WO2019095338A1 - 系统消息传输方法、装置及系统 - Google Patents

系统消息传输方法、装置及系统 Download PDF

Info

Publication number
WO2019095338A1
WO2019095338A1 PCT/CN2017/111759 CN2017111759W WO2019095338A1 WO 2019095338 A1 WO2019095338 A1 WO 2019095338A1 CN 2017111759 W CN2017111759 W CN 2017111759W WO 2019095338 A1 WO2019095338 A1 WO 2019095338A1
Authority
WO
WIPO (PCT)
Prior art keywords
sib1
anchor carrier
information
transmission
carrier
Prior art date
Application number
PCT/CN2017/111759
Other languages
English (en)
French (fr)
Inventor
罗之虎
李军
金哲
张维良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2020526992A priority Critical patent/JP7016413B2/ja
Priority to CN201780096689.4A priority patent/CN111344974B9/zh
Priority to BR112020009779-9A priority patent/BR112020009779A2/pt
Priority to PCT/CN2017/111759 priority patent/WO2019095338A1/zh
Priority to EP17932279.7A priority patent/EP3700115B1/en
Publication of WO2019095338A1 publication Critical patent/WO2019095338A1/zh
Priority to US16/875,801 priority patent/US11259314B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a system message transmission method, apparatus, and system.
  • NB-IOT Narrowband Internet of Things
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the system information block type 1 (SIB1) has a period of 2560 ms.
  • the SIB1 is transmitted on the subframe 4 in the radio frame, and every other radio frame occurs once.
  • One transport block (TB) of the SIB1 occupies 8 subframes, so a complete transmission of the SIB1 needs to occupy 16 consecutive radio frames.
  • the number of repetitions of SIB1 may be 4, 8, and 16, and each repeated copy is equally spaced in the 2560 ms period.
  • SIB1 in different cells can transmit different resources in a 2560 ms period, which can avoid mutual interference of SIB1 transmission in different cells, especially for scenarios where intra-cell co-frequency networking and time synchronization, such interference isolation
  • the mechanism is especially important.
  • the uplink and downlink subframe configuration supports a part of the uplink and downlink subframe configuration of the TDD Long Term Evolution (LTE) system.
  • the anchor carrier has a Narrowband Primary Synchronization Signal (NPSS), a Narrowband Secondary Synchronization Signal (NSSS), and a Narrowband Physical Broadcast Channel (NPBCH).
  • NPSS Narrowband Primary Synchronization Signal
  • NSSS Narrowband Secondary Synchronization Signal
  • NPBCH Narrowband Physical Broadcast Channel
  • the NSSS is transmitted on subframe 0 of the even frame.
  • the period of SIB1 is also 2560 ms.
  • One transport block of SIB1 occupies 8 subframes.
  • SIB1 When SIB1 is transmitted on subframe 0 of the odd frame of the anchor carrier, the number of repetitions is 16, because subframe 0 of the even frame is occupied by NSSS.
  • SIB1 of different cells can only transmit using the same resource location, which will cause mutual interference of SIB1 transmission
  • the present application provides a system message transmission method, device and system to avoid mutual interference of SIB1 transmission between different cells and improve the reliability of SIB1 transmission.
  • the application provides a system message transmission method, including:
  • the first communication device configures the MIB message
  • the MIB message includes scheduling information of the SIB1; or the MIB message includes at least one of a deployment mode and a first information of the carrier, and the scheduling information;
  • the first information includes at least one of: status information for the SIB1 transmission; time domain location information for the SIB1 transmission; frequency domain of a non-anchor carrier for the SIB1 transmission Position information; transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission;
  • the MIB message may carry various different information for the SIB1 transmission, for example, any one or more of the foregoing scheduling information, the first information, and the deployment mode of the carrier, so that the first The second communication device receives SIB1 according to the MIB message.
  • the first communication device can flexibly configure the information for the SIB1 transmission; on the other hand, since the first communication device configures the MIB message, it can be considered to ensure that the SIB1 of different cells is transmitted in one cycle by configuration or implicit indication.
  • the resource location is different.
  • the interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the first information includes the status information for the SIB1 transmission, where the status information includes one of the following states: the SIB1 is only transmitted on an anchor carrier, and the SIB1 only In non-anchor carrier transmission, or the status information includes one of the following states: the SIB1 is transmitted only on an anchor carrier, and the SIB1 is transmitted on an anchor carrier and a non-anchor carrier;
  • the first communications device Transmitting, by the first communications device, the SIB1 to the second communications device according to the scheduling information and the first information, the first communications device determining, according to the scheduling information and the state information, an anchor Point carrier and/or non-anchor carrier transmitting the SIB1 to the second communication device;
  • the first communications device determines to transmit the SIB1 on a non-anchor carrier
  • the first communications device determines a non-anchor carrier for transmitting the SIB1.
  • the first communication device carries various different information for SIB1 transmission by using the scheduling information and the status information, where the status information can ensure that the first communication device can flexibly configure a carrier for SIB1 transmission, and can pass a part of the cell.
  • Configured on the anchor carrier a part of the cell is configured to transmit SIB1 on the non-anchor carrier, or a part of the cell is configured to transmit SIB1 on the anchor carrier, and a part of the cell is configured to transmit the SIB1 on the anchor carrier and the non-anchor carrier, thereby ensuring that the SIB1 of different cells is in
  • the carrier positions transmitted in one cycle are different.
  • This interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the first information further includes the time domain location information used for the SIB1 transmission, and the time domain location information used for the SIB1 transmission includes one of the following locations: a subframe location, Radio frame position, superframe position, symbol position, and slot position;
  • Determining, by the first communications device, that the SIB1 is transmitted to the second communications device on an anchor carrier and/or a non-anchor carrier according to the scheduling information and the state information including: the first communications device according to the Determining, by the scheduling information, the status information, and the time domain location information, a time domain location transmission indicated by the time domain location information in an anchor carrier and/or a non-anchor carrier for transmitting the SIB1 Said SIB1 is given to said second communication device.
  • the first information includes the time domain location information used for the SIB1 transmission, and the time domain location information includes one of the following locations: a subframe location, a radio frame location, a superframe location, Symbol position and time slot position;
  • the first communications device Transmitting, by the first communications device, the SIB1 to the second communications device according to the scheduling information and the first information, the first communications device determining, by the first communications device, a carrier for transmitting the SIB1, the carrier An anchor carrier and/or a non-anchor carrier for transmitting the SIB1; the first communication device on the anchor carrier and/or on the non-anchor carrier for transmitting the SIB1 Transmitting, by the scheduling information, the SIB1 to the second communications device according to the time domain location indicated by the time domain location information.
  • the first information includes frequency domain location information of the non-anchor carrier for the SIB1 transmission, where
  • the frequency domain location information of the non-anchor carrier for the SIB1 transmission includes at least one of the following parameters: a relative position of the non-anchor carrier relative to the anchor carrier for the SIB1 transmission; a frequency domain offset of a non-anchor carrier and an anchor carrier transmitted by the SIB1, where the frequency domain offset is a frequency domain interval or a number of resource blocks;
  • the first communications device Transmitting, by the first communications device, the SIB1 according to the scheduling information on the non-anchor carrier for transmitting the SIB1 corresponding to the frequency domain location; or, the first communications device is in the And transmitting the SIB1 to the second communication device according to the scheduling information, on the anchor carrier and the non-anchor carrier for the SIB1 transmission corresponding to the frequency domain location.
  • the first information includes the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission, where the transmission mode information includes a non-anchor carrier for transmitting the SIB1.
  • the first communications device Transmitting, by the first communications device, the SIB1 to the second communications device on the non-anchor carrier for transmitting the SIB1 according to the repetition quantity and the scheduling information; or, the first Transmitting, by the communications device, the SIB1 to the second on the anchor carrier according to the scheduling information, and on the non-anchor carrier for transmitting the SIB1 according to the scheduling information and the repetition number communication device.
  • the first information includes the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission, where the transmission mode information includes resource indication information, where the resource indication information is used to indicate : when the number of repetitions of the SIB1 on the non-anchor carrier for transmitting the SIB1 is the same as the number of repetitions of the SIB1 on the anchor carrier, in a repetition period in which the anchor carrier transmits the SIB1 in a single time, Whether the SIB1 transmission on the non-anchor carrier for transmitting the SIB1 needs to transmit more transmission resources than the SIB1 on the anchor carrier, where the transmission resource is a subframe, a radio frame, and a super One of a frame, a symbol, or a time slot;
  • a part of the repetition quantity value in the set of repetition times corresponds to the first state, where the first status is that the SIB1 is only transmitted on the anchor carrier, and another part of the repetition quantity value in the repetition quantity set corresponds to the second status.
  • the second state is that the SIB1 is transmitted only on a non-anchor carrier, or the SIB1 is transmitted on an anchor carrier and a non-anchor carrier.
  • the degree information is used to determine the transport block size and number of repetitions used by the SIB1 transmission.
  • the first communications device And transmitting, by the first communications device, the SIB1 to the second communications device according to the scheduling information, that: the first communications device determines that the number of repetitions corresponds to a first state or a second state; the first communications The device transmits the SIB1 to the second communication device according to the first state or the second state on an anchor carrier and/or a non-anchor carrier;
  • the first communications device determines to transmit the SIB1 on a non-anchor carrier
  • the first communications device determines a non-anchor carrier for transmitting the SIB1.
  • a part of the repetition quantity value in the set of repetition times corresponds to a first state, where the first status is that the SIB1 is only transmitted on the anchor carrier, and the second part corresponding to another part of the repetition quantity value in the repetition quantity set is according to State information for the SIB1 transmission determines that the second state is that the SIB1 is only transmitted on a non-anchor carrier, or the SIB1 is only transmitted on an anchor carrier; the scheduling information is used to determine the SIB1 transmission
  • the MIB message includes the scheduling information of the SIB1 and the deployment mode of the carrier; the number of repetitions in the scheduling information corresponds to the transmission block size and the number of repetitions.
  • the MIB message includes scheduling information of the SIB1, a deployment mode of the carrier, and the first information including status information for the SIB1 transmission;
  • the SIB1 is transmitted on the anchor carrier according to the first state and the scheduling information corresponding to the part of the repetition number value.
  • the SIB1 is transmitted to the second communication device on the anchor carrier according to the scheduling information, or according to the scheduling information, Transmitting the mode of the carrier and the state information of the SIB1 transmission in the first information, and transmitting the SIB1 to the second communication device on a non-anchor carrier;
  • the first communications device Transmitting, by the first communications device, the SIB1 on the non-anchor carrier, the first communications device determining a non-anchor carrier for transmitting the SIB1.
  • the deployment mode of the carrier includes deployment mode information for transmitting a non-anchor carrier of the SIB1, or the deployment mode of the carrier includes a deployment mode of an anchor carrier and a mode for transmitting the SIB1.
  • the second communication device includes:
  • the first The communication device transmits the SIB1 to the second communication device according to the scheduling information on the non-anchor carrier according to the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1;
  • the first communications device determines, according to the protection band deployment mode or an in-band deployment mode, the Transmitting the transmission resource of the SIB1 on the non-anchor carrier of the SIB1;
  • the deployment mode of the carrier includes deployment mode information for transmitting a non-anchor carrier of the SIB1, or the deployment mode of the carrier includes a deployment mode of an anchor carrier, and the Deployment mode information of SIB1 non-anchor carrier,
  • the first communication device determines, according to the independent deployment mode, that the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1 is the same as the transmission resource of the SIB1 on the anchor carrier;
  • the first communications device Transmitting, by the first communications device, the SIB1 on the non-anchor carrier according to the scheduling information and the transmission resource; or, the first communications device is on the anchor carrier, and according to the transmitting Transmitting, on the non-anchor carrier, the SIB1 to the second communications device according to the scheduling information;
  • the first communications device determines, according to the guard band deployment mode or an in-band deployment mode, the transmission resource of the SIB1 on the non-anchor carrier;
  • the first communication device transmits the SIB1 to the second communication device according to the scheduling information on the non-anchor carrier according to the transmission resource of the SIB1 on the non-anchor carrier;
  • the first communications device transmitting the SIB1 on the non-anchor carrier includes: determining, by the first communications device, a non-anchor carrier for transmitting the SIB1.
  • the first information further includes frequency domain location information of the non-anchor carrier for the SIB1 transmission, where the frequency domain location information includes at least one of the following parameters:
  • the frequency domain offset being a frequency domain interval or a number of resource blocks
  • a non-anchor carrier for transmitting the SIB1 including:
  • the first communications device determines a non-anchor carrier corresponding to the frequency domain location.
  • the application provides a system message transmission method, including:
  • the second communication device receives a primary system information block MIB message from the first communication device, the MIB message includes scheduling information of the SIB1, or the MIB message includes at least one of a deployment mode and a first information of the carrier, and the scheduling information
  • the first information includes at least one of the following information: status information for the SIB1 transmission; time domain location information for the SIB1 transmission; frequency of a non-anchor carrier for the SIB1 transmission Domain location information; transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission;
  • the second communication device receives the SIB1 from the first communication device according to the scheduling information or according to at least one of a deployment mode of the carrier and the first information and the scheduling information.
  • the MIB message may carry various different information for the SIB1 transmission, for example, any one or more of the foregoing scheduling information, the first information, and the deployment mode of the carrier, so that the first The second communication device receives SIB1 according to the MIB message.
  • the first communication device can flexibly configure the information for the SIB1 transmission; on the other hand, since the first communication device configures the MIB message, it can be considered to ensure that the SIB1 of different cells is transmitted in one cycle by configuration or implicit indication.
  • the resource location is different.
  • the interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the first information includes the status information for the SIB1 transmission,
  • the status information includes one of the following states: the SIB1 is only transmitted on an anchor carrier, and the SIB1 is only transmitted on a non-anchor carrier.
  • the status information includes one of the following states: the SIB1 is only transmitted on an anchor carrier, and the SIB1 is transmitted on an anchor carrier and a non-anchor carrier;
  • the second communication device determines that the non-anchor carrier receives the SIB1 from the first communication device, the second communication device determines a non-anchor carrier for receiving the SIB1.
  • the first communication device carries various different information for SIB1 transmission by using the scheduling information and the status information, where the status information can ensure that the first communication device can flexibly configure a carrier for SIB1 transmission, and can pass a part of the cell.
  • Configured on the anchor carrier a part of the cell is configured to transmit SIB1 on the non-anchor carrier, or a part of the cell is configured to transmit SIB1 on the anchor carrier, and a part of the cell is configured to transmit the SIB1 on the anchor carrier and the non-anchor carrier, thereby ensuring that the SIB1 of different cells is in
  • the carrier positions transmitted in one cycle are different.
  • This interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the first information further includes the time domain location information used for the SIB1 transmission, where
  • the time domain location information of the SIB1 transmission includes one of the following positions: a subframe position, a radio frame position, a superframe position, a symbol position, and a slot position;
  • the first information includes the time domain location information used for the SIB1 transmission, and the time domain location information includes one of the following locations: a subframe location, a radio frame location, a superframe location, Symbol position and time slot position;
  • a carrier for receiving the SIB1 the carrier comprising an anchor carrier and/or a non-anchor carrier for transmitting the SIB1;
  • the first communication device receives the SIB1.
  • the first information includes frequency domain location information of the non-anchor carrier for the SIB1 transmission
  • the non-anchor fixed carrier frequency domain location information for the SIB1 transmission includes the following parameters. At least one of:
  • the frequency domain offset is a frequency domain interval or a number of resource blocks
  • the second communication device receives the SIB1 from the first communication device according to the scheduling information on the non-anchor carrier for transmitting the SIB1 corresponding to the frequency domain location; or The second communication device receives, on the anchor carrier, the non-anchor carrier for the SIB1 transmission corresponding to the frequency domain location, and receives, according to the scheduling information, the first communications device.
  • the first information includes the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission, where the transmission mode information includes a non-anchor carrier for transmitting the SIB1.
  • the second communication device receives the SIB1 from the first communication device on the non-anchor carrier for transmitting the SIB1 according to the repetition quantity and the scheduling information; or, the And the second communication device is located on the anchor carrier according to the scheduling information, and according to the scheduling information and the repetition quantity, on the non-anchor carrier for transmitting the SIB1, from the first communication device Receiving the SIB1.
  • the first information includes the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission, where the transmission mode information includes resource indication information, where the resource indication information is used to indicate : when the number of repetitions of the SIB1 on the non-anchor carrier for transmitting the SIB1 is the same as the number of repetitions of the SIB1 on the anchor carrier, in a repetition period in which the anchor carrier transmits the SIB1 in a single time, Whether the SIB1 transmission on the non-anchor carrier for transmitting the SIB1 needs to transmit more transmission resources than the SIB1 on the anchor carrier, where the transmission resource is a subframe, a radio frame, and a super One of a frame, a symbol, or a time slot;
  • the second communication device transmits the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1 and receives the SIB1 from the first communication device according to the scheduling information; or Said second communication device on said anchor carrier, and said transmission resource for transmitting said SIB1 on said non-anchor carrier for transmitting said SIB1, according to said scheduling information, said said A communication device receives the SIB1.
  • a part of the repetition quantity value in the set of repetition times corresponds to a first state, where the first status is that the SIB1 is only transmitted on an anchor carrier.
  • Another partial repetition number value in the set of repetition times corresponds to a second state, wherein the second state is that the SIB1 is transmitted only on a non-anchor carrier, or the SIB1 is transmitted on an anchor carrier and a non-anchor carrier.
  • the scheduling information is used to determine a transport block size and a repetition number used by the SIB1 transmission.
  • the second communication device receives the SIB1 from the first communication device according to the first state or the second state on an anchor carrier and/or a non-anchor carrier;
  • the second communication device determines that the non-anchor carrier is received from the first communication device, the second communication device determines a non-anchor carrier for receiving the SIB1.
  • a part of the repetition quantity value in the set of repetition times corresponds to a first state, where the first status is that the SIB1 is only transmitted on an anchor carrier.
  • the second state corresponding to another partial repetition number value in the set of repetition times is determined according to state information for the SIB1 transmission, the second state is that the SIB1 is transmitted only on a non-anchor carrier, or the SIB1 is only in the Anchor carrier transmission;
  • the scheduling information is used to determine a transport block size and a repetition number used by the SIB1 transmission.
  • the MIB message includes scheduling information of the SIB1 and a deployment mode of the carrier;
  • the MIB message includes scheduling information of the SIB1, a deployment mode of the carrier, and the first information including status information for the SIB1 transmission;
  • the SIB1 is received from the first communication device on the anchor carrier according to the scheduling information, or according to the scheduling information, The deployment mode of the carrier and the status information of the SIB1 transmission in the first information, on the non-anchor carrier, receiving the SIB1 from the first communication device;
  • the second communications device Receiving, by the second communications device, the SIB1 from the first communications device on the non-anchor carrier, the second communications device determining a non-anchor carrier for receiving the SIB1.
  • the deployment mode of the carrier includes deployment mode information for transmitting a non-anchor carrier of the SIB1, or the deployment mode of the carrier includes a deployment mode of an anchor carrier and a mode for transmitting the SIB1.
  • the scheduling information, the deployment mode of the carrier, and the status information of the SIB1 transmission in the first information, on the non-anchor carrier for transmitting the SIB1, from the Receiving the SIB1 by a communications device includes:
  • the second communication device receives the SIB1 from the first communication device according to the scheduling information on the non-anchor carrier according to the transmission resource of the SIB1 on the non-anchor carrier;
  • the second communication device determines, according to the guard band deployment mode or the in-band deployment mode, the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1;
  • the second communication device according to the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1 on the non-anchor carrier for transmitting the SIB1, according to the scheduling information, from the The first communication device receives the SIB1.
  • the deployment mode of the carrier includes deployment mode information for transmitting a non-anchor carrier of the SIB1, or the deployment mode of the carrier includes a deployment mode of an anchor carrier, and the Deployment mode information of SIB1 non-anchor carrier,
  • the second communication device receives the SIB1 from the first communication device, or the second, on the non-anchor carrier for transmitting the SIB1 according to the scheduling information and the repetition number
  • the communication device is on the anchor carrier, and according to the repetition number, on the non-anchor carrier for transmitting the SIB1, according to the scheduling signal Receiving, receiving the SIB1 from the first communication device;
  • the second communication device determines, according to the independent deployment mode, that the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1 is the same as the transmission resource of the SIB1 on the anchor carrier;
  • the second communication device receives the SIB1 from the first communication device on the non-anchor carrier according to the scheduling information and the transmission resource; or the second communication device is at the anchor point On the carrier, and according to the transmission resource, on the non-anchor carrier, according to the scheduling information, receiving the SIB1 from the first communication device;
  • the second communication device receives the SIB1 from the first communication device according to the scheduling information on the non-anchor carrier according to the repetition number of the SIB1 on the non-anchor carrier; or
  • the second communication device is on the anchor carrier, and according to the repetition number of the SIB1 on the non-anchor carrier, on the non-anchor carrier, according to the scheduling information, from the first communication Receiving, by the device, the SIB1;
  • the second communication device receives the SIB1 from the first communication device according to the scheduling information on the non-anchor carrier according to the transmission resource of the SIB1 on the non-anchor carrier;
  • the second communication device is on the anchor carrier, and according to the transmission resource of the SIB1 on the non-anchor carrier, on the non-anchor carrier, according to the scheduling information, from the first communication Receiving, by the device, the SIB1;
  • the second communications device receiving the SIB1 from the first communications device on the non-anchor carrier, the second communications device determining a non-anchor carrier for receiving the SIB1.
  • the first information further includes frequency domain location information of the non-anchor carrier for the SIB1 transmission, where the frequency domain location information includes at least one of the following parameters:
  • the frequency domain offset being a frequency domain interval or a number of resource blocks
  • a non-anchor carrier for receiving the SIB1 including:
  • the second communications device determines a non-anchor carrier corresponding to the frequency domain location.
  • the application provides a system message transmission device, where the system message transmission device is a first communication device, and the system message transmission device includes:
  • a processing module configured to configure a main system information block MIB message
  • the MIB message includes scheduling information of the SIB1; or the MIB message includes at least one of a deployment mode and a first information of the carrier, and the scheduling information;
  • the first information includes at least one of: status information for the SIB1 transmission; time domain location information for the SIB1 transmission; frequency domain of a non-anchor carrier for the SIB1 transmission Position information; transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission;
  • a sending module configured to send the MIB message to the second communications device
  • the processing module is further configured to pass the sending module, and according to the scheduling information, or according to the carrier Transmitting the SIB1 to the second communication device by at least one of the deployment mode and the first information and the scheduling information.
  • the implementation of the device can refer to the implementation of the method, and the repeated description is not repeated.
  • the application provides a system message transmission device, where the system message transmission device is a second communication device, and the system message transmission device includes:
  • a receiving module configured to receive a primary system information block MIB message from the first communications device, where the MIB message includes scheduling information of the SIB1, or the MIB message includes at least one of a deployment mode and a first information of the carrier, and the scheduling Information, the first information includes at least one of: status information for the SIB1 transmission; time domain location information for the SIB1 transmission; non-anchor carrier for the SIB1 transmission Frequency domain location information; transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission;
  • a processing module configured to receive, by the receiving module, the first communications device according to the scheduling information, or according to at least one of a deployment mode of the carrier and the first information, and the scheduling information SIB1.
  • the implementation of the device can refer to the implementation of the method, and the repeated description is not repeated.
  • the present application provides a communication device, which is a first communication device, the communication device including a memory and a processor, and a computer program stored on the memory for execution by the processor;
  • the processor executes the computer program to implement the steps of the system message transmission method of any of the first aspects.
  • the present application provides a communication device, which is a second communication device, the communication device including a memory and a processor, and a computer program stored on the memory for execution by the processor;
  • the processor executes the computer program to implement the steps of the system message transmission method of any of the second aspects.
  • the present application provides a communication system comprising the communication device of the fifth aspect and the communication device of the sixth aspect.
  • the application provides a communication device comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • the application provides a communication device comprising at least one processing element (or chip) for performing the method of the above second aspect.
  • the application provides a program for performing the method of the above first aspect when executed by a processor of a communication device.
  • the application provides a program for performing the method of the above second aspect when executed by a processor of a communication device.
  • the present application provides a computer program product comprising the program of the tenth aspect.
  • the application provides a computer program product comprising the program of the eleventh aspect.
  • the present application provides a computer readable storage medium, when instructions in a computer readable storage medium are executed by a processor of a communication device, to enable the communication device to perform the method of the first aspect.
  • the present application provides a computer readable storage medium, when instructions in a computer readable storage medium are executed by a processor of a communication device, to enable the communication device to perform the method of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by the present application.
  • FIG. 2 is a signaling diagram of a system message transmission method according to an embodiment of the present disclosure
  • 3 is a diagram of non-anchor fixed carrier frequency domain location information for SIB1 transmission according to the present application.
  • FIG. 5 is a diagram of a protection band deployment mode according to the present application.
  • FIG. 6 is a diagram of an in-band deployment mode involved in the present application.
  • FIG. 7 is a schematic diagram of a system message transmission form provided by the present application.
  • FIG. 8 is a schematic diagram of another system message transmission format provided by the present application.
  • FIG. 9 is a schematic structural diagram of a system message transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a system message transmission apparatus according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • the present application is mainly applied to an NB-IoT system, an LTE system, or an enhanced LTE (LTE Advanced, LTE-A) system.
  • the present application can also be applied to other communication systems as long as there is an entity in the communication system that can transmit information, and the communication system also has other entities that can receive the information.
  • the first communication device is exemplified by a network device
  • the second communication device is exemplified by a terminal device, which constitute a communication system.
  • the terminal device is in the coverage of the network device, and communicates with the network device to implement the technical solutions provided in the following embodiments of the present application.
  • the first communication device is not limited to the network device; similarly, the second communication device is not limited to the terminal device.
  • the present application can be understood in connection with a network device and a terminal device that can operate on a licensed band or an unlicensed band. among them:
  • a terminal device may also be called a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device.
  • the terminal device may be a station (STATION, ST) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, or a wireless local loop (Wireless Local).
  • WLAN Wireless Local Area Networks
  • SIP Session Initiation Protocol
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems
  • in-vehicle devices wearable devices
  • next-generation communication systems For example, a terminal device in a fifth-generation (5G) network or a terminal device in a future evolved Public Land Mobile Network (PLMN) network.
  • 5G fifth-generation
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured Large size, without relying on the smartphone to achieve complete or partial functions, such as smart watches or smart glasses, and only focus on a certain type of application functions, and need to be used with other devices such as smart phones, such as various types of physical monitoring Smart bracelets, smart jewelry, etc.
  • the network device is also referred to as a radio access network (RAN) device, and is a device that accesses the terminal device to the wireless network, and may be an evolved base station (eNB) in an LTE system.
  • eNB evolved base station
  • eNodeB or a relay station or an access point
  • gNodeB new radio node B
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell.
  • the cell may be a cell corresponding to a network device (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here may include: a metro cell, a micro cell, a pico cell, a femto cell, etc., and the small cell has a small coverage and a low transmission power. Suitable for providing high-speed data transmission services.
  • the anchor carrier refers to a carrier that the second communication device assumes a common channel or a common signal transmission
  • the non-anchor carrier refers to a carrier that the second communication device assumes that there is no common channel or common signal transmission.
  • the common channel is a cell level common channel
  • the common signal is a cell level common signal.
  • the anchor carrier refers to a carrier that the second communication device assumes to have NPSS/NSSS/NPBCH/SIB-NB transmission.
  • the anchor carrier refers to a carrier that the second communication device assumes that there is no NPSS/NSSS/NPBCH/SIB-NB transmission.
  • the anchor carrier refers to a carrier on which the second communication device assumes NPSS/NSSS/NPBCH transmission.
  • An anchor carrier refers to a carrier that the second communication device assumes no NPSS/NSSS/NPBCH transmission.
  • FIG. 2 is a signaling diagram of a system message transmission method according to an embodiment of the present disclosure. As shown in FIG. 2, the method in this embodiment includes:
  • the first communications device configures a Master Information Block (MIB) message.
  • MIB Master Information Block
  • the MIB message can carry different information and has the following types:
  • the MIB message includes scheduling information of SIB1.
  • the MIB message includes the scheduling information of the SIB1 and the deployment mode of the carrier.
  • the MIB message includes scheduling information of the SIB1 and the first information.
  • the MIB message includes the scheduling information of the SIB1, the first information, and the deployment mode of the carrier.
  • the first information may include at least one of the following information: status information for SIB1 transmission; time domain location information for SIB1 transmission; frequency domain location information for non-anchor carrier for SIB1 transmission; The transmission mode information of SIB1 on the non-anchor carrier for SIB1 transmission.
  • the scheduling information used in the step is used to indicate the transport block size and the number of repetitions used by the SIB1 transmission.
  • the specific indication manner may be a separate indication, and the indication may be a value of the transport block size, a value of the repetition number, or may be An optional index of the transport block size, an index of the number of repetitions; the specific indication manner may be a joint indication, an index indicating a combination of an optional transport block size and a repetition number.
  • the scheduling information may also include other information for scheduling SIB1 transmission, such as Modulation and Coding Scheme (MCS) of SIB1.
  • MCS Modulation and Coding Scheme
  • the deployment mode of the carrier in the step including the deployment mode of the anchor carrier, or the deployment mode information of the non-anchor carrier for transmitting the SIB, or the deployment mode of the carrier includes the deployment mode of the anchor carrier And The deployment mode information for transmitting the non-anchor carrier of the SIB.
  • the deployment mode of the deployment mode of the anchor carrier includes one of an independent deployment mode, a protection band deployment mode, and an in-band deployment mode.
  • the deployment mode of the deployment mode of the non-anchor carrier for the SIB1 transmission includes one of an independent deployment mode, a protection band deployment mode, and an in-band deployment mode.
  • the in-band deployment mode refers to that the system applied in this application is deployed in the transmission band of another communication system, according to whether the physical cell identifiers (PCIs) of the two systems are the same.
  • the in-band deployment mode can be divided into in-band deployment of the same PCI and in-band deployment of different PCIs. For example, if the NB-IoT system is deployed in the protection band of the LTE system, whether the PCI of the NB-IoT system is the same as the PCI of the LTE system, the in-band deployment mode can be divided into in-band deployment of the same PCI and in-band deployment of different PCIs.
  • the deployment mode of the carrier includes an anchor carrier deployment mode, where the deployment mode of the non-anchor carrier can be the same as the deployment mode of the anchor carrier by using a protocol, and therefore, the deployment mode of the non-anchor carrier can be based on the anchor point.
  • the deployment mode of the carrier is determined.
  • the deployment mode of the carrier includes deployment mode information for transmitting a non-anchor carrier of the SIB, where deployment mode information for transmitting a non-anchor carrier of the SIB is used to indicate that the The deployment mode of the non-anchor carrier of the SIB, so the deployment mode of the non-anchor carrier can be directly determined according to the deployment mode information of the non-anchor carrier for transmitting the SIB.
  • the deployment mode of the carrier includes a deployment mode of an anchor carrier and deployment mode information of the non-anchor carrier for transmitting the SIB.
  • the deployment mode information of the non-anchor carrier for transmitting the SIB is used to indicate whether a deployment mode of a non-anchor carrier for transmitting the SIB and a deployment mode of an anchor carrier are the same. Therefore, the deployment mode of the non-anchor carrier can be determined according to the deployment mode of the anchor carrier and the deployment mode information of the non-anchor carrier for transmitting the SIB.
  • the system to which the present application is applied is referred to as the first communication system.
  • the LTE system there is CRS transmission in the transmission band and no CRS transmission in the protection band.
  • the anchor carrier of the first communication system is deployed in a guard band (ie, deployed in a guard band of LTE) and the non-anchor carrier of the first communication system is in-band (ie, deployed in a guard band of LTE)
  • the MIB message needs to indicate the number of LTE CRS ports.
  • a new domain can be added to the MIB to indicate that the guard band can be used to deploy the idle bits in the corresponding domain to indicate that the in-band deployment does not distinguish the in-band deployment of the same PCI and in-band. Deploy different PCIs.
  • MasterInformationBlock-NB is the MIB message
  • operationModeInfo is the domain corresponding to the deployment mode
  • guardband is the protection band deployment
  • standalone is the independent deployment
  • inband-SamePCI is the in-band deployment
  • NB-IoT system is the same as the LTE system PCI.
  • Inband-Different PCI the NB-IoT system is different from the LTE system PCI.
  • one of the idle bits can be used to indicate Number of LTE CRS ports.
  • the domain indicating the number of LTE CRS ports exists only when the anchor carrier is in the guard band deployment mode and the non-anchor carrier is in the inband deployment mode.
  • the MIB message may also carry other information to notify the second communication device of basic information about the communication system to ensure that the subsequent communication process runs.
  • the first communications device sends an MIB message to the second communications device.
  • the second communication device receives the MIB message from the first communication device.
  • the first communications device transmits the SIB1 to the second communications device.
  • the first communications device transmits the SIB1 to the second communications device according to the scheduling information or according to at least one of the deployment mode and the first information of the carrier and the scheduling information.
  • the first communications device transmits the SIB1 to the second communications device according to the scheduling information and the first information; or the first communications device transmits the SIB1 to the second communications device according to the scheduling information; the first communications device according to the scheduling information And the carrier deployment mode transmits the SIB1 to the second communication device; the first communication device transmits the SIB1 to the second communication device according to the scheduling information, the first information, and the deployment mode of the carrier, and the like.
  • the first communications device transmits the SIB1 to the second communications device according to the scheduling information and the first information; or the first communications device transmits the SIB1 to the second communications device according to the scheduling information; the first communications device according to the scheduling information And the carrier deployment mode transmits the SIB1 to the second communication device according to the scheduling information, the first information, and the deployment mode of the carrier, and the like.
  • the second communication device receives the SIB1 from the first communication device according to the scheduling information or according to at least one of the deployment mode of the carrier and the first information and the scheduling information.
  • the first communication device configures a MIB message
  • the MIB message may carry various information for SIB1 transmission, for example, any one or more of the foregoing scheduling information, the first information, and a deployment mode of the carrier. So that the second communication device receives the SIB1 according to the MIB message.
  • the first communication device can flexibly configure the information for the SIB1 transmission; on the other hand, since the first communication device configures the MIB message, it can be considered to ensure that the SIB1 of different cells is transmitted in one cycle by configuration or implicit indication.
  • the resource location is different.
  • the interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the first information includes status information for SIB1 transmission.
  • the status information includes one of the following states: SIB1 is only transmitted on the anchor carrier, and SIB1 is only transmitted on the non-anchor carrier.
  • the status information includes one of the following states: SIB1 is only transmitted on the anchor carrier, and SIB1 is transmitted on the anchor carrier and the non-anchor carrier.
  • the first communications device transmits the SIB1 to the second communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, where the first communications device may be specifically:
  • the scheduling information and the first information transmission SIB1 are given to the second communication device. Further specifically including: the first communication device according to the scheduling Information and status information determining to transmit SIB1 to the second communication device at the anchor carrier and/or the non-anchor carrier; when the first communication device determines that the SIB1 is transmitted on the non-anchor carrier, the first communication device determines A non-anchor carrier for transmitting the SIB1.
  • the first communications device determines that the non-anchor carrier for transmitting the SIB1 refers to the first communication device determining the agreement.
  • the non-anchor carrier corresponding to the frequency domain location is a non-anchor carrier for transmitting the SIB1.
  • the first communications device determines, according to the scheduling information and the state information, that the SIB1 is transmitted to the second communication device at the anchor carrier; or, if the state information includes the state If the SIB1 is only transmitted on the non-anchor carrier, the first communication device determines to transmit the SIB1 to the second communication device on the non-anchor carrier according to the scheduling information and the status information; or if the status information includes the status of the SIB1 at the anchor carrier and For non-anchor carrier transmission, the first communication device determines to transmit the SIB1 to the second communication device on the anchor carrier and the non-anchor carrier transmission according to the scheduling information and the status information.
  • the status information may be indicated by a field having a bit width of 1 bit.
  • the value set of the domain is that SIB1 is only transmitted on the anchor carrier and SIB1 is only transmitted on the non-anchor carrier, or the value set of the domain is SIB1 only in the anchor carrier transmission and SIB1 is in the anchor carrier and the non-anchor carrier. transmission.
  • the value of the field is a Boolean value or a number or a character or a string, etc., wherein different values of a Boolean value or a number or a character or a string indicate different meanings. For an example, the value of the field is “0”.
  • the value of this field is “1”, indicating that SIB1 is only transmitted on the non-anchor carrier.
  • the value of the field is “0”, indicating that SIB1 is only transmitted on the anchor carrier; the value of the field is “1”, indicating that SIB1 is transmitted on the anchor carrier and the non-anchor carrier.
  • the value of the field is “anchor”, indicating that SIB1 is only transmitted on the anchor carrier, and the value of the field is "non-anchor", indicating that SIB1 is only transmitted on the non-anchor carrier.
  • the time domain resource location of the SIB1 transmission on the anchor carrier may be agreed by a protocol, where the scheduling information is used to indicate the transport block size and the number of repetitions used by the SIB1 transmission.
  • the first communication device transmits the SIB1 to the second communication device on the anchor carrier according to the transport block size and the number of repetitions indicated by the scheduling information.
  • the time domain resource location of the SIB1 in the non-anchor carrier transmission may be agreed by the protocol, and the frequency domain location of the non-anchor carrier used for the SIB1 transmission may be agreed by the protocol.
  • the scheduling information is used to indicate a transport block size and a repetition number used by the SIB1 transmission, and the first communication device transmits the SIB1 to the second communication device according to the transport block indicated by the scheduling information.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be the same as the number of repetitions indicated by the scheduling information, and the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may also be the scheduling information.
  • the number of repetitions of the indication is different.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be greater than the number of repetitions indicated by the scheduling information.
  • the SIB1 transmission on the non-anchor carrier when the number of repetitions of the SIB1 on the non-anchor carrier is the same as the number of repetitions of the SIB1 on the anchor carrier, the SIB1 transmission on the non-anchor carrier during a repetition period in which the anchor carrier transmits the SIB1 a single time
  • the same transmission resource may be used to transmit the SIB1 on the anchor carrier, and the SIB1 transmission on the non-anchor carrier may use more transmission resources than the SIB1 on the anchor carrier.
  • the number of repetitions of the SIB1 transmission and the transmission resources on the non-anchor carrier can be agreed by a protocol.
  • the time domain resource location of the SIB1 transmission on the anchor carrier and the time domain resource location of the SIB1 transmission on the non-anchor carrier may be agreed by the protocol, and the SIB1 is at the anchor point.
  • Carrier transmission The time domain resource location of the transmission and the time domain resource location of the SIB1 transmission on the non-anchor carrier may be the same or different.
  • the frequency domain location of the non-anchor carrier used for SIB1 transmission may be agreed by a protocol, and the scheduling information is used.
  • the first communication device transmits the SIB1 to the second communication device on the non-anchor carrier according to the transport block size and the number of repetitions indicated by the scheduling information.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be the same as the number of repetitions indicated by the scheduling information, and the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may also be the scheduling information.
  • the number of repetitions of the indication is different. For example, the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be greater than the number of repetitions indicated by the scheduling information.
  • the SIB1 transmission on the non-anchor carrier when the number of repetitions of the SIB1 on the non-anchor carrier is the same as the number of repetitions of the SIB1 on the anchor carrier, the SIB1 transmission on the non-anchor carrier during a repetition period in which the anchor carrier transmits the SIB1 a single time
  • the same transmission resource may be used to transmit the SIB1 on the anchor carrier, and the SIB1 transmission on the non-anchor carrier may use more transmission resources than the SIB1 on the anchor carrier.
  • the number of repetitions of the SIB1 transmission and the transmission resources on the non-anchor carrier can be agreed by a protocol.
  • the first communication device may refer to other information when determining the transmission mode of the SIB1 according to the scheduling information and the status information.
  • the deployment mode information indicated in the MIB message may also include information such as the number of CRS ports.
  • the SIB1 needs to consider the resource location occupied by the CRS when the resource is mapped, and avoids the resources occupied by the CRS during resource mapping.
  • the resource used by the CRS is determined to be related to the number of CRS ports. Therefore, when the first communication device determines the transmission mode of the SIB1 according to the scheduling information and the status information, it may also refer to the deployment mode information indicated in the MIB message.
  • the second communications device receives the SIB1 from the first communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, which may be specifically: the second communications device according to the scheduling information and the A message that receives SIB1 from the first communication device. Further comprising: determining, by the second communications device, the SIB1 from the first communications device at the anchor carrier and/or the non-anchor carrier based on the scheduling information and the state information. When the second communication device determines that the non-anchor carrier receives SIB1 from the first communication device, the second communication device determines a non-anchor carrier for receiving SIB1. For details, refer to the related description of the foregoing first communications device, and details are not described herein again.
  • the first communication device carries various different information for SIB1 transmission by using the scheduling information and the status information, where the status information may ensure that the first communication device can flexibly configure a carrier for SIB1 transmission
  • a part of the cells are configured on the anchor carrier, a part of the cells are configured to transmit the SIB1 on the non-anchor carrier, or a part of the cells are configured to transmit the SIB1 on the anchor carrier, and a part of the cells are configured to transmit the SIB1 on the anchor carrier and the non-anchor carrier, thereby ensuring different cells.
  • the SIB1 transmits different carrier positions in one cycle. This interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the first information further includes time domain location information for SIB1 transmission.
  • the time domain location information for the SIB1 transmission includes one of the following positions: a subframe position, a radio frame position, a superframe position, a symbol position, and a slot position, etc., for indicating a time domain location, and may also be time unit.
  • the symbol corresponding to the symbol position includes but is not limited to an Orthogonal Frequency Division Multiplexing (OFDM) symbol, a Sparse Code Multiplexing Access (SCMA) symbol, and a filtered orthogonal frequency division complex. Filtered Orthogonal Frequency Division Multiplexing (F-OFDM) symbols and Non-Orthogonal Multiple Access (NOMA) symbols can be determined according to actual conditions, and are not described here.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SCMA Sparse Code Multiplexing Access
  • NOMA Non-Orthogonal Multiple Access
  • the first communications device determines, according to the scheduling information and the state information, that the SIB1 is transmitted to the second communications device in the anchor carrier and/or the non-anchor carrier, and may include: the first communications device according to the scheduling information, the state information, and the time domain. Location And determining to transmit the SIB1 to the second communication device in the time domain location indicated by the time domain location information in the anchor carrier and/or the non-anchor carrier for transmitting the SIB1.
  • the time domain location indicated by the time domain location information may be located at the anchor carrier or the non-anchor carrier.
  • the second communications device determines, according to the scheduling information and the state information, that the SIB1 is received from the first communications device by the anchor carrier and/or the non-anchor carrier, including: the second communications device according to the scheduling Information, the status information, and the time domain location information, determining a time domain location indicated by the time domain location information in an anchor carrier and/or a non-anchor carrier for transmitting the SIB1,
  • the first communication device receives the SIB1.
  • the first communication device may refer to other information when determining the transmission mode of the SIB1 according to the scheduling information and the status information.
  • the deployment mode information indicated in the MIB message may also include information such as the number of CRS ports.
  • the SIB1 needs to consider the resource location occupied by the CRS when the resource is mapped, and avoids the resources occupied by the CRS during resource mapping.
  • the resource used by the CRS is determined to be related to the number of CRS ports. Therefore, when the first communication device determines the transmission mode of the SIB1 according to the scheduling information and the status information, it may also refer to the deployment mode information indicated in the MIB message.
  • the first communications device carries various different information for SIB1 transmission by using the scheduling information, the state information, and the time domain location information, where the state information may ensure that the first communications device can be flexibly configured for the SIB1.
  • the transmitted carrier may be configured on the anchor carrier through a part of the cells, the partial cell is configured to transmit the SIB1 on the non-anchor carrier, or the part of the cell is configured to transmit the SIB1 on the anchor carrier, and the part of the cell is configured on the anchor carrier and the non-anchor carrier to transmit the SIB1.
  • the time domain location information can ensure that the time positions of different cells in the SIB1 transmission are different, so as to ensure that the SIB1 of different cells transmits different time positions and/or carrier positions in one cycle, and the interference isolation mechanism can avoid SIB1 of different cells.
  • Mutual interference which improves the reliability of SIB1 transmission.
  • the first information includes time domain location information for SIB1 transmission.
  • time domain location information for SIB1 transmission.
  • the first communications device transmits the SIB1 to the second communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, where the first communications device may be specifically: The scheduling information and the first information transmission SIB1 are given to the second communication device. Further specifically, the first communications device determines a carrier for transmitting SIB1, the carrier including an anchor carrier and/or a non-anchor carrier for transmitting SIB1; the first communication device is at an anchor carrier and/or is used for The time domain location indicated by the time domain location information on the non-anchor carrier of the SIB1 is transmitted, and the SIB1 is transmitted to the second communication device according to the scheduling information.
  • the non-anchor carrier for transmitting the SIB1 may be preset, for example, specified in a communication standard and/or a communication protocol.
  • the time domain location indicated by the time domain location information may be located either on the anchor carrier or on the non-anchor carrier. It should be noted that when the frequency domain location convention for the non-anchor carrier of the SIB1 is used, the first communications device determines that the non-anchor carrier for transmitting the SIB1 refers to the first communication device determining the agreement.
  • the non-anchor carrier corresponding to the frequency domain location is a non-anchor carrier for transmitting the SIB1.
  • the first communication device transmits the SIB1 to the second communication device at the time domain location indicated by the time domain location information on the anchor carrier; or the first communication device is on the non-anchor carrier for transmitting the SIB1,
  • the time domain location indicated by the time domain location information transmits SIB1 to the second communication device; or the first communication device is on the anchor carrier and on the non-anchor carrier for transmitting SIB1, when indicated by the time domain location information
  • the domain location transmits SIB1 to the second communication device.
  • the second communications device receives the SIB1 from the first communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, which may be specifically: the second communications device according to the scheduling information And the first information, receiving the SIB1 from the first communication device. Further comprising: the second communication device determining a carrier for receiving SIB1, the carrier comprising an anchor carrier and/or a non-anchor carrier for transmitting SIB1; the second communication device being at an anchor carrier and/or for transmitting The time domain location indicated by the time domain location information on the non-anchor carrier of the SIB1 is received, and the SIB1 is received from the first communication device according to the scheduling information.
  • the SIB can be transmitted only at the anchor point by protocol, or only at non-anchor points, or SIB1 is transmitted on the anchor carrier and the non-anchor carrier.
  • the frequency domain location of the non-anchor carrier for SIB1 transmission may be agreed by a protocol, where the scheduling information is used to indicate a transport block size and a number of repetitions used by the SIB1 transmission, and the transport block indicated by the first communications device according to the scheduling information
  • the size and the number of repetitions transmit SIB1 to the second communication device at the non-anchor carrier.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be the same as the number of repetitions indicated by the scheduling information, and the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may also be the scheduling information.
  • the number of repetitions of the indication is different.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be greater than the number of repetitions indicated by the scheduling information.
  • the SIB1 transmission on the non-anchor carrier when the number of repetitions of the SIB1 on the non-anchor carrier is the same as the number of repetitions of the SIB1 on the anchor carrier, the SIB1 transmission on the non-anchor carrier during a repetition period in which the anchor carrier transmits the SIB1 a single time
  • the same transmission resource may be used to transmit the SIB1 on the anchor carrier, and the SIB1 transmission on the non-anchor carrier may use more transmission resources than the SIB1 on the anchor carrier.
  • the number of repetitions of the SIB1 transmission and the transmission resources on the non-anchor carrier can be agreed by a protocol.
  • the first communication device may refer to other information when determining the transmission mode of the SIB1 according to the scheduling information and the status information.
  • the deployment mode information indicated in the MIB message may also include information such as the number of CRS ports.
  • the SIB1 needs to consider the resource location occupied by the CRS when the resource is mapped, and avoids the resources occupied by the CRS during resource mapping.
  • the resource used by the CRS is determined to be related to the number of CRS ports. Therefore, when the first communication device determines the transmission mode of the SIB1 according to the scheduling information and the status information, it may also refer to the deployment mode information indicated in the MIB message.
  • the first communications device carries various different information for SIB1 transmission by using the scheduling information and the time domain location information, where the time domain location information can ensure different time positions of different cells in SIB1 transmission, thereby ensuring different The SIB1 of the cell transmits different time positions in one cycle.
  • This interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the first information includes frequency domain location information for a non-anchor carrier for SIB1 transmission.
  • the frequency domain location information of the non-anchor carrier for the SIB1 transmission includes at least one of the following parameters: a relative position of the non-anchor carrier relative to the anchor carrier for the SIB1 transmission; and a non-SIB1 transmission.
  • the frequency domain offset can be a frequency domain interval or a number of resource blocks.
  • the resource block refers to a frequency domain resource unit, which may be a number of N consecutive subcarriers, and N may be agreed by a protocol. In LTE, resource blocks may correspond to RBs.
  • the frequency domain offset of the non-anchor carrier and the anchor carrier used for SIB1 transmission may be a frequency domain interval of a non-anchor carrier relative to an anchor carrier for SIB1 transmission, or a non-anchor point for SIB1 transmission.
  • the number of RB resource blocks of the carrier relative to the anchor carrier refer to FIG. 3 for details.
  • a non-anchor carrier for SIB1 transmission at a high frequency position of the anchor carrier and a non-anchor for SIB1 transmission
  • the carrier is at the low frequency position of the anchor carrier, as shown in Figure 3.
  • the first communications device transmits the SIB1 to the second communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, where the first communications device may be specifically: The scheduling information and the first information transmission SIB1 are given to the second communication device. Further specifically, the first communications device determines a non-anchor carrier for transmitting SIB1; the first communications device determines a frequency domain location of the non-anchor carrier for SIB1 transmission according to the frequency domain location information and the anchor carrier; The communication device transmits the SIB1 according to the scheduling information on the non-anchor carrier for transmitting the SIB1 corresponding to the frequency domain location. That is, only non-anchor carriers are used to transmit SIB1.
  • the first communication device may transmit the SIB1 to the second communication device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, where the first communication device may be:
  • the first information transmission SIB1 is given to the second communication device.
  • the first communications device determines a non-anchor carrier for transmitting SIB1;
  • the first communications device determines a frequency domain location of the non-anchor carrier for SIB1 transmission according to the frequency domain location information and the anchor carrier;
  • the communication device transmits the SIB1 to the second communication device according to the scheduling information on the anchor carrier and the frequency domain location of the non-anchor carrier for the SIB1 transmission corresponding to the frequency domain location and on the anchor carrier. . That is, the anchor carrier and the non-anchor carrier are simultaneously used to transmit SIB1.
  • the second communications device receives the SIB1 from the first communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, which may be specifically: the second communications device according to the scheduling information and the A message that receives SIB1 from the first communication device.
  • the second communications device determines, by the second communications device, a non-anchor carrier for receiving the SIB1; the second communications device determining, according to the frequency domain location information and the anchor carrier, the determining for the SIB1 transmission a frequency domain location of the non-anchor carrier; the second communication device, according to the scheduling information, from the first communication, on the non-anchor carrier for transmitting the SIB1 corresponding to the frequency domain location
  • the device receives the SIB1; or the second communication device is configured according to the scheduling information on the anchor carrier and the non-anchor carrier for the SIB1 transmission corresponding to the frequency domain location. Receiving the SIB1 from the first communication device.
  • the SIB can be transmitted only at non-anchor points by protocol, or SIB1 can be transmitted on anchor carriers and non-anchor carriers.
  • the time domain resource location of the SIB1 transmission on the anchor carrier and the time domain resource location of the SIB1 transmission on the non-anchor carrier may be agreed by the protocol, the time domain resource location of the SIB1 transmission on the anchor carrier and the transmission of the SIB1 on the non-anchor carrier carrier.
  • the domain resource locations can be the same or different.
  • the scheduling information is used to indicate a transport block size and a repetition number used by the SIB1 transmission, and the first communications device transmits the SIB1 to the second communication device according to the transport block size and the number of repetitions indicated by the scheduling information. .
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be the same as the number of repetitions indicated by the scheduling information, and the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may also be the scheduling information.
  • the number of repetitions of the indication is different.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be greater than the number of repetitions indicated by the scheduling information.
  • the SIB1 transmission on the non-anchor carrier when the number of repetitions of the SIB1 on the non-anchor carrier is the same as the number of repetitions of the SIB1 on the anchor carrier, the SIB1 transmission on the non-anchor carrier during a repetition period in which the anchor carrier transmits the SIB1 a single time
  • the same transmission resource may be used to transmit the SIB1 on the anchor carrier, and the SIB1 transmission on the non-anchor carrier may use more transmission resources than the SIB1 on the anchor carrier.
  • the number of repetitions of the SIB1 transmission and the transmission resources on the non-anchor carrier can be agreed by a protocol.
  • the first communication device may refer to other information when determining the transmission mode of the SIB1 according to the scheduling information and the status information.
  • the deployment mode information indicated in the MIB message may also include information such as the number of CRS ports.
  • the SIB1 needs to consider the resource location occupied by the CRS when the resource is mapped, and avoids the resources occupied by the CRS during resource mapping.
  • the resource used by the CRS is determined to be related to the number of CRS ports. Therefore, when the first communication device determines the transmission mode of the SIB1 according to the scheduling information and the status information, it may also refer to the deployment mode information indicated in the MIB message.
  • the first communications device carries various types by using the scheduling information and non-anchor fixed carrier frequency domain location information.
  • Different information for SIB1 transmission wherein non-anchor fixed carrier frequency domain location information can ensure that different cells use non-anchor carrier to transmit SIB1 transmission, and different cells can configure different non-anchor carriers to ensure SIB1 of different cells.
  • the frequency domain locations transmitted in one cycle are different.
  • This interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the first information includes transmission mode information of SIB1 on the non-anchor carrier for SIB1 transmission.
  • the transmission mode information may include a repetition quantity of SIB1 on the non-anchor carrier for transmitting the SIB1.
  • the first communications device may transmit the SIB1 to the second communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information.
  • the first communication device transmits the SIB1 to the second communication device according to the scheduling information and the first information.
  • the first communications device determines a non-anchor carrier for transmitting the SIB1; the first communications device transmits the SIB1 to the second communications device on the non-anchor carrier for transmitting the SIB1 according to the number of repetitions and the scheduling information. .
  • the first communications device transmits the SIB1 to the second communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, which may be specifically: the first communications
  • the device transmits the SIB1 to the second communication device according to the scheduling information and the first information.
  • the first communications device transmits the SIB1 to the second communications device according to the scheduling information and the first information, specifically: the first communications device determines a non-anchor carrier for transmitting the SIB1; and the first communications device is in the anchor carrier according to the scheduling information. And transmitting the SIB1 to the second communication device on the non-anchor carrier for transmitting the SIB1 according to the scheduling information and the number of repetitions.
  • the number of repetitions of the SIB1 on the anchor carrier can be determined by referring to the prior art.
  • the second communications device receives the SIB1 from the first communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, which may be specifically: the second communications device according to the scheduling information and the A message that receives SIB1 from the first communication device.
  • the second communications device determines, by the second communications device, a non-anchor carrier for transmitting the SIB1; the second communications device, in the non-anchor for transmitting the SIB1, according to the number of repetitions and the scheduling information Receiving, on the carrier, the SIB1 from the first communications device; or, the second communications device is on the anchor carrier according to the scheduling information, and according to the scheduling information and the number of repetitions, And transmitting, on the non-anchor carrier of the SIB1, the SIB1 from the first communications device.
  • the SIB can be transmitted only at non-anchor points by protocol, or SIB1 can be transmitted on anchor carriers and non-anchor carriers.
  • the time domain resource location of the SIB1 transmission on the anchor carrier and the time domain resource location of the SIB1 transmission on the non-anchor carrier may be agreed by the protocol, the time domain resource location of the SIB1 transmission on the anchor carrier and the transmission of the SIB1 on the non-anchor carrier carrier.
  • the domain resource locations can be the same or different.
  • the frequency domain location of the non-anchor carrier used for SIB1 transmission can be agreed upon by the protocol.
  • the scheduling information is used to indicate a transport block size and a repetition number used by the SIB1 transmission, and the first communications device transmits the SIB1 to the second communications device according to the transport block size indicated by the scheduling information.
  • the SIB1 transmission on the non-anchor carrier during a repetition period in which the anchor carrier transmits the SIB1 a single time
  • the same transmission resource may be used to transmit the SIB1 on the anchor carrier, and the SIB1 transmission on the non-anchor carrier may use more transmission resources than the SIB1 on the anchor carrier.
  • the transmission resources of the SIB1 transmission on the non-anchor carrier can be agreed by a protocol.
  • the first communication device may refer to other information when determining the transmission mode of the SIB1 according to the scheduling information and the status information.
  • the deployment mode information indicated in the MIB message may also include information such as the number of CRS ports.
  • the SIB1 needs to consider the resource location occupied by the CRS when the resource is mapped, and avoids the resources occupied by the CRS during resource mapping.
  • the resource used by the CRS is determined to be related to the number of CRS ports. Therefore, when the first communication device determines the transmission mode of the SIB1 according to the scheduling information and the status information, it may also refer to the deployment mode information indicated in the MIB message.
  • the first communication device carries various different information for SIB1 transmission by using the scheduling information and the transmission mode information of the SIB1 on the non-anchor carrier, so that different cells can transmit the SIB1 transmission by using the non-anchor carrier.
  • the SIB1 of different cells is guaranteed to have different frequency domain locations in one cycle.
  • the interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the number of repetitions can be configured, so that the base station can configure the number of repetitions when transmitting on the SIB1 word non-anchor carrier according to the power difference between the non-anchor carrier and the anchor carrier, thereby ensuring the reliability of the SIB1 when transmitting the non-anchor carrier.
  • the first information includes transmission mode information of SIB1 on the non-anchor carrier for SIB1 transmission.
  • the transmission mode information in this embodiment includes resource indication information.
  • the resource indication information is used to indicate that when the number of repetitions of the SIB1 on the non-anchor carrier for transmitting the SIB1 is the same as the number of repetitions of the SIB1 on the anchor carrier, in a repetition period of the single transmission SIB1 of the anchor carrier, Whether the SIB1 transmission on the non-anchor carrier for transmitting the SIB1 requires more transmission resources than the SIB1 transmission on the anchor carrier.
  • the transmission resource may be one of a subframe, a radio frame, a superframe, a symbol, or a time slot.
  • the repetition period of SIB1 for a single transmission of the anchor carrier refers to the time required to transmit one TB of SIB1.
  • SIB1 uses one subframe in m radio frames, and one TB of SIB1 needs to occupy k subframes.
  • m and k are positive integers greater than 1
  • the time for transmitting SIB1 in a single time is 10 ⁇ m ⁇ k.
  • Milliseconds (ms) here, the time corresponding to one radio frame is 10 milliseconds, but the application is not limited thereto.
  • SIB1 uses one subframe in two radio frames, and one TB for transmitting SIB1 needs to occupy 8 subframes, and the time for transmitting SIB1 in a single transmission is 10 ⁇ 2 ⁇ 8 ms, that is, 160 ms.
  • the SIB1 transmission on the non-anchor carrier for transmitting the SIB1 needs more transmission resources than the SIB1 transmission on the anchor carrier, meaning that the SIB1 is in the non-
  • the transmission resource occupied by the anchor carrier is more than the transmission resource occupied by the transmission on the anchor carrier.
  • the transmission resource occupied by the transmission on the anchor carrier is only a reference, and does not mean that the SIB1 is transmitted on the anchor carrier. For example, SIB1 occupies 1 subframe in 2 radio frames when SIB1 is transmitted on the anchor carrier.
  • SIB1 When transmitting SIB1 on a non-anchor carrier, 2 subframes are used in 2 radio frames, 2 subframes are located in the same radio frame or SIB1 is used in non-anchor carrier 2 subframes in 2 radio frames, 2 subframes Located in different radio frames, the subframe numbers of the two subframes are the same, or SIB1 uses 2 subframes in 2 radio frames on the non-anchor carrier, 2 subframes are located in different radio frames, and subframe numbers of 2 subframes different.
  • the first communication device transmits the SIB1 to the second communication device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, which may be specifically: the first communication device according to the scheduling information and The first information transmission SIB1 is given to the second communication device.
  • the first communications device specifically transmits the SIB1 to the second communications device according to the scheduling information and the first information, and specifically includes the following:
  • the first communications device determines a non-anchor carrier for transmitting SIB1;
  • the first communication device transmits the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1, and transmits the SIB1 to the second communication device according to the scheduling information; or the first communication device is on the anchor carrier, and uses The SIB1 is transmitted to the second communication device according to the scheduling information on the transmission resource for transmitting the SIB1 on the non-anchor carrier transmitting the SIB1.
  • the number of repetitions of SIB1 on the anchor carrier can be determined by referring to the prior art.
  • the second communication device receives the SIB1 from the first communication device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, where the second communication device may be specifically: the second communication device according to the scheduling information and the first information,
  • the SIB1 is received from the first communication device.
  • the second communication device determining the non-anchor carrier for transmitting the SIB1; the second communication device determining, according to the resource indication information, the non-anchor for transmitting the SIB1 a transmission resource for transmitting the SIB1 on the point carrier; the second communication device transmits the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1, and according to the scheduling information, Receiving, by the first communications device, the SIB1; or the second communications device on the anchor carrier and using the non-anchor carrier for transmitting the SIB1 for transmitting the SIB1 And transmitting, on the transmission resource, the SIB1 from the first communications device according to the scheduling information.
  • the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission mainly considers the power difference between the anchor carrier and the non-anchor carrier.
  • SIB1 may use the same number of repetitions as SIB1 when transmitting the anchor carrier during non-anchor carrier transmission. For example, the number of repetitions of SIB1 on the anchor carrier transmission is 8, and the number of repetitions of SIB1 on the non-anchor carrier transmission is also 8.
  • the SIB1 uses more repetitions than the SIB1 in the anchor carrier transmission when the non-anchor carrier transmits.
  • the number of repetitions of the SIB1 in the anchor carrier transmission is 8
  • the number of repetitions of SIB1 on non-anchor carrier transmission is 16.
  • the SIB1 transmission on the non-anchor carrier is transmitted compared to the anchor carrier SIB1 in the repetition period of the single-station SIB1 of the anchor carrier. More subframes are used, for example, SIB1 uses 8 repetitions in non-anchor carrier transmission, SIB1 occupies 8 subframes in anchor carrier within 160 ms, and SIB1 occupies 16 subframes on non-anchor carrier.
  • the SIB can be transmitted only at non-anchor points by protocol, or SIB1 can be transmitted on anchor carriers and non-anchor carriers.
  • the time domain resource location of the SIB1 transmission on the anchor carrier and the time domain resource location of the SIB1 transmission on the non-anchor carrier may be agreed by the protocol, the time domain resource location of the SIB1 transmission on the anchor carrier and the transmission of the SIB1 on the non-anchor carrier carrier.
  • the domain resource locations can be the same or different.
  • the frequency domain location of the non-anchor carrier used for SIB1 transmission can be agreed upon by the protocol.
  • the scheduling information is used to indicate a transport block size and a repetition number used by the SIB1 transmission, and the first communications device transmits the SIB1 to the second communication device according to the transport block size and the number of repetitions indicated by the scheduling information.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be the same as the number of repetitions indicated by the scheduling information, and the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may also be the scheduling information.
  • the number of repetitions of the indication is different. For example, the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be greater than the number of repetitions indicated by the scheduling information.
  • the number of repetitions of the SIB1 transmission on the non-anchor carrier can be agreed by the protocol.
  • the first communication device may refer to other information when determining the transmission mode of the SIB1 according to the scheduling information and the status information.
  • the deployment mode information indicated in the MIB message may also include information such as the number of CRS ports.
  • the SIB1 needs to consider the resource location occupied by the CRS when the resource is mapped, and avoids the resources occupied by the CRS during resource mapping.
  • the resource used by the CRS is determined to be related to the number of CRS ports. Therefore, when the first communication device determines the transmission mode of the SIB1 according to the scheduling information and the status information, it may also refer to the deployment mode information indicated in the MIB message.
  • the first communication device carries various different information for SIB1 transmission by using the scheduling information and the transmission mode information of the SIB1 on the non-anchor carrier, so that different cells can transmit the SIB1 transmission by using the non-anchor carrier.
  • the transmission resource can be configured, so that the base station can configure the transmission resource when transmitting on the SIB1 word non-anchor carrier according to the power difference between the non-anchor carrier and the anchor carrier, thereby ensuring the reliability of the SIB1 when transmitting the non-anchor carrier.
  • the set of repetitions includes at least one number of repetitions, which may be 4, 8, and 16, and the like.
  • the set of repetitions contains 4 and 8, and so on.
  • the scheduling information is used to determine the transport block size and number of repetitions used by the SIB1 transmission.
  • the first communications device may transmit the SIB1 to the second communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, which may be specifically:
  • the communication device transmits the SIB1 to the second communication device according to the scheduling information.
  • the transmitting, by the first communications device, the SIB1 to the second communications device according to the scheduling information includes: determining, by the first communications device, the number of repetitions (the number of repetitions in the scheduling information) corresponding to the first state or the second state;
  • the first state or the second state transmits SIB1 to the second communication device on the anchor carrier and/or the non-anchor carrier.
  • the first communication device determines that the number of repetitions corresponds to the first state, the first communication device transmits the SIB1 to the second communication device only on the anchor carrier according to the first state; or, if the first communication device determines that the number of repetitions corresponds to the second state, The first communication device transmits the SIB1 to the second communication device on the anchor carrier and the non-anchor carrier according to the second state; or, if the first communication device determines that the number of repetitions corresponds to the second state, the first communication device is according to the second state.
  • the SIB1 is transmitted to the second communication device only on the non-anchor carrier.
  • the first communications device determines to transmit the SIB1 on a non-anchor carrier
  • the first communications device determines a non-anchor carrier for transmitting the SIB1.
  • the first communication device determines that the number of repetitions corresponds to the first state, the first communication device transmits the SIB1 to the second communication device only on the anchor carrier according to the first state, and the time domain resource location of the SIB1 transmission on the anchor carrier may be agreed by the protocol.
  • the scheduling information is used to indicate the transport block size and the number of repetitions used by the SIB1 transmission, and the first communications device transmits the SIB1 to the second communications device according to the transport block size and the number of repetitions indicated by the scheduling information. .
  • the first communication device determines that the number of repetitions corresponds to the second state, the first communication device transmits the SIB1 to the second communication device only on the non-anchor carrier according to the second state, and the time domain resource location of the SIB1 transmission on the non-anchor carrier can pass
  • the protocol stipulates that the frequency domain location of the non-anchor carrier for the SIB1 transmission may be agreed by a protocol, where the scheduling information is used to indicate the transport block size and the number of repetitions used by the SIB1 transmission, and the first communications device indicates according to the scheduling information.
  • the transport block transmits SIB1 to the second communication device at the non-anchor carrier.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be the same as the number of repetitions indicated by the scheduling information, and the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may also be the scheduling information.
  • the number of repetitions of the indication is different.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be greater than the number of repetitions indicated by the scheduling information.
  • the SIB1 transmission on the non-anchor carrier when the number of repetitions of the SIB1 on the non-anchor carrier is the same as the number of repetitions of the SIB1 on the anchor carrier, the SIB1 transmission on the non-anchor carrier during a repetition period in which the anchor carrier transmits the SIB1 a single time
  • the same transmission resource may be used to transmit the SIB1 on the anchor carrier, and the SIB1 transmission on the non-anchor carrier may use more transmission resources than the SIB1 on the anchor carrier.
  • the number of repetitions of the SIB1 transmission and the transmission resources on the non-anchor carrier can be agreed by a protocol.
  • the first communication device determines that the number of repetitions corresponds to the second state, the first communication device carries the anchor point according to the second state.
  • the wave and non-anchor carrier transmit SIB1 to the second communication device, the time domain resource location of the SIB1 transmission on the anchor carrier and the time domain resource location of the SIB1 transmission on the non-anchor carrier may be agreed by the protocol, and the SIB1 is transmitted on the anchor carrier.
  • the time domain resource location and the time domain resource location of the SIB1 in the non-anchor carrier transmission may be the same or different.
  • the frequency domain location of the non-anchor carrier for the SIB1 transmission may be agreed by a protocol, and the scheduling information is used to indicate the location.
  • the first communication device transmits the SIB1 to the second communication device on the non-anchor carrier according to the transport block size and the number of repetitions indicated by the scheduling information.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be the same as the number of repetitions indicated by the scheduling information, and the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may also be the scheduling information.
  • the number of repetitions of the indication is different. For example, the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be greater than the number of repetitions indicated by the scheduling information.
  • the SIB1 transmission on the non-anchor carrier when the number of repetitions of the SIB1 on the non-anchor carrier is the same as the number of repetitions of the SIB1 on the anchor carrier, the SIB1 transmission on the non-anchor carrier during a repetition period in which the anchor carrier transmits the SIB1 a single time
  • the same transmission resource may be used to transmit the SIB1 on the anchor carrier, and the SIB1 transmission on the non-anchor carrier may use more transmission resources than the SIB1 on the anchor carrier.
  • the number of repetitions of the SIB1 transmission and the transmission resources on the non-anchor carrier can be agreed by a protocol.
  • the first communication device may refer to other information when determining the transmission mode of the SIB1 according to the scheduling information and the status information.
  • the deployment mode information indicated in the MIB message may also include information such as the number of CRS ports.
  • the SIB1 needs to consider the resource location occupied by the CRS when the resource is mapped, and avoids the resources occupied by the CRS during resource mapping.
  • the resource used by the CRS is determined to be related to the number of CRS ports. Therefore, when the first communication device determines the transmission mode of the SIB1 according to the scheduling information and the status information, it may also refer to the deployment mode information indicated in the MIB message.
  • the second communications device receives the SIB1 from the first communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, where the second communications device may be:
  • the first communication device receives SIB1.
  • the second communication device receives the SIB1 from the first communications device according to the scheduling information, and further includes: determining, by the second communications device, that the number of repetitions corresponds to a first state or a second state;
  • the second communication device receives the SIB1 from the first communication device according to the first state or the second state on an anchor carrier and/or a non-anchor carrier.
  • the second communication device determines that the non-anchor carrier is received from the first communication device, the second communication device determines a non-anchor carrier for receiving the SIB1.
  • the first communication device acquires the number of repetitions by using the scheduling information, and configures the SIB1 to transmit the SIB1 by the non-anchor carrier according to the number of repetitions, and increases the MIB signaling overhead, thereby ensuring the carrier position of the SIB1 transmitted by the different cells in one cycle.
  • the interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the MIB message when the number of repetitions in the scheduling information corresponds to the first state, the MIB message includes the scheduling information of the SIB1 and the deployment mode of the carrier; when the number of repetitions in the scheduling information corresponds to the second state, the MIB message The scheduling information of the SIB1, the deployment mode of the carrier, and the first information including the status information for the SIB1 transmission are included.
  • the first communications device may transmit the SIB1 to the second communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, where the first communications device may be specifically: At least one of the scheduling information, the deployment mode of the carrier, and the first information transmits the SIB1 to the second communication device.
  • the first communications device transmits the SIB1 to the second communications device according to at least one of the scheduling information, the deployment mode of the carrier, and the first information, and specifically includes the following specific implementation:
  • the corresponding number of repetition times corresponds to the value The first state and the scheduling information, transmitting the SIB1 to the second communication device on the anchor carrier;
  • the SIB1 is transmitted to the second communication device on the non-anchor carrier according to the scheduling information, the deployment mode of the carrier, and the state information of the SIB1 transmission in the first information.
  • the first communications device transmitting the SIB1 on the non-anchor carrier includes: determining, by the first communications device, a non-anchor carrier for transmitting the SIB1.
  • the first communications device determines that the non-anchor carrier for transmitting the SIB1 refers to the first communication device determining the agreement.
  • the non-anchor carrier corresponding to the frequency domain location is a non-anchor carrier for transmitting the SIB1.
  • the second communications device receives the SIB1 from the first communications device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, where the second communications device may be specifically:
  • the SIB1 is received from the first communication device by at least one of scheduling information, a deployment mode of the carrier, and the first information.
  • the method further includes: when the number of repetitions in the scheduling information belongs to the part of the repetition number value, according to the first state and the scheduling information corresponding to the part of the repetition number value, on the anchor carrier, Receiving, by the first communication device, the SIB1; when the number of repetitions in the scheduling information belongs to the another partial repetition number value, receiving, on the anchor carrier, the first communication device according to the scheduling information.
  • Receiving SIB1 from the first communication device when the second communication device is on the non-anchor carrier may include the second communication device determining a non-anchor carrier for receiving the SIB1.
  • the carrier deployment mode includes deployment mode information for transmitting the non-anchor carrier of the SIB1, or the carrier deployment mode includes the deployment mode of the anchor carrier and is used for transmission. Deployment mode information of the non-anchor carrier of SIB1.
  • the foregoing transmitting the SIB1 to the second communication device on the non-anchor carrier for transmitting the SIB1 according to the scheduling information, the deployment mode of the carrier, and the status information of the SIB1 transmission in the first information may include the following Several specific implementation methods:
  • the first communication device determines the deployment mode of the non-anchor carrier for transmitting the SIB1 according to the deployment mode of the carrier, where the determined deployment mode is an independent deployment mode, and the first communication device determines to use according to the independent deployment mode.
  • the transmission resource of the SIB1 on the non-anchor carrier transmitting the SIB1 is the same as the transmission resource of the SIB1 on the anchor carrier; the first communication device is in the non-anchor point according to the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1.
  • the SIB1 is transmitted to the second communication device according to the scheduling information.
  • the independent deployment mode utilizes independent frequency bands, such as one or more carriers, to transmit NB-IoT, as shown in FIG.
  • the first communications device determines a deployment mode of the non-anchor carrier for transmitting the SIB1 according to the deployment mode of the carrier, where the determined deployment mode is a protection band deployment mode or an in-band deployment mode; Determining a transmission resource of SIB1 on the non-anchor carrier for transmitting the SIB1; Anchor carrier The SIB1 is transmitted to the second communication device according to the scheduling information.
  • the guard band deployment mode is to utilize one or more resource blocks that are not utilized in the LTE guard band to transmit the NB-IoT, where one resource block has a bandwidth of 180 kHz, as shown in FIG. 5.
  • the LTE channel bandwidth includes an LTE protection band and an LTE transmission bandwidth.
  • the in-band deployment mode utilizes one or more resource blocks within the LTE transmission bandwidth to transmit NB-IoT, where one resource block has a bandwidth of 180 kHz, as shown in FIG.
  • the SIB1 is transmitted to the second communication device on the anchor carrier according to the first state and the scheduling information corresponding to the part of the repetition number value; when the SIB1 is transmitted on the anchor carrier
  • the location of the domain resource may be agreed by a protocol, where the scheduling information is used to indicate a transport block size and a repetition quantity used by the SIB1 transmission, and the first communication device is in the anchor carrier according to the transport block size and the number of repetitions indicated by the scheduling information.
  • the SIB1 is transmitted to the second communication device.
  • the SIB1 is transmitted to the second communication device on the anchor carrier according to the scheduling information; the time domain resource location of the SIB1 transmission on the anchor carrier may be agreed by a protocol.
  • the scheduling information is used to indicate the transport block size and the number of repetitions used by the SIB1 transmission, and the first communications device transmits the SIB1 to the second communications device according to the transport block size and the number of repetitions indicated by the scheduling information.
  • the SIB1 is transmitted to the second communication device on the non-anchor carrier according to the scheduling information, the deployment mode of the carrier, and the state information of the SIB1 transmission in the first information.
  • the time domain resource location of the non-anchor carrier transmission of the SIB1 may be agreed by a protocol
  • the frequency domain location of the non-anchor carrier for the SIB1 transmission may be agreed by a protocol
  • the scheduling information is used to indicate the transmission used by the SIB1 transmission.
  • the first communication device transmits the SIB1 to the second communication device on the non-anchor carrier according to the transport block indicated by the scheduling information.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be the same as the number of repetitions indicated by the scheduling information, and the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may also be the scheduling information.
  • the number of repetitions of the indication is different.
  • the number of repetitions of the SIB1 when the SIB1 is transmitted on the non-anchor carrier may be greater than the number of repetitions indicated by the scheduling information.
  • the number of repetitions of the SIB1 transmission on the non-anchor carrier can be agreed by the protocol.
  • the SIB1 repetition is transmitted in a single transmission on the anchor carrier.
  • the SIB1 transmission on the non-anchor carrier may use the same transmission resource as the SIB1 on the anchor carrier.
  • the SIB1 on the non-anchor carrier The transmission may use more transmission resources than the SIB1 on the anchor carrier.
  • the set of repetitions includes at least one number of repetitions, which may be 4, 8, and 16, and the like.
  • the set of repetitions includes 4, 8 and 16, the number of repetitions in the set of repetitions is 4 or 8, and the number of repetitions in the collection of repetitions is 16.
  • the number of repetitions included in the repetition number set is 4, 8, and 16.
  • the number of repetitions of a part of the repetition number combination is 4 or 8, and the other part of the repetition number set is 16 times.
  • SIB1 is only transmitted on the anchor carrier, and the subframe position transmitted by SIB1 on the anchor carrier may be agreed by a protocol, such as subframe 0, if When the number of repetitions indicated in the SIB1 scheduling message in the MIB message is 16, the SIB1 is transmitted only on the non-anchor carrier, and the frequency domain location of the non-anchor carrier used for SIB1 transmission is agreed by a protocol, such as a non-anchor for SIB1 transmission.
  • the point carrier relative to the anchor carrier is at the high frequency position of the anchor carrier, the non-anchor carrier for SIB1 transmission is on the adjacent RB of the anchor carrier, or the non-anchor carrier for the SIB1 transmission is relative to the anchor point.
  • the wave is at the low frequency position of the anchor carrier, and the non-anchor carrier used for SIB1 transmission is on the adjacent RB of the anchor carrier.
  • the deployment mode of the non-anchor carrier is determined as described above. If the deployment mode of the non-anchor carrier is determined to be an independent deployment mode according to the deployment mode of the carrier, the number of repetitions of SIB1 transmission on the non-anchor carrier and the SIB1 in the MIB message.
  • the scheduling message indicates the same number of repetitions, which is 16.
  • the transmission resource used by the SIB1 on the non-anchor carrier compared to the anchor carrier within 160 ms, that is, one subframe is occupied, and the subframe position can be agreed by a protocol, such as subframe 0. Or subframe 5, or subframe 9, if the deployment mode of the non-anchor carrier is determined to be the guard band deployment mode or the in-band deployment mode according to the deployment mode of the carrier, the number of repetitions of SIB1 transmission on the non-anchor carrier and the MIB message. The number of repetitions indicated by the SIB1 scheduling message is the same, which is 16.
  • the SIB1 uses more transmission resources on the non-anchor carrier than the anchor carrier within 160 ms.
  • the location of how many transmission resources and transmission resources are used may be agreed by a protocol, such as SIB1.
  • Subframe 0 and subframe 5, or subframe 5 and subframe 9, or subframe 0 and subframe 9 are used for transmission on the non-anchor carrier.
  • the first communication device may refer to other information when determining the transmission mode of the SIB1 according to the scheduling information and the status information.
  • the deployment mode information indicated in the MIB message may also include information such as the number of CRS ports.
  • the SIB1 needs to consider the resource location occupied by the CRS when the resource is mapped, and avoids the resources occupied by the CRS during resource mapping.
  • the resource used by the CRS is determined to be related to the number of CRS ports. Therefore, when the first communication device determines the transmission mode of the SIB1 according to the scheduling information and the status information, it may also refer to the deployment mode information indicated in the MIB message.
  • the receiving, by the first communications device, the SIB1 may include: determining, by the second communications device, a deployment mode for transmitting a non-anchor carrier of the SIB1 according to a deployment mode of the carrier, where the determined deployment mode is One of a standalone deployment mode, a protection zone deployment mode, and an in-band deployment mode;
  • the second communication device receives the SIB1 from the first communication device according to the scheduling information on the non-anchor carrier according to the transmission resource of the SIB1 on the non-anchor carrier;
  • the second communication device determines, according to the guard band deployment mode or the in-band deployment mode, the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1;
  • the second communication device according to the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1 on the non-anchor carrier for transmitting the SIB1, according to the scheduling information, from the The first communication device receives the SIB1.
  • the first communication device carries the different information for the SIB1 transmission by using the scheduling information, the deployment mode of the carrier, and the status information, where the status information can ensure that the first communication device can be flexibly configured for the SIB1.
  • the transmitted carrier may be configured on the anchor carrier through a part of the cells, the partial cell is configured to transmit the SIB1 on the non-anchor carrier, or the part of the cell is configured to transmit the SIB1 on the anchor carrier, and the part of the cell is configured on the anchor carrier and the non-anchor carrier to transmit the SIB1. Therefore, the carrier positions of SIB1 transmitted by different cells in one cycle are different.
  • the interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the deployment mode of the carrier includes deployment mode information for transmitting the non-anchor carrier of the SIB1, or the deployment mode of the carrier includes a deployment mode of the anchor carrier and a non-anchor for transmitting the SIB1. Carrier deployment mode information.
  • the first communication device transmits the SIB1 to the second communication device according to the scheduling information, or according to at least one of the deployment mode and the first information of the carrier, and the scheduling information, which may be specifically: the first communication device according to the scheduling information and The deployment mode of the carrier transmits SIB1 to the second communication device.
  • the first communications device transmits the SIB1 to the second communications device according to the scheduling information and the deployment mode of the carrier, and specifically includes the following specific implementation manners:
  • the first communications device determines a deployment mode of the non-anchor carrier for transmitting the SIB1 according to the deployment mode of the carrier, where the determined deployment mode is an independent deployment mode, and the first communications device determines the non-anchor according to the independent deployment mode.
  • the number of repetitions of the SIB1 on the point carrier is the same as the number of repetitions of the SIB1 on the anchor carrier; the first communication device transmits the SIB1 on the non-anchor carrier for transmitting the SIB1 according to the scheduling information and the number of repetitions, or the first communication device On the anchor carrier, and on the non-anchor carrier for transmitting the SIB1 according to the number of repetitions, the SIB1 is transmitted to the second communication device according to the scheduling information.
  • the first communication device determines, according to the deployment mode of the carrier, a deployment mode for transmitting the non-anchor carrier of the SIB1, where the determined deployment mode is an independent deployment mode, and the first communication device determines to use according to the independent deployment mode.
  • the transmission resource of the SIB1 on the non-anchor carrier transmitting the SIB1 is the same as the transmission resource of the SIB1 on the anchor carrier; the first communication device transmits the SIB1 on the non-anchor carrier according to the scheduling information and the transmission resource, or the first communication device On the anchor carrier, and on the non-anchor carrier according to the transmission resource, the SIB1 is transmitted to the second communication device according to the scheduling information.
  • the first communications device determines a deployment mode of the non-anchor carrier for transmitting the SIB1 according to the deployment mode of the carrier, where the determined deployment mode is a protection band deployment mode or an in-band deployment mode;
  • the deployment mode or the in-band deployment mode determines the number of repetitions of the SIB1 on the non-anchor carrier;
  • the first communication device transmits the SIB1 to the second communication device according to the scheduling information on the non-anchor carrier according to the repetition number of the SIB1 on the non-anchor carrier .
  • the power spectral density of the non-anchor carrier is generally lower than or equal to the power spectral density of the anchor carrier.
  • the number of repetitions of SIB1 on the non-anchor carrier determined by this method is greater than the repetition number of SIB1 on the anchor carrier.
  • the first communication device determines a deployment mode of the non-anchor carrier for transmitting the SIB1 according to the deployment mode of the carrier, where the determined deployment mode is a protection band deployment mode or an in-band deployment mode;
  • the deployment mode or the in-band deployment mode determines the number of repetitions of SIB1 on the non-anchor carrier; the first communication device is on the anchor carrier, and according to the number of repetitions of SIB1 on the non-anchor carrier on the non-anchor carrier, according to the scheduling information
  • the SIB1 is transmitted to the second communication device.
  • the power spectral density of the non-anchor carrier is generally lower than or equal to the power spectral density of the anchor carrier.
  • the number of repetitions of SIB1 on the non-anchor carrier determined by this method is greater than the repetition number of SIB1 on the anchor carrier.
  • the first communications device transmitting the SIB1 on the non-anchor carrier includes: determining, by the first communications device, a non-anchor carrier for transmitting the SIB1.
  • the first communications device determines that the non-anchor carrier for transmitting the SIB1 refers to the first communication device determining the agreement.
  • the non-anchor carrier corresponding to the frequency domain location is a non-anchor carrier for transmitting the SIB1.
  • SIB1 is only transmitted on non-anchor carrier or SIB1 is transmitted over anchor and non-anchor carrier.
  • the time domain resource location of SIB1 in anchor carrier transmission and the time domain resource location of SIB1 in non-anchor carrier transmission can pass.
  • the protocol stipulates that the time domain resource location of the SIB1 transmission on the anchor carrier and the time domain resource location of the SIB1 transmission on the non-anchor carrier may be the same or different, and the frequency domain location of the non-anchor carrier for the SIB1 transmission may pass the protocol.
  • the scheduling information is used to indicate the transport block size and the number of repetitions used by the SIB1 transmission, and the first communications device is configured according to the scheduling information.
  • the indicated transport block size transmits SIB1 to the second communication device at the non-anchor carrier.
  • the repetition number and transmission resource of the SIB1 transmission on the non-anchor carrier may be bound to the deployment mode of the non-anchor carrier, and the specific repetition times and transmission resources of the SIB1 transmission on the non-anchor
  • the first communication device may refer to other information when determining the transmission mode of the SIB1 according to the scheduling information and the status information.
  • the deployment mode information indicated in the MIB message may also include information such as the number of CRS ports.
  • the SIB1 needs to consider the resource location occupied by the CRS when the resource is mapped, and avoids the resources occupied by the CRS during resource mapping.
  • the resource used by the CRS is determined to be related to the number of CRS ports. Therefore, when the first communication device determines the transmission mode of the SIB1 according to the scheduling information and the status information, it may also refer to the deployment mode information indicated in the MIB message.
  • the second communications device receives the SIB1 from the first communications device according to the scheduling information and the deployment mode of the carrier, which may specifically include:
  • the second communication device receives the SIB1 from the first communication device, or the second, on the non-anchor carrier for transmitting the SIB1 according to the scheduling information and the repetition number
  • the second communication device determines, according to the independent deployment mode, that the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1 is the same as the transmission resource of the SIB1 on the anchor carrier;
  • the second communication device receives the SIB1 from the first communication device on the non-anchor carrier according to the scheduling information and the transmission resource; or the second communication device is at the anchor point On the carrier, and according to the transmission resource, on the non-anchor carrier, according to the scheduling information, receiving the SIB1 from the first communication device;
  • the second communication device receives the SIB1 from the first communication device according to the scheduling information on the non-anchor carrier according to the repetition number of the SIB1 on the non-anchor carrier; or
  • the second communication device is on the anchor carrier, and according to the repetition number of the SIB1 on the non-anchor carrier, on the non-anchor carrier, according to the scheduling information, from the first communication Receiving, by the device, the SIB1;
  • the second communication device receives the SIB1 from the first communication device according to the scheduling information on the non-anchor carrier according to the transmission resource of the SIB1 on the non-anchor carrier;
  • the second communication device is on the anchor carrier, and according to the transmission resource of the SIB1 on the non-anchor carrier, on the non-anchor carrier, according to the scheduling information, from the first communication
  • the device receives the SIB1.
  • the second communications device receiving the SIB1 from the first communications device on the non-anchor carrier, the second communications device determining a non-anchor carrier for receiving the SIB1.
  • SIB1 may be transmitted on a non-anchor carrier by a protocol, or SIB1 may be transmitted on an anchor carrier and a non-anchor carrier, which can ensure the time position and/or frequency domain of SIB1 transmission of different cells in one cycle. Different locations, such interference isolation mechanism can avoid mutual interference of SIB1 in different cells, thereby improving the reliability of SIB1 transmission.
  • the MIB signaling overhead can be saved by binding the number of repetitions of SIB1 transmission on the non-anchor carrier or the transmission mode of the transmission resource to the carrier.
  • the first information includes the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission
  • the first information further includes frequency domain location information of the non-anchor carrier for the SIB1 transmission.
  • the frequency domain location information of the non-anchor carrier used for SIB1 transmission includes the same parameters as above, and is not described here.
  • the foregoing first communications device determining the non-anchor carrier for transmitting the SIB1 may include: the first communications device determining the non-anchor for the SIB1 transmission according to the frequency domain location information of the non-anchor carrier and the anchor carrier. a frequency domain location of the carrier; the first communications device determines a non-anchor carrier corresponding to the location of the frequency domain.
  • the second communications device Determining, by the second communications device, the non-anchor carrier for the SIB1, the second communications device determining, according to the frequency domain location information of the non-anchor carrier, and the anchor carrier, The frequency domain location of the non-anchor carrier transmitted by SIB1; the second communication device determines a non-anchor carrier corresponding to the location of the frequency domain.
  • the SIB can be transmitted only at non-anchor points by protocol, or SIB1 can be transmitted on anchor carriers and non-anchor carriers.
  • the time domain resource location of the SIB1 transmission on the anchor carrier and the time domain resource location of the SIB1 transmission on the non-anchor carrier may be agreed by the protocol, the time domain resource location of the SIB1 transmission on the anchor carrier and the transmission of the SIB1 on the non-anchor carrier carrier.
  • the domain resource locations can be the same or different.
  • the scheduling information is used to indicate a transport block size and a repetition number used by the SIB1 transmission, and the first communications device transmits the SIB1 to the second communications device according to the transport block size indicated by the scheduling information.
  • the first communication device may refer to other information when determining the transmission mode of the SIB1 according to the scheduling information and the status information.
  • the deployment mode information indicated in the MIB message may also include information such as the number of CRS ports.
  • the SIB1 needs to consider the resource location occupied by the CRS when the resource is mapped, and avoids the resources occupied by the CRS during resource mapping.
  • the resource used by the CRS is determined to be related to the number of CRS ports. Therefore, when the first communication device determines the transmission mode of the SIB1 according to the scheduling information and the status information, it may also refer to the deployment mode information indicated in the MIB message.
  • the first communication device carries the different information for the SIB1 transmission by using the scheduling information, the non-anchor fixed carrier frequency domain location information, and the transmission mode information of the SIB1 on the non-anchor carrier, thereby ensuring different cells.
  • the non-anchor carrier is used to transmit the SIB1 transmission, and different cells can be configured with different non-anchor carriers, so that the SIB1 of different cells can be transmitted in different frequency domains in one cycle.
  • the interference isolation mechanism can avoid SIB1 of different cells. Mutual interference, which improves the reliability of SIB1 transmission.
  • the transmission resource can be configured, so that the base station can configure the repetition number or the transmission resource when transmitting on the SIB1 word non-anchor carrier according to the power difference between the non-anchor carrier and the anchor carrier, thereby ensuring the reliability of the SIB1 when transmitting the non-anchor carrier. Sex.
  • SIB1 is only transmitted on the anchor carrier.
  • the uplink and downlink subframes are configured with other downlink subframes other than subframe 0, and the available downlink subframes are non-multimedia broadcasts. If the available downlink sub-frames have a small impact on the MBSFN sub-frames (such as a configuration with a large number of downlink sub-frames), the anchor carrier uses the downlink.
  • the subframe transmits SIB1 and indicates time domain location information for SIB1 transmission in the MIB message, that is, the first information includes time domain location information for SIB1 transmission.
  • TDD LTE supports uplink and downlink subframe configuration 0 to 6.
  • D indicates a downlink subframe for downlink transmission
  • U indicates an uplink subframe for uplink transmission
  • S indicates a special subframe. It can be seen from Table 1 that the number of consecutive uplink subframes in the seven uplink and downlink subframe configurations of TDD LTE can be one, two, and three.
  • the subframes available for SIB1 transmission include subframe 0, subframe 3, subframe 4, subframe 6, subframe 7, and subframe 8.
  • the foregoing three types of subframes that can be used for SIB1 transmission may be indicated by using three bits, or four seed frames may be determined from the foregoing six seed frames by using a standard protocol or an operator's agreement, and at least the subframe 0 is included, so that A subframe for SIB1 transmission is indicated by 2 bits, and a subframe for SIB1 transmission may also be indicated with 1 bit.
  • “0" indicates that SIB1 is transmitted on anchor carrier subframe 0
  • "1" indicates that SIB1 is transmitted on subframe X of the anchor carrier.
  • the subframe X is a downlink subframe other than the subframe 0. Therefore, the subframe X may be any one of the subframe 3, the subframe 4, the subframe 6, the subframe 7, and the subframe 8. Subframe X can be agreed by a standard protocol or by an operator. In the above subframe, the subframe 6 is a non-MBSFN subframe, and therefore, the subframe X may be the subframe 6 to reduce the influence on the MBSFN subframe configuration.
  • the transmission of SIB1 may be specifically indicated by using 2 bits, as shown in Table 2, where SIB1 occupies one subframe in two radio frames.
  • the time domain location information for the SIB1 transmission may also be indicated by the MIB message.
  • SIB1 can be configured as other subframes other than subframe 0 when the anchor carrier is transmitted, so that mutual interference of SIB1 transmission between different cells can be avoided, thereby improving the reliability of SIB1 transmission.
  • the first information convention SIB1 is transmitted on the anchor carrier and the non-anchor carrier.
  • the value of N includes, for example, 4, 8, or 16, and the SIB1 may be partially transmitted on the anchor carrier and the other portion transmitted on the non-anchor carrier.
  • the number of repetitions of the SIB1 at the anchor carrier is N/2, and is transmitted on the subframe 0.
  • the first information includes for SIB1 transmission Frequency domain location information of non-anchor carriers.
  • the frequency domain location information of the non-anchor carrier used for SIB1 transmission is used to indicate the low frequency of the non-anchor carrier for the SIB1 transmission at the high frequency position of the anchor carrier or the non-anchor carrier for the SIB1 transmission at the anchor carrier position.
  • the first information may also include transmission mode information of SIB1 on the non-anchor carrier for SIB1 transmission, considering the power difference between the anchor carrier and the non-anchor carrier.
  • the subframe Y transmitted by the SIB1 on the non-anchor carrier may be agreed by a standard protocol or an operator, where the subframe Y may be a subframe 0, a subframe 1, a subframe 3, a subframe 4, a subframe 5, and a sub-frame.
  • the transmission of SIB1 may be specifically indicated by using 2 bits, as shown in Table 3, where SIB1 occupies one subframe in two radio frames.
  • the frequency domain location information of the non-anchor carrier for the transmission of the SIB1 is agreed by the standard protocol or the carrier.
  • the value of N includes, for example, 4, 8, or 16, and the first information includes the information for SIB1.
  • the first information may be in the form of a separate indication or a joint indication.
  • the first information may also include transmission mode information of SIB1 on the non-anchor carrier for SIB1 transmission, considering the power difference between the anchor carrier and the non-anchor carrier.
  • the time domain location information for SIB1 transmission indicates the subframe position of SIB1 transmission at the anchor carrier.
  • SIB1 is transmitted on the anchor carrier and the non-anchor carrier
  • SIB1 is anchored.
  • the subcarrier 0 of the point carrier is transmitted.
  • the transmission mode information of SIB1 on the non-anchor carrier for SIB1 transmission includes the number of repetitions of SIB1 on the non-anchor carrier.
  • the SIB1 may be transmitted on other subframes except the subframe 0 of the anchor carrier, and the SIB1 may be transmitted on the non-anchor carrier, thereby avoiding mutual interference of SIB1 transmission between different cells.
  • SIB1 is transmitted on subframe X1 of the anchor carrier.
  • the subframe X1 is a downlink subframe other than the subframe 0. Specifically, it may be one of subframe 3, subframe 4, subframe 6, subframe 7, and subframe 8.
  • Subframe X1 can be agreed upon by a standard protocol or by an operator. Since the subframe 6 in the above subframe is a non-MBSFN subframe, the subframe X1 may be the subframe 6 to reduce the influence on the MBSFN subframe configuration.
  • the subframe Y1 of the SIB1 transmission on the non-anchor carrier may be agreed by a standard protocol or an operator, wherein the subframe Y1 may be subframe 0, subframe 1, subframe 3, subframe 4, subframe 5, subframe 6 , subframe 7, subframe 8 or subframe 9.
  • the SIB1 transmission implementation described above may use a 2-bit indication, as shown in Table 4, where SIB1 occupies one subframe in two radio frames.
  • the non-anchor carrier frequency domain location information used for SIB1 transmission is agreed by a standard protocol or an operator.
  • the number of repetitions of SIB1 transmission is N, and the value of N includes, for example, 4, 8, and 16, and the first information includes the information for SIB1 transmission.
  • the status information is used for the time domain location information of the SIB1 transmission and the frequency domain location information of the non-anchor carrier for the SIB1 transmission.
  • the first information may be indicated by a separate indication or a joint indication.
  • the first information may also include transmission mode information of SIB1 on the non-anchor carrier for SIB1 transmission, considering the power difference between the anchor carrier and the non-anchor carrier.
  • the state information included in the SIB1 transmission indicates that the SIB1 is transmitted only on the anchor carrier, or the SIB1 is transmitted only on the non-anchor carrier.
  • the time domain location information for the SIB1 transmission indicates the subframe position at which the SIB1 is transmitted at the anchor carrier.
  • the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission includes the number of repetitions of the SIB1 on the non-anchor carrier and the resource indication information.
  • the SIB1 may be transmitted on other subframes except the subframe 0 of the anchor carrier, and the SIB1 may be transmitted on the non-anchor carrier, thereby avoiding mutual interference of SIB1 transmission between different cells.
  • SIB1 is transmitted on subframe X2 of the anchor carrier.
  • the subframe X2 is a downlink subframe other than the subframe 0, and may specifically be one of subframe 3, subframe 4, subframe 6, subframe 7, and subframe 8.
  • Subframe X2 can be agreed upon by standard protocols or by the operator. Since the subframe 6 in the above subframe is a non-MBSFN subframe, it is preferable that the subframe X2 may be the subframe 6 to reduce the influence on the MBSFN subframe configuration.
  • the subframe Y2 transmitted by the SIB1 on the non-anchor carrier may be agreed by a standard protocol or an operator, wherein the subframe Y2, the subframe Y21, and the subframe Y22 may be subframe 0, subframe 1, subframe 3, and subframe. 4. Subframe 5, subframe 6, subframe 7, subframe 8 or subframe 9.
  • the specific implementation of the above SIB1 transmission may use a 2-bit indication, as shown in Table 5. It should be noted that in the repetition period of the anchor carrier single transmission SIB1, the SIB1 transmission on the non-anchor carrier for transmitting the SIB1 needs more transmission resources than the SIB1 transmission on the anchor carrier, and may be included in the non-anchor. SIB1 on the point carrier uses 2 subframes in 2 radio frames, 2 subframes are located in the same radio frame or SIB1 uses 2 subframes in 2 radio frames on the non-anchor carrier, and 2 subframes are located in different radio frames. .
  • the number of repetitions of the SIB1 transmission is N, and the values of N include, for example, 4, 8, and 16, and the first information includes status information for SIB1 transmission and frequency domain location information of the non-anchor carrier for SIB1 transmission, considering the anchor.
  • the power difference between the point carrier and the non-anchor carrier, the first information further includes the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission.
  • the state information included in the SIB1 transmission indicates that the SIB1 is transmitted only on the anchor carrier, the SIB1 is transmitted only on the non-anchor carrier, or the SIB1 is transmitted on the anchor carrier and the non-anchor carrier.
  • the location of the SIB1 transmission at the anchor carrier may be agreed by a standard protocol or an operator.
  • the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission includes the number of repetitions of the SIB1 on the non-anchor carrier and the resource indication information.
  • SIB1 can be transmitted on subframes other than subframe 0 of the anchor carrier, and SIB1 can be transmitted on non-anchor carriers, thereby avoiding mutual interference of SIB1 transmission between different cells and improving the reliability of SIB1 transmission.
  • the subframe Y3 transmitted by the SIB1 on the non-anchor carrier may be agreed by a standard protocol or an operator, where the subframe Y3 may be subframe 0, subframe 1, subframe 3, subframe 4, subframe 5, sub-subs Frame 6, subframe 7, subframe 8 or subframe 9.
  • the specific implementation of the above SIB1 transmission may use a 2-bit indication, as shown in Table 6.
  • carrier deployment mode, state information for SIB1 transmission, time domain location information for SIB1 transmission, frequency domain location information of non-anchor carrier for SIB1 transmission At least one of the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission may be implicitly indicated by binding with other indication information in the MIB message, or through a standard protocol or an operator agreement, without Explicitly indicated in the MIB message.
  • the anchor carrier power is higher than the non-anchor carrier power, so when SIB1 is transmitted on the non-anchor carrier.
  • SIB1 transmits non-anchor carrier more repetitions are transmitted on the anchor carrier than SIB1, or the number of repetitions of SIB1 on the non-anchor carrier is the same as the number of repetitions of SIB1 on the anchor carrier, but at the anchor carrier During the repetition period of a single transmission SIB1, the SIB1 transmission on the non-anchor carrier needs to transmit more transmission resources than the SIB1 on the anchor carrier, and the transmission resource is, for example, a subframe.
  • the specific implementation of the SIB1 transmission may use a 1-bit indication by combining the carrier deployment modes, as shown in Table 7.
  • the frequency domain offset for transmitting the non-anchor carrier and the anchor carrier of the SIB1 may be agreed by a standard protocol or an operator, and the specific implementation of the SIB1 transmission may use a 2-bit indication, such as Table 8 shows.
  • the frequency domain offset for transmitting the non-anchor carrier and the anchor carrier of the SIB1 may be agreed by a standard protocol or an operator by using a carrier deployment mode.
  • the specific implementation of the SIB1 transmission may use a 2-bit indication, such as Table 9 shows.
  • the number of repetitions N of the SIB1 can be obtained according to the scheduling information of the SIB1 in the MIB message.
  • N0 can be set according to the timing requirement
  • SIB1 is only transmitted on the subframe 0 of the anchor carrier, and the number of repetitions is repeated.
  • the number of repetitions N is greater than or equal to N0, the SIB1 is transmitted on the anchor carrier and the non-anchor carrier, and the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission is bound to the carrier deployment mode.
  • the value of N includes 4, 8, and 16, and N0 may be 16.
  • SIB1 is transmitted on the subframe 0 of the anchor carrier, the number of repetitions is N/2, and the SIB1 is transmitted on the subframe Y4 of the non-anchor carrier, and the number of repetitions is N/2.
  • SIB1 is transmitted on the subframe 0 of the anchor carrier, the number of repetitions is N/2, and the SIB1 is transmitted on the subframe Y4 of the non-anchor carrier, and the repetition is repeated.
  • the number of times is N.
  • the subframe Y4 transmitted by SIB1 on the non-anchor carrier may be agreed by a standard protocol or an operator, wherein the subframe Y4 may be subframe 0, subframe 1, subframe 3, subframe 4, subframe 5, subframe 6 , subframe 7, subframe 8 or subframe 9.
  • the number of repetitions N of the SIB1 can be obtained.
  • the number of repetitions N is less than N1, where N1 can be set according to the timing requirement, SIB1 is only transmitted on the subframe 0 of the anchor carrier, and the number of repetitions is
  • the SIB1 is transmitted only on the non-anchor carrier, and the transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission is bound to the deployment mode of the carrier.
  • the value of N includes 4, 8, and 16, and N1 may be 16.
  • SIB1 is transmitted on the subframe Y5 of the non-anchor carrier, and the number of repetitions is N.
  • SIB1 is transmitted on the subframe Y5 of the non-anchor carrier, the number of repetitions is 2N, or the subframe Y51 of the SIB1 in the same radio frame of the non-anchor carrier
  • the subframe Y5 whose number of repetitions is NSIB1 transmitted on the non-anchor carrier can be agreed by a standard protocol or an operator, wherein the subframe Y5, the subframe Y51, the subframe Y52 can be the subframe 0, the subframe 1, subframe 3, subframe 4, subframe 5, subframe 6, sub-sub Frame 7, subframe 8 or subframe 9.
  • the MIB message indicates that the SIB1 can be transmitted on other subframes except the subframe 0 of the anchor carrier, and the SIB1 can be transmitted on the non-anchor carrier, thereby avoiding mutual interference of SIB1 transmission between different cells. Improve the reliability of SIB1 transmission.
  • the signaling overhead of the MIB message can be reduced by convention or by implicit indication of other information in the MIB message.
  • SIB1 is transmitted on the anchor carrier and the non-anchor carrier
  • the part of the SIB1 transmission on the anchor carrier and the part of the SIB1 transmission on the non-anchor carrier are in the sub-frame level, the radio frame level, and the repetition period of the SIB1 in the single transmission of the anchor carrier.
  • Level cross transfer as shown in Figure 7. Transmitting SIB1 in this way is more compact in time, which helps to reduce latency and reduce power consumption.
  • the portion of SIB1 transmitted on the anchor carrier and the portion of SIB1 transmitted on the non-anchor carrier are at least one cycle apart in time, as shown in FIG. 8.
  • SIB1 is serially transmitted on the anchor carrier and the non-anchor carrier, and the complexity is low.
  • FIG. 9 is a schematic structural diagram of a system message transmission apparatus according to an embodiment of the present disclosure.
  • the system message transmission device 90 includes a processing module 91 and a transmission module 92.
  • the system message transmission device 90 may be specifically the first communication device in the foregoing embodiment.
  • the processing module 91 is configured to configure a main system information block MIB message.
  • the MIB message includes scheduling information of the SIB1; or the MIB message includes at least one of a deployment mode and a first information of the carrier and the scheduling information.
  • the first information includes at least one of: status information for the SIB1 transmission; time domain location information for the SIB1 transmission; frequency domain of a non-anchor carrier for the SIB1 transmission Location information; transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission.
  • the sending module 92 is configured to send the MIB message to the second communications device.
  • the processing module 91 is further configured to transmit, by using the sending module 92, the SIB1 to the foregoing according to the scheduling information, or according to at least one of a deployment mode of the carrier and the first information, and the scheduling information. Second communication device.
  • the device in this embodiment may be used to perform the steps performed by the first communication device in the system message transmission method provided by the foregoing embodiments.
  • the specific implementation principle and technical effects are similar, and details are not described herein again.
  • the first information includes the status information for the SIB1 transmission.
  • the status information includes one of the following states: the SIB1 is only transmitted on an anchor carrier, and the SIB1 is only transmitted on a non-anchor carrier.
  • the status information includes one of the following states: the SIB1 is transmitted only on an anchor carrier, and the SIB1 is transmitted on an anchor carrier and a non-anchor carrier.
  • the processing module 91 may be specifically configured to: determine, by the sending module 92, according to the scheduling information and the status information, to transmit the SIB1 to the second communications device on an anchor carrier and/or a non-anchor carrier. When the processing module 91 determines that the SIB1 is transmitted by the non-anchor carrier, the processing module 91 is further configured to determine a non-anchor carrier for transmitting the SIB1.
  • the first information further includes the time domain location information for the SIB1 transmission.
  • the time domain location information for the SIB1 transmission includes one of the following locations: a subframe location, a radio frame location, a superframe location, a symbol location, and a slot location.
  • the processing module 91 determines, when the first communication device determines, according to the scheduling information and the status information, that the SIB1 is transmitted to the second communication device on the anchor carrier and/or the non-anchor carrier, specifically : according to the scheduling information, Determining, by the status information, the time domain location information, a time domain location indicated by the time domain location information in an anchor carrier and/or a non-anchor carrier for transmitting the SIB1, and transmitting by using the sending module 92
  • the SIB1 is given to the second communication device.
  • the first information includes the time domain location information for the SIB1 transmission.
  • the time domain location information includes one of the following locations: a subframe location, a radio frame location, a superframe location, a symbol location, and a slot location.
  • the processing module 91 may be specifically configured to: determine a carrier for transmitting the SIB1, where the carrier includes an anchor carrier and/or a non-anchor carrier for transmitting the SIB1; and the sending module 92, according to the scheduling Transmitting, by the anchor carrier and/or the time domain location indicated by the time domain location information on the non-anchor carrier for transmitting the SIB1, transmitting the SIB1 to the second communications device .
  • the first information includes frequency domain location information of the non-anchor carrier for the SIB1 transmission.
  • the frequency domain location information of the non-anchor carrier for the SIB1 transmission includes at least one of the following parameters: a relative location of the non-anchor carrier relative to the anchor carrier for the SIB1 transmission;
  • the frequency domain offset of the non-anchor carrier transmitted by the SIB1 and the anchor carrier is the frequency domain interval or the number of resource blocks.
  • the processing module 91 can be specifically configured to:
  • the first information includes transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission.
  • the transmission mode information includes a repetition number of the SIB1 on the non-anchor carrier for transmitting the SIB1.
  • the processing module 91 is specifically configured to:
  • the first information includes transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission.
  • the transmission mode information includes resource indication information.
  • the resource indication information is used to indicate that when the number of repetitions of the SIB1 on the non-anchor carrier for transmitting the SIB1 is the same as the number of repetitions of the SIB1 on the anchor carrier, a single transmission at the anchor carrier During the repetition period of the SIB1, whether the SIB1 transmission on the non-anchor carrier for transmitting the SIB1 needs to transmit more transmission resources than the SIB1 on the anchor carrier.
  • the transmission resource is one of a subframe, a radio frame, a superframe, a symbol, or a time slot.
  • the processing module 91 can be specifically configured to:
  • a part of the repetition quantity value in the set of repetition times corresponds to the first state, where the first status is that the SIB1 is only transmitted on the anchor carrier; and another part of the repetition quantity value in the repetition quantity set corresponds to the second status.
  • the second state is that the SIB1 is transmitted only on a non-anchor carrier, or the SIB1 is transmitted on an anchor carrier and a non-anchor carrier.
  • the scheduling information is used to determine a transport block size and a number of repetitions used by the SIB1 transmission.
  • the processing module 91 can be specifically configured to:
  • the processing module 91 determines that the SIB1 is transmitted on the non-anchor carrier, the processing module 91 is further configured to determine a non-anchor carrier for transmitting the SIB1.
  • a part of the repetition quantity value in the set of repetition times corresponds to a first state, where the first status is that the SIB1 is only transmitted on an anchor carrier; and another part of the repetition quantity set corresponds to a second status according to a second status.
  • State information for the SIB1 transmission determines that the second state is that the SIB1 is transmitted only on a non-anchor carrier, or the SIB1 is only transmitted on an anchor carrier.
  • the scheduling information is used to determine a transport block size and a number of repetitions used by the SIB1 transmission.
  • the MIB message includes scheduling information of the SIB1 and a deployment mode of the carrier.
  • the MIB message includes scheduling information of the SIB1, a deployment mode of the carrier, and the first information including status information for the SIB1 transmission.
  • the processing module 91 is specifically configured to:
  • the sending module 92 passes the first state corresponding to the part of the repetition value and the scheduling information on the anchor carrier. Transmitting the SIB1 to the second communication device;
  • the sending module 92 transmits the SIB1 to the second communication device on the anchor carrier according to the scheduling information, or Transmitting, by the sending module 92, the SIB1 to the second on the non-anchor carrier according to the scheduling information, the deployment mode of the carrier, and the status information of the SIB1 transmission in the first information. communication device.
  • the processing module 91 When the processing module 91 transmits the SIB1 on the non-anchor carrier, the processing module 91 is further configured to: determine a non-anchor carrier for transmitting the SIB1.
  • the deployment mode of the carrier includes deployment mode information for transmitting a non-anchor carrier of the SIB1.
  • the deployment mode of the carrier includes a deployment mode of the anchor carrier and deployment mode information for transmitting the non-anchor carrier of the SIB1.
  • the processing module 91 is configured to pass the sending module 92, and according to the scheduling information, the deployment mode of the carrier, and the status information of the SIB1 transmission in the first information, in the transmitting the SIB1.
  • the deployment mode is one of a standalone deployment mode, a protection zone deployment mode, and an in-band deployment mode;
  • the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1 is the same as the transmission resource of the SIB1 on the anchor carrier; by sending the module 92, and according to the scheduling And transmitting, according to the transmission resource of the SIB1 on the non-anchor carrier, the SIB1 to the second communication device on the non-anchor carrier for transmitting the SIB1;
  • the deployment mode of the carrier includes deployment mode information for transmitting a non-anchor carrier of the SIB1.
  • the deployment mode of the carrier includes a deployment mode of an anchor carrier and deployment mode information of the non-anchor carrier for transmitting the SIB1.
  • the processing module 91 is specifically configured to:
  • the processing module 91 is further configured to: determine a non-anchor carrier for transmitting the SIB1.
  • the first information further includes frequency domain location information of the non-anchor carrier for the SIB1 transmission.
  • the frequency domain location information includes at least one of the following parameters: a relative location of the non-anchor carrier relative to the anchor carrier for the SIB1 transmission; and a non-anchor carrier for the SIB1 transmission and the A frequency domain offset of the anchor carrier, the frequency domain offset being a frequency domain interval or a number of resource blocks.
  • the processing module 91 is configured to determine a non-anchor carrier for transmitting the SIB1, the processing module 91 is specifically:
  • FIG. 10 is a schematic structural diagram of a system message transmission apparatus according to another embodiment of the present disclosure.
  • the system message transmission apparatus 10 includes a receiving module 11 and a processing module 12.
  • the system message transmission device 10 may be specifically the second communication device in the foregoing embodiment.
  • the receiving module 11 is configured to receive a primary system information block MIB message from the first communications device.
  • the MIB message includes scheduling information of the SIB1. Alternatively, or the MIB message includes at least one of a deployment mode of the carrier and the first information, and the scheduling information.
  • the first information includes at least one of: status information for the SIB1 transmission; time domain location information for the SIB1 transmission; frequency domain of a non-anchor carrier for the SIB1 transmission Location information; transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission.
  • the processing module 12 is configured to receive, by the receiving module 11 from the first communications device, according to the scheduling information, or according to at least one of a deployment mode of the carrier and the first information, and the scheduling information. SIB1.
  • the device in this embodiment may be used to perform the steps performed by the second communication device in the system message transmission method provided by the foregoing embodiments.
  • the specific implementation principle and technical effects are similar, and details are not described herein again.
  • the first information includes the status information for the SIB1 transmission.
  • the status information includes one of the following states: the SIB1 is only transmitted on an anchor carrier, and the SIB1 is only transmitted on a non-anchor carrier.
  • the status information includes one of the following states: the SIB1 is transmitted only on an anchor carrier, and the SIB1 is transmitted on an anchor carrier and a non-anchor carrier.
  • the processing module 12 can be specifically configured to:
  • the processing module 12 is further configured to determine a non-anchor carrier for receiving the SIB1 when the processing module 12 determines that the non-anchor carrier receives the SIB1 from the first communications device.
  • the first information further includes the time domain location information for the SIB1 transmission.
  • the time domain location information for the SIB1 transmission includes one of the following locations: a subframe location, a radio frame location, a superframe location, a symbol location, and a slot location.
  • the processing module 12 is configured to determine, according to the scheduling information and the status information, that when the anchor carrier and/or the non-anchor carrier receive the SIB1 from the first communications device, specifically:
  • Determining at an anchor carrier and/or for using the scheduling information, the status information, and the time domain location information Transmitting a time domain location indicated by the time domain location information in the non-anchor carrier of the SIB1, and receiving, by the receiving module 11, the SIB1 from the first communications device.
  • the first information includes the time domain location information for the SIB1 transmission.
  • the time domain location information includes one of the following locations: a subframe location, a radio frame location, a superframe location, a symbol location, and a slot location.
  • the processing module 12 is specifically configured to:
  • the carrier comprising an anchor carrier and/or a non-anchor carrier for transmitting the SIB1;
  • the first communication device receives the SIB1.
  • the first information includes frequency domain location information of the non-anchor carrier for the SIB1 transmission.
  • the frequency domain location information of the non-anchor fixed carrier for the SIB1 transmission includes at least one of the following parameters: a relative position of the non-anchor carrier relative to the anchor carrier for the SIB1 transmission; and,
  • the frequency domain offset of the non-anchor carrier and the anchor carrier transmitted by the SIB1 is the frequency domain interval or the number of resource blocks.
  • the processing module 12 is specifically configured to:
  • the receiving module 11 Receiving, by the receiving module 11, according to the scheduling information, the SIB1 from the first communications device on the non-anchor carrier for transmitting the SIB1 corresponding to the frequency domain location; or Passing through the receiving module 11 and according to the scheduling information, on the anchor carrier and the non-anchor carrier for the SIB1 transmission corresponding to the frequency domain location, from the first communications device Receiving the SIB1.
  • the first information includes transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission.
  • the transmission mode information includes a repetition number of the SIB1 on the non-anchor carrier for transmitting the SIB1.
  • the processing module 12 is specifically configured to:
  • the receiving module 11 Receiving, by the receiving module 11, the SIB1 from the first communication device on the non-anchor carrier for transmitting the SIB1 according to the repetition quantity and the scheduling information; or, by receiving a module And according to the scheduling information, on the anchor carrier, and according to the scheduling information and the repetition number, on the non-anchor carrier for transmitting the SIB1, from the first communications device Receiving the SIB1.
  • the first information includes transmission mode information of the SIB1 on the non-anchor carrier for the SIB1 transmission.
  • the transmission mode information includes resource indication information.
  • the resource indication information is used to indicate that when the number of repetitions of the SIB1 on the non-anchor carrier for transmitting the SIB1 is the same as the number of repetitions of the SIB1 on the anchor carrier, a single transmission at the anchor carrier During the repetition period of the SIB1, whether the SIB1 transmission on the non-anchor carrier for transmitting the SIB1 needs to transmit more transmission resources than the SIB1 on the anchor carrier.
  • the transmission resource is one of a subframe, a radio frame, a superframe, a symbol, or a time slot.
  • the processing module 12 is specifically configured to:
  • the receiving module 11 receives, by the receiving module 11, the transmission resource of the SIB1 on the non-anchor carrier for transmitting the SIB1, according to the scheduling information, receiving the SIB1 from the first communication device; or
  • the receiving module 11 is configured to use, on the anchor carrier, according to the scheduling information, and on the transmission resource for transmitting the SIB1 on the non-anchor carrier for transmitting the SIB1 according to the scheduling information. Receiving the SIB1 from the first communication device.
  • a part of the repetition quantity value in the set of repetition times corresponds to the first state, where the first status is that the SIB1 is only transmitted on the anchor carrier; and another part of the repetition quantity value in the repetition quantity set corresponds to the second status.
  • the second state is that the SIB1 is transmitted only on a non-anchor carrier, or the SIB1 is transmitted on an anchor carrier and a non-anchor carrier.
  • the scheduling information is used to determine a transport block size and a number of repetitions used by the SIB1 transmission.
  • the processing module 12 is specifically configured to:
  • the SIB1 is received from the first communication device by the receiving module 11 and according to the first state or the second state at an anchor carrier and/or a non-anchor carrier.
  • the processing module 12 determines that the SIB1 is received from the first communications device on a non-anchor carrier, the processing module 12 is further configured to determine a non-anchor carrier for receiving the SIB1.
  • a part of the repetition quantity value in the set of repetition times corresponds to a first state, where the first status is that the SIB1 is only transmitted on an anchor carrier; and another part of the repetition quantity set corresponds to a second status according to a second status.
  • State information for the SIB1 transmission determines that the second state is that the SIB1 is transmitted only on a non-anchor carrier, or the SIB1 is only transmitted on an anchor carrier.
  • the scheduling information is used to determine a transport block size and a number of repetitions used by the SIB1 transmission.
  • the MIB message includes scheduling information of the SIB1 and a deployment mode of the carrier.
  • the MIB message includes scheduling information of the SIB1, a deployment mode of the carrier, and the first information including status information for the SIB1 transmission.
  • the processing module 12 is specifically configured to:
  • the receiving module 11 When the number of repetitions in the scheduling information belongs to the part of the repetition number, the receiving module 11 passes the first state and the scheduling information corresponding to the part of the repetition number value on the anchor carrier. Receiving the SIB1 from the first communication device;
  • the receiving module 11 receives the SIB1 from the first communication device on the anchor carrier according to the scheduling information, or Receiving, by the receiving module 11, from the first communication device on the non-anchor carrier, according to the scheduling information, the deployment mode of the carrier, and the status information of the SIB1 transmission in the first information SIB1.
  • the processing module 12 is further configured to: when the first communication device receives the SIB1, on the non-anchor carrier, the processing module 12 is configured to: determine a non-anchor carrier for receiving the SIB1.
  • the deployment mode of the carrier includes deployment mode information for transmitting a non-anchor carrier of the SIB1.
  • the deployment mode of the carrier includes a deployment mode of the anchor carrier and deployment mode information for transmitting the non-anchor carrier of the SIB1.
  • the processing module 12 is configured to pass the receiving module 11 and according to the scheduling information, the deployment mode of the carrier, and the status information of the SIB1 transmission in the first information, in the transmitting the SIB1.
  • Non-anchor carrier When the first communications device receives the SIB1, specifically:
  • the first communication device receives the SIB1.
  • the deployment mode of the carrier includes deployment mode information for transmitting a non-anchor carrier of the SIB1.
  • the deployment mode of the carrier includes a deployment mode of an anchor carrier and deployment mode information of the non-anchor carrier for transmitting the SIB1.
  • the processing module 12 is specifically configured to:
  • the receiving module 11 Receiving, by the receiving module 11, the SIB1 from the first communication device on the non-anchor carrier for transmitting the SIB1 according to the scheduling information and the repetition number, or through the receiving module 11 And according to the scheduling information, on the anchor carrier, and according to the repetition quantity and the scheduling information, on the non-anchor carrier for transmitting the SIB1, from the first communication Receiving, by the device, the SIB1;
  • the first communication device receives the SIB1;
  • the first communication device receives the SIB1.
  • the processing module 12 is further configured to: determine, by the processing module 12, the non-anchor carrier for receiving the SIB1, when the SIB1 is received by the first communications device on the non-anchor carrier.
  • the first information further includes frequency domain location information of the non-anchor carrier for the SIB1 transmission.
  • the frequency domain location information includes at least one of the following parameters: a relative location of the non-anchor carrier relative to the anchor carrier for the SIB1 transmission; and a non-anchor carrier for the SIB1 transmission and the A frequency domain offset of the anchor carrier, the frequency domain offset being a frequency domain interval or a number of resource blocks.
  • the processing module 12 is configured to determine the non-anchor carrier for receiving the SIB1, specifically, determining, according to the frequency domain location information of the non-anchor carrier, and the anchor carrier, the determining for the SIB1 transmission. a frequency domain location of the non-anchor carrier; determining a non-anchor carrier corresponding to the frequency domain location.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device 20 includes a memory 21 and a processor 22.
  • the communication device herein can be understood as the above-mentioned first communication device.
  • a memory program executable by the processor 22 is stored in the memory 21.
  • the processor 22 executes the computer program to implement the steps performed by the first communication device in the method embodiment described above.
  • FIG. 12 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • the communication device 30 includes a memory 31 and a processor 32.
  • the communication device herein can be understood as the above-mentioned second communication device.
  • a memory program executable by the processor 32 is stored in the memory 31.
  • the processor 32 executes the computer program to implement the steps performed by the second communication device in the method embodiment described above.
  • the application also provides a communication device comprising at least one processing element (or chip) for performing the above first communication device side method.
  • the application also provides a communication device comprising at least one processing element (or chip) for performing the above second communication device side method.
  • the application also provides a computer program for performing the steps performed by the first communication device in the method embodiment described above when executed by the processor of the terminal device.
  • the application also provides a computer program for performing the steps performed by the second communication device in the method embodiment described above when executed by a processor of the network device.
  • the application also provides a computer program product comprising a computer program (ie, executing instructions) stored in a readable storage medium.
  • a computer program ie, executing instructions
  • At least one processor of the first communication device or the second communication device can read the computer program from a readable storage medium, the at least one processor executing the computer program such that the first communication device or the second communication device implements the various embodiments described above The method provided.
  • the present application also provides a computer readable storage medium that, when executed by a processor of a communication device, causes the communication device to perform the steps performed by the first communication device of any of the foregoing method embodiments.
  • the application also provides a computer readable storage medium when instructions in a computer readable storage medium are used by a communication device
  • the processor when executed, enables the communication device to perform the steps performed by the second communication device of any of the foregoing method embodiments.
  • the present application also provides a communication system comprising: a communication device 20 as shown in FIG. 11 and a communication device 30 as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种系统消息传输方法、装置及系统,其中,第一通信设备配置MIB消息,该MIB消息可携带各种不同的用于SIB1传输的信息,例如,上述调度信息、第一信息以及载波的部署模式中的任一个或多个,以使第二通信设备根据该MIB消息接收SIB1。一方面,第一通信设备可灵活配置用于SIB1传输的信息;另一方面,由于第一通信设备在配置MIB消息时,可以考虑通过配置或者隐含指示保证不同小区的SIB1在一个周期内传输的资源位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。

Description

系统消息传输方法、装置及系统 技术领域
本申请涉及通信技术领域,尤其涉及一种系统消息传输方法、装置及系统。
背景技术
移动通信标准化组织第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)提出了窄带物联网(Narrowband Internet of Things,NB-IOT)技术。其中,NB-IoT支持频分双工(Frequency Division Duplex,FDD)及时分双工(Time Division Duplex,TDD)。
对于FDD NB-IoT,系统信息块类型一(System Information Block type1,SIB1)的周期为2560ms。SIB1在无线帧中的子帧4上传输,每隔一个无线帧出现一次,SIB1的一个传输块(Transport Block,TB)占用8个子帧,因此SIB1的一次完整传输需占用16个连续的无线帧。另外,SIB1的重复次数可以为4,8和16,每个重复的副本在2560ms周期内等间隔分布。在FDD NB-IOT中,不同小区间SIB1在一个2560ms周期内传输的资源位置不同,可以避免不同小区SIB1传输的相互干扰,尤其对于小区间同频组网且时间同步的场景,这种干扰隔离机制尤为重要。
在TDD NB-IoT中,上下行子帧配置支持TDD长期演进(Long Term Evolution,LTE)系统的一部分上下行子帧配置。锚点载波上有窄带主同步信号(Narrowband Primary Synchronization Signal,NPSS)、窄带辅同步信号(Narrowband Secondary Synchronization Signal,NSSS)和窄带物理广播信道(Narrowband Physical Broadcast Channel,NPBCH)。在锚点载波上,NSSS在偶数帧的子帧0上传输。SIB1的周期也为2560ms,SIB1的一个传输块占用8个子帧,当SIB1在锚点载波的奇数帧的子帧0上传输,重复次数为16时,由于偶数帧的子帧0被NSSS占用,不同小区的SIB1只能使用相同的资源位置传输,这样将会导致小区间SIB1传输的相互干扰的问题。
发明内容
本申请提供一种系统消息传输方法、装置及系统,以避免不同小区间SIB1传输的相互干扰,提高SIB1传输的可靠性。
第一方面,本申请提供一种系统消息传输方法,包括:
第一通信设备配置MIB消息,
其中,所述MIB消息包括SIB1的调度信息;或者,所述MIB消息包括载波的部署模式和第一信息中的至少一个以及所述调度信息;
所述第一信息包括以下信息中的至少一种:用于所述SIB1传输的状态信息;用于所述SIB1传输的时域位置信息;用于所述SIB1传输的非锚点载波的频域位置信息;用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息;
所述第一通信设备发送所述MIB消息给第二通信设备;
所述第一通信设备根据所述调度信息,或者根据所述载波的部署模式和所述第一信息中的至少一个以及所述调度信息,传输所述SIB1给所述第二通信设备。
由于第一通信设备配置MIB消息,该MIB消息可携带各种不同的用于SIB1传输的信息,例如,上述调度信息、第一信息以及载波的部署模式中的任一个或多个,以使第二通信设备根据该MIB消息接收SIB1。一方面,第一通信设备可灵活配置用于SIB1传输的信息;另一方面,由于第一通信设备在配置MIB消息时,可以考虑通过配置或者隐含指示保证不同小区的SIB1在一个周期内传输的资源位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
可选地,所述第一信息包括所述用于所述SIB1传输的状态信息,其中,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1只在非锚点载波传输,或者,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1在锚点载波和非锚点载波传输;
所述第一通信设备根据所述调度信息及所述第一信息传输所述SIB1给所述第二通信设备,包括:所述第一通信设备根据所述调度信息及所述状态信息确定在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备;
当所述第一通信设备确定在非锚点载波传输所述SIB1时,所述第一通信设备确定用于传输所述SIB1的非锚点载波。
由于第一通信设备通过所述调度信息及所述状态信息携带各种不同的用于SIB1传输的信息,其中状态信息可以保证第一通信设备可灵活配置用于SIB1传输的载波,可以通过一部分小区配置在锚点载波,一部分小区配置在非锚点载波传输SIB1,或者一部分小区配置在锚点载波传输SIB1,一部分小区配置在锚点载波和非锚点载波传输SIB1,从而保证不同小区的SIB1在一个周期内传输的载波位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
可选地,所述第一信息进一步包括所述用于所述SIB1传输的时域位置信息,所述用于所述SIB1传输的时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
所述第一通信设备根据所述调度信息及所述状态信息确定在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备,包括:所述第一通信设备根据所述调度信息、所述状态信息以及所述时域位置信息,确定在锚点载波和/或用于传输所述SIB1的非锚点载波中所述时域位置信息所指示的时域位置传输所述SIB1给所述第二通信设备。
可选地,所述第一信息包括所述用于所述SIB1传输的时域位置信息,所述时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
所述第一通信设备根据所述调度信息及所述第一信息传输所述SIB1给所述第二通信设备,包括:所述第一通信设备确定用于传输所述SIB1的载波,所述载波包括锚点载波和/或用于传输所述SIB1的非锚点载波;所述第一通信设备在所述锚点载波和/或在所述用于传输所述SIB1的非锚点载波上所述时域位置信息所指示的时域位置,根据所述调度信息传输所述SIB1给所述第二通信设备。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所 述用于所述SIB1传输的非锚点载波的频域位置信息包含以下参数中的至少一种:用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及,用于所述SIB1传输的非锚点载波与锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
所述第一通信设备根据所述调度信息及所述第一信息传输所述SIB1给所述第二通信设备,包括:
所述第一通信设备确定用于传输所述SIB1的非锚点载波;
所述第一通信设备根据所述频域位置信息以及所述锚点载波,确定所述用于所述SIB1传输的非锚点载波的频域位置;
所述第一通信设备在所述频域位置所对应的所述用于传输所述SIB1的非锚点载波上根据所述调度信息传输所述SIB1;或者,所述第一通信设备在所述锚点载波上以及所述频域位置所对应的所述用于所述SIB1传输的非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息,所述传输方式信息包含用于传输所述SIB1的非锚点载波上所述SIB1的重复次数;
所述第一通信设备根据所述调度信息及所述第一信息传输所述SIB1给所述第二通信设备,包括:
所述第一通信设备确定用于传输所述SIB1的非锚点载波;
所述第一通信设备根据所述重复次数以及所述调度信息,在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备;或者,所述第一通信设备根据所述调度信息在所述锚点载波上,以及根据所述调度信息和所述重复次数在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息,所述传输方式信息包含资源指示信息,所述资源指示信息用于指示:当用于传输所述SIB1的非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,所述用于传输所述SIB1的非锚点载波上所述SIB1传输是否需要比所述锚点载波上传输所述SIB1更多的传输资源,其中,所述传输资源为子帧、无线帧、超帧、符号或时隙中的一种;
所述第一通信设备根据所述调度信息及所述第一信息传输所述SIB1给所述第二通信设备,包括:
所述第一通信设备确定所述用于传输所述SIB1的非锚点载波;
所述第一通信设备根据所述资源指示信息,确定在所述用于传输所述SIB1的非锚点载波上用于传输所述SIB1的传输资源;
所述第一通信设备使用所述用于传输所述SIB1的非锚点载波上传输所述SIB1的传输资源并根据所述调度信息传输所述SIB1给所述第二通信设备;或者,所述第一通信设备在所述锚点载波上,以及使用所述用于传输所述SIB1的非锚点载波上用于传输所述SIB1的传输资源上,根据所述调度信息传输所述SIB1给所述第二通信设备。
可选地,重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,重复次数集合中的另一部分重复次数值对应第二状态,所述第二状态为所述SIB1只在非锚点载波传输,或所述SIB1在锚点载波和非锚点载波传输,所述调 度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
所述第一通信设备根据所述调度信息传输所述SIB1给所述第二通信设备,包括:所述第一通信设备确定所述重复次数对应第一状态或第二状态;所述第一通信设备根据所述第一状态或所述第二状态在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备;
当所述第一通信设备确定在非锚点载波传输所述SIB1时,所述第一通信设备确定用于传输所述SIB1的非锚点载波。
可选地,重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,重复次数集合中的另一部分重复次数值对应的第二状态根据用于所述SIB1传输的状态信息确定,所述第二状态为所述SIB1只在非锚点载波传输,或者所述SIB1只在锚点载波传输;所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,所述调度信息中的重复次数对应所述第一状态时,所述MIB消息包括SIB1的调度信息和载波的部署模式;所述调度信息中的重复次数对应所述第二状态时,所述MIB消息包括SIB1的调度信息,载波的部署模式,以及包括用于所述SIB1传输的状态信息的所述第一信息;
所述第一通信设备根据所述调度信息、所述载波的部署模式以及所述第一信息中的至少一个传输所述SIB1给所述第二通信设备,包括:
所述调度信息中的重复次数属于所述一部分重复次数值时,根据所述一部分重复次数值对应的所述第一状态及所述调度信息,在所述锚点载波上传输所述SIB1给所述第二通信设备;
所述调度信息中的重复次数属于所述另一部分重复次数值时,根据所述调度信息在所述锚点载波上传输所述SIB1给所述第二通信设备,或者根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在非锚点载波上传输所述SIB1给所述第二通信设备;
所述第一通信设备在所述非锚点载波上传输所述SIB1,包括:所述第一通信设备确定用于传输所述SIB1的非锚点载波。
可选地,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及用于传输所述SIB1的非锚点载波的部署模式信息;
所述根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在所述用于传输所述SIB1非锚点载波上传输所述SIB1给所述第二通信设备,包括:
所述第一通信设备根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式为独立部署模式、保护带部署模式和带内部署模式中的一种;
所述第一通信设备根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;所述第一通信设备根据所述用于传输所述SIB1的非锚点载波上SIB1的传输资源在所述非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;
或者,所述第一通信设备根据所述保护带部署模式或带内部署模式,确定所述用于传 输所述SIB1的非锚点载波上所述SIB1的传输资源;
所述第一通信设备根据所述用于传输所述SIB1的非锚点载波上SIB1的传输资源在所述用于传输所述SIB1的非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备。
可选地,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及所述用于传输所述SIB1的非锚点载波的部署模式信息,
所述第一通信设备根据所述调度信息及所述载波的部署模式传输所述SIB1给所述第二通信设备,包括:
所述第一通信设备根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式包括独立部署模式、保护带部署模式和带内部署模式中的一种;
所述第一通信设备根据所述独立部署模式确定所述非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同;
所述第一通信设备根据所述调度信息及所述重复次数在所述用于传输所述SIB1的非锚点载波上传输所述SIB1,或者,所述第一通信设备在所述锚点载波上,以及根据所述重复次数在所述用于传输所述SIB1的非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;
或者,所述第一通信设备根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
所述第一通信设备根据所述调度信息及所述传输资源在所述非锚点载波上传输所述SIB1;或者,所述第一通信设备在所述锚点载波上,以及根据所述传输资源在所述非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;
或者,所述第一通信设备根据所述保护带部署模式或带内部署模式确定所述非锚点载波上所述SIB1的重复次数;
所述第一通信设备根据所述非锚点载波上所述SIB1的重复次数,在所述非锚点载波上根据所述调度信息传输所述SIB1给所述第二通信设备;或者,
所述第一通信设备在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的重复次数在所述非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;
或者,所述第一通信设备根据所述保护带部署模式或带内部署模式,确定所述非锚点载波上所述SIB1的传输资源;
所述第一通信设备根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;或者,
所述第一通信设备在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的传输资源在所述非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;
其中,所述第一通信设备在所述非锚点载波上传输所述SIB1,包括:所述第一通信设备确定用于传输所述SIB1的非锚点载波。
可选地,所述第一信息进一步包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述频域位置信息包含以下参数中的至少一种:
用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
用于所述SIB1传输的非锚点载波与所述锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
所述第一通信设备确定用于传输所述SIB1的非锚点载波,包括:
所述第一通信设备根据所述非锚点载波的频域位置信息以及所述锚点载波,确定所述用于SIB1传输的非锚点载波的频域位置;
所述第一通信设备确定所述频域位置所对应的非锚点载波。
第二方面,本申请提供一种系统消息传输方法,包括:
第二通信设备从第一通信设备接收主系统信息块MIB消息,所述MIB消息包括SIB1的调度信息,或者所述MIB消息包括载波的部署模式和第一信息中的至少一个以及所述调度信息,所述第一信息包括以下信息中的至少一种:用于所述SIB1传输的状态信息;用于所述SIB1传输的时域位置信息;用于所述SIB1传输的非锚点载波的频域位置信息;用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息;
所述第二通信设备根据所述调度信息,或者根据所述载波的部署模式和所述第一信息中的至少一个以及所述调度信息,从所述第一通信设备接收所述SIB1。
由于第一通信设备配置MIB消息,该MIB消息可携带各种不同的用于SIB1传输的信息,例如,上述调度信息、第一信息以及载波的部署模式中的任一个或多个,以使第二通信设备根据该MIB消息接收SIB1。一方面,第一通信设备可灵活配置用于SIB1传输的信息;另一方面,由于第一通信设备在配置MIB消息时,可以考虑通过配置或者隐含指示保证不同小区的SIB1在一个周期内传输的资源位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
可选地,所述第一信息包括所述用于所述SIB1传输的状态信息,
其中,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1只在非锚点载波传输,
或者,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1在锚点载波和非锚点载波传输;
所述第二通信设备根据所述调度信息及所述第一信息,从所述第一通信设备接收所述SIB1,包括:
所述第二通信设备根据所述调度信息及所述状态信息,确定在锚点载波和/或非锚点载波从所述第一通信设备接收所述SIB1;
当所述第二通信设备确定在非锚点载波从所述第一通信设备接收所述SIB1时,所述第二通信设备确定用于接收所述SIB1的非锚点载波。
由于第一通信设备通过所述调度信息及所述状态信息携带各种不同的用于SIB1传输的信息,其中状态信息可以保证第一通信设备可灵活配置用于SIB1传输的载波,可以通过一部分小区配置在锚点载波,一部分小区配置在非锚点载波传输SIB1,或者一部分小区配置在锚点载波传输SIB1,一部分小区配置在锚点载波和非锚点载波传输SIB1,从而保证不同小区的SIB1在一个周期内传输的载波位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
可选地,所述第一信息进一步包括所述用于所述SIB1传输的时域位置信息,所述用于 所述SIB1传输的时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
所述第二通信设备根据所述调度信息及所述状态信息,确定在锚点载波和/或非锚点载波从所述第一通信设备接收所述SIB1,包括:
所述第二通信设备根据所述调度信息、所述状态信息以及所述时域位置信息,确定在锚点载波和/或非锚点载波中所述时域位置信息所指示的时域位置,从所述第一通信设备接收所述SIB1。
可选地,所述第一信息包括所述用于所述SIB1传输的时域位置信息,所述时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
所述第二通信设备根据所述调度信息及所述第一信息,从所述第一通信设备接收所述SIB1,包括:
所述第二通信设备确定用于接收所述SIB1的载波,所述载波包括锚点载波和/或用于传输所述SIB1的非锚点载波;
所述第二通信设备在所述锚点载波和/或在所述用于传输所述SIB1的非锚点载波上所述时域位置信息所指示的时域位置,根据所述调度信息从所述第一通信设备接收所述SIB1。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述用于所述SIB1传输的非锚点定载波频域位置信息包含以下参数中的至少一种:
用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
用于所述SIB1传输的非锚点载波与锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
所述第二通信设备根据所述调度信息及所述第一信息,从所述第一通信设备接收所述SIB1,包括:
所述第二通信设备确定用于接收所述SIB1的非锚点载波;
所述第二通信设备根据所述频域位置信息以及所述锚点载波,确定所述用于所述SIB1传输的非锚点载波的频域位置;
所述第二通信设备在所述频域位置所对应的所述用于传输所述SIB1的非锚点载波上根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,所述第二通信设备在所述锚点载波上以及所述频域位置所对应的所述用于所述SIB1传输的非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息,所述传输方式信息包含用于传输所述SIB1的非锚点载波上所述SIB1的重复次数;
所述第二通信设备根据所述调度信息及所述第一信息,从所述第一通信设备接收所述SIB1,包括:
所述第二通信设备确定用于传输所述SIB1的非锚点载波;
所述第二通信设备根据所述重复次数以及所述调度信息,在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1;或者,所述第二通信设备根据所述调度信息在所述锚点载波上,以及根据所述调度信息和所述重复次数在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息,所述传输方式信息包含资源指示信息,所述资源指示信息用于指示:当用于传输所述SIB1的非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,所述用于传输所述SIB1的非锚点载波上所述SIB1传输是否需要比所述锚点载波上传输所述SIB1更多的传输资源,其中,所述传输资源为子帧、无线帧、超帧、符号或时隙中的一种;
所述第二通信设备根据所述调度信息及所述第一信息,从所述第一通信设备接收所述SIB1,包括:
所述第二通信设备确定所述用于传输所述SIB1的非锚点载波;
所述第二通信设备根据所述资源指示信息,确定在所述用于传输所述SIB1的非锚点载波上用于传输所述SIB1的传输资源;
所述第二通信设备使用所述用于传输所述SIB1的非锚点载波上传输所述SIB1的传输资源并根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,所述第二通信设备在所述锚点载波上,以及使用所述用于传输所述SIB1的非锚点载波上用于传输所述SIB1的传输资源上,根据所述调度信息,从所述第一通信设备接收所述SIB1。
可选地,重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,
重复次数集合中的另一部分重复次数值对应第二状态,所述第二状态为所述SIB1只在非锚点载波传输,或所述SIB1在锚点载波和非锚点载波传输,
所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
所述第二通信设备根据所述调度信息,从所述第一通信设备接收所述SIB1,包括:
所述第二通信设备确定所述重复次数对应第一状态或第二状态;
所述第二通信设备根据所述第一状态或所述第二状态在锚点载波和/或非锚点载波,从所述第一通信设备接收所述SIB1;
当所述第二通信设备确定在非锚点载波,从所述第一通信设备接收所述SIB1时,所述第二通信设备确定用于接收所述SIB1的非锚点载波。
可选地,重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,
重复次数集合中的另一部分重复次数值对应的第二状态根据用于所述SIB1传输的状态信息确定,所述第二状态为所述SIB1只在非锚点载波传输,或者所述SIB1只在锚点载波传输;
所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
所述调度信息中的重复次数对应所述第一状态时,所述MIB消息包括SIB1的调度信息和载波的部署模式;
所述调度信息中的重复次数对应所述第二状态时,所述MIB消息包括SIB1的调度信息,载波的部署模式,以及包括用于所述SIB1传输的状态信息的所述第一信息;
所述第二通信设备根据所述调度信息、所述载波的部署模式以及所述第一信息中的至少一个,从所述第一通信设备接收所述SIB1,包括:
所述调度信息中的重复次数属于所述一部分重复次数值时,根据所述一部分重复次数 值对应的所述第一状态及所述调度信息,在所述锚点载波上,从所述第一通信设备接收所述SIB1;
所述调度信息中的重复次数属于所述另一部分重复次数值时,根据所述调度信息在所述锚点载波上,从所述第一通信设备接收所述SIB1,或者根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在非锚点载波上,从所述第一通信设备接收所述SIB1;
所述第二通信设备在所述非锚点载波上,从所述第一通信设备接收所述SIB1,包括:所述第二通信设备确定用于接收所述SIB1的非锚点载波。
可选地,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及用于传输所述SIB1的非锚点载波的部署模式信息;
所述根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1,包括:
所述第二通信设备根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式为独立部署模式、保护带部署模式和带内部署模式中的一种;
所述第二通信设备根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
所述第二通信设备根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
或者,所述第二通信设备根据所述保护带部署模式或带内部署模式,确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源;
所述第二通信设备根据所述用于传输所述SIB1的非锚点载波上SIB1的传输资源在所述用于传输所述SIB1的非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1。
可选地,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及所述用于传输所述SIB1的非锚点载波的部署模式信息,
所述第二通信设备根据所述调度信息及所述载波的部署模式,从所述第一通信设备接收所述SIB1,包括:
所述第二通信设备根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式包括独立部署模式、保护带部署模式和带内部署模式中的一种;
所述第二通信设备根据所述独立部署模式确定所述非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同;
所述第二通信设备根据所述调度信息及所述重复次数在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1,或者,所述第二通信设备在所述锚点载波上,以及根据所述重复次数在所述用于传输所述SIB1的非锚点载波上,根据所述调度信 息,从所述第一通信设备接收所述SIB1;
或者,所述第二通信设备根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
所述第二通信设备根据所述调度信息及所述传输资源在所述非锚点载波上,从所述第一通信设备接收所述SIB1;或者,所述第二通信设备在所述锚点载波上,以及根据所述传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
或者,所述第二通信设备根据所述保护带部署模式或带内部署模式确定所述非锚点载波上所述SIB1的重复次数;
所述第二通信设备根据所述非锚点载波上所述SIB1的重复次数,在所述非锚点载波上根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,
所述第二通信设备在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的重复次数在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
或者,所述第二通信设备根据所述保护带部署模式或带内部署模式,确定所述非锚点载波上所述SIB1的传输资源;
所述第二通信设备根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,
所述第二通信设备在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
其中,所述第二通信设备在所述非锚点载波上,从所述第一通信设备接收所述SIB1,包括:所述第二通信设备确定用于接收所述SIB1的非锚点载波。
可选地,所述第一信息进一步包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述频域位置信息包含以下参数中的至少一种:
用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
用于所述SIB1传输的非锚点载波与所述锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
所述第二通信设备确定用于接收所述SIB1的非锚点载波,包括:
所述第二通信设备根据所述非锚点载波的频域位置信息以及所述锚点载波,确定所述用于SIB1传输的非锚点载波的频域位置;
所述第二通信设备确定所述频域位置所对应的非锚点载波。
第三方面,本申请提供一种系统消息传输装置,所述系统消息传输装置为第一通信设备,所述系统消息传输装置包括:
处理模块,用于配置主系统信息块MIB消息,
其中,所述MIB消息包括SIB1的调度信息;或者,所述MIB消息包括载波的部署模式和第一信息中的至少一个以及所述调度信息;
所述第一信息包括以下信息中的至少一种:用于所述SIB1传输的状态信息;用于所述SIB1传输的时域位置信息;用于所述SIB1传输的非锚点载波的频域位置信息;用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息;
发送模块,用于发送所述MIB消息给第二通信设备;
所述处理模块,还用于通过所述发送模块,并根据所述调度信息,或者根据所述载波 的部署模式和所述第一信息中的至少一个以及所述调度信息,传输所述SIB1给所述第二通信设备。
基于同一发明构思,由于该装置解决问题的原理与第一方面的方法设计中的方案对应,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
第四方面,本申请提供一种系统消息传输装置,所述系统消息传输装置为第二通信设备,所述系统消息传输装置包括:
接收模块,用于从第一通信设备接收主系统信息块MIB消息,所述MIB消息包括SIB1的调度信息,或者所述MIB消息包括载波的部署模式和第一信息中的至少一个以及所述调度信息,所述第一信息包括以下信息中的至少一种:用于所述SIB1传输的状态信息;用于所述SIB1传输的时域位置信息;用于所述SIB1传输的非锚点载波的频域位置信息;用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息;
处理模块,用于根据所述调度信息,或者根据所述载波的部署模式和所述第一信息中的至少一个以及所述调度信息,通过所述接收模块从所述第一通信设备接收所述SIB1。
基于同一发明构思,由于该装置解决问题的原理与第二方面的方法设计中的方案对应,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
第五方面,本申请提供一种通信设备,所述通信设备为第一通信设备,所述通信设备包括存储器和处理器,以及存储在所述存储器上可供所述处理器执行的计算机程序;所述处理器执行所述计算机程序实现如第一方面任一项所述系统消息传输方法的步骤。
第六方面,本申请提供一种通信设备,所述通信设备为第二通信设备,所述通信设备包括存储器和处理器,以及存储在所述存储器上可供所述处理器执行的计算机程序;所述处理器执行所述计算机程序实现如第二方面任一项所述系统消息传输方法的步骤。
第七方面,本申请提供一种通信系统,包括如第五方面所述的通信设备和如第六方面所述的通信设备。
第八方面,本申请提供一种通信设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
第九方面,本申请提供一种通信设备,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
第十方面,本申请提供一种程序,该程序在被通信设备的处理器执行时用于执行以上第一方面的方法。
第十一方面,本申请提供一种程序,该程序在被通信设备的处理器执行时用于执行以上第二方面的方法。
第十二方面,本申请提供一种计算机程序产品,包括第十方面的程序。
第十三方面,本申请提供一种计算机程序产品,包括第十一方面的程序。
第十四方面,本申请提供一种计算机可读存储介质,当计算机可读存储介质中的指令由通信设备的处理器执行时,使得通信设备能够执行第一方面的方法。
第十五方面,本申请提供一种计算机可读存储介质,当计算机可读存储介质中的指令由通信设备的处理器执行时,使得通信设备能够执行第二方面的方法。
本申请的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
图1为本申请提供的通信系统的示意图;
图2为本申请一实施例提供的系统消息传输方法的信令图;
图3为本申请所涉及的用于SIB1传输的非锚点定载波频域位置信息的图例;
图4为本申请所涉及的独立部署模式的图例;
图5为本申请所涉及的保护带部署模式的图例;
图6为本申请所涉及的带内部署模式的图例;
图7为本申请提供的一种系统消息传输形式示意图;
图8为本申请提供的另一种系统消息传输形式示意图;
图9为本申请一实施例提供的系统消息传输装置的结构示意图;
图10为本申请另一实施例提供的系统消息传输装置的结构示意图;
图11为本申请一实施例提供的通信设备的结构示意图;
图12为本申请另一实施例提供的通信设备的结构示意图。
具体实施方式
本申请主要应用于NB-IoT系统,LTE系统或增强的LTE(LTE Advanced,LTE-A)系统。本申请也可以应用于其它的通信系统,只要该通信系统中存在实体可以发送信息,该通信系统也存在其它实体可以接收信息即可。
如图1所示,第一通信设备示例为网络设备,第二通信设备示例为终端设备,二者组成一个通信系统。在该通信系统中,终端设备处在网络设备覆盖范围内,并与网络设备进行通信,以实施下述各本申请实施例提供的技术方案。需说明的是,第一通信设备不以网络设备为限;同理,第二通信设备不以终端设备为限。
本申请可结合网络设备和终端设备理解各个实施例,该网络设备和终端设备可以工作在许可频段或免许可频段上。其中:
终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(the fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、 尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,网络设备又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端设备接入到无线网络的设备,可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,或NR系统中的新一代基站(new radio Node B,gNodeB)等,在此并不限定。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信。该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站。这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,锚点载波指的是第二通信设备假定有公共信道或公共信号传输的载波,非锚点载波指的是第二通信设备假定没有公共信道或者公共信号传输的载波。所述公共信道为小区级公共信道,所述公共信号为小区级公共信号。在NB-IoT系统中,锚点载波指的是第二通信设备假定有NPSS/NSSS/NPBCH/SIB-NB传输的载波。锚点载波指的是第二通信设备假定没有NPSS/NSSS/NPBCH/SIB-NB传输的载波。或者,在NB-IoT系统中,锚点载波指的是第二通信设备假定有NPSS/NSSS/NPBCH传输的载波。锚点载波指的是第二通信设备假定没有NPSS/NSSS/NPBCH传输的载波。
图2为本申请一实施例提供的系统消息传输方法的信令图。如图2所示,本实施例的方法包括:
S201、第一通信设备配置主系统信息块(Master Information Block,MIB)消息。
其中,该MIB消息可携带不同的信息,具有以下几种类型:
类型一,MIB消息包括SIB1的调度信息。
类型二,MIB消息包括SIB1的调度信息和载波的部署模式。
类型三,MIB消息包括SIB1的调度信息以及第一信息。
类型四,MIB消息包括SIB1的调度信息、第一信息以及载波的部署模式。
进一步地,该第一信息可以包括以下信息中的至少一种:用于SIB1传输的状态信息;用于SIB1传输的时域位置信息;用于SIB1传输的非锚点载波的频域位置信息;用于SIB1传输的非锚点载波上SIB1的传输方式信息。
该步骤中所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,具体指示方式可以是单独指示,指示的可以是传输块大小的数值,重复次数的数值,也可以是可选的传输块大小的索引,重复次数的索引;具体指示方式可以是联合指示,指示的可选的传输块大小和重复次数的组合的索引。所述调度信息也可以包含其他信息用于调度SIB1传输,比如SIB1的调制编码方案(Modulation and Coding Scheme,MCS)等。
该步骤中所述载波的部署模式,包括锚点载波的部署模式,或者用于传输所述SIB的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及所 述用于传输所述SIB的非锚点载波的部署模式信息。所述锚点载波的部署模式的部署模式包括独立部署模式、保护带部署模式和带内部署模式的一种。所述用于SIB1传输的非锚点载波的部署模式的部署模式包括独立部署模式、保护带部署模式和带内部署模式的一种。对于锚点载波和非锚点载波,带内部署模式指的是本申请应用的系统部署在另一个通信系统的传输带内,根据两个系统的物理小区标识(Physical Cell Identifier,PCI)是否相同,带内部署模式可以分为带内部署相同PCI,带内部署不同PCI。比如在NB-IoT系统部署在LTE系统的保护带内,根据NB-IoT系统的PCI和LTE系统的PCI是否相同,带内部署模式可以分为带内部署相同PCI,带内部署不同PCI。
关于如何根据载波的部署模式确定非锚点载波的部署模式,可以有以下几种方式:
方式一,所述载波的部署模式包括锚点载波的部署模式,其中非锚点载波的部署模式可以通过协议约定和锚点载波的部署模式相同,因此非锚点载波的部署模式可以根据锚点载波的部署模式确定。
方式二,所述载波的部署模式包括用于传输所述SIB的非锚点载波的部署模式信息,其中用于传输所述SIB的非锚点载波的部署模式信息用于指示用于传输所述SIB的非锚点载波的部署模式,因此非锚点载波的部署模式可以直接根据用于传输所述SIB的非锚点载波的部署模式信息确定。
方式三,所述载波的部署模式包括锚点载波的部署模式和所述用于传输所述SIB的非锚点载波的部署模式信息。其中所述用于传输所述SIB的非锚点载波的部署模式信息用于指示用于传输所述SIB的非锚点载波的部署模式和锚点载波的部署模式是否相同。因此非锚点载波的部署模式可以根据锚点载波的部署模式和用于传输所述SIB的非锚点载波的部署模式信息确定。
假设本申请应用的系统记为第一通信系统,对于LTE系统,在传输带内有CRS传输,在保护带内没有CRS传输。当第一通信系统的锚点载波为保护带部署(即部署在LTE的保护带内)且第一通信系统的非锚点载波为带内部署(即部署在LTE的保护带内)时,在MIB消息中需要指示LTE CRS端口数,可以在MIB中新增一个域来指示,可以使用保护带部署对应的域中的空闲比特来指示,对于带内部署不区分带内部署相同PCI和带内部署不同PCI。
以NB-IoT为例,MasterInformationBlock-NB为MIB消息,operationModeInfo为部署模式对应的域,guardband表示保护带部署,standalone表示独立部署,inband-SamePCI表示带内部署,NB-IoT系统和LTE系统PCI相同,inband-DifferentPCI,NB-IoT系统和LTE系统PCI不同,当MIB消息中部署模式为保护带部署(guardband)时,保护带部署对应的域中有3个空闲比特。当NB-IoT锚点载波为保护带部署模式,用于SIB1传输的非锚点载波为带内部署模式(包括inband-SamePCI,inband-DifferentPCI中一种)时,可以使用其中一个空闲比特来指示LTE CRS端口数。且指示LTE CRS端口数的域只有在锚点载波为保护带部署模式,非锚点载波为带内部署模式时才存在。
Figure PCTCN2017111759-appb-000001
Figure PCTCN2017111759-appb-000002
对于该步骤需要说明的是,和现有技术类似,MIB消息中还可以携带其它信息,以通知第二通信设备关于该通信系统的基本信息,以保证后续通信流程运转。
S202、第一通信设备发送MIB消息给第二通信设备。
对应地,第二通信设备从第一通信设备接收MIB消息。
S203、第一通信设备传输SIB1给第二通信设备。
具体地,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备。
对于该步骤,可以理解,第一通信设备根据调度信息及第一信息传输SIB1给第二通信设备;或者,第一通信设备根据调度信息传输SIB1给第二通信设备;第一通信设备根据调度信息及载波的部署模式传输SIB1给第二通信设备;第一通信设备根据调度信息、第一信息及载波的部署模式传输SIB1给第二通信设备,等等。详细描述可参考后续实施例,此处不再赘述。
对应地,第二通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及调度信息,从第一通信设备接收SIB1。
该实施例,第一通信设备配置MIB消息,该MIB消息可携带各种不同的用于SIB1传输的信息,例如,上述调度信息、第一信息以及载波的部署模式中的任一个或多个,以使第二通信设备根据该MIB消息接收SIB1。一方面,第一通信设备可灵活配置用于SIB1传输的信息;另一方面,由于第一通信设备在配置MIB消息时,可以考虑通过配置或者隐含指示保证不同小区的SIB1在一个周期内传输的资源位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
以下,区分MIB消息所包含信息和/或第一信息所包含信息的不同,对上述实施例进行详细说明。
一种实施例中,第一信息包括用于SIB1传输的状态信息。
其中,状态信息包括以下状态中的一种:SIB1只在锚点载波传输,以及,SIB1只在非锚点载波传输。或者,状态信息包括以下状态中的一种:SIB1只在锚点载波传输,以及,SIB1在锚点载波和非锚点载波传输。
该实施例中,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备,可以具体为:第一通信设备根据调度信息及第一信息传输SIB1给第二通信设备。进一步具体包括:第一通信设备根据调度 信息及状态信息确定在锚点载波和/或非锚点载波传输SIB1给第二通信设备;当所述第一通信设备确定在非锚点载波传输所述SIB1时,所述第一通信设备确定用于传输所述SIB1的非锚点载波。
需要说明的是当用于SIB1的非锚点载波的频域位置约定时,所述第一通信设备确定用于传输所述SIB1的非锚点载波指的是所述第一通信设备确定约定的频域位置对应的非锚点载波为用于传输所述SIB1的非锚点载波。
可以理解,若状态信息包括的状态为SIB1只在锚点载波传输,则第一通信设备根据调度信息及状态信息确定在锚点载波传输SIB1给第二通信设备;或者,若状态信息包括的状态为SIB1只在非锚点载波传输,则第一通信设备根据调度信息及状态信息确定在非锚点载波传输SIB1给第二通信设备;或者,若状态信息包括的状态为SIB1在锚点载波和非锚点载波传输,则第一通信设备根据调度信息及状态信息确定在锚点载波和非锚点载波传输传输SIB1给第二通信设备。
具体实现时,可通过位宽为1比特(bit)的域来指示该状态信息。该域的取值集合为SIB1只在锚点载波传输及SIB1只在非锚点载波传输,或者该域的取值集合为SIB1只在锚点载波传输及SIB1在锚点载波和非锚点载波传输。或者该域的取值为布尔值或者数字或者字符或者字符串等,其中布尔值或者数字或者字符或者字符串等的不同取值表示不同的含义,一种示例,该域的取值为“0”,表示SIB1只在锚点载波传输;该域的取值为“1”,表示SIB1只在非锚点载波传输。一种示例,该域的取值为“0”,表示SIB1只在锚点载波传输;该域的取值为“1”,表示SIB1在锚点载波和非锚点载波传输。另一种示例,该域的取值为“anchor”,表示SIB1只在锚点载波传输,该域的取值为“non-anchor”,表示SIB1只在非锚点载波传输。
如果状态信息指示的SIB1只在锚点载波传输,SIB1在锚点载波传输的时域资源位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小和重复次数在所述锚点载波向第二通信设备传输SIB1。
如果状态信息指示的SIB1只在非锚点载波传输,SIB1在非锚点载波传输的时域资源位置可以通过协议约定,用于SIB1传输的非锚点载波的频域位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块在所述非锚点载波向第二通信设备传输SIB1。需要说明的是,SIB1在非锚点载波上传输时SIB1的重复次数可以和所述调度信息指示的重复次数相同,SIB1在非锚点载波上传输时SIB1的重复次数也可以和所述调度信息指示的重复次数不同,比如SIB1在非锚点载波上传输时SIB1的重复次数可以大于所述调度信息指示的重复次数。当非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1相同的传输资源,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1更多的传输资源。非锚点载波上所述SIB1传输的重复次数和传输资源可以通过协议约定。
如果状态信息指示的SIB1在锚点载波和非锚点载波传输,SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以通过协议约定,SIB1在锚点载波传 输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以相同,也可以不同,用于SIB1传输的非锚点载波的频域位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小和重复次数在所述非锚点载波向第二通信设备传输SIB1。需要说明的是,SIB1在非锚点载波上传输时SIB1的重复次数可以和所述调度信息指示的重复次数相同,SIB1在非锚点载波上传输时SIB1的重复次数也可以和所述调度信息指示的重复次数不同,比如SIB1在非锚点载波上传输时SIB1的重复次数可以大于所述调度信息指示的重复次数。当非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1相同的传输资源,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1更多的传输资源。非锚点载波上所述SIB1传输的重复次数和传输资源可以通过协议约定。
需要说明的是,在本实施例中,和现有技术类似,第一通信设备根据调度信息及状态信息确定SIB1的传输方式时可能还参考其它信息。比如在NB-IoT中,MIB消息中指示的部署模式信息中还可能包括CRS端口数等信息,SIB1在资源映射时需要考虑CRS所占用的资源位置,在资源映射时避开CRS占用的资源,而确定CRS占用的资源与CRS端口数有关。因此在第一通信设备根据调度信息及状态信息确定SIB1的传输方式时还可能参考MIB消息中指示的部署模式信息。
对应地,第二通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及调度信息,从第一通信设备接收SIB1,可以具体为:第二通信设备根据调度信息及第一信息,从第一通信设备接收SIB1。进一步包括:第二通信设备根据调度信息及状态信息,确定在锚点载波和/或非锚点载波从第一通信设备接收所述SIB1。当第二通信设备确定在非锚点载波从第一通信设备接收SIB1时,第二通信设备确定用于接收SIB1的非锚点载波。具体细节可参考上述第一通信设备的相关描述,此处不再赘述。
该实施例,第一通信设备通过所述调度信息及所述状态信息携带各种不同的用于SIB1传输的信息,其中状态信息可以保证第一通信设备可灵活配置用于SIB1传输的载波,可以通过一部分小区配置在锚点载波,一部分小区配置在非锚点载波传输SIB1,或者一部分小区配置在锚点载波传输SIB1,一部分小区配置在锚点载波和非锚点载波传输SIB1,从而保证不同小区的SIB1在一个周期内传输的载波位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
在该实施例的基础上,第一信息进一步包括用于SIB1传输的时域位置信息。该用于SIB1传输的时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置等用于表示时域位置的信息,还可以是时间单元。
其中,该符号位置对应的符号包含但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号和非正交多址接入(Non-Orthogonal Multiple Access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
此时,上述第一通信设备根据调度信息及状态信息确定在锚点载波和/或非锚点载波传输SIB1给第二通信设备,可以包括:第一通信设备根据调度信息、状态信息以及时域位置 信息,确定在锚点载波和/或用于传输所述SIB1的非锚点载波中该时域位置信息所指示的时域位置传输SIB1给第二通信设备。其中,时域位置信息所指示的时域位置既可以位于锚点载波,也可以位于非锚点载波。
对应地,第二通信设备根据调度信息及状态信息,确定在锚点载波和/或非锚点载波从所述第一通信设备接收所述SIB1,包括:所述第二通信设备根据所述调度信息、所述状态信息以及所述时域位置信息,确定在锚点载波和/或用于传输所述SIB1的非锚点载波中所述时域位置信息所指示的时域位置,从所述第一通信设备接收所述SIB1。
需要说明的是,在本实施例中,和现有技术类似,第一通信设备根据调度信息及状态信息确定SIB1的传输方式时可能还参考其它信息。比如在NB-IoT中,MIB消息中指示的部署模式信息中还可能包括CRS端口数等信息,SIB1在资源映射时需要考虑CRS所占用的资源位置,在资源映射时避开CRS占用的资源,而确定CRS占用的资源与CRS端口数有关。因此在第一通信设备根据调度信息及状态信息确定SIB1的传输方式时还可能参考MIB消息中指示的部署模式信息。
该实施例,第一通信设备通过所述调度信息、所述状态信息以及时域位置信息携带各种不同的用于SIB1传输的信息,其中状态信息可以保证第一通信设备可灵活配置用于SIB1传输的载波,可以通过一部分小区配置在锚点载波,一部分小区配置在非锚点载波传输SIB1,或者一部分小区配置在锚点载波传输SIB1,一部分小区配置在锚点载波和非锚点载波传输SIB1,时域位置信息可以保证不同小区在SIB1传输的时间位置不同,从而保证不同小区的SIB1在一个周期内传输的时间位置和/或载波位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
另一种实施例中,第一信息包括用于SIB1传输的时域位置信息。应当理解,若无特殊说明,本申请中所涉及的同一名词具有相同含义,例如,这里的“时域位置信息”与上一实施例中的“时域位置信息”,二者所包含的内容及含义相同。
该实施例中,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备,可以具体为:第一通信设备根据调度信息及第一信息传输SIB1给第二通信设备。进一步可具体包括:第一通信设备确定用于传输SIB1的载波,该载波包括锚点载波和/或用于传输SIB1的非锚点载波;第一通信设备在锚点载波和/或在用于传输SIB1的非锚点载波上时域位置信息所指示的时域位置,根据调度信息传输SIB1给第二通信设备。其中,用于传输SIB1的非锚点载波可以为预先设置的,例如在通信标准和/或通信协议中规定等。时域位置信息所指示的时域位置既可以位于锚点载波,也可以位于非锚点载波。需要说明的是当用于SIB1的非锚点载波的频域位置约定时,所述第一通信设备确定用于传输所述SIB1的非锚点载波指的是所述第一通信设备确定约定的频域位置对应的非锚点载波为用于传输所述SIB1的非锚点载波。
例如,第一通信设备在锚点载波上,在时域位置信息所指示的时域位置传输SIB1给第二通信设备;或者,第一通信设备在用于传输SIB1的非锚点载波上,在时域位置信息所指示的时域位置传输SIB1给第二通信设备;或者,第一通信设备在锚点载波和在用于传输SIB1的非锚点载波上,在时域位置信息所指示的时域位置传输SIB1给第二通信设备。
对应地,第二通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及调度信息,从第一通信设备接收SIB1,可以具体为:第二通信设备根据调度信息 及第一信息,从第一通信设备接收SIB1。进一步包括:第二通信设备确定用于接收SIB1的载波,该载波包括锚点载波和/或用于传输SIB1的非锚点载波;第二通信设备在锚点载波和/或在用于传输所述SIB1的非锚点载波上时域位置信息所指示的时域位置,根据调度信息从第一通信设备接收SIB1。
SIB可以通过协议约定只在锚点传输,或者只在非锚点传输,或者SIB1在锚点载波和非锚点载波传输。用于SIB1传输的非锚点载波的频域位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小和重复次数在所述非锚点载波向第二通信设备传输SIB1。需要说明的是,SIB1在非锚点载波上传输时SIB1的重复次数可以和所述调度信息指示的重复次数相同,SIB1在非锚点载波上传输时SIB1的重复次数也可以和所述调度信息指示的重复次数不同,比如SIB1在非锚点载波上传输时SIB1的重复次数可以大于所述调度信息指示的重复次数。当非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1相同的传输资源,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1更多的传输资源。非锚点载波上所述SIB1传输的重复次数和传输资源可以通过协议约定。
需要说明的是,在本实施例中,和现有技术类似,第一通信设备根据调度信息及状态信息确定SIB1的传输方式时可能还参考其它信息。比如在NB-IoT中,MIB消息中指示的部署模式信息中还可能包括CRS端口数等信息,SIB1在资源映射时需要考虑CRS所占用的资源位置,在资源映射时避开CRS占用的资源,而确定CRS占用的资源与CRS端口数有关。因此在第一通信设备根据调度信息及状态信息确定SIB1的传输方式时还可能参考MIB消息中指示的部署模式信息。
该实施例,第一通信设备通过所述调度信息以及时域位置信息携带各种不同的用于SIB1传输的信息,其中时域位置信息可以保证不同小区在SIB1传输的时间位置不同,从而保证不同小区的SIB1在一个周期内传输的时间位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
又一种实施例中,第一信息包括用于SIB1传输的非锚点载波的频域位置信息。
其中,用于SIB1传输的非锚点载波的频域位置信息包含以下参数中的至少一种:用于SIB1传输的非锚点载波相对锚点载波的相对位置;及,用于SIB1传输的非锚点载波与锚点载波的频域偏置。该频域偏置可以为频域间隔或资源块数量。其中资源块,指的是频域资源单元,可以是N个连续的子载波个数,N可以通过协议约定。在LTE中,资源块可以对应RB。即,用于SIB1传输的非锚点载波与锚点载波的频域偏置,可以是用于SIB1传输的非锚点载波相对锚点载波的频域间隔,或者用于SIB1传输的非锚点载波相对锚点载波的RB资源块数量,具体可参考图3。
对于用于SIB1传输的非锚点载波相对锚点载波的相对位置,至少可包含以下状态:用于SIB1传输的非锚点载波在锚点载波的高频位置和用于SIB1传输的非锚点载波在锚点载波的低频位置,如图3所示。
该实施例中,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备,可以具体为:第一通信设备根据 调度信息及第一信息传输SIB1给第二通信设备。进一步具体包括:第一通信设备确定用于传输SIB1的非锚点载波;第一通信设备根据频域位置信息以及锚点载波,确定用于SIB1传输的非锚点载波的频域位置;第一通信设备在该频域位置所对应的用于传输所述SIB1的非锚点载波上根据调度信息传输SIB1。即仅非锚点载波用于传输SIB1。
或者,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备,可以具体为:第一通信设备根据调度信息及第一信息传输SIB1给第二通信设备。进一步具体包括:第一通信设备确定用于传输SIB1的非锚点载波;第一通信设备根据频域位置信息以及锚点载波,确定用于SIB1传输的非锚点载波的频域位置;第一通信设备在所述锚点载波上以及所述频域位置所对应的所述用于SIB1传输的非锚点载波的频域位置上以及锚点载波上,根据调度信息传输SIB1给第二通信设备。即,锚点载波和非锚点载波同时用于传输SIB1。
对应地,第二通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及调度信息,从第一通信设备接收SIB1,可以具体为:第二通信设备根据调度信息及第一信息,从第一通信设备接收SIB1。进一步包括:第二通信设备确定用于接收所述SIB1的非锚点载波;所述第二通信设备根据所述频域位置信息以及所述锚点载波,确定所述用于所述SIB1传输的非锚点载波的频域位置;所述第二通信设备在所述频域位置所对应的所述用于传输所述SIB1的非锚点载波上根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,所述第二通信设备在所述锚点载波上以及所述频域位置所对应的所述用于所述SIB1传输的非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1。
SIB可以通过协议约定只在非锚点传输,或者SIB1在锚点载波和非锚点载波传输。SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以通过协议约定,SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以相同,也可以不同。所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小和重复次数在所述非锚点载波向第二通信设备传输SIB1。需要说明的是,SIB1在非锚点载波上传输时SIB1的重复次数可以和所述调度信息指示的重复次数相同,SIB1在非锚点载波上传输时SIB1的重复次数也可以和所述调度信息指示的重复次数不同,比如SIB1在非锚点载波上传输时SIB1的重复次数可以大于所述调度信息指示的重复次数。当非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1相同的传输资源,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1更多的传输资源。非锚点载波上所述SIB1传输的重复次数和传输资源可以通过协议约定。
需要说明的是,在本实施例中,和现有技术类似,第一通信设备根据调度信息及状态信息确定SIB1的传输方式时可能还参考其它信息。比如在NB-IoT中,MIB消息中指示的部署模式信息中还可能包括CRS端口数等信息,SIB1在资源映射时需要考虑CRS所占用的资源位置,在资源映射时避开CRS占用的资源,而确定CRS占用的资源与CRS端口数有关。因此在第一通信设备根据调度信息及状态信息确定SIB1的传输方式时还可能参考MIB消息中指示的部署模式信息。
该实施例,第一通信设备通过所述调度信息以及非锚点定载波频域位置信息携带各种 不同的用于SIB1传输的信息,其中非锚点定载波频域位置信息可以保证不同小区使用非锚点载波传输SIB1传输,并且不同小区可以配置不同的非锚点载波,从而保证不同小区的SIB1在一个周期内传输的频域位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
又一种实施例中,第一信息包括用于SIB1传输的非锚点载波上SIB1的传输方式信息。
其中,该传输方式信息可以包含用于传输所述SIB1的非锚点载波上SIB1的重复次数。
对应该实施例,第一种实现方式中,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备,可以具体为:第一通信设备根据调度信息及第一信息传输SIB1给第二通信设备。进一步具体包括:第一通信设备确定用于传输SIB1的非锚点载波;第一通信设备根据重复次数以及调度信息,在用于传输所述SIB1的非锚点载波上传输SIB1给第二通信设备。
第二种实现方式中,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备,可以具体为:第一通信设备根据调度信息及第一信息传输SIB1给第二通信设备。进一步,第一通信设备根据调度信息及第一信息传输SIB1给第二通信设备,具体包括:第一通信设备确定用于传输SIB1的非锚点载波;第一通信设备根据调度信息在锚点载波上,以及根据调度信息和重复次数在用于传输所述SIB1的非锚点载波上传输SIB1给第二通信设备。
其中,锚点载波上SIB1的重复次数可参考现有技术进行确定。
对应地,第二通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及调度信息,从第一通信设备接收SIB1,可以具体为:第二通信设备根据调度信息及第一信息,从第一通信设备接收SIB1。进一步包括:第二通信设备确定用于传输所述SIB1的非锚点载波;所述第二通信设备根据所述重复次数以及所述调度信息,在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1;或者,所述第二通信设备根据所述调度信息在所述锚点载波上,以及根据所述调度信息和所述重复次数在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1。
SIB可以通过协议约定只在非锚点传输,或者SIB1在锚点载波和非锚点载波传输。SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以通过协议约定,SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以相同,也可以不同。用于SIB1传输的非锚点载波的频域位置可以通过协议约定。所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小在所述非锚点载波向第二通信设备传输SIB1。当非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1相同的传输资源,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1更多的传输资源。非锚点载波上所述SIB1传输的传输资源可以通过协议约定。
需要说明的是,在本实施例中,和现有技术类似,第一通信设备根据调度信息及状态信息确定SIB1的传输方式时可能还参考其它信息。比如在NB-IoT中,MIB消息中指示的部署模式信息中还可能包括CRS端口数等信息,SIB1在资源映射时需要考虑CRS所占用的资源位置,在资源映射时避开CRS占用的资源,而确定CRS占用的资源与CRS端口数有关。 因此在第一通信设备根据调度信息及状态信息确定SIB1的传输方式时还可能参考MIB消息中指示的部署模式信息。
该实施例,第一通信设备通过所述调度信息以及非锚点载波上SIB1的传输方式信息携带各种不同的用于SIB1传输的信息,可以保证不同小区使用非锚点载波传输SIB1传输,从而保证不同小区的SIB1在一个周期内传输的频域位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。重复次数可以配置,使得基站可以根据非锚点载波和锚点载波的功率差异配置在SIB1字非锚点载波上传输时的重复次数,从而保证SIB1在非锚点载波传输时的可靠性。
又一种实施例中,第一信息包括用于SIB1传输的非锚点载波上SIB1的传输方式信息。
其中,该实施例中的传输方式信息包含资源指示信息。该资源指示信息用于指示:当用于传输所述SIB1的非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在锚点载波单次传输SIB1的重复周期内,该用于传输所述SIB1的非锚点载波上SIB1传输是否需要比锚点载波上传输SIB1更多的传输资源。其中,该传输资源可以为子帧、无线帧、超帧、符号或时隙等中的一种。
对于锚点载波单次传输SIB1的重复周期,是指传输SIB1的一个TB所需的时间。假设SIB1在m个无线帧中使用一个子帧,传输SIB1的一个TB需要占用k个子帧,其中,m和k均为大于1的正整数,则单次传输SIB1的时间为10×m×k毫秒(ms),这里,一个无线帧对应的时间示例为10毫秒,但本申请不以此为限制。例如,SIB1在2个无线帧中使用一个子帧,传输SIB1的一个TB需要占用8个子帧,则单次传输SIB1的时间为10×2×8ms,即160ms。
需要说明的是在锚点载波单次传输SIB1的重复周期内,用于传输所述SIB1的非锚点载波上SIB1传输需要比锚点载波上传输SIB1更多的传输资源,含义是SIB1在非锚点载波上传输时占用的传输资源比在锚点载波上传输占用的传输资源多,锚点载波上传输占用的传输资源只是一种参考,并不意味着SIB1在锚点载波上传输。比如SIB1在锚点载波上传输时SIB1在2个无线帧中占用1个子帧。在非锚点载波上传输SIB1时在2个无线帧中使用2个子帧,2个子帧位于同一个无线帧或者在非锚点载波上SIB1在2个无线帧中使用2个子帧,2个子帧位于不同的无线帧,2个子帧的子帧号相同,或者在非锚点载波上SIB1在2个无线帧中使用2个子帧,2个子帧位于不同的无线帧,2个子帧的子帧号不同。
这里,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备,可以具体为:第一通信设备根据调度信息及第一信息传输SIB1给第二通信设备。进一步,第一通信设备根据调度信息及第一信息传输SIB1给第二通信设备具体包括以下:
第一通信设备确定用于传输SIB1的非锚点载波;
第一通信设备根据资源指示信息,确定在用于传输所述SIB1的非锚点载波上用于传输SIB1的传输资源;
第一通信设备使用用于传输所述SIB1的非锚点载波上传输SIB1的传输资源,并根据调度信息传输SIB1给第二通信设备;或者,第一通信设备在锚点载波上,以及使用用于传输所述SIB1的非锚点载波上用于传输SIB1的传输资源上,根据调度信息传输SIB1给第二通信设备。
同理,该实施例中,锚点载波上SIB1的重复次数可参考现有技术进行确定。
第二通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及调度信息,从第一通信设备接收SIB1,可以具体为:第二通信设备根据调度信息及第一信息,从第一通信设备接收SIB1。进一步包括:所述第二通信设备确定所述用于传输所述SIB1的非锚点载波;所述第二通信设备根据所述资源指示信息,确定在所述用于传输所述SIB1的非锚点载波上用于传输所述SIB1的传输资源;所述第二通信设备使用所述用于传输所述SIB1的非锚点载波上传输所述SIB1的传输资源,并根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,所述第二通信设备在所述锚点载波上,以及使用所述用于传输所述SIB1的非锚点载波上用于传输所述SIB1的传输资源上,根据所述调度信息,从所述第一通信设备接收所述SIB1。
需说明的是,用于SIB1传输的非锚点载波上SIB1的传输方式信息主要是考虑锚点载波和非锚点载波功率差异。
如果非锚点载波功率高于或等于锚点载波功率,SIB1在非锚点载波传输时可以采用和SIB1在锚点载波传输时相同的重复次数。比如,SIB1在锚点载波传输时重复次数为8,SIB1在非锚点载波传输时重复次数也为8。
如果非锚点载波功率低于锚点载波功率,SIB1在非锚点载波传输时采用比SIB1在锚点载波传输时更多的重复次数,比如,SIB1在锚点载波传输时的重复次数为8,SIB1在非锚点载波传输时的重复次数为16。或者,非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在锚点载波单次传输SIB1的重复周期内,非锚点载波上SIB1传输相比锚点载波SIB1传输使用更多子帧,比如SIB1在非锚点载波传输时采用8次重复,在160ms内SIB1在锚点载波占用8个子帧,SIB1在非锚点载波占用16个子帧。
SIB可以通过协议约定只在非锚点传输,或者SIB1在锚点载波和非锚点载波传输。SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以通过协议约定,SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以相同,也可以不同。用于SIB1传输的非锚点载波的频域位置可以通过协议约定。所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小和重复次数在所述非锚点载波向第二通信设备传输SIB1。需要说明的是,SIB1在非锚点载波上传输时SIB1的重复次数可以和所述调度信息指示的重复次数相同,SIB1在非锚点载波上传输时SIB1的重复次数也可以和所述调度信息指示的重复次数不同,比如SIB1在非锚点载波上传输时SIB1的重复次数可以大于所述调度信息指示的重复次数。非锚点载波上所述SIB1传输的重复次数可以通过协议约定。
需要说明的是,在本实施例中,和现有技术类似,第一通信设备根据调度信息及状态信息确定SIB1的传输方式时可能还参考其它信息。比如在NB-IoT中,MIB消息中指示的部署模式信息中还可能包括CRS端口数等信息,SIB1在资源映射时需要考虑CRS所占用的资源位置,在资源映射时避开CRS占用的资源,而确定CRS占用的资源与CRS端口数有关。因此在第一通信设备根据调度信息及状态信息确定SIB1的传输方式时还可能参考MIB消息中指示的部署模式信息。
该实施例,第一通信设备通过所述调度信息以及非锚点载波上SIB1的传输方式信息携带各种不同的用于SIB1传输的信息,可以保证不同小区使用非锚点载波传输SIB1传输,从而保证不同小区的SIB1在一个周期内传输的频域位置不同,通过这种干扰隔离机制可以避 免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。传输资源可以配置,使得基站可以根据非锚点载波和锚点载波的功率差异配置在SIB1字非锚点载波上传输时的传输资源,从而保证SIB1在非锚点载波传输时的可靠性。
进一步地,可以预先设定,重复次数集合中的一部分重复次数值对应第一状态,该第一状态为SIB1只在锚点载波传输;重复次数集合中的另一部分重复次数值对应第二状态,该第二状态为SIB1只在非锚点载波传输,或,该第二状态为SIB1只在锚点载波传输。示例性地,重复次数集合包括至少一个重复次数,该重复次数可以为4,8和16等。例如,重复次数集合包含的重复次数为4和8,等等。另外,调度信息用于确定SIB1传输所使用的传输块大小和重复次数。
这里,一种实现方式中,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备,可以具体为:第一通信设备根据调度信息传输SIB1给第二通信设备。可选地,第一通信设备根据调度信息传输SIB1给第二通信设备具体包括:第一通信设备确定重复次数(调度信息中的重复次数)对应第一状态或第二状态;第一通信设备根据第一状态或第二状态在锚点载波和/或非锚点载波传输SIB1给第二通信设备。
若第一通信设备确定重复次数对应第一状态,则第一通信设备根据第一状态只在锚点载波传输SIB1给第二通信设备;或者,若第一通信设备确定重复次数对应第二状态,则第一通信设备根据第二状态在锚点载波和非锚点载波传输SIB1给第二通信设备;或者,若第一通信设备确定重复次数对应第二状态,则第一通信设备根据第二状态只在非锚点载波传输SIB1给第二通信设备。
当所述第一通信设备确定在非锚点载波传输所述SIB1时,所述第一通信设备确定用于传输所述SIB1的非锚点载波。
若第一通信设备确定重复次数对应第一状态,则第一通信设备根据第一状态只在锚点载波传输SIB1给第二通信设备,SIB1在锚点载波传输的时域资源位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小和重复次数在所述锚点载波向第二通信设备传输SIB1。
若第一通信设备确定重复次数对应第二状态,则第一通信设备根据第二状态只在非锚点载波传输SIB1给第二通信设备,SIB1在非锚点载波传输的时域资源位置可以通过协议约定,用于SIB1传输的非锚点载波的频域位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块在所述非锚点载波向第二通信设备传输SIB1。需要说明的是,SIB1在非锚点载波上传输时SIB1的重复次数可以和所述调度信息指示的重复次数相同,SIB1在非锚点载波上传输时SIB1的重复次数也可以和所述调度信息指示的重复次数不同,比如SIB1在非锚点载波上传输时SIB1的重复次数可以大于所述调度信息指示的重复次数。当非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1相同的传输资源,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1更多的传输资源。非锚点载波上所述SIB1传输的重复次数和传输资源可以通过协议约定。
若第一通信设备确定重复次数对应第二状态,则第一通信设备根据第二状态在锚点载 波和非锚点载波传输SIB1给第二通信设备,SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以通过协议约定,SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以相同,也可以不同,用于SIB1传输的非锚点载波的频域位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小和重复次数在所述非锚点载波向第二通信设备传输SIB1。需要说明的是,SIB1在非锚点载波上传输时SIB1的重复次数可以和所述调度信息指示的重复次数相同,SIB1在非锚点载波上传输时SIB1的重复次数也可以和所述调度信息指示的重复次数不同,比如SIB1在非锚点载波上传输时SIB1的重复次数可以大于所述调度信息指示的重复次数。当非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1相同的传输资源,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1更多的传输资源。非锚点载波上所述SIB1传输的重复次数和传输资源可以通过协议约定。
需要说明的是,在本实施例中,和现有技术类似,第一通信设备根据调度信息及状态信息确定SIB1的传输方式时可能还参考其它信息。比如在NB-IoT中,MIB消息中指示的部署模式信息中还可能包括CRS端口数等信息,SIB1在资源映射时需要考虑CRS所占用的资源位置,在资源映射时避开CRS占用的资源,而确定CRS占用的资源与CRS端口数有关。因此在第一通信设备根据调度信息及状态信息确定SIB1的传输方式时还可能参考MIB消息中指示的部署模式信息。
对应地,第二通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及调度信息,从第一通信设备接收SIB1,可以具体为:第二通信设备根据调度信息,从第一通信设备接收SIB1。其中,第二通信设备根据所述调度信息,从所述第一通信设备接收所述SIB1,进一步包括:所述第二通信设备确定所述重复次数对应第一状态或第二状态;所述第二通信设备根据所述第一状态或所述第二状态在锚点载波和/或非锚点载波,从所述第一通信设备接收所述SIB1。当所述第二通信设备确定在非锚点载波,从所述第一通信设备接收所述SIB1时,所述第二通信设备确定用于接收所述SIB1的非锚点载波。
该实施例,第一通信设备通过调度信息获取重复次数,根据重复次数配置使得SIB1可以非锚点载波传输SIB1,而且增加MIB信令开销,从而保证不同小区的SIB1在一个周期内传输的载波位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
又一种实现方式中,更进一步地,调度信息中的重复次数对应第一状态时,MIB消息包括SIB1的调度信息和载波的部署模式;调度信息中的重复次数对应第二状态时,MIB消息包括SIB1的调度信息,载波的部署模式,以及包括用于SIB1传输的状态信息的第一信息。
该实现方式中,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备,可以具体为:第一通信设备根据调度信息、载波的部署模式以及第一信息中的至少一个传输SIB1给第二通信设备。可选地,第一通信设备根据调度信息、载波的部署模式以及第一信息中的至少一个传输SIB1给第二通信设备,具体包括以下具体实现:
调度信息中的重复次数属于上述一部分重复次数值时,根据该一部分重复次数值对应 的第一状态及调度信息,在锚点载波上传输SIB1给第二通信设备;
或者,调度信息中的重复次数属于上述另一部分重复次数值时,根据调度信息在锚点载波上传输SIB1给所述第二通信设备;
或者,调度信息中的重复次数属于上述另一部分重复次数值时,根据调度信息、载波的部署模式以及第一信息中的SIB1传输的状态信息,在非锚点载波上传输SIB1给第二通信设备。
其中,所述第一通信设备在所述非锚点载波上传输所述SIB1,包括:所述第一通信设备确定用于传输所述SIB1的非锚点载波。
需要说明的是当用于SIB1的非锚点载波的频域位置约定时,所述第一通信设备确定用于传输所述SIB1的非锚点载波指的是所述第一通信设备确定约定的频域位置对应的非锚点载波为用于传输所述SIB1的非锚点载波。
对应地,第二通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及调度信息,从第一通信设备接收SIB1,可以具体为:所述第二通信设备根据所述调度信息、所述载波的部署模式以及所述第一信息中的至少一个,从所述第一通信设备接收所述SIB1。进一步包括:所述调度信息中的重复次数属于所述一部分重复次数值时,根据所述一部分重复次数值对应的所述第一状态及所述调度信息,在所述锚点载波上,从所述第一通信设备接收所述SIB1;所述调度信息中的重复次数属于所述另一部分重复次数值时,根据所述调度信息在所述锚点载波上,从所述第一通信设备接收所述SIB1,或者根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在非锚点载波上,从所述第一通信设备接收所述SIB1。
当第二通信设备在非锚点载波上,从第一通信设备接收SIB1,可包括:所述第二通信设备确定用于接收所述SIB1的非锚点载波。
在上述又一种实现方式的基础上,可以理解,载波的部署模式包括用于传输SIB1的非锚点载波的部署模式信息,或者,载波的部署模式包括锚点载波的部署模式以及用于传输SIB1的非锚点载波的部署模式信息。
该实施例中,上述根据调度信息、载波的部署模式以及第一信息中的SIB1传输的状态信息,在用于传输所述SIB1的非锚点载波上传输SIB1给第二通信设备,可包括以下几种具体实现方式:
实现方式一,第一通信设备根据载波的部署模式确定用于传输SIB1的非锚点载波的部署模式,其中,确定的部署模式为独立部署模式;第一通信设备根据该独立部署模式确定用于传输所述SIB1的非锚点载波上SIB1的传输资源与锚点载波上SIB1的传输资源相同;第一通信设备根据用于传输所述SIB1的非锚点载波上SIB1的传输资源在非锚点载波上,根据调度信息传输SIB1给第二通信设备。
其中,独立部署模式,是利用独立的频带,比如利用一个或者多个载波,来传输NB-IoT,如图4所示。
实现方式二,第一通信设备根据载波的部署模式确定用于传输SIB1的非锚点载波的部署模式,其中,确定的部署模式为保护带部署模式或带内部署模式;第一通信设备根据保护带部署模式或带内部署模式,确定用于传输所述SIB1的非锚点载波上SIB1的传输资源;第一通信设备根据用于传输所述SIB1的非锚点载波上SIB1的传输资源在非锚点载波上,根 据调度信息传输SIB1给第二通信设备。
其中,保护带部署模式,是利用LTE保护频带中未利用的一个或多个资源块来传输NB-IoT,其中一个资源块的带宽为180kHz,如图5所示。其中,LTE信道带宽包括LTE保护频带和LTE传输带宽。
带内部署模式,是利用LTE传输带宽内的一个或多个资源块来传输NB-IoT,其中一个资源块的带宽为180kHz,如图6所示。
调度信息中的重复次数属于上述一部分重复次数值时,根据该一部分重复次数值对应的第一状态及调度信息,在锚点载波上传输SIB1给第二通信设备;SIB1在锚点载波传输的时域资源位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小和重复次数在所述锚点载波向第二通信设备传输SIB1。
调度信息中的重复次数属于上述另一部分重复次数值时,根据调度信息在锚点载波上传输SIB1给所述第二通信设备;SIB1在锚点载波传输的时域资源位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小和重复次数在所述锚点载波向第二通信设备传输SIB1。
调度信息中的重复次数属于上述另一部分重复次数值时,根据调度信息、载波的部署模式以及第一信息中的SIB1传输的状态信息,在非锚点载波上传输SIB1给第二通信设备。SIB1在非锚点载波传输的时域资源位置可以通过协议约定,用于SIB1传输的非锚点载波的频域位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块在所述非锚点载波向第二通信设备传输SIB1。需要说明的是,SIB1在非锚点载波上传输时SIB1的重复次数可以和所述调度信息指示的重复次数相同,SIB1在非锚点载波上传输时SIB1的重复次数也可以和所述调度信息指示的重复次数不同,比如SIB1在非锚点载波上传输时SIB1的重复次数可以大于所述调度信息指示的重复次数。非锚点载波上所述SIB1传输的重复次数可以通过协议约定。
对于本实施例中的所述实现方式一,当非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1相同的传输资源,对于本实施例中的所述实现方式二,非锚点载波上所述SIB1传输可以使用比所述锚点载波上传输所述SIB1更多的传输资源。
示例性地,重复次数集合包括至少一个重复次数,该重复次数可以为4,8和16等。例如,重复次数集合包含的重复次数为4,8和16,重复次数集合中的一部分重复次数值为4或8,重复次数集合中的另一部分重复次数值为16。
以NB-IoT系统为例,重复次数集合中包含的重复次数为4,8和16。重复次数结合中的一部分重复次数为4或8,重复次数集合中的另一部分重复次数值为16。如果根据MIB消息中SIB1调度消息中指示的重复次数为4或8时,SIB1只在锚点载波的传输,SIB1在锚点载波上传输的子帧位置可以通过协议约定,比如子帧0,如果MIB消息中SIB1调度消息中指示的重复次数为16时,SIB1只在非锚点载波上传输,用于SIB1传输的非锚点载波的频域位置通过协议约定,比如用于SIB1传输的非锚点载波相对锚点载波在锚点载波的高频位置,用于SIB1传输的非锚点载波在锚点载波相邻RB上,或者用于SIB1传输的非锚点载波相对锚点载 波在锚点载波的低频位置,用于SIB1传输的非锚点载波在锚点载波相邻RB上。非锚点载波的部署模式的确定方式如前所述,如果根据载波的部署模式确定非锚点载波的部署模式为独立部署模式,SIB1在非锚点载波上传输的重复次数和MIB消息中SIB1调度消息指示的重复次数相同,为16,SIB1在非锚点载波上相比锚点载波在160ms内使用的传输资源,即占用一个子帧,子帧位置可以通过协议约定,比如子帧0,或者子帧5,或者子帧9,如果根据载波的部署模式确定非锚点载波的部署模式为保护带部署模式或带内部署模式,SIB1在非锚点载波上传输的重复次数和MIB消息中SIB1调度消息指示的重复次数相同,为16,SIB1在非锚点载波上相比锚点载波在160ms内使用更多的传输资源,使用多少传输资源和传输资源的位置可以通过协议约定,比如SIB1在非锚点载波上使用子帧0和子帧5,或者子帧5和子帧9,或者子帧0和子帧9进行传输。
需要说明的是,在本实施例中,和现有技术类似,第一通信设备根据调度信息及状态信息确定SIB1的传输方式时可能还参考其它信息。比如在NB-IoT中,MIB消息中指示的部署模式信息中还可能包括CRS端口数等信息,SIB1在资源映射时需要考虑CRS所占用的资源位置,在资源映射时避开CRS占用的资源,而确定CRS占用的资源与CRS端口数有关。因此在第一通信设备根据调度信息及状态信息确定SIB1的传输方式时还可能参考MIB消息中指示的部署模式信息。
对应地,所述根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1,可以包括:所述第二通信设备根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式为独立部署模式、保护带部署模式和带内部署模式中的一种;
所述第二通信设备根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
所述第二通信设备根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
或者,所述第二通信设备根据所述保护带部署模式或带内部署模式,确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源;
所述第二通信设备根据所述用于传输所述SIB1的非锚点载波上SIB1的传输资源在所述用于传输所述SIB1的非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1。
该实施例,第一通信设备通过所述调度信息,载波的部署模式及所述状态信息携带各种不同的用于SIB1传输的信息,其中状态信息可以保证第一通信设备可灵活配置用于SIB1传输的载波,可以通过一部分小区配置在锚点载波,一部分小区配置在非锚点载波传输SIB1,或者一部分小区配置在锚点载波传输SIB1,一部分小区配置在锚点载波和非锚点载波传输SIB1,从而保证不同小区的SIB1在一个周期内传输的载波位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。
又一种实施例中,载波的部署模式包括用于传输SIB1的非锚点载波的部署模式信息,或者,载波的部署模式包括锚点载波的部署模式以及用于传输所述SIB1的非锚点载波的部署模式信息。
其中,第一通信设备根据调度信息,或者根据载波的部署模式和第一信息中的至少一个以及所述调度信息,传输SIB1给第二通信设备,可以具体为:第一通信设备根据调度信息及载波的部署模式传输SIB1给第二通信设备。可选地,第一通信设备根据调度信息及载波的部署模式传输SIB1给第二通信设备,具体包括以下几种具体实现方式:
具体实现方式一,第一通信设备根据载波的部署模式确定用于传输SIB1的非锚点载波的部署模式,该确定的部署模式为独立部署模式;第一通信设备根据该独立部署模式确定非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同;第一通信设备根据调度信息及重复次数在用于传输所述SIB1的非锚点载波上传输SIB1,或者,第一通信设备在锚点载波上,以及根据重复次数在用于传输所述SIB1的非锚点载波上,根据调度信息传输SIB1给第二通信设备。
具体实现方式二,第一通信设备根据载波的部署模式确定用于传输SIB1的非锚点载波的部署模式,该确定的部署模式为独立部署模式;第一通信设备根据该独立部署模式确定用于传输所述SIB1的非锚点载波上SIB1的传输资源与锚点载波上SIB1的传输资源相同;第一通信设备根据调度信息及传输资源在非锚点载波上传输SIB1,或者,第一通信设备在锚点载波上,以及根据传输资源在非锚点载波上,根据调度信息传输SIB1给第二通信设备。
具体实现方式三,第一通信设备根据载波的部署模式确定用于传输SIB1的非锚点载波的部署模式,该确定的部署模式为保护带部署模式或带内部署模式;第一通信设备根据保护带部署模式或带内部署模式确定非锚点载波上SIB1的重复次数;第一通信设备根据非锚点载波上SIB1的重复次数,在非锚点载波上根据调度信息传输SIB1给第二通信设备。对于保护带部署模式或者带内部署模式,非锚点载波的功率谱密度一般低于或者等于锚点载波的功率谱密度低。为保证非锚点载波上SIB1传输的可靠性,该种方式确定的非锚点载波上SIB1的重复次数大于锚点载波上SIB1的重复次数。
具体实现方式四,第一通信设备根据载波的部署模式确定用于传输SIB1的非锚点载波的部署模式,该确定的部署模式为保护带部署模式或带内部署模式;第一通信设备根据保护带部署模式或带内部署模式确定非锚点载波上SIB1的重复次数;第一通信设备在锚点载波上,以及根据非锚点载波上SIB1的重复次数在非锚点载波上,根据调度信息传输SIB1给第二通信设备。对于保护带部署模式或者带内部署模式,非锚点载波的功率谱密度一般低于或者等于锚点载波的功率谱密度低。为保证非锚点载波上SIB1传输的可靠性,该种方式确定的非锚点载波上SIB1的重复次数大于锚点载波上SIB1的重复次数。
其中,所述第一通信设备在所述非锚点载波上传输所述SIB1,包括:所述第一通信设备确定用于传输所述SIB1的非锚点载波。
需要说明的是当用于SIB1的非锚点载波的频域位置约定时,所述第一通信设备确定用于传输所述SIB1的非锚点载波指的是所述第一通信设备确定约定的频域位置对应的非锚点载波为用于传输所述SIB1的非锚点载波。
SIB1只在非锚点载波传输或者SIB1在锚点载波和非锚点载波传输通过协议约定,SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以通过协议约定,SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以相同,也可以不同,用于SIB1传输的非锚点载波的频域位置可以通过协议约定,所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息 指示的传输块大小在所述非锚点载波向第二通信设备传输SIB1。非锚点载波上所述SIB1传输的重复次数和传输资源可以与非锚点载波的部署模式绑定,非锚点载波上所述SIB1传输的具体的重复次数和传输资源通过协议约定。
需要说明的是,在本实施例中,和现有技术类似,第一通信设备根据调度信息及状态信息确定SIB1的传输方式时可能还参考其它信息。比如在NB-IoT中,MIB消息中指示的部署模式信息中还可能包括CRS端口数等信息,SIB1在资源映射时需要考虑CRS所占用的资源位置,在资源映射时避开CRS占用的资源,而确定CRS占用的资源与CRS端口数有关。因此在第一通信设备根据调度信息及状态信息确定SIB1的传输方式时还可能参考MIB消息中指示的部署模式信息。
该实施例中,第二通信设备根据所述调度信息及所述载波的部署模式,从所述第一通信设备接收所述SIB1,可具体包括:
所述第二通信设备根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式包括独立部署模式、保护带部署模式和带内部署模式中的一种;
所述第二通信设备根据所述独立部署模式确定所述非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同;
所述第二通信设备根据所述调度信息及所述重复次数在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1,或者,所述第二通信设备在所述锚点载波上,以及根据所述重复次数在所述用于传输所述SIB1的非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
或者,所述第二通信设备根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
所述第二通信设备根据所述调度信息及所述传输资源在所述非锚点载波上,从所述第一通信设备接收所述SIB1;或者,所述第二通信设备在所述锚点载波上,以及根据所述传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
或者,所述第二通信设备根据所述保护带部署模式或带内部署模式确定所述非锚点载波上所述SIB1的重复次数;
所述第二通信设备根据所述非锚点载波上所述SIB1的重复次数,在所述非锚点载波上根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,
所述第二通信设备在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的重复次数在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
或者,所述第二通信设备根据所述保护带部署模式或带内部署模式,确定所述非锚点载波上所述SIB1的传输资源;
所述第二通信设备根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,
所述第二通信设备在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1。
其中,所述第二通信设备在所述非锚点载波上,从所述第一通信设备接收所述SIB1,包括:所述第二通信设备确定用于接收所述SIB1的非锚点载波。
可见,第一通信设备和第二通信设备所执行的步骤是对应的。
该实施例,可以通过协议约定SIB1在非锚点载波上传输,或者SIB1在锚点载波和非锚点载波上传输,可以保证不同小区的SIB1在一个周期内传输的时间位置和/或频域位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。另外本实施例通过将SIB1在非锚点载波上传输的重复次数或者传输资源与载波的部署模式绑定,可以节省MIB信令开销。
在上述第一信息包括用于SIB1传输的非锚点载波上SIB1的传输方式信息的基础上,可选地,第一信息进一步包括用于SIB1传输的非锚点载波的频域位置信息。
其中,用于SIB1传输的非锚点载波的频域位置信息所包含的参数同上,此处不再赘述。
此时,上述第一通信设备确定用于传输SIB1的非锚点载波,可包括:第一通信设备根据非锚点载波的频域位置信息以及锚点载波,确定用于SIB1传输的非锚点载波的频域位置;第一通信设备确定该频域位置所对应的非锚点载波。
第二通信设备确定用于接收所述SIB1的非锚点载波,可包括:所述第二通信设备根据所述非锚点载波的频域位置信息以及所述锚点载波,确定所述用于SIB1传输的非锚点载波的频域位置;所述第二通信设备确定所述频域位置所对应的非锚点载波。
SIB可以通过协议约定只在非锚点传输,或者SIB1在锚点载波和非锚点载波传输。SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以通过协议约定,SIB1在锚点载波传输的时域资源位置和SIB1在非锚点载波传输的时域资源位置可以相同,也可以不同。所述调度信息用于指示所述SIB1传输所使用的传输块大小和重复次数,第一通信设备根据调度信息指示的传输块大小在所述非锚点载波向第二通信设备传输SIB1。
需要说明的是,在本实施例中,和现有技术类似,第一通信设备根据调度信息及状态信息确定SIB1的传输方式时可能还参考其它信息。比如在NB-IoT中,MIB消息中指示的部署模式信息中还可能包括CRS端口数等信息,SIB1在资源映射时需要考虑CRS所占用的资源位置,在资源映射时避开CRS占用的资源,而确定CRS占用的资源与CRS端口数有关。因此在第一通信设备根据调度信息及状态信息确定SIB1的传输方式时还可能参考MIB消息中指示的部署模式信息。
该实施例,第一通信设备通过所述调度信息,非锚点定载波频域位置信息以及非锚点载波上SIB1的传输方式信息携带各种不同的用于SIB1传输的信息,可以保证不同小区使用非锚点载波传输SIB1传输,并且不同小区可以配置不同的非锚点载波,从而保证不同小区的SIB1在一个周期内传输的频域位置不同,通过这种干扰隔离机制可以避免不同小区的SIB1的相互干扰,从而可提高SIB1传输的可靠性。传输资源可以配置,使得基站可以根据非锚点载波和锚点载波的功率差异配置在SIB1字非锚点载波上传输时的重复次数或传输资源,从而保证SIB1在非锚点载波传输时的可靠性。
接下来,通过几种具体实施方式,示例说明上述实施例。
实施方式一
通过协议约定SIB1只在锚点载波传输。当SIB1在锚点载波传输的重复次数为16,上下行子帧配置有其它除子帧0以外的下行子帧可用,且该可用的下行子帧为非多媒体广播多 播单频网(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)子帧,或者,该可用的下行子帧对MBSFN子帧影响较小时(比如下行子帧较多的配置),锚点载波使用该下行子帧发送SIB1,并在MIB消息中指示用于SIB1传输的时域位置信息,即第一信息包括用于SIB1传输的时域位置信息。
表1 TDD LTE上下行子帧配置
Figure PCTCN2017111759-appb-000003
目前,TDD LTE支持上下行子帧配置0~6。表1中“D”表示下行子帧,用于下行传输;“U”表示上行子帧,用于上行传输;“S”表示特殊子帧。从表1中可以看出TDD LTE的7种上下行子帧配置中连续的上行子帧数量可为1个,2个和3个。
参考表1可知,可用于SIB1传输的子帧包括子帧0,子帧3,子帧4,子帧6,子帧7和子帧8。具体实现时,可以使用3比特指示上述6种可用于SIB1传输的子帧,也可以通过标准协议或者运营商约定,从上述6种子帧中确定4种子帧,其中至少包含子帧0,这样可以用2比特指示用于SIB1传输的子帧,也可以用1比特指示用于SIB1传输的子帧。例如,“0”表示SIB1在锚点载波子帧0上传输,“1”表示SIB1在锚点载波的子帧X上传输。其中,该子帧X为除子帧0以外的下行子帧,因此,子帧X可以为子帧3,子帧4,子帧6,子帧7和子帧8中的任一个子帧。子帧X可以通过标准协议约定或运营商约定。上述子帧中,子帧6为非MBSFN子帧,因此,子帧X可以为子帧6,以减少对MBSFN子帧配置的影响。
该实施方式中,具体可以使用2比特指示SIB1的传输,如表2所示,其中SIB1在两个无线帧中占用一个子帧。
此外,对于其它重复次数,比如4和8,为提高第一通信设备的配置灵活性,也可以通过MIB消息指示用于SIB1传输的时域位置信息。
通过上述方式,SIB1在锚点载波传输时可以配置成子帧0以外的其它子帧,从而可以避免不同小区间SIB1传输的相互干扰,从而提高SIB1传输的可靠性。
表2
Figure PCTCN2017111759-appb-000004
需说明的是,对于本申请所涉及的任一表格,例如表1,其中,域值与含义的对应关系不以表格中所示为限制。示例性地,域值“0”和域值“1”的含义可互换,等等。
实施方式二
第一信息约定SIB1在锚点载波和非锚点载波传输。当SIB1传输的重复次数为N时,N的取值例如包括4、8或16,SIB1可以一部分在锚点载波传输,另一部分在非锚点载波传输。其中,SIB1在锚点载波的重复次数为N/2,在子帧0上传输。第一信息包括用于SIB1传输的 非锚点载波的频域位置信息。用于SIB1传输的非锚点载波的频域位置信息用来指示用于SIB1传输的非锚点载波在锚点载波的高频位置或用于SIB1传输的非锚点载波在锚点载波的低频位置。考虑到锚点载波和非锚点载波的功率差异,第一信息还可以包括用于SIB1传输的非锚点载波上SIB1的传输方式信息。通过这种方式,SIB1传输在锚点载波子帧0上传输时的重复次数减少,SIB1可以在非锚点载波传输,从而可以避免不同小区间SIB1传输的相互干扰问题。其中,SIB1在非锚点载波上传输的子帧Y可以通过标准协议或运营商约定,其中子帧Y可以是子帧0,子帧1,子帧3,子帧4,子帧5,子帧6,子帧7,子帧8或子帧9。该实施方式中,具体可以使用2比特指示SIB1的传输,如表3所示,其中SIB1在两个无线帧中占用一个子帧。
表3
Figure PCTCN2017111759-appb-000005
实施方式三
用于SIB1传输的非锚点载波的频域位置信息通过标准协议或运营商约定,当SIB1传输的重复次数为N,N的取值例如包括4、8或16,第一信息包括用于SIB1传输的状态信息,用于SIB1传输的频域位置信息和用于SIB1传输的时域位置信息。第一信息可以通过单独指示的方式,也可以采用联合指示的方式。考虑到锚点载波和非锚点载波的功率差异,第一信息还可以包括用于SIB1传输的非锚点载波上SIB1的传输方式信息。当SIB1只在锚点载波上传输时,用于SIB1传输的时域位置信息指示SIB1在锚点载波传输的子帧位置,当SIB1在锚点载波和非锚点载波上传输时,SIB1在锚点载波的子帧0上传输。用于SIB1传输的非锚点载波上SIB1的传输方式信息包含非锚点载波上SIB1的重复次数。
通过上述方式,SIB1可以在锚点载波除子帧0以外的其它子帧上传输,SIB1可以在非锚点载波传输,从而可以避免不同小区间SIB1传输的相互干扰。
例如,SIB1在锚点载波的子帧X1上传输。其中,子帧X1为除子帧0以外的下行子帧, 具体可以为子帧3,子帧4,子帧6,子帧7和子帧8中的一个子帧。子帧X1可以通过标准协议约定或运营商约定。由于上述子帧中子帧6为非MBSFN子帧,因此子帧X1可以为子帧6,以减少对MBSFN子帧配置的影响。SIB1在非锚点载波传输的子帧Y1可以通过标准协议或运营商约定,其中,子帧Y1可以是子帧0,子帧1,子帧3,子帧4,子帧5,子帧6,子帧7,子帧8或子帧9。上述SIB1传输具体实现可以使用2比特指示,如表4所示,其中SIB1在两个无线帧中占用一个子帧。
表4
Figure PCTCN2017111759-appb-000006
实施方式四
用于SIB1传输的非锚点载波频域位置信息通过标准协议或运营商约定,SIB1传输的重复次数为N,N的取值例如包括4,8和16,第一信息包括用于SIB1传输的状态信息,用于SIB1传输的时域位置信息和用于SIB1传输的非锚点载波的频域位置信息,第一信息可以通过单独指示的方式,也可以采用联合指示的方式。考虑到锚点载波和非锚点载波的功率差异,第一信息还可以包括用于SIB1传输的非锚点载波上SIB1的传输方式信息。其中,用于SIB1传输的状态信息所包含的状态指示SIB1只在锚点载波上传输,或者,SIB1只在非锚点载波上传输。用于SIB1传输的时域位置信息指示SIB1在锚点载波传输的子帧位置。用于SIB1传输的非锚点载波上SIB1的传输方式信息包含非锚点载波上SIB1的重复次数与资源指示信息。
通过上述方式,SIB1可以在锚点载波除子帧0以外的其它子帧上传输,SIB1可以在非锚点载波传输,从而可以避免不同小区间SIB1传输的相互干扰。
例如,SIB1在锚点载波的子帧X2上传输。其中,子帧X2为除子帧0以外的下行子帧,具体可以为子帧3,子帧4,子帧6,子帧7和子帧8中的一个子帧。子帧X2可以通过标准协议约定或运营商约定。由于上述子帧中子帧6为非MBSFN子帧,因此优选地子帧X2可以为子帧6,以减少对MBSFN子帧配置的影响。SIB1在非锚点载波上传输的子帧Y2可以通过标准协议或运营商约定,其中,子帧Y2,子帧Y21,子帧Y22可以是子帧0,子帧1,子帧3,子帧4,子帧5,子帧6,子帧7,子帧8或子帧9。上述SIB1传输的具体实现可以使用2比特指示,如表5所示。需要说明的是在锚点载波单次传输SIB1的重复周期内,用于传输所述SIB1的非锚点载波上SIB1传输需要比锚点载波上传输SIB1更多的传输资源,可以包括在非锚点载波上SIB1在2个无线帧中使用2个子帧,2个子帧位于同一个无线帧或者在非锚点载波上SIB1在2个无线帧中使用2个子帧,2个子帧位于不同的无线帧。
表5
Figure PCTCN2017111759-appb-000007
实施方式五
SIB1传输的重复次数为N,N的取值例如包括4,8和16,第一信息包括用于SIB1传输的状态信息和用于SIB1传输的非锚点载波的频域位置信息,考虑到锚点载波和非锚点载波的功率差异,第一信息还包括用于SIB1传输的非锚点载波上SIB1的传输方式信息。其中,用于SIB1传输的状态信息所包含的状态指示SIB1只在锚点载波上传输,SIB1只在非锚点载波上传输,或者SIB1在锚点载波和非锚点载波传输。SIB1在锚点载波传输的位置可以通过标准协议或运营商约定,用于SIB1传输的非锚点载波上SIB1的传输方式信息包含非锚点载波上SIB1的重复次数与资源指示信息。
通过这种方式,SIB1可以在锚点载波除子帧0以外的其它子帧上传输,SIB1可以在非锚点载波传输,从而可以避免不同小区间SIB1传输的相互干扰,提高SIB1传输的可靠性。
例如,SIB1在非锚点载波上传输的子帧Y3可以通过标准协议或运营商约定,其中子帧Y3可以是子帧0,子帧1,子帧3,子帧4,子帧5,子帧6,子帧7,子帧8或子帧9。上述SIB1传输的具体实现可以使用2比特指示,如表6所示。
表6
Figure PCTCN2017111759-appb-000008
更进一步地,为了节省MIB消息的信令开销,载波的部署模式、用于SIB1传输的状态信息、用于SIB1传输的时域位置信息、用于SIB1传输的非锚点载波的频域位置信息和用于SIB1传输的非锚点载波上SIB1的传输方式信息中的至少一种可以通过与MIB消息中的其它指示信息绑定来隐式指示,或者通过标准协议或者运营商约定,不需要在MIB消息中显式指示。
例如,载波的部署模式,NB-IoT包括三种部署模式,带内部署模式和保护带部署模式时,锚点载波功率相比非锚点载波功率高,因此当SIB1在非锚点载波上传输时,SIB1在非锚点载波传输时采用比SIB1在锚点载波传输更多的重复次数,或者非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同,但在锚点载波单次传输SIB1的重复周期内,非锚点载波上SIB1传输需要比锚点载波上传输SIB1更多的传输资源,传输资源例如为子帧。
因此,对于上述实施方式二,通过结合载波的部署模式,SIB1传输的具体实现可以使用1比特指示,如表7所示。
表7
Figure PCTCN2017111759-appb-000009
对于实施方式三,通过结合载波的部署模式,用于SIB1传输非锚点载波与锚点载波的频域偏置可以通过标准协议或运营商约定,SIB1传输的具体实现可以使用2比特指示,如表8所示。
表8
Figure PCTCN2017111759-appb-000010
Figure PCTCN2017111759-appb-000011
对于实施方式四,通过结合载波的部署模式,用于SIB1传输非锚点载波与锚点载波的频域偏置可以通过标准协议或运营商约定,SIB1传输的具体实现可以使用2比特指示,如表9所示。
表9
Figure PCTCN2017111759-appb-000012
Figure PCTCN2017111759-appb-000013
实施方式六
根据MIB消息中SIB1的调度信息可以获取SIB1的重复次数N,当该重复次数N小于N0时,其中,N0可根据时机需求进行设置,SIB1只在锚点载波的子帧0上传输,重复次数为N;当该重复次数N大于或等于N0时,SIB1在锚点载波和非锚点载波上传输,用于SIB1传输的非锚点载波上SIB1的传输方式信息与载波的部署模式绑定。示例性地,N的取值包括4,8和16,N0可以为16。
当载波的部署模式为独立部署模式时,SIB1在锚点载波的子帧0上传输,重复次数为N/2,SIB1在非锚点载波的子帧Y4上传输,重复次数为N/2。
当载波的部署模式为带内部署模式或保护带部署模式时,SIB1在锚点载波的子帧0上传输,重复次数为N/2,SIB1在非锚点载波的子帧Y4上传输,重复次数为N。SIB1在非锚点载波上传输的子帧Y4可以通过标准协议或运营商约定,其中子帧Y4可以是子帧0,子帧1,子帧3,子帧4,子帧5,子帧6,子帧7,子帧8或子帧9。
实施方式七
根据MIB消息中SIB1的调度信息可以获取SIB1的重复次数N,当重复次数N小于N1时,其中,N1可根据时机需求进行设置,SIB1只在锚点载波的子帧0上传输,重复次数为N;当重复次数N大于或等于N1时,SIB1只在非锚点载波上传输,用于SIB1传输的非锚点载波上SIB1的传输方式信息与载波的部署模式绑定。示例性地,N的取值包括4,8和16,N1可以为16。
例如,当载波的部署模式为独立部署模式时,SIB1在非锚点载波的子帧Y5上传输,重复次数为N。
当部署模式为带内部署模式或保护带部署模式时,SIB1在非锚点载波的子帧Y5上传输,重复次数为2N,或者SIB1在非锚点载波的同一个无线帧中的子帧Y51和子帧Y52上传输,重复次数为NSIB1在非锚点载波上传输的子帧Y5可以通过标准协议或运营商约定,其中子帧Y5,子帧Y51,子帧Y52可以是子帧0,子帧1,子帧3,子帧4,子帧5,子帧6,子 帧7,子帧8或子帧9。
本申请上述各实施例,通过MIB消息指示,SIB1可以在锚点载波除子帧0以外的其它子帧上传输,SIB1可以在非锚点载波传输,从而可以避免不同小区间SIB1传输的相互干扰,提高SIB1传输的可靠性。另外,通过约定或者通过MIB消息中其它信息隐含指示,可以减少MIB消息的信令开销。
如果SIB1在锚点载波和非锚点载波传输,SIB1在锚点载波传输的部分和SIB1在非锚点载波传输的部分按照子帧级,无线帧级,锚点载波单次传输SIB1的重复周期级交叉传输,如图7所示。采用这种方式传输SIB1,在时间上更加紧凑,有利于减少时延,降低功耗。
或者,SIB1在锚点载波传输的部分和SIB1在非锚点载波传输的部分在时间上至少相差一个周期的长度,具体如图8所示。采用该方式使得SIB1在锚点载波和非锚点载波串行传输,复杂度低。
下述为本申请装置实施例,可以用于执行上述方法实施例。对于装置实施例中未披露的细节,请参照方法实施例。
图9为本申请一实施例提供的系统消息传输装置的结构示意图。如图9所示,系统消息传输装置90包括:处理模块91和发送模块92。其中,系统消息传输装置90可具体为上述实施例中的第一通信设备。
其中,处理模块91,用于配置主系统信息块MIB消息。该MIB消息包括SIB1的调度信息;或者,所述MIB消息包括载波的部署模式和第一信息中的至少一个以及所述调度信息。所述第一信息包括以下信息中的至少一种:用于所述SIB1传输的状态信息;用于所述SIB1传输的时域位置信息;用于所述SIB1传输的非锚点载波的频域位置信息;用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息。
发送模块92,用于发送所述MIB消息给第二通信设备。
处理模块91,还用于通过发送模块92,并根据所述调度信息,或者根据所述载波的部署模式和所述第一信息中的至少一个以及所述调度信息,传输所述SIB1给所述第二通信设备。
本实施例的装置可用于执行上述各实施例提供的系统消息传输方法中第一通信设备所执行的步骤,具体实现原理和技术效果类似,此处不再赘述。
可选地,所述第一信息包括所述用于所述SIB1传输的状态信息。其中,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1只在非锚点载波传输。或者,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1在锚点载波和非锚点载波传输。
处理模块91可具体用于:通过发送模块92,并根据所述调度信息及所述状态信息确定在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备。当所述处理模块91确定在非锚点载波传输所述SIB1时,处理模块91还用于确定用于传输所述SIB1的非锚点载波。
可选地,所述第一信息进一步包括所述用于所述SIB1传输的时域位置信息。所述用于所述SIB1传输的时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置。
此时,处理模块91在用于第一通信设备根据所述调度信息及所述状态信息确定在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备时,具体为:根据所述调度信息、 所述状态信息以及所述时域位置信息,确定在锚点载波和/或用于传输所述SIB1的非锚点载波中所述时域位置信息所指示的时域位置,通过发送模块92传输所述SIB1给所述第二通信设备。
可选地,所述第一信息包括所述用于所述SIB1传输的时域位置信息。所述时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置。
处理模块91可具体用于:确定用于传输所述SIB1的载波,所述载波包括锚点载波和/或用于传输所述SIB1的非锚点载波;通过发送模块92,并根据所述调度信息,在所述锚点载波和/或在所述用于传输所述SIB1的非锚点载波上所述时域位置信息所指示的时域位置,传输所述SIB1给所述第二通信设备。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波的频域位置信息。所述用于所述SIB1传输的非锚点载波的频域位置信息包含以下参数中的至少一种:用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及,用于所述SIB1传输的非锚点载波与锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量。
该处理模块91可具体用于:
确定用于传输所述SIB1的非锚点载波;
根据所述频域位置信息以及所述锚点载波,确定所述用于所述SIB1传输的非锚点载波的频域位置;
通过发送模块92,并根据所述调度信息,在所述频域位置所对应的所述用于传输所述SIB1的非锚点载波上传输所述SIB1;或者,通过所述发送模块,并根据所述调度信息,在所述锚点载波上以及所述频域位置所对应的所述用于所述SIB1传输的非锚点载波上,传输所述SIB1给所述第二通信设备。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息。该传输方式信息包含用于传输所述SIB1的非锚点载波上所述SIB1的重复次数。
该处理模块91具体用于:
确定用于传输所述SIB1的非锚点载波;
通过发送模块92,并根据所述重复次数以及所述调度信息,在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备;或者,通过发送模块92,并根据所述调度信息在所述锚点载波上,以及根据所述调度信息和所述重复次数在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息。所述传输方式信息包含资源指示信息。所述资源指示信息用于指示:当用于传输所述SIB1的非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,所述用于传输所述SIB1的非锚点载波上所述SIB1传输是否需要比所述锚点载波上传输所述SIB1更多的传输资源。其中,所述传输资源为子帧、无线帧、超帧、符号或时隙中的一种。
该处理模块91可具体用于:
确定所述用于传输所述SIB1的非锚点载波;
根据所述资源指示信息,确定在所述用于传输所述SIB1的非锚点载波上用于传输所述SIB1的传输资源;
通过发送模块92,并根据所述调度信息,使用所述用于传输所述SIB1的非锚点载波上传输所述SIB1的传输资源,传输所述SIB1给所述第二通信设备;或者,通过发送模块92,并根据所述调度信息,在所述锚点载波上,以及使用所述用于传输所述SIB1的非锚点载波上用于传输所述SIB1的传输资源上,传输所述SIB1给所述第二通信设备。
可选地,重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输;重复次数集合中的另一部分重复次数值对应第二状态,所述第二状态为所述SIB1只在非锚点载波传输,或所述SIB1在锚点载波和非锚点载波传输。所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数。
处理模块91可具体用于:
确定所述重复次数对应第一状态或第二状态;
通过发送模块92,并根据所述第一状态或所述第二状态在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备;
当处理模块91确定在非锚点载波传输所述SIB1时,处理模块91还用于确定用于传输所述SIB1的非锚点载波。
可选地,重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输;重复次数集合中的另一部分重复次数值对应的第二状态根据用于所述SIB1传输的状态信息确定,所述第二状态为所述SIB1只在非锚点载波传输,或者所述SIB1只在锚点载波传输。所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数。所述调度信息中的重复次数对应所述第一状态时,所述MIB消息包括SIB1的调度信息和载波的部署模式。所述调度信息中的重复次数对应所述第二状态时,所述MIB消息包括SIB1的调度信息,载波的部署模式,以及包括用于所述SIB1传输的状态信息的所述第一信息。
处理模块91具体用于:
所述调度信息中的重复次数属于所述一部分重复次数值时,通过发送模块92,并根据所述一部分重复次数值对应的所述第一状态及所述调度信息,在所述锚点载波上传输所述SIB1给所述第二通信设备;
所述调度信息中的重复次数属于所述另一部分重复次数值时,通过发送模块92,并根据所述调度信息,在所述锚点载波上传输所述SIB1给所述第二通信设备,或者,通过发送模块92,并根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在非锚点载波上传输所述SIB1给所述第二通信设备。
处理模块91在所述非锚点载波上传输所述SIB1时,处理模块91还用于:确定用于传输所述SIB1的非锚点载波。
进一步地,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息。或者,所述载波的部署模式包括锚点载波的部署模式以及用于传输所述SIB1的非锚点载波的部署模式信息。
处理模块91在用于通过发送模块92,并根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备时,具体为:
根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定 的部署模式为独立部署模式、保护带部署模式和带内部署模式中的一种;
根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;通过发送模块92,并根据所述调度信息以及根据所述非锚点载波上SIB1的传输资源,在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备;
或者,根据所述保护带部署模式或带内部署模式,确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源;
通过发送模块92,并根据所述调度信息以及根据所述用于传输所述SIB1的非锚点载波上SIB1的传输资源在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备。
可选地,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息。或者,所述载波的部署模式包括锚点载波的部署模式以及所述用于传输所述SIB1的非锚点载波的部署模式信息。
处理模块91具体用于:
根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式包括独立部署模式、保护带部署模式和带内部署模式中的一种;
根据所述独立部署模式确定所述非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同;
通过发送模块92,并根据所述调度信息及所述重复次数在所述用于传输所述SIB1的非锚点载波上传输所述SIB1,或者,通过发送模块92,并根据所述调度信息,在所述锚点载波上,以及根据所述重复次数及所述调度信息,在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备;
或者,根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
通过发送模块92,并根据所述调度信息及所述传输资源在所述非锚点载波上传输所述SIB1;或者,通过发送模块92,并根据所述调度信息在所述锚点载波上,以及根据所述调度信息和所述传输资源在所述非锚点载波上,传输所述SIB1给所述第二通信设备;
或者,根据所述保护带部署模式或带内部署模式确定所述非锚点载波上所述SIB1的重复次数;
通过发送模块92,并根据所述非锚点载波上所述SIB1的重复次数及所述调度信息,在所述非锚点载波上传输所述SIB1给所述第二通信设备;或者,
通过发送模块92,并根据所述调度信息,在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的重复次数及所述调度信息在所述非锚点载波上,传输所述SIB1给所述第二通信设备;
或者,根据所述保护带部署模式或带内部署模式,确定所述非锚点载波上所述SIB1的传输资源;
通过发送模块92,并根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,传输所述SIB1给所述第二通信设备;或者,
通过发送模块92,并根据所述调度信息,在所述锚点载波上,以及根据所述调度信息 及所述非锚点载波上所述SIB1的传输资源在所述非锚点载波上,传输所述SIB1给所述第二通信设备。
其中,处理模块91用于在所述非锚点载波上传输所述SIB1时,该处理模块91还用于:确定用于传输所述SIB1的非锚点载波。
更进一步地,所述第一信息进一步包括所述用于所述SIB1传输的非锚点载波的频域位置信息。所述频域位置信息包含以下参数中的至少一种:用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及,用于所述SIB1传输的非锚点载波与所述锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量。
处理模块91在用于确定用于传输所述SIB1的非锚点载波时,具体为:
根据所述非锚点载波的频域位置信息以及所述锚点载波,确定所述用于SIB1传输的非锚点载波的频域位置;
确定所述频域位置所对应的非锚点载波。
图10为本申请另一实施例提供的系统消息传输装置的结构示意图。如图10所示,系统消息传输装置10包括:接收模块11和处理模块12。其中,系统消息传输装置10可具体为上述实施例中的第二通信设备。
具体地,接收模块11,用于从第一通信设备接收主系统信息块MIB消息.
所述MIB消息包括SIB1的调度信息。或者,或者所述MIB消息包括载波的部署模式和第一信息中的至少一个以及所述调度信息。所述第一信息包括以下信息中的至少一种:用于所述SIB1传输的状态信息;用于所述SIB1传输的时域位置信息;用于所述SIB1传输的非锚点载波的频域位置信息;用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息。
处理模块12,用于根据所述调度信息,或者根据所述载波的部署模式和所述第一信息中的至少一个以及所述调度信息,通过接收模块11从所述第一通信设备接收所述SIB1。
本实施例的装置可用于执行上述各实施例提供的系统消息传输方法中第二通信设备所执行的步骤,具体实现原理和技术效果类似,此处不再赘述。
可选地,所述第一信息包括所述用于所述SIB1传输的状态信息。其中,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1只在非锚点载波传输。或者,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1在锚点载波和非锚点载波传输。
处理模块12可具体用于:
根据所述调度信息及所述状态信息,确定在锚点载波和/或非锚点载波,通过接收模块11从所述第一通信设备接收所述SIB1。
当处理模块12确定在非锚点载波从所述第一通信设备接收所述SIB1时,该处理模块12还用于确定用于接收所述SIB1的非锚点载波。
可选地,所述第一信息进一步包括所述用于所述SIB1传输的时域位置信息。所述用于所述SIB1传输的时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置。
处理模块12在用于根据所述调度信息及所述状态信息,确定在锚点载波和/或非锚点载波从所述第一通信设备接收所述SIB1时,具体为:
根据所述调度信息、所述状态信息以及所述时域位置信息,确定在锚点载波和/或用于 传输所述SIB1的非锚点载波中所述时域位置信息所指示的时域位置,通过接收模块11从所述第一通信设备接收所述SIB1。
可选地,所述第一信息包括所述用于所述SIB1传输的时域位置信息。所述时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置。
处理模块12具体用于:
确定用于接收所述SIB1的载波,所述载波包括锚点载波和/或用于传输所述SIB1的非锚点载波;
通过接收模块11,并根据所述调度信息,在所述锚点载波和/或在所述用于传输所述SIB1的非锚点载波上所述时域位置信息所指示的时域位置,从所述第一通信设备接收所述SIB1。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波的频域位置信息。所述用于所述SIB1传输的非锚点定载波的频域位置信息包含以下参数中的至少一种:用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及,用于所述SIB1传输的非锚点载波与锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量。
处理模块12具体用于:
确定用于接收所述SIB1的非锚点载波;
根据所述频域位置信息以及所述锚点载波,确定所述用于所述SIB1传输的非锚点载波的频域位置;
通过接收模块11,并根据所述调度信息,在所述频域位置所对应的所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1;或者,通过接收模块11,并根据所述调度信息,在所述锚点载波上以及所述频域位置所对应的所述用于所述SIB1传输的非锚点载波上,从所述第一通信设备接收所述SIB1。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息。所述传输方式信息包含用于传输所述SIB1的非锚点载波上所述SIB1的重复次数。
处理模块12具体用于:
确定用于传输所述SIB1的非锚点载波;
通过接收模块11,并根据所述重复次数以及所述调度信息,在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1;或者,通过接收模块11,并根据所述调度信息在所述锚点载波上,以及根据所述调度信息和所述重复次数在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1。
可选地,所述第一信息包括所述用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息。所述传输方式信息包含资源指示信息。所述资源指示信息用于指示:当用于传输所述SIB1的非锚点载波上所述SIB1的重复次数与锚点载波上SIB1的重复次数相同时,在所述锚点载波单次传输所述SIB1的重复周期内,所述用于传输所述SIB1的非锚点载波上所述SIB1传输是否需要比所述锚点载波上传输所述SIB1更多的传输资源。其中,所述传输资源为子帧、无线帧、超帧、符号或时隙中的一种。
处理模块12具体用于:
确定所述用于传输所述SIB1的非锚点载波;
根据所述资源指示信息,确定在所述用于传输所述SIB1的非锚点载波上用于传输所述 SIB1的传输资源;
通过接收模块11,并根据所述调度信息,使用所述用于传输所述SIB1的非锚点载波上传输所述SIB1的传输资源,从所述第一通信设备接收所述SIB1;或者,通过接收模块11,并根据所述调度信息,在所述锚点载波上,以及根据所述调度信息使用所述用于传输所述SIB1的非锚点载波上用于传输所述SIB1的传输资源上,从所述第一通信设备接收所述SIB1。
可选地,重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输;重复次数集合中的另一部分重复次数值对应第二状态,所述第二状态为所述SIB1只在非锚点载波传输,或所述SIB1在锚点载波和非锚点载波传输。所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数。
处理模块12具体用于:
确定所述重复次数对应第一状态或第二状态;
通过接收模块11,并根据所述第一状态或所述第二状态在锚点载波和/或非锚点载波从所述第一通信设备接收所述SIB1。
当处理模块12确定在非锚点载波,从所述第一通信设备接收所述SIB1时,该处理模块12还用于确定用于接收所述SIB1的非锚点载波。
可选地,重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输;重复次数集合中的另一部分重复次数值对应的第二状态根据用于所述SIB1传输的状态信息确定,所述第二状态为所述SIB1只在非锚点载波传输,或者所述SIB1只在锚点载波传输。所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数。所述调度信息中的重复次数对应所述第一状态时,所述MIB消息包括SIB1的调度信息和载波的部署模式。所述调度信息中的重复次数对应所述第二状态时,所述MIB消息包括SIB1的调度信息,载波的部署模式,以及包括用于所述SIB1传输的状态信息的所述第一信息。
处理模块12具体用于:
所述调度信息中的重复次数属于所述一部分重复次数值时,通过接收模块11,并根据所述一部分重复次数值对应的所述第一状态及所述调度信息,在所述锚点载波上,从所述第一通信设备接收所述SIB1;
所述调度信息中的重复次数属于所述另一部分重复次数值时,通过接收模块11,并根据所述调度信息,在所述锚点载波上从所述第一通信设备接收所述SIB1,或者通过接收模块11,并根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在非锚点载波上从所述第一通信设备接收所述SIB1。
处理模块12在所述非锚点载波上,从所述第一通信设备接收所述SIB1时,该处理模块12还用于:确定用于接收所述SIB1的非锚点载波。
进一步地,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息。或者,所述载波的部署模式包括锚点载波的部署模式以及用于传输所述SIB1的非锚点载波的部署模式信息。
处理模块12在用于通过接收模块11,并根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在所述用于传输所述SIB1的非锚点载波上从 所述第一通信设备接收所述SIB1时,具体为:
根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式为独立部署模式、保护带部署模式和带内部署模式中的一种;
根据所述独立部署模式确定所述非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
通过接收模块11,并根据所述调度信息以及所述非锚点载波上SIB1的传输资源在所述用于传输所述SIB1的非锚点载波上从所述第一通信设备接收所述SIB1;
或者,根据所述保护带部署模式或带内部署模式,确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源;
通过接收模块11,并根据所述调度信息以及根据所述用于传输所述SIB1的非锚点载波上SIB1的传输资源,在所述用于传输所述SIB1的非锚点载波上从所述第一通信设备接收所述SIB1。
可选地,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息。或者,所述载波的部署模式包括锚点载波的部署模式以及所述用于传输所述SIB1的非锚点载波的部署模式信息。
处理模块12具体用于:
根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式包括独立部署模式、保护带部署模式和带内部署模式中的一种;
根据所述独立部署模式确定所述非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同;
通过接收模块11,并根据所述调度信息及所述重复次数,在所述用于传输所述SIB1的非锚点载波上从所述第一通信设备接收所述SIB1,或者,通过接收模块11,并根据所述调度信息,在所述锚点载波上,以及根据所述重复次数和所述调度信息,在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1;
或者,根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
通过接收模块11,并根据所述调度信息及所述传输资源在所述非锚点载波上,从所述第一通信设备接收所述SIB1;或者,通过接收模块11,并根据所述调度信息在所述锚点载波上,以及根据所述传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
或者,根据所述保护带部署模式或带内部署模式确定所述非锚点载波上所述SIB1的重复次数;
通过接收模块11,并根据所述调度信息及所述非锚点载波上所述SIB1的重复次数,在所述非锚点载波上从所述第一通信设备接收所述SIB1;或者,
通过接收模块11,并根据所述调度信息在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的重复次数及所述调度信息在所述非锚点载波上,从所述第一通信设备接收所述SIB1;
或者,根据所述保护带部署模式或带内部署模式,确定所述非锚点载波上所述SIB1的传输资源;
通过接收模块11,并根据所述调度信息及所述非锚点载波上SIB1的传输资源在所述非锚点载波上,从所述第一通信设备接收所述SIB1;或者,
通过接收模块11,并根据所述调度信息,在所述锚点载波上,以及根据所述调度信息及所述非锚点载波上所述SIB1的传输资源在所述非锚点载波上,从所述第一通信设备接收所述SIB1。
其中,处理模块12在所述非锚点载波上,从所述第一通信设备接收所述SIB1时,该处理模块12还用于:确定用于接收所述SIB1的非锚点载波。
更进一步地,所述第一信息进一步包括所述用于所述SIB1传输的非锚点载波的频域位置信息。所述频域位置信息包含以下参数中的至少一种:用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及,用于所述SIB1传输的非锚点载波与所述锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量。
处理模块12在用于确定用于接收所述SIB1的非锚点载波时,具体为:根据所述非锚点载波的频域位置信息以及所述锚点载波,确定所述用于SIB1传输的非锚点载波的频域位置;确定所述频域位置所对应的非锚点载波。
图11为本申请一实施例提供的通信设备的结构示意图。如图11所示,通信设备20包括存储器21和处理器22。这里的通信设备可以理解为上述第一通信设备。
其中,存储器21中存储有可供处理器22执行的计算机程序。
处理器22执行所述计算机程序实现如上述方法实施例中第一通信设备执行的步骤。
图12为本申请另一实施例提供的通信设备的结构示意图。如图12所示,通信设备30包括存储器31和处理器32。这里的通信设备可以理解为上述第二通信设备。
其中,存储器31中存储有可供处理器32执行的计算机程序。
处理器32执行所述计算机程序实现如上述方法实施例中第二通信设备执行的步骤。
本申请还提供一种通信设备,包括用于执行以上第一通信设备侧方法的至少一个处理元件(或芯片)。
本申请还提供一种通信设备,包括用于执行以上第二通信设备侧方法的至少一个处理元件(或芯片)。
本申请还提供一种计算机程序,该程序在被终端设备的处理器执行时用于执行如上述方法实施例中第一通信设备执行的步骤。
本申请还提供一种计算机程序,该程序在被网络设备的处理器执行时用于执行如上述方法实施例中第二通信设备执行的步骤。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。第一通信设备或第二通信设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得第一通信设备或第二通信设备实施前述各种实施方式提供的方法。
本申请还提供一种计算机可读存储介质,当计算机可读存储介质中的指令由通信设备的处理器执行时,使得通信设备能够执行前述任一方法实施例中第一通信设备执行的步骤。
本申请还提供一种计算机可读存储介质,当计算机可读存储介质中的指令由通信设备 的处理器执行时,使得通信设备能够执行前述任一方法实施例中第二通信设备执行的步骤。
本申请还提供一种通信系统,包括:如图11所示的通信设备20和如12所示的通信设备30。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求书的保护范围为准。

Claims (45)

  1. 一种系统消息传输方法,其特征在于,包括:
    第一通信设备配置主系统信息块MIB消息,
    其中,所述MIB消息包括SIB1的调度信息;或者,所述MIB消息包括载波的部署模式和第一信息中的至少一个以及所述调度信息;
    所述第一信息包括以下信息中的至少一种:用于所述SIB1传输的状态信息;用于所述SIB1传输的时域位置信息;用于所述SIB1传输的非锚点载波的频域位置信息;用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息;
    所述第一通信设备发送所述MIB消息给第二通信设备;
    所述第一通信设备根据所述调度信息,或者根据所述载波的部署模式和所述第一信息中的至少一个以及所述调度信息,传输所述SIB1给所述第二通信设备。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一信息包括所述用于所述SIB1传输的状态信息,
    其中,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1只在非锚点载波传输,
    或者,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1在锚点载波和非锚点载波传输;
    所述第一通信设备根据所述调度信息及所述第一信息传输所述SIB1给所述第二通信设备,包括:
    所述第一通信设备根据所述调度信息及所述状态信息确定在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备;
    当所述第一通信设备确定在非锚点载波传输所述SIB1时,所述第一通信设备确定用于传输所述SIB1的非锚点载波。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一信息进一步包括所述用于所述SIB1传输的时域位置信息,所述用于所述SIB1传输的时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
    所述第一通信设备根据所述调度信息及所述状态信息确定在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备,包括:
    所述第一通信设备根据所述调度信息、所述状态信息以及所述时域位置信息,确定在锚点载波和/或用于传输所述SIB1的非锚点载波中所述时域位置信息所指示的时域位置传输所述SIB1给所述第二通信设备。
  4. 根据权利要求1所述的方法,其特征在于,所述第一信息包括所述用于所述SIB1传输的时域位置信息,所述时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
    所述第一通信设备根据所述调度信息及所述第一信息传输所述SIB1给所述第二通信设备,包括:
    所述第一通信设备确定用于传输所述SIB1的载波,所述载波包括锚点载波和/或用于传 输所述SIB1的非锚点载波;
    所述第一通信设备在所述锚点载波和/或在所述用于传输所述SIB1的非锚点载波上所述时域位置信息所指示的时域位置,根据所述调度信息传输所述SIB1给所述第二通信设备。
  5. 根据权利要求1所述的方法,其特征在于,所述第一信息包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述用于所述SIB1传输的非锚点载波的频域位置信息包含以下参数中的至少一种:
    用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
    用于所述SIB1传输的非锚点载波与锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
    所述第一通信设备根据所述调度信息及所述第一信息传输所述SIB1给所述第二通信设备,包括:
    所述第一通信设备确定用于传输所述SIB1的非锚点载波;
    所述第一通信设备根据所述频域位置信息以及所述锚点载波,确定所述用于所述SIB1传输的非锚点载波的频域位置;
    所述第一通信设备在所述频域位置所对应的所述用于传输所述SIB1的非锚点载波上根据所述调度信息传输所述SIB1;或者,所述第一通信设备在所述锚点载波上以及所述频域位置所对应的所述用于所述SIB1传输的非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备。
  6. 根据权利要求1所述的方法,其特征在于,
    重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,
    重复次数集合中的另一部分重复次数值对应第二状态,所述第二状态为所述SIB1只在非锚点载波传输,或所述SIB1在锚点载波和非锚点载波传输,
    所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
    所述第一通信设备根据所述调度信息传输所述SIB1给所述第二通信设备,包括:
    所述第一通信设备确定所述重复次数对应第一状态或第二状态;
    所述第一通信设备根据所述第一状态或所述第二状态在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备;
    当所述第一通信设备确定在非锚点载波传输所述SIB1时,所述第一通信设备确定用于传输所述SIB1的非锚点载波。
  7. 根据权利要求1所述的方法,其特征在于,
    重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,
    重复次数集合中的另一部分重复次数值对应的第二状态根据用于所述SIB1传输的状态信息确定,所述第二状态为所述SIB1只在非锚点载波传输,或者所述SIB1只在锚点载波传输;
    所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
    所述调度信息中的重复次数对应所述第一状态时,所述MIB消息包括SIB1的调度信息 和载波的部署模式;
    所述调度信息中的重复次数对应所述第二状态时,所述MIB消息包括SIB1的调度信息,载波的部署模式,以及包括用于所述SIB1传输的状态信息的所述第一信息;
    所述第一通信设备根据所述调度信息、所述载波的部署模式以及所述第一信息中的至少一个传输所述SIB1给所述第二通信设备,包括:
    所述调度信息中的重复次数属于所述一部分重复次数值时,根据所述一部分重复次数值对应的所述第一状态及所述调度信息,在所述锚点载波上传输所述SIB1给所述第二通信设备;
    所述调度信息中的重复次数属于所述另一部分重复次数值时,根据所述调度信息在所述锚点载波上传输所述SIB1给所述第二通信设备,或者根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在非锚点载波上传输所述SIB1给所述第二通信设备;
    所述第一通信设备在所述非锚点载波上传输所述SIB1,包括:所述第一通信设备确定用于传输所述SIB1的非锚点载波。
  8. 根据权利要求7所述的方法,其特征在于,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及用于传输所述SIB1的非锚点载波的部署模式信息;
    所述根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备,包括:
    所述第一通信设备根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式为独立部署模式、保护带部署模式和带内部署模式中的一种;
    所述第一通信设备根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;所述第一通信设备根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;
    或者,所述第一通信设备根据所述保护带部署模式或带内部署模式,确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源;
    所述第一通信设备根据所述用于传输所述SIB1的非锚点载波上SIB1的传输资源在所述用于传输所述SIB1的非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备。
  9. 根据权利要求1所述的方法,其特征在于,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及所述用于传输所述SIB1的非锚点载波的部署模式信息,
    所述第一通信设备根据所述调度信息及所述载波的部署模式传输所述SIB1给所述第二通信设备,包括:
    所述第一通信设备根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式包括独立部署模式、保护带部署模式和带内部署模式中的 一种;
    所述第一通信设备根据所述独立部署模式确定所述非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同;
    所述第一通信设备根据所述调度信息及所述重复次数在所述用于传输所述SIB1的非锚点载波上传输所述SIB1,或者,所述第一通信设备在所述锚点载波上,以及根据所述重复次数在所述用于传输所述SIB1的非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;
    或者,所述第一通信设备根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
    所述第一通信设备根据所述调度信息及所述传输资源在所述非锚点载波上传输所述SIB1;或者,所述第一通信设备在所述锚点载波上,以及根据所述传输资源在所述非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;
    或者,所述第一通信设备根据所述保护带部署模式或带内部署模式确定所述非锚点载波上所述SIB1的重复次数;
    所述第一通信设备根据所述非锚点载波上所述SIB1的重复次数,在所述非锚点载波上根据所述调度信息传输所述SIB1给所述第二通信设备;或者,
    所述第一通信设备在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的重复次数在所述非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;
    或者,所述第一通信设备根据所述保护带部署模式或带内部署模式,确定所述非锚点载波上所述SIB1的传输资源;
    所述第一通信设备根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;或者,
    所述第一通信设备在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的传输资源在所述非锚点载波上,根据所述调度信息传输所述SIB1给所述第二通信设备;
    其中,所述第一通信设备在所述非锚点载波上传输所述SIB1,包括:所述第一通信设备确定用于传输所述SIB1的非锚点载波。
  10. 根据权利要求2至4、6至9任一项所述的方法,其特征在于,所述第一信息进一步包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述频域位置信息包含以下参数中的至少一种:
    用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
    用于所述SIB1传输的非锚点载波与所述锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
    所述第一通信设备确定用于传输所述SIB1的非锚点载波,包括:
    所述第一通信设备根据所述频域位置信息以及所述锚点载波,确定所述用于SIB1传输的非锚点载波的频域位置;
    所述第一通信设备确定所述频域位置所对应的非锚点载波。
  11. 一种系统消息传输方法,其特征在于,包括:
    第二通信设备从第一通信设备接收主系统信息块MIB消息,所述MIB消息包括SIB1的调度信息,或者所述MIB消息包括载波的部署模式和第一信息中的至少一个以及所述调度 信息,所述第一信息包括以下信息中的至少一种:用于所述SIB1传输的状态信息;用于所述SIB1传输的时域位置信息;用于所述SIB1传输的非锚点载波的频域位置信息;用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息;
    所述第二通信设备根据所述调度信息,或者根据所述载波的部署模式和所述第一信息中的至少一个以及所述调度信息,从所述第一通信设备接收所述SIB1。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第一信息包括所述用于所述SIB1传输的状态信息,
    其中,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1只在非锚点载波传输,
    或者,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1在锚点载波和非锚点载波传输;
    所述第二通信设备根据所述调度信息及所述第一信息,从所述第一通信设备接收所述SIB1,包括:
    所述第二通信设备根据所述调度信息及所述状态信息,确定在锚点载波和/或非锚点载波从所述第一通信设备接收所述SIB1;
    当所述第二通信设备确定在非锚点载波从所述第一通信设备接收所述SIB1时,所述第二通信设备确定用于接收所述SIB1的非锚点载波。
  13. 根据权利要求12所述的方法,其特征在于,
    所述第一信息进一步包括所述用于所述SIB1传输的时域位置信息,所述用于所述SIB1传输的时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
    所述第二通信设备根据所述调度信息及所述状态信息,确定在锚点载波和/或非锚点载波从所述第一通信设备接收所述SIB1,包括:
    所述第二通信设备根据所述调度信息、所述状态信息以及所述时域位置信息,确定在锚点载波和/或用于传输所述SIB1的非锚点载波中所述时域位置信息所指示的时域位置,从所述第一通信设备接收所述SIB1。
  14. 根据权利要求11所述的方法,其特征在于,所述第一信息包括所述用于所述SIB1传输的时域位置信息,所述时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
    所述第二通信设备根据所述调度信息及所述第一信息,从所述第一通信设备接收所述SIB1,包括:
    所述第二通信设备确定用于接收所述SIB1的载波,所述载波包括锚点载波和/或用于传输所述SIB1的非锚点载波;
    所述第二通信设备在所述锚点载波和/或在所述用于传输所述SIB1的非锚点载波上所述时域位置信息所指示的时域位置,根据所述调度信息从所述第一通信设备接收所述SIB1。
  15. 根据权利要求11所述的方法,其特征在于,所述第一信息包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述用于所述SIB1传输的非锚点载波的频域位置信息包含以下参数中的至少一种:
    用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
    用于所述SIB1传输的非锚点载波与锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
    所述第二通信设备根据所述调度信息及所述第一信息,从所述第一通信设备接收所述SIB1,包括:
    所述第二通信设备确定用于接收所述SIB1的非锚点载波;
    所述第二通信设备根据所述频域位置信息以及所述锚点载波,确定所述用于所述SIB1传输的非锚点载波的频域位置;
    所述第二通信设备在所述频域位置所对应的所述用于传输所述SIB1的非锚点载波上根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,所述第二通信设备在所述锚点载波上以及所述频域位置所对应的所述用于所述SIB1传输的非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1。
  16. 根据权利要求11所述的方法,其特征在于,
    重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,
    重复次数集合中的另一部分重复次数值对应第二状态,所述第二状态为所述SIB1只在非锚点载波传输,或所述SIB1在锚点载波和非锚点载波传输,
    所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
    所述第二通信设备根据所述调度信息,从所述第一通信设备接收所述SIB1,包括:
    所述第二通信设备确定所述重复次数对应第一状态或第二状态;
    所述第二通信设备根据所述第一状态或所述第二状态在锚点载波和/或非锚点载波,从所述第一通信设备接收所述SIB1;
    当所述第二通信设备确定在非锚点载波,从所述第一通信设备接收所述SIB1时,所述第二通信设备确定用于接收所述SIB1的非锚点载波。
  17. 根据权利要求11所述的方法,其特征在于,
    重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,
    重复次数集合中的另一部分重复次数值对应的第二状态根据用于所述SIB1传输的状态信息确定,所述第二状态为所述SIB1只在非锚点载波传输,或者所述SIB1只在锚点载波传输;
    所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
    所述调度信息中的重复次数对应所述第一状态时,所述MIB消息包括SIB1的调度信息和载波的部署模式;
    所述调度信息中的重复次数对应所述第二状态时,所述MIB消息包括SIB1的调度信息,载波的部署模式,以及包括用于所述SIB1传输的状态信息的所述第一信息;
    所述第二通信设备根据所述调度信息、所述载波的部署模式以及所述第一信息中的至少一个,从所述第一通信设备接收所述SIB1,包括:
    所述调度信息中的重复次数属于所述一部分重复次数值时,根据所述一部分重复次数值对应的所述第一状态及所述调度信息,在所述锚点载波上,从所述第一通信设备接收所 述SIB1;
    所述调度信息中的重复次数属于所述另一部分重复次数值时,根据所述调度信息在所述锚点载波上,从所述第一通信设备接收所述SIB1,或者根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在非锚点载波上,从所述第一通信设备接收所述SIB1;
    所述第二通信设备在所述非锚点载波上,从所述第一通信设备接收所述SIB1,包括:所述第二通信设备确定用于接收所述SIB1的非锚点载波。
  18. 根据权利要求17所述的方法,其特征在于,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及用于传输所述SIB1的非锚点载波的部署模式信息;
    所述根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1,包括:
    所述第二通信设备根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式为独立部署模式、保护带部署模式和带内部署模式中的一种;
    所述第二通信设备根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
    所述第二通信设备根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
    或者,所述第二通信设备根据所述保护带部署模式或带内部署模式,确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源;
    所述第二通信设备根据所述用于传输所述SIB1的非锚点载波上SIB1的传输资源在所述用于传输所述SIB1的非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1。
  19. 根据权利要求11所述的方法,其特征在于,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及所述用于传输所述SIB1的非锚点载波的部署模式信息,
    所述第二通信设备根据所述调度信息及所述载波的部署模式,从所述第一通信设备接收所述SIB1,包括:
    所述第二通信设备根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式包括独立部署模式、保护带部署模式和带内部署模式中的一种;
    所述第二通信设备根据所述独立部署模式确定所述非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同;
    所述第二通信设备根据所述调度信息及所述重复次数在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1,或者,所述第二通信设备在所述锚点载波上,以及根据所述重复次数在所述用于传输所述SIB1的非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
    或者,所述第二通信设备根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
    所述第二通信设备根据所述调度信息及所述传输资源在所述非锚点载波上,从所述第一通信设备接收所述SIB1;或者,所述第二通信设备在所述锚点载波上,以及根据所述传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
    或者,所述第二通信设备根据所述保护带部署模式或带内部署模式确定所述非锚点载波上所述SIB1的重复次数;
    所述第二通信设备根据所述非锚点载波上所述SIB1的重复次数,在所述非锚点载波上根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,
    所述第二通信设备在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的重复次数在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
    或者,所述第二通信设备根据所述保护带部署模式或带内部署模式,确定所述非锚点载波上所述SIB1的传输资源;
    所述第二通信设备根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;或者,
    所述第二通信设备在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的传输资源在所述非锚点载波上,根据所述调度信息,从所述第一通信设备接收所述SIB1;
    其中,所述第二通信设备在所述非锚点载波上,从所述第一通信设备接收所述SIB1,包括:所述第二通信设备确定用于接收所述SIB1的非锚点载波。
  20. 根据权利要求12至14、16至19任一项所述的方法,其特征在于,所述第一信息进一步包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述频域位置信息包含以下参数中的至少一种:
    用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
    用于所述SIB1传输的非锚点载波与所述锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
    所述第二通信设备确定用于接收所述SIB1的非锚点载波,包括:
    所述第二通信设备根据所述非锚点载波的频域位置信息以及所述锚点载波,确定所述用于SIB1传输的非锚点载波的频域位置;
    所述第二通信设备确定所述频域位置所对应的非锚点载波。
  21. 一种系统消息传输装置,其特征在于,所述系统消息传输装置为第一通信设备,所述系统消息传输装置包括:
    处理模块,用于配置主系统信息块MIB消息,
    其中,所述MIB消息包括SIB1的调度信息;或者,所述MIB消息包括载波的部署模式和第一信息中的至少一个以及所述调度信息;
    所述第一信息包括以下信息中的至少一种:用于所述SIB1传输的状态信息;用于所述SIB1传输的时域位置信息;用于所述SIB1传输的非锚点载波的频域位置信息;用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息;
    发送模块,用于发送所述MIB消息给第二通信设备;
    所述处理模块,还用于通过所述发送模块,并根据所述调度信息,或者根据所述载波 的部署模式和所述第一信息中的至少一个以及所述调度信息,传输所述SIB1给所述第二通信设备。
  22. 根据权利要求21所述的装置,其特征在于,
    所述第一信息包括所述用于所述SIB1传输的状态信息,
    其中,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1只在非锚点载波传输,
    或者,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1在锚点载波和非锚点载波传输;
    所述处理模块具体用于:
    通过所述发送模块,并根据所述调度信息及所述状态信息确定在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备;
    当所述处理模块确定在非锚点载波传输所述SIB1时,所述处理模块还用于确定用于传输所述SIB1的非锚点载波。
  23. 根据权利要求22所述的装置,其特征在于,
    所述第一信息进一步包括所述用于所述SIB1传输的时域位置信息,所述用于所述SIB1传输的时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
    所述处理模块在用于第一通信设备根据所述调度信息及所述状态信息确定在锚点载波和/或非锚点载波传输所述SIB1给所述第二通信设备时,具体为:
    根据所述调度信息、所述状态信息以及所述时域位置信息,确定在锚点载波和/或用于传输所述SIB1的非锚点载波中所述时域位置信息所指示的时域位置,通过所述发送模块传输所述SIB1给所述第二通信设备。
  24. 根据权利要求21所述的装置,其特征在于,所述第一信息包括所述用于所述SIB1传输的时域位置信息,所述时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
    所述处理模块具体用于:
    确定用于传输所述SIB1的载波,所述载波包括锚点载波和/或用于传输所述SIB1的非锚点载波;
    通过所述发送模块,并根据所述调度信息,在所述锚点载波和/或在所述用于传输所述SIB1的非锚点载波上所述时域位置信息所指示的时域位置,传输所述SIB1给所述第二通信设备。
  25. 根据权利要求21所述的装置,其特征在于,所述第一信息包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述用于所述SIB1传输的非锚点载波的频域位置信息包含以下参数中的至少一种:
    用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
    用于所述SIB1传输的非锚点载波与锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
    所述处理模块具体用于:
    确定用于传输所述SIB1的非锚点载波;
    根据所述频域位置信息以及所述锚点载波,确定所述用于所述SIB1传输的非锚点载波的频域位置;
    通过所述发送模块,并根据所述调度信息,在所述频域位置所对应的所述用于传输所述SIB1的非锚点载波上传输所述SIB1;或者,通过所述发送模块,并根据所述调度信息,在所述锚点载波上以及所述频域位置所对应的所述用于所述SIB1传输的非锚点载波上,传输所述SIB1给所述第二通信设备。
  26. 根据权利要求21所述的装置,其特征在于,
    重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,
    重复次数集合中的另一部分重复次数值对应第二状态,所述第二状态为所述SIB1只在非锚点载波传输,或所述SIB1在锚点载波和非锚点载波传输,
    所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
    所述处理模块具体用于:
    确定所述重复次数对应第一状态或第二状态;
    通过所述发送模块,并根据所述第一状态或所述第二状态,在锚点载波和/或非锚点载波上传输所述SIB1给所述第二通信设备;
    当所述处理模块确定在非锚点载波传输所述SIB1时,所述处理模块还用于确定用于传输所述SIB1的非锚点载波。
  27. 根据权利要求21所述的装置,其特征在于,
    重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,
    重复次数集合中的另一部分重复次数值对应的第二状态根据用于所述SIB1传输的状态信息确定,所述第二状态为所述SIB1只在非锚点载波传输,或者所述SIB1只在锚点载波传输;
    所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
    所述调度信息中的重复次数对应所述第一状态时,所述MIB消息包括SIB1的调度信息和载波的部署模式;
    所述调度信息中的重复次数对应所述第二状态时,所述MIB消息包括SIB1的调度信息,载波的部署模式,以及包括用于所述SIB1传输的状态信息的所述第一信息;
    所述处理模块具体用于:
    所述调度信息中的重复次数属于所述一部分重复次数值时,通过所述发送模块,并根据所述一部分重复次数值对应的所述第一状态及所述调度信息,在所述锚点载波上传输所述SIB1给所述第二通信设备;
    所述调度信息中的重复次数属于所述另一部分重复次数值时,通过所述发送模块,并根据所述调度信息,在所述锚点载波上传输所述SIB1给所述第二通信设备,或者,通过所述发送模块,并根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在非锚点载波上传输所述SIB1给所述第二通信设备;
    所述处理模块在所述非锚点载波上传输所述SIB1时,还用于:确定用于传输所述SIB1的非锚点载波。
  28. 根据权利要求27所述的装置,其特征在于,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及用于传输所述SIB1的非锚点载波的部署模式信息;
    所述处理模块用于通过所述发送模块,并根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备,具体为:
    根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式为独立部署模式、保护带部署模式和带内部署模式中的一种;
    根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;通过所述发送模块,并根据所述调度信息以及所述非锚点载波上SIB1的传输资源,在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备;
    或者,根据所述保护带部署模式或带内部署模式,确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源;
    通过所述发送模块,并根据所述调度信息以及所述用于传输所述SIB1的非锚点载波上SIB1的传输资源,在所述用于传输所述SIB1的非锚点载波上传输所述SIB1给所述第二通信设备。
  29. 根据权利要求21所述的装置,其特征在于,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及所述用于传输所述SIB1的非锚点载波的部署模式信息,
    所述处理模块具体用于:
    根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式包括独立部署模式、保护带部署模式和带内部署模式中的一种;
    根据所述独立部署模式确定所述非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同;
    通过所述发送模块,并根据所述调度信息及所述重复次数,在所述用于传输所述SIB1的非锚点载波上传输所述SIB1,或者,通过所述发送模块,并根据所述调度信息,在所述锚点载波上,以及根据所述重复次数及所述调度信息,在所述用于传输所述SIB1的非锚点载波上,传输所述SIB1给所述第二通信设备;
    或者,根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
    通过所述发送模块,并根据所述调度信息及所述传输资源,在所述非锚点载波上传输所述SIB1;或者,通过所述发送模块,并根据所述调度信息在所述锚点载波上,以及根据所述调度信息和所述传输资源在所述非锚点载波上,传输所述SIB1给所述第二通信设备;
    或者,根据所述保护带部署模式或带内部署模式确定所述非锚点载波上所述SIB1的重复次数;
    通过所述发送模块,并根据所述非锚点载波上所述SIB1的重复次数及所述调度信息,在所述非锚点载波上传输所述SIB1给所述第二通信设备;或者,
    通过所述发送模块,并根据所述调度信息在所述锚点载波上,以及根据所述非锚点载 波上所述SIB1的重复次数及所述调度信息在所述非锚点载波上,传输所述SIB1给所述第二通信设备;
    或者,根据所述保护带部署模式或带内部署模式,确定所述非锚点载波上所述SIB1的传输资源;
    通过所述发送模块,并根据所述非锚点载波上SIB1的传输资源在所述非锚点载波上,传输所述SIB1给所述第二通信设备;或者,
    通过所述发送模块,并根据所述调度信息,在所述锚点载波上,以及根据所述调度信息及所述非锚点载波上所述SIB1的传输资源在所述非锚点载波上,传输所述SIB1给所述第二通信设备;
    其中,所述处理模块在所述非锚点载波上传输所述SIB1时,还用于:确定用于传输所述SIB1的非锚点载波。
  30. 根据权利要求22至24、26至29任一项所述的装置,其特征在于,所述第一信息进一步包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述频域位置信息包含以下参数中的至少一种:
    用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
    用于所述SIB1传输的非锚点载波与所述锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
    所述处理模块在用于确定用于传输所述SIB1的非锚点载波时,具体为:
    根据所述非锚点载波的频域位置信息以及所述锚点载波,确定所述用于SIB1传输的非锚点载波的频域位置;
    确定所述频域位置所对应的非锚点载波。
  31. 一种系统消息传输装置,其特征在于,所述系统消息传输装置为第二通信设备,所述系统消息传输装置包括:
    接收模块,用于从第一通信设备接收主系统信息块MIB消息,所述MIB消息包括SIB1的调度信息,或者,或者所述MIB消息包括载波的部署模式和第一信息中的至少一个以及所述调度信息,所述第一信息包括以下信息中的至少一种:用于所述SIB1传输的状态信息;用于所述SIB1传输的时域位置信息;用于所述SIB1传输的非锚点载波的频域位置信息;用于所述SIB1传输的非锚点载波上所述SIB1的传输方式信息;
    处理模块,用于根据所述调度信息,或者根据所述载波的部署模式和所述第一信息中的至少一个以及所述调度信息,通过所述接收模块从所述第一通信设备接收所述SIB1。
  32. 根据权利要求31所述的装置,其特征在于,
    所述第一信息包括所述用于所述SIB1传输的状态信息,
    其中,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1只在非锚点载波传输,
    或者,所述状态信息包括以下状态中的一种:所述SIB1只在锚点载波传输,所述SIB1在锚点载波和非锚点载波传输;
    所述处理模块具体用于:
    根据所述调度信息及所述状态信息,确定在锚点载波和/或非锚点载波,通过所述接收模块从所述第一通信设备接收所述SIB1;
    当所述处理模块确定在非锚点载波从所述第一通信设备接收所述SIB1时,所述处理模块还用于确定用于接收所述SIB1的非锚点载波。
  33. 根据权利要求32所述的装置,其特征在于,
    所述第一信息进一步包括所述用于所述SIB1传输的时域位置信息,所述用于所述SIB1传输的时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
    所述处理模块在用于根据所述调度信息及所述状态信息,确定在锚点载波和/或非锚点载波从所述第一通信设备接收所述SIB1时,具体为:
    根据所述调度信息、所述状态信息以及所述时域位置信息,确定在锚点载波和/或用于传输所述SIB1的非锚点载波中所述时域位置信息所指示的时域位置,通过所述接收模块从所述第一通信设备接收所述SIB1。
  34. 根据权利要求31所述的装置,其特征在于,所述第一信息包括所述用于所述SIB1传输的时域位置信息,所述时域位置信息包含以下位置中的一种:子帧位置、无线帧位置、超帧位置、符号位置和时隙位置;
    所述处理模块具体用于:
    确定用于接收所述SIB1的载波,所述载波包括锚点载波和/或用于传输所述SIB1的非锚点载波;
    通过所述接收模块,并根据所述调度信息,在所述锚点载波和/或在所述用于传输所述SIB1的非锚点载波上所述时域位置信息所指示的时域位置,从所述第一通信设备接收所述SIB1。
  35. 根据权利要求31所述的装置,其特征在于,所述第一信息包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述用于所述SIB1传输的非锚点定载波的频域位置信息包含以下参数中的至少一种:
    用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
    用于所述SIB1传输的非锚点载波与锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
    所述处理模块具体用于:
    确定用于接收所述SIB1的非锚点载波;
    根据所述频域位置信息以及所述锚点载波,确定所述用于所述SIB1传输的非锚点载波的频域位置;
    通过所述接收模块,并根据所述调度信息,在所述频域位置所对应的所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1;或者,通过所述接收模块,并根据所述调度信息,在所述锚点载波上以及所述频域位置所对应的所述用于所述SIB1传输的非锚点载波上,从所述第一通信设备接收所述SIB1。
  36. 根据权利要求31所述的装置,其特征在于,
    重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,
    重复次数集合中的另一部分重复次数值对应第二状态,所述第二状态为所述SIB1只在非锚点载波传输,或所述SIB1在锚点载波和非锚点载波传输,
    所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
    所述处理模块具体用于:
    确定所述重复次数对应第一状态或第二状态;
    通过所述接收模块,并根据所述第一状态或所述第二状态在锚点载波和/或非锚点载波从所述第一通信设备接收所述SIB1;
    当所述处理模块确定在非锚点载波,从所述第一通信设备接收所述SIB1时,所述处理模块还用于确定用于接收所述SIB1的非锚点载波。
  37. 根据权利要求31所述的装置,其特征在于,
    重复次数集合中的一部分重复次数值对应第一状态,所述第一状态为所述SIB1只在锚点载波传输,
    重复次数集合中的另一部分重复次数值对应的第二状态根据用于所述SIB1传输的状态信息确定,所述第二状态为所述SIB1只在非锚点载波传输,或者所述SIB1只在锚点载波传输;
    所述调度信息用于确定所述SIB1传输所使用的传输块大小和重复次数,
    所述调度信息中的重复次数对应所述第一状态时,所述MIB消息包括SIB1的调度信息和载波的部署模式;
    所述调度信息中的重复次数对应所述第二状态时,所述MIB消息包括SIB1的调度信息,载波的部署模式,以及包括用于所述SIB1传输的状态信息的所述第一信息;
    所述处理模块具体用于:
    所述调度信息中的重复次数属于所述一部分重复次数值时,通过所述接收模块,并根据所述一部分重复次数值对应的所述第一状态及所述调度信息,在所述锚点载波上,从所述第一通信设备接收所述SIB1;
    所述调度信息中的重复次数属于所述另一部分重复次数值时,通过所述接收模块,并根据所述调度信息,在所述锚点载波上从所述第一通信设备接收所述SIB1,或者,通过所述接收模块,并根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在非锚点载波上从所述第一通信设备接收所述SIB1;
    所述处理模块在所述非锚点载波上,从所述第一通信设备接收所述SIB1时,所述处理模块还用于:确定用于接收所述SIB1的非锚点载波。
  38. 根据权利要求37所述的装置,其特征在于,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及用于传输所述SIB1的非锚点载波的部署模式信息;
    所述处理模块用于通过所述接收模块,并根据所述调度信息、所述载波的部署模式以及所述第一信息中的所述SIB1传输的状态信息,在所述用于传输所述SIB1的非锚点载波上从所述第一通信设备接收所述SIB1,具体为:
    根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式为独立部署模式、保护带部署模式和带内部署模式中的一种;
    根据所述独立部署模式确定所述非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
    通过所述接收模块,并根据所述调度信息以及所述非锚点载波上SIB1的传输资源,在 所述用于传输所述SIB1的非锚点载波上从所述第一通信设备接收所述SIB1;
    或者,根据所述保护带部署模式或带内部署模式,确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源;
    通过所述接收模块,并根据所述调度信息以及所述用于传输所述SIB1的非锚点载波上SIB1的传输资源,在所述用于传输所述SIB1的非锚点载波上从所述第一通信设备接收所述SIB1。
  39. 根据权利要求31所述的装置,其特征在于,所述载波的部署模式包括用于传输所述SIB1的非锚点载波的部署模式信息,或者,所述载波的部署模式包括锚点载波的部署模式以及所述用于传输所述SIB1的非锚点载波的部署模式信息,
    所述处理模块具体用于:
    根据所述载波的部署模式确定用于传输所述SIB1的非锚点载波的部署模式,所述确定的部署模式包括独立部署模式、保护带部署模式和带内部署模式中的一种;
    根据所述独立部署模式确定所述非锚点载波上SIB1的重复次数与锚点载波上SIB1的重复次数相同;
    通过所述接收模块,并根据所述调度信息及所述重复次数,在所述用于传输所述SIB1的非锚点载波上从所述第一通信设备接收所述SIB1,或者,通过所述接收模块,并根据所述调度信息在所述锚点载波上,以及根据所述重复次数及所述调度信息在所述用于传输所述SIB1的非锚点载波上,从所述第一通信设备接收所述SIB1;
    或者,根据所述独立部署模式确定所述用于传输所述SIB1的非锚点载波上所述SIB1的传输资源与锚点载波上所述SIB1的传输资源相同;
    通过所述接收模块,并根据所述调度信息及所述传输资源,在所述非锚点载波上,从所述第一通信设备接收所述SIB1;或者,通过所述接收模块,并根据所述调度信息在所述锚点载波上,以及根据所述传输资源在所述非锚点载波上,从所述第一通信设备接收所述SIB1;
    或者,根据所述保护带部署模式或带内部署模式确定所述非锚点载波上所述SIB1的重复次数;
    通过所述接收模块,并根据所述非锚点载波上所述SIB1的重复次数及所述调度信息,在所述非锚点载波上从所述第一通信设备接收所述SIB1;或者,
    通过所述接收模块,并根据所述调度信息在所述锚点载波上,以及根据所述非锚点载波上所述SIB1的重复次数及所述调度信息在所述非锚点载波上,从所述第一通信设备接收所述SIB1;
    或者,根据所述保护带部署模式或带内部署模式,确定所述非锚点载波上所述SIB1的传输资源;
    通过所述接收模块,并根据所述调度信息及所述非锚点载波上SIB1的传输资源在所述非锚点载波上,从所述第一通信设备接收所述SIB1;或者,
    通过所述接收模块,并根据所述调度信息,在所述锚点载波上,以及根据所述调度信息及所述非锚点载波上所述SIB1的传输资源在所述非锚点载波上,从所述第一通信设备接收所述SIB1;
    其中,所述处理模块在所述非锚点载波上,从所述第一通信设备接收所述SIB1时,所 述处理模块还用于:确定用于接收所述SIB1的非锚点载波。
  40. 根据权利要求32至34、36至39任一项所述的装置,其特征在于,所述第一信息进一步包括所述用于所述SIB1传输的非锚点载波的频域位置信息,所述频域位置信息包含以下参数中的至少一种:
    用于所述SIB1传输的非锚点载波相对锚点载波的相对位置;及
    用于所述SIB1传输的非锚点载波与所述锚点载波的频域偏置,所述频域偏置为频域间隔或资源块数量;
    所述处理模块在用于确定用于接收所述SIB1的非锚点载波时,具体为:
    根据所述非锚点载波的频域位置信息以及所述锚点载波,确定所述用于SIB1传输的非锚点载波的频域位置;
    确定所述频域位置所对应的非锚点载波。
  41. 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述通信设备包括存储器和处理器,以及存储在所述存储器上可供所述处理器执行的计算机程序;
    所述处理器执行所述计算机程序实现如权利要求1至10中任一项所述系统消息传输方法。
  42. 一种计算机可读存储介质,其特征在于,包括计算机可读指令,当通信设备读取并执行所述计算机可读指令时,使得通信设备执行如权利要求1至20中任一项所述的方法。
  43. 一种计算机程序产品,其特征在于,包括计算机可读指令,当通信设备读取并执行所述计算机可读指令,使得通信设备执行如权利要求1至20任一项所述的方法。
  44. 一种通信设备,其特征在于,所述通信设备为第二通信设备,所述通信设备包括存储器和处理器,以及存储在所述存储器上可供所述处理器执行的计算机程序;
    所述处理器执行所述计算机程序实现如权利要求11至20中任一项所述系统消息传输方法。
  45. 一种通信系统,其特征在于,包括如权利要求41所述的通信设备和如权利要求44所述的通信设备。
PCT/CN2017/111759 2017-11-17 2017-11-17 系统消息传输方法、装置及系统 WO2019095338A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020526992A JP7016413B2 (ja) 2017-11-17 2017-11-17 システムメッセージ伝送方法、装置及びシステム
CN201780096689.4A CN111344974B9 (zh) 2017-11-17 2017-11-17 系统消息传输方法、装置及系统
BR112020009779-9A BR112020009779A2 (pt) 2017-11-17 2017-11-17 método, aparelho e sistema de transmissão de mensagem de sistema
PCT/CN2017/111759 WO2019095338A1 (zh) 2017-11-17 2017-11-17 系统消息传输方法、装置及系统
EP17932279.7A EP3700115B1 (en) 2017-11-17 2017-11-17 System message transmission method, device and system
US16/875,801 US11259314B2 (en) 2017-11-17 2020-05-15 System message transmission method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111759 WO2019095338A1 (zh) 2017-11-17 2017-11-17 系统消息传输方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/875,801 Continuation US11259314B2 (en) 2017-11-17 2020-05-15 System message transmission method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019095338A1 true WO2019095338A1 (zh) 2019-05-23

Family

ID=66539360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111759 WO2019095338A1 (zh) 2017-11-17 2017-11-17 系统消息传输方法、装置及系统

Country Status (6)

Country Link
US (1) US11259314B2 (zh)
EP (1) EP3700115B1 (zh)
JP (1) JP7016413B2 (zh)
CN (1) CN111344974B9 (zh)
BR (1) BR112020009779A2 (zh)
WO (1) WO2019095338A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210227543A1 (en) * 2018-02-07 2021-07-22 Telefonaktiebolaget Lm Ericsson (Publ) First network node, second network node, first wireless device, and methods performed thereby for handling a carrier in a wireless communications network
WO2021159849A1 (en) * 2020-02-12 2021-08-19 Apple Inc. Method and apparatus for ue assumption for cgi reading in nr

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114073124A (zh) * 2019-07-05 2022-02-18 联想(北京)有限公司 无线系统更宽的带宽载波指示
US11546933B2 (en) * 2019-11-27 2023-01-03 Qualcomm Incorporated Cross carrier shared channel repetition
CN117255351A (zh) * 2022-06-10 2023-12-19 中兴通讯股份有限公司 窄带物联网的部署方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674211A (zh) * 2008-09-12 2010-03-17 中兴通讯股份有限公司 一种系统信息预接收的方法
CN102790669A (zh) * 2011-05-19 2012-11-21 中国移动通信集团公司 一种控制信息传输方法及其装置
CN102823181A (zh) * 2009-09-25 2012-12-12 捷讯研究有限公司 用于多载波网络操作的系统和方法
CN104272824A (zh) * 2012-05-11 2015-01-07 高通股份有限公司 用于最优化多预订装置性能的方法和设备
US20150173078A1 (en) * 2012-08-21 2015-06-18 Telefonaktiebolaget L M Ericsson (Publ) Network Node and Method therein for Managing Radio Resources

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651988B (zh) * 2008-08-14 2013-08-14 华为技术有限公司 一种系统信息获取方法、通信系统以及移动终端
KR101557400B1 (ko) 2008-11-18 2015-10-05 삼성전자주식회사 이동통신단말기에서 시스템 정보를 수신하기 위한 장치 및 방법
CN102651890B (zh) 2011-02-24 2015-03-25 电信科学技术研究院 一种系统信息的传输方法及装置
CN104602226A (zh) 2013-10-31 2015-05-06 中兴通讯股份有限公司 一种发送、接收系统信息的方法及装置
WO2016053039A1 (ko) 2014-10-02 2016-04-07 주식회사 케이티 시스템 정보 전송 방법 및 장치
US11533675B2 (en) 2015-07-27 2022-12-20 Apple Inc. System and methods for system operation for narrowband-LTE for cellular IoT
CN107046721B (zh) 2016-02-05 2020-03-03 中兴通讯股份有限公司 传输信息的方法及装置
US10397889B2 (en) * 2016-02-26 2019-08-27 Lg Electronics Inc. Method for receiving system information in wireless communication system that supports narrowband IOT and apparatus for the same
WO2017192624A1 (en) * 2016-05-02 2017-11-09 Intel IP Corporation Methods for multi-carrier operation with multiple anchor carriers in narrow-band internet-of-things
CN115397006A (zh) * 2017-04-10 2022-11-25 北京三星通信技术研究有限公司 窄带物联网接入的方法及用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674211A (zh) * 2008-09-12 2010-03-17 中兴通讯股份有限公司 一种系统信息预接收的方法
CN102823181A (zh) * 2009-09-25 2012-12-12 捷讯研究有限公司 用于多载波网络操作的系统和方法
CN102790669A (zh) * 2011-05-19 2012-11-21 中国移动通信集团公司 一种控制信息传输方法及其装置
CN104272824A (zh) * 2012-05-11 2015-01-07 高通股份有限公司 用于最优化多预订装置性能的方法和设备
US20150173078A1 (en) * 2012-08-21 2015-06-18 Telefonaktiebolaget L M Ericsson (Publ) Network Node and Method therein for Managing Radio Resources

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3700115A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210227543A1 (en) * 2018-02-07 2021-07-22 Telefonaktiebolaget Lm Ericsson (Publ) First network node, second network node, first wireless device, and methods performed thereby for handling a carrier in a wireless communications network
US11812417B2 (en) * 2018-02-07 2023-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and node indicating a first carrier in NB-IoT operating within NR
WO2021159849A1 (en) * 2020-02-12 2021-08-19 Apple Inc. Method and apparatus for ue assumption for cgi reading in nr

Also Published As

Publication number Publication date
US11259314B2 (en) 2022-02-22
JP2021503816A (ja) 2021-02-12
EP3700115A4 (en) 2020-11-04
BR112020009779A2 (pt) 2020-11-03
CN111344974B9 (zh) 2021-10-29
EP3700115A1 (en) 2020-08-26
CN111344974A (zh) 2020-06-26
US20200281003A1 (en) 2020-09-03
CN111344974B (zh) 2021-10-01
JP7016413B2 (ja) 2022-02-04
EP3700115B1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
JP6676224B1 (ja) 狭帯域通信のための狭帯域時分割複信フレーム構造
TWI731224B (zh) 針對使用窄頻通訊的一或多個上行鏈路傳輸的排程請求
US11363575B2 (en) Uplink information sending method and apparatus and uplink information receiving method and apparatus
WO2019095338A1 (zh) 系统消息传输方法、装置及系统
WO2020143828A1 (zh) 资源配置的方法和装置
JP2023106399A (ja) 超高信頼低遅延通信表示チャネル化設計
JP2020123976A (ja) 狭帯域通信のための狭帯域時分割複信フレーム構造
JP6851991B2 (ja) ロングタームエボリューションコンパチブル超狭帯域設計
EP3691374A1 (en) Communication method and communication device
TW201836422A (zh) 具有對時槽內躍頻的支援的單時槽短pucch
JP7104051B2 (ja) 拡大された帯域幅を使用した狭帯域通信のためのリソース割振り
WO2020186946A1 (zh) 一种通信方法及设备
TW202008829A (zh) 資源配置的方法和終端設備
TW201739203A (zh) 用於mmw排程的子訊框或時槽之內的分時多工傳輸時段
CN111406431B (zh) 用于指示连续的资源分配的方法、装置和计算机可读介质
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
WO2019028802A1 (zh) 一种信号发送、接收方法及装置
WO2019137510A1 (zh) 一种保留资源的指示方法及设备
WO2018228522A1 (zh) 发送参考信号的方法、接收参考信号的方法和通信装置
TW201919429A (zh) 用於配置資源的方法、終端設備和網路設備
WO2020020315A1 (zh) 一种上下行时间资源配置的方法和装置
WO2019061366A1 (zh) 信号处理方法和装置
CN111670596A (zh) 一种信道传输方法及装置、计算机存储介质
WO2022036523A1 (zh) 数据传输的方法及设备
WO2022027660A1 (zh) 一种侧行链路通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017932279

Country of ref document: EP

Effective date: 20200518

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009779

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009779

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200515