WO2019091480A1 - 一种上行控制信道调度单元的确定方法、基站和用户设备 - Google Patents

一种上行控制信道调度单元的确定方法、基站和用户设备 Download PDF

Info

Publication number
WO2019091480A1
WO2019091480A1 PCT/CN2018/115101 CN2018115101W WO2019091480A1 WO 2019091480 A1 WO2019091480 A1 WO 2019091480A1 CN 2018115101 W CN2018115101 W CN 2018115101W WO 2019091480 A1 WO2019091480 A1 WO 2019091480A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
scheduling unit
uplink control
symbol
subsequent
Prior art date
Application number
PCT/CN2018/115101
Other languages
English (en)
French (fr)
Inventor
苟伟
郝鹏
韩祥辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020207016719A priority Critical patent/KR20200084031A/ko
Priority to EP18876226.4A priority patent/EP3709734A4/en
Priority to JP2020525956A priority patent/JP7285835B2/ja
Publication of WO2019091480A1 publication Critical patent/WO2019091480A1/zh
Priority to US16/872,318 priority patent/US11191098B2/en
Priority to US17/456,540 priority patent/US11716733B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present disclosure relates to the field of wireless communication technologies, but is not limited to the field of wireless communication technologies, and in particular, to a method for determining an uplink control channel scheduling unit, a base station, and a user equipment.
  • 5G NR New Radio
  • 3GPP 3rd Generation Partnership
  • OFDM Orthogonal Frequency Division Multiplexing
  • a scheduling unit for example, a slot, hereinafter referred to as a slot
  • a slot has a plurality of structures, which can be flexibly configured by a base station.
  • the slot can be composed of one or more of the following parts. Composition: downlink transmission part, uplink transmission part, guard interval (GAP) part, and the number of OFDM symbols occupied by each part is configurable. That is to say, the number of OFDM symbols used for uplink transmission in one slot is varied, and the range of variation is 0 to 14.
  • GAP guard interval
  • the Physical Uplink Control Channel is divided into a short PUCCH (short PUCCH) and a long PUCCH (long PUCCH), where the short PUCCH is mainly used for user equipment (User Equipment, UE) in the central area of the cell.
  • short PUCCH short PUCCH
  • long PUCCH long PUCCH
  • the long PUCCH typically includes 4 to 14 OFDM symbols, allowing for multiple slots, and detailed implementation methods are still under discussion.
  • PUCCH is allowed to span multiple slots, for example, one PUCCH requires more uplink OFDM symbols, but there are not enough OFDM symbols in one slot, so more slots are needed to provide enough OFDM symbols.
  • the base station configures the PUCCH of the plurality of slots for the UE, the base station notifies the starting slot of the PUCCH of the UE, and the number of slots to be used. For example, the base station notifies the UE that the starting slot of the PUCCH across multiple slots is slot n.
  • the number of slots needs to be 4, but the structure of the slot is dynamically changed, that is, the slot structure after the slot n has a downlink-based slot (the downlink OFDM symbol in the slot is more than the uplink OFDM symbol), and the upper behavior
  • the main slot (the uplink OFDM symbol in the slot is more than the downlink OFDM symbol), the pure uplink slot, the pure downlink slot, the reserved slot, etc., how should the remaining 3 slots of the UE except the starting slot be selected, how to proceed Resource scheduling can meet the different communication needs of the NR system, so as to balance the effective use of resources and communication quality.
  • the present disclosure provides a method for determining an uplink control channel scheduling unit, a base station, and a user equipment, which can select a suitable scheduling unit from a starting scheduling unit as a scheduling unit of a PUCCH across scheduling units.
  • An embodiment of the present disclosure provides a method for determining an uplink control channel scheduling unit, including:
  • the embodiment of the present disclosure further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement the above The step of the determining method of any of the uplink control channel scheduling units.
  • the embodiment of the present disclosure further provides a method for determining an uplink control channel scheduling unit, including:
  • the number of scheduling units occupied by the user equipment according to the uplink control channel, the initial scheduling unit used by the uplink control channel, the starting symbol position of the uplink control channel in the initial scheduling unit, and the number of symbols used, and the agreed A rule determines a subsequent scheduling unit used by the uplink control channel, and/or a location of a symbol used by the uplink control channel in the subsequent scheduling unit.
  • the determining method further includes: the computer disclosed in the embodiment further provides a computer readable storage medium, where the computer The readable storage medium stores one or more programs, which may be executed by one or more processors to implement the steps of the determining method of the uplink control channel scheduling unit of any of the above.
  • An embodiment of the present disclosure further provides a base station, including a first determining unit, where
  • a first determining unit configured, according to the number of scheduling units occupied by the uplink control channel, a starting scheduling unit used by the uplink control channel, a starting symbol position of the uplink control channel in the initial scheduling unit, and used
  • the number of symbols and the agreed rules determine the subsequent scheduling unit used by the uplink control channel, and/or the location of the symbols used by the uplink control channel in the subsequent scheduling unit.
  • An embodiment of the present disclosure further provides a user equipment, including a second determining unit, where
  • the second determining unit is configured to: according to the number of scheduling units occupied by the uplink control channel of the user equipment, the initial scheduling unit used by the uplink control channel, and the starting symbol position of the uplink control channel in the initial scheduling unit And the number of symbols used and the agreed rules, determining the subsequent scheduling unit used by the uplink control channel, and/or the location of the symbol used by the uplink control channel in the subsequent scheduling unit.
  • the determining method, the base station, and the user equipment of the uplink control channel scheduling unit determine the scheduling unit used by the uplink control channel of the user equipment according to the agreed rules, and how to solve the PUCCH across the time slot after the starting time slot Selecting other suitable time slots to carry the technical problem of the PUCCH; simply implementing flexible scheduling of resources while satisfying different PUCCH communication requirements and communication quality.
  • FIG. 1 is a schematic flowchart of a method for determining an uplink control channel scheduling unit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining an uplink control channel scheduling unit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a DMRS pattern according to an embodiment of the present disclosure.
  • the scheduling unit is described by taking a slot as an example.
  • the scheduling unit includes a plurality of consecutive OFDM symbols, which may be a pure uplink scheduling unit or a pure downlink scheduling unit, or may be an uplink and downlink mixing.
  • the slot in this article can be a regular slot.
  • NR specifies a frequency band of no more than 6 GHz, the number of symbols in the slot is 7 or 14 OFDM symbols, and in the frequency band exceeding 6 GHz, the symbol data of the slot is at least 14
  • the other values are to be determined; the slot in this article can also be a mini-slot (also called a mini-slot).
  • the currently defined mini-slot contains symbol data (1 to slot). The total number of symbols -1), obviously, the number of symbols in the mini-slot varies widely.
  • PUCCH resources not specifically described herein may be short PUCCH resources and/or long PUCCH resources;
  • PUCCH in this document Corresponding to the physical uplink control channel (also referred to as the transmission characteristics, such as the uplink control area or uplink control); in the NR standard formulation, the PUCCH may also be abbreviated as other abbreviations such as NR-PUCCH, but the intention is still physical uplink control.
  • a method for determining an uplink control channel scheduling unit includes the following steps:
  • Step 101 The base station configures, for the user equipment, the number of scheduling units occupied by the uplink control channel of the user equipment, the initial scheduling unit used by the uplink control channel, and the start of the uplink control channel in the initial scheduling unit. Symbol position and number of symbols used;
  • Step 102 The base station determines, according to the number of scheduling units, the starting scheduling unit, the starting symbol position, the used number of symbols, and the agreed rules, a subsequent scheduling unit used by the uplink control channel, and / or the location of the symbol used by the uplink control channel in the subsequent scheduling unit.
  • the scheduling unit type indication signaling is used by the base station to indicate a type of a scheduling unit that is subsequent to the user equipment, and the determining method further includes:
  • the user equipment determines only the initial scheduling unit as a scheduling unit used by the uplink control channel. At this time, the user equipment sends the control information of the uplink control channel only in the initial scheduling unit used by the uplink control channel indicated by the scheduling unit indication signaling.
  • the base station when the base station does not configure the user equipment to receive scheduling unit type indication signaling from the base station, the determining, according to an agreed rule, determining a subsequent scheduling unit used by the uplink control channel, including :
  • n scheduling units starting from the initial scheduling unit and including the initial scheduling unit as a scheduling unit used by the uplink control channel, where n is the uplink control channel The number of scheduling units occupied.
  • the base station when the base station does not configure the user equipment to receive scheduling unit type indication signaling from the base station, the user equipment is in the uplink control channel indicated by the scheduling unit indication signaling.
  • the control information of the uplink control channel is transmitted in consecutive n scheduling units starting from the initial scheduling unit used.
  • the determining, according to the agreed rule, the subsequent scheduling unit used by the uplink control channel includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the number of symbols that can be used to carry the uplink control channel is greater than or equal to the use of the uplink control channel in the initial scheduling unit.
  • the number of symbols is a symbol used by the NR system and allowed to be used by the uplink control channel, the symbol including an uplink symbol.
  • the determining, according to the agreed rule, the location of the symbol used by the uplink control channel in the subsequent scheduling unit includes:
  • the subsequent scheduling unit uses The start symbol position of the uplink symbol carrying the uplink control channel is the first uplink symbol position that can be used to carry the uplink control channel.
  • the determining, by the agreed rule, a subsequent scheduling unit used by the uplink control channel, and a location of a symbol used by the uplink control channel in the subsequent scheduling unit includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the number of symbols that can be used to carry the uplink control channel is greater than or equal to a symbol used by the uplink control channel in the initial scheduling unit. And the symbol position of the uplink symbol used by the subsequent scheduling unit to carry the uplink control channel is the same as the symbol position of the uplink control channel in the initial scheduling unit.
  • the symbol is a symbol used by the NR system and allowed to be used by the uplink control channel, the symbol including an uplink symbol.
  • the determining, according to the agreed rule, the subsequent scheduling unit used by the uplink control channel includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the uplink control channel and the initial scheduling unit carry the same uplink orthogonal code (Orthogonal Cover Code). OCC) Reuse capability.
  • the determining, according to the agreed rule, the subsequent scheduling unit used by the uplink control channel includes:
  • the subsequent scheduling unit When the uplink control channel is hopped, the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and meets each hopping corresponding to the uplink control channel in the subsequent scheduling unit.
  • the superposed orthogonal code multiplexing capability is the same as the superposed orthogonal code multiplexing capability corresponding to each frequency hopping of the uplink control channel in the initial scheduling unit.
  • the OCC multiplexing capability is calculated as a whole.
  • the determining, according to the agreed rule, the subsequent scheduling unit used by the uplink control channel includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and a mother code length of the coded bit of the uplink control channel and a mother code length of the uplink scheduling channel coded bit by the initial scheduling unit the same.
  • the type of the subsequent scheduling unit includes only an uplink scheduling unit or a downlink scheduling unit.
  • the type of the subsequent scheduling unit is only an uplink scheduling unit.
  • the symbol locations used by the uplink control channel in each of the scheduling units are contiguous.
  • the determining, according to the agreed rule, the subsequent scheduling unit used by the uplink control channel includes: the scheduling unit satisfies the following condition, and is selected as one of the subsequent scheduling units: the scheduling unit can provide The same number of symbols and symbol locations as the uplink control channel are transmitted in the initial scheduling unit; wherein the symbols are symbols used by the NR system and allowed for use by the uplink control channel, the symbols including uplink symbols.
  • the embodiment of the present disclosure further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement the above
  • the step of the determining method of the uplink control channel scheduling unit according to any one of the preceding claims.
  • the disclosure further discloses a method for determining an uplink control channel scheduling unit, including the following steps:
  • Step 201 The user equipment receives the resource configuration signaling from the base station, where the resource configuration signaling includes the number of scheduling units occupied by the uplink control channel, the initial scheduling unit used by the uplink control channel, and the uplink control channel. a starting symbol position and a number of symbols used in the initial scheduling unit;
  • Step 202 The user equipment determines, according to the resource configuration signaling and the agreed rule, a subsequent scheduling unit used by the uplink control channel, and/or a symbol used by the uplink control channel in the subsequent scheduling unit. position.
  • the scheduling unit type indication signaling is used by the base station to indicate a type of a scheduling unit that is subsequent to the user equipment, and the determining method further includes:
  • the user equipment is indeterminate to the subsequent scheduling unit, and only determines the initial scheduling unit as a scheduling unit used by the uplink control channel.
  • the user equipment when the user equipment does not correctly receive the scheduling unit type indication signaling from the base station, the user equipment only uses the uplink control channel indicated by the scheduling unit indication signaling.
  • the initial scheduling unit transmits control information of the uplink control channel.
  • the determination method when the base station does not configure the user equipment to receive scheduling unit type indication signaling from the base station, or when the base station does not configure scheduling unit type indication signaling for the user equipment, the determination method also includes:
  • n scheduling units starting from the initial scheduling unit and including the initial scheduling unit Determining, by the user equipment, consecutive n scheduling units starting from the initial scheduling unit and including the initial scheduling unit, as a scheduling unit used by the uplink control channel, where n is the uplink control The number of scheduling units occupied by the channel.
  • the base station when the base station does not configure the user equipment to receive scheduling unit type indication signaling from the base station, the user equipment is in the uplink control channel indicated by the scheduling unit indication signaling.
  • the control information of the uplink control channel is transmitted in consecutive n scheduling units starting from the initial scheduling unit used.
  • the determining, according to the agreed rule, the subsequent scheduling unit used by the uplink control channel includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the number of symbols that can be used to carry the uplink control channel is greater than or equal to the use of the uplink control channel in the initial scheduling unit.
  • the symbol is a symbol that is used by the NR system and that allows the uplink control channel to be used, the symbol including the upstream symbol.
  • the determining, according to the agreed rule, the subsequent scheduling unit used by the uplink control channel includes:
  • the subsequent scheduling unit When the symbol position of the symbol used by the subsequent scheduling unit to carry the uplink control channel is different from the symbol position of the uplink control channel in the initial scheduling unit, the subsequent scheduling unit is used in
  • the starting symbol position of the symbol carrying the uplink control channel is the first symbol position that can be used to carry the uplink control channel.
  • the symbol is a symbol that is used by the NR system and that allows the uplink control channel to be used, the symbol including the upstream symbol.
  • determining, by the agreed rule, a subsequent scheduling unit used by the uplink control channel, and a location of a symbol used by the uplink control channel in the subsequent scheduling unit includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the number of symbols that can be used to carry the uplink control channel is greater than or equal to a symbol used by the uplink control channel in the initial scheduling unit. And the symbol position of the uplink symbol used by the subsequent scheduling unit to carry the uplink control channel is the same as the symbol position of the uplink control channel in the initial scheduling unit.
  • the symbol is a symbol that is used by the NR system and that allows the uplink control channel to be used, the symbol including the upstream symbol.
  • determining the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the uplink control channel carries the same superposed orthogonal code multiplexing capability as the initial scheduling unit carries the uplink control channel.
  • the determining, by the agreed rule, the subsequent scheduling unit used by the uplink control channel includes:
  • the subsequent scheduling unit When the uplink control channel is hopped, the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and meets each hopping corresponding to the uplink control channel in the subsequent scheduling unit.
  • the superposed orthogonal code multiplexing capability is the same as the superposed orthogonal code multiplexing capability corresponding to each frequency hopping of the uplink control channel in the initial scheduling unit.
  • the OCC multiplexing capability is calculated as a whole.
  • determining the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and satisfies a parent code length of a coded bit of the uplink control channel and a start scheduling unit that carries the uplink control channel coded bit.
  • the mother code has the same length.
  • the type of the subsequent scheduling unit is only an uplink scheduling unit or a downlink scheduling unit.
  • the type of the subsequent scheduling unit is only an uplink scheduling unit.
  • the symbol locations used by the uplink control channel in each of the scheduling units are contiguous.
  • the determining, according to the agreed rule, the subsequent scheduling unit used by the uplink control channel includes: the scheduling unit satisfies the following condition, and is selected as one of the subsequent scheduling units: the scheduling unit can provide The same number of symbols and symbol locations as the uplink control channel are transmitted in the initial scheduling unit; wherein the symbols are symbols used by the NR system and allowed for use by the uplink control channel, the symbols including uplink symbols.
  • the embodiment of the present disclosure further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement the above
  • the step of the determining method of the uplink control channel scheduling unit according to any one of the preceding claims.
  • the present disclosure further discloses a base station, where the base station includes a configuration unit 301 and a first determining unit 302, where
  • the configuration unit 301 is configured to configure, for the user equipment, the number of scheduling units occupied by the uplink control channel, the initial scheduling unit used by the uplink control channel, and the start symbol of the uplink control channel in the initial scheduling unit. The number of positions and symbols used;
  • the first determining unit 302 is configured to determine, according to the number of scheduling units, the starting scheduling unit, the starting symbol position, the number of used symbols, and an agreed rule, a subsequent use of the uplink control channel. a scheduling unit, and/or a location of a symbol used by the uplink control channel in the subsequent scheduling unit.
  • the scheduling unit type indication signaling is used by the base station to indicate a type of a scheduling unit that is subsequent to the user equipment, and the user equipment determines only the initial scheduling unit, as a scheduling unit used by the uplink control channel, that is, The user equipment sends the control information of the uplink control channel only in the initial scheduling unit used by the uplink control channel indicated by the scheduling unit indication signaling.
  • the first determining unit 302 is further configured to:
  • n scheduling units including the initial scheduling unit Determining, from the initial scheduling unit, consecutive n scheduling units including the initial scheduling unit, as a scheduling unit used by the uplink control channel, where n is a scheduling occupied by the uplink control channel The number of units.
  • the base station when the base station does not configure the user equipment to receive scheduling unit type indication signaling from the base station, the user equipment is in the uplink control channel indicated by the scheduling unit indication signaling.
  • the control information of the uplink control channel is transmitted in consecutive n scheduling units starting from the initial scheduling unit used.
  • the determining, by the first determining unit 302, the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the number of uplink symbols that can be used to carry the uplink control channel is greater than or equal to the use of the uplink control channel in the initial scheduling unit. The number of symbols.
  • the determining, by the first determining unit 302, the location of the symbol used by the uplink control channel in the subsequent scheduling unit according to the agreed rule includes:
  • the subsequent scheduling unit uses The start symbol position of the uplink symbol carrying the uplink control channel is the first uplink symbol position that can be used to carry the uplink control channel.
  • the first determining unit 302 determines, according to an agreed rule, a subsequent scheduling unit used by the uplink control channel, and a symbol used by the uplink control channel in the subsequent scheduling unit. Location, including:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the number of symbols that can be used to carry the uplink control channel is greater than or equal to a symbol used by the uplink control channel in the initial scheduling unit. And the symbol position of the uplink symbol used by the subsequent scheduling unit to carry the uplink control channel is the same as the symbol position of the uplink control channel in the initial scheduling unit.
  • the symbol is a symbol used by the NR system and allowed to be used by the uplink control channel, the symbol including an uplink symbol.
  • the determining, by the first determining unit 302, the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the bearer of the uplink control channel and the initial scheduling unit carrying the uplink control channel have the same OCC multiplexing capability.
  • the determining, by the first determining unit 302, the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit When the uplink control channel is hopped, the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and meets each hopping corresponding to the uplink control channel in the subsequent scheduling unit.
  • the superposed orthogonal code multiplexing capability is the same as the superposed orthogonal code multiplexing capability corresponding to each frequency hopping of the uplink control channel in the initial scheduling unit.
  • the OCC multiplexing capability is calculated as a whole.
  • the determining, by the first determining unit 302, the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and satisfies a parent code length of a coded bit of the uplink control channel and a start scheduling unit that carries the uplink control channel coded bit.
  • the mother code has the same length.
  • the type of the subsequent scheduling unit includes only an uplink scheduling unit or a downlink scheduling unit.
  • the type of the subsequent scheduling unit is only an uplink scheduling unit.
  • the symbol locations used by the uplink control channel in each of the scheduling units are contiguous.
  • the determining, according to the agreed rule, the subsequent scheduling unit used by the uplink control channel includes: the scheduling unit satisfies the following condition, and is selected as one of the subsequent scheduling units: the scheduling unit can provide The same number of symbols and symbol locations as the uplink control channel are transmitted in the initial scheduling unit; wherein the symbols are symbols used by the NR system and allowed for use by the uplink control channel, the symbols including uplink symbols.
  • the present disclosure also discloses a user equipment, where the user equipment includes a receiving unit 401 and a second determining unit 402, where
  • the receiving unit 401 is configured to receive resource configuration signaling from the base station, where the resource configuration signaling includes a number of scheduling units occupied by the uplink control channel, a starting scheduling unit used by the uplink control channel, and the uplink control channel. The starting symbol position and the number of symbols used in the initial scheduling unit;
  • the second determining unit 402 is configured to determine, according to the resource configuration signaling and the agreed rule, a subsequent scheduling unit used by the uplink control channel, and/or the uplink control channel is used in the subsequent scheduling unit The location of the symbol.
  • the scheduling unit type indication signaling is used by the base station to indicate a type of a scheduling unit that is subsequent to the user equipment, and the second determining unit 402 is further configured to:
  • the subsequent scheduling unit is not determined, and only the initial scheduling unit is determined as a scheduling unit used by the uplink control channel.
  • the user equipment when the user equipment does not correctly receive the scheduling unit type indication signaling from the base station, the user equipment only uses the uplink control channel indicated by the scheduling unit indication signaling.
  • the initial scheduling unit transmits control information of the uplink control channel.
  • the second The determining unit 402 is further configured to:
  • n scheduling units including the initial scheduling unit Determining, from the initial scheduling unit, consecutive n scheduling units including the initial scheduling unit, as a scheduling unit used by the uplink control channel, where n is a scheduling occupied by the uplink control channel The number of units.
  • the base station when the base station does not configure the user equipment to receive scheduling unit type indication signaling from the base station, the user equipment is in the uplink control channel indicated by the scheduling unit indication signaling.
  • the control information of the uplink control channel is transmitted in consecutive n scheduling units starting from the initial scheduling unit used.
  • the determining, by the second determining unit 402, the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the number of symbols that can be used to carry the uplink control channel is greater than or equal to the use of the uplink control channel in the initial scheduling unit.
  • the number of symbols is a symbol used by the NR system and allowed for use by the uplink control channel, the symbol comprising an uplink symbol.
  • the second determining unit 402 determines, according to an agreed rule, a subsequent scheduling unit used by the uplink control channel, and the uplink control channel is used in the subsequent scheduling unit.
  • the location of the symbol including:
  • the subsequent scheduling unit When the symbol position of the symbol used by the subsequent scheduling unit to carry the uplink control channel is different from the symbol position of the uplink control channel in the initial scheduling unit, the subsequent scheduling unit is used in The start symbol position of the uplink symbol carrying the uplink control channel is the first uplink symbol position that can be used to carry the uplink control channel.
  • the symbol is a symbol used by the NR system and allowed to be used by the uplink control channel, the symbol including an uplink symbol.
  • the determining, by the second determining unit 402, the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the number of symbols that can be used to carry the uplink control channel is greater than or equal to a symbol used by the uplink control channel in the initial scheduling unit. And the symbol position of the uplink symbol used by the subsequent scheduling unit to carry the uplink control channel is the same as the symbol position of the uplink control channel in the initial scheduling unit.
  • the symbol is a symbol used by the NR system and allowed to be used by the uplink control channel, the symbol including an uplink symbol.
  • the determining, by the second determining unit 402, the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and the bearer of the uplink control channel and the initial scheduling unit carrying the uplink control channel have the same OCC multiplexing capability.
  • the determining, by the second determining unit 402, the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit When the uplink control channel is hopped, the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and meets each hopping corresponding to the uplink control channel in the subsequent scheduling unit.
  • the superposed orthogonal code multiplexing capability is the same as the superposed orthogonal code multiplexing capability corresponding to each frequency hopping of the uplink control channel in the initial scheduling unit.
  • the OCC multiplexing capability is calculated as a whole.
  • the determining, by the second determining unit 402, the subsequent scheduling unit used by the uplink control channel according to the agreed rule includes:
  • the subsequent scheduling unit has a resource capable of carrying the uplink control channel, and satisfies a parent code length of a coded bit of the uplink control channel and a start scheduling unit that carries the uplink control channel coded bit.
  • the mother code has the same length.
  • the type of the subsequent scheduling unit includes only an uplink scheduling unit or a downlink scheduling unit.
  • the type of the subsequent scheduling unit is only an uplink scheduling unit.
  • the symbol locations used by the uplink control channel in each of the scheduling units are contiguous.
  • the present disclosure further exemplifies the preferred embodiments of the present disclosure, but it is to be understood that the preferred embodiments are only for the purpose of describing the present disclosure, and are not intended to limit the disclosure.
  • the various embodiments below may exist independently, and the technical features in the different embodiments may be combined and used in combination in one embodiment.
  • the PUCCH in this paper corresponds to a physical uplink control channel (also referred to as a transmission characteristic, such as an uplink control region or uplink control).
  • PUCCH may also be abbreviated as other abbreviations such as NR-PUCCH, but its original intention is still the physical uplink control channel, and the bearer content does not change, so the title does not affect the implementation of the method in this paper.
  • the scheduling unit when the scheduling unit is selected, the reserved scheduling unit and/or the Unknown scheduling unit and/or the Random Access Channel (RACH) scheduling unit after the initial scheduling unit are selected. Excluded, selected in the uplink scheduling unit and the downlink scheduling unit.
  • the downlink scheduling unit includes a pure downlink scheduling unit and a downlink-based scheduling unit.
  • the uplink scheduling unit includes a pure uplink scheduling unit and an uplink-based scheduling unit. In the case of an uplink-based scheduling unit, the number of symbols included in the uplink-based scheduling unit satisfies the requirements. If the downlink-based scheduling unit requires the number of symbols included in the downlink-based scheduling unit to meet the requirements. Wherein the symbol is a symbol used by the NR system and allowed to be used by the uplink control channel, the symbol including an uplink symbol.
  • the base station and the UE respectively derive the scheduling unit used by the PUCCH and the mapping of the PUCCH in the derived scheduling unit from the initial scheduling unit according to a rule. Specifically, the reserved scheduling unit and/or the Unknown scheduling unit and/or the RACH scheduling unit after the initial scheduling unit are excluded, and are selected in an uplink scheduling unit and a downlink scheduling unit.
  • the downlink scheduling unit includes a pure downlink scheduling unit and a downlink-based scheduling unit.
  • the uplink scheduling unit includes a pure uplink scheduling unit and an uplink-based scheduling unit. In the case of an uplink-based scheduling unit, the number of uplink symbols included in the uplink-based scheduling unit satisfies the requirement. If the downlink-based scheduling unit is configured, the number of downlink symbols included in the downlink-based scheduling unit is required to meet the requirement.
  • slot n is indicated as the starting slot of the PUCCH, assuming that the PUCCH is configured to span 3 slots, and there are 4 uplink OFDM symbols in each slot to carry the PUCCH. Then the UE also needs to determine the other 2 slots after the slot n to carry the PUCCH. In this embodiment, the base station and the UE determine the remaining slots according to the following rules.
  • slot n+1 is a reserved slot
  • slot n+2 is an Unknown slot
  • the UE will not select it as the remaining slot to carry the PUCCH.
  • slot n+3 is an uplink slot and the number of uplink symbols included is full, for example, there are 4 consecutive uplink symbols.
  • slot n+4 is a downlink slot, but the number of uplink symbols included meets the requirements, for example There are 4 consecutive upstream symbols, such that slot n+3 and slot n+4 are selected as subsequent slots to carry the PUCCH.
  • the slot carrying the PUCCH of the UE will have slot n, slot n+3 and slot n+4.
  • the base station also selects the subsequent slot for receiving the PUCCH according to the same rule, and the base station should ensure that the symbol of the selected slot carrying the PUCCH is not used as it.
  • the base station is configured with a slot type, including an OFDM symbol attribute in the slot, and notifies the UE of the configuration information. Therefore, both the base station and the UE are aware of the slot type, and the UE selects slot n+3 and slot n+4 as the subsequent slots carrying the PUCCH according to the agreed rules, and the base station can also know, so that the UE uses the selected one.
  • the three slots carry the PUCCH and send it to the base station.
  • the base station estimates the three slots selected by the UE according to the agreed rule (actually only the last two slots, the first one is indicated by the base station), and receives the PUCCH therefrom.
  • the base station informs the UE about the slot type signaling (currently, the base station can notify the UE about the type of the slot through the physical layer signaling Downlink Control Information (DCI), and can also notify the UE about the type of the slot through the high layer signaling.
  • DCI Downlink Control Information
  • the UE will not be able to determine the slot type. In this case, the UE can only send the PUCCH in the slot n indicated by the base station, and the UE does not determine the slot after the slot n. If the base station detects the PUCCH sent by the UE in the slot n, and then attempts to receive the PUCCH in the slot selected by the subsequent UE, if not received, the UE considers that the UE loses the slot type indication signaling.
  • DCI Downlink Control Information
  • the base station does not configure the UE to receive the slot type signaling (currently the base station can notify the UE whether to receive the slot type configuration information), when the PUCCH is configured to require multiple (eg, 3) slots to carry the PUCCH, the base station indicates the start slot.
  • slot n the OFDM symbol in the slot type in which the base station needs to configure a lot of slots (the number of slots required for PUCCH) after the slot n is configured for the UE satisfies the requirement of carrying the PUCCH.
  • the base station configures the PUCCH of the UE to span 3 slots, and the base station configures the starting slot to be slot n, and the base station needs to configure slot n+1.
  • the type of slot n+2 has the number and location of OFDM symbols of the PUCCH carrying the UE (if each The positions of the OFDMs carrying the PUCCH in the slots are the same), so that when the UE receives the PUCCH and needs to span 3 and the initial slot is slot n, the UE considers that the slot carrying the PUCCH starts from the indicated starting slot n, and then the slot n+1 And slot n+2 is also the slot that carries the PUCCH.
  • the downlink scheduling unit and/or the reserved scheduling unit and/or the Unknown scheduling unit and/or the RACH scheduling unit after the initial scheduling unit are excluded, in the uplink scheduling unit.
  • the downlink scheduling unit includes a pure downlink scheduling unit and a downlink-based scheduling unit.
  • the uplink scheduling unit includes a pure uplink scheduling unit and an uplink-based scheduling unit. In the case of an uplink-based scheduling unit, the number of uplink symbols included in the uplink-based scheduling unit satisfies the requirement.
  • the base station and the UE respectively derive the scheduling unit used by the PUCCH and the mapping of the PUCCH in the derived scheduling unit from the initial scheduling unit according to a rule. Specifically, the downlink scheduling unit and/or the reserved scheduling unit and/or the Unknown scheduling unit and/or the RACH scheduling unit after the initial scheduling unit are excluded, and are selected in the uplink scheduling unit.
  • the downlink scheduling unit includes a pure downlink scheduling unit and a downlink-based scheduling unit.
  • the uplink scheduling unit includes a pure uplink scheduling unit and an uplink-based scheduling unit. In the case of an uplink-based scheduling unit, the number of uplink symbols included in the uplink-based scheduling unit satisfies the requirement.
  • only the downlink scheduling unit is no longer used as the scheduling unit that carries the PUCCH in the multiple scheduling units required for the PUCCH, and the scheduling unit that carries the PUCCH can only select from the uplink scheduling unit.
  • the scheduling unit when the scheduling unit is selected, when the PUCCH is required to span multiple slots, the PUCCH includes the same number of symbols and symbol positions in the plurality of slots. If there are symbols and symbol positions in the scheduling unit that satisfy the requirements, the scheduling unit is considered to be a slot that spans multiple slots as a PUCCH.
  • the base station and the UE respectively derive the scheduling unit used by the PUCCH and the mapping of the PUCCH in the derived scheduling unit from the initial scheduling unit according to a rule.
  • the PUCCH is required to span multiple slots, and the PUCCH includes the same number of symbols and symbol positions in the plurality of slots. If there are symbols and symbol positions in the scheduling unit that satisfy the requirements, the scheduling unit is considered to be a slot that spans multiple slots as a PUCCH.
  • slot n is indicated as the starting slot of the PUCCH. It is assumed that the PUCCH is configured to span 3 slots, and there are 4 uplink OFDM symbols in each slot (for example, symbols 3-6 in the slot, symbol number) Starting from 0, the slot contains 14 symbols) to carry the PUCCH. Then the UE also needs to determine the other 2 slots after the slot n to carry the PUCCH. In this embodiment, the base station and the UE determine the remaining slots according to the following rules.
  • slot n+1 is a reserved slot, it can be selected as long as the slot has the number of OFDM symbols and the symbol position that satisfy the requirements. It is assumed that the required number of OFDM symbols and symbol positions are not satisfied in the slot n+1 (these symbols are used for the NR and the PUCCH is allowed to be used, and if they are reserved for other uses, the slots are also skipped), then the UE will The slot n+1 is not selected as the remaining slot to carry the PUCCH. If slot n+2 is an Unknown slot, the UE determines whether it can be selected as the subsequent slot for carrying the PUCCH, and still follows the symbol number and symbol position. Assume that there are no required OFDM symbol numbers and symbol positions in the slot n+2.
  • slot n+3 and slot n+4 are selected as slots for subsequent PUCCH, regardless of slot n+3 and slot n+ Type of 4.
  • slot n+3 and slot n+4 are selected as subsequent slots to carry the PUCCH.
  • the slot carrying the PUCCH of the UE will have slot n, slot n+3 and slot n+4, where slot n is indicated by the base station by signaling, and slot n+3 and slot n+4 are base stations and UE according to the agreed rules. Selected.
  • the base station is also selected to receive the subsequent slots of the PUCCH according to the same rule, and the base station should ensure that the symbols of the selected slot carrying the PUCCH are not used for other purposes.
  • the base station is configured with a slot type, including an OFDM symbol attribute in the slot, and notifies the UE of the configuration information. Therefore, both the base station and the UE are aware of the slot type, so the UE selects slot n+3 and slot n+4 as the subsequent slots carrying the PUCCH according to the agreed rules, and the base station can also know, so that the UE uses the selection.
  • the fixed 3 slots carry the PUCCH and send it to the base station.
  • the base station estimates the 3 slots selected by the UE according to the agreed rule (actually only the last 2 slots, the first one is indicated by the base station), and receives the PUCCH therefrom.
  • the base station shall ensure that the uplink OFDM symbols in the slots can be used by the PUCCH. Specifically, the base station knows the rules for determining subsequent slots, so the base station does not use the uplink OFDM symbols in the slots that are determined to carry the PUCCH by other channels/data.
  • the PUCCH when the scheduling unit is selected, the PUCCH is required to span multiple slots, and the PUCCH includes the same number of symbols in the plurality of slots. If there are a number of symbols in the scheduling unit that are full of required requirements, the scheduling unit is considered to be a slot that spans multiple slots as a PUCCH, but the starting symbol position of the mapping of the PUCCH in the slot is adjusted.
  • the base station and the UE respectively derive the scheduling unit used by the PUCCH and the mapping of the PUCCH in the derived scheduling unit from the initial scheduling unit according to the rule. Specifically, when the PUCCH is required to span multiple slots, and the PUCCH includes the same number of symbols in the plurality of slots. If there are a number of symbols in the scheduling unit that are full of required requirements, the scheduling unit is considered to be a slot that spans multiple slots as a PUCCH, but the starting symbol position of the mapping of the PUCCH in the slot is adjusted.
  • slot n is indicated as the starting slot of the PUCCH, assuming that the PUCCH is configured to span 3 slots, and there are 4 uplink OFDM symbols in each slot to carry the PUCCH. Then the UE also needs to determine the other 2 slots after the slot n to carry the PUCCH. In this embodiment, the base station and the UE determine the remaining slots according to the following rules.
  • slot n+1 is a reserved slot, as long as the slot has the required number of OFDM symbols, it can be selected. It is assumed that the number of OFDM symbols required in the slot n+1 is not satisfied (these symbols are used by the NR and the PUCCH is allowed to be used, and if they are reserved for other uses, the slots are also skipped), then the UE will not select the slot. N+1 is used as the remaining slot to carry the PUCCH. If slot n+2 is an Unknown slot, the UE still determines whether it can be selected as the subsequent slot for carrying the PUCCH. It is assumed that the number of OFDM symbols that do not meet the requirements in the slot n+2 is not satisfied.
  • slot n+3 and slot n+4 are selected as slots for subsequent PUCCH, regardless of slot n+3 and slot n+4. Types of. In some embodiments, if the symbol position corresponding to the number of OFDM symbols required in slot n+3 is also the same as the symbol position used by the PUCCH in slot n, the same symbol position as slot n is used in slot n+3 to carry the PUCCH. . If the number of OFDM symbols required in slot n+4, but the symbol position is different from the position of the symbol carrying PUCCH in slot n.
  • the number of symbols carrying PUCCH in slot n is four and is symbol 3-6 (the symbol number in the slot starts from 0), and the symbol position of the selected PUCCH in the selected slot n+3 is the same as slot n. It is assumed that the number of symbols carrying PUCCH in slot n+4 is also 4, but the symbol position of the uplink symbol is from 4 to 14, and there are 10 uplink symbols. At this time, the symbol carrying the PUCCH is adjusted to be the first from the slot n+4. An upstream symbol begins to be calculated, for a total of 4 symbols, ie, symbols 4-7. That is to say, the symbols carrying the PUCCH in the selected slot n+4 are 4-7.
  • the position of the symbol carrying the PUCCH in slot n+4 is adjusted, which is different from the symbol position in slot n and slot n+3.
  • the implicitly adjusted symbol position starts from the first uplink symbol in the slot (or the UE knows the slot), and the adjustment rule is also agreed by the base station and the UE in advance.
  • slot n+3 and slot n+4 are selected as subsequent slots to carry the PUCCH, but the symbols carrying the PUCCH are adjusted in slot n+4. position.
  • the slot carrying the PUCCH of the UE will have slot n, slot n+3 and slot n+4, wherein slot n is indicated by the base station by signaling, and slot n+3 and slot n+4 are base stations and UEs according to the agreement. The rule is selected.
  • the base station is also selected according to the same rule to receive the subsequent slot of the PUCCH and the symbol position of the PUCCH in the slot, and the base station should ensure that the symbol of the selected slot carrying the PUCCH is not used as it.
  • the base station is configured with a slot type, including an OFDM symbol attribute (uplink symbol, downlink symbol or reserved symbol or GAP symbol, etc.) in the slot, and notifies the UE of the configuration information. Therefore, both the base station and the UE are aware of the slot type, so the UE selects the slot n+3 and the slot n+4 as the subsequent slots carrying the PUCCH according to the agreed rules, including adjusting the bearer in the slot n+4.
  • a slot type including an OFDM symbol attribute (uplink symbol, downlink symbol or reserved symbol or GAP symbol, etc.) in the slot, and notifies the UE of the configuration information. Therefore, both the base station and the UE are aware of the slot type, so the UE selects the slot n+3 and the slot n+4 as the subsequent slots carrying the PUCCH according to the agreed rules, including adjusting the bearer in the slot n+4.
  • the base station can also be known according to the agreed adjustment symbol position, so that the UE sends the PUCCH to the base station by using the selected three slots, and the base station estimates the three slots selected by the UE according to the agreed rules (actually Only the last 2 slots, the first one is indicated by the base station, receive the PUCCH therefrom.
  • the base station shall ensure that the uplink OFDM symbols in the slots can be used by the PUCCH. Specifically, the base station knows the rules for determining subsequent slots, so the base station does not use the uplink OFDM symbols in the slots that are determined to carry the PUCCH by other channels/data.
  • the UE first excludes the reserved slot and the Unknown slot according to the slot type when selecting the subsequent slot. After the initial slot, the uplink symbol included in the downlink slot or the uplink slot is selected.
  • the number and symbol position are the same as the number of symbols and the symbol position of the PUCCH in the initial slot of the PUCCH, and the slot is selected. Reference may be made to the corresponding embodiments described above for the sake of complete description.
  • the UE first excludes the reserved slot, the Unknown slot and the downlink slot according to the slot type when selecting the subsequent slot.
  • the slot is selected after the initial slot of the indication, as long as the number of uplink symbols included in the uplink slot is the same as the number of symbols carrying the PUCCH in the initial slot of the PUCCH. If the uplink symbol position in the slot is different from the symbol position of the PUCCH in the initial slot, the symbol position of the PUCCH in the slot is adjusted according to a convention. Reference may be made to the corresponding embodiments described above for the sake of complete description.
  • the UE first excludes the reserved slot and the Unknown slot according to the slot type when selecting the subsequent slot.
  • the slot is selected after the initial slot of the indication, as long as the number of uplink symbols included in the downlink slot and the uplink slot is the same as the number of symbols carrying the PUCCH in the initial slot of the PUCCH. If the uplink symbol position in the slot is different from the symbol position of the PUCCH in the initial slot, the symbol position of the PUCCH in the slot is adjusted according to a convention. Reference may be made to the corresponding embodiments described above for the sake of complete description.
  • the UE first excludes the reserved slot, the Unknown slot and the downlink slot according to the slot type when selecting the subsequent slot, as long as the uplink slot is included after the initial slot indicated.
  • the number of uplink symbols and the symbol position are the same as the number of symbols and symbol positions of the PUCCH in the initial slot of the PUCCH, and the slot is selected. Reference may be made to the corresponding embodiments described above for the sake of complete description.
  • the base station indicates to the UE, in which manner, the subsequent slot determination when the PUCCH is performed across multiple slots is performed.
  • the mode in the preferred embodiment 3 and the mode in the embodiment are all supported by one system, and then the base station can pass signaling (including high layer signaling or physical layer signaling or medium access control (MAC) layer signaling.
  • the UE inform the UE which way to determine the slot to which the PUCCH is to be spanned.
  • the high layer signaling may be a broadcast RRC message or a UE dedicated Radio Resource Control (RRC) message.
  • Physical layer signaling may be carried by DCI, including public DCI or UE-specific DCI.
  • the MAC layer signaling may be a control unit of the MAC layer. This indication can increase the robustness of the system.
  • this embodiment solves that, when a PUCCH spans multiple slots, if the PUCCH is allowed to have different OFDM symbol numbers in each slot, how to determine the multiple slots The number of symbols in PUCCH in each slot.
  • the subsequent slots satisfy the following requirements: if the PUCCH is carried, the OCC multiplexing capability of the PUCCH and the complex of the PUCCH in the initial slot are required. The same ability is used.
  • each hopping frequency separately calculates the OCC multiplexing capability.
  • the OCC multiplexing capability is calculated according to the whole.
  • the PUCCH is further divided into different formats according to the number of transmitted bits, but the number of symbols included is greater than 4.
  • a PUCCH transmission format is set for transmitting 1 to 2 bits of information, and a time domain OSC multiplexing method is used. It is format 1); a PUCCH transmission format is set for transmission greater than 3 bits and less than X bits, and a time domain OCC multiplexing mode is used in the frequency domain; a PUCCH transmission format is set for transmission greater than X bits, and the multiplexing mode is not supported.
  • the foregoing PUCCH format is transmitted across multiple slots (these formats are also applicable to the embodiments 1 to 5), the following describes the case where the number of symbols used to carry the PUCCH in the plurality of slots is different.
  • the PUCCH needs to span 3 slots, but the number of uplink symbols that can be used for the PUCCH in the three slots is not completely equal.
  • the first and second slots have only one symbol for the PUCCH and the second slot has 8 symbols.
  • This PUCCH structure across multiple slots is obviously not optimal.
  • how to design the optimal number of unequal symbols in the case where the plurality of slots carry the number of PUCCH symbols is not equal The following describes a method.
  • the base station indicates the starting slot of the PUCCH, and configures the starting symbol and length (the number of symbols) in the starting slot, and the number of slots, so how to determine the subsequent slot? What characteristics of the subsequent slots can be selected?
  • the base station indicates the starting slot of the PUCCH, and configures the starting symbol and length (the number of symbols) in the starting slot, and the number of slots, so how to determine the subsequent slot? What characteristics of the subsequent slots can be selected?
  • PUCCH format 1 refer to the structure of the PUCCH format 1 or the long PUCCH of the 1-2 bits in the existing NR
  • the difference in the number of symbols carrying the PUCCH in each slot The value is limited by the OCC multiplexing capability.
  • the basic principle is that when the slot carries the PUCCH, if the PUCCH has the same OCC multiplexing capability as the PUCCH in the initial slot, the slot can be selected. If the PUCCH frequency hopping is in the slot, the basic principle is changed to the subsequent slot selection to carry the PUCCH, if the PUCCH has the hopping frequency in the slot and the PUCCH in the initial slot. With the same OCC multiplexing capability, the slot can be selected.
  • the base station configures a PUCCH that spans multiple slots for the UE, and notifies the UE of the start slot, and the start symbol of the PUCCH in the start slot and the number of symbols that the PUCCH continues, and the number of slots that the PUCCH needs to span. And information such as frequency hopping.
  • the base station and the UE then agree to determine the slot to be subsequently selected for use by the PUCCH according to the above principles.
  • the UE continues to transmit the PUCCH on the selected slot, and the base station continues to receive the PUCCH on the slot.
  • the base station configures the PUCCH of the UE to span 2 slots
  • the starting slot is slot n
  • the PUCCH in the starting slot uses 7 symbols, and the starting symbol is not symbol 3 (label starts from 0), and does not hop.
  • a slot is needed later.
  • the slot used by the PUCCH is slot n and slot n+1.
  • the selection of the subsequent slot may also be combined with whether the starting position of the symbol used in the slot when the PUCCH is transmitted is the same. For example, when a strict condition is set, the PUCCH is required to be in multiple slots. The starting symbols are also the same; for example, when strict conditions are set, the PUCCH is not required to have the same starting symbol in multiple slots. In this case, as long as the OCC multiplexing capability is the same, it is agreed. The starting symbol position of the PUCCH in the slot, for example, is agreed to be the first available upstream symbol in the slot.
  • the OCC multiplexing capability of the PUCCH in the subsequently selected slot is the same as the OCC multiplexing capability of the PUCCH in the initial slot.
  • the number of symbols used by the PUCCH in the subsequent selected slots may not be equal to the number of symbols used by the PUCCH in the initial slot, that is, the number of symbols used to carry the PUCCH in the plurality of slots may not be equal to each other. (Of course, it can be equal).
  • the position of the symbol carrying the PUCCH in the subsequently selected slot may also be allowed to be adjusted, and the adjustment rule may be agreed. This will allow the UE to select more slots.
  • the PUCCH supports frequency hopping in the agreed principle.
  • the slot needs to be satisfied: if the PUCCH is carried in the slot and frequency hopping, the first hopping OCC multiplexing capability and the OCC complex of the first hopping of the PUCCH in the starting slot With the same capability, the OCC multiplexing capability of the second frequency hopping is the same as the OCC multiplexing capability of the second frequency hopping of the PUCCH in the initial slot. In this way, the slot can be selected. If more strict conditions are to be set, the start symbol carrying the PUCCH in the slot may be set to be the same as the start symbol carrying the PUCCH in the initial slot.
  • the PUCCH (for a PUCCH corresponding to the UTI greater than 3 bits) spans multiple slots, and the subsequent slots satisfy the following requirements: if the PUCCH is carried, the bearer is required to be carried in the slot.
  • the mother code length of the PUCCH is the same as the mother code length of the PUCCH in the initial slot (the frequency domain resource is the same as the starting slot).
  • the principle of its subsequent slot selection differs when such a PUCCH is spanned across multiple slots.
  • the subsequent slot selection is satisfied if the PUCCH is carried in the slot, and the time slot and frequency domain are used in the slot, and the time domain is a symbol.
  • the frequency domain is the PRB.
  • the length of the mother code from which the PUCCH coded bit is derived is the same as the length of the mother code from which the PUCCH coded bit in the initial slot is derived. At this time, the slot can be selected.
  • the frequency domain resource may not be allowed to be added in the resource (that is, the frequency domain resource used for the PUCCH in the slot is the same as the frequency domain used in the initial slot for the PUCCH). It is also possible to require that the PUCCH start symbol in the slot be the same as the start symbol in the start slot. It is also possible to require that the code rate of the PUCCH coded bit carried in the slot exceeds a certain threshold. Since the coded bits are from the same mother code length, if the code rate is too large, the decoding performance is lowered, so a reasonable code is set. Rate threshold to ensure decoding performance. The threshold of the code rate can be obtained by simulation, or a certain code rate value can be selected among the code rates allowed for the PUCCH. It should be emphasized here that one or more of the above conditions may be used in combination or separately.
  • the determining method, the base station, and the user equipment of the uplink control channel scheduling unit determine the scheduling unit used by the uplink control channel of the user equipment according to the agreed rules, and how to solve the PUCCH across multiple slots after the initial slot The problem of determining which slots to carry the PUCCH is determined.
  • the present disclosure provides a variety of solutions that can utilize a convention rule to determine a slot without requiring additional signaling.
  • This embodiment provides a technical problem: how to determine the demodulation reference signal (DMRS) and data multiplexing mode of the UE during data transmission according to the maximum processing capability of the UE?
  • the multiplexing mode is Time Division Multiplexing (TDM) or Frequency Division Multiplexing (FDM).
  • the maximum processing capability of the UE herein is that the UE receives the physical downlink control channel (PDCCH) scheduled uplink data (including the DMRS required by the data), and decodes the PDCCH, and prepares according to the PDCCH scheduling information. Upstream data, etc., until the minimum time required to send upstream data, denoted here as N2. The stronger the UE processing capability, the smaller the value of N2. Generally, the capability value N2 of the UE is reported to the base station.
  • PDCCH physical downlink control channel
  • the base station also configures the user with a TA value for the time unit in advance when the user sends data. Therefore, the minimum distance from the last symbol of the PDCCH scheduling user data to the first data symbol that the real user can transmit the PUSCH is related to both N2 and TA.
  • the minimum number of symbols from the last symbol of the PDCCH to the first data symbol of the PUSCH may be referred to as K2, that is, K2 is related to the capability N2 of the UE, TA, and the like.
  • the last symbol of the PDCCH is on the symbol n.
  • the UE has the ability to start transmitting data from n+K2.
  • the DMRS can be sent only on the first symbol of the PUSCH by default, without data. Since the DMRS can be prepared in advance, the user has one more symbol time to prepare for the transmission of data in the PUSCH.
  • a method for limiting the multiplexing mode of a DMRS port if the base station dynamically configures the first symbol of the PUSCH to be K2+X symbols after the last symbol of the corresponding PDCCH, then the multiplexing manner of the DMRS and the data of the PUSCH includes the FDM and the TDM.
  • the multiplexing manner of the PUSCH and the DMRS described herein refers to a multiplexing manner between the first DMRS symbol or the first two consecutive DMRS symbols and the PUSCH.
  • the multiplexing manner of the DMRS and the data of the PUSCH includes only TDM.
  • the base station dynamically configures the first symbol of the PUSCH to be on the K2+X symbol or K2+X after the last symbol of the corresponding PDCCH, and does not lead the K2 symbols after the last symbol of the PDCCH, then the DMRS of the PUSCH
  • the way to reuse data is only TDM.
  • the base station dynamically configures the first symbol of the PUSCH before the K2+X symbol after the last symbol of the corresponding PDCCH, it is obvious that the user does not have enough time to prepare for the data transmission, and the user will not send the data.
  • K2 is calculated based on the user's ability N2.
  • the base station should generally schedule the first symbol of the PUSCH of the user not to be ahead of the symbol n+K2, otherwise the user does not have Fewer time to prepare.
  • the multiplexing mode of the DMRS and data of the PUSCH includes only TDM. Since the data is not transmitted on the first PUSCH symbol at this time but only the DMRS is transmitted, the user can win a symbol preparation time for transmitting data.
  • the multiplexing manner of the DMRS and the data of the PUSCH includes TDM and FDM.
  • the user has enough time to prepare the data transmission, and the data is transmitted on the symbol of the first PUSCH, which can effectively improve the resource utilization, where n is an integer.
  • the first symbol configured by the base station to the user PUSCH is on the symbol n+K2, there is no data transmission on the first symbol of the PUSCH, that is, the DMRS and the data are TDM. . If the first symbol configured by the base station to the user PUSCH is after the symbol n+K2, the data can be transmitted on the first symbol of the PUSCH, that is, the multiplexing mode of the DMRS and the data includes TDM and FDM. If the DMRS on the PUSCH is configured with 2 consecutive DMRS symbols, the multiplexing of the DMRS and the data on the two symbols is the same.
  • X is an integer greater than or equal to zero.
  • X can be predefined, such as X pre-defined equal to 0, or high-level signaling configuration to the user.
  • a total of four ports are supported on one DMRS symbol, and are divided into two orthogonal code division multiplexing (CDM) CDM groups.
  • Ports p0 and p1 correspond to CDM group 0
  • ports p2 and p3 correspond to CDM group 1.
  • the base station allocates to the user port 0 or 1
  • the base station needs to tell the user whether the UE0 has other users transmitting the DMRS on the CDM group 1, and if so, as shown in the fifth column of the index 0 and 2 in Table 2 below, it is possible There are DMRS transmissions of other users on CDM group 1, then UE0 cannot send data on CDM group 1.
  • the DMRS and data on the symbol of the DMRS are TDM.
  • UE0 will send data on CDM group 1.
  • the indexes 1, 3 in Table 2 are prohibited. Because the DMRS of PUSCH and the multiplexing method of data only include TDM. Indexes 1, 3 contain the way to FDM. That is to say, when the first symbol configured by the base station to the user PUSCH is between n+K2 and n+K2+X, the user does not want to be configured with some DMRS port configuration, and these configurations include data on the symbol of the DMRS. send. And if the base station is configured to give the user the first symbol of the PUSCH after n+K2+X, there is no limit.
  • the resource for the user DMRS port transmission is on the first or first two symbols of the PUSCH. All resources outside are not used for this user to send data. If the first symbol allocated by the base station to the user PUSCH is after the n+K2+X symbol, whether the remaining resources outside the resource used for the transmission of the user DMRS port are used for the first or the first two symbols of the PUSCH.
  • the user's data transmission requires the base station to indicate by physical layer dynamic signaling.
  • K2+X may be a non-negative integer, such that it is in units of symbols. It can also be a non-negative fraction, which is counted in terms of duration, such as nanoseconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种上行控制信道调度单元的确定方法、基站、用户设备和计算机可读存储介质,包括:基站根据用户设备的上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。

Description

一种上行控制信道调度单元的确定方法、基站和用户设备
相关申请的交叉引用
本申请基于申请号为201711107748.1、申请日为2017年11月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种上行控制信道调度单元的确定方法、基站和用户设备。
背景技术
5G NR(New Radio)是正在进行的3GPP(第三代合作伙伴)的研究项目,它确定了基于正交频分复用(OFDM)的新无线空口标准,并将成为下一代移动网络的基础。
在NR系统中,调度单元(例如时隙(slot),下文以slot为例来说明)的结构有多种,可以由基站灵活配置,在一些情况下,slot可以由下面的一个或多个部分组成:下行传输部分、上行传输部分、保护间隔(GAP)部分,并且每一个部分占用的OFDM符号数是可以配置的。也就是说,一个slot中用于上行传输的OFDM符号个数是变化的,且变化范围为0至14。
在NR系统中,上行控制信道(Physical Uplink Control Channel,PUCCH)分为短PUCCH(short PUCCH)和长PUCCH(long PUCCH),其中,短PUCCH主要用于小区中心区域的用户设备(User Equipment,UE)发送及时的确认/否定确认(Acknowledgement/Negative Acknowledgement,ACK/NACK)反馈或其他信道状态信息(Channel State Information,CSI),一般位于slot的末尾几个OFDM符号(例如下行slot的末尾1或2个OFDM符号;或者上行slot的末尾1或2个OFDM符号);或者放置在slot内上行数据之前的几个符号;长PUCCH主要用于小区边缘的UE,其占用更多的 OFDM符号,以提升长上行控制信道的传输覆盖。长PUCCH一般包括4至14个OFDM符号,允许跨多个slot,详细的实施方法仍然在讨论中。
在NR系统中,PUCCH允许跨多个slot,例如,一个PUCCH需要更多上行OFDM符号,但是一个slot中没有足够的OFDM符号,所以需要更多的slot以提供足够的OFDM符号。当基站为UE配置跨多个slot的PUCCH时,基站会通知UE PUCCH的起始slot,以及需要跨slot的个数,例如,基站会通知UE跨多个slot的PUCCH的起始slot为slot n,需要跨slot的个数为4,但是,由于slot的结构是动态变化的,即slot n之后的slot结构中有下行为主的slot(slot中下行OFDM符号多于上行OFDM符号)、上行为主的slot(slot中上行OFDM符号多于下行OFDM符号)、纯上行slot、纯下行slot、预留的slot等等,UE除起始slot外的剩下的3个slot应该如何选择,如何进行资源调度,才能满足NR系统的不同通信需求,以很好的平衡资源的有效利用和通信质量。
发明内容
本公开提供了一种上行控制信道调度单元的确定方法、基站和用户设备,能够从起始调度单元之后,选择出合适的调度单元作为跨调度单元的PUCCH的调度单元。
本公开实施例的技术方案是这样实现的:
本公开实施例提供了一种上行控制信道调度单元的确定方法,包括:
基站根据用户设备的上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现以上任一种所述的上行控制信道调度单元的确定方法的步骤。
本公开实施例还提供了一种上行控制信道调度单元的确定方法,包括:
用户设备根据上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
在本公开一实施例中,当基站已配置所述用户设备接收来自所述基站的调度单元类型指示信令,并且所述用户设备没有正确接收来自所述基站的调度单元类型指示信令时,所述调度单元类型指示信令用于所述基站指示所述用户设备后续的调度单元的类型,所述确定方法还包括:本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现以上任一种所述的上行控制信道调度单元的确定方法的步骤。
本公开实施例还提供了一种基站,包括第一确定单元,其中,
第一确定单元,配置为根据上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
本公开实施例还提供了一种用户设备,包括第二确定单元,其中,
第二确定单元,配置为根据用户设备的上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
本公开的技术方案,具有如下有益效果:
本公开提供的上行控制信道调度单元的确定方法、基站和用户设备,通过根据约定的规则来确定用户设备的上行控制信道使用的调度单元,解 决了跨时隙的PUCCH在起始时隙之后如何选择其它合适的时隙来承载所述PUCCH的技术问题;简便的实现了资源的灵活调度,同时满足了不同PUCCH通信需求及通信质量。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的一种上行控制信道调度单元的确定方法的流程示意图;
图2为本公开实施例提供的一种上行控制信道调度单元的确定方法的流程示意图;
图3为本公开实施例提供的一种基站的结构示意图;
图4为本公开实施例提供的一种用户设备的结构示意图;
图5为本公开实施例提供的一种DMRS图样的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
需要特别说明的是,本文中以时隙slot为例来说明调度单元,所述调度单元包含若干个连续的OFDM符号,可以是纯上行调度单元或纯下行调度单元,也可以是上行和下行混合的调度单元。本文中的slot可以是常规的slot,比如,目前,NR规定在不超过6GHz的频段,slot的符号数量为7个或14个OFDM符号,在超过6GHz的频段,slot的符号数据至少为14 个,其他数值待定;本文中的slot也可以是迷你时隙(mini-slot,也可以称为迷你调度单元),比如,在NR中,目前定义的mini-slot包含的符号数据为(1~slot的符号总数-1),明显的,mini-slot的符号数变化范围很大。
下面的各个实施例可以独立存在,且不同实施例中的技术特点可以组合在一个实施例中联合使用;文中未特殊说明的PUCCH资源可以是短PUCCH资源和/或长PUCCH资源;本文中的PUCCH对应物理上行控制信道(也有按照传输特性称谓的,例如上行控制区域或上行控制);在NR的标准制定中,PUCCH也有可能被缩写为NR-PUCCH等其它缩写,但是其本意仍然为物理上行控制信道,承载内容未变化,所以称谓并不用于限定本申请的保护范围。
如图1所示,根据本公开的一种上行控制信道调度单元的确定方法,包括如下步骤:
步骤101:基站为用户设备配置所述用户设备的上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数;
步骤102:基站根据所述调度单元数、所述起始调度单元、所述起始符号位置、所述使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
需要说明的是,当所述基站已配置所述用户设备接收来自所述基站的调度单元类型指示信令,并且所述用户设备没有正确接收来自所述基站的调度单元类型指示信令时,所述调度单元类型指示信令用于所述基站指示所述用户设备后续的调度单元的类型,所述确定方法还包括:
所述用户设备仅确定所述起始调度单元,作为所述上行控制信道使用的调度单元。此时,所述用户设备只在所述调度单元指示信令中指示的所述上行控制信道使用的起始调度单元中,发送所述上行控制信道的控制信息。
在一些实施例中,当所述基站未配置所述用户设备接收来自所述基站的调度单元类型指示信令时,所述根据约定的规则确定所述上行控制信道 使用的后续的调度单元,包括:
所述基站确定从所述起始调度单元开始的且包括所述起始调度单元在内的连续n个调度单元,作为所述上行控制信道使用的调度单元,其中,n为所述上行控制信道占用的调度单元数。
需要说明的是,当所述基站未配置所述用户设备接收来自所述基站的调度单元类型指示信令时,所述用户设备在从所述调度单元指示信令中指示的所述上行控制信道使用的起始调度单元开始的连续n个调度单元中,发送所述上行控制信道的控制信息。
在一些实施例中,所述根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中的使用的符号数。其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
在本公开一实施例中,所述根据约定的规则,确定所述上行控制信道在所述后续的调度单元中使用的符号的位置,包括:
当所述后续的调度单元用于承载所述上行控制信道的上行符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置不相同时,所述后续的调度单元中用于承载所述上行控制信道的上行符号的起始符号位置,为第一个能够用于承载所述上行控制信道的上行符号位置。
在一些实施例中,所述根据约定的规则,确定所述上行控制信道使用的后续的调度单元,和所述上行控制信道在所述后续的调度单元中使用的符号的位置,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中使用的符号数,且所述后续的调度单元用于承载所述上行控制信道的上行符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置也相同。其中,所述符号是给NR系统使用的,且允许上行控 制信道使用的符号,所述符号包括上行符号。
在一些实施例中,所述根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且承载所述上行控制信道与所述起始调度单元承载所述上行控制信道具有相同的叠加正交码(Orthogonal Cover Code,OCC)复用能力。
在本公开一实施例中,所述根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
当所述上行控制信道跳频时,所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足在所述后续的调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力与所述起始调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力相同。
值得说明的是,当所述上行控制信道在所述确定的调度单元内不跳频时,按整体计算OCC复用能力。
在一些实施例中,所述根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且所述上行控制信道的编码比特的母码长度与所述起始调度单元承载所述上行控制信道编码比特的母码长度相同。
在一些实施例中,所述后续的调度单元的类型仅包括上行调度单元或下行调度单元。
在一些实施例中,所述后续的调度单元的类型仅为上行调度单元。
在一些实施例中,所述上行控制信道在每个所述调度单元中使用的符号位置是连续的。
在一些实施例中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:调度单元满足下面的条件,则被选择作为一个所述后续的调度单元:调度单元能提供与所述起始调度单元中传输上行控制信道相同的符号个数和符号位置;其中,所述符号是给NR系统使用的,且 允许上行控制信道使用的符号,所述符号包括上行符号。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现以上任一项所述的上行控制信道调度单元的确定方法的步骤。
如图2所示,本公开还公开了一种上行控制信道调度单元的确定方法,包括如下步骤:
步骤201:用户设备接收来自基站的资源配置信令,所述资源配置信令包括所述上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数;
步骤202:用户设备根据所述资源配置信令以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
在一些实施例中,当所述基站已配置所述用户设备接收来自所述基站的调度单元类型指示信令,并且所述用户设备没有正确接收来自所述基站的调度单元类型指示信令时,所述调度单元类型指示信令用于所述基站指示所述用户设备后续的调度单元的类型,所述确定方法还包括:
所述用户设备不确定所述后续的调度单元,且仅确定所述起始调度单元,作为所述上行控制信道使用的调度单元。
需要说明的是,当所述用户设备没有正确接收来自所述基站的调度单元类型指示信令时,所述用户设备只在所述调度单元指示信令中指示的所述上行控制信道使用的起始调度单元中,发送所述上行控制信道的控制信息。
在一些实施例中,当所述基站未配置所述用户设备接收来自所述基站的调度单元类型指示信令时,或,基站为所述用户设备未配置调度单元类型指示信令时,所述确定方法还包括:
所述用户设备确定从所述起始调度单元开始的且包括所述起始调度单 元在内的连续n个调度单元,作为所述上行控制信道使用的调度单元,其中,n为所述上行控制信道占用的调度单元数。
需要说明的是,当所述基站未配置所述用户设备接收来自所述基站的调度单元类型指示信令时,所述用户设备在从所述调度单元指示信令中指示的所述上行控制信道使用的起始调度单元开始的连续n个调度单元中,发送所述上行控制信道的控制信息。
在一些实施例中,所述根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中的使用的符号数。该符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
在一些实施例中,所述根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
当所述后续的调度单元用于承载所述上行控制信道的符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置不相同时,所述后续的调度单元中用于承载所述上行控制信道的符号的起始符号位置,为第一个能够用于承载所述上行控制信道的符号位置。该符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
在一些实施例中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,和所述上行控制信道在所述后续的调度单元中使用的符号的位置,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中使用的符号数,且所述后续的调度单元用于承载所述上行控制信道的上行符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置也相同。该符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
在一些实施例中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且承载所述上行控制信道与所述起始调度单元承载所述上行控制信道具有相同的叠加正交码复用能力。
在本公开一实施例中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
当所述上行控制信道跳频时,所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足在所述后续的调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力与所述起始调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力相同。
值得说明的是,当所述上行控制信道在所述确定的调度单元内不跳频时,按整体计算OCC复用能力。
在一些实施例中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足承载的所述上行控制信道的编码比特的母码长度与所述起始调度单元承载所述上行控制信道编码比特的母码长度相同。
在一些实施例中,所述后续的调度单元的类型仅为上行调度单元或下行调度单元。
在一些实施例中,所述后续的调度单元的类型仅为上行调度单元。
在一些实施例中,所述上行控制信道在每个所述调度单元中使用的符号位置是连续的。
在一些实施例中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:调度单元满足下面的条件,则被选择作为一个所述后续的调度单元:调度单元能提供与所述起始调度单元中传输上行控制信道相同的符号个数和符号位置;其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现以上任一项所述的上行控制信道调度单元的确定方法的步骤。
如图3所示,本公开还公开了一种基站,所述基站包括配置单元301和第一确定单元302,其中,
配置单元301,配置为为用户设备配置所述上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数;
第一确定单元302,配置为根据所述调度单元数、所述起始调度单元、所述起始符号位置、所述使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
需要说明的是,当所述基站已配置所述用户设备接收来自所述基站的调度单元类型指示信令,并且所述用户设备没有正确接收来自所述基站的调度单元类型指示信令时,所述调度单元类型指示信令用于所述基站指示所述用户设备后续的调度单元的类型,所述用户设备仅确定所述起始调度单元,作为所述上行控制信道使用的调度单元,即所述用户设备只在所述调度单元指示信令中指示的所述上行控制信道使用的起始调度单元中,发送所述上行控制信道的控制信息。
在一些实施例中,当所述基站未配置所述用户设备接收来自所述基站的调度单元类型指示信令时,或,基站为所述用户设备未配置调度单元类型指示信令时,所述第一确定单元302还配置为:
确定从所述起始调度单元开始的且包括所述起始调度单元在内的连续n个调度单元,作为所述上行控制信道使用的调度单元,其中,n为所述上行控制信道占用的调度单元数。
需要说明的是,当所述基站未配置所述用户设备接收来自所述基站的调度单元类型指示信令时,所述用户设备在从所述调度单元指示信令中指示的所述上行控制信道使用的起始调度单元开始的连续n个调度单元中, 发送所述上行控制信道的控制信息。
在一些实施例中,所述第一确定单元302的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的上行符号数大于或等于所述上行控制信道在所述起始调度单元中的使用的符号数。
在本公开一实施例中,所述第一确定单元302的根据约定的规则,确定所述上行控制信道在所述后续的调度单元中使用的符号的位置,包括:
当所述后续的调度单元用于承载所述上行控制信道的上行符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置不相同时,所述后续的调度单元中用于承载所述上行控制信道的上行符号的起始符号位置,为第一个能够用于承载所述上行控制信道的上行符号位置。
在一些实施例中,所述第一确定单元302的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,和所述上行控制信道在所述后续的调度单元中使用的符号的位置,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中使用的符号数,且所述后续的调度单元用于承载所述上行控制信道的上行符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置也相同。其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
在一些实施例中,所述第一确定单元302的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且承载所述上行控制信道与所述起始调度单元承载所述上行控制信道具有相同的OCC复用能力。
在本公开一实施例中,所述第一确定单元302的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
当所述上行控制信道跳频时,所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足在所述后续的调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力与所述起始调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力相同。
值得说明的是,当所述上行控制信道在所述确定的调度单元内不跳频时,按整体计算OCC复用能力。
在一些实施例中,所述第一确定单元302的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足承载的所述上行控制信道的编码比特的母码长度与所述起始调度单元承载所述上行控制信道编码比特的母码长度相同。
在一些实施例中,所述后续的调度单元的类型仅包括上行调度单元或下行调度单元。
在一些实施例中,所述后续的调度单元的类型仅为上行调度单元。
在一些实施例中,所述上行控制信道在每个所述调度单元中使用的符号位置是连续的。
在一些实施例中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:调度单元满足下面的条件,则被选择作为一个所述后续的调度单元:调度单元能提供与所述起始调度单元中传输上行控制信道相同的符号个数和符号位置;其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
如图4所示,本公开还公开了一种用户设备,所述用户设备包括接收单元401和第二确定单元402,其中,
接收单元401,配置为接收来自基站的资源配置信令,所述资源配置信令包括所述上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数;
第二确定单元402,配置为根据所述资源配置信令以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
在一些实施例中,当所述基站已配置所述用户设备接收来自所述基站的调度单元类型指示信令,并且所述用户设备没有正确接收来自所述基站的调度单元类型指示信令时,所述调度单元类型指示信令用于所述基站指示所述用户设备后续的调度单元的类型,所述第二确定单元402还用于:
不确定所述后续的调度单元,且仅确定所述起始调度单元,作为所述上行控制信道使用的调度单元。
需要说明的是,当所述用户设备没有正确接收来自所述基站的调度单元类型指示信令时,所述用户设备只在所述调度单元指示信令中指示的所述上行控制信道使用的起始调度单元中,发送所述上行控制信道的控制信息。
在一些实施例中,当所述基站未配置所述用户设备接收来自所述基站的调度单元类型指示信令,或基站为所述用户设备未配置调度单元类型指示信令时,所述第二确定单元402还配置为:
确定从所述起始调度单元开始的且包括所述起始调度单元在内的连续n个调度单元,作为所述上行控制信道使用的调度单元,其中,n为所述上行控制信道占用的调度单元数。
需要说明的是,当所述基站未配置所述用户设备接收来自所述基站的调度单元类型指示信令时,所述用户设备在从所述调度单元指示信令中指示的所述上行控制信道使用的起始调度单元开始的连续n个调度单元中,发送所述上行控制信道的控制信息。
在一些实施例中,所述第二确定单元402的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中的使用的符号数。其中,所述符号是给NR系统使用的,且 允许上行控制信道使用的符号,所述符号包括上行符号。
在本公开一实施例中,所述第二确定单元402的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,和所述上行控制信道在所述后续的调度单元中使用的符号的位置,包括:
当所述后续的调度单元用于承载所述上行控制信道的符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置不相同时,所述后续的调度单元中用于承载所述上行控制信道的上行符号的起始符号位置,为第一个能够用于承载所述上行控制信道的上行符号位置。其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
在一些实施例中,所述第二确定单元402的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中使用的符号数,且所述后续的调度单元用于承载所述上行控制信道的上行符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置也相同。其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
在一些实施例中,所述第二确定单元402的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且承载所述上行控制信道与所述起始调度单元承载所述上行控制信道具有相同的OCC复用能力。
在本公开一实施例中,所述第二确定单元402的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
当所述上行控制信道跳频时,所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足在所述后续的调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力与所述起始调度单元中所述上行控 制信道的每个跳频对应的叠加正交码复用能力相同。
值得说明的是,当所述上行控制信道在所述确定的调度单元内不跳频时,按整体计算OCC复用能力。
在一些实施例中,所述第二确定单元402的根据约定的规则,确定所述上行控制信道使用的后续的调度单元,包括:
所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足承载的所述上行控制信道的编码比特的母码长度与所述起始调度单元承载所述上行控制信道编码比特的母码长度相同。
在一些实施例中,所述后续的调度单元的类型仅包括上行调度单元或下行调度单元。
在一些实施例中,所述后续的调度单元的类型仅为上行调度单元。
在一些实施例中,所述上行控制信道在每个所述调度单元中使用的符号位置是连续的。
本公开实施例还提供了几个优选的实施例对本公开进行进一步解释,但是值得注意的是,该优选实施例只是为了更好的描述本公开,并不构成对本公开不当的限定。下面的各个实施例可以独立存在,且不同实施例中的技术特点可以组合在一个实施例中联合使用。本文中的PUCCH对应物理上行控制信道(也有按照传输特性称谓的,例如上行控制区域或上行控制)。在NR的标准制定中,PUCCH也有可能被缩写为NR-PUCCH等其它缩写,但是其本意仍然为物理上行控制信道,承载内容未变化,所以称谓不影响本文中的方法实施。
在本实施例中,在选择调度单元时,将所述起始调度单元之后的预留调度单元和/或未知(Unknown)调度单元和/或随机接入信道(Random Access Channel,RACH)调度单元排除掉,在上行调度单元和下行调度单元中选择。其中,下行调度单元包括纯下行调度单元和下行为主的调度单元。上行调度单元包括纯上行调度单元和上行为主的调度单元。如果是上行为主的调度单元时,要求上行为主的调度单元包含的符号数满足要求。如果是下行为主的调度单元时,要求下行为主的调度单元包含的符号数满 足要求。其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
基站和UE分别根据规则,从起始调度单元开始向后推导PUCCH使用的调度单元以及PUCCH在推导出的调度单元中的映射。具体为:将所述起始调度单元之后的预留调度单元和/或Unknown调度单元和/或RACH调度单元排除掉,在上行调度单元和下行调度单元中选择。其中,下行调度单元包括纯下行调度单元和下行为主的调度单元。上行调度单元包括纯上行调度单元和上行为主的调度单元。如果是上行为主的调度单元时,要求上行为主的调度单元包含的上行符号数满足要求。如果是下行为主的调度单元时,要求下行为主的调度单元包含的下行符号数满足要求。
在一个载波中,slot n被指示为PUCCH的起始slot,假设PUCCH被配置需要跨3个slot,且每个slot中有4个上行OFDM符号来承载PUCCH。那么UE还需要确定从slot n之后的另外2个slot来承载PUCCH。在本实施例中,基站和UE按照下面的规则来确定剩余的slot。
假设如果slot n+1是一个预留slot,那么UE将不选择其作为剩余的slot来承载PUCCH;如果slot n+2是一个Unknown的slot,那么UE将不选择其作为剩余的slot来承载PUCCH;如果slot n+3是一个上行slot,且包含的上行符号数满需要求,例如有4个连续的上行符号,如果slot n+4是一个下行slot,但包含的上行符号数满足要求,例如有4个连续的上行符号,这样,slot n+3和slot n+4被选择作为后续的slot来承载PUCCH。这样,承载UE的PUCCH的slot将有slot n,slot n+3和slot n+4。这里需要说明的是,基站也是根据相同的规则来选择接收PUCCH的后续slot的,那么基站应该确保被选择的slot承载PUCCH的符号不被作为它用。
基站是配置了slot类型,包括slot中的OFDM符号属性,并将这些配置信息通知给UE的。所以,基站和UE都是获知了slot类型的,UE按照约定好的规则选择了slot n+3和slot n+4作为承载PUCCH的后续slot,基站也是可以知道的,这样,UE使用选定的3个slot承载PUCCH发送给基站,基站按照约定规则,推算UE选定的3个slot(实际只有后面2个slot,第一个被基站指示了),从中接收PUCCH。
下面有2个补充说明针对一些特殊情况:
补充1:
当基站通知UE关于slot类型的信令(目前基站能够通过物理层信令下行控制信息(Downlink Control Information,DCI)来通知UE关于slot的类型,也可以通过高层信令来通知UE关于slot的类型),没有被UE正确接收时,UE将不能确定slot类型,此时UE只能在基站指示的slot n中发送PUCCH,UE不再确定slot n之后的slot。基站如果在slot n中检测UE发送的PUCCH,然后在后续UE选定的slot中也尝试接收PUCCH,如果接收不到,则认为UE丢失了slot类型指示信令。
补充2:
如果基站未配置UE接收slot类型的信令(目前基站能够通知UE是否接收slot类型的配置信息),那么当PUCCH被配置需要多个(例如3个)slot来承载PUCCH时,基站指示起始slot为slot n,然后基站需要为UE配置slot n之后连续多个(PUCCH要求的slot个数)的slot类型中的OFDM符号满足承载PUCCH的需求。例如,基站配置UE的PUCCH跨3个slot,基站配置起始slot为slot n,基站需要配置slot n+1,slot n+2的类型中有承载UE的PUCCH的OFDM符号数量和位置(如果每个slot中承载PUCCH的OFDM位置相同),这样UE接收到PUCCH需要跨3个且起始slot为slot n时,那么UE认为承载PUCCH的slot从指示的起始slot n开始,之后slot n+1和slot n+2也是承载该PUCCH的slot。
在本实施例中,在选择调度单元时,将所述起始调度单元之后的下行调度单元和/或预留调度单元和/或Unknown调度单元和/或RACH调度单元排除掉,在上行调度单元中选择。其中,下行调度单元包括纯下行调度单元和下行为主的调度单元。上行调度单元包括纯上行调度单元和上行为主的调度单元。如果是上行为主的调度单元时,要求上行为主的调度单元包含的上行符号数满足要求。
基站和UE分别根据规则,从起始调度单元开始向后推导PUCCH使用的调度单元以及PUCCH在推导出的调度单元中的映射。具体为:将所述起 始调度单元之后的下行调度单元和/或预留调度单元和/或Unknown调度单元和/或和/或RACH调度单元排除掉,在上行调度单元中选择。其中,下行调度单元包括纯下行调度单元和下行为主的调度单元。上行调度单元包括纯上行调度单元和上行为主的调度单元。如果是上行为主的调度单元时,要求上行为主的调度单元包含的上行符号数满足要求。
在本实施例中,相对于前述实施例,只是对于PUCCH需要的多个调度单元中将下行调度单元不再作为承载PUCCH的调度单元,承载PUCCH的调度单元只能从上行调度单元中选择。
具体的选择可以参考可以参见前述实施例,这里不再赘述。
在本实施例中,在选择调度单元时,要求PUCCH在跨多个slot时,PUCCH在所述多个slot中包含符号个数和符号位置相同。如果调度单元中具有满足要求的符号个数和符号位置,该调度单元被认为是作为PUCCH跨多个slot的slot。
基站和UE分别根据规则,从起始调度单元开始向后推导PUCCH使用的调度单元以及PUCCH在推导出的调度单元中的映射。具体为:要求PUCCH跨多个slot,且PUCCH在所述多个slot中包含符号个数和符号位置相同。如果调度单元中具有满足要求的符号个数和符号位置,该调度单元被认为是作为PUCCH跨多个slot的slot。这里没有区分slot的类型,仅仅是按照slot中是否有可用的上行OFDM符号数和位置作为要求,也就是不管是什么类型的slot,只要满足上述的符号数和符号位置就可以作为承载跨slot的PUCCH的后续slot。
在一个载波中,slot n被指示为PUCCH的起始slot,假设PUCCH被配置需要跨3个slot,且每个slot中有4个上行OFDM符号(例如,为slot中符号3~6,符号编号从0开始,slot中包含14个符号)来承载PUCCH。那么UE还需要确定从slot n之后的另外2个slot来承载PUCCH。在本实施例中,基站和UE按照下面的规则来确定剩余的slot。
假设如果slot n+1是一个预留slot,只要slot有满足要求的OFDM符号个数和符号位置就可以被选择。假设该slot n+1中没有满足要求的OFDM符号数和符号位置(这些符号是给NR使用的,且允许PUCCH使用,如果 被预留为其他使用时,也跳过这些slot),那么UE将不选择slot n+1作为剩余的slot来承载PUCCH。如果slot n+2是一个Unknown的slot,UE判断它是否能被选择作为后续的承载PUCCH的slot的原则仍然按照符号数和符号位置。假设该slot n+2中没有要求的OFDM符号数和符号位置。如果slot n+3和slot n+4中都有要求的符号数和符号位置,slot n+3和slot n+4被选定作为后续承载PUCCH的slot,这里不管slot n+3和slot n+4的类型。这样,按照slot中是否同时有要求的符号数和符号位置,选定了slot n+3和slot n+4被选择作为后续的slot来承载PUCCH。这样,承载UE的PUCCH的slot将有slot n,slot n+3和slot n+4,其中slot n是基站通过信令指示的,slot n+3和slot n+4是基站和UE根据约定规则选定的。
这里需要说明的是,基站也是根据相同的规则来选的接收PUCCH的后续slot的,那么基站应该确保被选择的slot承载PUCCH的符号不被作为它用。
基站是配置了slot类型,包括slot中的OFDM符号属性,并将这些配置信息通知给UE的。所以,基站和UE都是获知了slot类型的,所以UE按照约定好的规则选的了slot n+3和slot n+4作为承载PUCCH的后续slot,基站也是可以知道的,这样,UE使用选定的3个slot承载PUCCH发送给基站,基站按照约定规则,推算UE选定的3个slot(实际只有后面2个slot,第一个被基站指示了),从中接收PUCCH。对于PUCCH所要跨多个slot,如果起始slot之后的slot中有满足要求的上行OFDM符号数和/或符号位置,基站要保证这些slot中的所述上行OFDM符号能够被所述PUCCH使用。具体的,基站知道确定后续slot的规则,所以基站在这些将被确定为承载所述PUCCH的slot中的上行OFDM符号不被其他信道/数据使用。
在本实施例中,在选择调度单元时,要求PUCCH跨多个slot,且PUCCH在所述多个slot中包含符号个数相同。如果调度单元中具有满需要求的符号个数,该调度单元被认为是作为PUCCH跨多个slot的slot,但是PUCCH在该slot中的映射的起始符号位置被调整。
基站和UE分别根据规则,从起始调度单元开始向后推导PUCCH使用 的调度单元以及PUCCH在推导出的调度单元中的映射。具体为:当要求PUCCH在跨多个slot时,且PUCCH在所述多个slot中包含符号个数相同的。如果调度单元中具有满需要求的符号个数,该调度单元被认为是作为PUCCH跨多个slot的slot,但是PUCCH在该slot中的映射的起始符号位置被调整。这里没有区分slot的类型,仅仅是按照slot中是否有可用的上行OFDM符号数作为要求(符号位置不作为要求),也就是不管是什么类型的slot,只要满足上述的符号数就可以作为承载跨slot的PUCCH的后续slot。
在一个载波中,slot n被指示为PUCCH的起始slot,假设PUCCH被配置需要跨3个slot,且每个slot中有4个上行OFDM符号来承载PUCCH。那么UE还需要确定从slot n之后的另外2个slot来承载PUCCH。在本实施例中,基站和UE按照下面的规则来确定剩余的slot。
假设如果slot n+1是一个预留slot,只要slot有要求的OFDM符号个数就可以被选择。假设该slot n+1中没有满足要求的OFDM符号数(这些符号是给NR使用的,且允许PUCCH使用,如果被预留为其他使用时,也跳过这些slot),那么UE将不选择slot n+1作为剩余的slot来承载PUCCH。如果slot n+2是一个Unknown的slot,UE判断它是否能被选择作为后续的承载PUCCH的slot的原则仍然按照符号数。假设该slot n+2中没有满足要求的OFDM符号数。如果slot n+3和slot n+4中都有满足要求的符号数,slot n+3和slot n+4被选定作为后续承载PUCCH的slot,这里不管slot n+3和slot n+4的类型。在一些实施例中,如果slot n+3中要求的OFDM符号数对应的符号位置也是和slot n中PUCCH使用的符号位置相同,那么slot n+3中就使用与slot n相同的符号位置承载PUCCH。如果slot n+4中要求的OFDM符号数,但是符号位置与slot n中承载PUCCH的符号位置不同。这里假设slot n中承载PUCCH的符号数是4个且为符号3~6(slot中符号编号从0开始),被选定的slot n+3中承载PUCCH的符号位置和slot n是相同的。假设slot n+4中承载PUCCH的符号数也是4,但是上行符号的符号位置从4~14,有10个上行符号,此时承载所述PUCCH的符号被调整为从该slot n+4的第一个上行符号开始计算,共连续4个符号,即符号4~7。也就是说选定的slot n+4中承载所述PUCCH的符号为4~7。显然,slot n+4中承载所述PUCCH的符号位置被调整了,不同于slot n和slot n+3中的符号位 置。本实施例中隐含被调整的符号位置为该slot中(或本UE获知该slot中)第一个上行符号开始的,调整的规则也要基站和UE事先约定好。
这样,按照slot中是否同时有满足要求的符号数,选定了slot n+3和slot n+4被选择作为后续的slot来承载PUCCH,但是slot n+4中调整了承载所述PUCCH的符号位置。这样,承载UE的PUCCH的slot将有slot n,slot n+3和slot n+4,其中,slot n是基站通过信令指示的,slot n+3和slot n+4是基站和UE根据约定规则选定的。
这里需要说明的是,基站也是根据相同的规则来选的接收PUCCH的后续slot以及slot中承载PUCCH的符号位置,那么基站应该确保被选择的slot承载PUCCH的符号不被作为它用。
基站是配置了slot类型,包括slot中的OFDM符号属性(上行符号,下行符号或预留符号或GAP符号等),并将这些配置信息通知给UE的。所以,基站和UE都是获知了slot类型的,所以UE按照约定好的规则选的了slot n+3和slot n+4作为承载PUCCH的后续slot,包括调整了slot n+4中的承载所述PUCCH的起始符号,基站也是可以根据约定的调整符号位置来获知,这样,UE使用选定的3个slot承载PUCCH发送给基站,基站按照约定规则,推算UE选定的3个slot(实际只有后面2个slot,第一个被基站指示了),从中接收PUCCH。对于PUCCH所要跨多个slot,如果起始slot之后的slot中有满足要求的上行OFDM符号数和/或符号位置,基站要保证这些slot中的所述上行OFDM符号能够被所述PUCCH使用。具体的,基站知道确定后续slot的规则,所以基站在这些将被确定为承载所述PUCCH的slot中的上行OFDM符号不被其他信道/数据使用。
描述上述实施例的方法中,在不冲突的情况下可以结合使用。
例如,前述的两个实施例的技术特征结合,那么UE在选择后续slot时,先按照slot类型排除了预留slot和Unknown slot,起始slot之后,只要下行slot或上行slot中包含的上行符号数和符号位置与PUCCH的起始slot中承载该PUCCH的符号数和符号位置相同,就选定该slot。未尽描述可以参考前述对应的实施例。
例如,前述的两个实施例的技术特征结合,那么UE在选择后续slot时,先按照slot类型排除了预留slot,Unknown slot和下行slot。从指示的起始slot之后只要上行slot中包含的上行符号数与PUCCH的起始slot中承载该PUCCH的符号数相同,就选定该slot。如果该slot中上行符号位置不同与起始slot中所述PUCCH的符号位置,则根据约定规则调整所述PUCCH在该slot中的符号位置。未尽描述可以参考前述对应的实施例。
例如,将前述的两个实施例的技术特征结合,那么UE在选择后续slot时,先按照slot类型排除了预留slot和Unknown slot。从指示的起始slot之后只要下行slot和上行slot中包含的上行符号数与PUCCH的起始slot中承载该PUCCH的符号数相同,就选定该slot。如果该slot中上行符号位置不同与起始slot中所述PUCCH的符号位置,则根据约定规则调整所述PUCCH在该slot中的符号位置。未尽描述可以参考前述对应的实施例。
例如,前述两个实施例中的技术特征结合,那么UE在选择后续slot时,先按照slot类型排除了预留slot,Unknown slot和下行slot,从指示的起始slot之后只要上行slot中包含的上行符号数和符号位置与PUCCH的起始slot中承载该PUCCH的符号数和符号位置相同,就选定该slot。未尽描述可以参考前述对应的实施例。
本实施例中还包括,基站为UE指示具体按照哪种方式进行PUCCH跨多个slot时的后续slot确定。例如,优选实施例3中的方式和实施例中的方式都被一个系统支持,那么基站能够通过信令(包括高层信令或物理层信令或介质访问控制(Medium Access Control,MAC)层信令)通知UE,使用具体哪种方式确定PUCCH要跨的slot。高层信令可以是广播类RRC消息或UE专用无线资源控制(Radio Resource Control,RRC)消息。物理层信令可以是通过DCI来承载的,包括公共DCI或UE专用DCI。MAC层信令可以是MAC层的控制单元。这种指示可以增加系统的鲁棒性。
与上述实施例有所不同,该实施例解决的是,当一个PUCCH跨多个slot时,如果允许PUCCH在每个slot中有不同的OFDM符号数,那么所述多个slot中,具体如何确定PUCCH在每个slot中的符号数。
PUCCH(1~2bit UCI对应的PUCCH)跨多个slot时,后续slot满足下 面要求即可被选择:如果承载该PUCCH时,要求该PUCCH的OCC复用能力与起始slot中承载该PUCCH的复用能力相同。PUCCH在slot内跳频时,每个跳频单独计算OCC复用能力,PUCCH在slot中不跳频时,按照整体计算OCC复用能力。
对于PUCCH还按照传输的比特数区分为不同的格式,但是包含的符号数大于4,例如,对于传输1~2比特信息设置了一种PUCCH传输格式,在时域时域OCC复用方式(记为格式1);对于传输大于3bit且小于X比特设置了一种PUCCH传输格式,在频域时域OCC复用方式;对于传输大于X比特设置了一种PUCCH传输格式,不支持复用方式。
如果上述的PUCCH格式跨多个slot发送(这些格式也适用实施例1~5),下面介绍所述多个slot中用来承载该PUCCH的符号个数不同的情况。例如,PUCCH需要跨3个slot,但是三个slot中能够给该PUCCH使用的上行符号个数不是完全相等。对于所述多个slot承载该PUCCH的符号个数不等的情况,具体怎么处理呢?例如,第1和2个slot分别只有一个符号为该PUCCH,第二个slot有8个符号,这种跨多个slot的PUCCH结构显然不是最佳的。那么在所述多个slot承载该PUCCH符号数不等的情况下,如何设计出最佳的不等符号数呢?下面介绍一种方法。
一般的,对于跨多个slot的PUCCH,基站指示PUCCH的起始slot,并会配置在起始slot中的起始符号和长度(符号数),以及slot个数,那么后续的slot怎么确定呢,后续的slot具备什么特征就能被选择呢?一种方式是,对于上述的PUCCH格式1(参考现有NR中PUCCH格式1或1~2比特的长PUCCH的结构),当跨多个slot时,每个slot中承载该PUCCH的符号数差值受OCC复用能力的限制。对于后续slot的选择,基本原则是后续有slot承载该PUCCH时,如果该PUCCH在该slot中具有与起始slot中承载该PUCCH具有相同的OCC复用能力,该slot就能被选择。如果该PUCCH跳频在slot内,那么对于后续slot的选择,基本原则略微改为后续有slot承载该PUCCH时,如果该PUCCH在该slot中具有与起始slot中承载该PUCCH的每个跳频分别具有相同的OCC复用能力,该slot就能被选择。
在本公开一实施例中,基站为UE配置跨多个slot的PUCCH,并通知UE起始slot,以及起始slot中PUCCH的起始符号和PUCCH持续的符号数,PUCCH需要跨的slot个数,以及是否跳频等信息。然后基站和UE约定按照上述的原则确定PUCCH后续选择使用的slot。UE在选择的slot上继续发送该PUCCH,基站在该slot上继续进行接收该PUCCH。假设,基站配置UE的PUCCH跨2个slot,起始slot为slot n,并且起始slot中该PUCCH使用7符号,且起始符号未符号3(标号从0开始),且不跳频。那么对于该PUCCH而言,后续还需要一个slot。这里,假设slot n+1中没有上行符号,所以slot n+1未被选择,slot n+2中有6个可以使用的上行符号,查下表1,可以发现在slot中,当该PUCCH不调频时,符号数是6个或7个时,其OCC的复用能力相同,所以,此时slot n+2能被选择来承载该PUCCH。这样,该PUCCH使用的slot为slot n和slot n+1。
在一些实施例中,后续slot的选择还可以结合该slot中如果传输该PUCCH时,使用的符号的起始位置是否相同,例如,设置严格的条件时,则再要求该PUCCH在多个slot中的起始符号也要相同;又例如,设置严格的条件时,则不要求该PUCCH在多个slot中的起始符号也要相同,此时只要满足OCC复用能力相同即可,但是要约定该PUCCH在该slot中的起始符号位置,例如约定为该slot中第一个可以用的上行符号。
对于配置跨多个slot的PUCCH的后续slot选择,该PUCCH在后续被选择的slot中的OCC复用能力要和起始slot中该PUCCH的OCC复用能力相同。此时后续被选择的slot中为该PUCCH使用的符号数可以不等于起始slot中该PUCCH使用的符号数,也就是说所述多个slot中用于承载该PUCCH的符号数可以彼此不相等(当然也可以相等)。后续被选择的slot中承载该PUCCH的符号位置,也可以允许调整,调整的规则可以约定。这样可供UE选择slot将会更多些。
Figure PCTCN2018115101-appb-000001
Figure PCTCN2018115101-appb-000002
表1
在本公开另一实施例中,约定的原则中PUCCH支持跳频。此时选择后续slot时,slot需要满足:如果该PUCCH在该slot中承载且跳频时,第一个跳频的OCC复用能力与起始slot中该PUCCH的第一个跳频的OCC复用能力相同,第二个跳频的OCC复用能力与起始slot中该PUCCH的第二个跳频的OCC复用能力相同。这样,该slot就可以被选择。如果还要设置更加严格的条件,可以设置该slot中承载PUCCH的起始符号也要和起始slot中承载该PUCCH的起始符号相同。
在本实施例中,在选择调度单元时,PUCCH(对于大于3比特UCI对应的PUCCH)跨多个slot,后续slot满足下面要求即可被选择:如果承载该PUCCH时,要求在该slot中承载的PUCCH的母码长度与起始slot中该 PUCCH的母码长度相同(频域资源与起始slot相同)。
对于承载大于2比特信息的PUCCH,由于不支持时域OCC复用,所以这种PUCCH在跨多个slot时,它的后续slot选择的原则有所不同。这种PUCCH跨多个slot时,后续的slot选择,满足条件为:如果该slot中承载该PUCCH,此时该slot中用于承载该PUCCH的资源(时域和频域,时域是符号,频域是PRB)承载该PUCCH编码后的比特来自的母码长度与起始slot中该PUCCH编码后的比特来自的的母码长度相同,此时该slot可以被选择。
如果继续设置严格的条件,可以再要求所述资源中,频域资源不允许增加(即该slot中用于该PUCCH的频域资源与起始slot中为该PUCCH使用的频域大小相同)。也可以再要求该PUCCH在该slot中起始符号与在起始slot中的起始符号相同。也可以再要求在该slot中承载的该PUCCH编码比特的码率超过某一门限,由于虽然编码比特来自同一母码长度,但是码率过大时会降低译码性能的,所以设置合理的码率门限以保证译码性能。码率的门限可以通过仿真获得,也可以在该PUCCH允许使用的码率中选择某一码率值。这里需要强调的是,上述一个或多个条件之间可以结合使用或单独使用。
本公开提供的上行控制信道调度单元的确定方法、基站和用户设备,通过根据约定的规则来确定用户设备的上行控制信道使用的调度单元,解决了跨多个slot的PUCCH在起始slot之后如何确定哪些slot来承载所述PUCCH的问题。本公开提供了多种解决方式,这些解决方式都可以利用约定规则来确定slot,不需要额外的信令通知。
本申请中,各个实施例中的技术特征,在不冲突的情况下,可以组合在一个实施例中使用。每个实施例仅仅是本申请的最优实施方式,并不用于限定本申请的保护范围。
本实施例提供一个技术问题为:如何根据UE的最大处理能力确定UE数据传输时的用于解调的参考信号(De Modulation Reference Signal,DMRS)和数据的复用方式?复用方式为时分复用(TDM)或频分复用(FDM)。这里的UE的最大处理能力是指包括UE接收到基站发送的物理下行控制信道 (Physical Downlink Control Channel,PDCCH)调度上行数据(包括数据需要的DMRS),以及解码该PDCCH,以及按照PDCCH调度信息准备上行数据等,直到可以发送上行数据所需要的最小时长,这里记为N2。UE处理能力越强,N2的取值越小。一般的,UE的能力值N2会上报给基站。
实际当中,由于上行发送数据时跟下行有时间错位,所以基站还会配置给用户一个TA值,用于用户在发送数据时提前的时间单位。所以,从调度用户数据的PDCCH最后一个符号到真正用户能发送PUSCH的第一个数据符号的最小距离是跟N2和TA都有关系的。可以将PDCCH最后一个符号到PUSCH第一数据符号的最小符号个数称之为K2,即K2跟UE的能力N2还有TA等有关系。比如PDCCH最后一个符号在符号n上,如果PDCCH调度给用户的PUSCH从符号n+K2或者n+K2开始,那么该UE就有能力从n+K2上开始传输数据。为了降低用户的复杂度,或者为了给用户留更多的时间去准备数据的发送,可以默认的在PUSCH的第一个符号上只发送DMRS,而不发生数据。由于DMRS可以提前准备好的,所以用户就多了一个符号的时间来准备PUSCH中数据的发送。
然而这种默认的方式带来了很大的开销。因为始终认为DMRS和数据是TDM的,即不同时发送,即使DMRS没有占完第一个符号的所有子载波,也不能用于数据发送。
一种限制DMRS端口复用方式的方法,如果基站动态配置PUSCH的第一个符号是在对应PDCCH最后一个符号后K2+X个符号以后,那么PUSCH的DMRS和数据的复用方式包含FDM和TDM。这里所述的PUSCH和DMRS的复用方式是指第一个DMRS符号或者前2个连续的DMRS符号和PUSCH之间的复用方式。
如果基站动态配置PUSCH的第一个符号是在对应PDCCH最后一个符号后K2+X符号上,那么PUSCH的DMRS和数据的复用方式只包含TDM。
可选的,如果基站动态配置PUSCH的第一个符号是在对应PDCCH最后一个符号后K2+X符号上或者K2+X之前,且不超前于PDCCH最后一个符号后K2个符号,那么PUSCH的DMRS和数据的复用方式只包含TDM。
如果基站动态配置PUSCH的第一个符号是在对应PDCCH最后一个符 号后K2+X符号之前,很显然,用户没有足够时间准备数据的发送,那么此次用户将不会发送数据。
其中,K2是基于用户的能力N2计算出来的。
假设PDCCH的最后一个符号在一个时隙的符号n上发送,那么根据用户的能力N2计算得到的K2后,基站一般应该调度用户的PUSCH的第一符号不能超前于符号n+K2,否则用户没有足够时间准备。根据本文的发明,如果基站配置给用户PUSCH的第一个符号在n+K2到n+K2+X之间时,PUSCH的DMRS和数据的复用方式只包含TDM。因为此时不在第一个PUSCH符号上发送数据而只是发送DMRS可以为用户赢来一个符号的准备时间,用于发送数据。而如果基站配置给用户PUSCH的第一个符号在n+K2+X以后时,PUSCH的DMRS和数据的复用方式包含TDM和FDM。此时用户有足够的时间准备数据的发送,在第一个PUSCH的符号上发送数据可以有效提高资源利用率,其中,n是整数。
当X=0时,就变成了,如果基站配置给用户PUSCH的第一个符号在符号n+K2上时,在PUSCH的第一个符号上就不能有数据发送,即DMRS和数据是TDM。而如果基站配置给用户PUSCH的第一个符号在符号n+K2以后时,在PUSCH的第一个符号上就可以数据发送,即DMRS和数据的复用方式包含TDM和FDM。如果PUSCH上的DMRS是配置了2个连续的DMRS符号,那么这2个符号上DMRS和数据的复用方式是一样的。
X是大于等于0的整数。X可以是预定义的,比如X预定义等于0,也可以是高层信令配置给用户的。
如图5所示,总共在一个DMRS符号上支持4个端口,且分为2个正交码分复用(CDM,Code Division Multiplexing)CDM组。端口p0、p1对应CDM组0,端口p2、p3对应CDM组1。一般当基站分配给用户端口0或者1时,基站需要告诉用户UE0在CDM组1上有没有其他用户发送DMRS,如果有,就如下表2中索引0、2的第5列所示,表示可能在CDM组1上有其他用户的DMRS发送,那么UE0在CDM组1上不能发送数据。此时对于UE0来说,在该DMRS的符号上DMRS和数据是TDM的。而如果像表2中索引1、3所示,CDM组上没有其他用户发送DMRS,那么UE0就 会在CDM组1上发送数据。
根据之前所述,如果基站配置给用户PUSCH的第一个符号在n+K2到n+K2+X之间时,表2中索引1、3是被禁止的。因为PUSCH的DMRS和数据的复用方式只包含TDM。而索引1、3包含了FDM的方式。也就是说,当基站配置给用户PUSCH的第一个符号在n+K2到n+K2+X之间时,用户不希望被配置一些DMRS端口配置,这些配置中包含有数据在DMRS的符号上发送。而如果基站配置给用户PUSCH的第一个符号在n+K2+X以后时,则没有限制。
Figure PCTCN2018115101-appb-000003
表2
或者说,如果基站配置给用户PUSCH的第一个符号在n+K2到n+K2+X之间时,在PUSCH的第一个或者前2个符号上,用于该用户DMRS端口传输的资源外所有资源不用于该用户发送数据。如果基站配置给用户PUSCH的第一个符号在n+K2+X符号后,在PUSCH的第一个或者前2个符号上,用于该用户DMRS端口传输的资源外剩余的资源是否用于该用户的数据传输,需要基站用物理层动态信令指示。
补充,对于X,K2,K2+X的可以是非负整数,这样以符号为单位。也可以非负的小数,此时按照时长来计数,例如纳秒。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现,相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本公开不限制于任何特定形式的硬件和软件的结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (28)

  1. 一种上行控制信道调度单元的确定方法,包括:
    基站根据用户设备的上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
  2. 根据权利要求1所述的确定方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    当所述基站未配置所述用户设备接收来自所述基站的调度单元类型指示信令,或基站为所述用户设备未配置调度单元类型指示信令时,所述基站确定从所述起始调度单元开始的且包括所述起始调度单元在内的连续n个调度单元,作为所述上行控制信道使用的调度单元,其中,n为所述上行控制信道占用的调度单元数。
  3. 根据权利要求1所述的确定方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中的使用的符号数;其中,所述符号是给NR系统使用的且允许上行控制信道使用的符号;所述符号包括上行符号。
  4. 根据权利要求1所述的确定方法,其中,所述根据约定的规则,确定所述上行控制信道在所述后续的调度单元中使用的符号的位置,包括:
    当所述后续的调度单元用于承载所述上行控制信道的符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置不相同时,所述后续的调度单元中用于承载所述上行控制信道的符号的起始符号位置能被按 照约定规则调整;其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述包括上行符号。
  5. 根据权利要求4所述的确定方法,其中,所述后续的调度单元中用于承载所述上行控制信道的符号的起始符号位置能被按照约定规则调整,包括:
    所述后续的调度单元中用于承载所述上行控制信道的符号的起始符号位置,被调整为所述后续的调度单元中第一个能够用于承载所述上行控制信道的符号位置;其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,包括上行符号。
  6. 根据权利要求1所述的方法,其中,
    所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    调度单元满足下面的条件,则被选择作为一个所述后续的调度单元:调度单元能提供与所述起始调度单元中传输上行控制信道相同的符号个数和符号位置;其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
  7. 根据权利要求1所述的确定方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,和所述上行控制信道在所述后续的调度单元中使用的符号的位置,包括:
    所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中使用的符号数,且所述后续的调度单元用于承载所述上行控制信道的符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置也相同;其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
  8. 根据权利要求1所述的确定方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足承载的所述上行控制信道与所述起始调度单元承载的所述上行控制信道具有相同的叠加正交码复用能力。
  9. 根据权利要求8所述的确定方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    当所述上行控制信道跳频时,所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足在所述后续的调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力与所述起始调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力相同。
  10. 根据权利要求1所述的确定方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足承载的所述上行控制信道的编码比特的母码长度与所述起始调度单元承载所述上行控制信道编码比特的母码长度相同。
  11. 根据权利要求1所述的确定方法,其中,所述后续的调度单元的类型仅包括上行调度单元和下行调度单元,或者仅为上行调度单元。
  12. 根据权利要求1所述的确定方法,其中,所述上行控制信道在每个所述调度单元中使用的符号位置是连续的。
  13. 一种上行控制信道调度单元的确定方法,包括:
    用户设备根据上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号 的位置。
  14. 根据权利要求13所述的确定方法,其中,当基站配置所述用户设备接收来自基站的调度单元类型指示信令,并且所述用户设备没有正确接收来自基站的调度单元类型指示信令时,所述调度单元类型指示信令用于基站指示所述用户设备后续的调度单元的类型,所述确定方法还包括:
    所述用户设备不确定所述后续的调度单元,且仅确定所述起始调度单元,作为所述上行控制信道使用的调度单元。
  15. 根据权利要求13所述的确定方法,其中,当基站未配置所述用户设备接收来自基站的调度单元类型指示信令,或基站为所述用户设备未配置调度单元类型指示信令时,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    所述用户设备确定从所述起始调度单元开始的且包括所述起始调度单元在内的连续n个调度单元,作为所述上行控制信道使用的调度单元,其中,n为所述上行控制信道占用的调度单元数。
  16. 根据权利要求13所述的确定方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中的使用的符号数;其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
  17. 根据权利要求12所述的确定方法,其中,所述根据约定的规则,确定所述上行控制信道在所述后续的调度单元中使用的符号的位置,包括:
    当所述后续的调度单元用于承载所述上行控制信道的符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置不相同时,所述后续的调度单元中用于承载所述上行控制信道的符号的起始符号位置能被按 照约定规则调整;其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
  18. 根据权利要求17所述的确定方法,其中,所述后续的调度单元中用于承载所述上行控制信道的符号的起始符号位置能被按照约定规则调整,包括:
    所述后续的调度单元中用于承载所述上行控制信道的符号的起始符号位置,被调整为所述后续的调度单元中第一个能够用于承载所述上行控制信道的符号位置。其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,包括上行符号。
  19. 根据权利要求13所述的方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    调度单元满足下面的条件,则被选择作为一个所述后续的调度单元:调度单元能提供与所述起始调度单元中传输上行控制信道相同的符号个数和符号位置;其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
  20. 根据权利要求13所述的确定方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,和所述上行控制信道在所述后续的调度单元中使用的符号的位置,包括:
    所述后续的调度单元中有能够承载所述上行控制信道的资源,且能够用于承载所述上行控制信道的符号数大于或等于所述上行控制信道在所述起始调度单元中使用的符号数,且所述后续的调度单元用于承载所述上行控制信道的符号的符号位置与所述上行控制信道在所述起始调度单元中的符号位置也相同;其中,所述符号是给NR系统使用的,且允许上行控制信道使用的符号,所述符号包括上行符号。
  21. 根据权利要求13所述的确定方法,其中,所述根据约定的规则确 定所述上行控制信道使用的后续的调度单元,包括:
    所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足承载的所述上行控制信道与所述起始调度单元承载的所述上行控制信道具有相同的叠加正交码复用能力。
  22. 根据权利要求21所述的确定方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    当所述上行控制信道跳频时,所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足在所述后续的调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力与所述起始调度单元中所述上行控制信道的每个跳频对应的叠加正交码复用能力相同。
  23. 根据权利要求13所述的确定方法,其中,所述根据约定的规则确定所述上行控制信道使用的后续的调度单元,包括:
    所述后续的调度单元中有能够承载所述上行控制信道的资源,且满足承载的所述上行控制信道的编码比特的母码长度与所述起始调度单元承载所述上行控制信道编码比特的母码长度相同。
  24. 根据权利要求13所述的确定方法,其中,所述后续的调度单元的类型仅包括上行调度单元或下行调度单元,或者仅为上行调度单元。
  25. 根据权利要求13所述的确定方法,其中,所述上行控制信道在每个所述调度单元中使用的符号位置是连续的。
  26. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至25中任一项所述的上行控制信道调度单元的确定方法的步骤。
  27. 一种基站,包括第一确定单元,其中,
    第一确定单元,配置为根据用户设备的上行控制信道占用的调度单元 数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
  28. 一种用户设备,其中,包括第二确定单元,其中,
    第二确定单元,配置为根据用户设备的上行控制信道占用的调度单元数、所述上行控制信道使用的起始调度单元、所述上行控制信道在所述起始调度单元中的起始符号位置和使用的符号数以及约定的规则,确定所述上行控制信道使用的后续的调度单元,和/或所述上行控制信道在所述后续的调度单元中使用的符号的位置。
PCT/CN2018/115101 2017-11-10 2018-11-12 一种上行控制信道调度单元的确定方法、基站和用户设备 WO2019091480A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207016719A KR20200084031A (ko) 2017-11-10 2018-11-12 업링크 제어 채널 스케줄링 유닛을 결정하기 위한 방법, 기지국 및 사용자 장비
EP18876226.4A EP3709734A4 (en) 2017-11-10 2018-11-12 UPLOAD CONTROL CHANNEL PLANNING UNIT, BASE STATION AND USER EQUIPMENT DETERMINATION PROCESS
JP2020525956A JP7285835B2 (ja) 2017-11-10 2018-11-12 アップリンク制御チャネルスケジューリングユニットを決定する方法、ベースステーション、およびユーザ機器
US16/872,318 US11191098B2 (en) 2017-11-10 2020-05-11 Method for determining uplink control channel scheduling unit, base station and user equipment
US17/456,540 US11716733B2 (en) 2017-11-10 2021-11-24 Method for determining uplink control channel scheduling unit, base station and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711107748.1A CN109788555B (zh) 2017-11-10 2017-11-10 一种上行控制信道调度单元的确定方法、基站和用户设备
CN201711107748.1 2017-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/872,318 Continuation US11191098B2 (en) 2017-11-10 2020-05-11 Method for determining uplink control channel scheduling unit, base station and user equipment

Publications (1)

Publication Number Publication Date
WO2019091480A1 true WO2019091480A1 (zh) 2019-05-16

Family

ID=66438239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115101 WO2019091480A1 (zh) 2017-11-10 2018-11-12 一种上行控制信道调度单元的确定方法、基站和用户设备

Country Status (6)

Country Link
US (2) US11191098B2 (zh)
EP (1) EP3709734A4 (zh)
JP (1) JP7285835B2 (zh)
KR (1) KR20200084031A (zh)
CN (3) CN115529674A (zh)
WO (1) WO2019091480A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490276B (zh) * 2017-11-16 2024-04-09 华为技术有限公司 发送和接收信息的方法及装置
CN113518437A (zh) * 2020-04-10 2021-10-19 中兴通讯股份有限公司 数据业务的解析、发送方法、电子设备以及存储介质
KR20220089347A (ko) 2020-12-21 2022-06-28 현대자동차주식회사 모터 구동 시스템을 이용한 배터리 승온 시스템 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638333A (zh) * 2012-03-22 2012-08-15 电信科学技术研究院 一种上行数据的调度方法及装置
WO2016161629A1 (en) * 2015-04-10 2016-10-13 Mediatek Singapore Pte. Ltd. Methods and apparatus for pucch resource allocation of mtc
CN106160988A (zh) * 2015-04-23 2016-11-23 电信科学技术研究院 一种pucch传输方法及装置
CN106301695A (zh) * 2015-05-18 2017-01-04 工业和信息化部电信传输研究所 一种上行控制信道信号传输方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080316959A1 (en) * 2007-06-19 2008-12-25 Rainer Bachl Method of transmitting scheduling requests over uplink channels
CN101801098B (zh) * 2009-02-06 2012-11-21 电信科学技术研究院 一种调度资源释放的确认方法及设备
BRPI1012919B8 (pt) 2009-05-29 2022-09-20 Panasonic Corp Aparelho terminal, aparelho de estação base, método para transmitir um sinal a partir de um aparelho terminal, método para receber um sinal transmitido a partir de um aparelho terminal, circuito integrado para controlar um processo em um aparelho terminal e circuito integrado para controlar um processo em uma estação base se comunicando com um aparelho terminal
KR101761610B1 (ko) * 2009-08-26 2017-07-26 엘지전자 주식회사 시간-슬롯 기반으로 다중 αck/nack을 전송하는 방법
CN102281133B (zh) * 2010-06-13 2014-02-19 华为技术有限公司 一种在物理上行控制信道上传输信息的方法及装置
CN102111886B (zh) * 2010-07-02 2013-07-31 电信科学技术研究院 上行控制信息的传输方法和设备
CN102404092B (zh) * 2010-09-09 2014-07-09 电信科学技术研究院 一种上行控制信道资源配置及确定方法、设备
CN103095436B (zh) * 2011-11-07 2019-04-19 上海诺基亚贝尔股份有限公司 用于确定/辅助确定pucch的资源的方法及相应的装置
KR101853238B1 (ko) * 2012-09-26 2018-04-27 엘지전자 주식회사 상향링크 제어 채널에 대한 전송 전력 제어 방법 및 장치
CN105637793B (zh) * 2013-08-14 2019-03-15 索尼公司 通信装置、基础设施设备、数据传输和接收方法
EP3242435B1 (en) * 2014-12-31 2019-10-23 LG Electronics Inc. Method and apparatus for allocating resources in wireless communication system
AR103887A1 (es) * 2015-03-09 2017-06-14 ERICSSON TELEFON AB L M (publ) Canal pucch breve en canal spucch de enlace ascendente
CN107294674B (zh) * 2016-03-31 2020-11-06 电信科学技术研究院 传输方法、设备及系统
KR102288629B1 (ko) * 2017-05-04 2021-08-11 삼성전자 주식회사 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
KR102364954B1 (ko) 2017-05-04 2022-02-18 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 상향 제어 채널의 자원 지시 방법 및 장치
CN110547023A (zh) 2017-06-16 2019-12-06 Oppo广东移动通信有限公司 信道传输的方法、终端设备和网络设备
AU2018313837B2 (en) * 2017-08-10 2023-08-10 FG Innovation Company Limited Multiple slot long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
KR20200037347A (ko) * 2017-08-10 2020-04-08 샤프 가부시키가이샤 5G(5th GENERATION) NR(NEW RADIO)을 위한 긴 PUCCH(PHYSICAL UPLINK CONTROL CHANNEL) 설계의 슬롯 구조
US11212151B2 (en) * 2017-08-23 2021-12-28 Qualcomm Incorporated User multiplexing for uplink control information
US11445485B2 (en) * 2017-09-10 2022-09-13 Lg Electronics Inc. Method for transmitting uplink control information of terminal in wireless communication system and terminal using method
US11019682B2 (en) * 2018-06-18 2021-05-25 Apple Inc. Methods to multiplex control information in accordance with multi-slot transmissions in new radio (NR) systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638333A (zh) * 2012-03-22 2012-08-15 电信科学技术研究院 一种上行数据的调度方法及装置
WO2016161629A1 (en) * 2015-04-10 2016-10-13 Mediatek Singapore Pte. Ltd. Methods and apparatus for pucch resource allocation of mtc
CN106160988A (zh) * 2015-04-23 2016-11-23 电信科学技术研究院 一种pucch传输方法及装置
CN106301695A (zh) * 2015-05-18 2017-01-04 工业和信息化部电信传输研究所 一种上行控制信道信号传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709734A4 *

Also Published As

Publication number Publication date
US11191098B2 (en) 2021-11-30
US11716733B2 (en) 2023-08-01
CN115529674A (zh) 2022-12-27
CN109788555A (zh) 2019-05-21
EP3709734A1 (en) 2020-09-16
JP2021502765A (ja) 2021-01-28
CN109788555B (zh) 2024-03-22
US20200275471A1 (en) 2020-08-27
CN112865946B (zh) 2022-07-15
JP7285835B2 (ja) 2023-06-02
KR20200084031A (ko) 2020-07-09
EP3709734A4 (en) 2021-09-08
US20220086888A1 (en) 2022-03-17
CN112865946A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
US11929860B2 (en) Uplink sounding reference signals configuration and transmission
TWI715597B (zh) 用於上行鏈路傳輸的機器類型通訊(mtc)配置、干擾管理和重新調諧時間
TWI635763B (zh) 增強型授權輔助存取技術的控制通道設計之使用方法及使用者設備
AU2018215316B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
CN107950065B (zh) 无线系统中的成帧、调度和同步
CN110214466B (zh) 基站装置、终端装置、通信方法和集成电路
KR101900277B1 (ko) 강화된 컴포넌트 캐리어들 상의 진화된 멀티미디어 브로드캐스트 멀티캐스트 서비스
JP6732964B2 (ja) 端末及び通信方法
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
CN111919411A (zh) 支持ss/pbch块的大子载波间隔的方法和装置
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
KR101753690B1 (ko) 블라인드 검출 방식 확정 방법, 블라인드 검출 방법 및 장치
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
US20140161034A1 (en) Carrier with configurable downlink control region
TW201218681A (en) Resource mapping for multicarrier operation
WO2019052455A1 (zh) 数据信道参数配置方法及装置
JP2012175258A (ja) 移動端末装置、基地局装置及び通信制御方法
US11716733B2 (en) Method for determining uplink control channel scheduling unit, base station and user equipment
EP3535903A1 (en) Signaling of demodulation reference signal configuration for uplink short tti transmissions
WO2014000618A1 (zh) 下行用户专用dm-rs传输方法和ue及网络侧装置
WO2018171792A1 (zh) 一种参考信号传输方法、装置及系统
CN114731688A (zh) 在无线通信系统中取消上行链路传输的方法、装置和系统
CN112118628A (zh) 由用户设备执行的方法以及用户设备
WO2013107267A1 (zh) 一种上行解调导频控制信令的通知方法及系统
JP7284303B2 (ja) アップリンク伝送方法、装置、端末装置、アクセスネットワーク装置及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207016719

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018876226

Country of ref document: EP

Effective date: 20200610