WO2019093604A1 - 플라즈마 구동기 보호 장치 및 이의 조립 방법 - Google Patents

플라즈마 구동기 보호 장치 및 이의 조립 방법 Download PDF

Info

Publication number
WO2019093604A1
WO2019093604A1 PCT/KR2018/004571 KR2018004571W WO2019093604A1 WO 2019093604 A1 WO2019093604 A1 WO 2019093604A1 KR 2018004571 W KR2018004571 W KR 2018004571W WO 2019093604 A1 WO2019093604 A1 WO 2019093604A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
exposed
dielectric body
cover
exposed electrode
Prior art date
Application number
PCT/KR2018/004571
Other languages
English (en)
French (fr)
Inventor
이영빈
김규홍
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Publication of WO2019093604A1 publication Critical patent/WO2019093604A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes

Definitions

  • the present invention relates to a plasma protection device, and more particularly, to a protection device and a method of assembling the protection device that realize protection and performance improvement of a DBD (Plasma Discharge) plasma actuator and a surface discharge device.
  • DBD Laser Discharge
  • a DBD (Dielectric Barrier Discharge) plasma driver is constructed as shown in FIG. 2 is a view showing the surface of the DBD plasma actuator in operation. Joule heating is generated due to the plasma 110 generated between the exposed electrode and the buried electrode in the front side of the driver so that the induced propagating wave 130 joule heating is generated and an induction flow 120 due to the movement of electrons is generated so that aerodynamic flow control can be performed through the induced air flow by electrical force.
  • Joule heating is generated due to the plasma 110 generated between the exposed electrode and the buried electrode in the front side of the driver so that the induced propagating wave 130 joule heating is generated and an induction flow 120 due to the movement of electrons is generated so that aerodynamic flow control can be performed through the induced air flow by electrical force.
  • the thermal energy is exposed to the external flow, resulting in a loss of thermal energy, thereby deteriorating the performance of the plasma driver.
  • the present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a plasma actuator protection device having a structure in which heat energy is not exposed to an external flow in a plasma generated in an exposed electrode and a buried electrode And a method of assembling the same.
  • the present invention provides a plasma actuator protection device having a structure in which heat energy is not exposed to an external flow in a plasma generated in an exposed electrode and a buried electrode.
  • the plasma actuator protection device includes:
  • a dielectric body having exposed electrodes and non-exposed electrodes arranged at regular intervals;
  • a wall member disposed on both end faces of the dielectric body
  • a cover spaced apart from the surface of the dielectric body and the wall member by a first distance so that the exposed electrode is not exposed to the external material.
  • the first interval may be smaller than a value twice the height of the exposure electrode.
  • the cover may have an open / closed structure.
  • the plasma actuator protection device may further include: a power supply for supplying voltage power to the exposed and unexposed electrodes; And a controller for controlling the power supply.
  • another embodiment of the present invention includes a dielectric body in which an exposed electrode and an unexposed electrode are disposed at a first interval; A wall member disposed on both end faces of the dielectric body; A cover disposed at a second distance from the surface of the dielectric body and the wall member so that the exposed electrode is not exposed to external material; An electromagnetic part disposed at a third gap from the non-exposed electrode in the dielectric body to open / close the cover through adjustment of an electromagnetic force; And a first power supply for supplying power to the electromagnet part.
  • the second interval may be smaller than a value twice the height of the exposure electrode.
  • the plasma actuator protection device may further include: a second power supply for supplying a voltage power to the exposed electrode and the unexposed electrode; And a controller for controlling the first power supply and the second power supply.
  • the cover may have a first gap from the surface of the dielectric body and the wall member and a fourth gap from the surface of the dielectric body and the wall member at the other end, .
  • the second spacing may be less than a value twice the height of the exposure electrode, and the fourth spacing may be between zero and a half of the height of the exposure electrode.
  • the electromagnet portion may be located at the lower end of the non-exposed electrode.
  • the cover may include: a support formed at both ends; And a magnet disposed on one side of the support.
  • the cover may be a heat-resistant insulator.
  • another embodiment of the present invention is a method of manufacturing a plasma display panel, comprising the steps of: arranging an exposed electrode and an unexposed electrode in a dielectric body within a dielectric body; Disposing a wall member on both end faces of the dielectric body; And disposing the cover so as to be spaced apart from the surface of the dielectric body and the wall member by a first distance so that the exposed electrode is not exposed to the external material. .
  • another embodiment of the present invention is a method of manufacturing a semiconductor device, comprising: disposing an exposed electrode, an unexposed electrode, and an electromagnet portion in a dielectric body at regular intervals; Disposing a wall member on both end faces of the dielectric body; And disposing the cover at a first distance from the surface of the dielectric body and the wall member so that the exposed electrode is not exposed to the external material,
  • the driver in an environment in which a plasma driver is not used, the driver can be protected against contaminants in the external environment.
  • Another effect of the present invention is that a reaction force due to the strength of the electromagnet is generated when the power for driving is applied, so that the cover of the actuator can be opened and the height can be adjusted.
  • Another advantage of the present invention is that at the same time, the loss of heat energy generated by the plasma is minimized and converted to kinetic energy to improve the performance of the plasma actuator.
  • Another advantage of the present invention is that the performance of the plasma driver can be further improved by adjusting the height of the front portion and the rear portion.
  • FIG. 1 is a conceptual diagram of a general DBD (Dielectric Barrier Discharge) plasma actuator.
  • DBD Dielectric Barrier Discharge
  • FIG. 2 is a view showing a surface of a DBD plasma actuator in a general operation.
  • FIG. 3 is a configuration diagram of a plasma actuator protection apparatus 300 according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram for adjusting the intensity of an electromagnet according to another embodiment of the present invention.
  • FIG. 5 is a conceptual diagram showing a state in which the electromagnet is turned off in FIG.
  • FIG. 6 is a view showing an induced diffusion wave, an induced current, and the like according to the configuration of the plasma actuator protection apparatus 300 shown in FIG.
  • FIG. 7 is a detailed configuration diagram of the cover 330 shown in FIG.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • the plasma actuator protection apparatus 300 includes a dielectric body 340 having an exposed electrode 352 and a non-exposed electrode 351 disposed at regular intervals, A wall member 360 disposed on both ends of the dielectric body 340 and spaced apart from the surface of the dielectric body 340 and the wall member 360 by a first distance so that the exposed electrode 352 is not exposed to external material, And a cover 370 which is made of a metal.
  • the dielectric body 340 is made of a dielectric material.
  • the dielectric body 352 has an exposed electrode 352 exposed to the top of the dielectric body, and an unexposed electrode 352 disposed symmetrically with the exposed electrode 352 at regular intervals.
  • the height (i.e., thickness) of the exposed electrode 352 is h.
  • the dielectric material may be a polymer dielectric, a ceramic dielectric, or the like.
  • Polymer dielectric materials include polyester, polystyrol, polyethylene, and terephthalate.
  • Ceramic dielectric materials include barium titanate and titanium oxide.
  • the dielectric body 340 can be formed in the same manner as the dielectric body 352 except that the exposed electrode 352 and the non-exposed electrode 351 are arranged at regular intervals and a space for inserting the dielectric material or inserting the exposed electrode 352 and the non-
  • a method in which the dielectric body 340 is formed using the dielectric layer 340 and then inserted into the corresponding exposed holes 352 and non-exposed electrodes 351 may be used. After the formation of the dielectric hede body 340, the wall member 360, the cover 370 and the like are sequentially assembled.
  • the cover 370 is disposed at a predetermined distance from the surface of the dielectric body 340 and the wall member 360. That is, the height of the exposed electrode 352 is set to a height ( ⁇ 2h) smaller than a value twice (2h). Joule heating is generated due to the plasma 310 generated between the exposed electrode 352 and the non-exposed electrode 351 and the induced diffusion wave 330 Induced propagating wave by joule heating is generated and induction flow 320 due to electron movement is generated. The induced diffusive wave 330 is diffused toward the arrow 331 where the cover 370 is disposed at a height that does not affect such an induced diffusive wave 330 and /
  • the cover 370 is a heat resistant insulator that can withstand temperatures of about 1000 ° K (Kelvin temperature) or about 700-800 ° C and is insulated. Therefore, it is possible to protect the plasma actuator from contaminants in the external environment. At the same time, the loss of thermal energy generated by the plasma can be minimized and converted to kinetic energy (from thermal energy to momentum energy) to improve the performance of the plasma actuator.
  • the cover 370 has an open / close structure.
  • a hinge (not shown) may be formed on one side.
  • a wall member 360 is disposed at a front portion and a rear portion of the dielectric body 340 to fix and secure the dielectric body 340.
  • the exposed electrode 352 and the non-exposed electrode 351 are connected to the plasma power supply 380 to receive a voltage power for plasma generation.
  • the plasma power supply 380 is connected to the controller 390.
  • the controller 390 is comprised of a computer, software installed in the computer, and the like to control the plasma power supply 380.
  • the plasma actuator protecting apparatus includes a dielectric body 340 having an exposed electrode 352 and a non-exposed electrode 351 disposed at a first interval, a wall member 360 disposed on both end faces of the dielectric body 340, A cover 370 disposed at a second distance from the surfaces of the dielectric body 340 and the wall member 360 so that the exposed electrode 352 is not exposed to external materials, An electromagnet 400 disposed at a third gap from the electrode 351 to open and close the cover 370 through adjustment of the magnitude of electromagnetic force and an electromagnet power supply 450 for supplying power to the electromagnet 400 As shown in FIG.
  • the dielectric body 340 may be formed by arranging the exposed electrode 352, the unexposed electrode 351 and the electromagnet 400 at regular intervals and injecting a dielectric material or exposing the exposed electrode 352,
  • the dielectric body 340 is molded using a casting having a space for inserting the electromagnet part 400 and then the exposed electrode 352, the unexposed electrode 351 and the electromagnet part 400 are formed in the corresponding insertion hole. And a method of inserting the data may be used.
  • the electromagnet part 400 receives power from the electromagnet power supply 450 to vary the intensity of the electromagnetic force. Accordingly, the cover 370 has a first gap 420 from the surface of the dielectric body 340 and the wall member 360 in the case of the right end according to the adjustment of the electromagnetic force. In the case of the left end, 340 and a second spacing 430 different from the first spacing from the surface of the wall member 360.
  • the first interval is smaller than ( ⁇ 2h) the value twice the height of the exposure electrode 352, and the second interval is half the height of the zero and the exposure electrode 352 Value (0 ⁇ height ⁇ 0.5h).
  • the height 410 of the magnet portion 400 may vary depending on the electromagnet.
  • the electromagnet part 400 is positioned at the lower end of the non-exposed electrode 351 at regular intervals.
  • the exposed electrode 352 and the non-exposed electrode 351 are connected to the plasma power supply 380 to receive a voltage power for plasma generation.
  • the plasma power supply 380 is connected to the controller 390.
  • the performance of the plasma actuator can be further improved by adjusting the height of the front portion and the rear portion.
  • a reaction force due to the intensity of the electromagnet is generated when the power for driving is applied, so that the cover of the actuator can be opened and the height can be adjusted.
  • FIG. 5 is a conceptual diagram showing a state in which the electromagnet is turned off in FIG. Referring to FIG. 5, unlike FIG. 4, the electromagnet is off.
  • FIG. 6 is a view showing an induced diffusion wave, an induced current, and the like according to the configuration of the plasma actuator protection apparatus 300 shown in FIG. Referring to Fig. 6, the cover is in an inclined state. Of course, the cover shown in Fig. 6 has a structure that is not fixed.
  • the cover 390 may include a support 710 formed at both ends thereof, and a magnet 720 installed at one side of the support 710.
  • a rail structure (not shown) may be provided on a side surface of the cover 370 so as to move upward.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

플라즈마 구동기 보호 장치 및 이의 조립 방법이 제공된다. 상기 플라즈마 구동기 보호 장치는, 노출 전극과 비노출 전극이 일정한 간격으로 배치되는 유전체 바디, 상기 유전체 바디의 양단면에 배치되는 벽 부재, 및 상기 노출 전극이 외부물질에 노출되지 않도록 상기 유전체 바디 및 벽 부재의 표면으로부터 제 1 간격으로 이격되어 배치되는 커버를 포함하는 것을 특징으로 한다.

Description

플라즈마 구동기 보호 장치 및 이의 조립 방법
본 발명은 플라즈마 보호 장치에 관한 것으로서, 더 상세하게는 DBD(Dielectric Barrier Discharge) 플라즈마 구동기 및 표면 방전기의 보호, 성능 개선을 구현하는 보호 장치 및 이의 조립 방법에 대한 것이다.
DBD(Dielectric Barrier Discharge) 플라즈마 구동기는 도 1과 같이 구성되어 있다. 그리고, 도 2는 동작중인 DBD 플라즈마 구동기의 표면을 도시한 도면이다. 이 구동기는 전방의 노출 전극(Exposed electrode)과 비노출 전극(Buried electrode) 사이에서 발생되는 플라즈마(110)로 인해 열(Joule heating)이 발생되고, 이에 따라 유도 확산파(130)(Induced propagating wave by joule heating)가 발생되며, 또한, 전자의 이동으로 인한 유도흐름(120)이 발생되어 이 유도된 흐름(induced air flow by electrical force)을 통해 공기 역학적으로 유동제어를 수행할 수 있다.
그런데, 노출 전극(Exposed electrode)과 비노출 전극(Buried electrode)에서 발생되는 플라즈마에서 열에너지가 외부유동에 노출되면서 열에너지에 대한 손실이 발생되어 플라즈마 구동기의 성능이 저하된다.
또한, 노출 전극(Exposed electrode)이 외부에 노출되어 외부 오염물질에 취약하다는 문제점이 있다.
본 발명은 위 배경기술에 따른 문제점을 해소하기 위해 제안된 것으로서, 노출 전극(Exposed electrode)과 비노출 전극(Buried electrode)에서 발생되는 플라즈마에서 열에너지가 외부유동에 노출되지 않는 구조를 갖는 플라즈마 구동기 보호 장치 및 이의 조립 방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 노출 전극(Exposed electrode)이 외부의 외부 오염물질에 노출되지 않는 구조를 갖는 플라즈마 구동기 보호 장치 및 이의 조립 방법을 제공하는데 다른 목적이 있다.
본 발명은 위에서 제시된 과제를 달성하기 위해, 노출 전극(Exposed electrode)과 비노출 전극(Buried electrode)에서 발생되는 플라즈마에서 열에너지가 외부유동에 노출되지 않는 구조를 갖는 플라즈마 구동기 보호 장치를 제공한다.
상기 플라즈마 구동기 보호 장치는,
노출 전극과 비노출 전극이 일정한 간격으로 배치되는 유전체 바디;
상기 유전체 바디의 양단면에 배치되는 벽 부재; 및
상기 노출 전극이 외부물질에 노출되지 않도록 상기 유전체 바디 및 벽 부재의 표면으로부터 제 1 간격으로 이격되어 배치되는 커버;를 포함하는 것을 특징으로 한다.
이때, 상기 제 1 간격은 상기 노출 전극의 높이에 2배한 값보다 작은 것을 특징으로 할 수 있다.
또한, 상기 커버는 개폐 구조인 것을 특징으로 할 수 있다.
또한, 상기 플라즈마 구동기 보호 장치는, 상기 노출 전극 및 비노출 전극에 전압 전원을 공급하는 전원 공급기; 및 상기 전원 공급기를 제어하는 제어기;를 포함하는 것을 특징으로 할 수 있다.
다른 한편으로, 본 발명의 다른 일실시예는, 노출 전극과 비노출 전극이 제 1 간격으로 배치되는 유전체 바디; 상기 유전체 바디의 양단면에 배치되는 벽 부재; 상기 노출 전극이 외부물질에 노출되지 않도록 상기 유전체 바디 및 벽 부재의 표면으로부터 제 2 간격으로 이격되어 배치되는 커버; 상기 유전체 바디내에 상기 비노출 전극과 제 3 간격으로 배치되어 전자력의 세기 조절을 통해 상기 커버를 개폐하는 전자석부; 및 상기 전자석부에 전원을 공급하는 제 1 전원 공급기;를 포함하는 것을 특징으로 하는 플라즈마 구동기 보호 장치를 제공할 수 있다.
이때, 상기 제 2 간격은 상기 노출 전극의 높이에 2배한 값보다 작은 것을 특징으로 할 수 있다.
또한, 플라즈마 구동기 보호 장치는, 상기 노출 전극 및 비노출 전극에 전압 전원을 공급하는 제 2 전원 공급기; 및 상기 제 1 전원 공급기 및 제 2 전원 공급기를 제어하는 제어기;를 포함하는 것을 특징으로 할 수 있다.
또한, 상기 커버는 상기 전자력의 세기 조절에 따라 일단은 상기 유전체 바디 및 벽 부재의 표면으로부터 상기 제 2 간격을 갖고 타단은 상기 유전체 바디및 벽 부재의 표면으로부터 상기 제 2 간격과 다른 제 4 간격을 갖는 것을 특징으로 할 수 있다.
또한, 상기 제 2 간격은 상기 노출 전극의 높이에 2배한 값보다 작고, 상기 제 4 간격은 영(0)과 상기 노출 전극의 높이에 1/2배한 값사이에 있는 것을 특징으로 할 수 있다.
또한, 상기 전자석부는 상기 비노출 전극의 하단에 위치하는 것을 특징으로 할 수 있다.
또한, 상기 커버는, 양단에 형성되는 지지대; 및 상기 지지대의 일면에 설치되는 자석부;를 포함하는 것을 특징으로 할 수 있다.
또한, 상기 커버는 내열 절연체인 것을 특징으로 할 수 있다.
또 다른 한편으로, 본 발명의 또 다른 일실시예는, 유전체 바디내에 노출 전극과 비노출 전극이 일정한 간격으로 배치하는 단계; 상기 유전체 바디의 양단면에 벽 부재를 배치하는 단계; 및 상기 노출 전극이 외부물질에 노출되지 않도록 상기 유전체 바디 및 벽 부재 표면으로부터 제 1 간격으로 이격되게 커버를 배치하는 단계;를 포함하는 것을 특징으로 하는 플라즈마 구동기 보호 장치의 조립 방법을 제공할 수 있다.
또 다른 한편으로는, 본 발명의 또 다른 일실시예는, 유전체 바디내에 노출 전극, 비노출 전극 및 전자석부를 서로 일정한 간격으로 배치하는 단계; 상기 유전체 바디의 양단면에 벽 부재를 배치하는 단계; 및 상기 노출 전극이 외부물질에 노출되지 않도록 상기 유전체 바디 및 벽 부재의 표면으로부터 제 1 간격으로 이격되게 커버를 배치하는 단계;를 포함하며, 상기 전자석부는 전자력의 세기 조절을 통해 상기 커버를 개폐하는 것을 특징으로 하는 플라즈마 구동기 보호 장치의 조립 방법을 제공할 수 있다.
본 발명에 따르면, 플라즈마 구동기를 사용하지 않는 환경에서는 외부환경의 오염물질에 구동기를 보호할 수 있다.
또한, 본 발명의 다른 효과로서는 구동을 위한 전원 인가시 전자석의 세기에 의한 반력이 발생하여 구동기의 덮개를 개방하고 높이를 조절할 수 있다는 점을 들 수 있다.
또한, 본 발명의 또 다른 효과로서는 동시에 플라즈마에 의해 발생되는 열에너지의 손실을 최소화하고 최대한 운동 에너지로 전환시켜 플라즈마 구동기의 성능을 향상시킬 수 있다는 점을 들 수 있다.
또한, 본 발명의 또 다른 효과로서는 전방부와 후방부의 높이 조절을 통해 플라즈마 구동기의 성능을 더 향상시킬 수 있다는 점을 들 수 있다.
도 1은 일반적인 DBD(Dielectric Barrier Discharge) 플라즈마 구동기의 개념도이다.
도 2는 일반적인 동작중인 DBD 플라즈마 구동기의 표면을 도시한 도면이다.
도 3은 본 발명의 일실시예에 따른 플라즈마 구동기 보호 장치(300)의 구성개념도이다.
도 4는 본 발명의 다른 일실시예에 따른 전자석의 세기를 조정하는 개념도이다.
도 5는 도 4에서 전자석을 오프한 상태를 보여주는 개념도이다.
도 6은 도 4에 도시된 플라즈마 구동기 보호 장치(300)의 구성에 따른 유도 확산파, 유도 흐름 등을 보여주는 도면이다.
도 7은 도 3에 도시된 커버(330)의 상세 구성도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용한다.
제 1, 제 2등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않아야 한다.
이하 첨부된 도면을 참조하여 본 발명의 일실시예에 따른 플라즈마 구동기 보호 장치 및 이의 조립 방법을 상세하게 설명하기로 한다.
도 3은 본 발명의 일실시예에 따른 플라즈마 구동기 보호 장치(300)의 구성개념도이다. 도 3을 참조하면, 플라즈마 구동기 보호 장치(300)는 상기 플라즈마 구동기 보호 장치(300)는, 노출 전극(352)과 비노출 전극(351)이 일정한 간격으로 배치되는 유전체 바디(340), 상기 유전체 바디(340)의 양단면에 배치되는 벽 부재(360), 상기 노출 전극(352)이 외부물질에 노출되지 않도록 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 제 1 간격으로 이격되어 배치되는 커버(370) 등을 포함하여 구성될 수 있다.
유전체 바디(340)는 유전체 물질로 구성되며, 내측에 상단면쪽으로 노출되는 노출 전극(352), 이 노출 전극(352)과 일정한 간격으로 대칭되게 비노출 전극(352)이 배치된다. 여기서 노출 전극(352)의 높이(즉 두께)는 h가 된다. 또한, 유전체 물질로는 폴리머 유전체, 세라믹 유전체 등이 될 수 있다. 폴리머 유전체 물질로는 폴리에스터, 폴리스티롤, 폴리에틸렌, 텔레프탈레이트 등이 있으며, 세라믹 유전체 물질로는 티탄산바륨, 산화티탄 등이 있다.
따라서, 유전체 바디(340)는 노출 전극(352)과 비노출 전극(351)이 일정한 간격으로 배치하고 유전체 물질을 주입하거나, 노출 전극(352)과 비노출 전극(351)을 삽입하는 공간을 형성한 주물을 이용하여 유전체 바디(340)를 성형한 다음 해당 삽입홀에 노출 전극(352)과 비노출 전극(351)에 삽입하는 방식 등이 이용될 수 있다. 유전헤 바디(340)의 생성후, 순차적으로 벽 부재(360), 커버(370) 등을 조립하게 된다.
커버(370)는 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 일정 간격을 두고 배치된다. 즉, 상기 노출 전극(352)의 높이에 2배(2h)한 값보다 작은 높이(<2h)에서 설치된다. 부연하면, 노출 전극(Exposed electrode)(352)과 비노출 전극(Buried electrode)(351) 사이에서 발생되는 플라즈마(310)로 인해 열(Joule heating)이 발생되고, 이에 따라 유도 확산파(330)(Induced propagating wave by joule heating)가 발생되며, 또한, 전자의 이동으로 인한 유도흐름(320)이 발생된다. 유도 확산파(330)는 화살표(331) 쪽으로 확산되는데, 커버(370)는 이러한 유도 확산파(330) 및/또는 유도 흐름(320)에 영향을 미치지 않는 높이에 배치된다.
또한, 커버(370)는 약 1000°K(켈빈온도) 또는 약 700-800℃의 온도에 견딜수 있으며 절연이 되는 내열 절연체이다. 따라서, 외부환경의 오염물질로부터 플라즈마 구동기를 보호할 수 있다. 동시에 플라즈마에 의해 발생되는 열에너지의 손실을 최소화하고 최대한 운동에너지로 전환시켜(from thermal energy to momentum energy), 플라즈마 구동기의 성능을 향상시킬 수 있다.
또한, 커버(370)는 개폐 구조가 된다. 이를 위해, 일측면에 힌지(미도시)가 구성될 수 있다. 물론, 경첩을 이용하는 것도 가능하다.
유전체 바디(340)의 전방부과 후방부에 벽 부재(360)가 배치되어 유전체 바디(340)를 보호하면서 고정하게 된다.
노출 전극(352)과 비노출 전극(351)은 플라즈마 전원 공급기(380)와 연결되어 플라즈마 생성을 위한 전압 전원을 공급받는다. 플라즈마 전원 공급기(380)는 제어기(390)와 연결된다. 제어기(390)는 플라즈마 전원 공급기(380)를 제어하기 위해 컴퓨터, 이 컴퓨터에 설치되는 소프트웨어 등으로 구성된다.
도 4는 본 발명의 다른 일실시예에 따른 전자석의 세기를 조정하는 개념도이다. 도 4를 참조하면, 도 3과 다르게 커버(370)의 높이를 조정할 수 있는 구조이다. 즉, 플라즈마 구동기 보호 장치는, 노출 전극(352)과 비노출 전극(351)이 제 1 간격으로 배치되는 유전체 바디(340), 상기 유전체 바디(340)의 양단면에 배치되는 벽 부재(360), 상기 노출 전극(352)이 외부물질에 노출되지 않도록 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 제 2 간격으로 이격되어 배치되는 커버(370), 상기 유전체 바디(340)내에 상기 비노출 전극(351)과 제 3 간격으로 배치되어 전자력의 세기 조절을 통해 상기 커버(370)를 개폐하는 전자석부(400), 및 상기 전자석부(400)에 전원을 공급하는 전자석 전원 공급기(450) 등을 포함하여 구성될 수 있다.
앞서 기술바와 유사하게, 유전체 바디(340)는 노출 전극(352), 비노출 전극(351), 전자석부(400)를 일정한 간격으로 배치하고 유전체 물질을 주입하거나, 노출 전극(352), 비노출 전극(351), 전자석부(400)를 삽입하는 공간을 형성한 주물을 이용하여 유전체 바디(340)를 성형한 다음 해당 삽입홀에 노출 전극(352), 비노출 전극(351), 전자석부(400)에 삽입하는 방식 등이 이용될 수 있다.
전자석부(400)는 전자석 전원 공급기(450)로부터 전원을 공급받아 전자력의 세기를 달리 한다. 따라서, 상기 커버(370)는 전자력의 세기 조절에 따라 우측단의 경우 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 제 1 간격(420)을 갖고 좌측단의 경우, 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 상기 제 1 간격과 다른 제 2 간격(430)을 갖는다.
부연하면, 상기 제 1 간격은 상기 노출 전극(352)의 높이에 2배한 값보다 작고(<2h), 상기 제 2 간격은 영(0)과 상기 노출 전극(352)의 높이에 1/2배한 값사이에 있다(0<height<0.5h).
전자석부(400)의 높이(410)는 전자석에 따라 가변될 수 있다. 또한, 전자석부(400)는 일정간격을 두고 상기 비노출 전극(351)의 하단에 위치한다.
또한, 노출 전극(352)과 비노출 전극(351)은 플라즈마 전원 공급기(380)와 연결되어 플라즈마 생성을 위한 전압 전원을 공급받는다. 플라즈마 전원 공급기(380)는 제어기(390)와 연결된다.
전방부와 후방부의 높이 조절을 통해 플라즈마 구동기의 성능을 더 향상시킬 수 있다. 도 4에 도시된 구조에 따라, 구동을 위한 전원 인가 시 전자석의 세기에 의한 반력이 발생하여 구동기의 덮개를 개방하고 높이를 조절할 수 있다.
도 5는 도 4에서 전자석을 오프한 상태를 보여주는 개념도이다. 도 5를 참조하면, 도 4와 달리, 전자석을 오프한 상태이다.
도 6은 도 4에 도시된 플라즈마 구동기 보호 장치(300)의 구성에 따른 유도 확산파, 유도 흐름 등을 보여주는 도면이다. 도 6을 참조하면, 커버가 경사지게 멈추어 있는 상태이다. 물론, 도 6에 도시된 커버는 고정이 되지 않는 구조를 띠게 된다.
도 7은 도 3에 도시된 커버(330)의 상세 구성도이다. 도 7을 참조하면, 상기 커버(390)는, 양단에 형성되는 지지대(710), 상기 지지대(710)의 일면에 설치되는 자석부(720)를 포함하여 구성될 수 있다. 이러한 커버(370)를 위해 상향 방향으로 움직일 수 있도록 측면에 레일 구조물(미도시)이 설치될 수 있다.

Claims (16)

  1. 노출 전극(352)과 비노출 전극(351)이 일정한 간격으로 배치되는 유전체 바디(340);
    상기 유전체 바디(340)의 양단면에 배치되는 벽 부재(360); 및
    상기 노출 전극(352)이 외부물질에 노출되지 않도록 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 제 1 간격으로 이격되어 배치되는 커버(370);
    를 포함하는 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  2. 제 1 항에 있어서,
    상기 제 1 간격은 상기 노출 전극(352)의 높이에 2배한 값보다 작은 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  3. 제 1 항에 있어서,
    상기 커버(370)는 개폐 구조인 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  4. 제 1 항에 있어서,
    상기 노출 전극(352) 및 비노출 전극(351)에 전압 전원을 공급하는 전원 공급기(380); 및
    상기 전원 공급기(380)를 제어하는 제어기(390);를 포함하는 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  5. 노출 전극(352)과 비노출 전극(351)이 제 1 간격으로 배치되는 유전체 바디(340);
    상기 유전체 바디(340)의 양단면에 배치되는 벽 부재(360);
    상기 노출 전극(352)이 외부물질에 노출되지 않도록 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 제 2 간격으로 이격되어 배치되는 커버(370);
    상기 유전체 바디(340)내에 상기 비노출 전극(351)과 제 3 간격으로 배치되어 전자력의 세기 조절을 통해 상기 커버(370)를 개폐하는 전자석부(400); 및
    상기 전자석부(400)에 전원을 공급하는 제 1 전원 공급기(450);
    를 포함하는 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  6. 제 5 항에 있어서,
    상기 제 2 간격은 상기 노출 전극(352)의 높이에 2배한 값보다 작은 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  7. 제 5 항에 있어서,
    상기 커버(370)는 개폐 구조인 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  8. 제 5 항에 있어서,
    상기 노출 전극(352) 및 비노출 전극(351)에 전압 전원을 공급하는 제 2 전원 공급기(380); 및
    상기 제 1 전원 공급기(380) 및 제 2 전원 공급기(450)를 제어하는 제어기(390);를 포함하는 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  9. 제 5 항에 있어서,
    상기 커버(370)는 상기 전자력의 세기 조절에 따라 일단은 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 상기 제 2 간격을 갖고 타단은 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 상기 제 2 간격과 다른 제 4 간격을 갖는 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  10. 제 9 항에 있어서,
    상기 제 2 간격은 상기 노출 전극(352)의 높이에 2배한 값보다 작고, 상기 제 4 간격은 영(0)과 상기 노출 전극(352)의 높이에 1/2배한 값사이에 있는 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  11. 제 5 항에 있어서,
    상기 전자석부(400)는 상기 비노출 전극(351)의 하단에 위치하는 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  12. 제 5 항에 있어서,
    상기 커버(370)는,
    양단에 형성되는 지지대(710); 및
    상기 지지대(710)의 일면에 설치되는 자석부(720);를 포함하는 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  13. 제 1 항에 있어서,
    상기 커버(370)는 내열 절연체인 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  14. 제 5 항에 있어서,
    상기 커버(370)는 내열 절연체인 것을 특징으로 하는 플라즈마 구동기 보호 장치.
  15. 유전체 바디(340)내에 노출 전극(352)과 비노출 전극(351)이 일정한 간격으로 배치하는 단계;
    상기 유전체 바디(340)의 양단면에 벽 부재(360)를 배치하는 단계; 및
    상기 노출 전극(352)이 외부물질에 노출되지 않도록 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 제 1 간격으로 이격되게 커버(370)를 배치하는 단계;
    를 포함하는 것을 특징으로 하는 플라즈마 구동기 보호 장치의 조립 방법.
  16. 유전체 바디(340)내에 노출 전극(352), 비노출 전극(351) 및 전자석부(400)를 서로 일정한 간격으로 배치하는 단계;
    상기 유전체 바디(340)의 양단면에 벽 부재(360)를 배치하는 단계; 및
    상기 노출 전극(352)이 외부물질에 노출되지 않도록 상기 유전체 바디(340) 및 벽 부재(360)의 표면으로부터 제 1 간격으로 이격되게 커버(370)를 배치하는 단계;를 포함하며,
    상기 전자석부(400)는 전자력의 세기 조절을 통해 상기 커버(370)를 개폐하는 것을 특징으로 하는 플라즈마 구동기 보호 장치의 조립 방법.
PCT/KR2018/004571 2017-11-13 2018-04-19 플라즈마 구동기 보호 장치 및 이의 조립 방법 WO2019093604A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170150393A KR101860686B1 (ko) 2017-11-13 2017-11-13 플라즈마 구동기 보호 장치 및 이의 조립 방법
KR10-2017-0150393 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019093604A1 true WO2019093604A1 (ko) 2019-05-16

Family

ID=62781002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004571 WO2019093604A1 (ko) 2017-11-13 2018-04-19 플라즈마 구동기 보호 장치 및 이의 조립 방법

Country Status (2)

Country Link
KR (1) KR101860686B1 (ko)
WO (1) WO2019093604A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102603044B1 (ko) * 2018-11-16 2023-11-16 현대자동차주식회사 디스크브레이크의 마찰재 마모 분진 포집장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080058405A (ko) * 2005-10-17 2008-06-25 벨 헬리콥터 텍스트론, 인크. 수직 이착륙 항공기의 날개, 나셀 및/또는 동체에 항력감소를 위한 플라즈마 액튜에이터
KR20110120298A (ko) * 2009-02-17 2011-11-03 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. 비열성 플라즈마 생성을 위한 전극 배열
KR101381872B1 (ko) * 2012-10-19 2014-04-07 한국철도기술연구원 공기 유동 제어를 위한 표면부착용 플라즈마 발생 필름
KR20140050478A (ko) * 2012-10-19 2014-04-29 한국철도기술연구원 철도차량용 공기저항 감소장치
JP5483830B2 (ja) * 2007-05-25 2014-05-07 ザ・ボーイング・カンパニー キャビティ上の気流を制御する方法および流れ制御システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637455B2 (en) 2006-04-12 2009-12-29 The Boeing Company Inlet distortion and recovery control system
US8235072B2 (en) 2007-05-08 2012-08-07 University Of Florida Research Foundation, Inc. Method and apparatus for multibarrier plasma actuated high performance flow control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080058405A (ko) * 2005-10-17 2008-06-25 벨 헬리콥터 텍스트론, 인크. 수직 이착륙 항공기의 날개, 나셀 및/또는 동체에 항력감소를 위한 플라즈마 액튜에이터
JP5483830B2 (ja) * 2007-05-25 2014-05-07 ザ・ボーイング・カンパニー キャビティ上の気流を制御する方法および流れ制御システム
KR20110120298A (ko) * 2009-02-17 2011-11-03 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. 비열성 플라즈마 생성을 위한 전극 배열
KR101381872B1 (ko) * 2012-10-19 2014-04-07 한국철도기술연구원 공기 유동 제어를 위한 표면부착용 플라즈마 발생 필름
KR20140050478A (ko) * 2012-10-19 2014-04-29 한국철도기술연구원 철도차량용 공기저항 감소장치

Also Published As

Publication number Publication date
KR101860686B1 (ko) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2021172650A1 (en) Cooking appliance
WO2013129814A1 (ko) 차량용 히터
WO2019093604A1 (ko) 플라즈마 구동기 보호 장치 및 이의 조립 방법
WO2016190589A1 (ko) 조리기기
WO2011053033A2 (ko) 전계 구동 표시 장치
WO2012086902A1 (ko) 공기층을 구비하여 내열성 및 내충격성을 향상시킨 인덕션 렌지
US10332704B2 (en) Devices, systems, and methods for protection of switchgear against electrical arcs
WO2018139864A1 (en) Cooking apparatus
WO2017150897A1 (en) Cooking apparatus
WO2020122529A1 (en) Cooking appliance having cooling system
WO2020138637A1 (ko) 배전반의 환기 시스템
WO2023158123A1 (ko) 벤팅 가스의 압력에 따라 가스 배출 통로의 폭이 가변적으로 조절되는 배터리 모듈 및 이를 포함하는 배터리 팩
WO2019132237A1 (ko) 직류 차단기
WO2019172515A1 (ko) 온도 편차가 개선된 이차전지의 활성화 공정을 위한 충방전 장치
WO2021172686A1 (ko) 저전압 플라즈마 이오나이저
WO2021112339A1 (ko) 회전형 셔터 구조를 갖는 배전반
WO2023075210A1 (ko) 퓨즈 및 그것의 제조 방법
CN217692315U (zh) 环保气体绝缘开关柜
WO2023191324A1 (ko) 대형 리니어 플라즈마 소스, 이를 이용한 대형 리니어 하전입자빔 소스 및 대형 리니어 하전입자빔 소스용 그리드
WO2022164058A1 (ko) 단열 패드를 포함하는 이차전지 충방전 시스템 및 이를 이용한 이차전지 충방전 시스템의 온도 제어방법
WO2017213434A1 (en) Packing member and cooking apparatus having the same
WO2018212377A1 (ko) 엑스레이 튜브
WO2018043870A1 (ko) 방사선 차폐형 엑스선 이오나이저
WO2009093882A2 (ko) 쉐도우 마스크 및 이를 이용한 코팅 방법
WO2022270938A1 (ko) 광 이오나이저

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875569

Country of ref document: EP

Kind code of ref document: A1