WO2019093073A1 - 呼吸音響装置 - Google Patents

呼吸音響装置 Download PDF

Info

Publication number
WO2019093073A1
WO2019093073A1 PCT/JP2018/038267 JP2018038267W WO2019093073A1 WO 2019093073 A1 WO2019093073 A1 WO 2019093073A1 JP 2018038267 W JP2018038267 W JP 2018038267W WO 2019093073 A1 WO2019093073 A1 WO 2019093073A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
mouthpiece
airway
respiratory
air
Prior art date
Application number
PCT/JP2018/038267
Other languages
English (en)
French (fr)
Inventor
一平 相馬
サンフォード エリオット ホーキンス
Original Assignee
株式会社アコースティックイノベーションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アコースティックイノベーションズ filed Critical 株式会社アコースティックイノベーションズ
Priority to EP18875552.4A priority Critical patent/EP3708209B1/en
Priority to KR1020207011644A priority patent/KR102193730B1/ko
Priority to US16/761,791 priority patent/US11357938B2/en
Priority to CN201880071946.3A priority patent/CN111372638B/zh
Publication of WO2019093073A1 publication Critical patent/WO2019093073A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0006Accessories therefor, e.g. sensors, vibrators, negative pressure with means for creating vibrations in patients' airways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0488Mouthpieces; Means for guiding, securing or introducing the tubes
    • A61M16/049Mouthpieces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0866Passive resistors therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/18Exercising apparatus specially adapted for particular parts of the body for improving respiratory function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2206/00Characteristics of a physical parameter; associated device therefor
    • A61M2206/10Flow characteristics

Definitions

  • the present invention relates to a respiratory acoustic device for promoting the drainage of mucus attached to the lower respiratory tract of humans.
  • the respiratory acoustic apparatus according to the present invention resonates the noise due to rapid exhalation such as coughing with the cavity of the oral cavity and the lower airway, and the low frequency acoustic shock wave generated there resonates the lungs and airways of the user. It is made to vibrate.
  • the lower respiratory tract of humans is equipped with fine pili that vibrate at a frequency of 16-25 Hz (specifically, around 18 Hz) as a natural means for removing mucus.
  • the pilus captures foreign bodies and bacteria that have invaded the airways by secreted mucus and sends the mucus out of the airways.
  • pilus plays a role in keeping the airway clean and preventing infection and obstruction of the airway.
  • the vibrational frequency of this pilus is known as the cilia vibrating frequency (CBF), and is said to be the same frequency in most mammals from rats to elephants, not only humans.
  • CBF cilia vibrating frequency
  • the airway mucus changes its phase dramatically from mucus to fluid to thinner secretion by applying vibration with a frequency of 16 to 25 Hz, and it expels out of the airway. That is, the cilia cleans the airway by fluidizing the mucus by the vibration of its periodic movement and further discharging the fluidized mucus to the oral side by the periodic movement.
  • Mucus is pumped upward from the lower airways to the pharynx, mainly against gravity, and although it needs some viscosity, it can be more easily drained out of the airway if its mucous flow is high .
  • airway mucus excreted out of the airway is swallowed mainly unconsciously. If you are a healthy person, such a ciliary and mucus defense system works smoothly and is said to excrete and swallow 60 to 100 ml of airway mucus a day.
  • a doctor's examination of respiratory diseases may involve the sputum of the patient for use in the examination.
  • the patient can not exhale sputum with an effective quality for examination unless a certain amount and fluid lower airway secretion close to the pharynx. If it is not possible to take a sample for examination at the time of the hospital visit, take a sample at home when it is easy to take out sputum and return to the hospital. There is a need.
  • the action taken by the body consciously or reflexively to excrete airway mucus and ameliorate airway obstruction is a rapid exhalation, or coughing.
  • Cough is a reflex that consumes a lot of energy, and it is said that a single cough consumes 2 kcal of energy. It is also said that the flow velocity of air discharged by coughing reaches 160 km / hr or more.
  • the action of cough causes the airway to constrict, and the air present in it to flow out rapidly due to the contraction, exerting a force on the surface of the mucus layer to exfoliate, and promote drainage.
  • a device for sending a pulse of air pressure from the mouth to the lower airway has been known as one of the devices for artificially vibrating the lower airway of the user and promoting the discharge of mucus.
  • the pneumatic pulse could only reach from the mouth to the site where the airway was connected, and could not produce an effect on the lower layer part of the mucus layer and the airway after the obstruction.
  • a device for generating pneumatic pressure pulses by the user's exhalation but the user is required to have a high expiratory pressure that is required to generate sufficient pulses using this device. could only bring about an effect.
  • devices that artificially deliver pneumatic pressure pulses to the airways may generate air pressures that are high enough to damage the fragile air sacs of the lungs, which is dangerous for the user.
  • Patent Document 1 As another conventional device for artificially vibrating the user's lungs, one that blows air into the housing and vibrates the lead to generate low frequency audio around 18 Hz is known (Patent Document 1) 1).
  • this conventional device since this conventional device generates a sound wave by vibrating the lead and generates low frequency audio through the resonance of the sound wave and the body cavity, the case of little exhalation or a blowing technique is not appropriate. There is a drawback that it can not be effective if the user can not vibrate the lead.
  • this conventional device once converted the energy of exhalation into kinetic energy of the lead and then combines it with the acoustic energy, resulting in division of parts and loss of energy.
  • the length in order to set the sound wave generated by the device to a lower frequency side, the length needs to be about 30 cm, and the size may hinder the use and portability of an infant.
  • the present invention is a respiratory acoustic device for artificially transmitting vibrations to the lungs and airways to fluidize lower airway secretions and promoting their excretion, and users of a wider range of age groups and disease states are sufficient.
  • An object of the present invention is to provide a device which can be easily operated so as to exert its effect and which is smaller in size and easier to carry.
  • the inventors of the present invention conducted intensive studies on means for achieving the above object, and as a result of noise generated by rapid exhalation such as a user's cough caused Helmholtz resonance with the cavity of the oral cavity and lower airway, resulting in low
  • a hollow housing is provided with a mouthpiece, a part of the housing is a reflection end, and another part is an open end, and the exhalation blown from the mouthpiece is reflected by the reflection end of the housing to the open end.
  • the inventors of the present invention have found that according to this mechanism, anyone can easily operate and the size of the entire device can be reduced, and the present invention has been completed.
  • the present invention has the following configuration.
  • the present invention relates to a respiratory acoustic device 1.
  • the respiratory acoustic device 1 is a device for resonating Helmholtz resonance of the noise due to rapid exhalation such as coughing with the cavity of the oral cavity and lower airway, and vibrating the user's lungs and airways with the low frequency acoustic shock wave generated there. It is.
  • the respiratory acoustic device 1 comprises a housing 10 and a mouthpiece 20.
  • the housing 10 and the mouthpiece 20 may be integrally molded or may be configured as separate members.
  • the housing 10 has a hollow 11.
  • the mouthpiece 20 has an air passage 21 communicating with the hollow 11 of the housing 10.
  • the housing 10 also has a reflective end 12 and an open end 13.
  • the reflective end 12 of the housing 10 reflects air blown from the mouthpiece 20.
  • the "reflecting end” is an end at which fixed end reflection of air pressure occurs.
  • the reflective end 12 may be a completely closed end or an end where one or more openings are partially formed.
  • the open end 13 of the housing 10 does not have an air flow blocking element at its end, so that the air blown from the mouthpiece 20 is released. As a result, at least a portion of the exhalation blown from the mouthpiece 20 is reflected at the reflective end 12 of the housing 10 and then escapes to the open end 13, at which time the air turbulence generated inside the housing 10 occurs.
  • Helmholtz resonance is a phenomenon in which air inside the container having an opening plays a role as a spring and resonates to generate sound.
  • the hollow 11 of the housing 10 and the user's mouth and lower airway function as the above-mentioned "container".
  • the housing 10 is preferably cylindrical.
  • the tubular shape is an elongated shape having two ends, and means a shape in which the hollow 11 penetrates from one end to the other end.
  • the cylindrical shape includes a cylindrical shape, a triangular cylindrical shape, a square cylindrical shape, and other polygonal cylindrical shapes.
  • the cylindrical housing 10 is formed linearly, it may be curved or bent.
  • One end of the cylindrical housing 10 is a reflecting end 12, and the other end is an open end 13.
  • the mouthpiece 20 is preferably provided between the reflective end 12 and the open end 13 of the cylindrical housing 10.
  • the inner diameter cross-sectional area of the air passage 21 of the mouthpiece 20 is preferably 0.64 to 9 cm 2 .
  • the inner diameter cross-sectional area of the mouthpiece 20 is large as described above Is preferred.
  • the air passage 21 of the mouthpiece 20 and the hollow 11 of the housing 10 preferably have the same cross section. That is, it is preferable that the cross-sectional shapes of the air passage 21 of the mouthpiece 20 and the hollow 11 of the housing 10 be the same, and their inner diameter cross-sectional areas be substantially equal. In addition, if the error of the inner diameter cross-sectional area of both is ⁇ 5%, it is considered as "the same cross section".
  • the inside diameter cross-sectional area S [cm 2 ] of the open end 13 of the housing 10 and the air blown from the mouthpiece 20 are reflected by the reflective end 12 of the housing 10
  • the total value l [cm] of the length of the passage in the device before leaving is designed to satisfy the relationship represented by the following equation. [formula]
  • f is a frequency of 16 to 25 Hz
  • c is a sound velocity of 35000 cm / s
  • V is a total lung volume of 1500 to 9000 ml.
  • the total lung volume V may be set according to the user who uses the respiratory acoustic device 1. For example, the total lung volume V is about 5500 to 6000 ml for adult males, 4500 to 5500 ml for adult females, and about 1500 ml to 2500 ml for children.
  • the reflective end 12 of the housing 10 may have no opening, may have one or more openings, or adjust the opening area It may have a possible mechanism.
  • the total opening area of the reflective end 12 is preferably set to 75% or less of the opening cross-sectional area of the open end 13 of the housing 10.
  • the respiratory acoustic apparatus 1 of the present invention it is possible to artificially vibrate the user's lung and airway more easily, and to change the viscosity of the lung and airway mucus.
  • anyone can use this device to remove lung and airway mucus and ameliorate the obstruction.
  • a sputum sample can be easily collected from the user at the time of diagnosis by a doctor.
  • the respiratory acoustic device 1 of the present invention causes low frequency acoustic shock waves generated by causing Helmholtz resonance of noise generated by rapid exhalation such as coughing of the user with cavities of the oral cavity and lower airways. Change the viscosity of the mucus in the lungs and airways and encourage the mucus to drain from the lungs.
  • coughing is what the body consciously or reflexively does to improve airway obstruction.
  • the action of cough itself is only contraction of the airway and exhalation of air in the airway, and it does not change the viscosity of mucus and only exerts force on the surface of the mucus layer, so that hardened mucus is discharged out. The effect is very limited to ameliorate airway obstruction.
  • the living body consumes about 2 kcal of energy in one coughing.
  • the flow velocity of air discharged by coughing is said to be 160 km / hr or more.
  • coughing is accompanied by loud noises that occur in the airways. If any of these energies can be used to efficiently vibrate and expel lung and airway mucus, it is extremely effective in improving the user's condition.
  • the rapid exhalation due to cough is taken in the hollow housing 10 such as a pipe through the mouthpiece 20, and the noise of cough itself generated in the airway and the air flowing inside the housing 10 are swirled.
  • noise generated by generating vibration causes Helmholtz resonance with the cavity formed by the oral cavity and the lower airway.
  • the noise of the energy of the cough and its exhalation are directly coupled to the acoustic energy to generate a low frequency acoustic shock wave, and energy loss is reduced, so a device of simple shape and small size Even then, the effect of mucus drainage can be sufficiently brought about.
  • Patent Document 1 it is not necessary to use other parts for generating sound waves or pulses such as leads or metal balls as in the conventional respiratory sound apparatus (Patent Document 1), and those parts
  • the energy required to exercise the movement is also unnecessary, so energy loss can be reduced and the structure of the device can be simplified.
  • the respiratory acoustic device 1 can provide acoustic resistance by providing appropriate resistance to the flow of air depending on the diameter of the hollow housing 10, the shape of the air passage, and the unevenness of the inner surface. It can create and increase the apparent volume of the oral and lower airways and support the generation of lower frequency sound waves. That is, considering the oral cavity and lung as a loudspeaker enclosure, the housing 10 of the present apparatus can be regarded as a port of a loudspeaker. In this way, by using acoustic coupling technology based on "Teel small" loudspeaker parameters, it is possible to support lower frequency sound than the original volume of the oral cavity and lower airway, like a bass reflex speaker.
  • This acoustic resistance allows the oral cavity and lower airways to behave as if they are operating in a much larger volume than that of themselves, with cough noise and noise generated in the device due to rapid exhalation blowing. Since it can resonate with the lower frequency component of the lower frequency component, a low frequency shock wave can be generated more efficiently and the effect of fluidizing mucus can be enhanced. Furthermore, the back pressure on the exhalation generated by this acoustic resistance acts to effectively transmit the low frequency acoustic shock wave to the lower airway.
  • the respiratory acoustic device 1 creates an acoustic resistance by giving resistance to the air flow in the housing 10 according to its shape, generating low frequency acoustic shock waves to the airway and lungs and Transmission can be performed more efficiently.
  • the noise generated in the housing 10 by the rapid exhalation due to cough and the cough noise generated in the airway increase in apparent volume due to the acoustic resistance.
  • Low frequency acoustic shock waves are generated to the airway and lungs by causing cavity and Helmholtz resonance of the oral cavity and lower airway that behave, and even with a more compact and simple structure, efficiently fluidize airway mucus, and It can promote the discharge of mucus.
  • FIG. 1 shows the overall structure of a respiratory acoustic apparatus according to an embodiment of the present invention.
  • FIG. 2 schematically shows how to use the respiratory acoustic device.
  • FIG. 3 shows a cross-sectional structure of a respiratory acoustic apparatus according to an embodiment of the present invention.
  • FIG. 4 shows a general equation for determining the resonant frequency of Helmholtz resonance.
  • FIG. 5 shows an example of a reflective end whose aperture area can be adjusted.
  • FIG. 1 shows a respiratory sound apparatus 1 according to an embodiment of the present invention.
  • the respiratory acoustic device 1 comprises a housing 10 having a hollow 11 and a mouthpiece 20 having an air passage 21 communicating with the hollow 11.
  • the housing 10 is formed in a cylindrical shape, and one end thereof is a reflection end 12 for reflecting air blown from the mouthpiece 20, and the other end is an open end 13 from which air blown from the mouthpiece 20 is released.
  • the reflective end 12 is an end of the housing 10 for blocking air flow and causing air flow reflection by sealing or arranging a cap with a small opening.
  • the open end 13 is the end of the housing 10 free of air flow blocking elements.
  • a cap 30 is detachably attached to the reflective end 12 of the housing 10. The cap 30 has no opening and completely closes the reflective end 12 when attached to the housing 10.
  • the housing 10 has a hollow 11 connecting the reflective end 12 and the open end 13 formed in a straight line, and the mouthpiece 20 is provided between the reflective end 12 and the open end 13. Further, the mouthpiece 20 is attached to the housing 10 such that the central axis of the hollow 11 of the housing 10 and the central axis of the air passage 21 of the mouthpiece 20 form a substantially right angle (85 to 95 degrees). Further, as shown in FIG. 1, it is preferable that the connection point between the housing 10 and the mouthpiece 20 be provided (offset) at a position offset from the center of the length of the housing 10. That is, in the example shown in FIG.
  • the distance from the mouthpiece 20 to the reflective end 12 of the housing 10 is set shorter than the distance from the mouthpiece 20 to the open end 13 of the housing 10.
  • the exhalation blown through the mouthpiece 20 is split into two hands in the housing 10 and reaches the reflective end 12 before it comes out of the open end 13 to cause reflection of the air flow, thereby enhancing the effect of reflection. Further resistance is given to the air flow, and the effect as acoustic resistance can be increased.
  • the housing 10 and the mouthpiece 20 are integrally molded, and only the cap 30 is configured as a separate member.
  • the material constituting the housing 10, the mouthpiece 20, or the cap 30 may be any material as long as it is difficult to allow air to flow and can generate an air flow in the housing 10, for example, plastic etc. Resins, paper, wood, flammable materials such as non-woven fabrics, glass and metals, etc. can be appropriately selected according to the cost and application.
  • FIG. 2 is a schematic view showing an example of how to use the respiratory acoustic device 1.
  • the user holds the housing 10 (preferably with both hands) and blows air into the mouthpiece 20 by rapid exhalation such as coughing while holding the mouthpiece 20 in the mouth.
  • the air blown into the housing 10 from the mouthpiece 20 by the rapid exhalation such as coughing first passes through the inside of the air passage 21 of the mouthpiece 20 and collides with the inner wall surface of the hollow 11 of the housing 10 to split in two directions.
  • the vortex is generated by the air flow that is vibrated by the friction with the inner surface of the housing 10 or the air flow whose angle changes along the shape of the convex portion at the connection point of the housing 10 and the mouthpiece 20 It is generated and its vortex produces noise.
  • the connection point between the housing 10 and the mouthpiece 20 is offset and one end of the housing 10 is the reflective end 12
  • the air flow is blocked at the reflective end 12 and the inside of the hollow 11 is It is reflected to the open end 13 on the other end side.
  • the restriction of the flow path by the reflecting end 12 creates a resistance to the flow of air blown into the housing 10, which acts as an acoustic resistance.
  • such a shape of the housing 10 allows the cavity of the oral and lower airways to behave like having a larger apparent volume, and can support lower frequency acoustic energy. Further, in the present invention, the air flow can be further resisted by giving unevenness to the surface of the inner wall of the hollow 11 of the housing 10. Furthermore, the back pressure on the exhalation generated by this acoustic resistance acts to effectively transmit the low frequency acoustic shock wave to the lower airway.
  • the air blown from the mouthpiece 20 passes through the reflecting end 12 and passes through the opening end 13 so that Helmholtz resonance is caused by the influence factor of the resonance phenomenon and The apparent length of the port (neck part: symbol l in FIG. 4) can be increased. This allows lower frequency resonance to occur.
  • the pressure inside the apparatus is increased by the improvement of the sealing property in the housing 10 by the reflecting end 12, the flow velocity of the air becomes faster, and the flow path of the air inside the pipe becomes more complicated. As a result, more noise is generated.
  • the noise in the device generated in this way and the noise of the cough itself generated in the airway cause the Helmholtz resonance with the cavity of the oral cavity and the lower airway.
  • the respiratory acoustic device 1 has an apparent volume increased by acoustic resistance, with noise generated inside the housing 10 due to rapid exhalation due to cough and noise itself from the airway being a sound source.
  • the cavity of the oral cavity and the lower airway which behaves can generate a low frequency acoustic shock wave to the airway and lungs by causing Helmholtz resonance, thereby fluidizing airway mucus and promoting drainage out of the airway.
  • the peak of the low frequency acoustic shock wave coupled by Helmholtz resonance is preferably around 18 Hz of the pilus oscillation frequency, but it does not have to be exactly the same. For example, if a low frequency sound of about 16 Hz to 25 Hz is generated, harmonics can produce effective vibrations similar to the ciliary frequency to the airway and lungs.
  • FIG. 3 shows the cross-sectional structure of the respiratory acoustic device 1.
  • a preferred example of various dimensions of the respiratory acoustic device 1 will be described with reference to FIG. However, the various dimensions are not limited to those described below.
  • the size of the air passage 21 of the mouthpiece 20 is made wide enough not to burden the user when the rapid exhalation is blown into the housing 10.
  • the diameter ⁇ Dm of the ventilation passage 21 is preferably 5 to 25 mm, and particularly preferably 10 to 20 mm.
  • the inner diameter cross-sectional area Sm of the air passage 21 of the mouthpiece 20 is preferably 0.64 to 9 cm 2 , and more preferably 0.80 to 5 cm 2 .
  • the inner diameter cross-sectional area Sm of the air passage 21 is most preferably 1 to 2 cm 2 close to the cross-sectional area of the human trachea.
  • the air passage 21 of the mouthpiece 20 By setting the air passage 21 of the mouthpiece 20 to such a size, it is possible to give a pressure fluctuation that causes the air in the oral cavity and the lower airway to resonate like a spring. Also, the back pressure generated by the acoustic resistance reaches the lower airway, and low frequency shock waves are efficiently transmitted. Furthermore, more preferably, by setting the width of the cross section of the air passage 21 to be 8 mm or more, the width of the air passage 21 can be secured so as to obtain the above-described effect.
  • the respiratory acoustic device 1 of the present invention it is preferable to make the cross section of the ventilation passage 21 of the mouthpiece 20 and the hollow 11 of the housing 10 the same cross section. Specifically, at least the inside diameter cross sectional area Sm of the air passage 21 of the mouthpiece 20 and the inside diameter cross sectional area S of the open end 13 of the housing 10 become equal, and the diameter ⁇ Dm of the air passage 21 of the mouthpiece 20 and the housing 10 The diameter ⁇ Dp of the open end 13 of the same becomes equal.
  • the respiratory acoustic device 1 can more effectively provide a function of vibrating air inside like a spring as a continuous port in Helmholtz resonance.
  • the entire apparatus can be manufactured in a simple process using a small number of types of materials.
  • this apparatus can be easily manufactured by cutting one pipe into two, making a hole in one lateral wall, and inserting the other end into the hole.
  • the air passage 21 and the hollow 11 have the same cross section, it is possible to mass-produce the present apparatus at low cost. It is expected that such manufacturing methods may be taken, especially in developing countries with low resources.
  • f is a frequency of 16 to 25 Hz
  • c is a sound velocity of 35000 cm / s
  • V is a total lung volume of 1500 to 9000 ml.
  • this equation does not take into account factors such as the material of the cavity due to the lower airway and the apparent volume expansion due to the acoustic resistance, so it does not specify the frequency of the low frequency shock wave that is actually occurring. Therefore, the dimensional range of the shape is provided as an outline.
  • the size range to which the above equation is applied is considered to be suitable for reference in determining the shape of the device. .
  • V is the total volume of the container
  • S is the internal diameter cross-sectional area of the opening
  • l is the length of the port leading to the interior of the container.
  • the resonance frequency obtained by Helmholtz resonance is 19.793 Hz (sound speed c is 35000 cm / Calculated in s).
  • the length from the mouthpiece 20 to the reflective end 12 of the housing 10 is indicated by a symbol Ls
  • the length from the reflective end 12 to the open end 13 of the housing 10 is indicated by a symbol L.
  • the distance from the mouthpiece 20 to the reflective end 12 of the housing 10 is preferably set shorter than the distance from the mouthpiece 20 to the open end 13 of the housing 10.
  • the length Ls from the mouthpiece 20 to the reflective end 12 is preferably 10 to 45% of the total length L of the housing 10, and more preferably 15 to 40%. preferable. This allows the exhalation blown through the mouthpiece 20 to reach the reflective end 12 and cause a reflection of the air flow prior to leaving the open end 13 of the housing 10.
  • the angle between the central axis of the air passage 21 of the mouthpiece 20 and the central axis of the hollow 11 of the housing 10, which is the angle on the reflective end 12 side, is indicated by the symbol ⁇ .
  • the angle ⁇ is preferably 90 degrees, but may be in the range of 70 to 110 degrees or 80 to 100 degrees.
  • the angle ⁇ may be set to a value exceeding 90 degrees.
  • the angle ⁇ may be 95 to 130 degrees or 100 to 120 degrees.
  • FIG. 5 shows a modification of the reflective end 12 of the housing 10.
  • the reflecting end 12 of the housing 10 has one or more openings and has a mechanism capable of adjusting the area of the openings.
  • the reflecting end 12 is configured by superposing two lid members each having a plurality of holes. Then, by relatively rotating one of the two lid members, when the positions of the holes of both lid members coincide, the opening leading to the inside of the housing 10 is opened, and the positions of the holes of both lid members do not match At the same time, the opening leading to the inside of the housing 10 is closed.
  • the area of the opening can be finely adjusted by adjusting the rotation angle of the lid member.
  • the reflecting end 12 is configured by a mechanism such as an aperture of a camera.
  • a mechanism such as an aperture of a camera.
  • a plurality of wing members are provided around the opening, and when each wing member extends toward the center of the opening, the opening is closed and each wing member is retracted toward the outer edge of the reflecting end 12 And the opening is to be opened.
  • the area of the opening can be finely adjusted by adjusting the amount of extension of each wing member.
  • the total opening cross-sectional area of the reflective end 12 is suitably 75% or less of the opening cross-sectional area of the open end 13, and is particularly preferably 50% or less or 30% or less.
  • the resonant frequency of the respiratory acoustic device 1 can be finely adjusted by providing the opening at the reflection end 12 or adjusting the opening cross-sectional area thereof. Also, the resistance to exhalation can be adjusted to make blowing easier. Therefore, by adjusting the opening cross-sectional area at the reflecting end 12, it is possible to set the operation expiratory pressure and the resonance frequency of the device according to the user's age, respiratory function, and symptoms, and to bring about the appropriate effects. It can be adjusted.
  • the respiratory acoustic device 1 may be configured to be foldable or to be split and assembled.
  • the present invention is not limited to the case where the respiratory acoustic device 1 is made of one type of material, and the entire device may be disposable by combining several materials, or a part of the device (for example, the mouthpiece 20) may be disposable. You can also. It is also possible to design such that the housing 10 can be opened to facilitate cleaning after use.
  • the respiratory acoustic apparatus generates low-frequency acoustic shock waves in the airways and lungs using the method as described above to improve the clearance of lower airway mucus, and can be used in many fields. it can. That is, according to the present invention, the drainage of mucus can be promoted to improve the obstruction of the lower airway due to a disease, and the respiratory function can be improved. In addition, by improving the obstruction of the lower airway, antitussive action can be provided to prevent the patient's exhaustion and symptom deterioration. In addition, induction of the patient's displacement can help with the collection of sputum samples from the lower respiratory tract, which can contribute to the rapid diagnosis of tuberculosis and lung cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Emergency Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Engineering & Computer Science (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rehabilitation Therapy (AREA)
  • Otolaryngology (AREA)
  • Percussion Or Vibration Massage (AREA)
  • External Artificial Organs (AREA)

Abstract

【課題】人工的に肺及び気道に振動を送り込んで気道に付着した粘液を流動化してその排出を促すための呼吸音響装置を,容易に動作させることができ,持ち運びし易いものとする。 【解決手段】呼吸音響装置1は,中空11を有するハウジング10と,この中空11と連通する通気路21を有するマウスピース20とを備える。ハウジング10は,マウスピース20から吹き込まれた空気を反射する反射端12と,マウスピース20から吹き込まれた空気が抜ける開放端13とを有する。咳などの急激な呼気がマウスピース20を通じてハウジング10内に吹き込まれると,その呼気による雑音を口腔及び下気道の空洞と共鳴させ,そこで生じた低周波の音響衝撃波で使用者の肺と気道を振動させる。

Description

呼吸音響装置
 本発明は,ヒトの下気道に付着した粘液の排出を促進するための呼吸音響装置に関する。具体的に説明すると,本発明に係る呼吸音響装置は,咳などの急激な呼気による雑音を口腔及び下気道の空洞と共鳴させ,そこで生じた低周波の音響衝撃波で使用者の肺と気道を振動させるものである。
 ヒトの下気道には,粘液を除去するための自然な手段として,16~25Hz(具体的には18Hz付近)の周波数で振動する微小な線毛が備えられている。線毛は,分泌される粘液により気道に侵入した異物や細菌を捕捉して,その粘液を気道の外に送り出す。このように,線毛は,気道をきれいに保ち,感染症や気道の閉塞を防ぐ役割を果たしている。
 この線毛の振動周波数は,線毛振動周波数(CBF:Cilia Beating Frequency)として知られ,ヒトに限らず,ネズミから象に至るまでほとんどの哺乳類において同じ周波数であると言われている。気道粘液は,16~25Hzの周波数の振動が加えられることよって,粘体から流体,更に薄い分泌物へと相が劇的に変化し,気道外への排出が促される。すなわち,線毛は,その周期的運動の振動により粘液を流動化するとともに,さらにその周期的運動によって流動化された粘液を口腔側に送り出すことによって,気道のクリーニングを行っている。粘液は下気道から咽頭に至るまで,主に重力に逆らって上方に送り出されるため,ある程度の粘性は必要であるものの,その粘液の流動性が高ければより容易に気道外に排出することができる。通常,気道外に排出された気道粘液は主に無意識に飲み込まれている。健康なヒトであれば,このような線毛及び粘液による生体防御システムはスムーズに機能しており,一日に60~100mlほどの気道粘液を排出し,飲み込んでいると言われている。
 しかしながら,年齢や疾病による機能低下や,アレルギーや空気中の塵,あるいは疾病などによる炎症反応の増大などにより,線毛及び粘液による生体防御システムが正常に機能しなくなることがある。例えば,気道粘液が過剰に分泌されて流動化されにくくなったり,線毛の運動性能が低下して粘液に十分な相変化を起こせず粘液がうまく排出されなかったりする場合がある。その場合には粘液が気道を閉塞し呼吸機能を低下させることがある。そこで,人工的に気道に振動を発生させ,粘液に必要な相変化を起こし,線毛の運動を補助して粘液の排出を促すことができれば,閉塞した気道のクリアランスを改善することができる。
 また,医師による呼吸器系疾患の検査では,検査に用いるために患者の喀痰が採取される場合がある。しかし,喀痰の採取時に,一定量以上でかつ流動性の高い下気道分泌物が咽頭に近いところにないと,患者は検査に有効な品質を持つ喀痰を吐き出すことができない。来院時に検査用サンプルを採取できない場合には,痰を出しやすいときに自宅で採取して再来院したり,それでも採取できない場合は,胃液採取や気管支鏡による検査など,より侵襲的な方法を用いる必要がある。そこで,来院時に短時間で検査用喀痰を採取できるように人工的に気道に振動を発生させ,一定量以上でかつ流動性の高い喀痰を咽頭付近に誘導することができれば,これらの診断の時間を短縮し,また侵襲的方法をとらずにすむため,患者の負担を軽減することができる。
 さらに,気道粘液を排出して気道の閉塞を改善するために,生体が意識的にもしくは反射的に行う行為が,急激な呼気の排出,すなわち咳である。咳は多くのエネルギーを消耗する反射運動で,一回の咳嗽で2kcalのエネルギーを消費すると言われている。また,咳によって吐出される空気の流速は,時速160km以上に達するとも言われている。しかしながら,咳の作用は気道を収縮させるとともに,その内に存在する空気をその収縮により急激に流出させ,表面から粘液層に力を加えて剥離させ,排出を促すだけである。このため,固く厚くなった粘液を外に排出して気道の閉塞を改善するためには,粘液の粘性を変化させず,粘液層の表面にしか力の及ばない咳の効果はごく限定的であると言わざるをえない。このため,咳を行っても粘液が排出されず,過剰に咳を繰り返し,体力ばかり奪われて症状を悪化させる例が少なくない。
特許第4025293号公報
 ところで,従来から,使用者の下気道を人工的に振動させて粘液の排出を促す装置のひとつとして,口から下気道へ空気圧のパルスを送り込む装置が知られている。しかしながら,この装置では,空気圧パルスが口から気路が繋がっている部位にしか到達せず,粘液層の下層部分や閉塞した先の気道へは効果をもたらすことができなかった。また,使用者の呼気によって空気圧パルスを発生させる装置も知られているが,この装置を利用して十分なパルスを発生させるためには必要とされる呼気圧が高く,ごく限られた使用者にしか効果をもたらすことができなかった。さらに,人工的に空気圧のパルスを気道に送り込む装置は,肺の脆弱な空気嚢を損傷する危険性がある程の高い空気圧を生成する場合があり,使用者に危険が伴うものであった。
 また,使用者の肺を人工的に振動させる別の従来の装置として,ハウジング内に空気を吹き込み,リードを振動させることにより18Hz付近の低周波オーディオを発生させるものが知られている(特許文献1)。しかしながら,この従来装置は,リードを振動させることにより音波を発生させ,その音波と体腔との共鳴を通じて低周波オーディオを発生させるものであるため,呼気が少ない場合や,吹き込みのテクニックが適切でなく使用者がリードを振動させられない場合には効果をもたらたすことができないという欠点があった。さらに,この従来装置は,音響学的な観点から言えば,呼気のエネルギーを一旦リードの運動エネルギーに変えてから音響エネルギーと結合させるため,部品の分割およびエネルギーのロスが生じていた。また,この従来装置では,装置によって発生する音波をより低周波側とするために,その長さを約30cm程度とする必要があり,そのサイズが幼児の使用や持ち運びの妨げとなることもあった。
 そこで,本発明は,人工的に肺及び気道に振動を送り込んで下気道分泌物を流動化し,その排出を促すための呼吸音響装置であって,より幅広い年齢層および病態の使用者が十分な効果を発揮できるように容易に動作させることができ,かつ,サイズがより小さく持ち運びし易いものを提供することを目的とする。
 本発明の発明者らは,上記目的を達成する手段について鋭意検討した結果,使用者の咳などの急激な呼気により発生する雑音を口腔及び下気道の空洞とヘルムホルツ共鳴させ,それによって生じた低周波の音響衝撃波で肺及び気道の粘液の粘性を変化させて,肺から粘液を排出させるという知見を得た。そして,そのための装置として,中空のハウジングにマウスピースを設け,ハウジングの一部を反射端とし別部を開放端として,マウスピースから吹き込まれた呼気がハウジングの反射端で反射し開放端へと抜けるという機構を持つものを開発した。本発明の発明者らは,この機構によれば,誰でも容易に動作させることができ,かつ装置全体のサイズを小型化することができることを見いだし,本発明を完成させた。具体的に説明すると,本発明は以下の構成を有する。
 本発明は,呼吸音響装置1に関する。本発明の呼吸音響装置1は,咳などの急激な呼気による雑音を口腔及び下気道の空洞とヘルムホルツ共鳴させ,そこで生じた低周波の音響衝撃波で使用者の肺と気道を振動させるための装置である。呼吸音響装置1は,ハウジング10とマウスピース20とを備える。なお,ハウジング10とマウスピース20は一体成型されたものであってもよいし,別部材で構成されていてもよい。ハウジング10は,中空11を有する。マウスピース20は,このハウジング10の中空11と連通する通気路21を有する。また,ハウジング10は,反射端12と開放端13を有している。ハウジング10の反射端12は,マウスピース20から吹き込まれた空気を反射する。なお,「反射端」とは,空気圧の固定端反射が起こる端部である。反射端12は,完全に閉塞された端部であってもよいし,一又は複数の開口が部分的に形成された端部であってもよい。他方で,ハウジング10の開放端13は,端部に空気流を阻害する要素を持たず,マウスピース20から吹き込まれた空気が抜けるようになっている。これにより,マウスピース20から吹き込まれた呼気の少なくとも一部は,ハウジング10の反射端12で反射し,その後開放端13に抜けるようになり,その際にハウジング10の内部で発生した空気の乱流もしくは渦による雑音と,使用者の気道で発生する咳そのものの雑音とが,口腔及び下気道が形成する空洞とヘルムホルツ共鳴を起こすようになる。なお,「ヘルムホルツ共鳴」とは,開口部を持った容器の内部にある空気がばねとしての役割を果たし共鳴(共振)することで音を発生する現象である。本発明に係る装置においては,ハウジング10の中空11及び使用者の口腔および下気道が上記の“容器”として機能する。
 本発明に係る呼吸音響装置1において,ハウジング10は筒状であることが好ましい。筒状とは,2つの端部を有する細長い形状であって,一端部から他端部まで中空11が貫通している形状を意味する。筒状には,円筒状,三角筒状,四角筒状,その他の多角筒状が含まれる。また,筒状のハウジング10は,直線的に形成されたものであることが好ましいが,湾曲又は屈曲したものであってもよい。筒状のハウジング10は,一端が反射端12となり,他端が開放端13となる。また,本発明では,マウスピース20は,筒状のハウジング10の反射端12と開放端13の間に設けられていることが好ましい。
 本発明に係る呼吸音響装置1において,マウスピース20の通気路21の内径断面積は,0.64~9cmであることが好ましい。このように,マウスピース20の内径断面積を比較的大きくすることで,咳などの急激な呼気をハウジング10内に吹き込むことが容易になる。本発明は,基本的に使用者の咳のエネルギーを利用して低周波の音響衝撃波を効率的に発生させることを想定したものであるため,マウスピース20の内径断面積は上記のように大きいことが好ましい。
 本発明に係る呼吸音響装置1において,マウスピース20の通気路21とハウジング10の中空11は同断面であることが好ましい。つまり,マウスピース20の通気路21とハウジング10の中空11の断面形状が同一であり,かつ,それらの内径断面積が略等しいことが好ましい。なお,両者の内径断面積の誤差が±5%までであれば「同断面」とする。
 本発明に係る呼吸音響装置1は,ハウジング10の開放端13の内径断面積S[cm]と,マウスピース20から吹き込まれた空気がハウジング10の反射端12で反射して開放端13から抜けるまでの装置内の通り道の長さの合計値l[cm]は,以下の式に表される関係を満足するように設計されていることが好ましい。
[式]
Figure JPOXMLDOC01-appb-I000002
 ここで,fは周波数16~25Hzであり,cは音速35000cm/sであり,Vは肺の全肺気量1500~9000mlである。
 このように,ハウジング10の開放端13の内径断面積Sと空気の通り道の長さlとを設計することにより,ヘルムホルツ共鳴によって,周波数16~25Hzの低周波の音響衝撃波を効率よく発生させることができる。このような周波数帯の衝撃波を気道内に発生させることで,気道粘液の相が粘体から流体,更に薄い分泌物へと変化するため,粘体の気道外への排出を促進できる。なお,全肺気量Vは,呼吸音響装置1を使用する使用者に合わせて設定すればよい。例えば,肺の全肺気量Vは,成人男性では5500~6000ml,成人女性では4500~5500ml,子供では1500ml~2500ml程度であるとされている。
 本発明に係る呼吸音響装置1において,ハウジング10の反射端12は,開口を有しないものであってもよいし,一又は複数の開口を有するものであってもよいし,あるいは開口面積を調整可能な機構を有するものであってもよい。ただし,ハウジング10の反射端12に開口が存在する場合であっても,反射端12の開口総断面積は,ハウジング10の開放端13の開口断面積の75%以下に設定することが好ましい。
 本発明に係る呼吸音響装置1によれば,より簡便に使用者の肺及び気道を人工的に振動させ,肺及び気道の粘液の粘性を変化させることができる。従って,誰でもこの装置を用いて肺及び気道の粘液を除去し,その閉塞を改善することができる。また,医師による診断の際に,使用者から喀痰サンプルを容易に採取することができる。
 より具体的に説明すると,本発明の呼吸音響装置1は,使用者の咳などの急激な呼気により発生する雑音を口腔及び下気道の空洞とヘルムホルツ共鳴させ,それによって生じた低周波の音響衝撃波で肺及び気道の粘液の粘性を変化させ,肺から粘液を排出することを促す。先に述べたとおり,咳は気道の閉塞を改善しようと生体が意識的もしくは反射的に行うものである。しかしながら,咳そのものの作用は気道の収縮および気道内の空気の吐出のみであり,粘液の粘性を変化させず,粘液層の表面にしか力が及ばないため,固くなった粘液を外に排出して気道の閉塞を改善するためには,効果はごく限定的である。ここで,咳の持つエネルギーに着目すると,生体は一回の咳嗽で約2kcalのエネルギーを消耗しているという。また,咳によって吐出される空気の流速は,時速160km以上とも言われている。さらに,咳には気道で発生する大きな雑音が伴う。これらのエネルギーのうちいくらかでも肺及び気道の粘液を効率的に振動させ,排出を促すためのものとして用いることができれば,使用者の症状を改善するのに極めて有効である。
 本発明の呼吸音響装置1では,パイプのような中空のハウジング10内にマウスピース20を通じて咳による急激な呼気を取り込み,気道で発生する咳そのものの雑音と,そのハウジング10内部を流れる空気が渦もしくは振動を発生させることによって生じた雑音とが,口腔及び下気道が形成する空洞とヘルムホルツ共鳴を起こすようにする。これにより,咳の持つエネルギーである雑音とその呼気とが直接的に音響エネルギーへとカプリングして低周波の音響衝撃波が発生し,エネルギーロスがより少なくなるため,シンプルな形状で小さなサイズの装置であっても,粘液排出の効果を十分にもたらすことができる。すなわち,本発明によれば,従来の呼吸音響装置(特許文献1)のように,リードや金属製ボールなどの音波やパルスを発生させるための別の部品を用いる必要がなく,またそれらの部品を運動させるエネルギーも不要になるため,エネルギーロスがより少なく,また装置の構造をよりシンプルなものとすることができる。
 また,本発明に係る呼吸音響装置1は,その中空のハウジング10の直径や,空気の通り道の形状,内部表面の凹凸などによって,空気の流れに対して適切な抵抗を備えることによって音響抵抗を作り出し,口腔及び下気道の見かけの容積を増大させ,より低周波の音波の発生をサポートすることができる。すなわち,口腔及び肺をラウドスピーカー封入容器として考えると,本装置のハウジング10をラウドスピーカーのポートのように見立てることができる。このように「ティールスモール」ラウドスピーカーパラメーターに基づく音響結合技術を用いることにより,バスレフ型スピーカーのように,口腔及び下気道の本来の容積よりも,より低周波の音をサポートすることができる。この音響抵抗により,口腔及び下気道は,それのみよりも遥かに大きな容積で動作しているかのように振る舞うことができ,咳の雑音と,急激な呼気の吹き込みにより装置内で生じた雑音のうちのより低周波成分と共鳴することができるので,低周波の衝撃波をより効率的に発生させ,粘液を流動化させる効果を高めることができる。さらに,この音響抵抗によって生じる呼気に対する背圧が,低周波の音響衝撃波を下気道に効果的に伝達するように作用する。このように,本発明に係る呼吸音響装置1は,その形状によってハウジング10内の空気流れに対して抵抗を与えることとで音響抵抗を作り出し,気道及び肺への低周波の音響衝撃波の発生および伝達をより効率的に行うことができる。
 以上のように,本発明による呼吸音響装置1は,咳による急激な呼気によってハウジング10内部で発生した雑音と,気道で生じた咳そのもの雑音が,音響抵抗によって見かけ上の容積が増したように振る舞う口腔及び下気道の空洞とヘルムホルツ共鳴を起こすことによって,気道及び肺へ低周波の音響衝撃波を発生せしめ,よりコンパクトでシンプルな構造であっても,気道粘液を効率的に流動化させ,その粘液の排出を促すことができる。
図1は,本発明の一実施形態に係る呼吸音響装置の全体構造を示している。 図2は,呼吸音響装置の使用方法を模式的に示している。 図3は,本発明の一実施形態に係る呼吸音響装置の断面構造を示している。 図4は,ヘルムホルツ共鳴の共振周波数を求める一般的な方程式を示している。 図5は,開口面積を調節可能な反射端の例を示している。
 以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜変更したものも含む。
 なお,本願明細書において,「A~B」とは「A以上B以下」であることを意味する。
 図1は,本発明の一実施形態に係る呼吸音響装置1を示している。図1に示されるように,呼吸音響装置1は,中空11を有するハウジング10と,この中空11に連通する通気路21を有するマウスピース20とを備える。ハウジング10は,円筒状に構成されており,その一端がマウスピース20から吹き込まれた空気を反射する反射端12となり,その他端がマウスピース20から吹き込まれた空気が抜ける開放端13となっている。反射端12は,密閉したり,あるいは小さな開口のあるキャップを配置することで,空気の流れを阻害して空気流の反射を起こすためのハウジング10の端部である。また,開放端13は,空気流を阻害する要素のないハウジング10の端部である。本実施形態では,ハウジング10の反射端12には,キャップ30が着脱可能に取り付けられている。キャップ30は,開口を有さないものであり,ハウジング10に取り付けられている状態において反射端12を完全に閉塞する。
 本実施形態において,ハウジング10は,反射端12と開放端13を繋ぐ中空11が一直線状に形成されており,これらの反射端12と開放端13の間にマウスピース20が設けられている。また,ハウジング10の中空11の中心軸とマウスピース20の通気路21の中心軸とが略直角(85~95度)をなすように,ハウジング10にマウスピース20が取り付けられている。また,図1に示されるように,ハウジング10とマウスピース20の接続点は,ハウジング10の長さの中央からずれた位置に設けられている(オフセットされている)ことが好ましい。すなわち,図1に示した例では,マウスピース20からハウジング10の反射端12までの距離が,マウスピース20からハウジング10の開放端13までの距離よりも短く設定されている。これにより,マウスピース20を通じて吹き込まれた呼気が,ハウジング10内で二手に分かれ,開放端13から抜けるよりも先に反射端12に到達して空気流れの反射を起こすため,反射の効果が高まり空気流れにさらに抵抗が与えられて,音響抵抗としての効果を大きくすることができる。
 本実施形態では,ハウジング10とマウスピース20が一体成型されており,キャップ30のみが別部材で構成されている。ハウジング10や,マウスピース20,あるいはキャップ30を構成する素材は,空気を通しにくくハウジング10内に空気の流れを生むことのできるものであればどのようなものであってもよく,例えばプラスティックなどの樹脂,紙や木,不織布などの可燃性素材,ガラスや金属などをコストや用途に応じて適宜選択することができる。
 図2は,呼吸音響装置1の使用方法の例を示した模式図である。図2に示されるように,使用者はハウジング10を把持し(好ましくは両手で),マウスピース20を口で咥えた状態で,咳などの急激な呼気によってマウスピース20内に空気を吹き込む。咳などの急激な呼気によってマウスピース20からハウジング10内に吹き込まれた空気は,まずマウスピース20の通気路21内部を通り,ハウジング10の中空11の内壁面にぶつかって二方向に別れる。この際,ハウジング10内部表面との摩擦で振動を起こした空気流や,ハウジング10とマウスピース20の接続点にある凸部にその形状に沿って角度が変わった空気流がぶつかることによって渦が発生し,その渦が雑音を作り出す。また,上述のようにハウジング10とマウスピース20の接続点はオフセットされており,ハウジング10の一端は反射端12となっているため,空気の流れは反射端12において堰き止められるとともに中空11内部へと反射して,他端側の開放端13へと向かう。このような反射端12による流路の制限により,ハウジング10内に吹き込まれた空気の流れに対して抵抗が生まれ,これが音響抵抗として作用する。また,このようなハウジング10の形状は,口腔及び下気道の空洞がより大きな見かけ上の容積を持っているように振る舞わせ,より低周波の音響エネルギーをサポートできるようになる。また,本発明では,ハウジング10の中空11の内壁の表面に凹凸を与えることにより,さらに空気流に抵抗を与えることもできる。さらに,この音響抵抗によって生じる呼気に対する背圧が,低周波の音響衝撃波を下気道に効果的に伝達するように作用する。
 また,ハウジング10に反射端12を設けることにより,マウスピース20から吹き込まれた空気が反射端12を経て開放端13から抜ける経路を通るため,ヘルムホルツ共鳴を起こすにあたり,その共鳴現象の影響要素となるポート(ネック部分:図4の符号l)の見かけ上の長さを長くすることができる。これにより,より低周波の共鳴を起こすことができる。また,反射端12によるハウジング10内の密閉性の向上によって装置内部の圧力は上昇し,空気の流速が速くなり,さらにパイプ内部の空気の流路はより複雑になるため,発生する渦が大きくなり,結果としてより大きな雑音が生じるようになる。こうして発生した装置内部の雑音及び,気道で発生する咳そのものの雑音が,口腔及び下気道の空洞とヘルムホルツ共鳴を起こす要因となる。
 このように,本発明に係る呼吸音響装置1は,咳による急激な呼気によってハウジング10内部で発生した雑音と気道からの咳そのもの雑音とを音源とし,音響抵抗によって見かけ上の容積が増したように振る舞う口腔及び下気道の空洞がヘルムホルツ共鳴を起こすことによって気道及び肺へ低周波の音響衝撃波を発生せしめ,それにより気道粘液を流動化させて,気道外部への排出を促すことができる。ここで,ヘルムホルツ共鳴によってカプリングされた低周波の音響衝撃波のピークは線毛振動周波数の18Hz付近であることが好ましいが,これと全く同じである必要はない。例えば,16Hz~25Hz程度の低周波音が発生されていれば,ハーモニクスによって線毛周波数同様の有効な振動を気道及び肺にもたらすことができる。
 図3は,呼吸音響装置1の断面構造を示している。図3を参照して,呼吸音響装置1の各種寸法の好ましい例について説明する。ただし,各種寸法は以下に説明するものに限定されない。
 まず,マウスピース20の通気路21のサイズは,急激な呼気をハウジング10内に吹き込む際に使用者の負担にならない程度に十分広くする。具体的には,マウスピース20の通気路21の断面形状が円形である場合,その通気路21の直径φDmは,5~25mmであることが好ましく,10~20mmであることが特に好ましい。また,マウスピース20の通気路21の内径断面積Smは,0.64~9cmであることが好ましく,0.80~5cmであることがより好ましい。特に,通気路21の内径断面積Smは,人間の気管の断面積に近い1~2cmとすることが最適である。マウスピース20の通気路21をこのようなサイズに設定することで,口腔及び下気道内の空気をバネのように共振させるような圧力変動を与えることができる。また,音響抵抗によって生じる背圧が下気道に到達し,低周波の衝撃波が効率的に伝達されるようになる。また,さらに好ましくは,通気路21の断面の幅を8mm以上とすることで,上述の効果を持つように通気路21の広さを確保することができる。
 また,本発明の呼吸音響装置1では,マウスピース20の通気路21の断面と,ハウジング10の中空11を同断面にすることが好ましい。具体的には,少なくとも,マウスピース20の通気路21の内径断面積Smとハウジング10の開放端13の内径断面積Sが等しくなり,また,マウスピース20の通気路21の直径φDmとハウジング10の開放端13の直径φDpが等しくなる。これにより,呼吸音響装置1がヘルムホルツ共鳴における連続的なポートとして,その内部の空気がバネのように振動する機能をより効果的に提供することができる。また,マウスピース20の通気路21とハウジング10の中空11を同断面とすることにより,少ない種類の材料を用いて簡単な工程で装置全体を製造することができるようになる。例えば,1本のパイプを2つにカットして,一方の横壁に孔を空けて,その孔に他方の先端を挿し込むことにより,本装置を簡単に作ることができる。また,通気路21及び中空11が同断面であれば,本装置を低コストで大量生産することが可能となる。特に低リソースの発展途上国では,こうした製造方法がとられることがあると予想される。
 また,ハウジング10の開放端13の内径断面積Sと,マウスピース20から吹き込まれた空気がハウジング10の反射端12で反射して開放端13から抜けるまでの装置内の通り道の長さlは,以下の式に表される関係を満足するように設計されていることが好ましい。なお,装置内の通り道の長さlは,図3に示したマウスピース20の通気路21の長さLmと,マウスピース20からハウジング10の反射端12までの長さLsと,ハウジング10の反射端12から開放端13の長さLの合計値となる(l=Lm+Ls+L)。
[式]
Figure JPOXMLDOC01-appb-I000003
 ここで,fは周波数16~25Hzとし,cは音速35000cm/sとし,Vは肺の全肺気量1500~9000mlとして計算する。
 上記の式は,ヘルムホルツ共鳴の周波数を求める一般的な方程式であり,これに本装置によって形成されるポートの長さ(l=Lm+Ls+L)及び肺の全容量(V)を当てはめたものである。ただし,この方程式では,下気道による空洞の素材や音響抵抗などによる見かけ上の容積の拡大などの要素は加味されていないため,実際に起きている低周波の衝撃波の周波数を規定するものではなく,あくまで形状の寸法範囲を概要として提供するものである。ただし,下気道の空洞と咳による雑音を共鳴させるという本発明の基本概念に鑑みて,上記の方程式を当てはめた寸法範囲は,装置の形状を決定するにあたり,参考とするにふさわしいものと考えられる。なお,図4は,参考として,一般的なヘルムホルツ共鳴の方程式を示している。図4に示されるように,開口を持つ容器において,Vは容器の全容量,Sは開口の内径断面積,lは容器内部に通じるポートの長さである。これらの,V,S,lが決定すれば,その容器において生じるヘルムホルツ共鳴の周波数fを求めることができる。
 例えば,使用者が小さい子供であってその全肺気量Vが2400cmであることを想定した場合,ハウジング10の開放端13の内径断面積Sを1cmとし,マウスピース20の通気路21の内径形断面積Smをこれと同面積とし,装置内の通り道の長さlを33cmに設定すると,上記方程式から,ヘルムホルツ共鳴により得られる共振周波数は19.793Hzとなる(音速cは35000cm/sで計算)。このように,本発明の呼吸音響装置1を利用すれば,子供でも簡単に気道粘液の排出を促進する低周波を生じさせることができる。
 なお,図3では,マウスピース20からハウジング10の反射端12までの長さを符号Lsで示し,ハウジング10の反射端12から開放端13までの長さを符号Lで示している。前述したとおり,マウスピース20からハウジング10の反射端12までの距離は,マウスピース20からハウジング10の開放端13までの距離よりも短く設定されていることが好ましい。具体的には,マウスピース20から反射端12までの長さLsは,ハウジング10の全体の長さLに対して,10~45%であることが好ましく,15~40%であることが特に好ましい。これにより,マウスピース20を通じて吹き込まれた呼気が,ハウジング10の開放端13から抜けるよりも先に反射端12に到達して空気流れの反射を起こすようになる。
 また,図3では,マウスピース20の通気路21の中心軸とハウジング10の中空11の中心軸のなす角であって,反射端12側の角度を,符号θで示している。角度θは90度であることが好ましいが,70~110度又は80~100度の範囲としてもよい。また,マウスピース20を通じて吹き込まれた呼気をハウジング10の開放端13よりも先に反射端12に到達させるために,角度θを90度を超える値としてもよい。例えば,角度θを,95~130度又は100~120度とすることもできる。
 図5は,ハウジング10の反射端12の変形例を示している。図5に示した例では,ハウジング10の反射端12は,一又は複数の開口を有するとともに,この開口の面積を調節可能な機構を有している。
 具体的に説明すると,図5(a)に示した例では,それぞれ複数の孔を持つ2つの蓋部材を重ね合わせることによって反射端12が構成されている。そして,2つの蓋部材の一方を相対的に回転させることにより,両方の蓋部材の孔の位置が一致したときにハウジング10内部へと通じる開口が開き,両方の蓋部材の孔の位置が不一致のときにはハウジング10内部へと通じる開口が閉じるようになっている。また,蓋部材の回転角度を調節することで,開口の面積を微調整することもできる。
 また,図5(b)に示した例では,カメラの絞り羽のような機構によって反射端12が構成されている。この機構は,開口の周囲に複数の羽部材が設けられており,各羽部材を開口の中心に向かって延出させると開口が閉じられ,各羽部材を反射端12の外縁側に退行させると開口が開かれるようになっている。また,各羽部材の延出量を調整することで,開口の面積を微調整することもできる。
 ただし,上記のように反射端12に一又は複数の開口を設ける場合,反射端12の開口総断面積が大きすぎると,反射端12による空気の流れに対する抵抗および反射作用が薄れてしまい,装置によって肺及び気道に効果的な低周波の音響衝撃波を発生することができなくなる可能性がある。このため,反射端12の開口総断面積は,開放端13の開口断面積に対して75%以下とするのが適切であり,50%以下又は30%以下とすることが特に好ましい。
 このように,反射端12に開口を設けたり,その開口断面積を調整できるようにすることで,呼吸音響装置1の共振周波数を微調整することができる。また,呼気に対する抵抗を調整し,より吹き込みをし易くすることもできる。従って,反射端12での開口断面積を調整することで,使用者の年齢や呼吸機能,症状に合わせた装置の動作呼気圧,共振周波数を設定することでき,適切に作用効果をもたらすように調整することができる。
 以上,本願明細書では,本発明の内容を表現するために,図面を参照しながら本発明の実施形態の説明を行った。ただし,本発明は,上記実施形態に限定されるものではなく,本願明細書に記載された事項に基づいて当業者が自明な変更形態や改良形態を包含するものである。
 例えば,呼吸音響装置1を折り畳み可能な構成としたり,あるいは分割及び組み立て可能な構成とすることもできる。また,呼吸音響装置1を一種類の素材から構成する場合に限られず,幾つかの素材の組み合わせにより装置全体を使い捨てにしたり,あるいは装置の一部(例えばマウスピース20)を使い捨てにしたりすることもできる。また,使用後に洗浄しやすいようにハウジング10を開くことができるような設計も可能である。
 本発明に係る呼吸音響装置は,上述のような方法を用いて低周波の音響衝撃波を気道及び肺に発生させ,下気道粘液のクリアランスを向上させるものであり,多くの分野で使用することができる。すなわち,本発明によれば,粘液の排出を促進して疾患による下気道の閉塞を改善し,呼吸機能を改善することができる。また,下気道の閉塞を改善することにより,鎮咳作用をもたらし,患者の消耗,症状悪化を予防することができる。さらに,患者の排痰の誘導により,下気道由来の喀痰サンプルの採取を助け,結核や肺癌の迅速診断に貢献することができる。術後の排痰不良による肺炎,無気肺などの事故防止にも効果的である。また,健康な人であっても,運動する前や,管楽器などの演奏を行う前,歌唱する前や,空気の薄くなる高山への登山前など,本発明に係る呼吸音響装置を用いて気道の粘液の排出を促し,呼吸機能をブラッシュアップすることでパフォーマンスを向上させたり,安全性を高めることができる。
1…呼吸音響装置
10…ハウジング
11…中空
12…反射端
13…開放端
20…マウスピース
21…通気路
30…キャップ

Claims (6)

  1.  中空を有するハウジングと,前記中空と連通する通気路を有するマウスピースと,を備え,
     前記ハウジングは,
      前記マウスピースから吹き込まれた空気を反射する反射端と,
      前記マウスピースから吹き込まれた空気が抜ける開放端と,を有する
     呼吸音響装置。
  2.  前記ハウジングは,筒状であって,一端が前記反射端となり,他端が前記開放端となるものであり,
     前記マウスピースは,前記ハウジングの前記反射端と前記開放端の間に設けられている
     請求項1に記載の呼吸音響装置。
  3.  前記マウスピースの通気路の内径断面積は,0.64~9cmである
     請求項1に記載の呼吸音響装置。
  4.  前記マウスピースの通気路と前記ハウジングの中空は同断面である
     請求項3に記載の呼吸音響装置。
  5.  前記開放端の内径断面積S[cm]と,前記マウスピースから吹き込まれた空気が前記反射端で反射して前記開放端から抜けるまでの前記装置内の通り道の長さの合計値l[cm]は,以下の式に表される関係を満足する
     請求項1に記載の呼吸音響装置。
    [式]
    Figure JPOXMLDOC01-appb-I000001
     ここで,fは周波数16~25Hzであり,cは音速35000cm/sであり,Vは肺の全肺気量1500~9000mlである。
  6.  前記反射端は,開口を有しないか,一又は複数の開口を有するか,又は開口面積を調整可能な機構を有し,前記反射端の開口総断面積は前記開放端の開口断面積の75%以下である
     請求項1に記載の呼吸音響装置。
PCT/JP2018/038267 2017-11-07 2018-10-15 呼吸音響装置 WO2019093073A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18875552.4A EP3708209B1 (en) 2017-11-07 2018-10-15 Respiratory acoustic device
KR1020207011644A KR102193730B1 (ko) 2017-11-07 2018-10-15 호흡 음향 장치
US16/761,791 US11357938B2 (en) 2017-11-07 2018-10-15 Respiratory acoustic device
CN201880071946.3A CN111372638B (zh) 2017-11-07 2018-10-15 呼吸声学装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017214937A JP6782017B2 (ja) 2017-11-07 2017-11-07 呼吸音響装置
JP2017-214937 2017-11-07

Publications (1)

Publication Number Publication Date
WO2019093073A1 true WO2019093073A1 (ja) 2019-05-16

Family

ID=66439115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038267 WO2019093073A1 (ja) 2017-11-07 2018-10-15 呼吸音響装置

Country Status (6)

Country Link
US (1) US11357938B2 (ja)
EP (1) EP3708209B1 (ja)
JP (1) JP6782017B2 (ja)
KR (1) KR102193730B1 (ja)
CN (1) CN111372638B (ja)
WO (1) WO2019093073A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021055702A1 (en) * 2019-09-18 2021-03-25 United States Government As Represented By The Department Of Veterans Affairs Devices and methods for standardizing breathing effort

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507956A (zh) * 2018-10-03 2021-10-15 爱调谐器公司 和谐装置及方法
US11951354B2 (en) * 2020-09-18 2024-04-09 University Of Cincinnati Portable oral positive expiratory pressure-generating devices with variable expiratory airflow resistances
CN114146278B (zh) * 2021-11-23 2024-06-04 中国人民解放军西部战区总医院 一种适用于不同气管套管接口可自动控温吸痰的人工鼻
KR20240034086A (ko) 2022-09-06 2024-03-13 (주)에보소닉 음파진동을 이용한 호흡 치료 장치 및 이를 포함하는 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2196858A (en) * 1986-09-30 1988-05-11 Roland Richard Gibson Respiratory apparatus
US6083141A (en) * 1995-02-10 2000-07-04 Hougen; Everett D. Portable respiratory exercise apparatus and method for using the same
JP2007504505A (ja) * 2003-09-03 2007-03-01 ダイナ ミュージック システムス ベー.フェー. フルート
JP4025293B2 (ja) 2002-01-07 2007-12-19 メディカル アコースティックス リミテッド ライアビリティ カンパニー 喀痰誘導のための装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025293A (en) 1975-10-14 1977-05-24 Karl Beckenbach Process and apparatus for firing and sintering of granular material
US4240320A (en) * 1980-03-21 1980-12-23 Pellerite James J Headjoint stopper
US5862802A (en) * 1981-04-03 1999-01-26 Forrest M. Bird Ventilator having an oscillatory inspiratory phase and method
US4533137A (en) * 1982-01-19 1985-08-06 Healthscan Inc. Pulmonary training method
US4550637A (en) * 1983-02-23 1985-11-05 Sanford Drelinger Flute headjoints having replaceable lip plates and a method of replicating same
US4739987A (en) * 1985-10-28 1988-04-26 Nicholson Marguerite K Respiratory exerciser
GB9104201D0 (en) * 1991-02-28 1991-04-17 Kraemer Richard Medical device
CN2199794Y (zh) * 1994-07-18 1995-06-07 陈坚 呼吸通气装置
WO1996024407A1 (en) * 1995-02-10 1996-08-15 Hougen Everett D A portable, personal breathing apparatus
US5829429A (en) * 1997-04-21 1998-11-03 Hughes; Arthur R. Acoustic respiratory therapy apparatus
GB9714621D0 (en) * 1997-07-14 1997-09-17 Subacoustech Limited Dislodging or loosening mucus in a person's lungs
US6578571B1 (en) * 1998-04-20 2003-06-17 Infamed Ltd. Drug delivery device and methods therefor
KR20010017069A (ko) * 1999-08-06 2001-03-05 정진구 폐활량 증진 운동구
CN2629683Y (zh) * 2003-01-27 2004-08-04 李志平 一种吹气排痰器
US7112734B2 (en) * 2003-03-24 2006-09-26 Jacob Richter Effects of flow improvement in tapered design
US20090159062A1 (en) * 2005-06-23 2009-06-25 Patricia Bohman Spirometer Toy
CN102472661B (zh) * 2009-07-16 2014-12-24 皇家飞利浦电子股份有限公司 用于测量管的共振频率的系统和方法
CN202605487U (zh) * 2012-03-26 2012-12-19 崇仁(厦门)医疗器械有限公司 呼吸设备
US20140190481A1 (en) * 2013-01-04 2014-07-10 Mohammad R. Jam Acoustic Ventilation and Respiratory Booster Machine
US20150360079A1 (en) * 2013-07-19 2015-12-17 Halcyon Research, Inc. Dba Harmonica Techs Pulmonary harmonica device and method of using a pulmonary harmonica device
WO2015017416A1 (en) * 2013-07-31 2015-02-05 University Of Florida Research Foundation , Inc. High frequency airway oscillation for internal airway vibration
FR3038519B1 (fr) * 2015-07-10 2022-03-18 Lantz Jean Sebastien Dispositif de stimulation de l'air tracheo-bronchique
HU230939B1 (hu) * 2015-10-19 2019-04-29 Horváth Tamás 50% Reform fuvolafej

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2196858A (en) * 1986-09-30 1988-05-11 Roland Richard Gibson Respiratory apparatus
US6083141A (en) * 1995-02-10 2000-07-04 Hougen; Everett D. Portable respiratory exercise apparatus and method for using the same
JP4025293B2 (ja) 2002-01-07 2007-12-19 メディカル アコースティックス リミテッド ライアビリティ カンパニー 喀痰誘導のための装置
JP2007504505A (ja) * 2003-09-03 2007-03-01 ダイナ ミュージック システムス ベー.フェー. フルート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021055702A1 (en) * 2019-09-18 2021-03-25 United States Government As Represented By The Department Of Veterans Affairs Devices and methods for standardizing breathing effort

Also Published As

Publication number Publication date
US11357938B2 (en) 2022-06-14
KR20200060440A (ko) 2020-05-29
EP3708209C0 (en) 2023-07-19
EP3708209B1 (en) 2023-07-19
EP3708209A1 (en) 2020-09-16
CN111372638B (zh) 2021-08-27
KR102193730B1 (ko) 2020-12-22
EP3708209A4 (en) 2021-08-11
JP2019084071A (ja) 2019-06-06
JP6782017B2 (ja) 2020-11-11
CN111372638A (zh) 2020-07-03
US20210178094A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
WO2019093073A1 (ja) 呼吸音響装置
JP4025293B2 (ja) 喀痰誘導のための装置
Titze et al. Acoustic interactions of the voice source with the lower vocal tract
US5569122A (en) Therapeutic device for improving breathing
Huang et al. Biomechanics of snoring
EP0977536B1 (en) Acoustic respiratory therapy apparatus
JP2009183707A (ja) 治療装置
TWM485042U (zh) 呼吸咳痰輔助裝置
CN105902359B (zh) 呼吸道振动仪
JP2019084071A5 (ja)
Olson et al. Mechanisms of lung sound generation
US20150360079A1 (en) Pulmonary harmonica device and method of using a pulmonary harmonica device
CN213076801U (zh) 一种气道内分泌物辅助排出装置
CN204910005U (zh) 呼气振动排痰器
CN112168660A (zh) 一种辅助排痰器
CN115715834A (zh) 一种辅助排痰预防肺部感染和增强心肺功能训练的装置
CN108618951B (zh) 笛管和鼻腔和/或肺内的分泌物排出装置和方法
CN109925176B (zh) 一种基于振动源辅助排除儿童肺部分泌物的装置
CN110840730A (zh) 一种喇叭状肺腔清理装置
CN100387215C (zh) 一种排痰康复哨
Hamlin Physical examination of the pulmonary system
JP2005027879A (ja) 排痰装置
Silva et al. Development and evaluation of physical properties of a low-cost handheld device for airway clearance therapy
Pourmehran Understanding the flow behaviour in human maxillary sinuses for drug delivery applications
RU36981U1 (ru) Дыхательный тренажер

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207011644

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018875552

Country of ref document: EP

Effective date: 20200608