WO2019093030A1 - 電動パーキングブレーキ装置、及び電動ブレーキ装置 - Google Patents

電動パーキングブレーキ装置、及び電動ブレーキ装置 Download PDF

Info

Publication number
WO2019093030A1
WO2019093030A1 PCT/JP2018/037154 JP2018037154W WO2019093030A1 WO 2019093030 A1 WO2019093030 A1 WO 2019093030A1 JP 2018037154 W JP2018037154 W JP 2018037154W WO 2019093030 A1 WO2019093030 A1 WO 2019093030A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
torque constant
electric motor
time
value
Prior art date
Application number
PCT/JP2018/037154
Other languages
English (en)
French (fr)
Inventor
龍 解
貴廣 伊藤
安島 俊幸
瀬戸 信治
大谷 行雄
公雄 西野
達朗 小船
颯太 鈴木
児島 隆生
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019093030A1 publication Critical patent/WO2019093030A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • the present invention relates to an electric parking brake device and an electric brake device, and in particular, an electric parking brake device that drives a brake pad by a power transmission mechanism that converts rotational motion of an electric motor into linear motion and applies braking to a disc rotor. And an electric brake system.
  • the electric motor drive type parking brake device amplifies the rotational torque generated by the electric motor attached to the caliper by the reduction mechanism, and this rotational torque is further linearly converted by the rotation / linear motion conversion mechanism such as the feed screw mechanism. It is converted into motion, and the piston of the caliper is pushed out by the thrust of this linear motion, and the brake pad is pressed against the disk rotor to generate a braking force.
  • estimation parameters to be used for a thrust estimation model are obtained based on the current flowing to the electric motor, the applied voltage, and the rotation speed. For example, at least a torque constant, a viscosity coefficient, and the like are required for the thrust estimation model as estimation parameters. Then, these estimated parameters are used to estimate the thrust with a thrust estimation model to control the electric parking brake device.
  • torque constant (phi) the information of rotational speed (omega) of the electric motor detected by the rotation sensor is used for calculation. Therefore, there is a problem that the unit price of the product is increased by mounting the rotation sensor.
  • An object of the present invention is to provide an electric parking brake device and an electric brake device which accurately estimate at least a torque constant and do not use rotational speed information by a rotation sensor when obtaining the torque constant ( ⁇ ).
  • a feature of the present invention includes a cutoff current threshold calculation unit that controls the thrust of a piston, and a "current reduction" before the current after the inrush current generated when energization of the electric motor is started reaches a "constant current section".
  • the torque constant calculation unit measures at least the voltage value and current value applied to the electric motor a plurality of times, and can calculate the torque constant using the plurality of voltage values and current values.
  • a section is set, a torque constant is calculated and estimated in this calculation section, and a cut-off current threshold calculation unit calculates a cut-off current threshold based on the estimated torque constant.
  • the torque constant can be accurately estimated in the “current decrease period” before reaching the “constant current period”, and furthermore, the accurate cutoff current is calculated based on the estimated value of the torque constant. can do. Further, in the estimation of the torque constant, since the rotation speed information by the rotation sensor is not used, the product unit price can be suppressed.
  • FIG. 1 is a configuration diagram of an electric parking brake device to which the present invention is applied. It is sectional drawing which shows the structure of the brake caliper shown in FIG. It is an explanatory view explaining operation of an electric parking brake device. It is a control block diagram of an electric parking brake device. It is an explanatory view explaining the current at the time of starting of an electric motor, motor terminal voltage, and inductance voltage fall. It is a flowchart of the control step which estimates a torque constant ((phi)). It is operation
  • FIG. 1 shows the overall configuration of the electric parking brake device.
  • the electric parking brake device includes an electric motor, a reduction mechanism, a rotation / linear conversion mechanism, a piston, a brake pad, and an electronic control unit.
  • the electric parking brake system is provided with a brake caliper 10 for giving a brake function, and a hydraulic pressure chamber 12 is formed inside a caliper main body 11 constituting this brake caliper 10.
  • a piston 13 is disposed in the hydraulic chamber 12, and the piston 13 has a function of driving the first brake pad 14.
  • a second brake pad 15 is attached to one end of the caliper main body 11, and a disc rotor 16 fixed to an axle is disposed between the first brake pad 14 and the second brake pad 15. The disk rotor 16 is held between the first brake pad 14 and the second brake pad 15 for braking.
  • the piston 13 disposed in the hydraulic chamber 12 is driven by the hydraulic pressure from the hydraulic system MB, the hydraulic pressure pipe 34 from the booster 33 is connected, and the thrust on the piston 13 is also achieved by the operation of the brake pedal 17. Is a structure that occurs. Then, when the brake pedal 17 is operated during normal traveling, the hydraulic pressure is supplied to the hydraulic pressure chamber 12 and the piston 13 moves to the left in FIG. 2 to press the first brake pad 14 against the disk rotor 16. The braking operation is performed. Note that this hydraulic braking operation does not operate during parking and stopping.
  • the piston 13 is connected to the speed reduction mechanism 19 via the rotation / linear motion conversion mechanism 18.
  • the rotary / linear motion conversion mechanism 18 uses a slide screw, and is engaged with a rotary shaft 20 having a helical screw surface formed on the outer periphery and the screw surface of the rotary shaft 20. It comprises the linear motion member 21 which equipped the inside with the screw surface which it does.
  • the linear moving member 21 is separable from the piston 13, and the linear moving member 21 can move the piston 13 in the axial direction of the rotary shaft 20 by the rotation of the rotary shaft 20.
  • the rotation / linear motion conversion mechanism 18 is provided with a self-locking function portion, and the linear motion member 21 linearly moves when the rotation shaft 20 is rotated, but the rotation of the rotation shaft 20 If it stops, even if a force acts on the linear movement member 21 in the linear movement direction, the linear movement member 21 holds its position. That is, the rotary shaft 20 and the linear motion member 21 have a helical thread surface whose lead angle is smaller than the friction angle, thereby obtaining a self-locking function. Since a rotation / linear motion conversion mechanism using this type of screw surface is well known, the detailed description will be omitted.
  • the rotating shaft 20 is fixed to the large diameter gear 22 of the reduction gear mechanism 19, and the large diameter gear 22 is in mesh with the small diameter gear 23.
  • the small diameter gear 23 is rotated by the electric motor 24, and the rotation of the electric motor 24 is transmitted to the small diameter gear 23 and the large diameter gear 22 to be decelerated.
  • the rotation torque of the electric motor 24 is amplified and transmitted to the rotation shaft 20 by the large diameter gear 22 being rotated.
  • the supply of electric power to the electric motor 24 is controlled by the electronic control means 25 provided with an electric motor control function unit, and the electric motor control function unit is composed of a known microprocessor, an output circuit and the like.
  • the electronic control means 25 controls the relay 27 for energizing / shutting off the battery 26, the H bridge circuit 28 for applying a voltage to the electric motor 24, and each circuit element (not shown).
  • a predetermined current is supplied from the electronic control means 25 to the electric motor 24 to rotate the electric motor 24, and this rotation causes the rotating shaft 20 to rotate via the gears 23 and 22 of the reduction mechanism 19. It is a thing.
  • the rotating shaft 20 rotates, the linear moving member 21 and the piston 13 move to the left side, and the brake pad 14 is pressed against the disk rotor 16 with a predetermined thrust (pressing force) to apply braking (parking brake).
  • FIG. 3 shows the behavior of the thrust and the current during an operation of applying a thrust to the piston 13 of the brake caliper 10 constituting the electric parking brake device (hereinafter, referred to as an apply operation).
  • the piston 13 moves in the direction to clamp the disc rotor 16, but the brake pads 14 and 15 have not pinched the disc rotor 16 yet and clamping has not started yet.
  • the thrust of the piston 13 is "0"
  • the "constant current section” in which the thrust of the piston is "0” is obtained.
  • this "constant current section” can also include a fluctuation state permitted in control, and means a section that can be regarded as substantially constant in control. Therefore, although it is described as a "constant current section” below, it includes a fluctuation state permitted from the control point of view.
  • the microprocessor 25 calculates the cutoff current threshold (I SL ) from the target thrust (F 1 ) and flows through the actual winding of the electric motor 24. The actual current value and the cutoff current threshold (I SL ) are compared.
  • the holding thrust ( ⁇ target thrust F 1 ) of the “thrust holding section” is controlled by the cutoff current threshold (I SL ).
  • the relationship between the cut-off current threshold (I SL ) and the holding thrust ( ⁇ target thrust F 1 ) changes depending on factors such as temperature, individual differences in hardware, and voltage, but the holding thrust varies due to these factors. Even the minimum holding thrust necessary to stop the car must be guaranteed.
  • the holding thrust is calculated under many assumed conditions, and the cutoff current threshold (I SL ) is determined so that the minimum value in the distribution of holding thrust variations exceeds the minimum guaranteed thrust.
  • the maximum value thereof causes an excessive stress on the mechanical system of the electric parking brake device to cause the durability to be lowered because an excessive thrust is generated depending on the individual with good mechanical efficiency and motor characteristics.
  • the thrust estimation model in this embodiment, the torque constant ( ⁇ ).
  • the information of the rotational speed ( ⁇ ) of the electric motor detected by the rotation sensor is used for the calculation. Therefore, there is also a problem in that the unit price of the product is increased by mounting the rotation sensor, and it is also important to cope with this problem.
  • FIG. 4 shows a block of a control model of the electric parking brake device.
  • the control model mainly includes components of a battery 26, a master cylinder 35, an electronic control means 25 including a microprocessor 29 and peripheral circuits, a harness 34, an electric motor 24, and a caliper 10. The main connection relationship and input / output signals of these components will be described.
  • the microprocessor 29 uses switches in the electronic control means 25 based on the information of the current, voltage of the electric motor 24 and hydraulic pressure of the master cylinder 35 ( An ON / OFF command is issued to a relay or the like, and the voltage output of the battery 26 is turned ON / OFF.
  • the applied voltage is applied to the electric motor 24 through the harness 34 to rotationally drive the electric motor 24.
  • the rotational torque generated by the electric motor 24 is input to the caliper 10, and the rotational torque of the electric motor 24 input to the caliper 10 is amplified by the reduction gear mechanism 19 and the piston 13 via the rotational / linear motion conversion mechanism 18 Output thrust to Further, the caliper 10 is also imparted with a hydraulic action by the master cylinder 35.
  • equations of motion and circuit equations can be derived for such a control model.
  • the following equation of motion and circuit equation are derived based on the main elements expressing the operation of the electric parking brake device described above.
  • Equation (1) “Jd ⁇ / dt” is inertia resistance, “J” is inertia coefficient, “ ⁇ ” is torque constant, “I” is current, “ ⁇ ” is rotational speed, and “T Loss ” is The combined resistance torque from the electric motor 24 to the rotation / linear motion conversion mechanism 18 of the power transmission mechanism, “T CLP ” is a torque conversion value of thrust.
  • the torque constant ( ⁇ ) is an estimated parameter for estimating the thrust to be obtained in the present embodiment.
  • K B in the equation (1) corresponds to the rotational / linear conversion efficiency of the rotary / linear conversion mechanism 18 and is attributed to the total friction coefficient or the like generated in the “clamp section” by the rotational / linear conversion mechanism.
  • K B is set to an arbitrary value from the operation at the time of application of the present embodiment. For example, an empirically obtained value is input. However, as shown below, since “T CLP ” corresponding to the thrust is “0” in the “idle section”, “K” can be used to estimate an estimated parameter (such as torque constant) in the “idle section”. B can be ignored. Also, "T Loss " is treated as a known value.
  • circuit equation of the electric motor is expressed as equation (4).
  • V is a voltage
  • R is a winding resistance
  • L is an inductance
  • the inductance voltage drop (LdI / dt) will be described. Focusing on the electrical characteristics of the transient current, motor terminal voltage, and inductance voltage drop at startup of the electric motor 24 shown in FIG. 5, the inductance voltage reaches a peak simultaneously with the start of energization to the electric motor 24, but several ms The inductance voltage is sufficiently small by the time when the current value rapidly decreases and the current value reaches the maximum value. From these things, at the time of starting of the electric motor 24, that is, at the start of the application operation, the term of the inductance voltage drop (LdI / dt) can be ignored among the circuit equations shown in the equation (4).
  • the induced voltage ( ⁇ ) can be obtained by the equation (4).
  • the equation of motion is modified as shown in equation (5) below so that the induced voltage ( ⁇ ) can be used.
  • T1 and T2 of (5) Formula have shown the induced voltage ((omega) (phi)) and electric current (I) in the time of a certain time interval.
  • Equation (7) is converted to the following equation (8).
  • E ' is a time derivative value of the induced voltage.
  • the torque constant ( ⁇ ) is calculated (estimated) using the equation (8), and the torque constant ( ⁇ ) is the amount of change of the time derivative of the voltage value (hereinafter referred to as voltage differential) It can be obtained from the difference value) and the change amount of the current value (hereinafter referred to as the current difference value). The details will be described below with reference to FIGS. 6 and 7.
  • FIG. 6 shows a control flow of estimation calculation of the torque constant ( ⁇ )
  • FIG. 7 shows current value (I), current difference value ( ⁇ I FL ), induction at the time of estimation of torque constant ( ⁇ ).
  • time differential value of the voltage (E '), the voltage differential difference value of the time differential value of the induced voltage ( ⁇ E') shows the time variations of the estimated torque constant ( ⁇ est).
  • the torque constant calculating part is comprised by the control function by this control flow.
  • Step S10 it is determined whether the estimation of the winding resistance of the electric motor is completed. If the estimation of the winding resistance is not completed, the resistance value is reset to a predetermined holding value, and the end is exited to wait for the next activation timing. If it is determined in step S19 that the estimation of the winding resistance is completed, the process proceeds to step S11.
  • the predetermined time (Td) may be a variable time or a fixed time.
  • step S13 after the above current difference value ( ⁇ I FL ) changes to the “negative” state and a predetermined time (Td) elapses, the voltage differential difference value ( ⁇ E ′) of the time differential value of the induced voltage
  • the voltage derivative threshold value ( ⁇ E ′ SL ) of the time derivative value of the induced voltage is determined in advance.
  • the voltage differential difference value ( ⁇ E ′) of the time differential value of the induced voltage and the voltage differential threshold ( ⁇ E ′ SL ) of the time differential value of the induced voltage are respectively “negative” values.
  • the calculable range of the torque constant ( ⁇ ) is defined by the voltage derivative difference value ( ⁇ E ′) of the time derivative value of the induced voltage being the time derivative value of the induced voltage in the voltage differential threshold ( ⁇ E 'SL) than decreases after time t3, it is set to a time (t6) to the computation section (Rn2).
  • the voltage derivative difference value ( ⁇ E ′) of the time derivative value of the induced voltage becomes large, so there is a possibility that the route of “molecule” in equation (8) may become “-” (minus) As a result, the calculation accuracy of the torque constant ( ⁇ ) can be further improved.
  • step S14 when the voltage differential difference value ( ⁇ E ′) of the time differential value of the induced voltage is smaller than the voltage differential threshold value ( ⁇ E ′ SL ) of the time differential value of the induced voltage, the process proceeds to step S14. If the change amount ( ⁇ E ′) of the value is larger than the change threshold value ( ⁇ E ′ SL ) of the time derivative of the induced voltage, the end is left to wait for the next activation timing.
  • step S14 it is determined whether the current difference value ( ⁇ I FL ) has exceeded the negative peak. When the current difference value ( ⁇ I FL ) exceeds the negative peak at time t4, the process proceeds to step 15. On the other hand, if the current difference value ( ⁇ I FL ) does not exceed the negative peak, the end is reached and the next start timing is awaited.
  • the final operation interval (Rn3) is an operation interval that satisfies both the operation interval (Rn1) and the operation interval (Rn2).
  • step S16 by using the sum of the voltage differential difference value of the time differential value of the induced voltage of the control cycle of a predetermined number of times determined in the step S15 ( ⁇ E '), and a current difference value ( ⁇ I FL), (8 A provisional torque constant ( ⁇ ) is calculated by the equation). When the temporary torque constant ( ⁇ ) is obtained, the process proceeds to step S17.
  • step S17 the torque constant ( ⁇ ) provisionally obtained in step S16 is smoothed. Thereafter, the process proceeds to step S18.
  • step S18 the stability of the temporarily obtained torque constant ( ⁇ ) subjected to the smoothing process is determined.
  • the reference determination torque constant used for the determination is obtained experimentally, and if it is determined that the reference torque constant is stable in comparison with the determination torque constant, the process proceeds to step S19. On the other hand, if it is determined that the torque constant is not stable as compared with the determination torque constant, the temporarily determined torque constant ( ⁇ ) is discarded, and the end is left to wait for the next start timing.
  • Step S19 Since it is determined in step S18 that the provisional torque constant ( ⁇ ) is a stable value, in step S19, this provisional torque constant ( ⁇ ) is determined as a normal torque constant ( ⁇ ). When the torque constant ( ⁇ ) is determined, it finally passes to the end and waits for the next start timing.
  • the cutoff current threshold calculation unit is for obtaining a target cutoff current threshold (I SL ) when cutting off the current to the electric motor 24, and by modifying the formula (1), the following formula (9) ) Can be obtained by the equation.
  • a predetermined target thrust (F * CLP ) is given, and the combined resistance torque (T Loss ) is used as an estimated parameter, and the target cutoff is given by equation (9) together with the estimated torque constant ( ⁇ ). Since the current threshold (I SL ) can be determined, accurate thrust can be managed. Finally, the cutoff current threshold (I SL ) is compared with the actual current value to output a cutoff signal.
  • the electronic control means 25 includes a current interrupting unit for interrupting the current supplied to the electric motor 24 when the actual current value actually flowing to the electric motor 24 reaches the cutoff current threshold (I SL ). By this, it will shift to a "thrust holding area”.
  • the calculable range of the torque constant ( ⁇ ) changes to the state where the current difference value ( ⁇ I FL ) is “negative” and the predetermined time (Td) is changed. Since the calculation section (Rn1) until the time (t6) when the “current decrease section” ends is set after time (t2) after lapse of), “denominator” in equation (8) is “0” As a result, the calculation accuracy of the torque constant ( ⁇ ) can be improved.
  • the time when the torque constant ( ⁇ ) can be calculated within a time range where the voltage differential difference value ( ⁇ E ′) of the time differential value of the induced voltage is smaller than the voltage differential threshold ( ⁇ E ′ SL ) of the time differential value of the induced voltage After t3), since it is set to the operation section (Rn2) up to the time (t6) when the "current decrease section" ends, there is a risk that the route of "molecule” in equation (8) will be "-" As a result, the calculation accuracy of the torque constant ( ⁇ ) can be improved.
  • the cutoff current threshold calculation unit for controlling the thrust of the piston is provided, and the current after the inrush current generated when energization of the electric motor is started reaches the “constant current section”.
  • the current after the inrush current generated when energization of the electric motor is started reaches the “constant current section”.
  • the torque constant is calculated using the plurality of voltage values and current values.
  • the calculation section in which calculation can be calculated is set, the torque constant is calculated in this calculation section, and the cut-off current threshold calculation section calculates the cut-off current threshold based on the calculated torque constant.
  • the torque constant can be accurately estimated in the "current decrease period" before reaching the "constant current period", and the accurate cutoff current can be calculated based on the estimated value of the torque constant. . Further, in the estimation of the torque constant, since the rotation speed information by the rotation sensor is not used, the product unit price can be suppressed.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Electric Motors In General (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

少なくともトルク定数を精度よく推定し、しかもこのトルク定数(φ)を求める時に回転センサによる回転速度情報を使用しない電動パーキングブレーキ装置を提供する。 ピストンの推力を制御するカットオフ電流閾値演算部(29)を備えると共に、電動モータ(24)に通電を開始した時に生じる突入電流の後の電流が電流一定区間に至る前の電流減少区間内で、トルク定数演算部(29)によって、少なくとも電動モータ(24)に印加される電圧値(V)と電流値(I)を複数回に亘って計測し、この複数の電圧値と電流値を用いてトルク定数(φ)を演算可能な演算区間を設定し、この演算区間内でトルク定数(φ)を推定演算し、更に推定されたトルク定数(φ)を基にカットオフ電流閾値演算部(29)によるカットオフ電流閾値の演算を行なう。

Description

電動パーキングブレーキ装置、及び電動ブレーキ装置
 本発明は電動パーキングブレーキ装置、及び電動ブレーキ装置に係り、特に、電動モータの回転運動を直動運動に変換する動力伝達機構によってブレーキパッドを駆動してディスクロータに制動をかける電動パーキングブレーキ装置、及び電動ブレーキ装置に関するものである。
 電動モータ駆動型のパーキングブレーキ装置は、キャリパに取り付けられた電動モータによって発生させられた回転トルクを減速機構によって増幅し、更にこの回転トルクを送りねじ機構等の回転/直動変換機構によって直動運動に変換し、この直動運動の推力によってキャリパのピストンを押し出して、ブレーキパッドをディスクロータに押し付けることで制動力を発生させる構成である。
 このような電動パーキングブレーキ装置は、例えば、DE102006052810A1(特許文献1)に記載されている。特許文献1においては、電動モータに流れる電流と、印加される電圧と、回転速度に基づいて推力推定モデルに使用する推定パラメータを求めている。例えば、推定パラメータとして少なくともトルク定数、粘性係数等が推力推定モデルに必要である。そして、これらの推定パラメータを使用して推力推定モデルで推力を推定し、電動パーキングブレーキ装置を制御するようにしている。
DE102006052810A1
 ところで、特許文献1では、後述の図3に示すような電流減少区間で、電圧値V、電流値I、回転速度ωの情報から、トルク定数φ(φ=(V-RI)/ω)を推定している。そして、トルク定数φの推定においては、回転センサで検出した電動モータの回転速度ωの情報を演算に用いている。したがって、回転センサを搭載することによる製品単価の上昇を招くという課題を生じる。
 本発明の目的は、少なくともトルク定数を精度よく推定し、しかもこのトルク定数(φ)を求める時に回転センサによる回転速度情報を使用しない電動パーキングブレーキ装置、及び電動ブレーキ装置を提供することにある。
 本発明の特徴は、ピストンの推力を制御するカットオフ電流閾値演算部を備えると共に、電動モータに通電を開始した時に生じる突入電流の後の電流が「電流一定区間」に至る前の「電流減少区間」内で、トルク定数演算部によって、少なくとも電動モータに印加される電圧値と電流値を複数回に亘って計測し、この複数の電圧値と電流値を用いてトルク定数を演算可能な演算区間を設定し、この演算区間内でトルク定数を演算して推定し、更に推定されたトルク定数を基にカットオフ電流閾値演算部によってカットオフ電流閾値の演算を行なう、ところにある。
 本発明によれば、「電流一定区間」に至る前の「電流減少区間」内で、トルク定数を精度よく推定することができ、更にトルク定数の推定値を基に正確なカットオフ電流を演算することができる。また、トルク定数の推定では回転センサによる回転速度情報を使用しないため製品単価を抑えることが可能となる。
本発明が適用される電動パーキングブレーキ装置の構成図である。 図1に示すブレーキキャリパの構成を示す断面図である。 電動パーキングブレーキ装置の動作を説明する説明図である。 電動パーキングブレーキ装置の制御ブロック図である。 電動モータの起動時の電流、モータ端子電圧、インダクタンス電圧降下を説明する説明図である。 トルク定数(φ)を推定する制御ステップのフローチャートである。 トルク定数(φ)を推定する時の動作説明図である。
 本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例もその範囲に含むものである。
 以下、本発明の実施形態について図面を引用しながら説明する。図1は電動パーキングブレーキ装置の全体構成を示している。電動パーキングブレーキ装置は、電動モータ、減速機構、回転/直動変換機構、ピストン、ブレーキパッド及び電子制御手段によって構成されている。
 図1及び図2において、電動パーキングブレーキ装置はブレーキ機能を与えるブレーキキャリパ10を備えており、このブレーキキャリパ10を構成するキャリパ本体11の内部には油圧室12が形成されている。油圧室12にはピストン13が配置され、このピストン13は第1ブレーキパッド14を駆動する機能を備えている。また、キャリパ本体11の一端には第2ブレーキパッド15が取り付けられており、第1ブレーキパッド14と第2ブレーキパッド15の間には、車軸に固定されたディスクロータ16が配置されている。このディスクロータ16は第1ブレーキパッド14と第2ブレーキパッド15に挟まれて制動されるものである。
 油圧室12に配置されたピストン13は、油圧系統MBからの油圧によって駆動されるものであり、ブースタ33からの液圧配管34が接続されており、ブレーキペダル17の操作によってもピストン13に推力が発生する構造である。そして、通常の走行中にブレーキペダル17の操作が行われると、油圧室12に油圧が供給されてピストン13が図2で左側に移動して、第1ブレーキパッド14をディスクロータ16に押し付けて制動動作を行うものである。尚、この油圧による制動動作は駐停車中には作動しないものである。
 また、ピストン13は回転/直動変換機構18を介して減速機構19と連結されている。図2にあるように、回転/直動変換機構18は滑りねじを使用したものであり、外周に形成した螺旋状のねじ面を有する回転軸20と、この回転軸20のねじ面に螺合するねじ面を内部に備えた直動部材21より構成されている。直動部材21はピストン13とは切離可能であり、回転軸20の回転によって直動部材21はピストン13を回転軸20の軸方向に移動することができるものである。
 また、本実施形態では回転/直動変換機構18にはセルフロック機能部が備えられており、回転軸20を回転させれば直動部材21は直動運動するが、回転軸20の回転を停止すれば、直動部材21に直動方向に力が作用しても直動部材21はその位置を保持するものである。すなわち、回転軸20と直動部材21は、摩擦角より進み角が小さい螺旋状のねじ面を有しており、これによってセルフロック機能を得ているものである。この種のねじ面を利用した回転/直動変換機構は良く知られているので、詳細な説明は省略する。
 図1にあるように、回転軸20は減速機構19の大径歯車22に固定されており、大径歯車22は小径歯車23と噛み合っている。小径歯車23は電動モータ24によって回転されるものであり、電動モータ24の回転は小径歯車23、大径歯車22に伝えられて減速されるものである。大径歯車22が回転されることによって、電動モータ24の回転トルクは増幅されて回転軸20に伝えられるものである。
 電動モータ24への電力の供給は、電動モータ制御機能部を備える電子制御手段25によって制御されており、電動モータ制御機能部は周知のマイクロプロセッサや出力回路等からなっている。図1に示す通り電子制御手段25は、バッテリ26の通電/遮断を行うリレー27と、電動モータ24に電圧を印加するためのHブリッジ回路28と、各回路素子(図示せず)を制御するマイクロプロセッサ29と、電動モータ24に流れる電流を検出する電流モニタ回路30と、電動モータ24に印加される上下アーム電圧を検出する上アーム電圧モニタ回路31及び下アーム電圧モニタ回路32と、電源電圧モニタ回路33等から構成されている。
 そして、駐停車する場合は電子制御手段25から電動モータ24に所定の電流を流して電動モータ24を回転し、この回転は減速機構19の各歯車23、22を介して回転軸20を回転させるものである。回転軸20が回転すると直動部材21及びピストン13が左側に移動してブレーキパッド14を所定の推力(押付力)でディスクロータ16に押し付けて制動(パーキングブレーキ)をかけるものである。
 そして、電子制御手段25は電動モータ24に所定の電流値(=所定の推力)まで電流を流すと通電を停止するが、電動モータ24への通電が停止されると、回転軸20と直動部材21の間のセルフロック機能部でこの所定の推力を保持して、ディスクロータ16に制動をかけ続けるものである。
 図3は、電動パーキングブレーキ装置を構成するブレーキキャリパ10のピストン13に推力を与える動作時(以下、アプライ動作時と表記する)における推力と電流の挙動を示している。
 図3において、時刻(T1/電圧印加開始時刻)で、作動指令と共に電動モータ24の巻線に電圧が印加されるが、電圧印加直後は電動モータ24が停止状態であるので、このとき誘起電圧は「0」である。その後、電気抵抗とインダクタンスによる時定数に従って、電流が急増する突入電流(IR)が発生する。
 そして、突入電流(IR)が最大値を迎える直前で、空走区間となり電動モータ24の回転が始まるが、電動モータ24の回転により誘起電圧が発生するため、電流は増加から電流(ID)で示すように減少に転じ、暫くすると時刻(T2)において電流(IC)で示すように電流値がほぼ一定に落ち着く状態となる。この時刻(T1)~(T2)の間は「電流減少区間」となる。この時刻(T2)のとき、電動モータ24の回転数もほぼ一定に達する。
 次に、時刻(T2)からはディスクロータ16をクランプする方向にピストン13が動いていくが、まだブレーキパッド14、15がディスクロータ16を挟み込んでおらずクランプは始まっていない。この時、ピストン13の推力は「0」であり、時刻(T2)~(T3)の間はピストンの推力が「0」である「電流一定区間」となる。尚、この「電流一定区間」は、制御上で許容される変動状態をも含むことができものであり、制御上から略一定と見做せる区間を意味している。したがって、以下で「電流一定区間」と表記しているが、制御上から許容される変動状態を含むものである。
 次に、ブレーキパッド14、15がディスクロータ16を挟み込んで「電流一定区間」が時刻(T3)で終わると、時刻(T3)からピストン13に推力が発生する。推力の増加と共に電動モータ24の回転トルク及び電流が増加する。目標推力(F)で電動モータ24の駆動を停止させるため、マイクロプロセッサ25では目標推力(F)からカットオフ電流閾値(ISL)を算出し、実際の電動モータ24の巻線に流れる実電流値とカットオフ電流閾値(ISL)とが比較される。
 時刻(T4)で、実電流値がカットオフ電流閾値(ISL)を超え、更に確実に超過したことを確認した後に時刻(T5)で電圧印加を停止して電流を遮断する。したがって、時刻(T4)に比べてこの分だけ推力は増加している。そして、この時刻(T3)~(T5)の間は「クランプ区間」となる。このとき時刻(T5)では電動モータ24のロータの慣性で回転し続けることを防止するため、電動モータ24の端子間を短絡させている。
 「クランプ区間」が終わり、電動モータ24への電圧が印加されていない状態では、目標推力(F)に保持される。これは、逆作動性(逆効率の低い)の回転/直動変換機構18を使用することによって、ピストン13側から押されても電動モータ24が回転しないようにしている。この時刻(T5)以降は「推力保持区間」となる。
 以上で説明した通り、「推力保持区間」の保持推力(≒目標推力F)はカットオフ電流閾値(ISL)によって制御されることが理解できる。ここで、カットオフ電流閾値(ISL)と保持推力(≒目標推力F)の関係は温度、ハードウェア個体差、電圧などの要因によって変化するが、これらの要因によって保持推力がばらつきを持っても、自動車を停止させるのに必要な最低保持推力は保証されなければならない。
 そして、保持推力が最低保証推力を下回ると、坂道で駐車した自動車が勝手に動き出す可能性がある。これを防ぐため、想定される多くの条件で保持推力を計算し、保持推力のばらつき分布の中の最小値が最低保証推力を上回るようにカットオフ電流閾値(ISL)を決めている。一方、その最大値はメカ効率やモータ特性が良い個体によっては必要以上の推力が発生するため、電動パーキングブレーキ装置の機構系に過度の応力がかかり、耐久性を低下させる要因となる。
 したがって、最低保証推力を確保しつつ保持推力の上限側への過度のばらつきを抑制することが必要である。言い換えれば、推力を正確に推定することができれば、最低保証推力と許容される上限となる許容上限推力の間に実際の推力を調整することができる。このためには、推力推定モデルに使用される推定パラメータ、本実施形態ではトルク定数(φ)を精度よく求めることが重要である。
 また、トルク定数(φ)の演算(推定)においては、回転センサで検出した電動モータの回転速度(ω)の情報を演算に用いている。したがって、回転センサを搭載することによる製品単価の上昇を招くという課題も生じるので、この課題に対応することも重要である。
 図4に電動パーキングブレーキ装置の制御モデルのブロックを示している。制御モデルは主にバッテリ26、マスタシリンダ35、マイクロプロセッサ29及び周辺回路を含む電子制御手段25、ハーネス34、電動モータ24、キャリパ10の各コンポーネントから構成されている。これらのコンポーネントの主な接続関係と入出力信号を説明すると、マイクロプロセッサ29は電動モータ24の電流、電圧、及びマスタシリンダ35の液圧の情報に基づいて、電子制御手段25の中のスイッチ(リレー等)にON/OFF指令を出し、バッテリ26の電圧出力をON/OFFする。
 印加された電圧は、ハーネス34を介して電動モータ24に与えられ、電動モータ24を回転駆動する。電動モータ24で発生した回転トルクは、キャリパ10に入力され、キャリパ10の中では入力された電動モータ24の回転トルクを減速機構19によって増幅し、回転/直動変換機構18を介してピストン13に推力を出力する。また、キャリパ10にはマスタシリンダ35による液圧作用も付与されている。
 そして、このような制御モデルに対して、運動方程式、及び回路方程式を導き出すことができる。本実施形態では上述した電動パーキングブレーキ装置の動作を表現する主な要素に基づき、以下に示すような運動方程式、及び回路方程式を導き出した。
 まず、図3に示す時刻(T3)から時刻(T5)までの「クランプ区間」の運動方程式を表現すると(1)式及び(2)式のように表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
ここで、(1)式において、「Jdω/dt」は慣性抵抗、「J」は慣性係数、「φ」はトルク定数、「I」は電流、「ω」は回転速度、「TLoss」は電動モータ24から動力伝達機構の回転/直動変換機構18までの合成抵抗トルク、「TCLP」は推力のトルク換算値である。ここで、トルク定数(φ)が、本実施形態で求めようとする推力を推定するための推定パラメータである。
 また、(1)式中の「K」は回転/直動変換機構18の回転/直動変換効率に相当し、「クランプ区間」に回転/直動変換機構で生ずる総摩擦係数等に起因する。尚、本実施形態のアプライ時の動作から、この「K」は任意の値に設定される。例えば、経験的に得られる値を入力するようにしている。ただ、以下に示すように「空走区間」では推力に対応する「TCLP」が「0」であるため、「空走区間」で推定パラメータ(トルク定数等)を推定する場合には「K」は無視することができる。また、「TLoss」は既知値として扱うものである。
 また、(2)式において、「FCLP」はピストン13に与えられる推力であり、また、「K」は回転/直動変換係数である。したがって、推力(FCLP)に回転/直動変換係数(K)を乗じてトルク換算値(TCLP)を求めることができる。ここで、回転/直動変換係数(K)は回転/直動変換部の構造から決まるが、ばらつき要因として扱う必要はないものである。
 ここで、「空走区間」の運動方程式は、(1)式の推力(トルク換算値)がTCLP=0となるため、(3)式のように表される。
Figure JPOXMLDOC01-appb-M000003
また、電動モータの回路方程式は(4)式のように表される。
Figure JPOXMLDOC01-appb-M000004
ここで、(4)式において、「V」は電圧、「R」は巻線抵抗、「L」はインダクタンスである。
 次に、これらの運動方程式と回路方程式に基づくトルク定数(φ)の演算(推定)と推力演算について説明する。上述したように、「空走区間」の電流、電圧、推力の関係を(3)式、及び(4)式で求めた。この中で(4)式の回路方程式について整理すると、回路方程式の右辺は抵抗電圧降下(RI)、インダクタンス電圧降下(LdI/dt)、及び誘起電圧(ωφ)の3項からなり、いずれの項も未知係数、未知変数を含むため、厳密に解くことは難しいが、この3項のうち省略できる要素があるならば、近似的に解くことができる。ここで、巻線抵抗(R)は既知、或いは推定したパラメータとして扱うものである。
 次に、インダクタンス電圧降下(LdI/dt)について説明する。図5に示す電動モータ24の起動時の過渡的な電流、モータ端子電圧、インダクタンス電圧降下の電気特性に着目すると、電動モータ24への通電開始と同時に、インダクタンス電圧はピークを迎えるが、数ms以内に急速に減少して電流値が最大値をとる頃には、インダクタンス電圧は十分小さくなっている。これらのことから、電動モータ24の起動時、つまり、アプライ動作の開始時においては、(4)式に示す回路方程式のうち、インダクタンス電圧降下(LdI/dt)の項を無視できる。
 そして、巻線抵抗(R)を推定した値とし、インダクタンス電圧降下(LdI/dt)の項を無視すると、(4)式で誘起電圧(ωφ)が求まる。ここで、(3)式に示す運動方程式にトルク定数(φ)を乗じることで、誘起電圧(ωφ)を用いることができるように運動方程式を以下の(5)式のような変形式とする。ここで、時刻(T1)と時刻(T2)の時間間隔が合成抵抗トルク(TLoss)の変化に対して十分小さいとして、合成抵抗トルク(TLoss)を一定値と見做すことができる。尚、(5)式のt1、t2は、或る時間間隔の時刻での誘起電圧(ωφ)と電流(I)を示している。
Figure JPOXMLDOC01-appb-M000005
 そして、(5)式から(TLossφ)を消去すると、以下の(6)式になる。
Figure JPOXMLDOC01-appb-M000006
更に、(6)式を(φ)について解くと、以下の(7)式になる。
Figure JPOXMLDOC01-appb-M000007
 更に、誘起電圧(E)はE=ωφであるので、(7)式を変換すると、以下の(8)式になる。ここで、「E′」は誘起電圧の時間微分値である。
Figure JPOXMLDOC01-appb-M000008
 そして、本実施形態では、(8)式を用いてトルク定数(φ)を演算(推定)するものであり、トルク定数(φ)は、電圧値の時間微分値の変化量(以下、電圧微分差分値と表記する)と、電流値の変化量(以下、電流差分値と表記する)とから求められる。以下、図6、図7を用いてその詳細を説明する。
 図6は、トルク定数(φ)の推定演算の制御フローを示しており、また、図7は、トルク定数(φ)の推定時の電流値(I)、電流差分値(ΔIFL)、誘起電圧の時間微分値(E′)、誘起電圧の時間微分値の電圧微分差分値(ΔE′)、推定トルク定数(φest)の時間変化を示している。尚、図6に示す制御フローは、タイマ割り込みによって所定時間毎の起動タイミング(=制御周期)で起動されるものである。以下、図6に基づき制御フローを説明するが、この制御フローによる制御機能によって、トルク定数演算部が構成されている。
 ≪ステップS10≫
ステップS10においては、電動モータの巻線抵抗の推定が完了したかどうかを判断する。巻線抵抗の推定が完了していない場合は、抵抗値を所定の保持値にリセットしてエンドに抜けて、次の起動タイミングを待つことになる。ステップS19で巻線抵抗の推定が完了したと判断されると、ステップS11に移行する。
 ≪ステップS11≫
ステップS11においては、所定時間毎の電流値(I)の電流差分値(ΔIFL)を演算して、その値が「負」であるかどうかを判断する。つまり、図7の(A)に示すように、所定の時間間隔で電流値を計測し、その計測時刻の前後の電流値から電流差分値(ΔIFL)を求めている。尚、この所定時間は制御周期に同期して設定されるのが望ましい。このように、制御周期毎(=所定時間毎)に電流値を計測しながら、図7の(B)に示すように、これも制御周期毎に電流差分値(ΔIFL)を演算する。尚、電流差分値(ΔIFL)は、外部ノイズの影響を低減するために、ノイズフィルタを介して電流値を計測すると精度を向上することができる。
 そして、前回の制御周期で計測した電流値(In-1)に対して、今回の制御周期で計測した電流値(I)の方が小さいと、電流差分値(ΔIFL)が「負」になったと判断してステップS12に移行する。一方、前回の制御周期で計測した電流値(In-1)に対して、今回の制御周期で計測した電流値(I)の方が大きいと、電流差分値(ΔIFL)は「正」の状態と判断して、エンドに抜けて次の起動タイミングを待つことになる。
 ≪ステップS12≫
ステップS12においては、上述の演算で求めた電流差分値(ΔIFL)が「負」の状態に変化して所定の時間を経過したかどうかを判断する。図7の(B)に示すように、時刻(t1)(=図3のT1)で電流差分値(ΔIFL)が「負」になった直後は、電流差分値(ΔIFL)が小さい状態である。そのため、この時点で計測された電流値(I)を用いて、(8)式でトルク定数(φ)を演算すると、外部ノイズの影響で(8)式の「分母」が「0」となり、トルク定数(φ)が無限大として計算される恐れがあり、トルク定数(φ)の演算精度が低下する。
 このため、電流差分値(ΔIFL)が「負」になった状態で、充分な大きさの電流差分値(ΔIFL)を得ることができるように、所定時間(Td)が経過してから後に電流差分値(ΔIFL)を求めるようにしている。したがって、トルク定数(φ)を推定する演算可能な範囲が、図7の(B)に示すように電流差分値(ΔIFL)が「負」の状態に変化して所定時間(Td)を経過した後の時刻(t2)以降で、「電流減少区間」が終了する時刻(t6)(=図3のT2/「電流減少区間」と「電流一定区間」の境界に該当)までの演算区間(Rn1)に設定されるので、(8)式の「分母」が「0」になる恐れを避けることができ、演算精度を向上することが可能となる。
 したがって、電流差分値(ΔIFL)が「負」の状態に変化して、所定時間(Td)を経過した場合はステップS13に移行する、一方、所定時間(Td)を経過しない場合は、エンドに抜けて次の起動タイミングを待つことになる。尚、所定時間(Td)とは可変の時間であっても良いし、一定の時間であっても良いものである。
 ≪ステップS13≫
ステップS13においては、上述の電流差分値(ΔIFL)が「負」の状態に変化して所定時間(Td)を経過した後に、誘起電圧の時間微分値の電圧微分差分値(ΔE′)と、予め定めた誘起電圧の時間微分値の電圧微分閾値(ΔE′SL)とを比較する。ここで、誘起電圧の時間微分値の電圧微分差分値(ΔE′)と、誘起電圧の時間微分値の電圧微分閾値(ΔE′SL)は夫々「負」の値である。
 次に、誘起電圧の時間微分値の電圧微分差分値(ΔE′)の演算について説明する。インダクタンス電圧降下(LdI/dt)を無視すると、(4)式から、誘起電圧(ωφ)は、ωφ=V-RIにより求めることができる。そして、この求められた誘起電圧を時間微分した時間微分値を図7の(C)に示している。更に、これを時間微分して誘起電圧の時間微分値の電圧微分差分値(ΔE′)を演算し、この演算結果を図7の(D)に示している。
 図7の(D)に示すように、本実施形態では、トルク定数(φ)の演算可能な範囲を、誘起電圧の時間微分値の電圧微分差分値(ΔE′)が誘起電圧の時間微分値の電圧微分閾値(ΔE′SL)より小さくなる時刻t3以降で、時刻(t6)までの演算区間(Rn2)に設定する。演算区間(Rn2)では、誘起電圧の時間微分値の電圧微分差分値(ΔE′)が大きくなるため、(8)式の「分子」のルートの中が「-」(マイナス)になる恐れが少なくなり、トルク定数(φ)の演算精度を更に向上することが可能となる。
 したがって、誘起電圧の時間微分値の電圧微分差分値(ΔE′)が誘起電圧の時間微分値の電圧微分閾値(ΔE′SL)より小さい場合はステップS14に移行する、一方、誘起電圧の時間微分値の変化量(ΔE′)が誘起電圧の時間微分値の変化量閾値(ΔE′SL)より大きい場合は、エンドに抜けて次の起動タイミングを待つことになる。
 ≪ステップS14≫
ステップS14においては、電流差分値(ΔIFL)が負のピークを超えたかを判定する。時刻t4で電流差分値(ΔIFL)が負のピークを超えた場合は、ステップ15に移行する。一方、電流差分値(ΔIFL)が負のピークを超えていない場合は、エンドに抜けて次の起動タイミングを待つことになる。
 ≪ステップS15≫
ステップS15においては、図7の(B)に示すように、電流差分値(ΔIFL)が「負」のピークを超えた後に、所定回数(n回)の制御周期分の誘起電圧の時間微分値の電圧微分差分値(ΔE′)、及び電流差分値(ΔIFL)を加算処理する。つまり、電流差分値(ΔIFL)が負のピークを超えた時刻(t4)から、所定回数の制御周期(=時間)を経過した時刻(t5)までの間の最終演算区間(Rn3)で、各制御周期で演算された誘起電圧の時間微分値の電圧微分差分値(ΔE′)、及び電流差分値(ΔIFL)が加算処理される。この場合、最終演算区間(Rn3)は、演算区間(Rn1)と演算区間(Rn2)を共に満足する演算区間となっている。
 このように、電流差分値(ΔIFL)が「負」のピークを超えた後の最終演算区間(Rn3)で、誘起電圧の時間微分値の電圧微分差分値(ΔE′)、及び電流差分値(ΔIFL)が求められるため、(8)式の時間微分値の電圧微分差分値(ΔE′)と電流差分値(ΔIFL)が大きい値となり、トルク定数(φ)の演算精度を向上することができる。そして、誘起電圧の時間微分値の電圧微分差分値(ΔE′)、及び電流差分値(ΔIFL)の加算処理が完了すると、ステップS16に移行する。
 ≪ステップS16≫
ステップS16においては、ステップS15で求めた所定回数の制御周期分の誘起電圧の時間微分値の電圧微分差分値(ΔE′)、及び電流差分値(ΔIFL)の加算値を用いて、(8)式により暫定的なトルク定数(φ)を演算する。暫定的なトルク定数(φ)が求まるとステップS17に移行する。
 尚、トルクは磁束と相関しているので、トルクの代わりに磁束と置き換えることもできる。したがって、本ステップでは磁束を演算、推定するようにもでき、以下の説明でトルクを磁束に読み替えればよいものである。
 ≪ステップS17≫
ステップS17においては、ステップS16で暫定的に求められたトルク定数(φ)を平滑化処理する。その後、ステップS18に移行する。
 ≪ステップS18≫
ステップS18においては、平滑化処理された暫定的に求められたトルク定数(φ)の安定性を判断する。この判断に使用される基準となる判断用トルク定数は実験的に求められたものであり、判断用トルク定数と比較して安定していると判断されると、ステップS19に移行する。一方、判断用トルク定数と比較して安定していないと判断されると、この暫定的に求められたトルク定数(φ)は破棄され、エンドに抜けて次の起動タイミングを待つことになる。
 ≪ステップS19≫
ステップS18で暫定的なトルク定数(φ)が安定した値と判断されたので、ステップS19においては、この暫定のトルク定数(φ)を正規のトルク定数(φ)として確定する。トルク定数(φ)が確定されると、最終的にエンドに抜けて次の起動タイミングを待つことになる。
 次に、ステップS19で求められたトルク定数(φ)は、カットオフ電流閾値演算部に与えられ、カットオフ電流閾値が演算される。このカットオフ電流閾値演算部は、電動モータ24への電流を遮断するときの、目標とするカットオフ電流閾値(ISL)を求めるものであり、(1)式を変形して以下の(9)式で求めることができる。
Figure JPOXMLDOC01-appb-M000009
 この場合は、予め定めた目標推力(F CLP)が与えられ、合成抵抗トルク(TLoss)を推定したパラメータにし、上述の推定したトルク定数(φ)と共に、(9)式で目標カットオフ電流閾値(ISL)が求まるので、正確な推力として管理することができる。そして、最終的にはカットオフ電流閾値(ISL)と実電流値とが比較されてカットオフ信号を出力する。
 電子制御手段25は、実際に電動モータ24に流れている実電流値がカットオフ電流閾値(ISL)に達すると、電動モータ24に供給されている電流を遮断する電流遮断部を備えており、これによって、「推力保持区間」に移行することになる。
 このように、トルク定数(φ)の推定演算を行なう場合において、トルク定数(φ)の演算可能な範囲が、電流差分値(ΔIFL)が「負」の状態に変化して所定時間(Td)を経過した後の時刻(t2)以降で、「電流減少区間」が終了する時刻(t6)までの演算区間(Rn1)に設定されるので、(8)式の「分母」が「0」になる恐れが少なくなり、トルク定数(φ)の演算精度を向上することが可能となる。
 また、トルク定数(φ)の演算可能な範囲が、誘起電圧の時間微分値の電圧微分差分値(ΔE′)が誘起電圧の時間微分値の電圧微分閾値(ΔE′SL)より小さくなる時刻(t3)以降で、「電流減少区間」が終了する時刻(t6)までの演算区間(Rn2)に設定されるので、(8)式の「分子」のルートの中が「-」になる恐れが少なくなり、トルク定数(φ)の演算精度を向上することが可能となる。
 更に、電流差分値(ΔIFL)が「負」のピークを超えた後の時刻(t4)から時刻(t5)までの最終演算区間(Rn3)で、誘起電圧の時間微分値の電圧微分差分値(ΔE′)、及び電流差分値(ΔIFL)が求められるため、(8)式の時間微分値の電圧微分差分値(ΔE′)と電流差分値(ΔIFL)が大きい値となり、トルク定数(φ)の演算精度を向上することができる。
 また、これらのトルク定数(φ)の推定演算では、回転センサからの回転速度情報を使用しないので、製品単価を抑えることが可能となる。
 以上述べた通り、本発明によれば、ピストンの推力を制御するカットオフ電流閾値演算部を備えると共に、電動モータに通電を開始した時に生じる突入電流の後の電流が「電流一定区間」に至る前の「電流減少区間」内で、トルク定数演算部によって、少なくとも電動モータに印加される電圧値と電流値を複数回に亘って計測し、この複数の電圧値と電流値を用いてトルク定数を演算可能な演算区間を設定し、この演算区間内でトルク定数を演算し、更に演算されたトルク定数を基にカットオフ電流閾値演算部によるカットオフ電流閾値の演算を行なうようにした。
 したがって、「電流一定区間」に至る前の「電流減少区間」内に、トルク定数を精度よく推定することができ、更にトルク定数の推定値を基に正確なカットオフ電流を演算することができる。また、トルク定数の推定では回転センサによる回転速度情報を使用しないため製品単価を抑えることが可能となる。
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 10…ブレーキキャリパ、11…キャリパ本体、12…油圧室、13…ピストン、14、15…ブレーキパッド、16…ディスクロータ、17…ブレーキペダル、18…回転/直動変換機構、19…減速機構、20…回転軸、21…直動部材、22…大径歯車、23…小径歯車、24…電動モータ、25…電子制御手段、26…バッテリ、27…リレー、28…Hブリッジ回路、29…マイクロプロセッサ、30…電流モニタ回路、31…上アーム電圧モニタ回路、32…下アーム電圧モニタ回路、33…電源電圧モニタ回路、34…ハーネス、35…マスタシリンダ。

Claims (9)

  1.  ディスクロータへブレーキバッドを押し付けるピストンと、電動モータによって出力される回転運動を直動運動に変換して前記ピストンを推進する回転/直動変換機構と、前記回転/直動変換機構に設けられ逆作動を抑制するセルフロック機能部と、前記電動モータの回転を制御する電子制御手段と、を備えた電動パーキングブレーキ装置において、
     前記電子制御手段は、
     少なくとも、前記ピストンの推力を制御するカットオフ電流閾値演算部と前記電動モータのトルク定数を推定するトルク定数演算部を備え、
     前記トルク定数演算部は、前記電動モータに通電を開始した時に生じる突入電流の後の電流が「電流一定区間」に至る前の「電流減少区間」内で、前記電動モータに印加される電圧値と電流値を複数回に亘って計測し、この複数の電圧値と電流値を用いてトルク定数を演算する「演算区間」を設定する機能と、前記「演算区間」内でトルク定数を演算する機能とを備え、
     前記カットオフ電流閾値演算部は、前記トルク定数演算部で推定演算されたトルク定数を用いてカットオフ電流閾値を演算する機能を備えている
    ことを特徴とする電動パーキングブレーキ装置。
  2.  請求項1に記載の電動パーキングブレーキ装置において、
     前記電子制御手段は、
     前記電動モータに流れる電流の実電流値が前記カットオフ電流閾値に達すると前記電動モータに流れる電流を遮断する電流遮断部を備える
    ことを特徴とする電動パーキングブレーキ装置。
  3.  請求項1に記載の電動パーキングブレーキ装置において、
     前記トルク定数演算部は、所定の時間間隔で計測された電圧値の時間微分値の電圧微分差分値と、前記所定の時間間隔で計測された電流値の電流差分値を用いて、トルク定数を演算する
    ことを特徴とする電動パーキングブレーキ装置。
  4.  請求項3に記載の電動パーキングブレーキ装置において、
     前記トルク定数演算部は、前記電流差分値が「負」の状態に変化する第1時刻から所定時間を経過した後の第2時刻以降で、前記「電流減少区間」が終了する第6時刻までの演算区間(Rn1)で、少なくとも前記電流差分値を演算する
    ことを特徴とする電動パーキングブレーキ装置。
  5.  請求項3に記載の電動パーキングブレーキ装置において、
     前記トルク定数演算部は、前記電圧微分差分値が所定の電圧微分閾値より小さくなる第3時刻から前記「電流減少区間」が終了する第6時刻までの演算区間(Rn2)で、少なくとも前記電圧微分差分値を演算する
    ことを特徴とする電動パーキングブレーキ装置。
  6.  請求項3に記載の電動パーキングブレーキ装置において、
     前記トルク定数演算部は、前記電流差分値が「負」の状態に変化する第1時刻から所定の時間を経過した後の第2時刻以降で、前記「電流減少区間」が終了する第6時刻までの演算区間(Rn1)と、前記電圧微分差分値が所定の電圧微分閾値より小さくなる第3時刻から前記「電流減少区間」が終了する前記第6時刻までの演算区間(Rn2)を満足し、しかも、前記電流差分値が負のピークを超えた第4時刻から所定の時間を経過した第5時刻までの演算区間(Rn3)で、前記電流差分値と前記電圧微分差分値を演算する
    ことを特徴とする電動パーキングブレーキ装置。
  7.  請求項6に記載の電動パーキングブレーキ装置において、
     前記トルク定数演算部は、前記演算区間(Rn3)の間で演算された、複数個の前記電流差分値を加算し、同様に複数個の前記電圧微分差分値を加算し、更に、加算された前記電流差分値と加算された前記電圧微分差分値とを用いてトルク定数を演算する
    ことを特徴とする電動パーキングブレーキ装置。
  8.  電動モータと、前記電動モータの回転トルクを増幅する減速機構と、前記減速機構より出力される回転運動を直動運動に変換する回転/直動変換機構と、前記回転/直動変換機構によって移動されるピストンと、前記ピストンによってディスクロータに押し付けられるブレーキバッドと、前記電動モータの回転を制御する電子制御手段を備えた電動ブレーキ装置において、
     前記電子制御手段は、
    前記ピストンの推力を制御するカットオフ電流閾値演算部と前記電動モータの磁束を推定する磁束推定部を備え、
     前記磁束推定部は前記電動モータに印加される電圧値と電流値から磁束推定可能期間を判定する磁束推定可能判定手段を有し、
     前記磁束推定可能期間において推定される磁束推定値を基にカットオフ電流閾値演算部でカットオフ電流を演算することを特徴とする電動ブレーキ装置。
  9.  電動モータと、前記電動モータの回転トルクを増幅する減速機構と、前記減速機構より出力される回転運動を直動運動に変換し、逆作動性のないセルフロック機能部を有する回転/直動変換機構と、前記回転/直動変換機構によって移動されるピストンと、前記ピストンによってディスクロータに押し付けられるブレーキバッドと、前記電動モータの回転を制御する電子制御手段を備えた電動ブレーキ装置において、
     少なくとも前記電子制御手段は、
     前記電動モータに通電を開始した時に生じる突入電流の後の電流が「電流一定区間」に至る前の「電流減少区間」内で、少なくとも前記電動モータに印加される電圧値と電流値を複数回に亘って計測し、この複数の電圧値と電流値を用いてトルク定数を演算する「演算区間」を設定し、前記「演算区間」内にトルク定数を演算するトルク定数演算機能部と、前記トルク定数演算機能部で推定演算されたトルク定数を用いてカットオフ電流閾値を演算するカットオフ電流閾値演算機能部と、前記電動モータに流れる電流の実電流値が前記カットオフ電流閾値に達すると前記電動モータに流れる電流を遮断する電流遮断機能部を備える
    ことを特徴とする電動ブレーキ装置。
PCT/JP2018/037154 2017-11-13 2018-10-04 電動パーキングブレーキ装置、及び電動ブレーキ装置 WO2019093030A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-217942 2017-11-13
JP2017217942A JP2019089378A (ja) 2017-11-13 2017-11-13 電動パーキングブレーキ装置、及び電動ブレーキ装置

Publications (1)

Publication Number Publication Date
WO2019093030A1 true WO2019093030A1 (ja) 2019-05-16

Family

ID=66437706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037154 WO2019093030A1 (ja) 2017-11-13 2018-10-04 電動パーキングブレーキ装置、及び電動ブレーキ装置

Country Status (2)

Country Link
JP (1) JP2019089378A (ja)
WO (1) WO2019093030A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159269A (ja) * 2012-02-07 2013-08-19 Akebono Brake Ind Co Ltd 電動パーキングブレーキの制御装置、制御方法、制御プログラム、およびブレーキシステム
JP2015519243A (ja) * 2012-04-16 2015-07-09 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両のパーキングブレーキを調整するための方法
JP2017123753A (ja) * 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 モータ制御装置及び発電機制御装置
WO2018135512A1 (ja) * 2017-01-23 2018-07-26 日立オートモティブシステムズ株式会社 電動パーキングブレーキ装置、及びブレーキ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159269A (ja) * 2012-02-07 2013-08-19 Akebono Brake Ind Co Ltd 電動パーキングブレーキの制御装置、制御方法、制御プログラム、およびブレーキシステム
JP2015519243A (ja) * 2012-04-16 2015-07-09 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両のパーキングブレーキを調整するための方法
JP2017123753A (ja) * 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 モータ制御装置及び発電機制御装置
WO2018135512A1 (ja) * 2017-01-23 2018-07-26 日立オートモティブシステムズ株式会社 電動パーキングブレーキ装置、及びブレーキ装置

Also Published As

Publication number Publication date
JP2019089378A (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6811101B2 (ja) 電動パーキングブレーキ装置、及びブレーキ装置
JP7136662B2 (ja) 電動パーキングブレーキ装置
JP5501462B2 (ja) 駐車ブレーキにより与えられる締付力の設定方法
JP5646062B2 (ja) 駐車ブレーキによって加えられたクランプ力を調節するための方法、閉ループ制御器もしくは開ループ制御器、および閉ループ制御器もしくは開ループ制御器を備える駐車ブレーキ
KR101958503B1 (ko) 차량 내 주차 브레이크의 조절 방법, 폐회로 제어 및/또는 개회로 제어 유닛, 및 상기 유형의 폐회로 제어 및/또는 개회로 제어 유닛을 구비한 주차 브레이크
US9441689B2 (en) Method for adjusting a parking brake in a vehicle
US11292442B2 (en) Electromechanical brake system
US9616864B2 (en) Method and device for operating a braking device, braking device
JP6306426B2 (ja) 電動ブレーキ装置
KR101725652B1 (ko) 브레이크 장치
JP6752668B2 (ja) 電動ブレーキ装置
WO2019093030A1 (ja) 電動パーキングブレーキ装置、及び電動ブレーキ装置
JP5864158B2 (ja) 車両内電気操作式駐車ブレーキの効率を決定する機能を実現させるためのプログラム、及びそのプログラムを実行するための制御/操作装置
JP7155055B2 (ja) 電動パーキングブレーキ装置
CN106167013A (zh) 用于操作车辆中驻车制动器的方法
JP2022533302A (ja) 車両ブレーキアクチュエータの電気モータ温度推定とモータ制御
US20230043134A1 (en) Electric parking brake device and electric parking brake control method
JP2018114975A (ja) 電動ブレーキ装置
KR20110125322A (ko) 전자식 주차 브레이크 시스템의 제어 방법
CN114148307A (zh) 电动制动器的控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875163

Country of ref document: EP

Kind code of ref document: A1