design, or a chip disposed in the central office device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions that, when executed by the processor, cause the communication device to perform the method performed by the central office device in any of the possible aspects of the second aspect or the second aspect above.
  • a communication system which can be understood as the same concept as the communication network described in the first aspect or the second aspect.
  • the communication system includes a central office device, a user node, and a plurality of CPEs, wherein the central office device is connected to the user node by using a twisted pair, and the user node is respectively connected to the multiple CPEs, and the multiple At least one CPE in the CPE is in a showtime state, and the CPE in the showtime state communicates with the central office device in a time division multiplexing manner, and the central office device is in a showtime state; wherein the first CPE is used to obtain a basic configuration.
  • the central office device Transmitting, to the central office device, a first signal, where the first CPE indicates, by the phase change of the at least one symbol included in the first signal, whether the first CPE supports the basic configuration information, where the first The CPE is one of the plurality of CPEs, and the first CPE is in a silent silent state; the central office device is configured to receive the first signal from the first CPE.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect of the first aspect of the design Said method.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the possible aspects of the second aspect or the second aspect described above The method described in the above.
  • a twelfth aspect a computer program product comprising instructions, wherein instructions stored in a computer program product, when executed on a computer, cause the computer to perform any of the first aspect or the first aspect described above The method described in the design.
  • a thirteenth aspect a computer program product comprising instructions, wherein instructions stored in a computer program product, when executed on a computer, cause the computer to perform any one of the second aspect or the second aspect described above The method described in the design.
  • the central office device and the plurality of CPEs can communicate in a time division multiplexing manner, so that the central office device can communicate with multiple CPEs, so as to prevent the central office device from only shaking hands with one CPE.
  • Multiple CPEs can access the central office equipment and access the network to meet the connection requirements of the CPE.
  • Figure 1 is a schematic diagram showing the structure of a superframe used in the G.fast standard
  • Figure 2 shows the interaction process between the central office equipment and the CPE specified in the G.994.1 standard
  • FIG. 3 is a schematic diagram of an application scenario of a P2MP according to an embodiment of the present application
  • 5A-5C are schematic diagrams of several situations of a reserved time period according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a first CPE according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a central office device according to an embodiment of the present disclosure.
  • 8A-8B are two schematic structural diagrams of a communication device according to an embodiment of the present application.
  • CPE CPE client terminal equipment is often placed in the home connected by twisted pair, used to provide cable broadband for home users, internet protocol television (IPTV), voice over internet protocol (VoIP) ) Comprehensive access to services.
  • IPTV internet protocol television
  • VoIP voice over internet protocol
  • the CPE implements a connection between the access network and the user equipment.
  • the CO is a central office device.
  • multiple CPEs can be connected through user nodes to provide network access services for multiple CPEs.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • FTTH (fiber to the home) technology represented by PON can meet the increasing expectations of access network speed in terms of bandwidth, but in terms of investment cost, deployment and operation, and stability. There are insurmountable limitations in terms of aspects, especially the high construction cost of fiber-to-the-home, and the cost of the entire life cycle is far from the expectations of operators. Copper wire access technologies such as digital subscriber line (DSL) have obvious advantages in terms of investment, operation and maintenance. Operators hope to provide broadband access services that meet user needs in the next 10 to 20 years or more while protecting and utilizing existing copper investments.
  • DSL digital subscriber line
  • ITU-T In order to meet this medium- and long-term higher-rate demand, ITU-T has established the G.fast project to study the use of copper wire in the FTTdp scenario to provide the final high-speed access, with the goal of providing more than 500 Mbps in a range of 100 meters. Access rate.
  • ITU-T Q4 is conducting G.fast-related technical research and standards development, and the G.fast standard number is G.9701.
  • TDD is a half-duplex multiplexing mode, in which both uplink and downlink occupy all subcarriers of the entire frequency band to transmit information, and the system allocates time slots respectively. In the same time slot, the transceiver at one end can only transmit or receive, and the transceiver at the opposite end can only take the opposite operation in the time slot.
  • the G.fast standard uses a superframe structure as shown in FIG. One superframe includes a plurality of TDD frames, and the first frame in the superframe is a TDD synchronization frame, and the TDD synchronization frame includes a downlink synchronization symbol and an uplink synchronization symbol.
  • the ITU adopted the G.mgfast standard in June 2017.
  • the telephone line twisted pair
  • the CPE accesses the network by communicating with the central office equipment.
  • the G.994.1 standard specifies the handshake process between CPE and CO.
  • a handshake is a process of information exchange and selection between a CO and a CPE through a specific message interaction.
  • the G.994.1 standard also regulates the chain-building before the handshake and the chain-breaking process after the handshake.
  • the purpose of the chain is to confirm that the two ends of the transceiver are ready to exchange handshake messages.
  • the purpose of the chain is to end the handshake phase, enter the initialization phase or return to the initial state.
  • the process of each stage of G.994.1 can refer to Figure 2. Before the central office equipment and the CPE send the interactive message, it is necessary to confirm that the peer is ready for message interaction. This confirmation process is called chain building.
  • the double end can exchange messages.
  • the chain splitting is required to end the handshake message interaction phase, and then enter the initialization phase and the showtime phase.
  • the link needs to be broken, the handshake message interaction phase is ended, and the initial state is restored.
  • the existing G.994.1 standard only supports the P2P mode, that is, one port of the central office device only handshakes with one CPE. In other words, before the CPE sends a handshake request, the port of the central office device is in a silent state and does not send any signal.
  • P2MP mode it is very likely that the central office device is already in the showtime phase and transmits signals to another CPE before a CPE sends a handshake request. For example, if a CPE is online on a G.mgfast line, this will happen if a new CPE request comes online.
  • the handshake process of the central office device in the showtime phase is not supported by G.994.1. That is to say, in the P2MP mode, the central office device may be connected to multiple CPEs. If one port of the central office device only handshakes with one CPE, multiple CPEs cannot access the central office device.
  • the central office device can communicate with multiple CPEs in a time division multiplexing manner, so that the central office device can only be handshaked with one CPE, so that multiple CPEs can access the local office.
  • FIG. 3 is a schematic diagram of a P2MP network.
  • the telephone line (twisted pair) connects one port of the central office device and the user node, and the user node is connected to multiple CPEs.
  • a new home can have a telephone line interface in every room in the home. With these interfaces, each room can be connected to a CPE.
  • a family has 4 telephone line interfaces, which can connect 4 CPEs at the same time: CPE A1, CPE A2, CPE A3 and CPE A4.
  • the B family also has four telephone line interfaces that can connect four CPEs simultaneously: CPE B1, CPE B2, CPE B3, and CPE B4.
  • CPE B1, CPE B2, CPE B3, and CPE B4 The number of households in FIG. 3 and the number of CPEs in each household are only examples.
  • the present application does not limit the number of CPEs owned by one home, and does not limit the number of CPEs that the central office equipment can connect to, that is, no limit.
  • the embodiments of the present application can be applied to a P2MP network, and can also be applied to other similar wired communication systems, such as a cable television system. In the introduction process of this article, it is applied to the P2MP network as an example.
  • the technical solution provided by the embodiment of the present application is described below with reference to the accompanying drawings.
  • the technical solution provided by the embodiment of the present application is applied to the application scenario shown in FIG. 3, that is, the communication network is as shown in FIG.
  • the illustrated P2MP network is taken as an example.
  • at least one CPE of the plurality of CPEs connected to the central office device is in the showtime state, that is, the central office device is also in the showtime state, and the CPE in the showtime state communicates with the central office device through the time division multiplexing mode.
  • the central office device is also in the showtime state
  • the CPE in the showtime state communicates with the central office device through the time division multiplexing mode.
  • an embodiment of the present application provides a communication method, and a flow of the method is described as follows.
  • the first CPE obtains basic configuration information, where the first CPE is one of multiple CPEs connected by the central office device, and the first CPE is in a silent state.
  • the first CPE is not the CPE in the showtime state as described above, but the CPE to be online.
  • the CPE to be online can be understood as follows: The CO is connected to multiple CPEs. In the silent CPE, some CPEs or all CPEs are waiting or ready to handshake with the CO. These CPEs are CPEs to be online, and the first CPE is Any one of the CPEs to be online.
  • the basic configuration information may include at least one item shown in Table 1:
  • CE length in Table 1 is the value of the cyclic prefix + cyclic suffix -beta, where beta is the length of the window; Profile is mainly used to define the frequency band and amplitude of the transmitted power spectral density; the number of downlink symbols refers to each TDD The number of downlink symbols sent in the frame.
  • the first CPE can obtain basic configuration information in different ways.
  • the basic configuration information may be pre-defined by the protocol, and the CPE and the central office device may pre-store the basic configuration information.
  • the first CPE can obtain basic configuration information by querying locally, and the central office device does not need to send a broadcast message, which can reduce the interaction process between the devices.
  • the basic configuration information may be provided by the central office device.
  • the central office device determines basic configuration information, and the central office device can send a third broadcast message, and the third broadcast message is used to indicate basic configuration information.
  • the first CPE first receives the third broadcast message of the broadcast channel. Since the broadcast channel uses the simplest fourth-order quadrature amplitude modulation (QAM), the broadcast channel message can be demodulated for the CPE to be uplinked.
  • the first CPE may obtain basic configuration information according to the indication of the third broadcast message.
  • QAM quadrature amplitude modulation
  • the central office device may send the third broadcast message multiple times, and the third embodiment broadcasts the third broadcast message.
  • the number of times, the timing of transmission, and the interval of transmission are not limited.
  • the first CPE sends a first signal to the central office device, and the central office device receives the first signal from the first CPE.
  • the first CPE indicates whether the first CPE supports the basic configuration information by the phase change of the at least one symbol included in the first signal, and the central office device determines whether the first CPE supports the basic configuration information by parsing the first signal.
  • the first signal may also be referred to as a link-building signal, such as representing the first signal as P2MP-startup (SU)-x.
  • the first signal may be a sinusoidal signal, and may be modulated by a binary differential phase shift keying (DPSK) method, that is, when the digital “1” is modulated, the phase of the signal is inverted by 180°, and when the digital “0” is modulated, the phase of the signal is not change.
  • DPSK binary differential phase shift keying
  • each bit (bit) included in the first signal may be repeatedly transmitted, for example, may be repeatedly transmitted 5 times, or may be repeatedly transmitted 8 times, etc., and the embodiment of the present application does not limit the number of repeated transmissions. .
  • the subcarrier spacing of the first signal may be extended by the subcarrier spacing specified by the G.994.1 standard, and the subcarrier spacing specified by the G.994.1 standard is 4.3125 kHz, or the subcarrier spacing of the first signal may also be Unlike the subcarrier spacing specified by the G.994.1 standard, for example, the subcarrier spacing of the first signal may be equal to the subcarrier spacing of the signal of the showtime phase specified by G.mgfast.
  • the first signal is represented as P2MP-SU-1; and if the subcarrier spacing of the first signal is equal to G.mgfast The subcarrier spacing of the signal of the specified showtime phase, then the first signal is represented as P2MP-SU-2.
  • the P2MP-SU-x signal includes multiple symbols
  • the first CPE may indicate whether the first CPE supports basic configuration information by using a phase change of at least one symbol included in the P2MP-SU-x signal.
  • At least one symbol may be all symbols or partial symbols included in the P2MP-SU-x signal.
  • the phase of the symbol changes, one way is that the phase of the symbol is flipped, for example by 180°, for example for a binary symbol, it is flipped from "0" to "1" or from "1" to "0".
  • the CPE and the central office equipment must interact with each other, and also need to build the chain first. Therefore, there is also a chain-building signal.
  • the sinusoidal signal specified by the G.994.1 standard is -40dBm/Hz, and the sinusoidal signal The included symbols are phase flipped every 16 ms.
  • the P2MP-SU-x signal adopts a phase change mode different from the link-building signal specified in the G.994.1 standard:
  • the phase inversion interval of the at least one symbol included in the P2MP-SU-x signal is different from the interval of 16 ms specified in the G.994.1 standard, for example, at least one symbol included in the P2MP-SU-x signal is flipped every 8 ms. Phase or flip phase once every 32ms.
  • the subcarrier spacing of P2MP-SU-x may be larger than 4.3125 kHz, ie the duration of one symbol is shorter, faster phase inversion can be supported.
  • phase flip is different.
  • the P2MP-SU-x signal indicates whether the CPE supports the basic configuration information by the phase change of at least one symbol
  • the P2MP-SU-x signal can express two meanings: the CPE supports the basic configuration information, or the CPE does not support the basic configuration information. Then for these two meanings, the P2MP-SU-x signal can be expressed by different phase flipping forms, that is, the phase of at least one symbol included in the P2MP-SU-x signal can be changed in the first manner or in the second mode.
  • the first mode is a method in which the phase is inverted according to 0110110...
  • the second mode is a manner in which the phase is inverted according to 001001001.
  • the way of 001001001... can be understood as that the P2MP-SU-x signal includes at least one symbol after the first flip interval, the phase does not change, after the second flip interval, the phase is flipped again, after the third After the rollover interval, there is no change in phase, and so on.
  • the CPE may receive the basic configuration information. An error occurred and the basic configuration information could not be obtained, and it indicated that the CPE requested to enter the handshake phase that supports P2MP.
  • the P2MP-SU-x signal provided by the embodiment of the present application can ensure that the central office equipment can distinguish whether the CPE wants to go online through the P2P mode or the P2MP mode.
  • P2MP-SU-2 is the same as P2MP-SU-1.
  • the central office equipment can distinguish whether it is P2P or P2MP mode.
  • P2MP-SU-2 has a further advantage over P2MP-SU-1, that is, the central office only needs to process a symbol rate symbol when building the link, that is, it only needs to process the same symbol rate as the showtime phase specified by G.mgfast.
  • the symbol, but P2MP-SU-1 is compatible with the subcarrier spacing of G.994.1, so the central office needs to handle the symbols of the two symbol rates.
  • the first CPE sends the first signal to the central office device in different manners. Several methods are described below.
  • the first CPE sends a first signal to the central office device on the first sub-carrier, where the first sub-carrier is a sub-carrier reserved for the CPE to exchange with the central office device in a time division multiplexing manner.
  • the first subcarrier is a subcarrier reserved for the handshake of the CPE and the central office device under the P2MP. Because the starting subcarrier of the showtime phase is a subcarrier of 2.2 MHz, for example, the minimum frequency of the first subcarrier is greater than 2.2 MHz.
  • the subcarrier spacing of the first subcarrier is consistent with the subcarrier spacing of the showtime, and at least one subcarrier may be included in the first subcarrier.
  • the central office device can determine that the CPE is connected under the P2MP by receiving the signal from the first subcarrier. signal. From this perspective, in mode A, the time at which the first CPE transmits the first signal on the first subcarrier may not be limited.
  • the first CPE sends the first signal to the central office device on the second subcarrier in the reserved time period, and the second subcarrier is reserved for the CPE and the central office device by using the frequency division multiplexing handshake. Subcarriers.
  • the second subcarrier may be a subcarrier included in the handshake carrier set specified in the G.994.1 standard.
  • handshake signals are transmitted and detected on the corresponding handshake carrier set.
  • the G.994.1 standard stipulates that different Annex mode handshake messages must be transmitted through a specified number of carriers. These sets of carriers used for handshaking are called handshake carrier sets. For convenience of distinction, each carrier set has a specific name, such as A43, B43, etc., as shown in Table 2.
  • the handshake carrier set used by the G.fast standard is A43, B43, or A43, A43c.
  • the second subcarrier may then include subcarriers in A43 and/or B43, or subcarriers in A43 and/or A43c.
  • P2MP-SU-x uses the same subcarrier as the G.994.1 standard, and the subcarrier spacing used is 4.3125khz, while the subcarrier spacing of the showtime phase is not 4.3125khz, so the two signal mixing is not conducive to The reception of the central office equipment needs to be sent separately so that the central office equipment can detect it, so it needs to be differentiated in time. Therefore, in the embodiment of the present application, the first CPE may send the first signal to the central office device on the second subcarrier within the reserved time period, and the reserved time period may be specifically for the CPE under the P2MP. The time reserved by the end device handshake.
  • the reserved time period may include a subset of uplink data transmission time periods of at least one time division multiplexing time unit, that is, a partial duration or a total duration in an uplink data transmission time period including at least one time division multiplexing time unit.
  • the time division multiplexing time unit is, for example, a TDD frame, or a TDD time slot, or a TDD mini-slot, etc., which is not limited in this embodiment.
  • About the reserved time period including but not limited to the following situations:
  • Case a A part of the time period is reserved as a reserved time period in the uplink data transmission time period of each time division multiplexing time unit.
  • time division multiplexing time unit Take the time division multiplexing time unit as an example of a TDD frame.
  • a part of the time period is set in the uplink data transmission period of each TDD frame to specifically transmit the first signal to the CPE to be online.
  • the length of the reserved time period in a TDD frame is not limited in the embodiment of the present application.
  • the length of the reserved time period in different TDD frames may be the same or different, and these may be set according to actual conditions, or Agreement provisions.
  • Ds in FIG. 5A represents downlink transmission
  • D represents uplink data
  • a time period indicated by D is an uplink data transmission time period
  • a part drawn by a diagonal line represents The time period reserved in the uplink data transmission period indicated by D.
  • a part of the time period is reserved as a reserved time period in the uplink data transmission period of each of the TDD frames.
  • the reserved time period is located at the end of the uplink data transmission time period.
  • the time period reserved in the actual application may be located at any position of the uplink data transmission time period, for example, the reserved time period.
  • the reserved time period is located at the end of the uplink data transmission time period, and the priority transmission of the uplink data can be ensured as much as possible.
  • the positions of the reserved time periods in different TDD frames may be the same or different, and these may be set according to actual conditions or specified by the protocol.
  • information such as the location of the reserved time period in the time division multiplexing time unit may be specified by the protocol, or may be notified by the central office device, for example, the central office device sends the second broadcast message, and then goes online.
  • the CPE receives the second broadcast message, and the second broadcast message is used to indicate the reserved time period. After the CPE to be online receives the second broadcast message, information such as the location of the reserved time period can be determined.
  • the CPE When the reserved time period is set in each time division multiplexing time unit, the CPE can be prevented from being unable to send the first signal due to the time zone in which the reserved time period cannot be known in time, thereby improving the CPE transmission.
  • the success rate of the first signal In addition, in a time division multiplexing time unit, a part of the time period of the uplink data transmission time period is set to a reserved time period, and the remaining time period in the uplink data transmission time period can continue to be used to send uplink data, and the uplink is ensured as much as possible. Normal transmission of data.
  • Case b A part of the time period is reserved in the uplink data transmission time period of the partial time division multiplexing time unit as the reserved time period.
  • a part of the uplink data transmission time period of one or several time division multiplexing time units is reserved.
  • the time period is specifically for sending the first signal to the CPE to be online.
  • Ds in FIG. 5B represents downlink transmission
  • D represents uplink data
  • a time period indicated by D is an uplink data transmission time period
  • a portion drawn by a diagonal line represents The time period reserved in the uplink data transmission period indicated by D. It can be seen that a part of the time period is reserved in the uplink data transmission time period of the second TDD frame as the reserved time period, and no reservation is left in the uplink data transmission time period of other TDD frames. Time period. For example, in FIG. 5B, the reserved time period is located at the end of the uplink data transmission time period.
  • the time period reserved in the actual application may be located at any position of the uplink data transmission time period, for example, the reserved time period. It may also be located at the beginning or intermediate position of the uplink data transmission period. In addition, if the reserved time period is left in the uplink data transmission time period of the multiple TDD frames, the reserved time segments in the different TDD frames may be the same or different, which may be based on actual conditions. Set, or as specified by the agreement.
  • the reserved time period may appear according to a certain rule, or may be randomly designated by the central office device according to the current service. If the reserved time period is in a certain regularity, the reserved time period may be specified by the protocol, or may be notified by the central office device, and if the reserved time period is that the central office device randomly assigns according to the current service. The reserved time period is notified by the central office device. In the case that the reserved time period is notified by the central office device, the central office device may send the second broadcast message in the broadcast channel, and the CPE to be online receives the second broadcast message, and the second broadcast message is used to indicate the reservation. Time period. After receiving the second broadcast message, the CPE to be online can determine information such as which time division multiplexing time unit the reserved time period is located, and the position of the reserved time period in the time division multiplexing time unit.
  • the central office device may start sending the second broadcast message in advance, and the second broadcast message may be sent only once. Alternatively, it may be sent multiple times, for example, starting to send a second broadcast message in advance of multiple TDD frames, sending once every TDD frame, or sending once every several TDD frames.
  • the central office device may start to send the second broadcast message in the first 10 TDD frames of the TDD frame in which the reserved time period is located, and the second broadcast message may be sent only once, or in each of the first 10 TDD frames. It is sent once in each TDD frame.
  • the central office device may also carry a countdown timer in the second broadcast message when the second broadcast message is sent, and the initial value of the countdown timer is the first time.
  • the central office device decrements the value of the countdown timer by one.
  • the central office device may start sending a second broadcast message in the first 10 TDD frames of the TDD frame where the reserved time period is located, where the second broadcast message indicates that the reserved time period is located in the nth TDD frame, and the second broadcast
  • the initial value of the countdown timer carried by the message is 10.
  • the central office device continues to broadcast the second broadcast message, and in each second broadcast message, the value of the countdown timer is decremented by one on the basis of the previous second broadcast message, and then the countdown is
  • a TDD frame with a timer value of 0 is a TDD frame that leaves a reserved period of time. In this way, the CPE to be online can be more accurately informed which TDD frame has a reserved time period, so that the first signal can be transmitted at the correct position.
  • the reserved time period is set in the part time division multiplexing time unit, which can ensure that the CPE can send the first signal to the central office device and ensure the normal interaction of other information.
  • Case c The uplink data transmission time period of the partial time division multiplexing time unit is all taken as a reserved time period.
  • case c is that the uplink data transmission time period of the partial time division multiplexing time unit is all used as the reserved time period, and case b is only the uplink data transmission time of the partial time division multiplexing time unit. A part of the time period in the segment is used as the reserved time period. Case c is more suitable for situations where the service is not busy or the time required to send the link signal is relatively long.
  • Ds in FIG. 5C represents downlink transmission
  • D represents uplink data
  • a time period indicated by D is an uplink data transmission time period
  • a portion drawn by a diagonal line represents The time period reserved in the uplink data transmission period indicated by D. It can be seen that the uplink data transmission time period of the second TDD frame is all used as the reserved time period, and the reserved time period is not reserved in the uplink data transmission time period of the other TDD frames.
  • the reserved time period may be specified by the protocol, or notified by the central office device.
  • the notification of the central office device refer to the description in case b, and no further details are provided.
  • the first CPE can send the first signal to the central office device by occupying the second subcarrier in the reserved time period, so that the first signal can be prevented from colliding with the signal under the P2P, and the child specified in G.994.1 can also be reused. Carriers, without the need to redefine subcarriers, can improve resource utilization.
  • the first CPE sends the first signal to the central office device on the first subcarrier in the reserved time period, where the first subcarrier is reserved for the CPE and the central office device to adopt the time division multiplexing mode interaction. Subcarrier.
  • the first signal is sent to the central office device on the first subcarrier.
  • the reserved time period can also be set, and the first CPE can also select to send to the central office device during the reserved time period.
  • the first signal such that the first subcarrier can have other uses in other time periods than the reserved time period, can improve resource utilization.
  • the reserved time period refer to the related introduction in Mode B, and I will not repeat them.
  • the uplink data transmission time period in the time division multiplexing time unit is all set to the reserved time period, and the CPE can be ensured that the CPE has sufficient time to transmit the first signal, thereby improving the success rate of the CPE sending the first signal.
  • the manner in which the first CPE sends the first signal to the central office device is described. In the actual application, different manners may be selected, or which manner may be specifically defined by the protocol.
  • the central office device After receiving the first signal, the central office device determines whether the first CPE supports the basic configuration information and determines the request of the first CPE according to the phase change form of the first signal. For example, in a case where the phase of the at least one symbol included in the first signal changes according to the first manner as described above, the central office device determines that the first CPE supports the basic configuration information, and the first CPE requests to enter the initialization phase. And in the case that the phase of the at least one symbol included in the first signal changes according to the second manner as described above, the central office device determines that the first CPE does not support the basic configuration information, and the first CPE requests to enter the handshake of the P2MP. stage.
  • the communication method may further include the following steps:
  • the central office device may open a special time division multiplexing time unit and the first CPE to perform an initialization phase.
  • the information interaction for example, the central office device can interact with the first CPE during the initialization phase on the first time division multiplexing time unit.
  • the central office device and the first CPE can measure the signal to noise ratio (SNR) to determine a bit loading table.
  • the central office equipment and the first CPE can also separately train the frequency domain equalization coefficients, and through the synchronization symbol (sync symbol), the coefficients of the crosstalk cancellation are also trained to ensure stable transmission of data after entering the showtime phase.
  • the central office device and the first CPE may have other work, which is not limited in the embodiment of the present application.
  • the first time division multiplexing time unit may be a time division multiplexing time unit that does not include the reserved time period, or the first time division multiplexing time unit may also be a time division multiplexing time including the reserved time period. a unit, wherein the reserved time period in the first time division multiplexing time unit occupies only a part of the time period of the uplink data transmission time period of the first time division multiplexing time unit, and the central office equipment is in the first time division multiplexing When the information on the time unit is interacted with the initialization phase of the first CPE, the remaining time period of the time period that is not set to be reserved in the uplink data transmission time period of the first time division multiplexing time unit is used to interact.
  • the central office device needs to first notify the first CPE, for example, the central office device can send the first broadcast message, and the first CPE can receive the first A broadcast message is used to indicate a first time division multiplexing time unit, such as information indicating a location of the first time division multiplexing time unit. Then, the first CPE may determine the first time division multiplexing time unit according to the first broadcast message, so that the first time division multiplexing time unit and the central office device perform information interaction in the initialization phase.
  • the central office device may open a special time division multiplexing time unit to perform with the first CPE.
  • the information exchange of the handshake phase of the P2MP for example, the central office device can perform information exchange with the first CPE during the handshake phase on the second time division multiplexing time unit.
  • the central office device and the first CPE can re-interact the basic configuration information shown in Table 1, for example, including the length of the template or CE to be used. This information determines that the central office equipment and the CPE can correctly demodulate the signals sent during the initialization phase.
  • the central office device and the first CPE may have other work, which is not limited in the embodiment of the present application.
  • the second time division multiplexing time unit may be a time division multiplexing time unit that does not include the reserved time period, or the second time division multiplexing time unit may also be a time division multiplexing time unit including the reserved time period.
  • the reserved time period in the second time division multiplexing time unit only occupies a part of the time period of the uplink data transmission time period of the second time division multiplexing time unit, and the central office equipment is in the second time division multiplexing time unit.
  • a CPE performs information exchange in the handshake phase, it uses the remaining time period of the time period that is not set to be reserved in the uplink data transmission time period of the second time division multiplexing time unit to interact.
  • the central office device needs to first notify the first CPE, for example, the central office device can send the first broadcast message, and the first CPE can receive the first
  • the broadcast message is used to indicate a second time division multiplexing time unit, such as information indicating the location of the second time division multiplexing time unit.
  • the first CPE may determine the second time division multiplexing time unit according to the first broadcast message, so that the second time division multiplexing time unit performs information interaction with the central office device in the handshake phase. That is, the first broadcast message in the embodiment of the present application may be used to indicate the first time division multiplexing time unit or the second time division multiplexing time unit.
  • S43 and S44 are optional steps.
  • At least one CPE of the multiple CPEs connected to the central office device is in the showtime state, that is, the central office device is also in the showtime state, and then the central office device is in the silent state when the central office device is in the silent state.
  • the showtime state can be entered by shaking hands with at least one of the connected multiple CPEs.
  • the central office device may enter the showtime state by using the communication method provided by the embodiment of the present application. That is, the CPE to be online is used to perform handshake interaction with the central office device by using the communication method provided by the embodiment of the present application.
  • the CPE can monitor the state of the central office device.
  • the CPE to be online can continue to use the existing technology, that is, the P2P mode and the central office according to the G.994.1 standard.
  • the central office device After the device performs the handshake, the central office device enters the showtime state by the P2P handshake with a CPE.
  • the CPE to be online determines that the central office device enters the showtime state.
  • the CPE to be online is in accordance with the communication method provided by the embodiment of the present application.
  • the P2MP handshake interaction with the central office device is performed, so that the G.994.1 standard can be used, and the P2MP solution provided by the embodiment of the present application can be used.
  • FIG. 6 shows a schematic structural view of a CPE 600.
  • the CPE 600 can implement the functions of the first CPE referred to above.
  • the CPE 600 may be the first CPE described above or may be a chip disposed in the first CPE described above.
  • the CPE 600 can include a processor 601 and a transceiver 602.
  • the processor 601 can be used to execute S41, S43, and S44 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver 602 can be used to perform S41, S42, S43, and S44 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver 602 performs S41, which mainly means that the transceiver 602 receives basic configuration information from the central office device, and the processor 601 obtains basic configuration information received by the transceiver 602.
  • the processor 601 is configured to obtain basic configuration information.
  • the transceiver 602 is configured to send a first signal to the central office device, and the CPE 600 indicates, by the phase change of the at least one symbol included in the first signal, whether the CPE 600 supports the basic configuration information.
  • FIG. 7 shows a schematic structural diagram of a central office device 700.
  • the central office device 700 can implement the functions of the central office device referred to above.
  • the central office device 700 may be the central office device described above, or may be a chip disposed in the central office device described above.
  • the central office device 700 can include a processor 701 and a transceiver 702.
  • the processor 701 can be used to perform S43 and S44 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver 702 can be used to perform S41, S42, S43, and S44 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver 702 performs S41, which mainly means that the transceiver 702 sends basic configuration information to the first CPE.
  • the transceiver 702 is configured to receive a first signal from the first CPE;
  • the processor 701 is configured to determine, according to a phase change of the at least one symbol included in the first signal, whether the first CPE supports basic configuration information, where the first CPE is a CPE that is requested to be online in the multiple CPEs.
  • CPE 600 or central office device 700 can also be implemented by the structure of communication device 800 as shown in FIG. 8A.
  • the communication device 800 can implement the functions of the first CPE or the central office device referred to above.
  • the communication device 800 can include a processor 801. Wherein, when the communication device 800 is used to implement the function of the first CPE in the embodiment shown in FIG. 4, the processor 801 can be used to execute S41, S43, and S44 in the embodiment shown in FIG. 4, and / Or other processes for supporting the techniques described herein. When the communication device 800 is used to implement the functions of the central office device in the embodiment shown in FIG. 4, the processor 801 can be used to execute S43 and S44 in the embodiment shown in FIG. 4, and/or to support this document. Other processes of the described techniques.
  • the communication device 800 can pass through a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor (central processor). Unit, CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), or programmable logic device (programmable logic device, The PLD) or other integrated chip implementation, the communication device 600 can be disposed in the network device or the terminal device in the embodiment of the present application, so that the network device or the terminal device implements the signal sending and receiving method provided by the embodiment of the present application.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • programmable logic device programmable logic device
  • the communication device 800 can also include a memory 802, which can be referenced to FIG. 8B, where the memory 802 is used to store computer programs or instructions, and the processor 801 is used to decode and execute the computer programs or instructions. .
  • these computer programs or instructions may include the functional programs of the first CPE or central office device described above.
  • the function program of the first CPE is decoded and executed by the processor 801
  • the first CPE can be caused to implement the function of the first CPE in the communication method of the embodiment of the present application.
  • the function program of the authority device is decoded and executed by the processor 801
  • the central office device can implement the function of the central office device in the communication method of the embodiment of the present application.
  • the functional programs of the first CPE or central office devices are stored in a memory external to the communication device 800.
  • the function program of the first CPE is decoded and executed by the processor 801
  • part or all of the contents of the function program of the first CPE are temporarily stored in the memory 802.
  • the function program of the authority device is decoded and executed by the processor 801
  • part or all of the contents of the function program of the above-mentioned central office device is temporarily stored in the memory 802.
  • the functional programs of the first CPE or central office devices are disposed in a memory 802 stored within the communication device 800.
  • the communication device 800 can be disposed in the first CPE of the embodiment of the present application.
  • the function program of the central office device is stored in the memory 802 inside the communication device 800, the communication device 800 can be disposed in the central office device of the embodiment of the present application.
  • portions of the functional programs of the first CPEs are stored in a memory external to the communication device 800, and other portions of the functional programs of the first CPE are stored in the memory 802 internal to the communication device 800.
  • portions of the functional programs of these central office devices are stored in a memory external to the communication device 800, and other portions of the functional programs of the central office devices are stored in the memory 802 inside the communication device 800.
  • the CPE 600, the central office device 700, and the communication device 800 are presented in the form of dividing each functional module into functions, or may be presented in an integrated manner to divide the functional modules.
  • a “module” herein may refer to an ASIC, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • the CPE 600 provided by the embodiment shown in FIG. 6 can also be implemented in other forms.
  • the CPE includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 601, and the transceiver module can be implemented by the transceiver 602.
  • the processing module can be used to execute S41, S43, and S44 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to perform S41, S42, S43, and S44 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver module executes S41, which mainly means that the transceiver module receives basic configuration information from the central office device, and the processing module obtains basic configuration information received by the transceiver module.
  • a processing module for obtaining basic configuration information For example, a processing module for obtaining basic configuration information
  • the transceiver module is configured to send a first signal to the central office device, and the CPE 600 indicates whether the CPE 600 supports the basic configuration information by using a phase change of the at least one symbol included in the first signal.
  • the central office device 700 provided by the embodiment shown in FIG. 7 can also be implemented in other forms.
  • the central office device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 701, and the transceiver module can be implemented by the transceiver 702.
  • the processing module can be used to perform S43 and S44 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to perform S41, S42, S43, and S44 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver module executes S41, which mainly means that the transceiver module sends basic configuration information to the first CPE.
  • a transceiver module is configured to receive a first signal from the first CPE
  • a processing module configured to determine, according to a phase change of the at least one symbol included in the first signal, whether the first CPE supports basic configuration information, where the first CPE is a CPE that is requested to be online in the multiple CPEs.
  • the CPE 600, the central office device 700, and the communication device 800 provided by the embodiments of the present application can be used to perform the method provided by the embodiment shown in FIG. 4, so that the technical effects that can be obtained can be referred to the foregoing method embodiment, where No longer.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD) ))Wait.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital versatile disc (DVD)
  • DVD digital versatile disc
  • semiconductor medium eg, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Telephonic Communication Services (AREA)

Abstract

一种通信方法及设备,用于使得局端设备能够与多个 CPE 实现握手。其中的一种通信方法应用于通信网络,所述通信网络包括局端设备、用户节点、以及多个 CPE,其中,所述局端设备通过双绞线接所述用户节点,所述用户节点与所述多个 CPE 相连,所述多个 CPE 中有至少一个 CPE 处于showtime 状态,所述处于 showtime 状态的 CPE 通过时分复用方式与所述局端设备通信;所述方法包括:第一 CPE 获得基本配置信息,所述第一CPE 为所述多个 CPE 中的一个,且所述第一 CPE 处于 silent 状态;所述第一 CPE 向所述局端设备发送第一信号,所述第一 CPE 通过所述第一信号包括的至少一个符号的相位变化指示所述第一 CPE 是否支持所述基本配置信息。

Description

一种通信方法及设备
本申请要求在2017年11月16日提交中国专利局、申请号为201711137375.2、申请名称为“一种通信方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
目前,G.fast项目用来研究光纤到分线点(fiber to the distribution point,FTTdp)场景下,使用铜线来提供最后的高速接入,其目标是在100米范围内提供500Mbps以上的接入速率。目前,国际电信联盟电信标准分局(international telecommunication union-telecommunication standardization sector,ITU-T) Q4正在进行G.fast相关的技术研究和标准制定,G.fast标准编号为G.9701。
G.fast的上下行采用时分双工(time division duplexing,TDD)。TDD是一种半双工复用方式,即上下行都占用整个频段的所有子载波来发送信息,由系统分别分配时隙。同一时隙下,一端的收发器只能发送或接收,而对端的收发器在该时隙只能采取相反的操作。目前,G.fast标准采用如图1所示的超帧(super frame)结构。一个超帧包括多个TDD帧,超帧中的第一个帧为TDD同步帧(sync frame),TDD同步帧包括下行同步符号(DS sync symbol)和上行同步符号(US sync symbol)。TDD同步帧和TDD帧的长度均为T F,一个超帧包括的TDD帧和TDD同步帧的数量共为M SF,则一个超帧的长度T SF就可以采用如下公式计算:T SF=M SF×T F。图1中,Ds表示下行传输,Us表示上行传输。
为了为用户提供更高的速率,ITU于2017年6月通过G.mgfast标准立项。在G.mgfast标准框架内,运营商提出了双绞线网络的点对多点(point-to-multipoint,P2MP)架构。在P2MP的网络架构下,电话线(双绞线)连接了局端设备(CO)的一个端口和多个用户驻地设备(CPE),CPE通过与CO通信而入网。其中,CPE也可称为客户终端设备(customer premise equipment )。
目前,有G.994.1标准规定了CPE与局端设备之间的握手过程。然而,G.994.1标准只支持点对点(point-to-point,P2P)模式,收发双方采用频分复用的方式交互消息。因此在G.994.1标准下,局端设备的一个端口只跟一个CPE握手。而在P2MP模式下,局端设备可能会与多个CPE连接,如果局端设备的一个端口只跟一个CPE握手,会导致多个CPE无法接入局端设备。
发明内容
本申请实施例提供一种通信方法及设备,用于使得局端设备能够与多个CPE实现握手。
第一方面,提供一种通信方法,该方法可应用于通信网络,所述通信网络包括局端设 备、用户节点、以及多个CPE,其中,所述局端设备通过双绞线接所述用户节点,所述用户节点与所述多个CPE相连,所述多个CPE中有至少一个CPE处于showtime状态,所述处于showtime状态的CPE通过时分复用方式与所述局端设备通信;所述方法通过所述多个CPE中的第一CPE执行,第一CPE可以是多个CPE中未处于showtime状态的CPE。该方法包括:第一CPE获得基本配置信息,所述第一CPE为所述多个CPE中的一个,且所述第一CPE处于silent状态;所述第一CPE向所述局端设备发送第一信号,所述第一CPE通过所述第一信号包括的至少一个符号的相位变化指示所述第一CPE是否支持所述基本配置信息。
相应的,第二方面,提供一种通信方法,该方法可应用于通信网络,所述通信网络包括局端设备、用户节点、以及多个CPE,其中,所述局端设备通过双绞线接所述用户节点,所述用户节点与所述多个CPE分别相连,所述多个CPE通过时分复用方式与所述局端设备通信,所述局端设备处于showtime状态。该方法可通过所述局端设备执行,该方法包括:所述局端设备接收来自第一CPE的第一信号,所述第一信号包括的至少一个符号的相位变化指示所述第一CPE是否支持基本配置信息,所述第一CPE为所述多个CPE中的请求上线的CPE。
本申请实施例中,局端设备通过用户节点与多个CPE连接,多个CPE中已有至少一个CPE与局端设备处于通信状态,CPE与局端设备之间可以通过时分复用方式来通信,因此,第一CPE还可以向局端设备发送第一信号,相当于申请与局端设备进行握手,即局端设备与多个CPE之间可以通过时分复用方式进行通信,从而局端设备能够与多个CPE实现通信,避免局端设备只能与一个CPE握手的情况,使得多个CPE都能够接入局端设备,进而接入网络,满足CPE的连接需求。
在一个可能的设计中,在所述第一信号包括的所述至少一个符号的相位按照第一方式进行变化的情况下,所述第一信号用于指示所述第一CPE支持所述基本配置信息,以及用于指示所述第一CPE请求进入初始化阶段;或,在所述第一信号包括的所述至少一个符号的相位按照第二方式进行变化的情况下,所述第一信号用于指示所述第一CPE不支持所述基本配置信息,以及用于指示所述第一CPE请求进入握手阶段。
第一信号是通过第一信号包括的至少一个符号的相位变化指示第一CPE是否支持基本配置信息,因此第一信号可能会指示两种含义:第一CPE支持基本配置信息,或,第一CPE不支持基本配置信息。那么本申请实施例中,第一信号包括的至少一个符号的相位可以按照不同的方式进行变化,不同的方式就代表不同的含义,从而局端设备接收第一信号后根据第一信号包括的至少一个符号的相位的变化方式就可以确定第一信号指示的究竟是第一CPE支持基本配置信息还是第一CPE不支持基本配置信息,方式简单直接。
在一个可能的设计中,在所述第一信号包括的所述至少一个符号的相位按照所述第一方式进行变化的情况下,所述第一CPE在第一时分复用时间单元上与所述局端设备进行所述初始化阶段的信息交互;或,在所述第一信号包括的所述至少一个符号的相位按照所述第二方式进行变化的情况下,所述第一CPE在第二时分复用时间单元上与所述局端设备进行所述握手阶段的信息交互。相应的,在所述第一信号包括的所述至少一个符号的相位按照所述第一方式进行变化的情况下,所述局端设备在第一时分复用时间单元上与所述第一CPE进行所述初始化阶段的信息交互;或,在所述第一信号包括的所述至少一个符号的相位按照所述第二方式进行变化的情况下,所述局端设备在第二时分复用时间单元上与所述 第一CPE进行所述握手阶段的信息交互。
按照第一信号所指示的内容不同,局端设备可以根据第一CPE的请求与第一CPE进行不同的交互过程,从而实现局端设备和第一CPE之间的通信。
第一时分复用时间单元可以是不包括预留的时间段的时分复用时间单元,或者,第一时分复用时间单元也可以是包括预留的时间段的时分复用时间单元,则第一时分复用时间单元中的预留的时间段只占用第一时分复用时间单元的上行数据发送时间段中的一部分时间段,局端设备在第一时分复用时间单元上与第一CPE进行初始化阶段的信息交互时,是使用第一时分复用时间单元的上行数据发送时间段中未被设置为预留的时间段的剩余的时间段来交互。
第二时分复用时间单元可以是不包括预留的时间段的时分复用时间单元,或者,第而时分复用时间单元也可以是包括预留的时间段的时分复用时间单元,则第二时分复用时间单元中的预留的时间段只占用第二时分复用时间单元的上行数据发送时间段中的一部分时间段,局端设备在第二时分复用时间单元上与第一CPE进行握手阶段的信息交互时,是使用第二时分复用时间单元的上行数据发送时间段中未被设置为预留的时间段的剩余的时间段来交互。
在一个可能的设计中,所述第一CPE接收来自所述局端设备的第一广播消息,所述第一广播消息用于指示所述第一时分复用时间单元或所述第二时分复用时间单元。相应的,所述局端设备发送第一广播消息,所述第一广播消息用于指示所述第一时分复用时间单元或所述第二时分复用时间单元。
为了使得第一CPE能够在第一时分复用时间单元上与局端设备交互,局端设备需要首先通知第一CPE,例如局端设备可以发送第一广播消息,则第一CPE可接收第一广播消息,第一广播消息用于指示第一时分复用时间单元,例如指示第一时分复用时间单元的位置等信息。则第一CPE根据第一广播消息就可以确定第一时分复用时间单元,从而在第一时分复用时间单元与局端设备进行初始化阶段的信息交互。
为了使得第一CPE能够在第二时分复用时间单元上与局端设备交互,局端设备需要首先通知第一CPE,例如局端设备可以发送第一广播消息,则第一CPE可接收第一广播消息,第一广播消息用于指示第二时分复用时间单元,例如指示第二时分复用时间单元的位置等信息。则第一CPE根据第一广播消息就可以确定第二时分复用时间单元,从而在第二时分复用时间单元与局端设备进行握手阶段的信息交互。也就是说,本申请实施例中的第一广播消息可用于指示第一时分复用时间单元或第二时分复用时间单元。
在一个可能的设计中,所述第一CPE向所述局端设备发送第一信号,包括但不限于以下三种方式:所述第一CPE在第一子载波上向所述局端设备发送所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,所述第一CPE在预留的时间段内、在第一子载波上向所述局端设备发送所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,所述第一CPE在预留的时间段内、在第二子载波上向所述局端设备发送所述第一信号,所述第二子载波是为CPE与所述局端设备采用频分复用方式握手所预留的子载波。相应的,所述局端设备接收来自第一CPE的第一信号,包括但不限于以下三种方式:所述局端设备在第一子载波上接收来自所述局端设备的所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,所述局端设备在预留的时间段内、在第一子载波 上接收来自所述第一CPE的所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,所述局端设备在预留的时间段内、在第二子载波上接收来自所述第一CPE的所述第一信号,所述第二子载波是为CPE与所述局端设备采用频分复用方式握手所预留的子载波。其中,局端设备的接收方式与第一CPE的发送方式是相对应的。
如果本申请实施例中的第一信号在发送时与G.994.1标准使用相同的子载波,则使用的子载波间隔是4.3125khz,而showtime阶段的子载波间隔不是4.3125khz,所以两种信号混合不利于局端设备的接收,因此需要分开发送,以便局端设备能检测到,那么就需要在时间上有所区分。因此本申请实施例中,第一CPE可以是在预留的时间段内、在第二子载波上向局端设备发送第一信号,预留的时间段可以是专门为CPE在P2MP下与局端设备握手所预留的时间。预留的时间段可以包括至少一个时分复用时间单元的上行数据发送时间段的子集,即,包括至少一个时分复用时间单元的上行数据发送时间段中的部分时长或全部时长。第一CPE通过在预留的时间段中占用第二子载波向局端设备发送第一信号,可以避免第一信号与P2P下的信号发生冲突,同时还可以复用G.994.1所规定的子载波,无需额外重新定义子载波,能够提高资源的利用率。
或者,第一CPE可以使用第一子载波向局端设备发送第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波,则通过第一子载波发送可以尽量避免与P2P下的信号的冲突,因此在使用第一子载波发送第一信号时,可以选择在预留的时间段发,这样局端设备可以只在预留的时间段监听第一子载波,节省功耗,或者第一CPE也可以在任意的时间发,较为灵活。
在一个可能的设计中,所述预留的时间段包括至少一个时分复用时间单元的上行数据发送时间段的子集。
例如,可以在每个时分复用时间单元的上行数据发送时间段中都预留一部分时间段作为预留的时间段,在每个时分复用时间单元中都设置预留的时间段,则可以尽量避免CPE因不能及时获知预留的时间段究竟在哪个时分复用时间单元而导致无法发送第一信号,提高CPE发送第一信号的成功率。另外,在时分复用时间单元中将上行数据发送时间段的一部分时间段设置为预留的时间段,则上行数据发送时间段中剩余的时间段还可以继续用来发送上行数据,尽量保证上行数据的正常发送。
或者,可以在部分时分复用时间单元的上行数据发送时间段中预留一部分时间段作为预留的时间段。在部分时分复用时间单元中设置预留的时间段,既可以保证CPE能够向局端设备发送第一信号,又可以保证正常的其他信息的交互过程。
或者,也可以将部分时分复用时间单元的上行数据发送时间段全部作为预留的时间段。这种方式较为适用于业务不繁忙或者要求建链信号发送的时间比较长的情况。
具体如何设置预留的时间段,可以由协议规定,或者由基站确定。
在一个可能的设计中,所述第一CPE接收来自所述局端设备的第二广播消息,所述第二广播消息用于指示所述预留的时间段。相应的,所述局端设备发送第二广播消息,所述第二广播消息用于指示所述预留的时间段。
预留的时间段可能是按一定规律出现的,也可能是局端设备根据当前的业务随机指定的。如果预留的时间段是按一定规律出现的,则预留的时间段可以由协议规定,或者也可以由局端设备通知,而如果预留的时间段是局端设备根据当前的业务随机指定的,则预留 的时间段由局端设备通知。在预留的时间段由局端设备通知的情况下,局端设备可以在广播信道中发送第二广播消息,则待上线的CPE接收第二广播消息,第二广播消息就用于指示预留的时间段。待上线的CPE接收第二广播消息后,就可以确定预留的时间段具体位于哪些时分复用时间单元、以及预留的时间段在时分复用时间单元中的位置等信息。
在一个可能的设计中,第一CPE获得基本配置信息,包括但不限于以下两种方式:所述第一CPE接收来自所述局端设备的第三广播消息,所述第三广播消息用于指示所述基本配置信息;或,所述第一CPE查询存储的所述基本配置信息。相应的,如果第一CPE是通过第三广播消息获得基本配置信息,那么所述局端设备还会发送第三广播消息,所述第三广播消息用于指示所述基本配置信息。
基本配置信息可以是协议定义的,则可以事先存储在终端设备中,第一CPE通过查询就可以获得基本配置信息,减少CPE和局端设备之间的交互过程。或者基本配置信息也可以是局端设备发送的,则CPE无需存储较多的信息,有助于节省CPE的存储空间。
第三方面,提供一种CPE。该CPE具有实现上述方法设计中的第一CPE的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该CPE的具体结构可包括处理器和收发器。处理器和收发器可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第四方面,提供一种局端设备。该局端设备具有实现上述方法设计中的局端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该局端设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第五方面,提供一种CPE。该CPE具有实现上述方法设计中的第一CPE的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该CPE的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第六方面,提供一种局端设备。该局端设备具有实现上述方法设计中的局端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该局端设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第七方面,提供一种通信装置。该通信装置可以为上述方法设计中的第一CPE,或者为设置在第一CPE中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第一方面或第一方面的任意一种可能的设计中第一CPE所执行的方法。
第八方面,提供一种通信装置。该通信装置可以为上述方法设计中的局端设备,或者 为设置在局端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第二方面或第二方面的任意一种可能的设计中局端设备所执行的方法。
第九方面,提供一种通信系统,该通信系统与第一方面或第二方面中所述的通信网络可以理解为同一概念。该通信系统包括局端设备、用户节点、以及多个CPE,其中,所述局端设备通过双绞线接所述用户节点,所述用户节点与所述多个CPE分别相连,所述多个CPE中有至少一个CPE处于showtime状态,所述处于showtime状态的CPE通过时分复用方式与所述局端设备通信,所述局端设备处于showtime状态;其中,第一CPE,用于获得基本配置信息,向所述局端设备发送第一信号,所述第一CPE通过所述第一信号包括的至少一个符号的相位变化指示所述第一CPE是否支持所述基本配置信息,所述第一CPE为所述多个CPE中的一个,且所述第一CPE处于静默silent状态;所述局端设备,用于接收来自所述第一CPE的所述第一信号。
第十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
本申请实施例中,局端设备与多个CPE之间可以通过时分复用方式进行通信,从而局端设备能够与多个CPE实现通信,避免局端设备只能与一个CPE握手的情况,使得多个CPE都能够接入局端设备,进而接入网络,满足CPE的连接需求。
附图说明
图1为G.fast标准所采用的超帧的结构示意图;
图2为G.994.1标准规定的局端设备与CPE的交互过程;
图3为本申请实施例的一种P2MP的应用场景示意图;
图4为本申请实施例提供的一种通信方法的流程图;
图5A-图5C为本申请实施例提供的预留时间段的几种情况示意图;
图6为本申请实施例提供的第一CPE的一种结构示意图;
图7为本申请实施例提供的局端设备的一种结构示意图;
图8A-图8B为本申请实施例提供的通信装置的两种结构示意图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)CPE,CPE客户终端设备常布放于通过双绞线接入的家庭,用于提供家庭用户的有线宽带、互联网协议电视(internet protocol television,IPTV)、网络电话(voice over internet protocol,VoIP)等业务的综合接入。CPE实现了接入网络与用户设备之间的连接。
2)CO,为局端设备,在P2MP场景下,可通过用户节点连接多个CPE,从而为多个CPE提供入网服务。
3)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术背景。
以PON为代表的FTTH(fiber to the home,光纤入户)技术已经可以在带宽上满足日益增长的对接入网络速率的预期,但在投资成本、布放与运维、及稳定性等多方面都存在难以克服的限制,尤其是光纤入户的建设成本较高,全生命周期的成本投入还远远达不到运营商的期望。数字用户线路(digital subscriber line,DSL)等铜线接入技术则在投资、运维等方面都存在明显的优势。运营商希望在保护和利用既有铜线投资的同时,能够提供在未来10至20年甚至更长时间内满足用户需求的宽带接入服务。
为了满足这种中长期更高速率的需求,ITU-T已经成立了G.fast项目来研究FTTdp场景下使用铜线来提供最后的高速接入,其目标是在100米范围内提供500Mbps以上的接入速率。目前,ITU-T Q4正在进行G.fast相关的技术研究和标准制定,G.fast标准编号为G.9701。
G.fast的上下行采用TDD。TDD是一种半双工复用方式,即上下行都占用整个频段的所有子载波来发送信息,由系统分别分配时隙。同一时隙下,一端的收发器只能发送或接收,而对端的收发器在该时隙只能采取相反的操作。目前,G.fast标准采用如图1所示的超帧结构。一个超帧包括多个TDD帧,超帧中的第一个帧为TDD同步帧,TDD同步帧包括下行同步符号和上行同步符号。
为了为用户提供更高的速率,ITU于2017年6月通过G.mgfast标准立项。在G.mgfast标准框架内,运营商提出了双绞线网络的P2MP架构。在P2MP的网络架构下,电话线(双绞线)连接了局端设备的一个端口和多个CPE,CPE通过与局端设备通信而入网。
目前,G.994.1标准规定了CPE与CO之间的握手过程。在G.994.1标准中,握手是CO和CPE之间通过特定消息的交互,完成传输模式的信息交互和选择的过程。G.994.1标准还规范了握手前的建链和握手结束后的拆链过程。建链的目的是确认收发两端已准备好进行握手消息交互,拆链的目的是结束握手(handshake)阶段,进入初始化阶段或者恢复到初始状态。G.994.1各阶段的过程可参考图2,局端设备和CPE在进行交互消息的发送之 前,需要确认对端已准备好进行消息交互,这一确认过程称为建链。建链成功后,双端才能进行消息的交互。在双端完成握手时,需要进行拆链,结束握手消息交互阶段,之后再进入初始化(initialization)阶段和数据传输(showtime)阶段。当握手过程中发生异常时,需要进行拆链,结束握手消息交互阶段,并恢复到初始状态。
现有的G.994.1标准只支持P2P模式,即局端设备的一个端口只跟一个CPE握手。换句话说,在CPE发送握手请求之前,局端设备的该端口是处于静默的状态,不发送任何信号的。而在P2MP模式下,很有可能在一个CPE发送握手请求之前,局端设备已经处于showtime阶段与另外的CPE在传输信号。例如,一条G.mgfast线路上有一个CPE已经上线,这时如果有新的CPE请求上线就会出现这种情况。而局端设备处于showtime阶段的握手流程是G.994.1不支持的。就是说,在P2MP模式下,局端设备可能会与多个CPE连接,如果局端设备的一个端口只跟一个CPE握手,会导致多个CPE无法接入局端设备。
鉴于此,提供本申请实施例的技术方案,局端设备能够与多个CPE通过时分复用方式实现通信,避免局端设备只能与一个CPE握手的情况,使得多个CPE都能够接入局端设备,进而接入网络,满足CPE的连接需求。
请参考图3,介绍本申请实施例的一种应用场景,是P2MP网络的一种示意图。电话线(双绞线)连接了局端设备的一个端口和用户节点,用户节点连接了多个CPE。例如,新建住宅可以在家里的每个房间装电话线的接口,有了这些接口,每一个房间都可以接一个CPE。在图3中有两个家庭,A家庭和B家庭。其中A家庭有4个电话线接口,可以同时连接4个CPE:CPE A1、CPE A2、CPE A3和CPE A4。B家庭也有4个电话线接口,可以同时连接4个CPE:CPE B1、CPE B2、CPE B3和CPE B4。图3中家庭的数量和每个家庭的CPE的数量只是示例,本申请不限制一个家庭所拥有的CPE的数量,以及不限制局端设备所能够连接的CPE的数量,也就是说,不限制一个通信网络所包括的局端设备和CPE的数量。
本申请实施例可以适用于P2MP网络,也可以适用于其他类似的有线通信系统,例如有线电视网络(cable)系统等。在本文的介绍过程中,是以应用在P2MP网络为例。
下面结合附图介绍本申请实施例提供的技术方案,在下文的介绍过程中,以本申请实施例提供的技术方案应用在图3所示的应用场景为例,即,通信网络以图3所示的P2MP网络为例。且在本申请实施例中,局端设备连接的多个CPE中有至少一个CPE处于showtime状态,即,局端设备也处于showtime状态,处于showtime状态的CPE通过时分复用方式与局端设备通信。在实际应用中当然不限于此。
请参见图4,本申请一实施例提供一种通信方法,该方法的流程描述如下。
S41、第一CPE获得基本配置信息,第一CPE为局端设备连接的多个CPE中的一个,且第一CPE处于静默(silent)状态。
此时第一CPE不是如前所述的处于showtime状态的CPE,而是待上线的CPE。对于待上线的CPE可理解如下:CO连接了多个CPE,在处于silent的CPE中,部分CPE或者全部CPE是等待或准备与CO进行握手,则这些CPE就是待上线的CPE,第一CPE就是待上线的CPE中的任意一个。
有了基本配置信息,局端设备和CPE就可以正确解调初始化阶段的信号。基本配置信息可以包括表1中所示的至少一项:
表1
Figure PCTCN2018083234-appb-000001
其中,表1中的CE length是循环前缀+循环后缀-beta的值,其中beta是窗的长度;Profile主要用于限定发送的功率谱密度的频带和幅度;下行符号个数是指每个TDD帧中发送的下行符号的个数。
第一CPE可以通过不同的方式获得基本配置信息。
作为一种示例,基本配置信息可以是协议预先规定的,则CPE和局端设备都可以预先存储基本配置信息。在这种情况下,第一CPE通过在本地查询就可以获得基本配置信息,局端设备无需发送广播消息,能够减少设备之间的交互过程。
作为另一种示例,基本配置信息可以是局端设备提供的。例如局端设备确定基本配置信息,则局端设备可以发送第三广播消息,第三广播消息就用于指示基本配置信息。第一CPE先接收广播通道的第三广播消息,由于广播通道采用最简单的4阶正交振幅调制(quadrature amplitude modulation,QAM),所以对于待上线的CPE来说广播通道的消息是可以解调的,则第一CPE可以根据第三广播消息的指示获得基本配置信息。
在基本配置信息由局端设备提供的情况下,为了尽量使得待上线的CPE都能够获得基本配置信息,局端设备可以多次发送第三广播消息,本申请实施例对于第三广播消息的发送次数、发送时机和发送间隔等不作限制。
S42、第一CPE向局端设备发送第一信号,则局端设备接收来自第一CPE的第一信号。第一CPE通过第一信号包括的至少一个符号的相位变化指示第一CPE是否支持基本配置 信息,局端设备通过解析第一信号,就可以确定第一CPE是否支持基本配置信息。
第一信号也可称为建链信号,例如将第一信号表示为P2MP-启动(startup,SU)-x。第一信号可以是正弦信号,可以采用二进制差分相位键控(differential phase shift keying,DPSK)方式调制,即调制数字“1”时,信号相位翻转180°,调制数字“0”时,信号相位不变。另外,为了保证鲁棒性,第一信号所包括的每个比特(bit)可以重复发送,例如可重复发送5次,或者可重复发送8次等,本申请实施例对于重复发送的次数不作限制。
该第一信号的子载波间隔可以延用G.994.1的标准所规定的子载波间隔,G.994.1的标准所规定的子载波间隔为4.3125kHz,或者,该第一信号的子载波间隔也可以不同于G.994.1的标准所规定的子载波间隔,例如第一信号的子载波间隔可以等于G.mgfast规定的showtime阶段的信号的子载波间隔。其中,如果该第一信号的子载波间隔等于4.3125kHz,即兼容G.994.1标准,那么将该第一信号表示为P2MP-SU-1;而如果该第一信号的子载波间隔等于G.mgfast规定的showtime阶段的信号的子载波间隔,那么将该第一信号表示为P2MP-SU-2。
在本申请实施例中,P2MP-SU-x信号包括多个符号,则第一CPE可通过P2MP-SU-x信号包括的至少一个符号的相位变化来指示第一CPE是否支持基本配置信息。至少一个符号可以是P2MP-SU-x信号包括的全部符号或部分符号。符号的相位发生变化,一种方式是符号的相位发生翻转,例如翻转180°,例如对于二进制符号来说,就是从“0”翻转到“1”,或者从“1”翻转到“0”。
在G.994.1标准中,CPE与局端设备要实现交互,也需要先建链,因此也有建链信号,G.994.1标准规定的建链信号为-40dBm/Hz的正弦信号,且该正弦信号包括的符号每16ms进行一次相位翻转。本申请实施例中,P2MP-SU-x信号采用与G.994.1标准所规定的建链信号不同的相位变化模式:
1、相位翻转的时间不同。
本申请实施例中,P2MP-SU-x信号包括的至少一个符号的相位翻转间隔与G.994.1标准中规定的16ms的间隔不同,例如P2MP-SU-x信号包括的至少一个符号每8ms翻转一次相位或每32ms翻转一次相位等。
由于P2MP-SU-x的子载波间隔可能比4.3125kHz更大,即一个符号的持续时间更短,所以可以支持更快的相位翻转。
2、相位翻转的形式不同。
P2MP-SU-x信号通过至少一个符号的相位变化来指示CPE是否支持基本配置信息,则P2MP-SU-x信号可以表达两种含义:CPE支持基本配置信息,或CPE不支持基本配置信息。那么对于这两种含义,P2MP-SU-x信号可通过不同的相位翻转形式来表达,即,P2MP-SU-x信号包括的至少一个符号的相位可以按照第一方式变化,也可以按照第二方式变化。例如第一方式为相位按照0110110…翻转的方式,第二方式为相位按照001001001…翻转的方式。其中,0110110…的方式可理解为,P2MP-SU-x信号包括的至少一个符号经过第一个翻转间隔后,相位发生翻转,经过第二个翻转间隔后,相位再发生翻转,经过第三个翻转间隔后,相位无变化,以此类推。同理,001001001…的方式可理解为,P2MP-SU-x信号包括的至少一个符号经过第一个翻转间隔后,相位无变化,经过第二个翻转间隔后,相位再翻转,经过第三个翻转间隔后,相位无变化,以此类推。
例如,P2MP-SU-x信号包括的至少一个符号的相位若采用第一方式变化,则表示CPE 支持基本配置信息,并请求直接进入初始化阶段。P2MP-SU-x包括的至少一个符号的相位若采用第二方式变化,则表示CPE不支持基本配置信息,或者如果基本配置信息是局端设备提供的,则可能是CPE在接收基本配置信息时出错而无法获取基本配置信息,且表示CPE请求进入支持P2MP的握手阶段。
采用本申请实施例提供的P2MP-SU-x信号可以尽量保证,在建链初期局端设备就可以区分CPE是想要通过P2P模式还是P2MP模式上线。需要说明的是P2MP-SU-2和P2MP-SU-1一样,在建链时局端设备就可以区分是P2P还是P2MP模式。P2MP-SU-2相对P2MP-SU-1还有一个好处,即在建链时局端设备只需要处理一种符号率的符号,即只需要处理跟G.mgfast规定的showtime阶段相同的符号率的符号,但是P2MP-SU-1由于兼容了G.994.1的子载波间隔,所以局端设备需要处理两种符号率的符号。
在本申请实施例中,第一CPE向局端设备发送第一信号,有不同的方式,下面介绍几种方式。
方式A、第一CPE在第一子载波上向局端设备发送第一信号,第一子载波是为CPE与局端设备采用时分复用方式交互所预留的子载波。
第一子载波是专门为P2MP下CPE和局端设备的握手所预留的子载波,因为showtime阶段的起始子载波为2.2MHz的子载波,则例如第一子载波的最小频率大于2.2MHz,第一子载波的子载波间隔与showtime的子载波间隔一致,第一子载波中可包括至少一个子载波。
第一子载波一旦定义了,则showtime阶段和初始化阶段就不能再使用第一子载波,那么局端设备只要从第一子载波上接收信号,就可以确定是CPE所发送的P2MP下的建链信号。从该角度来说,在方式A下,可以不限制第一CPE在第一子载波上发送第一信号的时间。
方式B、第一CPE在预留的时间段内、在第二子载波上向局端设备发送第一信号,第二子载波是为CPE与局端设备采用频分复用方式握手所预留的子载波。
第二子载波可以是G.994.1标准中所规定的握手载波集所包括的子载波。
在G.994.1标准中,握手信号都是在对应的握手载波集上进行发送和检测。G.994.1标准规定,不同的Annex模式的握手消息必须通过指定的几个载波进行传送,这些用于握手的载波集合称为握手载波集。为了方便区分,每个载波集都有特定的名字,如A43、B43等,详见表2。
表2
Figure PCTCN2018083234-appb-000002
其中,G.fast标准所使用的握手载波集为A43,B43 ,或A43,A43c。那么第二子载 波就可以包括A43和/或B43中的子载波,或包括A43和/或A43c中的子载波。
在这种情况下,P2MP-SU-x与G.994.1标准使用相同的子载波,则使用的子载波间隔是4.3125khz,而showtime阶段的子载波间隔不是4.3125khz,所以两种信号混合不利于局端设备的接收,因此需要分开发送,以便局端设备能检测到,那么就需要在时间上有所区分。因此本申请实施例中,第一CPE可以是在预留的时间段内、在第二子载波上向局端设备发送第一信号,预留的时间段可以是专门为CPE在P2MP下与局端设备握手所预留的时间。预留的时间段可以包括至少一个时分复用时间单元的上行数据发送时间段的子集,即,包括至少一个时分复用时间单元的上行数据发送时间段中的部分时长或全部时长。其中,时分复用时间单元例如为TDD帧,或者为TDD时隙(slot),或者为TDD迷你时隙(mini-slot)等,本申请实施例不作限制。关于预留的时间段,包括但不限于以下几种情况:
情况a、在每个时分复用时间单元的上行数据发送时间段中都预留一部分时间段作为预留的时间段。
以时分复用时间单元是TDD帧为例。在情况A下,在每个TDD帧的上行数据发送时间段中都留出一部分时间段专门给待上线的CPE发送第一信号。本申请实施例对于一个TDD帧中预留的时间段的长度不作限制,不同的TDD帧中的预留的时间段的长度可以相同,也可以不相同,这些都可根据实际情况设置,或由协议规定。
可参考图5A,以4个TDD帧为例,图5A中的Ds代表下行传输,D代表上行数据,即,D所示的时间段即为上行数据发送时间段,画斜线的部分代表从D所示的上行数据发送时间段中预留的时间段。可以看到,在其中的每个TDD帧的上行数据发送时间段中都留出了一部分时间段作为预留的时间段。当然,图5A中是以预留的时间段位于上行数据发送时间段的结束位置为例,在实际应用中预留的时间段可以位于上行数据发送时间段的任意位置,例如预留的时间段也可以位于上行数据发送时间段的开始位置或中间位置等。但预留的时间段位于上行数据发送时间段的结束位置,可以尽量保证上行数据的优先发送。另外,不同的TDD帧中的预留的时间段的位置可以相同,也可以不相同,这些都可根据实际情况设置,或由协议规定。
在这种情况下,预留的时间段在时分复用时间单元中的位置等信息可以由协议规定,或者也可以由局端设备通知,例如局端设备发送第二广播消息,则待上线的CPE接收第二广播消息,第二广播消息就用于指示预留的时间段。待上线的CPE接收第二广播消息后,就可以确定预留的时间段的位置等信息。
在每个时分复用时间单元中都设置预留的时间段,则可以尽量避免CPE因不能及时获知预留的时间段究竟在哪个时分复用时间单元而导致无法发送第一信号,提高CPE发送第一信号的成功率。另外,在时分复用时间单元中将上行数据发送时间段的一部分时间段设置为预留的时间段,则上行数据发送时间段中剩余的时间段还可以继续用来发送上行数据,尽量保证上行数据的正常发送。
情况b、在部分时分复用时间单元的上行数据发送时间段中预留一部分时间段作为预留的时间段。
即,不是在每个时分复用时间单元的上行数据发送时间段中都预留时间段,而是在其中的某一个或某几个时分复用时间单元的上行数据发送时间段中留出一部分时间段专门给待上线的CPE发送第一信号。
可参考图5B,以4个TDD帧为例,图5B中的Ds代表下行传输,D代表上行数据, 即,D所示的时间段即为上行数据发送时间段,画斜线的部分代表从D所示的上行数据发送时间段中预留的时间段。可以看到,在其中的第二个TDD帧的上行数据发送时间段中留出了一部分时间段作为预留的时间段,而在其他的TDD帧的上行数据发送时间段中未留出预留的时间段。当然,图5B中是以预留的时间段位于上行数据发送时间段的结束位置为例,在实际应用中预留的时间段可以位于上行数据发送时间段的任意位置,例如预留的时间段也可以位于上行数据发送时间段的开始位置或中间位置等。另外,如果在多个TDD帧的上行数据发送时间段都留出预留的时间段,则不同的TDD帧中的预留的时间段的位置可以相同,也可以不相同,这些都可根据实际情况设置,或由协议规定。
在这种情况下,预留的时间段可能是按一定规律出现的,也可能是局端设备根据当前的业务随机指定的。如果预留的时间段是按一定规律出现的,则预留的时间段可以由协议规定,或者也可以由局端设备通知,而如果预留的时间段是局端设备根据当前的业务随机指定的,则预留的时间段由局端设备通知。在预留的时间段由局端设备通知的情况下,局端设备可以在广播信道中发送第二广播消息,则待上线的CPE接收第二广播消息,第二广播消息就用于指示预留的时间段。待上线的CPE接收第二广播消息后,就可以确定预留的时间段具体位于哪些时分复用时间单元、以及预留的时间段在时分复用时间单元中的位置等信息。
可选的,为了防止待上线的CPE因为没有及时接收第二广播消息而错过预留的时间段,局端设备可以提前较多时间开始发送第二广播消息,第二广播消息可以只发送一次,或者也可以发送多次,例如提前多个TDD帧开始发送第二广播消息,在每个TDD帧都发送一次,或者隔几个TDD帧发送一次。例如局端设备可以在预留的时间段所在的TDD帧的前10个TDD帧中就开始发送第二广播消息,第二广播消息可以只发送一次,或者在这前10个TDD帧中的每个TDD帧里都发送一次。另外,如果第二广播消息在每个TDD帧里都发送一次,则局端设备在发送第二广播消息时,还可以在第二广播消息中携带倒数计时器,倒数计时器的初始值为首次发送第二广播消息的TDD帧的编号与该TDD帧之后的第一个预留的时间段所在的TDD帧的编号之间的差值,在随后的每个TDD帧中发送的第二广播消息中,局端设备都将该倒数计时器的值减1。
例如,局端设备可以在预留的时间段所在的TDD帧的前10个TDD帧开始发送第二广播消息,该第二广播消息指示预留的时间段位于第n个TDD帧,第二广播消息携带的倒数计时器的初始值为10。在接下来的每一个TDD帧,局端设备继续广播第二广播消息,在每个第二广播消息中,都将倒数计时器的值在上一个第二广播消息的基础上减1,则倒数计时器的值为0的TDD帧就是留出了预留的时间段的TDD帧。通过这种方式,使得待上线的CPE能够较为准确地获知哪个TDD帧具有预留的时间段,从而能够在正确的位置发送第一信号。
在部分时分复用时间单元中设置预留的时间段,既可以保证CPE能够向局端设备发送第一信号,又可以保证正常的其他信息的交互过程。
情况c、将部分时分复用时间单元的上行数据发送时间段全部作为预留的时间段。
这种情况与情况b的区别在于,情况c是将部分时分复用时间单元的上行数据发送时间段全部作为预留的时间段,而情况b只是将部分时分复用时间单元的上行数据发送时间段中的一部分时间段作为预留的时间段。情况c较为适用于业务不繁忙或者要求建链信号发送的时间比较长的情况。
如上介绍了几种预留的时间段的情况,在实际应用中可选择不同的情况,或者具体使用哪种情况可由协议定义。
可参考图5C,以4个TDD帧为例,图5C中的Ds代表下行传输,D代表上行数据,即,D所示的时间段即为上行数据发送时间段,画斜线的部分代表从D所示的上行数据发送时间段中预留的时间段。可以看到,其中的第二个TDD帧的上行数据发送时间段全部作为预留的时间段,而在其他的TDD帧的上行数据发送时间段中未留出预留的时间段。
同样的,预留的时间段可以由协议规定,或者由局端设备通知,关于局端设备通知的方式可参考情况b中的描述,不多赘述。
第一CPE通过在预留的时间段中占用第二子载波向局端设备发送第一信号,可以避免第一信号与P2P下的信号发生冲突,同时还可以复用G.994.1所规定的子载波,无需额外重新定义子载波,能够提高资源的利用率。
方式C、第一CPE在预留的时间段内、在第一子载波上向局端设备发送第一信号,第一子载波是为CPE与局端设备采用时分复用方式交互所预留的子载波。
关于对第一子载波的解释可参考方式A。
同样是在第一子载波上向局端设备发送第一信号,与方式A不同的是,同样可以设置预留的时间段,第一CPE也可以选择在预留的时间段向局端设备发送第一信号,这样,第一子载波在除预留的时间段之外的其他时间段也可以有其他的用途,能够提高资源利用率。关于预留的时间段,可参考方式B中的相关介绍,不多赘述。
将时分复用时间单元中的上行数据发送时间段全部设置为预留的时间段,可以尽量保证CPE有较为充足的时间发送第一信号,提高CPE发送第一信号的成功率。
如上介绍了几种第一CPE向局端设备发送第一信号的方式,在实际应用中可选择不同的方式,或者具体使用哪种方式可由协议定义。
局端设备接收第一信号后,根据第一信号的相位变化形式就可以确定第一CPE是否支持基本配置信息,以及确定第一CPE的请求。例如,在第一信号包括的至少一个符号的相位按照如前所述的第一方式进行变化的情况下,则局端设备确定第一CPE支持基本配置信息,且第一CPE请求进入初始化阶段,而在第一信号包括的至少一个符号的相位按照如前所述的第二方式进行变化的情况下,则局端设备确定第一CPE不支持基本配置信息,且第一CPE请求进入P2MP的握手阶段。
那么,该通信方法还可以包括如下的步骤:
S43、如果局端设备确定第一信号包括的至少一个符号的相位是按照如前所述的第一方式进行变化,则局端设备可以开辟专门的时分复用时间单元与第一CPE进行初始化阶段的信息交互,例如局端设备可以在第一时分复用时间单元上与第一CPE进行初始化阶段的信息交互。
在初始化阶段,局端设备和第一CPE可以测量信噪比(SNR),从而确定比特加载表(bit loading table)。另外,局端设备和第一CPE还可以各自训练频域均衡系数,通过同步符号(sync symbol),还要训练抵消串扰的系数等等,以保证进入showtime阶段后能稳定地传输数据。当然在初始化阶段中,局端设备和第一CPE还可能有其他的工作,本申请实施例不作限制。
其中,第一时分复用时间单元可以是不包括预留的时间段的时分复用时间单元,或者,第一时分复用时间单元也可以是包括预留的时间段的时分复用时间单元,则第一时分复用 时间单元中的预留的时间段只占用第一时分复用时间单元的上行数据发送时间段中的一部分时间段,局端设备在第一时分复用时间单元上与第一CPE进行初始化阶段的信息交互时,是使用第一时分复用时间单元的上行数据发送时间段中未被设置为预留的时间段的剩余的时间段来交互。为了使得第一CPE能够在第一时分复用时间单元上与局端设备交互,局端设备需要首先通知第一CPE,例如局端设备可以发送第一广播消息,则第一CPE可接收第一广播消息,第一广播消息用于指示第一时分复用时间单元,例如指示第一时分复用时间单元的位置等信息。则第一CPE根据第一广播消息就可以确定第一时分复用时间单元,从而在第一时分复用时间单元与局端设备进行初始化阶段的信息交互。
或者,S44、如果局端设备确定第一信号包括的至少一个符号的相位是按照如前所述的第二方式进行变化,则局端设备可以开辟专门的时分复用时间单元与第一CPE进行P2MP的握手阶段的信息交互,例如局端设备可以在第二时分复用时间单元上与第一CPE进行握手阶段的信息交互。
在握手阶段,局端设备和第一CPE可以重新交互表1所示的基本配置信息,例如包括将要使用的模板或CE的长度等。这些信息决定了局端设备和CPE可以正确的解调初始化阶段发送的信号。当然在握手阶段中,局端设备和第一CPE还可能有其他的工作,本申请实施例不作限制。
其中,第二时分复用时间单元可以是不包括预留的时间段的时分复用时间单元,或者,第而时分复用时间单元也可以是包括预留的时间段的时分复用时间单元,则第二时分复用时间单元中的预留的时间段只占用第二时分复用时间单元的上行数据发送时间段中的一部分时间段,局端设备在第二时分复用时间单元上与第一CPE进行握手阶段的信息交互时,是使用第二时分复用时间单元的上行数据发送时间段中未被设置为预留的时间段的剩余的时间段来交互。为了使得第一CPE能够在第二时分复用时间单元上与局端设备交互,局端设备需要首先通知第一CPE,例如局端设备可以发送第一广播消息,则第一CPE可接收第一广播消息,第一广播消息用于指示第二时分复用时间单元,例如指示第二时分复用时间单元的位置等信息。则第一CPE根据第一广播消息就可以确定第二时分复用时间单元,从而在第二时分复用时间单元与局端设备进行握手阶段的信息交互。也就是说,本申请实施例中的第一广播消息可用于指示第一时分复用时间单元或第二时分复用时间单元。
其中,S43和S44为可选的步骤。
另外,本申请实施例已经介绍了,局端设备连接的多个CPE中有至少一个CPE处于showtime状态,即,局端设备也处于showtime状态,那么在局端设备处于silent状态时,局端设备通过与连接的多个CPE中的至少一个CPE握手才能进入showtime状态。在本申请实施例中,局端设备可以是通过本申请实施例提供的通信方法进入showtime状态,即,待上线的CPE都采用采用本申请实施例提供的通信方法与局端设备进行握手交互。或者,CPE可以监控局端设备的状态,在局端设备处于silent状态时,待上线的CPE可以继续延用现有技术中的方式,即按照G.994.1标准所规定的P2P的方式与局端设备进行握手,则局端设备通过与一个CPE的P2P握手而进入showtime状态,待上线的CPE通过监控确定局端设备进入了showtime状态,则待上线的CPE就按照本申请实施例提供的通信方法来与局端设备进行P2MP的握手交互,这样,既可以延用G.994.1标准,也可以使用本申请实施例提供的P2MP的方案,较为灵活。
下面结合附图介绍本申请实施例提供的设备。
图6示出了一种CPE600的结构示意图。该CPE600可以实现上文中涉及的第一CPE的功能。该CPE600可以是上文中所述的第一CPE,或者可以是设置在上文中所述的第一CPE中的芯片。该CPE600可以包括处理器601和收发器602。其中,处理器601可以用于执行图4所示的实施例中的S41、S43、及S44,和/或用于支持本文所描述的技术的其它过程。收发器602可以用于执行图4所示的实施例中的S41、S42、S43、以及S44,和/或用于支持本文所描述的技术的其它过程。其中,收发器602执行S41,主要是指收发器602接收来自局端设备的基本配置信息,则处理器601获得收发器602接收的基本配置信息。
例如,处理器601,用于获得基本配置信息;
收发器602,用于向局端设备发送第一信号,CPE600通过所述第一信号包括的至少一个符号的相位变化指示CPE600是否支持所述基本配置信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图7示出了一种局端设备700的结构示意图。该局端设备700可以实现上文中涉及的局端设备的功能。该局端设备700可以是上文中所述的局端设备,或者可以是设置在上文中所述的局端设备中的芯片。该局端设备700可以包括处理器701和收发器702。其中,处理器701可以用于执行图4所示的实施例中的S43及S44,和/或用于支持本文所描述的技术的其它过程。收发器702可以用于执行图4所示的实施例中的S41、S42、S43以及S44,和/或用于支持本文所描述的技术的其它过程。其中,收发器702执行S41,主要是指收发器702向第一CPE发送基本配置信息。
例如,收发器702,用于接收来自第一CPE的第一信号;
处理器701,用于根据所述第一信号包括的至少一个符号的相位变化确定所述第一CPE是否支持基本配置信息,所述第一CPE为所述多个CPE中的请求上线的CPE。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将CPE600或局端设备700通过如图8A所示的通信装置800的结构实现。该通信装置800可以实现上文中涉及的第一CPE或局端设备的功能。该通信装置800可以包括处理器801。其中,在该通信装置800用于实现图4所示的实施例中的第一CPE的功能时,处理器801可用于执行图4所示的实施例中的S41、S43、及S44,和/或用于支持本文所描述的技术的其它过程。在该通信装置800用于实现图4所示的实施例中的局端设备的功能时,处理器801可用于执行图4所示的实施例中的S43及S44,和/或用于支持本文所描述的技术的其它过程。
其中,通信装置800可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置600可被设置于本申请实施例的网络设备或终端设备中,以使得该网络设备或终端设备实现本申请实施例提供的信号发送、接收方法。
在一种可选实现方式中,该通信装置800还可以包括存储器802,可参考图8B,其中,存储器802用于存储计算机程序或指令,处理器801用于译码和执行这些计算机程序或指 令。应理解,这些计算机程序或指令可包括上述第一CPE或局端设备的功能程序。当第一CPE的功能程序被处理器801译码并执行时,可使得第一CPE实现本申请实施例的通信方法中第一CPE的功能。当局端设备的功能程序被处理器801译码并执行时,可使得局端设备实现本申请实施例的通信方法中局端设备的功能。
在另一种可选实现方式中,这些第一CPE或局端设备的功能程序存储在通信装置800外部的存储器中。当第一CPE的功能程序被处理器801译码并执行时,存储器802中临时存放上述第一CPE的功能程序的部分或全部内容。当局端设备的功能程序被处理器801译码并执行时,存储器802中临时存放上述局端设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些第一CPE或局端设备的功能程序被设置于存储在通信装置800内部的存储器802中。当通信装置800内部的存储器802中存储有第一CPE的功能程序时,通信装置800可被设置在本申请实施例的第一CPE中。当通信装置800内部的存储器802中存储有局端设备的功能程序时,通信装置800可被设置在本申请实施例的局端设备中。
在又一种可选实现方式中,这些第一CPE的功能程序的部分内容存储在通信装置800外部的存储器中,这些第一CPE的功能程序的其他部分内容存储在通信装置800内部的存储器802中。或,这些局端设备的功能程序的部分内容存储在通信装置800外部的存储器中,这些局端设备的功能程序的其他部分内容存储在通信装置800内部的存储器802中。
在本申请实施例中,CPE600、局端设备700及通信装置800对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图6所示的实施例提供的CPE600还可以通过其他形式实现。例如该CPE包括处理模块和收发模块。例如处理模块可通过处理器601实现,收发模块可通过收发器602实现。其中,处理模块可以用于执行图4所示的实施例中的S41、S43、及S44,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图4所示的实施例中的S41、S42、S43、以及S44,和/或用于支持本文所描述的技术的其它过程。其中,收发模块执行S41,主要是指收发模块接收来自局端设备的基本配置信息,则处理模块获得收发模块接收的基本配置信息。
例如,处理模块,用于获得基本配置信息;
收发模块,用于向局端设备发送第一信号,CPE600通过所述第一信号包括的至少一个符号的相位变化指示CPE600是否支持所述基本配置信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图7所示的实施例提供的局端设备700还可以通过其他形式实现。例如该局端设备包括处理模块和收发模块。例如处理模块可通过处理器701实现,收发模块可通过收发器702实现。其中,处理模块可以用于执行图4所示的实施例中的S43及S44,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图4所示的实施例中的S41、S42、S43以及S44,和/或用于支持本文所描述的技术的其它过程。其中,收发模块执行S41,主要是指收发模块向第一CPE发送基本配置信息。
例如,收发模块,用于接收来自第一CPE的第一信号;
处理模块,用于根据所述第一信号包括的至少一个符号的相位变化确定所述第一CPE是否支持基本配置信息,所述第一CPE为所述多个CPE中的请求上线的CPE。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的CPE600、局端设备700、及通信装置800可用于执行图4所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种通信方法,应用于通信网络,其特征在于,所述通信网络包括局端设备、用户节点、以及多个用户驻地设备CPE,其中,所述局端设备通过双绞线接所述用户节点,所述用户节点与所述多个CPE相连,所述多个CPE中有至少一个CPE处于数据传输showtime状态,所述处于showtime状态的CPE通过时分复用方式与所述局端设备通信;所述方法包括:
    第一CPE获得基本配置信息,所述第一CPE为所述多个CPE中的一个,且所述第一CPE处于静默silent状态;
    所述第一CPE向所述局端设备发送第一信号,所述第一CPE通过所述第一信号包括的至少一个符号的相位变化指示所述第一CPE是否支持所述基本配置信息。
  2. 如权利要求1所述的方法,其特征在于,
    在所述第一信号包括的所述至少一个符号的相位按照第一方式进行变化的情况下,所述第一信号用于指示所述第一CPE支持所述基本配置信息,以及用于指示所述第一CPE请求进入初始化阶段;或,
    在所述第一信号包括的所述至少一个符号的相位按照第二方式进行变化的情况下,所述第一信号用于指示所述第一CPE不支持所述基本配置信息,以及用于指示所述第一CPE请求进入握手阶段。
  3. 如权利要求2所述的方法,其特征在于,
    在所述第一信号包括的所述至少一个符号的相位按照所述第一方式进行变化的情况下,所述方法还包括:
    所述第一CPE在第一时分复用时间单元上与所述局端设备进行所述初始化阶段的信息交互;或,
    在所述第一信号包括的所述至少一个符号的相位按照所述第二方式进行变化的情况下,所述方法还包括:
    所述第一CPE在第二时分复用时间单元上与所述局端设备进行所述握手阶段的信息交互。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一CPE接收来自所述局端设备的第一广播消息,所述第一广播消息用于指示所述第一时分复用时间单元或所述第二时分复用时间单元。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述第一CPE向所述局端设备发送第一信号,包括:
    所述第一CPE在第一子载波上向所述局端设备发送所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,
    所述第一CPE在预留的时间段内、在第一子载波上向所述局端设备发送所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,
    所述第一CPE在预留的时间段内、在第二子载波上向所述局端设备发送所述第一信号,所述第二子载波是为CPE与所述局端设备采用频分复用方式握手所预留的子载波。
  6. 如权利要求5所述的方法,其特征在于,
    所述预留的时间段包括至少一个时分复用时间单元的上行数据发送时间段的子集。
  7. 一种通信方法,应用于通信网络,其特征在于,所述通信网络包括局端设备、用 户节点、以及多个用户驻地设备CPE,其中,所述局端设备通过双绞线接所述用户节点,所述用户节点与所述多个CPE分别相连,所述多个CPE通过时分复用方式与所述局端设备通信,所述局端设备处于数据传输showtime状态;所述方法包括:
    所述局端设备接收来自第一CPE的第一信号,所述第一信号包括的至少一个符号的相位变化指示所述第一CPE是否支持基本配置信息,所述第一CPE为所述多个CPE中的请求上线的CPE。
  8. 如权利要求7所述的方法,其特征在于,
    在所述第一信号包括的所述至少一个符号的相位按照第一方式进行变化的情况下,所述第一信号用于指示所述第一CPE支持所述基本配置信息,以及用于指示所述第一CPE请求进入初始化阶段;或,
    在所述第一信号包括的所述至少一个符号的相位按照第二方式进行变化的情况下,所述第一信号用于指示所述第一CPE不支持所述基本配置信息,以及用于指示所述第一CPE请求进入握手阶段。
  9. 如权利要求8所述的方法,其特征在于,
    在所述第一信号包括的所述至少一个符号的相位按照所述第一方式进行变化的情况下,所述方法还包括:
    所述局端设备在第一时分复用时间单元上与所述第一CPE进行所述初始化阶段的信息交互;或,
    在所述第一信号包括的所述至少一个符号的相位按照所述第二方式进行变化的情况下,所述方法还包括:
    所述局端设备在第二时分复用时间单元上与所述第一CPE进行所述握手阶段的信息交互。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述局端设备发送第一广播消息,所述第一广播消息用于指示所述第一时分复用时间单元或所述第二时分复用时间单元。
  11. 如权利要求7至10任一项所述的方法,其特征在于,所述局端设备接收来自第一CPE的第一信号,包括:
    所述局端设备在第一子载波上接收来自所述局端设备的所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,
    所述局端设备在预留的时间段内、在第一子载波上接收来自所述第一CPE的所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,
    所述局端设备在预留的时间段内、在第二子载波上接收来自所述第一CPE的所述第一信号,所述第二子载波是为CPE与所述局端设备采用频分复用方式握手所预留的子载波。
  12. 如权利要求11所述的方法,其特征在于,
    所述预留的时间段包括至少一个时分复用时间单元的上行数据发送时间段的子集。
  13. 一种用户驻地设备CPE,所述CPE位于通信网络中,其特征在于,所述通信网络包括局端设备、用户节点、以及多个CPE,其中,所述局端设备通过双绞线接所述用户节点,所述用户节点与所述多个CPE相连,所述多个CPE中有至少一个CPE处于数据传输showtime状态,所述处于showtime状态的CPE通过时分复用方式与所述局端设备通信, 所述CPE为所述多个CPE中的一个,且所述CPE处于静默silent状态;所述CPE包括:
    处理模块,用于获得基本配置信息;
    收发模块,用于向所述局端设备发送第一信号,所述CPE通过所述第一信号包括的至少一个符号的相位变化指示所述CPE是否支持所述基本配置信息。
  14. 如权利要求13所述的CPE,其特征在于,
    在所述第一信号包括的所述至少一个符号的相位按照第一方式进行变化的情况下,所述第一信号用于指示所述第一CPE支持所述基本配置信息,以及用于指示所述第一CPE请求进入初始化阶段;或,
    在所述第一信号包括的所述至少一个符号的相位按照第二方式进行变化的情况下,所述第一信号用于指示所述第一CPE不支持所述基本配置信息,以及用于指示所述第一CPE请求进入握手阶段。
  15. 如权利要求14所述的CPE,其特征在于,
    在所述第一信号包括的所述至少一个符号的相位按照所述第一方式进行变化的情况下,所述处理模块还用于在第一时分复用时间单元上与所述局端设备进行所述初始化阶段的信息交互;或,
    在所述第一信号包括的所述至少一个符号的相位按照所述第二方式进行变化的情况下,所述处理模块还用于在第二时分复用时间单元上与所述局端设备进行所述握手阶段的信息交互。
  16. 如权利要求15所述的CPE,其特征在于,所述收发模块还用于:
    接收来自所述局端设备的第一广播消息,所述第一广播消息用于指示所述第一时分复用时间单元或所述第二时分复用时间单元。
  17. 如权利要求13至16任一项所述的CPE,其特征在于,所述收发模块用于:
    在第一子载波上向所述局端设备发送所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,
    在预留的时间段内、在第一子载波上向所述局端设备发送所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,
    在预留的时间段内、在第二子载波上向所述局端设备发送所述第一信号,所述第二子载波是为CPE与所述局端设备采用频分复用方式握手所预留的子载波。
  18. 一种局端设备,位于通信网络中,其特征在于,所述通信网络包括局端设备、用户节点、以及多个用户驻地设备CPE,其中,所述局端设备通过双绞线接所述用户节点,所述用户节点与所述多个CPE分别相连,所述多个CPE通过时分复用方式与所述局端设备通信,所述局端设备处于数据传输showtime状态;所述局端设备包括:
    收发模块,用于接收来自第一CPE的第一信号;
    处理模块,用于根据所述第一信号包括的至少一个符号的相位变化确定所述第一CPE是否支持基本配置信息,所述第一CPE为所述多个CPE中的请求上线的CPE。
  19. 如权利要求18所述的局端设备,其特征在于,
    在所述第一信号包括的所述至少一个符号的相位按照第一方式进行变化的情况下,所述第一信号用于指示所述第一CPE支持所述基本配置信息,以及用于指示所述第一CPE请求进入初始化阶段;或,
    在所述第一信号包括的所述至少一个符号的相位按照第二方式进行变化的情况下,所 述第一信号用于指示所述第一CPE不支持所述基本配置信息,以及用于指示所述第一CPE请求进入握手阶段。
  20. 如权利要求19所述的局端设备,其特征在于,
    在所述第一信号包括的所述至少一个符号的相位按照所述第一方式进行变化的情况下,所述处理模块在第一时分复用时间单元上与所述第一CPE进行所述初始化阶段的信息交互;或,
    在所述第一信号包括的所述至少一个符号的相位按照所述第二方式进行变化的情况下,所述处理模块在第二时分复用时间单元上与所述第一CPE进行所述握手阶段的信息交互。
  21. 如权利要求20所述的局端设备,其特征在于,所述收发模块还用于:
    发送第一广播消息,所述第一广播消息用于指示所述第一时分复用时间单元或所述第二时分复用时间单元。
  22. 如权利要求18至21任一项所述的局端设备,其特征在于,所述收发模块用于:
    在第一子载波上接收来自所述局端设备的所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,
    在预留的时间段内、在第一子载波上接收来自所述第一CPE的所述第一信号,所述第一子载波是为CPE与所述局端设备采用时分复用方式交互所预留的子载波;或,
    在预留的时间段内、在第二子载波上接收来自所述第一CPE的所述第一信号,所述第二子载波是为CPE与所述局端设备采用频分复用方式握手所预留的子载波。
  23. 一种通信系统,其特征在于,包括局端设备、用户节点、以及多个用户驻地设备CPE,其中,所述局端设备通过双绞线接所述用户节点,所述用户节点与所述多个CPE分别相连,所述多个CPE中有至少一个CPE处于数据传输showtime状态,所述处于showtime状态的CPE通过时分复用方式与所述局端设备通信,所述局端设备处于数据传输showtime状态;其中,
    第一CPE,用于获得基本配置信息,向所述局端设备发送第一信号,所述第一CPE通过所述第一信号包括的至少一个符号的相位变化指示所述第一CPE是否支持所述基本配置信息,所述第一CPE为所述多个CPE中的一个,且所述第一CPE处于静默silent状态;
    所述局端设备,用于接收来自所述第一CPE的所述第一信号。
PCT/CN2018/083234 2017-11-16 2018-04-16 一种通信方法及设备 WO2019095623A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18878068.8A EP3700157A1 (en) 2017-11-16 2018-04-16 Communication method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711137375.2A CN109803327B (zh) 2017-11-16 2017-11-16 一种通信方法及设备
CN201711137375.2 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019095623A1 true WO2019095623A1 (zh) 2019-05-23

Family

ID=66538486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083234 WO2019095623A1 (zh) 2017-11-16 2018-04-16 一种通信方法及设备

Country Status (3)

Country Link
EP (1) EP3700157A1 (zh)
CN (1) CN109803327B (zh)
WO (1) WO2019095623A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020895A4 (en) * 2019-08-30 2022-10-19 Huawei Technologies Co., Ltd. METHOD OF PUTTING USER EQUIPMENT ONLINE, AND USER EQUIPMENT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765789A (zh) * 2013-09-18 2014-04-30 华为技术有限公司 一种线路初始化方法、装置和系统
US20150263809A1 (en) * 2014-03-14 2015-09-17 Futurewei Technologies, Inc. Method and apparatus for providing twisted pair multilink communications
CN104956633A (zh) * 2013-11-25 2015-09-30 华为技术有限公司 光线路终端、分配点单元、系统及数据流调度方法
CN105814805A (zh) * 2014-11-21 2016-07-27 华为技术有限公司 一种信号传输方法、装置及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098593A (zh) * 2011-02-23 2011-06-15 华为技术有限公司 一种epon系统中上行注册的方法和远端设备
CN103220588B (zh) * 2012-01-18 2016-04-13 中兴通讯股份有限公司 一种光网络单元的注册方法及系统
US9473339B2 (en) * 2013-04-12 2016-10-18 Futurewei Technologies, Inc. Performing upstream symbol alignment under FEXT
CN103269502B (zh) * 2013-04-27 2016-09-28 杭州华三通信技术有限公司 一种无线速率自动调整的方法及装置
CN103281605A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN105264795B (zh) * 2013-12-31 2018-04-20 华为技术有限公司 正交频分复用无源光网络注册激活方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765789A (zh) * 2013-09-18 2014-04-30 华为技术有限公司 一种线路初始化方法、装置和系统
CN104956633A (zh) * 2013-11-25 2015-09-30 华为技术有限公司 光线路终端、分配点单元、系统及数据流调度方法
US20150263809A1 (en) * 2014-03-14 2015-09-17 Futurewei Technologies, Inc. Method and apparatus for providing twisted pair multilink communications
CN105814805A (zh) * 2014-11-21 2016-07-27 华为技术有限公司 一种信号传输方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3700157A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020895A4 (en) * 2019-08-30 2022-10-19 Huawei Technologies Co., Ltd. METHOD OF PUTTING USER EQUIPMENT ONLINE, AND USER EQUIPMENT

Also Published As

Publication number Publication date
EP3700157A4 (en) 2020-08-26
CN109803327A (zh) 2019-05-24
CN109803327B (zh) 2020-11-17
EP3700157A1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
US11870634B2 (en) Doppler mode in a wireless network
CN105009502B (zh) 在点到多点正交频分复用通信系统中的上行导频结构
US8553706B2 (en) Flexible scheduling of resources in a noisy environment
US9444594B2 (en) Allocating orthogonal frequency-division multiple access (OFDMA) resources in data over cable services interface specification (DOCSIS) networks
US8223859B2 (en) Method and apparatus for a multi-tone modem
JP2005333681A (ja) 時分割二重化高速データ伝送システム及びその方法
CN111555851A (zh) 下一代Wi-Fi网络中OFDMA子载波分配的装置和方法
KR20080038366A (ko) 잡음 환경에서의 자원의 유연한 스케줄링
US20070025266A1 (en) Communicating schedule and network information in a powerline network
KR20100019504A (ko) 공유 매체에의 분산형 액세스의 관리
TW200926685A (en) Access point wireless local area network
KR101403590B1 (ko) G.hn 기술을 엑세스 네트워크에 적용하기 위한 방법
TWI517630B (zh) 多個載波上的彙聚層結合
WO2012126411A2 (zh) 数字用户线的信号处理方法、装置及数字用户线系统
US11632262B2 (en) Handshake operation in point-to-multipoint access from distribution point
WO2015127706A1 (zh) Osd系统中的线路同步方法、系统及矢量化控制实体
WO2018228243A1 (zh) 一种发送解调参考信号的方法和装置、解调方法和装置
WO2018036437A1 (zh) 资源指示、确定方法、装置、网络侧设备及接收侧设备
WO2019095623A1 (zh) 一种通信方法及设备
US20110235657A1 (en) Multimode Apparatus and Method
JP2001197146A (ja) 通信方法および通信装置
McFarland et al. The 5-UP/sup TM/protocol for unified multiservice wireless networks
WO2014067041A1 (zh) 一种初始化方法、设备和系统
JP2014531809A (ja) Xdsl伝送システムのための非規格モードを開始するための方法、およびその方法を使用したレジデンシャルゲートウェイ
WO2014153726A1 (zh) 上行导频序列同步的方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018878068

Country of ref document: EP

Effective date: 20200522