WO2019092381A1 - Preparation d'une suspension aqueuse de materiau phosphate - Google Patents

Preparation d'une suspension aqueuse de materiau phosphate Download PDF

Info

Publication number
WO2019092381A1
WO2019092381A1 PCT/FR2018/052797 FR2018052797W WO2019092381A1 WO 2019092381 A1 WO2019092381 A1 WO 2019092381A1 FR 2018052797 W FR2018052797 W FR 2018052797W WO 2019092381 A1 WO2019092381 A1 WO 2019092381A1
Authority
WO
WIPO (PCT)
Prior art keywords
mpa
less
acid
aqueous suspension
weight
Prior art date
Application number
PCT/FR2018/052797
Other languages
English (en)
Inventor
Driss Dhiba
Benoît MAGNY
Hamid MAZOUZ
Céline METHIVIER
Jacques Mongoin
Original Assignee
Coatex
Ocp Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coatex, Ocp Sa filed Critical Coatex
Priority to RU2020118890A priority Critical patent/RU2783859C2/ru
Priority to AU2018363262A priority patent/AU2018363262A1/en
Priority to EP18825742.2A priority patent/EP3707097A1/fr
Priority to JOP/2020/0107A priority patent/JOP20200107A1/ar
Priority to US16/762,746 priority patent/US20200361774A1/en
Priority to BR112020009201-0A priority patent/BR112020009201A2/pt
Priority to CN201880085960.9A priority patent/CN111629995B/zh
Publication of WO2019092381A1 publication Critical patent/WO2019092381A1/fr
Priority to IL274542A priority patent/IL274542A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/01Treating phosphate ores or other raw phosphate materials to obtain phosphorus or phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/22Preparation by reacting phosphate-containing material with an acid, e.g. wet process
    • C01B25/222Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B11/00Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B11/00Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes
    • C05B11/04Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes using mineral acid
    • C05B11/08Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes using mineral acid using sulfuric acid

Definitions

  • the invention relates to a method for preparing an aqueous suspension of at least one phosphated material comprising dispersing phosphatic material particles in water in the presence of at least one additive of the anionic polymer type of acrylic acid or of methacrylic acid.
  • the suspension according to the invention has a viscosity of less than 1500 mPa.s.
  • the invention also relates to the conditioning of the phosphate material associated with the anionic polymer, for its subsequent treatment with at least one strong acid, for the industrial preparation of phosphoric acid.
  • the method for the industrial preparation of phosphoric acid from an aqueous suspension comprising water and particles of at least one phosphated material dispersed in the presence of at least one additive of the anionic polymer type is also particularly powerful.
  • the phosphoric acid thus prepared is a product essential for the manufacture of fertilizers, especially ternary fertilizers, NPK, or binary fertilizers, NP.
  • Phosphoric acid is also used as an ingredient in the manufacture of food products, particularly for the acidification of beverages, or for the treatment of metal surfaces or in the field of microelectronics.
  • Phosphate rocks are important sources of raw material for the manufacture of phosphoric acid.
  • Phosphoric acid H 3 PO 4
  • the wet process is the most used and the phosphoric acid from this route can be used to produce phosphate fertilizers (DAP or diammonium phosphate, MAP or monoammonium phosphate, TSP or triple superphosphate).
  • the thermal process acid is of higher purity and is generally used for pharmaceuticals, detergents and food products.
  • phosphoric acid is produced in particular by the action of the strong acid on the natural phosphate ore.
  • Sulfuric acid is the most commonly used strong acid, in which case insoluble calcium sulfate is formed which is filtered off to recover the gypsum.
  • the operating conditions are chosen in order to precipitate the calcium sulfate either in its dihydrate form, producing P2O5 generally at a concentration of 26-32% at 70-80 ° C, or in the hemihydrate form, with P2O5 generally at a concentration of concentration of 40-52% at 90-110 ° C.
  • Evaporation can be used to further concentrate the phosphoric acid subsequently and thus optimize the quality of the acid.
  • the phosphate rock is treated to be obtained in dry form or in wet form in which it is mixed with water, for example to form phosphate pulp.
  • the phosphate rock After its extraction, the phosphate rock can be treated directly or it can be transported. However, to facilitate the transport of the phosphate rock, it is necessary to be able to control the viscosity, especially during the transport of phosphate rock obtained by wet.
  • the phosphate pulp When transported, the phosphate pulp should have a high concentration of phosphate rock. In particular, when transported in a pipe.
  • a high concentration of phosphate rock makes it possible to reduce the quantity of water used during the treatment, the handling or the transport of a determined quantity of phosphate rock.
  • the reduction of the quantity of water is particularly interesting during the different stages of phosphate rock transport but also during the subsequent stages, especially during the preparation of phosphoric acid.
  • CN 103333664 discloses a grinding aid agent for wet grinding of phosphate ore.
  • US 5183211 discloses a method of reducing the relative viscosity of a phosphate rock slurry during a grinding process in a phosphoric acid production plant. The method includes the steps of adding an effective amount of a polymer of acrylamide or acrylic acid sulfonate.
  • US 6213416 discloses a method of grinding phosphate rock in the presence of particles of a water-insoluble and water-swellable polymer.
  • the EP 0892020 relates to the use of a particular copolymer as a dispersing agent or as a grinding aid agent for calcium carbonate in aqueous suspension.
  • the copolymer is prepared from monomers having a surfactant structure.
  • the patent WO 2015105464 presents a modification of both the reaction device in order to optimize the solubilization rate of the phosphate rock to higher values and to ensure better crystallization of the gypsum produced, as well as the filtration mode. to improve the viability of the phosphoric acid slurry.
  • the patent No. CN106395879 it aims to improve the size of the gypsum crystals during the manufacture of phosphoric acid by wet, using a composite additive composed of a sulfonic acid regulator, an organic weak acid , an ammonium salt buffer agent and a high polymer dispersant dissolved in water.
  • 4501724 proposes a process for the wet manufacture of concentrated phosphoric acid, based on the use of a mixture of sulfur trioxide gas and sulfuric acid instead of concentrated sulfuric acid. . This results in a higher heat of reaction allowing the use of a very dilute sulfuric acid or a phosphate resulting from a wet grinding, without affecting the phosphoric acid titer produced.
  • the method for preparing an aqueous suspension of phosphated material according to the invention makes it possible to provide a solution to all or part of these problems, in particular by a significant improvement in the conditions of preparation, transport and treatment of rock pulp.
  • phosphate Preferably, the method for preparing an aqueous suspension of phosphatic material according to the invention is not a grinding method, during which the particle size remains constant.
  • the preparation method according to the invention is preferably carried out after the grinding of the phosphate rock, preferably the dispersion is carried out after grinding.
  • the invention provides a method for preparing an aqueous suspension of at least one phosphated material, whose Brookfield viscosity measured after 90 s of preparation, at 25 ° C., at 100 rpm and at a concentration of phosphatic material. greater than 45% by weight, is less than 1500 mPa.s, comprising the dispersion in water of particles of phosphatic material whose size is between 10 and 400 ⁇ , in the presence of at least one anionic polymer of molecular weight in weight (Mw) ranging from 1000 to 90 000 g / mol and obtained by polymerization reaction of at least one acid selected from acrylic acid, methacrylic acid and their salts.
  • An aqueous suspension of the phosphated material obtained after grinding is thus preferably formed. In the form of such a suspension, the viscosity of the phosphated material is controlled, which generally facilitates its transport.
  • the polymerization reaction uses at least one anionic monomer comprising at least one polymerizable olefinic unsaturation and at least one carboxylic acid function, in particular an anionic monomer comprising at least one polymerizable ethylenic unsaturation and at least one carboxylic acid function.
  • the anionic monomer is selected from acrylic acid, methacrylic acid, an acrylic acid salt, a methacrylic acid salt. This polymerization reaction can also implement these two acrylic and methacrylic acids and their salts.
  • the polymer used according to the invention may also be a copolymer obtained by a polymerization reaction employing at least one other acid chosen from acrylic acid, methacrylic acid, maleic acid, itaconic acid and their salts, and at least one another comonomer which may be an ester of an acid selected from acrylic acid and methacrylic acid.
  • nonionic monomer chosen from esters of an acid comprising at least one monocarboxylic acid function, in particular an ester of an acid selected from acrylic acid, methacrylic acid, an acrylic acid salt, a methacrylic acid salt and mixtures thereof.
  • Examples of such comonomers include a compound selected from styrene; vinylcaprolactam; alkyl acrylate, in particular C 1 -C 10 alkyl acrylate, preferentially C 1 -C 4 alkyl acrylate, more preferably methyl acrylate, ethyl acrylate, propyl acrylate, isobutyl acrylate, n-butyl acrylate, ; alkyl methacrylate, in particular C 1 -C 10 alkyl methacrylate, preferentially C 1 -C 4 alkyl methacrylate, more preferably methyl methacrylate, ethyl methacrylate, propyl methacrylate, isobutyl methacrylate, n-butyl methacrylate ; aryl acrylate, preferably phenoxyethyl acrylate; aryl methacrylate, preferably phenoxyethylmethacrylate.
  • Methyl acrylate, ethyl acrylate, propyl acrylate, isobutyl acrylate, n-butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isobutyl methacrylate and n-butyl methacrylate are particularly preferred. .
  • the anionic polymer according to the invention is prepared in the absence of acrylamide.
  • the polymer used is a non-sulfonated anionic polymer. It is then prepared in the absence of a monomer comprising a sulphonated group, in particular in the absence of 2-acrylamido-2-methylpropanesulphonic acid, of 2-acrylamido-2-methylpropanesulphonic acid salt, of ethoxymethacrylate acid. sulfonic acid, ethoxymethacrylate sulfonic acid salt, sodium ethallyl sulfonate, styrene sulfonic acid and their salts.
  • the polymer used according to the invention is partially or completely neutralized. More preferably, it is partially or completely neutralized by means of at least one derivative selected from an alkali metal, an alkaline earth metal and mixtures thereof, in particular a derivative comprising at least one element chosen from lithium, sodium, calcium and magnesium. and mixtures thereof, for example NaOH, KOH, Ca (OH) 2 . Sodium, calcium and mixtures thereof are particularly preferred.
  • the neutralization by means of sodium and calcium can be carried out using at least one compound selected from NaOH, Ca (OH) 2 and mixtures thereof. The respective proportions of sodium and calcium can vary quite widely.
  • the Na / Ca molar ratio can range from 98/2 to 30/70, preferably from 95/5 to 40/60, more preferably from 90/10 to 30/70 or from 90/10 to 40/60. more preferably from 70/30 to 40/60, in particular 50/50.
  • the anionic polymer used according to the invention has a molecular weight (Mw) of between 2,000 and 90,000 g / mol, preferably between 1,000 or 2,000 and 50,000 g / mol, more preferably between 1,000 or 2,000 and 10,000 g / mol, and more preferably between 1,500 and 2,000 and 8,000 g / mol.
  • the molecular weight (Mw) is measured by size exclusion chromatography (CES).
  • the preferred polymers used according to the invention are homopolymers of acrylic acid, in particular neutralized homopolymers of acrylic acid.
  • the more particularly preferred polymers used according to the invention are neutralized homopolymers of acrylic acid whose molecular weight (Mw) is between 1000 and 10 000 g / mol, preferably between 1500 and 8000 g. / mol.
  • Mw molecular weight
  • Examples of particularly preferred copolymers used according to the invention are chosen from
  • Polymer (PI) homopolymer of molecular weight 5000 g / mol obtained by polymerization of acrylic acid in the presence of copper sulfate, iron sulfate, hydrogen peroxide and 2- (1-carboxyethylsulfanylcarbothioylsulfanyl acid ) propanoic (DPTTC - CAS number 6332-91-8), neutralized with sodium and calcium (70/30 molar relative to the amount of acrylic acid);
  • Polymer (P2) homopolymer with a molecular weight of 4,200 g / mol and obtained by polymerization of acrylic acid in the presence of copper sulphate, iron sulphate, sodium hydrogen peroxide and sodium hypophosphite, neutralized with sodium and calcium (90/10 molar relative to the amount of acrylic acid);
  • Polymer (P3) polymer with a molecular mass of 4,800 g / mol and obtained by polymerization of acrylic acid in the presence of sodium persulfate and sodium hypophosphite, neutralized with sodium and calcium (50/50 molar with respect to the amount of acrylic acid);
  • Polymer (P4) homopolymer with a molecular mass of 4,200 g / mol and obtained by polymerization of acrylic acid in the presence of copper sulphate, sulphate of iron, hydrogen peroxide and sodium hypophosphite, neutralized with sodium and calcium (30/70 molar relative to the amount of acrylic acid).
  • the polymer used is not a flocculating agent.
  • the amount of anionic polymer used can vary quite widely.
  • the amount by weight (dry / dry) of anionic polymer used is between 0.05 and 5%, more preferably between 0.1 and 2%, relative to the amount of phosphate material.
  • the amount by weight (dry / dry) of anionic polymer used is between 0.1 and 5% by weight relative to the amount of phosphate material. More preferably according to the invention, the amount by weight (dry / dry) of anionic polymer used is between 0.15 and 2% by weight relative to the amount of phosphate material.
  • the preparation method according to the invention does not comprise any additional step of concentrating the aqueous suspension of dispersed phosphatic material particles prior to the implementation of the anionic polymer, while allowing the preparation of an aqueous suspension of particles whose concentration is high and whose viscosity is acceptable.
  • the viscosity of the suspension allows its handling or transport under conditions that are effective, from a mechanical point of view but also from an economic point of view.
  • the concentration of phosphated material is greater than 45% by weight. However, this concentration can be much higher.
  • the concentration by weight of phosphatic material particles of the aqueous suspension may be greater than 50%, more preferably greater than 55%. This concentration can be even higher and be greater than 60% or 65%.
  • the method according to the invention can be implemented at a concentration which may be greater than 70% or even higher.
  • the preparation method according to the invention allows a particularly useful and effective control of the viscosity of the aqueous suspension of phosphate material.
  • the Brookfield viscosity measured 90 s after preparation, at 25 ° C., at 100 rpm and at a concentration of phosphate material greater than 45% by weight is less than 1,500 mPa.s.
  • this viscosity is less than 1200 mPa.s, more preferably less than 1000 mPa.s. Even more preferably, this viscosity is less than 800 mPa.s or less than 500 mPa.s or even less than 350 mPa.s or less than 200 mPa.s.
  • the Brookfield viscosity of the suspension measured 90 seconds after preparation, at 25 ° C., at 100 rpm and at a concentration greater than 60% by weight of phosphate material. is less than 1500 mPa.s or less than 1000 mPa.s.
  • this viscosity measured under these conditions is less than 800 mPa.s or even less than 500 mPa.s, 350 mPa.s or 200 mPa.s.
  • the phosphated material is used in the form of particles whose size is less than 400 ⁇ .
  • the size of these particles is less than 200 ⁇ or less than 150 ⁇ .
  • the size of these particles is greater than 10 ⁇ , preferably greater than 30 ⁇ .
  • the particle size of phosphate material can range from 10 to 400 ⁇ or from 10 to 200 ⁇ or from 10 to 150 ⁇ . In a preferred manner, this size can also range from 30 to 400 ⁇ or from 30 to 200 ⁇ or from 30 to 150 ⁇ .
  • the dispersion in water of the particles of phosphated material is carried out with stirring by a suitable device. More preferably, it is carried out with mechanical stirring.
  • the preparation method according to the invention can be carried out at different temperatures. Preferably, it is carried out at a temperature ranging from 10 to 60 ° C, more preferably from 20 to 50 ° C or from 25 to 50 ° C.
  • the method according to the invention makes it possible to prepare an aqueous suspension of phosphate material which is stable.
  • this suspension has a high resistance to sedimentation of the particles of phosphated material, measured by evaluation over time of the phase shift of the aqueous suspension of particles of phosphatic material according to the invention, in particular with respect to a suspension without polymer and of identical viscosity.
  • the suspension has little or no dilatancy.
  • the dilatancy can be determined by viscosity measurements at different shear rates and at a specific temperature. When the viscosity is constant or decreases as the shear rate increases, the dilatancy is low or zero.
  • the preparation method according to the invention makes it possible to prepare an aqueous suspension of at least one particular phosphate material.
  • This suspension is part of the invention.
  • the invention also provides an aqueous suspension of at least one phosphated material, the Brookfield viscosity of which is measured 90 s after preparation, at 25 ° C., at 100 rpm and at a concentration of phosphate material greater than 45% by weight. weight is less than 1500 mPa.s, comprising water and particles of phosphated material dispersed in the presence of at least one anionic polymer obtained by polymerization reaction of at least one acid selected from acrylic acid, methacrylic acid and their salts.
  • the polymer is partially or completely neutralized, preferably partially or completely neutralized by means of a derivative comprising at least one element chosen from lithium, sodium, calcium, magnesium and their mixtures, more preferably selected from sodium, calcium and their mixtures.
  • the anionic polymer is obtained by a polymerization reaction also implementing at least one ester of an acid selected from acrylic acid and methacrylic acid.
  • the anionic polymer has a weight-average molecular mass (M w ) ranging from 2,000 to 90,000 g / mol or from 1,000 to 2,000 to 50,000 g / mol, more preferably from 1,000 to 2,000 to 10,000 g / mol or 1,500 or 2,000 to 8,000 g / mol.
  • the amount by weight (dry / dry) of anionic polymer used is between 0.05 to 5%, more preferably between 0.1 and 2%, relative to the amount of dry phosphate material.
  • the concentration of phosphatic material particles of the aqueous suspension according to the invention is greater than 45%.
  • this concentration by weight of phosphate material is greater than 50%, more preferably greater than 55% and even more preferably greater than 60% or 65%. This concentration can be even higher and reach values greater than 70% or 75%.
  • the suspension according to the invention has a particularly advantageous viscosity.
  • this Brookfield viscosity measured 90 seconds after preparation, at 25 ° C. and at 100 rpm, is less than 1200 mPa.s, more preferably less than 1500 mPa.s, at 1200 mPa.s. or at 1000 mPa.s and even more preferably less than 800 mPa.s or less than 500 mPa.s, 350 mPa.s or 200 mPa.s.
  • the aqueous suspension according to the invention has a Brookfield viscosity, measured 90 seconds after preparation, at 25 ° C., at 100 rpm and at a concentration greater than 60% by weight of phosphated material, which is less at 1000 mPa.s, preferably below 500 mPa.s, at 350 mPa.s or at 200 mPa.s.
  • the phosphated material particles have a size of less than 400 ⁇ , preferably less than 200 ⁇ or less than 150 ⁇ . These particles have a size that is greater than 10 ⁇ , preferably greater than 30 ⁇ .
  • the particle size of phosphated material can range from 10 to 400 ⁇ or from 10 to 200 ⁇ or from 10 to 150 ⁇ . In a preferred manner, this size can also range from 30 to 400 ⁇ or from 30 to 200 ⁇ or from 30 to 150 ⁇ .
  • the method for preparing an aqueous suspension of phosphatic material particles according to the invention makes it possible to obtain such a suspension whose properties, in particular its viscosity and its concentration, are particularly advantageous. Such properties make it possible to use this suspension under very varied and very advantageous conditions, in particular for its handling, transport or treatment and preferably its treatment with a strong acid in order to prepare phosphoric acid.
  • the invention also provides a method of transporting an aqueous suspension according to the invention.
  • the transport method according to the invention can be carried out using at least one means of maritime transport or a means of ground transportation.
  • it is implemented by means of a land transport means, for example by train or by road or by means of a pipe or a mineral pipeline.
  • the properties of the aqueous suspension according to the invention are particularly suitable for a method of transport by means of a pipe.
  • the invention also relates to a method for packaging at least one phosphate material which makes it possible to provide particular properties to the phosphated material.
  • the invention also provides a method of conditioning a phosphated material, for its subsequent treatment at a temperature ranging from 40 to 100 ° C by means of at least one strong acid, comprising contacting the phosphate material with at least one anionic polymer with a weight-average molecular mass (M w ) ranging from 1000 to 90 000 g / mol and obtained by polymerization reaction of at least one acid chosen from acrylic acid, methacrylic acid and their salts.
  • M w weight-average molecular mass
  • the material used in the packaging method according to the invention is defined according to the characteristics of the anionic polymer used during the method for preparing the aqueous suspension according to the invention.
  • the phosphated material is in the form of particles. More preferably, the particle size is less than 400 ⁇ , more preferably less than 200 ⁇ or less than 150 ⁇ . Also preferably, the particles have a size that is greater than 10 ⁇ , more preferably greater than 30 ⁇ .
  • the particle size of phosphate material can range from 10 to 400 ⁇ or from 10 to 200 ⁇ or from 10 to 150 ⁇ . In a preferred manner, this size can also range from 30 to 400 ⁇ or from 30 to 200 ⁇ or from 30 to 150 ⁇ .
  • the packaging method according to the invention makes it possible to give the particles of phosphate material particularly advantageous properties.
  • the method of conditioning according to the invention makes it possible to improve the results of the subsequent acid treatment at a temperature ranging from 40 to 100 ° C. by means of at least one strong acid, an aqueous suspension of particles of this material phosphated according to the invention.
  • this suspension comprises a foam phase whose volume is limited or even zero during the subsequent treatment with at least one strong acid.
  • this suspension comprises a foam phase whose volume is reduced to 40. % or even reduced to 20% of the total volume of the suspension.
  • the aqueous suspension according to the invention has an apparent density, measured by means of a pycnometer and for a solids content greater than 60% by weight, ranging from 1.5 to 2, of preferably ranging from 1.7 to 2.
  • the strong acid is a strong mineral acid. More preferably according to the invention, the strong acid has a pKa of less than 4 or less than 3, or even less than 2.5. Even more preferentially, the strong acid is chosen from sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid and mixtures thereof. Even more preferentially, the strong acid is sulfuric acid or phosphoric acid.
  • the phosphoric acid formed is present in the aqueous solution while gypsum or phosphogypsum is also formed which must then be separated.
  • Phosphogypsum is therefore a gypsum of phosphate origin. It is calcium sulphate.
  • Various forms of calcium sulfate may be present, including calcium sulfate hydrate, calcium sulfate dihydrate or anhydrous calcium sulfate.
  • the packaging method according to the invention makes it possible to obtain, during the subsequent acid treatment, particular crystalline forms of phosphogypsum.
  • the method of conditioning according to the invention makes it possible to obtain, during the subsequent acidic treatment, a distribution of the different crystalline forms of particular phosphogypsum particles.
  • the different crystalline forms of phosphogypsum particles obtained thanks to the prior implementation on the phosphated material of the packaging method according to the invention, can be separated, in particular by filtration, very effectively.
  • these phosphogypsum particles have acicular (A), tabular (B) and compact crystal or polycrystalline (C) forms.
  • these different crystalline forms can be characterized by their dimensions, generally according to the sizes presented in Table 1.
  • the packaging method according to the invention makes it possible to obtain gypsum crystals whose folability is improved.
  • these gypsum crystals have a compact morphology.
  • the three dimensions - length, width and thickness - of these crystals are relatively close.
  • the gypsum crystals resulting from the implementation of the packaging method according to the invention have a general morphology close to a spherical shape or of a form that can be inscribed in a spherical or quasi-spherical volume.
  • the packaging method according to the invention makes it possible to obtain gypsum crystals whose sphericity (ratio between the radius of the inscribed circle of the particle and the radius of the circumscribed circle of the particle) which measures the difference between the shape of the particles with respect to a spherical particle is close to 1.
  • the conditioning method according to the invention thus allows efficient filtration of the phosphogypsum particles.
  • the overall chemical yield of the phosphoric acid preparation is particularly advantageous.
  • the evaluation of the overall chemical yield of the phosphoric acid preparation expressed in P 2 O 5 equivalent is carried out by comparing the P 2 O 5 loss titre in the phosphogypsum during the preparation of the solution.
  • the loss titration is carried out for the gypsum washing solutions from which the impregnated P 2 0 5 is recovered, and for the crystals of gypsum in which P 2 0 5 is present in unreacted or syncrystallized form, the overall yield is then evaluated according to the equation for which
  • Rd represents the chemical yield (%)
  • Pt represents the total losses in P 2 0 5 in the gypsum
  • CaOpp represents the CaO title in phosphate
  • P 2 0 5 pp represents the P 2 0 5 titre in phosphate.
  • the prior implementation of the packaging method according to the invention makes it possible to improve the yield of the subsequent phosphoric acid preparation.
  • the improvement can notably come from a limitation of the losses due to the absence of reaction, a reduction of the entrapment of phosphoric acid impregnated in the gypsum or a better separation of the gypsum making it possible to reduce the loss of a part of the phosphorus of the phosphate rock remaining in the solid filtration residue.
  • the packaging method of the invention makes it possible to improve the subsequent separation of gypsum crystals from phosphoric acid by filtration.
  • the filtration coefficient or leakability can be improved by more than 0.5 tP 2 0 5 / m 2 / d or 1 tP 2 0 5 / m 2 / day or even 2 tP 2 0 5 / m 2 / day, compared with a separation method that does not use polymer.
  • the various aspects of the invention make it possible to improve the efficiency of the various stages using the phosphated material.
  • the invention allows a significant improvement in the overall chemical yield of the phosphated rock treatment used for the preparation of phosphoric acid.
  • the invention also allows a significant improvement in the energy efficiency of the treatment of phosphate rock and the preparation of phosphoric acid.
  • the following examples illustrate the various aspects of the invention.
  • EXAMPLE 1 Preparation and Characterization of a Phosphate Rock Pulp From a phosphate rock pulp which is an aqueous suspension comprising water and particles of phosphated material, the characteristics of this suspension are determined.
  • the phosphate material comes from three deposits near Khouribga (Morocco).
  • the pulp is prepared by mixing water and crushed and crushed phosphate rock, and optionally the anionic polymer according to the invention. If necessary, the pulp can be concentrated by centrifugation or diluted by addition of water.
  • Granulometry of particles of phosphate material Granulometry of particles of phosphate material
  • the particle size distribution of the phosphate rock pulp was measured using a Malvern Mastersizer 2000 laser diffraction granulometer. The results obtained are shown in Table 2.
  • the density is determined at 25 ° C by means of a pycnometer of size 1501/100 (Sheen S230729) whose volume is 100 cm 3 .
  • the clean pyknometer is weighed empty.
  • the homogenized phosphated rock pulp is introduced into the pyknometer; the air present is purged and the pyknometer is closed.
  • the solid pycnometer is weighed.
  • the mass of the empty pycnometer is subtracted from the mass of the full pycnometer, the value of this difference by 10 and we obtain the density of the phosphate rock pulp.
  • Table 3 The results are shown in Table 3.
  • the use of a polymer according to the invention makes it possible to significantly increase the phosphate rock dry extract as well as the density of the pulp while allowing easy handling of this concentrated pulp.
  • the pulp comprising the polymer according to the invention has a controlled viscosity which makes it easy to handle and transportable especially by gravity. Stability of the pulp - measurement of the phase shift:
  • phase 1 which is water and does not include particles of phosphated material due to the appearance of a phenomenon of separation of the pulp.
  • Phase 2 which comprises water and particles of phosphate material.
  • the measured phase 1 volumes (mL) are shown in Table 5. The phase shift in time related to the sedimentation rate is thus measured.
  • the presence of the polymer according to the invention makes it possible to obtain a suspension which is more concentrated in particles of phosphate material and which is more stable. Indeed, the amount of out-of-phase pulp is zero or very small compared to the pulp containing no polymer.
  • the dilatancy of the phosphate rock pulp is measured by means of a Haake Rheostress 600 rheometer equipped with a cylindrical CC20Ti rotor.
  • the dilatancy at 30 ° C of a pulp sample (16 mL) is determined by measuring the viscosity periodically by increasing the rotational speed of the rotor from 0 to 1500 rpm (0 to 660 sec- 1 ) in 120 sec.
  • the results obtained are shown in Table 6.
  • Such a viscosity measured at a varying shear rate makes it possible to evaluate the dilatancy of the pulp, so if the viscosity increases with increasing shear rate, the suspension is dilating.
  • the pulp comprising the polymer according to the invention has a controlled viscosity which makes it easily manipulated and transportable especially by gravity.
  • its viscosity does not increase with increasing shear rate; the suspension according to the invention is not dilating.
  • the particles of phosphated material of an aqueous suspension according to Example 1 are treated in a manner known per se by means of sulfuric acid.
  • a slurry is obtained which is filtered to separate the phosphogypsum and obtain an aqueous solution of phosphoric acid.
  • a strong phosphoric acid solution is obtained. If necessary, it can be concentrated by evaporation of water under suction. Washing the phosphogypsum with an aqueous solution of phosphoric acid or with water or with water rich in sulphate can make it possible to obtain solutions of medium or low phosphoric acid.
  • the procedure is analogous to different suspensions prepared according to Example 1.
  • the quality of phosphoric acid is characterized by different parameters.
  • the filtration time provides information on the shape of the phosphogypsum crystals present in the phosphate material.
  • the filtration time also provides information on the quality of the phosphoric acid produced.
  • the density provides information on the phosphoric acid titer produced and must be greater than 1.266 at 25 ° C to achieve a generally acceptable grade.
  • the amount of free sulfate present in the acid is estimated from the level of unreacted residual sulfuric acid when treating the phosphate material particles of the slurry.
  • a high level means a reduced phosphoric acid titer and a high phosphogypsum filtration time.
  • the aqueous phosphoric acid solution comprises residual sulphate ions in a concentration by weight ranging from 20 to 35 g / l. More preferably, the aqueous phosphoric acid solution comprises residual sulfate ions in a concentration by weight ranging from 22 to 26 g / l.
  • the filterability of the suspension of phosphate material makes it possible to evaluate the capacity of production of strong phosphoric acid.
  • the filterability of phosphogypsum is related to its crystallinity. Particular forms of phosphogypsum crystals can lead to stacks that degrade filtration efficiency or filter clogging.
  • the filterability should be from 5 to 7, preferably from 6 to 7, on a scale of 1 to 7.
  • the filterability F is calculated according to the formula:
  • t3 filtration time of the weak phosphoric acid (s).
  • polymer according to the invention in the aqueous suspension of particles of phosphated material makes it possible to obtain maintained or even improved filtration while allowing the dry extract to be increased.
  • the yield of the strong phosphoric acid production method is improved.
  • the density of the strong phosphoric acid is measured by means of a densimeter, graduated from 1200 to 1300 or from 1300 to 1400, and at a temperature of 25.degree. ° C. The results obtained are shown in Table 8.
  • the density of the strong phosphoric acid is measured by means of a densimeter, graduated from 1200 to 1300 or from 1300 to 1400, and at a temperature of 25.degree. ° C.
  • the titration of the phosphoric acid solution is carried out in a known manner as such. The results obtained are shown in Table 8.
  • the phosphogypsum (calcium sulfate) crystals must be of controlled size in order to improve their separation by filtration.
  • the sizes and dimensions of the crystals of different filtration retentates are determined by means of an optical microscope (Olympus SZX-ILLD200, DF PLFL lens 1.6 * PF) producing images processed using Imagej software.
  • Crystals of different shapes are present: acicular (A), tabular (B), or compact crystal or polycrystalline (C) forms.
  • A acicular
  • B tabular
  • C compact crystal or polycrystalline
  • oblong-shaped crystals of size about 250 ⁇ or 220-350 ⁇ (Ql)
  • semi-long-shaped crystals of size about 150 ⁇ or 125-160 ⁇ (Q2)
  • crystals of more compact or star shape of size about 50 ⁇ or 40-85 ⁇ (Q3).
  • Crystals of type (Q3) allow the best results of filtration.
  • the overall chemical yield of the phosphoric acid preparation can be reduced due to acid losses.
  • the method of preparing the acid leads to acid losses in different forms. These losses can be identified and measured.
  • Part (A) of the product losses corresponds to the phosphoric acid present in the phosphate rock which is not attacked during the acid treatment.
  • Part (B) of losses of phosphoric acid product is bound to entrapped acid in syncrystallized form within the phosphogypsum crystals.
  • Part (C) of phosphoric acid product losses results from the presence of acid in solution in the wash water. The results are shown in Table 9.
  • the use of a polymer according to the invention in the aqueous suspension of particles of phosphated material makes it possible to reduce the various losses of phosphoric acid.
  • the acid losses resulting from the phosphate material not attacked during the acid treatment are greatly reduced.
  • the packaging method according to the invention therefore makes it possible to confer particular properties on the particles of phosphated material as well as on the mixture of particles of phosphate material and of polymer according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Geology (AREA)
  • Paper (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Polymerisation Methods In General (AREA)
  • Colloid Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

L'invention concerne une méthode de préparation d'une suspension aqueuse d'au moins un matériau phosphaté comprenant la dispersion dans de l'eau de particules de matériau phosphaté en présence d'au moins un additif de type polymère anionique d'acide acrylique ou d'acide méthacrylique. La suspension selon l'invention a une viscosité inférieure à 1500 mPa.s. L'invention concerne également le conditionnement du matériau phosphaté associé au polymère anionique, pour son traitement ultérieur au moyen d'au moins un acide fort, pour la préparation industrielle d'acide phosphorique.

Description

Préparation d'une suspension aqueuse de matériau phosphaté
Description
L'invention concerne une méthode de préparation d'une suspension aqueuse d'au moins un matériau phosphaté comprenant la dispersion dans de l'eau de particules de matériau phosphaté en présence d'au moins un additif de type polymère anionique d'acide acrylique ou d'acide méthacrylique. La suspension selon l'invention a une viscosité inférieure à 1 500 mPa.s. L'invention concerne également le conditionnement du matériau phosphaté associé au polymère anionique, pour son traitement ultérieur au moyen d'au moins un acide fort, pour la préparation industrielle d'acide phosphorique.
En tant que telle, la méthode de préparation industrielle de l'acide phosphorique à partir d'une suspension aqueuse comprenant de l'eau et des particules d'au moins un matériau phosphaté dispersées en présence d'au moins un additif de type polymère anionique est également particulièrement performante.
L'acide phosphorique ainsi préparé est un produit essentiel à la fabrication d'engrais, notamment d'engrais ternaires, NPK, ou d'engrais binaires, NP. L'acide phosphorique est également employé comme ingrédient lors de la fabrication de produits alimentaires, notamment pour l'acidification des boissons, ou encore pour le traitement de surfaces métalliques ou dans le domaine de la microélectronique.
Les roches phosphatées constituent d'importantes sources de matière première pour la fabrication d'acide phosphorique. L'acide phosphorique (H3PO4) peut être produit principalement par deux méthodes : procédé humide et procédé thermique. Le procédé humide est le plus utilisé et l'acide phosphorique issu de cette voie peut être employé pour produire des engrais phosphatés (DAP ou diammonium phosphate, MAP ou monoammonium phosphate, TSP ou superphosphate triple). L'acide obtenu par procédé thermique est d'une pureté plus élevée et il est généralement utilisé pour des produits pharmaceutiques, des détergents et des produits alimentaires. Dans une unité de production par procédé humide, l'acide phosphorique est produit notamment par l'action de l'acide fort sur le minerai phosphaté naturel. L'acide sulfurique est l'acide fort le plus utilisé, il se forme dans ce cas du sulfate de calcium insoluble qui est séparé par fïltration pour récupérer le gypse. Les conditions opératoires sont choisies afin de précipiter le sulfate de calcium soit dans sa forme dihydrate, en produisant du P2O5 généralement à une concentration de 26-32 % à 70-80 °C, soit sous la forme hémihydrate, avec du P2O5 généralement à une concentration de 40-52 % à 90- 110 °C. L'évaporation peut être utilisée pour concentrer davantage l'acide phosphorique par la suite et ainsi optimiser la qualité de l'acide. De manière habituelle, après extraction, la roche phosphatée est traitée pour être obtenue sous forme sèche ou bien sous forme humide au sein de laquelle elle est mélangée à de l'eau, par exemple pour former de la pulpe de phosphate.
Après son extraction, la roche phosphatée peut être traitée directement ou bien elle peut être transportée. Toutefois, pour faciliter le transport de la roche phosphatée, il est nécessaire de pouvoir en contrôler la viscosité, en particulier lors du transport de la roche phosphatée obtenue par voie humide.
Lors de son transport, la pulpe de phosphate devrait posséder une concentration élevée en roche phosphatée. En particulier, lors de son transport dans une conduite.
En effet, une concentration élevée en roche phosphatée permet de réduire la quantité d'eau utilisée lors du traitement, de la manipulation ou du transport d'une quantité déterminée de roche phosphatée. Outre une meilleure gestion de la ressource, la réduction de la quantité d'eau est particulièrement intéressante lors des différentes étapes de transport de la roche phosphatée mais également lors des étapes ultérieures, notamment lors de la préparation d'acide phosphorique.
De manière générale, il existe un besoin de disposer de méthodes améliorées permettant de faciliter le conditionnement et le transport de la roche phosphatée, notamment sous la forme d'une suspension de particules de roche phosphatée dans de l'eau. L'amélioration de la stabilité de telles suspensions est également recherchée, notamment la résistance à la sédimentation des particules ou le contrôle de la dilatance. L'augmentation de la quantité de matière solide au sein de ces suspensions doit également être visée, de même que le contrôle de la viscosité de ces suspensions de particules, en particulier pour des concentrations élevées en matière solide.
Il est également important de pouvoir conférer des propriétés améliorées aux particules de roche phosphatée, en particulier des propriétés permettant d'améliorer l'efficacité des méthodes de préparation d'acide phosphorique, par exemple en améliorant l'hydrodynamique de la réaction de préparation d'acide phosphorique. Ainsi, il est important de pouvoir disposer de méthodes améliorées pour la fabrication d'acide phosphorique, en particulier pour augmenter le rendement global de la réaction de préparation de l'acide phosphorique à partir de la roche phosphatée.
Lors de la préparation d'acide phosphorique à partir de la roche phosphatée, il est également important de contrôler le bilan global en eau. L'eau est nécessaire comme support du traitement au moyen d'un acide fort de la roche phosphatée mais sa quantité doit néanmoins être limitée, notamment pour éviter de diluer le titre de la solution d'acide produit.
De la même manière, lors de la préparation d'acide phosphorique à partir de roche phosphatée, il est important de pouvoir améliorer l'hydrodynamique lors du traitement de la roche phosphatée au moyen de l'acide fort, et ce en vue de réduire les pertes du phosphore sous forme inattaquée ou co-cristallisée (syncristallisée) dans les cristaux du gypse formé.
L'état de l'art présente diverses évolutions du procédé de fabrication d'acide phosphorique. Par exemple, le document CN 103333664 décrit un agent d'aide au broyage pour le broyage humide du minerai de phosphate. Le document US 5183211 décrit une méthode de réduction de la viscosité relative d'une suspension de roche phosphatée au cours d'un processus de broyage dans une installation de production d'acide phosphorique. La méthode inclut les étapes de l'ajout d'une quantité effective d'un polymère d'acrylamide ou d'acide acrylique sulfonate.
Le document US 6213416 décrit un procédé de broyage de roche phosphatée en présence de particules d'un polymère insoluble dans l'eau et gonflable à l'eau. Le document EP 0892020 concerne l'utilisation d'un copolymère particulier comme agent dispersant ou comme agent d'aide au broyage de carbonate de calcium en suspension aqueuse. Le copolymère est préparé à partir de monomères ayant une structure tensio- active.
Par ailleurs, le brevet WO 2015105464 présente une modification à la fois du dispositif réactionnel en vue d'optimiser le taux de solubilisation de la roche phosphatée à des valeurs supérieures et d'assurer une meilleure cristallisation du gypse produit, ainsi que du mode de fïltration visant à améliorer la fîltrabilité de la bouillie d'acide phosphorique. Quant au brevet N° CN106395879, il vise à améliorer la taille des cristaux de gypse lors de la fabrication d'acide phosphorique par voie humide, en utilisant un additif composite composé d'un régulateur d'acide sulfonique, d'un acide faible organique, d'un agent tampon de sel d'ammonium et d'un dispersant à haute teneur en polymère so lubie dans l'eau. De même le brevet N° US 4501724 propose un procédé pour la fabrication par voie humide d'acide phosphorique concentré, basé sur l'utilisation d'un mélange de trioxyde de soufre gazeux et d'acide sulfurique au lieu de l'acide sulfurique concentré. Ceci entraîne une chaleur de réaction plus élevée permettant l'utilisation d'un acide sulfurique très dilué ou un phosphate issu d'un broyage humide, sans affecter le titre d'acide phosphorique produit.
La méthode de préparation d'une suspension aqueuse de matériau phosphaté selon l'invention permet d'apporter une solution à tout ou partie de ces problèmes, notamment par une amélioration significative des conditions de préparation, de transport et de traitement de la pulpe de roche phosphatée. De manière préférée, la méthode de préparation d'une suspension aqueuse de matériau phosphaté selon l'invention n'est pas une méthode de broyage, au cours de laquelle la taille des particules reste constante. En d'autres termes, la méthode de préparation selon l'invention est préférentiellement réalisée après le broyage de la roche phosphatée, de préférence la dispersion est réalisée après broyage. Ainsi, l'invention fournit une méthode de préparation d'une suspension aqueuse d'au moins un matériau phosphaté, dont la viscosité Brookfïeld mesurée 90 s après préparation, à 25 °C, à 100 tr/min et à une concentration en matériau phosphaté supérieure à 45 % en poids, est inférieure à 1 500 mPa.s, comprenant la dispersion dans de l'eau de particules de matériau phosphaté dont la taille est comprise entre 10 et 400 μιη, en présence d'au moins un polymère anionique de masse moléculaire en poids (Mw) allant de 1 000 à 90 000 g/mol et obtenu par réaction de polymérisation d'au moins un acide choisi parmi acide acrylique, acide méthacrylique et leurs sels. On forme ainsi préférentiellement une suspension aqueuse du matériau phosphaté obtenu après broyage. Sous la forme d'une telle suspension, la viscosité du matériau phosphaté est contrôlée, ce qui, généralement, facilite son transport.
Lors de la préparation du polymère anionique mis en œuvre selon l'invention, la réaction de polymérisation met en œuvre au moins un monomère anionique comprenant au moins une insaturation oléfmique polymérisable et au moins une fonction acide carboxylique, en particulier un monomère anionique comprenant au moins une insaturation éthylénique polymérisable et au moins une fonction acide carboxylique. De préférence le monomère anionique est choisi parmi l'acide acrylique, l'acide méthacrylique, un sel d'acide acrylique, un sel d'acide méthacrylique. Cette réaction de polymérisation peut également mettre en œuvre ces deux acides acrylique et méthacrylique et leurs sels.
Le polymère mis en œuvre selon l'invention peut également être un copolymère obtenu par une réaction de polymérisation mettant en œuvre au moins un autre acide choisi parmi acide acrylique, acide méthacrylique, acide maléique, acide itaconique et leurs sels ainsi qu'au moins un autre comonomère qui peut être un ester d'un acide choisi parmi acide acrylique et acide méthacrylique.
Comme autres comonomères qui peuvent être mis en œuvre lors de la préparation du copolymère selon l'invention, on peut citer un monomère non-ionique choisi parmi les esters d'un acide comprenant au moins une fonction acide monocarboxylique, en particulier un ester d'un acide choisi parmi acide acrylique, acide méthacrylique, un sel d'acide acrylique, un sel d'acide méthacrylique et leurs mélanges. Comme exemples de tels comonomères, on peut citer un composé choisi parmi styrène ; vinylcaprolactam ; acrylate d'alkyle, en particulier acrylate de Ci-Cio-alkyl, préférentiellement acrylate de Ci-C4-alkyl, plus préférentiellement acrylate de methyle, acrylate d'ethyle, acrylate de propyle, acrylate d'isobutyle, acrylate de n-butyle ; methacrylate d'alkyle, en particulier methacrylate de Ci-Cio-alkyl, préférentiellement methacrylate de Ci-C4-alkyl, plus préférentiellement methacrylate de methyle, methacrylate d'ethyle, methacrylate de propyle, methacrylate d'isobutyle, methacrylate de n-butyle ; acrylate d'aryle, de préférence phénoxyethylacrylate ; methacrylate d'aryle, de préférence phénoxyethylmethacrylate. Acrylate de methyle, acrylate d'ethyle, acrylate de propyle, acrylate d'isobutyle, acrylate de n-butyle, methacrylate de methyle, methacrylate d'ethyle, methacrylate de propyle, methacrylate d'isobutyle et methacrylate de n-butyle sont particulièrement préférés.
De manière préférée, le polymère anionique selon l'invention est préparé en l'absence d'acrylamide.
De manière également préférée selon l'invention, le polymère mis en œuvre est un polymère anionique non-sulfoné. Il est alors préparé en l'absence de monomère comprenant un groupement sulfoné, notamment en l'absence d'acide 2-acrylamido-2- methylpropane sulfonique, de sel d'acide 2-acrylamido-2-methylpropane sulfonique, d'acide ethoxymethacrylate sulfonique, de sel d'acide ethoxymethacrylate sulfonique, d'ethallyl sulfonate de sodium, de styrène sulfonique et de leurs sels.
De manière préférée, le polymère mis en œuvre selon l'invention est partiellement ou totalement neutralisé. Plus préférentiellement, il est partiellement ou totalement neutralisé au moyen d'au moins un dérivé choisi parmi un métal alcalin, un métal alcalino -terreux et leurs mélanges, en particulier un dérivé comprenant au moins un élément choisi parmi lithium, sodium, calcium, magnésium et leurs mélanges, par exemple NaOH, KOH, Ca(OH)2. Sodium, calcium et de leurs mélanges sont particulièrement préférés. La neutralisation au moyen de sodium et de calcium peut être réalisée en utilisant au moins un composé choisi parmi NaOH, Ca(OH)2 et leurs mélanges. Les proportions respectives de sodium et de calcium peuvent varier assez largement. Par exemple, le rapport molaire Na/Ca peut aller de 98/2 à 30/70, de préférence de 95/5 à 40/60, plus préférentiellement de 90/10 à 30/70 ou de 90/10 à 40/60, encore plus préférentiellement de 70/30 à 40/60, en particulier 50/50. De préférence, le polymère anionique utilisé selon l'invention a une masse moléculaire en poids (Mw) comprise entre 2 000 et 90 000 g/mol, de préférence entre 1 000 ou 2 000 et 50 000 g/mol, encore plus préférentiellement entre 1 000 ou 2 000 et 10 000 g/mol, et de manière davantage préférée entre 1 500 ou 2 000 et 8 000 g/mol. Selon l'invention, la masse moléculaire en poids (Mw) est mesurée par chromatographie d'exclusion stérique (CES).
Les polymères préférés mis en œuvre selon l'invention sont des homopolymères d'acide acrylique, en particulier des homopolymères neutralisés d'acide acrylique. Les polymères plus particulièrement préférés mis en œuvre selon l'invention sont des homopolymères neutralisés d'acide acrylique dont la masse moléculaire en poids (Mw) est comprise entre 1 000 et 10 000 g/mol, de préférence entre 1 500 et 8 000 g/mol. Des exemples de copolymères particulièrement préférés utilisés selon l'invention sont choisis parmi
• polymère (PI) : homopolymère de masse moléculaire 5 000 g/mol et obtenu par polymérisation d'acide acrylique en présence de sulfate de cuivre, de sulfate de fer, de peroxyde d'hydrogène et d'acide 2-(l- carboxyethylsulfanylcarbothioylsulfanyl)propanoique (DPTTC - numéro CAS 6332-91-8), neutralisé au sodium et au calcium (70/30 molaire par rapport à la quantité d'acide acrylique) ;
• polymère (P2) : homopolymère de masse moléculaire 4 200 g/mol et obtenu par polymérisation d'acide acrylique en présence de sulfate de cuivre, de sulfate de fer, de peroxyde d'hydrogène et d'hypophosphite de sodium, neutralisé au sodium et au calcium (90/10 molaire par rapport à la quantité d'acide acrylique) ;
• polymère (P3) : polymère de masse moléculaire 4 800 g/mol et obtenu par polymérisation d'acide acrylique en présence de persulfate de sodium et d'hypophosphite de sodium, neutralisé au sodium et au calcium (50/50 molaire par rapport à la quantité d'acide acrylique) ;
• polymère (P4) : homopolymère de masse moléculaire 4 200 g/mol et obtenu par polymérisation d'acide acrylique en présence de sulfate de cuivre, de sulfate de fer, de peroxyde d'hydrogène et d'hypophosphite de sodium, neutralisé au sodium et au calcium (30/70 molaire par rapport à la quantité d'acide acrylique).
Selon l'invention, le polymère mis en œuvre n'est pas un agent floculant.
Pour la méthode selon l'invention, la quantité de polymère anionique utilisé peut varier assez largement. De manière préférée, la quantité en poids (sec/sec) de polymère anionique mis en œuvre est comprise entre 0,05 et 5 %, plus préférentiellement entre 0,1 et 2 %, par rapport à la quantité de matériau phosphaté. De manière également préférée selon l'invention, la quantité en poids (sec/sec) de polymère anionique mis en œuvre est comprise entre 0,1 et 5 % en poids par rapport à la quantité de matériau phosphaté. De manière plus préférée selon l'invention, la quantité en poids (sec/sec) de polymère anionique mis en œuvre est comprise entre 0,15 et 2 % en poids par rapport à la quantité de matériau phosphaté.
De manière avantageuse, la méthode de préparation selon l'invention ne comprend pas d'étape supplémentaire de concentration de la suspension aqueuse de particules de matériau phosphaté dispersées préalablement à la mise en œuvre du polymère anionique, tout en permettant de préparer une suspension aqueuse de particules dont la concentration est élevée et dont la viscosité est acceptable. En particulier, la viscosité de la suspension permet sa manipulation ou son transport dans des conditions efficaces, d'un point de vue mécanique mais également d'un point de vue économique.
Lors de la mise en œuvre de la méthode selon l'invention, la concentration en matériau phosphaté est supérieure à 45 % en poids. Toutefois, cette concentration peut être bien supérieure. Ainsi et de manière préférée, la concentration en poids de particules de matériau phosphaté de la suspension aqueuse peut être supérieure à 50 %, de manière plus préférée, supérieure à 55 %. Cette concentration peut être encore plus élevée et être supérieure à 60 % ou à 65 %. De manière particulièrement avantageuse, la méthode selon l'invention peut être mise en œuvre à une concentration qui peut être supérieure à 70 % voire encore supérieure. De manière particulièrement avantageuse, la méthode de préparation selon l'invention permet un contrôle particulièrement utile et efficace de la viscosité de la suspension aqueuse de matériau phosphaté. Ainsi, lors de la mise en œuvre de la méthode selon l'invention, la viscosité Brookfïeld mesurée 90 s après préparation, à 25 °C, à 100 tr/min et à une concentration en matériau phosphaté supérieure à 45 % en poids, est inférieure à 1 500 mPa.s. De manière préférée dans ces conditions, cette viscosité est inférieure à 1 200 mPa.s, plus préférentiellement inférieure à 1 000 mPa.s. Encore plus préférentiellement, cette viscosité est inférieure à 800 mPa.s ou inférieure à 500 mPa.s ou encore inférieure à 350 mPa.s ou inférieure à 200 mPa.s.
De manière également avantageuse pour la méthode de préparation selon l'invention, la viscosité Brookfïeld de la suspension, mesurée 90 s après préparation, à 25 °C, à 100 tr/min et à une concentration supérieure à 60 % en poids de matériau phosphaté, est inférieure à 1 500 mPa.s ou inférieure à 1 000 mPa.s. De préférence, cette viscosité mesurée dans ces conditions est inférieure à 800 mPa.s voire inférieure à 500 mPa.s, à 350 mPa.s ou à 200 mPa.s.
Lors de la préparation de la suspension aqueuse selon l'invention, le matériau phosphaté est mis en œuvre sous la forme de particules dont la taille est inférieure à 400 μιη. De manière préférée, la taille de ces particules est inférieure à 200 μιη ou inférieure à 150 μιη. Par ailleurs, la taille de ces particules est supérieure à 10 μιη, préférentiellement supérieure à 30 μιη.
Ainsi, pour la méthode de préparation selon l'invention, la taille des particules de matériau phosphaté peut aller de 10 à 400 μιη ou de 10 à 200 μιη ou encore de 10 à 150 μιη. De manière préférée, cette taille peut également aller de 30 à 400 μιη ou de 30 à 200 μιη ou encore de 30 à 150 μιη.
De manière préférée pour la méthode de préparation selon l'invention, la dispersion dans l'eau des particules de matériau phosphaté est réalisée sous agitation par un dispositif approprié. Plus préférentiellement, elle est réalisée sous agitation mécanique. La méthode de préparation selon l'invention peut être mise en œuvre à différentes températures. De manière préférée, elle est mise en œuvre à une température allant de 10 à 60 °C, plus préférentiellement de 20 à 50 °C ou de 25 à 50 °C. De manière particulièrement avantageuse, la méthode selon l'invention permet de préparer une suspension aqueuse de matériau phosphaté qui est stable. De préférence, cette suspension possède une résistance élevée à la sédimentation des particules de matériau phosphaté, mesurée par évaluation dans le temps du déphasage de la suspension aqueuse de particules de matériau phosphaté selon l'invention, en particulier par rapport à une suspension sans polymère et de viscosité identique.
De manière également préférée, la suspension possède une dilatance faible ou nulle. La dilatance peut être déterminée par des mesures de viscosité à différents taux de cisaillement et à une température déterminée. Lorsque la viscosité est constante ou diminue lorsque le taux de cisaillement augmente, la dilatance est faible ou nulle.
La méthode de préparation selon l'invention permet de préparer une suspension aqueuse d'au moins un matériau phosphaté particulière. Cette suspension fait partie de l'invention. Ainsi, l'invention fournit également une suspension aqueuse d'au moins un matériau phosphaté, dont la viscosité Brookfïeld mesurée 90 s après préparation, à 25 °C, à 100 tr/min et à une concentration en matériau phosphaté supérieure à 45 % en poids est inférieure à 1 500 mPa.s, comprenant de l'eau et des particules de matériau phosphaté dispersées en présence d'au moins un polymère anionique obtenu par réaction de polymérisation d'au moins un acide choisi parmi acide acrylique, acide méthacrylique et leurs sels.
Au sein de la suspension selon l'invention, le polymère est partiellement ou totalement neutralisé, de préférence partiellement ou totalement neutralisé au moyen d'un dérivé comprenant au moins un élément choisi parmi lithium, sodium, calcium, magnésium et leurs mélanges, plus préférentiellement choisi parmi sodium, calcium et de leurs mélanges. Avantageusement, le polymère anionique est obtenu par une réaction de polymérisation mettant également en œuvre au moins un ester d'un acide choisi parmi acide acrylique et acide méthacrylique. De préférence, le polymère anionique a une masse moléculaire en poids (Mw) allant de 2 000 à 90 000 g/mol ou de 1 000 ou 2 000 à 50 000 g/mol, encore plus préférentiellement de 1 000 ou 2 000 à 10 000 g/mol ou de 1 500 ou 2 000 à 8 000 g/mol.
Egalement préférentiellement, la quantité en poids (sec/sec) de polymère anionique mis en œuvre est comprise entre 0,05 à 5 %, plus préférentiellement entre 0,1 et 2 %, par rapport à la quantité de matériau phosphaté sec.
Selon l'invention, la concentration en particules de matériau phosphaté de la suspension aqueuse selon l'invention est supérieure à 45 %. De manière préférée, cette concentration en poids de matériau phosphaté est supérieure à 50 %, plus préférentiellement supérieure à 55 % et encore plus préférentiellement supérieure à 60 % ou à 65 %. Cette concentration peut être encore supérieure et atteindre des valeurs supérieures à 70 % ou à 75 %. La suspension selon l'invention possède une viscosité particulièrement avantageuse. De manière préférée, cette viscosité Brookfïeld, mesurée 90 s après préparation, à 25 °C et à 100 tr/min, est inférieure à 1 200 mPa.s, plus préférentiellement inférieure à 1 500 mPa.s, à 1 200 mPa.s ou à 1 000 mPa.s et encore plus préférentiellement inférieure à 800 mPa.s ou inférieure à 500 mPa.s, à 350 mPa.s ou à 200 mPa.s.
De manière particulièrement avantageuse, la suspension aqueuse selon l'invention possède une viscosité Brookfïeld, mesurée 90 s après préparation, à 25 °C, à 100 tr/min et à une concentration supérieure à 60 % en poids de matériau phosphaté, qui est inférieure à 1 000 mPa.s, de préférence inférieure à 500 mPa.s, à 350 mPa.s ou à 200 mPa.s.
Egalement, au sein de la suspension selon l'invention, les particules de matériau phosphaté ont une taille inférieure à 400 μιη, préférentiellement inférieure à 200 μιη ou inférieure à 150 μηι. Ces particules ont une taille qui est supérieure à 10 μηι, préférentiellement supérieure à 30 μηι.
Ainsi, au sein de la suspension selon l'invention, la taille des particules de matériau phosphaté peut aller de 10 à 400 μιη ou de 10 à 200 μιη ou encore de 10 à 150 μιη. De manière préférée, cette taille peut également aller de 30 à 400 μιη ou de 30 à 200 μιη ou encore de 30 à 150 μιη.
La méthode de préparation d'une suspension aqueuse de particules de matériau phosphaté selon l'invention permet d'obtenir une telle suspension dont les propriétés, notamment sa viscosité et sa concentration, sont particulièrement avantageuses. De telles propriétés permettent d'utiliser cette suspension dans des conditions très variées et très avantageuses, en particulier pour sa manipulation, son transport ou son traitement et préférentiellement son traitement au moyen d'un acide fort afin de préparer de l'acide phosphorique.
Ainsi, l'invention fournit également une méthode de transport d'une suspension aqueuse selon l'invention. De manière préférée, la méthode de transport selon l'invention peut être réalisée au moyen d'au moins un moyen de transport maritime ou d'un moyen de transport terrestre. De manière particulièrement préférée, elle est mise en œuvre au moyen d'un moyen de transport terrestre, par exemple par train ou par route ou encore au moyen d'une conduite ou d'un mineroduc. Les propriétés de la suspension aqueuse selon l'invention sont particulièrement adaptées à une méthode de transport au moyen d'une conduite. Outre cette méthode de transport et la méthode de préparation d'une suspension aqueuse d'un matériau phosphaté et une telle suspension aqueuse, l'invention concerne également une méthode de conditionnement d'au moins un matériau phosphaté qui permet d'apporter des propriétés particulières au matériau phosphaté. Ainsi, l'invention fournit également une méthode de conditionnement d'un matériau phosphaté, pour son traitement ultérieur à une température allant de 40 à 100° C au moyen d'au moins un acide fort, comprenant la mise en contact du matériau phosphaté avec au moins un polymère anionique de masse moléculaire en poids (Mw) allant de 1 000 à 90 000 g/mol et obtenu par réaction de polymérisation d'au moins un acide choisi parmi acide acrylique, acide méthacrylique et leurs sels. Le matériau utilisé lors de la méthode de conditionnement selon l'invention est défini selon les caractéristiques du polymère anionique mis en œuvre au cours de la méthode de préparation de la suspension aqueuse selon l'invention.
De manière préférée pour la méthode de conditionnement selon l'invention, le matériau phosphaté est sous la forme de particules. Plus préférentiellement, la taille des particules est inférieure à 400 μιη, encore plus préférentiellement inférieure à 200 μιη ou inférieure à 150 μιη. Egalement de manière préférée, les particules ont une taille qui est supérieure à 10 μιη, plus préférentiellement supérieure à 30 μιη. Ainsi, la taille des particules de matériau phosphaté peut aller de 10 à 400 μιη ou de 10 à 200 μιη ou encore de 10 à 150 μιη. De manière préférée, cette taille peut également aller de 30 à 400 μιη ou de 30 à 200 μιη ou encore de 30 à 150 μιη.
La méthode de conditionnement selon l'invention permet de conférer aux particules de matériau phosphaté des propriétés particulièrement avantageuses. Notamment, la méthode de conditionnement selon l'invention permet d'améliorer les résultats du traitement acide ultérieur à une température allant de 40 à 100° C au moyen d'au moins un acide fort, d'une suspension aqueuse de particules de ce matériau phosphaté selon l'invention. Grâce à cette méthode de conditionnement, cette suspension comprend une phase mousseuse dont le volume est limité voire nul lors du traitement ultérieur au moyen d'au moins un acide fort. De manière préférée, lors de ce traitement au moyen d'un acide fort d'une suspension aqueuse selon l'invention comprenant un matériau phosphaté conditionné selon la méthode de l'invention, cette suspension comprend une phase mousseuse dont le volume est réduit à 40 % voire réduit à 20 % du volume total de la suspension.
De plus et de manière avantageuse, la suspension aqueuse selon l'invention possède une densité apparente, mesurée au moyen d'un pycnomètre et pour un taux d'extrait sec supérieur à 60 % en poids, allant de 1,5 à 2, de préférence allant de 1,7 à 2. De manière préférée selon l'invention, l'acide fort est un acide fort minéral. De manière plus préférée selon l'invention, l'acide fort a un pKa inférieur à 4 ou inférieur à 3, ou encore inférieur à 2,5. Encore plus préférentiellement, l'acide fort est choisi parmi l'acide sulfurique, l'acide phosphorique, l'acide nitrique, l'acide chlorhydrique et leurs mélanges. Encore plus préférentiellement, l'acide fort est l'acide sulfurique ou l'acide phosphorique.
Lors du traitement ultérieur du matériau phosphaté au moyen d'un acide fort, l'acide phosphorique formé est présent au sein de la solution aqueuse tandis que se forme également du gypse ou phosphogypse qui doit ensuite être séparé. Le phosphogypse est donc un gypse d'origine phosphatée. Il s'agit de sulfate de calcium. Différentes formes de sulfate de calcium peuvent être présentes, notamment du sulfate de calcium hydraté, du sulfate de calcium dihydraté ou sulfate de calcium anhydre.
De manière avantageuse, la méthode de conditionnement selon l'invention permet d'obtenir, lors du traitement acide ultérieur, des formes cristallines de phosphogypse particulières. De manière particulièrement avantageuse, la méthode de conditionnement selon l'invention permet d'obtenir, lors du traitement acide ultérieur, une distribution des différentes formes cristallines de particules de phosphogypse particulières. Les différentes formes cristallines de particules de phosphogypse, obtenues grâce à la mise en œuvre préalable sur le matériau phosphaté de la méthode de conditionnement selon l'invention, peuvent être séparées, notamment par filtration, de manière très efficace. Et de manière très avantageuse, ces particules de phosphogypses ont des formes aciculaires (A), tabulaires (B) et de cristaux compacts ou d'agrégats polycristallins (C). Outre leurs morphologies spécifiques, ces différentes formes cristallines peuvent être caractérisées par leurs dimensions, généralement selon les tailles présentées dans le tableau 1. longueur (μιη) largeur (μιη) épaisseur (μιη) cristaux aciculaires 80-500 20-100 5-10 cristaux tabulaires 40-200 30-150 5-10 cristaux compacts 40-200 30-150 plusieurs dizaines agrégats polycristallins sphère de 50 à 100 μιη de diamètre
Tableau 1
De manière préférée, la méthode de conditionnement selon l'invention permet d'obtenir des cristaux de gypse dont la fïltrabilité est améliorée. Avantageusement, ces cristaux de gypse ont une morphologie compacte. En particulier, les trois dimensions - longueur, largeur et épaisseur - de ces cristaux sont relativement proches. De manière préférée, grâce à ces dimensions relativement proches, les cristaux de gypse résultants de la mise en œuvre de la méthode de conditionnement selon l'invention ont une morphologie générale proche d'une forme sphérique ou bien d'une forme pouvant s'inscrire dans un volume sphérique ou quasi- sphérique. Ainsi, de manière préférée, la méthode de conditionnement selon l'invention permet d'obtenir des cristaux de gypse dont la sphéricité (rapport entre le rayon du cercle inscrit de la particule et le rayon du cercle circonscrit de la particule) qui mesure l'écart entre la forme des particules par rapport à une particule sphérique est proche de 1.
La méthode de conditionnement selon l'invention permet donc une filtration efficace des particules de phosphogypse. Ainsi, le rendement chimique global de la préparation d'acide phosphorique est particulièrement avantageux. Selon l'invention, l'évaluation du rendement chimique global de la préparation d'acide phosphorique exprimé en équivalent P205 est réalisée par la comparaison du titre des pertes en P205 dans le phosphogypse lors de la préparation de la solution d'acide fort produit, avec le titre en P2C"5 de la roche phosphatée de départ. Le titrage des pertes est réalisé pour les solutions de lavage du gypse dont le P205 imprégné est récupéré, et pour les cristaux de gypse au sein desquels du P205 est présent sous forme non-réagie ou syncristallisée. Le rendement global est alors évalué selon l'équation
Figure imgf000016_0001
pour laquelle
Rd représente le rendement chimique (%),
Pt représente les pertes totales en P205 dans le gypse,
CaOpp représente le titre en CaO dans le phosphate,
- CaOgy représente le titre en CaO dans le gypse,
P205pp représente le titre en P205 dans le phosphate.
De manière avantageuse, la mise en œuvre préalable de la méthode de conditionnement selon l'invention, permet d'améliorer le rendement de la préparation ultérieur d'acide phosphorique. L'amélioration peut notamment provenir d'une limitation des pertes dues à l'absence de réaction, d'une réduction du piégeage d'acide phosphorique imprégné dans le gypse ou encore d'une meilleure séparation du gypse permettant de réduire la perte d'une partie du phosphore de la roche phosphatée restant dans le résidu solide de filtration.
De manière particulièrement avantageuse, la méthode de conditionnement de l'invention permet l'amélioration la séparation ultérieure des cristaux de gypse de l'acide phosphorique par filtration. Le coefficient de filtration ou fïltrabilité peut être amélioré de plus de 0,5 tP205/m2/j ou 1 tP205/m2/j voire 2 tP205/m2/j, par rapport à une méthode de séparation qui ne met pas en œuvre de polymère.
Les caractéristiques particulières, avantageuses ou préférées de la méthode selon l'invention permettent de définir de manière analogue des suspensions et des méthodes de conditionnement ou de transport selon l'invention qui sont particulières, avantageuses ou préférées.
De manière particulièrement efficace, les différents aspects de l'invention permettent d'améliorer le rendement des différentes étapes mettant en œuvre le matériau phosphaté. En particulier, l'invention permet une importante amélioration du rendement chimique global du traitement de la roche phosphatée utilisée pour la préparation d'acide phosphorique. L'invention permet également une importante amélioration du rendement énergétique du traitement de la roche phosphatée ainsi que de la préparation de l'acide phosphorique. Les exemples qui suivent permettent d'illustrer les différents aspects de l'invention.
Exemple 1 : préparation et caractérisation d'une pulpe de roche phosphatée A partir d'une pulpe de roche phosphatée qui est une suspension aqueuse comprenant de l'eau et de particules de matériau phosphaté, on détermine les caractéristiques de cette suspension. Le matériau phosphaté provient de trois gisements proches de Khouribga (Maroc). La pulpe est préparée en mélangeant de l'eau et de la roche phosphatée concassée puis broyée, et éventuellement le polymère anionique selon l'invention. En cas de besoin, la pulpe peut être concentrée par centrifugation ou bien être diluée par addition d'eau.
Granulométrie des particules de matériau phosphaté :
La répartition granulométrique de la pulpe de roche phosphatée est mesurée au moyen d'un granulomètre à diffraction au laser Malvern Mastersizer 2 000. Les résultats obtenus sont présentés dans le tableau 2.
Figure imgf000018_0001
Tableau 2
Densité de la pulpe :
La densité est déterminée à 25 °C au moyen d'un pycnomètre de taille 1501/100 (Sheen S230729) dont le volume est de 100 cm3. Le pycnomètre propre est pesé vide. La pulpe de roche phosphatée homogénéisée est introduite dans le pycnomètre ; l'air présent est purgé et le pycnomètre est fermé. Le pycnomètre plein est pesé. La masse du pycnomètre vide est soustraite à la masse du pycnomètre plein, on multiplie la valeur de cette différence par 10 et on obtient la densité de la pulpe de roche phosphatée. Les résultats sont présentés dans le tableau 3.
Figure imgf000019_0001
Tableau 3
L'utilisation d'un polymère selon l'invention permet d'augmenter de manière importante l'extrait sec en roche phosphatée ainsi que la densité de la pulpe tout en permettant une manipulation aisée de cette pulpe concentrée.
Viscosité de la pulpe :
Dans un bêcher de 250 mL, à 25 °C, on introduit sous agitation au moyen d'un agitateur mécanique (600 tour/min - durant 2 min) 300 g de pulpe de roche phosphatée. Le cas échéant, on ajoute le polymère selon l'invention selon les quantités sec/sec de polymère sec par rapport à la quantité de roche phosphatée sèche présentées dans le tableau 3. On arrête l'agitation puis, après 90 s, on mesure à 25 °C la viscosité au moyen d'un viscosimètre Brookfïeld équipé d'un mobile de type S63 à une vitesse de rotation de 100 tour/min. Les résultats sont présentés dans le tableau 4.
Figure imgf000019_0002
Alors que la pulpe sans polymère ne permet pas de mesure de la viscosité, la pulpe comprenant du polymère selon l'invention possède une viscosité maîtrisée qui la rend facilement manipulable et transportable notamment par gravité. Stabilité de la pulpe - mesure du déphasage :
Dans un bêcher de 250 mL, à 25 °C, on introduit, sous agitation au moyen d'un agitateur mécanique (2 050 tour/min - durant 2 min), 200 mL de pulpe de roche phosphatée. Le cas échéant, on ajoute le polymère selon l'invention selon les quantités sec/sec par rapport à la quantité de roche phosphatée séchée présentées dans le tableau 4. Puis, on verse 100 mL de pulpe dans une éprouvette graduée et on relève au cours du temps les volumes des différentes phases qui se forment. Lors de la sédimentation, deux phases peuvent apparaître. La phase 1 qui est de l'eau et ne comprend pas de particules de matériau phosphaté du fait de l'apparition d'un phénomène de séparation de la pulpe. La phase 2 qui comprend de l'eau et des particules de matériau phosphaté. Les volumes de phase 1 mesurés (mL) sont présentés dans le tableau 5. On mesure ainsi le déphasage dans le temps lié à la vitesse de sédimentation.
Figure imgf000020_0001
Tableau 5
On constate que la présence du polymère selon l'invention permet d'obtenir une suspension plus concentrée en particules de matériau phosphaté et qui est plus stable. En effet, la quantité de pulpe déphasée est nulle ou très réduite par rapport à la pulpe ne comprenant pas de polymère.
Stabilité de la pulpe - détermination de la dilatance On mesure la dilatance de la pulpe de roche phosphatée au moyen d'un rhéomètre Haake Rheostress 600 équipé d'un mobile cylindrique CC20TÏ. On détermine la dilatance à 30 °C d'un échantillon de pulpe (16 mL) en mesurant la viscosité régulièrement en augmentant la vitesse de rotation du mobile de 0 à 1 500 tour/min (0 à 660 s"1) en 120 s. Les résultats obtenus sont présentés dans le tableau 6. Une telle viscosité mesurée à un taux de cisaillement variant permet d'évaluer la dilatance de la pulpe. Ainsi, si la viscosité augmente lorsqu'un taux de cisaillement croissant est appliqué, la suspension est dilatante.
Figure imgf000021_0001
Tableau 6
A nouveau, alors que la pulpe sans polymère ne permet pas de mesure de la viscosité, la pulpe comprenant du polymère selon l'invention possède une viscosité maîtrisée qui la rend facilement manipulable et transportable notamment par gravité. De plus, on constate que sa viscosité n'augmente pas avec l'augmentation du taux de cisaillement ; la suspension selon l'invention n'est pas dilatante.
Exemple 2 : Préparation d'acide phosphorique et caractérisation de sa qualité
Les particules de matériau phosphaté d'une suspension aqueuse selon l'exemple 1 sont traitées de manière connue en tant que telle au moyen d'acide sulfurique. On obtient une bouillie qui est filtrée pour séparer le phosphogypse et obtenir une solution aqueuse d'acide phosphorique. On obtient une solution d'acide phosphorique fort. Le cas échéant, elle peut être concentrée par évaporation d'eau sous aspiration. Le lavage du phosphogypse au moyen d'une solution aqueuse d'acide phosphorique ou à l'eau ou encore à l'eau riche en sulfate peut permettre d'obtenir des solutions d'acide phosphorique moyen ou faible. On procède de manière analogue à partir de différentes suspensions préparées selon l'exemple 1. La qualité de l'acide phosphorique se caractérise par différents paramètres. Le temps de filtration renseigne sur la forme des cristaux de phosphogypse présents au sein du matériau phosphaté. Le temps de filtration renseigne également sur la qualité de l'acide phosphorique produit. La densité renseigne sur le titre de l'acide phosphorique produit et doit être supérieure à 1,266 à 25 °C pour atteindre une qualité généralement acceptable.
La quantité de sulfate libre présent dans l'acide (g/L) est estimée à partir du taux d'acide sulfurique résiduel qui n'a pas réagi lors du traitement des particules de matériau phosphaté de la suspension. Un taux élevé signifie un titre réduit en acide phosphorique et un temps de filtration du phosphogypse élevé. De manière préférée, la solution aqueuse d'acide phosphorique comprend des ions sulfates résiduels en une concentration en poids allant de 20 à 35 g/L. De manière plus préférée, la solution aqueuse d'acide phosphorique comprend des ions sulfates résiduels en une concentration en poids allant de 22 à 26 g/L.
La filtrabilité de la suspension de matériau phosphaté (tonne de P205/m2/jour) permet d'évaluer la capacité de production d'acide phosphorique fort. La filtrabilité du phosphogypse est liée à sa cristallinité. Des formes particulières des cristaux de phosphogypse peuvent conduire à des empilements dégradant l'efficacité de la filtration ou à des obstructions de filtre. La filtrabilité devrait aller de 5 à 7, de préférence de 6 à 7, sur une échelle de 1 à 7. La filtrabilité F est calculée selon la formule :
A
F = 7 R~\— ^=^=
l1 ~ ÏÏÏû) * tl + t2 + t3 dans laquelle
- A = 17,80 constante spécifique de la technique de mesure,
B = taux d'humidité du phosphogypse (% en poids),
- tl = temps de filtration de l'acide phosphorique fort (s),
- t2 = temps de filtration de l'acide phosphorique moyen (s),
- t3 = temps de filtration de l'acide phosphorique faible (s).
Les résultats obtenus sont présentés dans le tableau 7. pulpe (extrait sec - % en poids) fîltrabilité pulpe sans polymère (60) 5
pulpe avec polymère (PI) 0,2 % en poids (> 70) 7
pulpe avec polymère (P3) 0,3 % en poids (> 70) 6
Tableau 7
La présence de polymère selon l'invention dans la suspension aqueuse de particules de matériau phosphaté permet d'obtenir une fîltrabilité maintenue voire améliorée tout en permettant d'augmenter l'extrait sec. Le rendement de la méthode de production d'acide phosphorique fort est amélioré.
Densité de l'acide fort :
Après traitement acide et fïltration de la suspension de matériau phosphaté, on mesure la densité de l'acide phosphorique fort au moyen d'un densimètre, gradué de 1 200 à 1 300 ou de 1 300 à 1 400, et à une température de 25 °C. Les résultats obtenus sont présentés dans le tableau 8.
Qualité de l'acide phosphorique produit : densité et titre de l'acide fort
Après traitement acide et fïltration de la suspension de matériau phosphaté, on mesure la densité de l'acide phosphorique fort au moyen d'un densimètre, gradué de 1 200 à 1 300 ou de 1 300 à 1 400, et à une température de 25 °C. Le titrage de la solution d'acide phosphorique est réalisé de manière connue en tant que telle. Les résultats obtenus sont présentés dans le tableau 8.
Figure imgf000023_0001
Tableau 8 La présence de polymère selon l'invention dans la suspension aqueuse de particules de matériau phosphaté permet de préparer une pulpe très concentrée aux propriétés très améliorées. Le titre en P2O5 est amélioré. De même, la densité en acide est améliorée.
Lors de la préparation de l'acide phosphorique par traitement de la suspension aqueuse de particules de matériau phosphaté au moyen d'acide sulfurique, les cristaux de phosphogypse (sulfate de calcium) doivent avoir des dimensions contrôlées afin d'améliorer leur séparation par filtration. Les tailles et dimensions des cristaux de différents rétentats de filtration sont déterminées au moyen d'un microscope optique (Olympus SZX-ILLD200, lentille DF PLFL 1.6* PF) produisant des images traitées au moyen d'un logiciel Imagej.
Différentes formes de cristaux sont présentes : les formes aciculaires (A), tabulaires (B) ou de cristaux compacts ou d'agrégats polycristallins (C). Pour ces cristaux de différentes formes, plusieurs gammes de taille sont présentes. Parmi ces cristaux, on distingue les cristaux de forme oblongue de taille environ 250 μιη ou 220-350 μιη (Ql), les cristaux de forme semi-ob longue de taille environ 150 μιη ou 125-160 μιη (Q2) et les cristaux de forme plus compacte ou en étoile de taille environ 50 μιη ou 40-85 μιη (Q3). Les cristaux de type (Q3) permettent les meilleurs résultats de fïltrabilité.
Les quantités relatives de cristaux de type (Q3) sont augmentées et la fïltrabilité des cristaux de phosphogypse est améliorée.
Evaluation des pertes d'acide phosphorique produit :
Lors de la préparation de l'acide phosphorique exprimé en équivalent P2O5, le rendement chimique global de la préparation d'acide phosphorique peut être réduit du fait de pertes en acide. Généralement, la méthode de préparation de l'acide conduit à des pertes d'acide sous différentes formes. Ces pertes peuvent être identifiées et mesurées. Une partie (A) des pertes de produit correspond à l'acide phosphorique présent au sein de la roche phosphatée qui n'est pas attaquée lors du traitement acide. Une partie (B) des pertes de produit d'acide phosphorique est liée à l'acide piégé sous forme syncristallisée au sein des cristaux de phosphogypse. Une partie (C) des pertes de produit d'acide phosphorique découle de la présence d'acide en solution dans les eaux de lavage. Les résultats sont présentés dans le tableau 9.
Figure imgf000025_0001
Outre une forte amélioration du rendement global de la réaction de préparation d'acide phosphorique, la mise en œuvre d'un polymère selon l'invention dans la suspension aqueuse de particules de matériau phosphaté permet de réduire les différentes pertes d'acide phosphorique. Notamment, les pertes d'acide résultant du matériau phosphaté non-attaqué lors du traitement acide, sont fortement réduites.
La méthode de conditionnement selon l'invention permet donc de conférer des propriétés particulières aux particules de matériau phosphaté ainsi qu'au mélange de particules de matériau phosphaté et de polymère selon l'invention.

Claims

Revendications
1. Méthode de préparation d'une suspension aqueuse d'au moins un matériau phosphaté, dont la viscosité Brookfield mesurée 90 s après préparation, à 25 °C, à 100 tr/min et à une concentration en matériau phosphaté supérieure à 45 % en poids, est inférieure à 1 500 mPa.s, comprenant la dispersion dans de l'eau de particules de matériau phosphaté dont la taille est comprise entre 10 et 400 μιη, en présence d'au moins un polymère anio nique de masse moléculaire en poids (Mw) comprise entre 1 000 et 90 000 g/mol et obtenu par réaction de polymérisation d'au moins un acide choisi parmi acide acrylique, acide méthacrylique et leurs sels.
2. Méthode de préparation selon la revendication 1 pour laquelle la dispersion est réalisée après le broyage de la roche phosphatée.
3. Méthode de préparation selon l'une des revendications 1 et 2 pour laquelle le polymère est partiellement ou totalement neutralisé, de préférence partiellement ou totalement neutralisé au moyen d'un dérivé comprenant au moins un élément choisi parmi lithium, sodium, calcium, magnésium et leurs mélanges, plus préférentiellement choisi parmi sodium, calcium et de leurs mélanges.
4. Méthode de préparation selon l'une des revendications 1 à 3 pour laquelle le polymère anionique est obtenu par une réaction de polymérisation mettant également en œuvre au moins un autre acide choisi parmi acide acrylique, acide méthacrylique, acide maléique, acide itaconique et leurs sels ou au moins un ester d'un acide choisi parmi acide acrylique et acide méthacrylique.
5. Méthode de préparation selon l'une des revendications 1 à 4 pour laquelle le polymère anionique a une masse moléculaire en poids (Mw) comprise entre 2 000 et 90 000 g/mol, de préférence entre 2 000 et 50 000 g/mol, plus préférentiellement entre 2 000 et 10 000 g/mol, et de manière davantage préférée entre 2 000 et 8 000 g/mol.
6. Méthode de préparation selon l'une des revendications 1 à 5 pour laquelle la quantité en poids (sec/sec) de polymère anionique mis en œuvre est comprise entre 0,05 et 5 %, de préférence entre 0,1 et 2 %, par rapport à la quantité de matériau phosphaté.
7. Méthode de préparation selon l'une des revendications 1 à 6 pour laquelle le polymère anionique est non-sulfoné.
8. Méthode de préparation selon l'une des revendications 1 à 7 pour laquelle la concentration en poids de particules de matériau phosphaté de la suspension aqueuse est supérieure à 50 %, de préférence supérieure à 55 %, plus préférentiellement supérieure à 60 % ou à 65 % ou supérieure à 70 % ou à 75 %.
9. Méthode de préparation selon l'une des revendications 1 à 8 pour laquelle la viscosité Brookfïeld de la suspension, mesurée 90 s après préparation, à 25 °C et à 100 tr/min, est inférieure à 1 200 mPa.s, de préférence inférieure à 1 000 mPa.s, plus préférentiellement inférieure à 800 mPa.s ou inférieure à 500 mPa.s ou encore inférieure à 350 mPa.s ou inférieure à 200 mPa.s.
10. Méthode de préparation selon l'une des revendications 1 à 9 pour laquelle la viscosité Brookfïeld de la suspension, mesurée 90 s après préparation, à 25 °C et à
100 tr/min et à une concentration supérieure à 60 % en poids de matériau phosphaté, est inférieure à 1 500 mPa.s, à 1 200 mPa.s ou à 1 000 mPa.s, de préférence inférieure à 800 mPa.s ou inférieure à 500 mPa.s, à 350 mPa.s ou à 200 mPa.s.
11. Méthode de préparation selon l'une des revendications 1 à 10 pour laquelle les particules de matériau phosphaté ont une taille inférieure à 200 μιη ou inférieure à 150 μιη ou dont la taille est supérieure à 30 μιη.
12. Méthode de préparation selon l'une des revendications 1 à 11 pour laquelle la dispersion dans l'eau des particules de matériau phosphaté est réalisée sous agitation, de préférence sous agitation mécanique.
13. Suspension aqueuse d'au moins un matériau phosphaté, dont la viscosité Brookfîeld mesurée 90 s après préparation, à 25 °C, à 100 tr/min et à une concentration en matériau phosphaté supérieure à 45 % en poids est inférieure à 1 500 mPa.s, comprenant de l'eau et des particules de matériau phosphaté dont la taille est comprise entre 10 et 400 μιη et dispersées en présence d'au moins un polymère anionique de masse moléculaire en poids (Mw) comprise entre 1 000 et 90 000 g/mol et obtenu par réaction de polymérisation d'au moins un acide choisi parmi acide acrylique, acide méthacrylique et leurs sels.
14. Suspension aqueuse selon la revendication 13 pour laquelle le polymère est partiellement ou totalement neutralisé, de préférence partiellement ou totalement neutralisé au moyen d'un dérivé comprenant au moins un élément choisi parmi lithium, sodium, calcium, magnésium et leurs mélanges, plus préférentiellement choisi parmi sodium, calcium et leurs mélanges.
15. Suspension aqueuse selon l'une des revendications 13 et 14 pour laquelle le polymère anionique est obtenu par une réaction de polymérisation mettant également en œuvre au moins un ester d'un acide choisi parmi acide acrylique et acide méthacrylique.
16. Suspension aqueuse selon l'une des revendications 13 à 15 pour laquelle le polymère anionique a une masse moléculaire en poids (Mw) comprise entre 2 000 et 90 000 g/mol, de préférence entre 2 000 et 50 000 g/mol, plus préférentiellement entre 2 000 et 10 000 g/mol, et de manière davantage préférée entre 2 000 et 8 000 g/mol.
17. Suspension aqueuse selon l'une des revendications 13 à 16 pour laquelle la quantité en poids (sec/sec) de polymère anionique sec mis en œuvre est comprise entre 0,05 et 5 %, de préférence entre 0,1 et 2 %, par rapport à la quantité de matériau phosphaté sec.
18. Suspension aqueuse selon l'une des revendications 13 à 17 pour laquelle la concentration en poids de particules de matériau phosphaté est supérieure à 50 %, de préférence supérieure à 55 %, plus préférentiellement supérieure à 60 % ou à 65 % ou supérieure à 70 % ou à 75 %.
19. Suspension aqueuse selon l'une des revendications 13 à 18 dont la viscosité Brookfïeld, mesurée 90 s après préparation, à 25 °C et à 100 tr/min, est inférieure à
1 200 mPa.s, de préférence inférieure à 1 000 mPa.s, plus préférentiellement inférieure à 800 mPa.s ou inférieure à 500 mPa.s, à 350 mPa.s ou à 200 mPa.s.
20. Suspension aqueuse selon l'une des revendications 13 à 19 dont la viscosité Brookfïeld, mesurée 90 s après préparation, à 25 °C, à 100 tr/min et à une concentration supérieure à 60 % en poids de matériau phosphaté, est inférieure à 1 500 mPa.s, à 1 200 mPa.s ou à 1 000 mPa.s, de préférence inférieure à 500 mPa.s, à 350 mPa.s ou à 200 mPa.s.
21. Suspension aqueuse selon l'une des revendications 13 à 20 pour laquelle les particules de matériau phosphaté ont une taille inférieure à 200 μιη ou inférieure à 150 μιη ou dont la taille est supérieure à 30 μιη.
22. Méthode de conditionnement d'un matériau phosphaté, pour son traitement ultérieur à une température allant de 40 à 100° C au moyen d'au moins un acide fort, comprenant la mise en contact du matériau phosphaté avec au moins un polymère anionique de masse moléculaire en poids (Mw) compris entre 1 000 et 90 000 g/mol et obtenu par réaction de polymérisation d'au moins un acide choisi parmi acide acrylique, acide méthacrylique et leurs sels.
23. Méthode de conditionnement selon la revendication 22 pour laquelle le polymère est défini selon l'une des revendications 3 à 7.
24. Méthode de conditionnement selon l'une des revendications 22 et 23 pour laquelle le matériau phosphaté est sous la forme de particules, de préférence de particules dont la taille est inférieure à 400 μιη, plus préférentiellement inférieure à 200 μιη ou inférieure à 150 μηι ou de particules dont la taille est supérieure à 10 μηι, de préférence supérieure à 30 μηι.
25. Méthode de conditionnement selon l'une des revendications 22 à 24 pour laquelle la suspension aqueuse comprend, lors du traitement ultérieur à une température allant de 40 à 100° C au moyen d'au moins un acide fort, une phase mousseuse dont le volume est réduit à 40 % voire réduit à 20 % du volume total de la suspension ou pour laquelle la suspension aqueuse possède une densité apparente, mesurée au moyen d'un pycnomètre et pour un taux d'extrait sec supérieur à 60 % en poids, allant de 1,5 à 2, de préférence allant de 1,7 à 2.
PCT/FR2018/052797 2017-11-09 2018-11-09 Preparation d'une suspension aqueuse de materiau phosphate WO2019092381A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2020118890A RU2783859C2 (ru) 2017-11-09 2018-11-09 Приготовление водной суспензии фосфатного материала
AU2018363262A AU2018363262A1 (en) 2017-11-09 2018-11-09 Preparation of an aqueous suspension of phosphate material
EP18825742.2A EP3707097A1 (fr) 2017-11-09 2018-11-09 Preparation d'une suspension aqueuse de materiau phosphate
JOP/2020/0107A JOP20200107A1 (ar) 2017-11-09 2018-11-09 تحضير معلق مائي من مادة فوسفات
US16/762,746 US20200361774A1 (en) 2017-11-09 2018-11-09 Preparation of an Aqueous Suspension of Phosphate Material
BR112020009201-0A BR112020009201A2 (pt) 2017-11-09 2018-11-09 método para preparar uma suspensão aquosa, suspensão aquosa de pelo menos um material fosfatado e método de condicionamento de um material fosfatado
CN201880085960.9A CN111629995B (zh) 2017-11-09 2018-11-09 磷酸盐材料的水性悬浮液的制备
IL274542A IL274542A (en) 2017-11-09 2020-05-08 Preparation of an aqueous suspension of phosphatic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760548A FR3073219B1 (fr) 2017-11-09 2017-11-09 Preparation d'une suspension aqueuse de materiau phosphate
FR1760548 2017-11-09

Publications (1)

Publication Number Publication Date
WO2019092381A1 true WO2019092381A1 (fr) 2019-05-16

Family

ID=61802021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/052797 WO2019092381A1 (fr) 2017-11-09 2018-11-09 Preparation d'une suspension aqueuse de materiau phosphate

Country Status (10)

Country Link
US (1) US20200361774A1 (fr)
EP (1) EP3707097A1 (fr)
CN (1) CN111629995B (fr)
AU (1) AU2018363262A1 (fr)
BR (1) BR112020009201A2 (fr)
FR (1) FR3073219B1 (fr)
IL (1) IL274542A (fr)
JO (1) JOP20200107A1 (fr)
MA (1) MA50573A (fr)
WO (1) WO2019092381A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021156551A1 (fr) 2020-02-06 2021-08-12 Coatex Méthode de contrôle granulométrique

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501724A (en) 1984-02-01 1985-02-26 Goers Associates Inc. Method for the wet process manufacture of phosphoric acid
US5183211A (en) 1991-09-25 1993-02-02 Nalco Chemical Company Chemical aids for wet-grinding phosphate rock
EP0892020A1 (fr) 1997-07-18 1999-01-20 Coatex S.A. Utilisation d'un copolymère à structure tensio-active comme agent dispersant et/ou d'aide au broyage
US6213416B1 (en) 1998-09-28 2001-04-10 Ciba Specialty Chemicals Water Treatments Ltd. Treatment of phosphate-containing rock
CN103333664A (zh) 2013-07-01 2013-10-02 湖北富邦科技股份有限公司 一种用于磷矿石湿磨的高效环保助磨剂
WO2015105464A1 (fr) 2014-01-08 2015-07-16 Groupe Chimique Tunisien-Direction Centrale De La Recherche Scientifique Procede de fabrication d'acide phosphorique de voie humide et dispositifs reactionnel et de filtration lies au procede
CN106395879A (zh) 2016-08-29 2017-02-15 安徽六国化工股份有限公司 一种湿法磷酸工艺中大粒径二水硫酸钙的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2488814A1 (fr) * 1980-08-21 1982-02-26 Coatex Sa Agent de broyage pour suspension aqueuse de materiaux mineraux en vue d'applications pigmentaires
US5185135A (en) * 1991-08-12 1993-02-09 Nalco Chemical Company Method of dewatering a wet process phosphoric acid slurry
GB9626941D0 (en) * 1996-12-27 1997-02-12 Ecc Int Ltd Dispersed aqueous suspensions
FR2781488B1 (fr) * 1998-07-07 2001-04-13 Snf Sa Nouveaux polymeres acryliques en dispersions essentiellement aqueuses, leur procede de preparation et leurs applications
ES2606348T3 (es) * 2008-07-07 2017-03-23 Omya Development Ag Método de fabricación de suspensiones acuosas de carbonato de calcio y suspensiones obtenidas así como sus usos
SI2390284T2 (sl) * 2010-05-28 2017-07-31 Omya International Ag Postopek za izdelavo suspenzij mineralnih materialov z visoko vsebnostjo trdnih snovi
FR2998195B1 (fr) * 2012-11-19 2015-01-16 Coatex Sas Utilisation d'un copolymere hydrosoluble pour preparer une suspension aqueuse de chaux

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501724A (en) 1984-02-01 1985-02-26 Goers Associates Inc. Method for the wet process manufacture of phosphoric acid
US5183211A (en) 1991-09-25 1993-02-02 Nalco Chemical Company Chemical aids for wet-grinding phosphate rock
EP0892020A1 (fr) 1997-07-18 1999-01-20 Coatex S.A. Utilisation d'un copolymère à structure tensio-active comme agent dispersant et/ou d'aide au broyage
US6213416B1 (en) 1998-09-28 2001-04-10 Ciba Specialty Chemicals Water Treatments Ltd. Treatment of phosphate-containing rock
CN103333664A (zh) 2013-07-01 2013-10-02 湖北富邦科技股份有限公司 一种用于磷矿石湿磨的高效环保助磨剂
WO2015105464A1 (fr) 2014-01-08 2015-07-16 Groupe Chimique Tunisien-Direction Centrale De La Recherche Scientifique Procede de fabrication d'acide phosphorique de voie humide et dispositifs reactionnel et de filtration lies au procede
CN106395879A (zh) 2016-08-29 2017-02-15 安徽六国化工股份有限公司 一种湿法磷酸工艺中大粒径二水硫酸钙的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021156551A1 (fr) 2020-02-06 2021-08-12 Coatex Méthode de contrôle granulométrique
FR3106990A1 (fr) * 2020-02-06 2021-08-13 Coatex Méthode de contrôle granulométrique de particules de phosphate
CN114945536A (zh) * 2020-02-06 2022-08-26 可泰克斯公司 粒度控制方法

Also Published As

Publication number Publication date
BR112020009201A2 (pt) 2020-11-03
US20200361774A1 (en) 2020-11-19
FR3073219A1 (fr) 2019-05-10
MA50573A (fr) 2020-09-16
JOP20200107A1 (ar) 2022-10-30
AU2018363262A1 (en) 2020-06-18
IL274542A (en) 2020-06-30
EP3707097A1 (fr) 2020-09-16
FR3073219B1 (fr) 2021-11-12
CN111629995A (zh) 2020-09-04
CN111629995B (zh) 2023-05-26
RU2020118890A (ru) 2021-12-09

Similar Documents

Publication Publication Date Title
EP0412027B1 (fr) Utilisation dans les suspensions aqueuses pigmentaires de carbonate de calcium d'un agent polycarboxylique à fonction phosphatée ou phosphonée inhibant l'effet de choc provoqué par l'introduction d'un électrolyte sous forme concentrée
EP0313483B1 (fr) Agent de broyage de la chaux en vue d'en augmenter la réactivité
BE1021199B1 (fr) Suspension calco-magnesienne maniable
BE1019642A3 (fr) Composition pour le conditionnement de boues.
EP2408718A1 (fr) Composition à base de chaux, leur procédé de fabrication et leur utilisation en traitement des eaux et boues
JP5117228B2 (ja) 下水汚泥の処理方法
WO2019092381A1 (fr) Preparation d'une suspension aqueuse de materiau phosphate
FR3042488B1 (fr) Production de carbonate de calcium precipite
EP3707098A1 (fr) Préparation d'acide phosphorique
JP2009183889A (ja) 汚泥の脱水処理方法
JP5300012B2 (ja) 無機質汚泥を含む被処理水の処理方法
CN105236536A (zh) 一种用于钢铁工业污水絮凝剂的制备方法
RU2783859C2 (ru) Приготовление водной суспензии фосфатного материала
JP2010201309A (ja) 無機質汚泥を含む被処理水の処理方法
JP5232680B2 (ja) 無機質汚泥を含む被処理水の処理方法
RU2783861C2 (ru) Получение фосфорной кислоты
JP4156441B2 (ja) 高分子凝集剤
WO2023126349A1 (fr) Méthode de purification d'au moins une solution aqueuse d'acide phosphorique
BE1022069B1 (fr) Composition de lait de chaux
EP3860947A1 (fr) Méthodes et compositions de production d'acide phosphorique
BE516022A (fr)
WO2013060961A1 (fr) Procede de fabrication de suspensions aqueuses de talc a partir d'un polymere acrylique a fonction tensio-active greffee, suspensions obtenues et leurs utilisations
CA2754951A1 (fr) Compositions pour le conditionnement de boues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018825742

Country of ref document: EP

Effective date: 20200609

ENP Entry into the national phase

Ref document number: 2018363262

Country of ref document: AU

Date of ref document: 20181109

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009201

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009201

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200508