CN112118628A - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
CN112118628A
CN112118628A CN201910535303.6A CN201910535303A CN112118628A CN 112118628 A CN112118628 A CN 112118628A CN 201910535303 A CN201910535303 A CN 201910535303A CN 112118628 A CN112118628 A CN 112118628A
Authority
CN
China
Prior art keywords
optionally
psfch
user equipment
resource
configuration information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910535303.6A
Other languages
English (en)
Inventor
赵毅男
刘仁茂
罗超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to CN201910535303.6A priority Critical patent/CN112118628A/zh
Priority to US17/617,914 priority patent/US20220312388A1/en
Priority to PCT/CN2020/096790 priority patent/WO2020253770A1/zh
Publication of CN112118628A publication Critical patent/CN112118628A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Abstract

本公开提供了一种由用户设备执行的方法以及用户设备,所述方法包括:确定侧行通信的配置信息;接收其他用户设备发送的侧行通信控制信息SCI和对应的物理侧行通信共享信道PSSCH;确定所述PSSCH对应的物理侧行通信反馈信道PSFCH的资源。

Description

由用户设备执行的方法以及用户设备
技术领域
本公开涉及无线通信技术领域,具体涉及由用户设备执行的方法、由基站执行的方法以及相应的用户设备。
背景技术
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rdGeneration Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。该课题的研究计划中包括支持侧行通信单播(sidelink unicast),侧行通信组播(sidelink groupcast)和侧行通信广播(sidelinkbroadcast)的研究目标。
在2018年10月3GPP RAN1#94bis的会议(参见非专利文献6)结论中,对于侧行通信的单播和组播,在物理层确定支持HARQ反馈(HARQ feedback)和HARQ合并(HARQcombining)。
在2018年11月3GPP RAN1#95的会议(参见非专利文献7)结论中,引入物理侧行通信反馈信道PSFCH用于携带侧行通信中的HARQ反馈信息,如HARQ ACK,或者HARQ NACK。
在2019年1月3GPP RAN1的AH#1901会议中(参见非专利文献8),关于NR V2X组播(groupcast)的HARQ反馈机制的设计包含如下结论:对于groupcast通信,当使能HARQ反馈时,支持两种HARQ反馈机制,分别为:
1)接收UE只反馈HARQ NACK;当接收UE正确译码PSCCH且未能正确译码相应的PSSCH时,接收UE反馈NACK;其他情况接收UE不进行HARQ反馈;
a)组内的所有接收UE共享(share)一个PSFCH资源用于反馈HARQ NACK。
2)接收UE反馈HARQ ACK和HARQ NACK;当接收UE正确译码PSCCH且未能正确译码相应的PSSCH时,接收UE反馈NACK;当接收UE正确译码PSCCH且正确译码相应的PSSCH时,接收UE反馈ACK。
a)组内的每个UE使用单独的PSFCH资源用于反馈HARQ ACK和HARQ NACK。
在2019年4月3GPP RAN1#96bis的会议(参见非专利文献9)结论中,关于PSFCH的资源配置有如下结论:
在一个资源池中,PSFCH在资源池的时隙(slots)中的配置是周期性的,其周期可以表示为N,N的可取值为1,或者,2,或者,4。
本专利的方案中包括侧行通信UE确定用于反馈侧行通信HARQ反馈的PSFCH资源的方法。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to DeviceProximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device toDevice Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services basedon LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
非专利文献6:RAN1#94bis,Chairman notes,section 7.2.4.2
非专利文献7:RAN1#95,Chairman notes,section 7.2.4.2
非专利文献8:RAN1 AH#1901,Chairman notes,section 7.2.4.1.4,section7.2.4.3
非专利文献9:RAN1#96bis,Chairman notes,section 7.2.4.5
发明内容
为了解决上述问题中的至少一部分,本公开提供了一种由用户设备执行的方法以及用户设备,能够有效地适用于基于5G NR网络技术的V2X的应用场景。
根据本公开的一个方面,提供一种由用户设备执行的方法,包括:确定侧行通信的配置信息即第一配置信息;接收其他用户设备发送的侧行通信控制信息SCI和对应的物理侧行通信共享信道PSSCH;确定所述PSSCH对应的物理侧行通信反馈信道PSFCH的资源。
根据本公开的一个方面的由用户设备执行的方法,所述第一配置信息是基站通过无线资源控制RRC信令发送的配置信息;或所述第一配置信息包含在所述用户设备的预配置信息中,所述第一配置信息中包含资源池的配置信息即第二配置信息。
根据本公开的一个方面的由用户设备执行的方法,所述第二配置信息包含:子信道大小的信息SubchannelSize;和/或所述子信道数目的信息Nsubchannel;和/或所述PSFCH的周期N,其中N是正整数;和/或反馈间隔K,其中K是正整数。
根据本公开的一个方面的由用户设备执行的方法,所述其他用户设备发送的所述SCI包含指示所述SCI和对应的所述PSSCH为单播传输的指示信息,和/或所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
根据本公开的一个方面的由用户设备执行的方法,所述用户设备的HARQ反馈的比特数目为x比特,其中x为正整数;和/或所述PSSCH在频域上占据n个连续的物理资源块PRB,其中n为正整数;和/或所述用户设备根据所述PSSCH最后一个OFDM符号所在的时隙、和/或所述K、和/或所述N、和/或除所述N和所述K之外的所述第二配置信息中的至少一项,确定所述PSSCH对应的PSFCH所在的时隙slot s;和/或所述用户设备根据所述时隙slot s、和/或所述N、和/或所述K、和/或除所述N和所述K之外的所述第二配置信息中的至少一项,确定所述slot s对应的N个连续的时隙;和/或所述用户设备确定所述PSSCH最后一个OFDM符号所在的时隙为所述N个连续时隙的第i+1个;和/或所述用户设备确定所述时隙slot s上的PSFCH资源的编号;和/或所述用户设备根据所述i、和/或所述IndexstartSubchannel来确定所述PSFCH资源或所述PSFCH资源的编号。
根据本公开的一个方面的由用户设备执行的方法,所述第二配置信息包含:子信道大小的信息SubchannelSize、和/或所述子信道数目的信息Nsubchannel、和/或所述PSFCH的周期N、和/或反馈间隔K、和/或所述资源池中的侧行通信为组播的配置信息、和/或接收用户设备反馈HARQ ACK和HARQ NACK的配置信息,其中N和K是正整数。
根据本公开的一个方面的由用户设备执行的方法,所述其他用户设备发送的所述SCI包含指示所述SCI和对应的所述PSSCH为组播传输的指示信息,和/或所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
根据本公开的一个方面的由用户设备执行的方法,所述用户设备的HARQ反馈的比特数目为x比特,其中x为正整数;和/或所述PSSCH在频域上占据n个连续的物理资源块PRB,其中n为正整数;和/或所述用户设备根据所述PSSCH最后一个OFDM符号所在的时隙、和/或所述K、和/或所述N、和/或除所述N和所述K之外的所述第二配置信息中的至少一项,确定所述PSSCH对应的PSFCH所在的时隙slot s;和/或
所述用户设备根据所述时隙slot s、和/或所述N、和/或所述K、和/或除所述N和所述K之外的所述第二配置信息中的至少一项,确定所述slot s对应的N个连续的时隙;和/或所述用户设备确定所述PSSCH最后一个OFDM符号所在的时隙为所述N个连续时隙的第i+1个;和/或所述用户设备确定所述时隙slot s上的PSFCH资源的编号;和/或所述用户设备确定组内标识m;和/或所述用户设备根据所述i、和/或所述IndexstartSubchannel、和/或所述m来确定所述PSFCH资源或所述PSFCH资源的编号;和/或所述用户设备确定变量
Figure BDA0002100229240000061
Figure BDA0002100229240000062
Figure BDA0002100229240000063
根据本公开的一个方面的由用户设备执行的方法,在所述用户设备的所述组内标识m>CapacityUE的情况下,所述用户设备不反馈HARQ信息,或者所述用户设备假设HARQ反馈是去使能的。
另外,根据本公开的另一个方面,还提供一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行上述的方法。
发明效果
根据本公开,能够提供了一种有效地适用于基于5G NR网络技术的V2X的应用场景的由用户设备执行的方法以及用户设备。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1是示意性表示Rel-14/15LTE V2X侧行通信的基本过程图。
图2是示意性表示Rel-14/15LTE V2X的两种资源分配方式。
图3是示意性表示本公开实施例一至十二的由用户设备执行的方法的基本流程图。
图4是示意性表示本公开实施例十三和实施例十四的由用户设备执行的方法的基本流程图。
图5是示意性表示本公开所涉及的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本公开的多个实施方式。然而,需要指出的是,本公开不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本公开涉及的部分术语,如未特别说明,本公开涉及的术语采用此处定义。本公开给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本公开中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Indicator,信道状态指示
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:CSI-Reference Signal,信道状态测量参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIB1:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global Navigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
下文是与本公开方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本公开说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本公开的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。
本公开的说明书涉及基于序列设计的PSFCH。值得指出的是,PSFCH信道的设计方式包括基于序列的设计方式,但不限于基于序列的设计方式。
本公开的说明书中相同的符号表示的含义始终相同,如PSFCH资源配置的周期N,PSFCH频域上占据的PRB数目
Figure BDA0002100229240000091
如UE确定的i的含义,等等。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
NR V2X单播(unicast),组播(groupcast)和广播(broadcast)
现有LTE V2X通信中仅支持物理层的广播通信。广播通信广泛应用于蜂窝通信中基站向小区内UE发送系统消息等场景。NR V2X的设计目标中包括支持物理层的单播通信以及组播通信。单播通信表示一个发送用户设备(UE)和单个接收用户设备之间的通信。组播通信一般表示一组UE分配了相同的标识(Indentity,ID),UE向组内的其他UE发送V2X数据,以及,接收组内的其他UE发送的V2X数据。
HARQ和侧行通信sidelink HARQ
为了更好地提高传输的可靠性以及提升频谱效率,在单播通信和组播通信中通常包含HARQ重传机制。HARQ表示混合自动重传,可以提供纠错功能并且实现快速重传,在无线数据通信中广泛应用。HARQ反馈包括HARQ ACK(反馈信息表示正确接收并译码)和HARQNACK(反馈信息表示未正确接收译码)。其中,HARQ ACK表示接收UE正确接收并且译码发送UE的数据,因此反馈HARQ ACK;HARQ NACK表示接收UE未正确接收并译码发送UE的数据。当接收UE反馈HARQ NACK时,发送UE可能会重传相应的数据,以保证提升数据通信的可靠性。
在NR V2X中,支持物理层的HARQ反馈(HARQ feedback,或者称作HARQ-ACK)和HARQ合并机制(HARQ combining)。其中,HARQ ACK和HARQ NACK由物理侧行通信反馈信道(PSFCH)承载。
侧行通信组播(groupcast)HARQ
对于groupcast侧行通信,当使能(enable)HARQ反馈时,支持两种HARQ反馈机制,分别为:
1)接收UE只反馈HARQ NACK;当接收UE正确译码PSCCH且未能正确译码相应的PSSCH时,接收UE反馈NACK;其他情况接收UE不进行HARQ反馈;
a)组内的所有接收UE共享(share)一个PSFCH资源用于反馈HARQ NACK。
2)接收UE反馈HARQ ACK和HARQ NACK;当接收UE正确译码PSCCH且未能正确译码相应的PSSCH时,接收UE反馈NACK;当接收UE正确译码PSCCH且正确译码相应的PSSCH时,接收UE反馈ACK。
a)组内的每个UE使用单独的PSFCH资源用于反馈HARQ ACK和HARQ NACK。
一个PSFCH资源表示映射在一个特定的时域(time domain)、频域(frequencydomain)、码域(code domain)的PSFCH资源。
PSFCH资源配置
在一个资源池(resource pool)中,PSFCH在资源池的时隙(slots)中的配置是周期性的,其周期可以表示为N,N的可取值为1,或者,2,或者,4。例如,N=1表示在资源池配置的所有slots中均含有PSFCH资源;N=2表示在资源池配置的所有slots中,每连续2个slots中存在一个slot,该slot内含有PSFCH资源。N=4表示在资源池配置的所有slots中,每连续4个slots中存在一个slot,该slot内含有PSFCH资源。
UE确定PSFCH时域资源的方法
根据PSFCH资源的配置,UE获取PSFCH在资源池的时隙slots上的配置周期N。如果使能(enable)了HARQ反馈,UE可以确定在资源池的某N个连续slots上(这N个连续slots的编号采用i表示,i的范围为0,1,...,N-1)接收到的PSSCH对应的携带HARQ反馈信息的PSFCH都在同一个配置有PSFCH资源的slot s上。本公开的说明书中采用slot s对应的N个连续的slot表示这N个连续的slots,UE可根据接收到PSSCH所在的slot是slot s对应的N个连续的slot中的第i+1个来确定i的取值。此处K表示接收到PSSCH到对应的PSFCH的时域间隔,其中,可选地,K的单位是时隙slot。举例来说,N=4,K=3,slot s对应的N=4个连续的slots表示:资源池的某个含有PSFCH的slot记为slotPSFCH,其中,资源池上的所有slot编号为slot0,slot1,...,那么,这N=4个连续的slots为slotPSFCH-6至SlotPSFCH-3,即表示UE在slotPSFCH-6至SlotPSFCH-3接收到的PSSCH对应的PSFCH都在slotPSFCH上。例如UE在SlotPSFCH-4上接收到PSSCH,那么表示slotPSFCH对应的4个slots中的第2+1个,因此i=2。
基于序列(sequence-based)的PSFCH
此处利用
Figure BDA0002100229240000121
表示PSFCH在频域上占据的PRB数目,构成PSFCH的序列长度即可以表示为
Figure BDA0002100229240000122
其中
Figure BDA0002100229240000123
该序列可以表示为rα(n)=ejαn×r(n),其中
Figure BDA0002100229240000124
其中,α表示序列的循环移位(cyclic shift)。不同的循环移位可生成不同的序列(序列长度相同),即不同的循环移位表示不同的PSFCH资源。具体来讲,当两个PSFCH的时域和频域资源都相同的情况下,如果PSFCH的循环移位α不同(码域资源不同),这两个PSFCH表示不同的两个PSFCH资源。在某个给定的(或者确定的)时频资源上,当给定(或者确定)初始序列r(n)时,α的可取数值的数目为
Figure BDA0002100229240000125
即rα(n)可能产生至多
Figure BDA0002100229240000126
个序列,即表示在该给定(或者确定)的时频资源上,至多存在
Figure BDA0002100229240000127
个不同的PSFCH资源。
例如,
Figure BDA0002100229240000128
序列的长度为
Figure BDA0002100229240000129
因此在给定某个时频资源时,α的可取数值的数目为
Figure BDA00021002292400001210
即存在12个不同的PSFCH资源。如果UE需要反馈1比特的HARQ反馈信息,那么用户设备UE需要占用2个不同的PSFCH资源用于分别发送HARQ ACK和HARQ NACK。在该给定的时频资源上至多可以复用12/2=6个不同的用户设备进行HARQ反馈(每个UE均反馈1比特的HARQ信息),或者,类似地,如果UE需要反馈2比特的HARQ反馈信息,那么用户设备UE需要占用22=4个不同的PSFCH资源用于分别发送每个比特HARQ反馈信息的HARQ ACK和HARQ NACK。在该给定的时频资源上至多可以复用12/4=3个不同的用户设备进行HARQ反馈。
值得指出的是,在本公开说明书的实施例一至实施例十二中涉及的PSFCH资源的编号,可选地,编号方式按照循环移位优先准则,例如,在某个时频资源上(一个OFDM符号,
Figure BDA0002100229240000131
个连续的PRB上)的一个PSFCH occasion,PSFCH资源的编号为
Figure BDA0002100229240000134
其中每个PSFCH资源对应一个循环移位,且资源编号相邻的PSFCH资源的循环移位的差值是1;在相同的OFDM符号上,频域上(PRB编号增加)的下一个(next)PSFCH occasion对应PSFCH资源的编号为
Figure BDA0002100229240000133
以此类推。可选地,如果某个时隙s中的至少一个OFDM符号包含PSFCH occasion,那么,可选地,PSFCH资源的编号在上述方式的基础上,按照OFDM符号编号从小到大的原则进行编号,例如先对OFDM符号12上的PSFCH资源进行编号,然后对OFDM符号13上的PSFCH资源进行编号,即OFDM符号13上的PSFCH资源的编号是OFDM符号12上的PSFCH资源编号的顺序递增(increasingorder)。
说明书实施例中的术语(terminology)
如无特殊描述,说明书的所有实施例中术语的定义以及确定方式和下述术语的定义以及确定方式相同。
·组播groupcast中UE的组内标识(identifier):在本公开的实施例中,组播中UE的组内标识identifier使用m表示。可选地,组播中的用户设备(发送UE,或者,接收UE,或者,发送UE和接收UE)确定m的一种可选方法是将组内所有的(或者,部分的)UE的层2ID(Layer-2ID,可选地,24比特)进行升序或者降序排列,组内的标识m表示上述排列中的第(m+1)个(或者,第m个)对应的UE;或者,另一种可选方法是将组内所有的(或者,部分的)UE的层1ID(Layer-1ID,可选地,8比特,或者16比特,或者24比特)进行升序或者降序排列,组内的标识m表示上述排列中的第(m+1)个(或者,第m个)对应的UE。本公开中UE的组内标识identifier的确定方法包括但不限于上述方法。
■对应某一个slot上PSFCH的N个连续slots:根据PSFCH资源的配置,UE获取PSFCH在资源池的时隙slots上的配置周期N。如果使能(enable)了HARQ反馈,UE可以确定在资源池的某N个连续slots上(这N个连续slots的编号采用i表示,i的范围为0,1,...,N-1)接收到的PSSCH对应的携带HARQ反馈信息的PSFCH都在同一个配置有PSFCH资源的slot s上。本公开的说明书中采用slot s对应的N个连续的slot表示这N个连续的slots,UE可根据接收到PSSCH所在的slot是slot s对应的N个连续的slot中的第i+1个来确定i的取值。
·PSFCH occasion(时机):PSFCH occasion表示在一个特定的时域(可选地,1个OFDM符号)、频域资源(可选地,
Figure BDA0002100229240000141
个PRB)上的所有PSFCH。其中,PSFCH在频域上占用
Figure BDA0002100229240000142
个连续的PRB,时域上占用1个OFDM符号。
LTE V2X(sidelink)通信的基本过程
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的PRB上。PSCCH和PSSCH的具体设计方式如下:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的PRB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI format 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的PSSCH的起始sub-channel编号和连续sub-channel的数目。
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示nsubCHsize个连续的PRB,nsubCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCI format 1的频域资源指示域指示。
LTE V2X的资源分配方式Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。LTEV2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRCsignaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:
1)基于基站调度的资源分配方式(Transmission Mode 3)::基于基站调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCIformat 1)和相应的PSSCH。
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。
2)基于UE感知(sensing)的资源分配方式(Transmission Mode4):基于UEsensing的资源分配方式表示用于sidelink通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。
NR参数集合(numerology)
NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4)如表4.2-1所示。
表4.2-1:支持传输参数集合(Supported transmission numerologies).
μ Δf=2<sup>μ</sup>·15[kHz] 循环前缀(CP)
0 15 Normal
1 30 Normal
2 60 Normal,Extended
3 120 Normal
4 240 Normal
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号,即
Figure BDA0002100229240000171
对于扩展CP,每个时隙含有12个OFDM符号,即
Figure BDA0002100229240000172
对于μ=0,即15kHz子载波间隔,1slot=1ms;μ=1,即30kHz子载波间隔,1slot=0.5ms;μ=2,即60kHz子载波间隔,1slot=0.25ms,以此类推。本公开的说明书实施例中沿用此处
Figure BDA0002100229240000173
的定义。
图3是示出了本公开的各个实施例一至十二的由用户设备执行的方法的基本流程图。
下面,结合图3所示的基本流程图来详细说明本公开的实施例一至十二的由用户设备执行的方法。
[实施例一]
如图3所示,在本公开的实施例一中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括反馈间隔K(PSSCH到对应PSFCH的间隔),可选地,K的单位为时隙slot。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述其他用户设备发送的SCI含有所述SCI和对应的所述PSSCH为单播(unicast)传输的指示信息。所述指示信息的实施方式包括但不限于以下:
可选地,所述SCI中包含2比特的指示域指示信息,或者,1比特的指示域指示信息,指示所述SCI和对应的所述PSSCH为单播(unicast)传输。
可选地,所述SCI中包含的所述其他用户设备的ID,和/或,所述用户设备的ID,和/或,所述传输的session(或者link)ID,指示所述SCI和对应的所述PSSCH为单播(unicast)传输。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slots上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备根据所述i,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n),所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n)+1,或者,可选地,所述用户设备确定反馈HARQNACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n)+12n/2。或者,可选地,用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n),可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n)+1,或者,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n)+12n/2。
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n),可选地,所述用户没备确定反馈“01”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+1,或者,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+12n/4,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+2,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+2×12n/4,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+3,或者,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×
(4或者,12n)+3×12n/4。所述“00”“01”“11”“10”对应PSFCH资源的编号包括但不限于上述实施方式。
[实施例二]
如图3所示,在本公开的实施例二中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述其他用户设备发送的SCI含有所述SCI和对应的所述PSSCH为单播(unicast)传输的指示信息。所述指示信息的实施方式包括但不限于以下:
可选地,所述SCI中包含2比特的指示域指示信息,或者,1比特的指示域指示信息,指示所述SCI和对应的所述PSSCH为单播(unicast)传输。
可选地,所述SCI中包含的所述其他用户设备的ID,和/或,所述用户设备的ID,和/或,所述传输的session(或者link)ID,指示所述SCI和对应的所述PSSCH为单播(unicast)传输。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备根据所述i,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N+12n/2。或者,可选地,用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N+12n/2。
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号IndexstartSubchannel×(4或者,12n)+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号IndexstartSubchannel×(4或者,12n)+i×PSFCHoccasion×12n/N+12n/4,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×PSFCHoccasion×12n/N+2,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号
Figure BDA0002100229240000241
Figure BDA0002100229240000242
可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为Indexstartsubchannel×(4或者,12n)+i×PSFCHoccasion×12n/N+3,或者,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号
Figure BDA0002100229240000243
Figure BDA0002100229240000244
所述“00”“01”“11”“10”对应PSFCH资源的编号包括但不限于上述实施方式。
[实施例三]
如图3所示,在本公开的实施例三中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
可选地,所述资源池配置信息中包括所述资源池中的侧行通信为单播unicast的配置信息。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备根据所述i,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×
(2或者,12n),所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n)+1,或者,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n)+12n/2。或者,可选地,用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n),可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n)+1,或者,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×Nsubchannel×(2或者,12n)+12n/2。
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n),可选地,所述用户设备确定反馈“01”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+1,或者,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+12n/4,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+2,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+2×12n/4,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+3,或者,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×Nsubchannel×(4或者,12n)+3×12n/4。所述“00”“01”“11”“10”对应PSFCH资源的编号包括但不限于上述实施方式。
[实施例四]
如图3所示,在本公开的实施例四中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
可选地,所述资源池配置信息中包括所述资源池中的侧行通信为单播unicast的配置信息。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备根据所述i,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N+12n/2。或者,可选地,用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×(2或者,12n)+i×PSFCHoccasion×12n/N+12n/2。
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号IndexstartSubchannel×(4或者,12n)+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号IndexstartSubchannel×(4或者,12n)+i×PSFCHoccasion×12n/N+12n/4,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×PSFCHoccasion×12n/N+2,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号
Figure BDA0002100229240000311
Figure BDA0002100229240000312
可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×(4或者,12n)+i×PSFCHoccasion×12n/N+3,或者,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号
Figure BDA0002100229240000313
Figure BDA0002100229240000314
所述“00”“01”“11”“10”对应PSFCH资源的编号包括但不限于上述实施方式。
[实施例五]
如图3所示,在本公开的实施例五中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
可选地,所述资源池配置信息中包括接收UE只反馈HARQ NACK的配置信息。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述其他用户设备发送的SCI含有所述SCI和对应的所述PSSCH为组播(groupcast)传输的指示信息。所述指示信息的实施方式包括但不限于以下:
可选地,所述SCI中包含2比特的指示域指示信息,或者,1比特的指示域指示信息,指示所述SCI和对应的所述PSSCH为组播(groupcast)传输。
可选地,所述SCI中包含的所述其他用户设备的ID,和/或,所述用户设备的ID,和/或,所述传输的session(或者link)ID,指示所述SCI和对应的所述PSSCH为组播(groupcast)传输。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slots是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备根据所述i,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel+i×Nsubchannel
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel+i×Nsubchannel,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel+i×Nsubchannel
或者,
可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×12n+i×Nsubchannel×12n。
[实施例六]
如图3所示,在本公开的实施例六中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
可选地,所述资源池配置信息中包括接收UE只反馈HARQ NACK的配置信息。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述其他用户设备发送的SCI含有所述SCI和对应的所述PSSCH为组播(groupcast)传输的指示信息。所述指示信息的实施方式包括但不限于以下:
可选地,所述SCI中包含2比特的指示域指示信息,或者,1比特的指示域指示信息,指示所述SCI和对应的所述PSSCH为组播(groupcast)传输。
可选地,所述SCI中包含的所述其他用户设备的ID,和/或,所述用户设备的ID,和/或,所述传输的session(或者link)ID,指示所述SCI和对应的所述PSSCH为组播(groupcast)传输。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备根据所述i,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel+i×PSFCHoccasion×12n/N,
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel+i×PSFCHoccasion×12n/N,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel+i×PSFCHoccasion×12n/N。
或者,
可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×12n+i×PSFCHoccasion×12n/N。
[实施例七]
如图3所示,在本公开的实施例七中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
可选地,所述资源池配置信息中包括所述资源池中的侧行通信为组播groupcast的配置信息。
可选地,所述资源池配置信息中包括接收UE只反馈HARQ NACK的配置信息。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备根据所述i,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel+i×Nsubchannel
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel+i×Nsubchannel,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel+i×Nsubchannel
或者,
可选地,所述用户没备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×12n+i×Nsubchannel×12n。
[实施例八]
如图3所示,在本公开的实施例八中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
可选地,所述资源池配置信息中包括所述资源池中的侧行通信为组播groupcast的配置信息。
可选地,所述资源池配置信息中包括接收UE只反馈HARQ NACK的配置信息。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备根据所述i,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel+i×PSFCHoccasion×12n/N,
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel+i×PSFCHoccasion×12n/N,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel+i×PSFCHoccasion×12n/N。
或者,
可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×12n+i×PSFCHoccasion×12n/N。
[实施例九]
如图3所示,在本公开的实施例九中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
可选地,所述资源池配置信息中包括接收UE反馈HARQ ACK和HARQ NACK的配置信息。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述其他用户设备发送的SCI含有所述SCI和对应的所述PSSCH为组播(groupcast)传输的指示信息。所述指示信息的实施方式包括但不限于以下:
可选地,所述SCI中包含2比特的指示域指示信息,或者,1比特的指示域指示信息,指示所述SCI和对应的所述PSSCH为组播(groupcast)传输。
可选地,所述SCI中包含的所述其他用户设备的ID,和/或,所述用户设备的ID,和/或,所述传输的session(或者link)ID,指示所述SCI和对应的所述PSSCH为组播(groupcast)传输。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上(OFDM符号数目表示为Nsym)含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备确定组内标识identifier,使用m表示。可选地,所述用户设备根据所述i,和/或,所述m,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,所述用户设备确定变量
Figure BDA0002100229240000441
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000442
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000443
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000444
或者,
可选地,所述变量CapacityUE包含在所述侧行通信配置信息中,或者,在所述用户设备的预配置信息中,或者,预定义的数值。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARO ACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+1,或者,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+12n/2。或者,可选地,用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+1,或者,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+12n/2。
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+1,或者,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+12n/4,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+2,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+2×12n/4,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+3,或者,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+3×12n/4。所述“00”“01”“11”“10”对应PSFCH资源的编号包括但不限于上述实施方式。
可选地,如果所述用户设备的组内标识m>CapacityUE,则,可选地,所述用户设备不反馈HARQ信息,或者,所述用户设备假设HARQ反馈是去使能的(disable)。
[实施例十]
如图3所示,在本公开的实施例十中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
可选地,所述资源池配置信息中包括接收UE反馈HARQ ACK和HARQ NACK的配置信息。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述其他用户设备发送的SCI含有所述SCI和对应的所述PSSCH为组播(groupcast)传输的指示信息。所述指示信息的实施方式包括但不限于以下:
可选地,所述SCI中包含2比特的指示域指示信息,或者,1比特的指示域指示信息,指示所述SCI和对应的所述PSSCH为组播(groupcast)传输。
可选地,所述SCI中包含的所述其他用户设备的ID,和/或,所述用户设备的ID,和/或,所述传输的session(或者link)ID,指示所述SCI和对应的所述PSSCH为组播(groupcast)传输。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上(OFDM符号数目表示为Nsym)含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备确定组内标识identifier,使用m表示。
可选地,所述用户设备根据所述i,和/或,所述m,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,所述用户设备确定变量
Figure BDA0002100229240000481
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000482
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000483
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000484
或者,
可选地,所述变量CapacityUE包含在所述侧行通信配置信息中,或者,在所述用户设备的预配置信息中,或者,预定义的数值。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+12n/2。或者,可选地,用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+12n/2。
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+12n/4,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+2,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+2×12n/4,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+3,或者,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+3×12n/4。所述“00”“01”“11”“10”对应PSFCH资源的编号包括但不限于上述实施方式。
可选地,如果所述用户设备的组内标识m>CapacityUE,则,可选地,所述用户设备不反馈HARQ信息,或者,所述用户设备假设HARQ反馈是去使能的(disable)。
[实施例十一]
如图3所示,在本公开的实施例十一中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
可选地,所述资源池配置信息中包括所述资源池中的侧行通信为组播groupcast的配置信息。
可选地,所述资源池配置信息中包括接收UE反馈HARQ ACK和HARQ NACK的配置信息。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上(OFDM符号数目表示为Nsym)含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备确定组内标识identifier,使用m表示。
可选地,所述用户设备根据所述i,和/或,所述m,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,所述用户设备确定变量
Figure BDA0002100229240000521
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000522
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000523
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000524
或者,
可选地,所述变量CapacityUE包含在所述侧行通信配置信息中,或者,在所述用户设备的预配置信息中,或者,预定义的数值。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+1,或者,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+12n/2。或者,可选地,用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+1,或者,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+12n/2。
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×NSVbchannel×CapacityUE,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+1,或者,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+12n/4,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+2,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+2×12n/4,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+3,或者,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×Nsubchannel×CapacityUE+3×12n/4。所述“00”“01”“11”“10”对应PSFCH资源的编号包括但不限于上述实施方式。
可选地,如果所述用户设备的组内标识m>CapacityUE,则,可选地,所述用户设备不反馈HARQ信息,或者,所述用户设备假设HARQ反馈是去使能的(disable)。
[实施例十二]
如图3所示,在本公开的实施例十二中,用户设备执行的方法可以包括:
在步骤S101,侧行通信用户设备确定侧行通信sidelink的配置信息。
可选地,所述侧行通信配置信息是基站通过RRC信令发送的配置信息。或者,
可选地,所述侧行通信配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信配置信息中包含资源池resource pool的配置信息。
可选地,所述资源池配置信息中包括子信道大小的信息SubchannelSize。可选地,所述子信道大小的信息以PRB为单位。
可选地,所述资源池配置信息中包括子信道数目的信息Nsubchannnel
可选地,所述资源池配置信息中包括PSFCH的周期N。可选地,所述PSFCH的周期以资源池中的slot为单位。
可选地,所述资源池配置信息中包括PSSCH到对应PSFCH的间隔K,可选地,K的单位为时隙slot。
可选地,所述资源池配置信息中包括所述资源池中的侧行通信为组播groupcast的配置信息。
可选地,所述资源池配置信息中包括接收UE反馈HARQ ACK和HARQ NACK的配置信息。
在步骤S102,用户设备接收其他用户设备发送的侧行通信控制信息SCI和对应的(corresponding)PSSCH。
可选地,所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
在步骤S103,用户设备确定所述PSSCH对应的PSFCH的资源。
可选地,所述用户设备HARQ反馈的比特数目为x比特,可选地,x=1,或者,2,或者大于2的正整数。
可选地,PSFCH在频域上占据n个连续的PRB,可选地,n=1,或者,2,或者大于2的正整数。
所述PSSCH的最后一个OFDM符号所在的时隙记为slotPSSCH
可选地,所述用户设备根据所述slotPSSCH、和/或所述K、和/或所述N、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述PSSCH对应的PSFCH所在的时隙slot s。可选地,一种具体的实施方式是,所述PSSCH对应的PSFCH所在的时隙slot s与所述PSSCH所在的时隙之间的间隔(采用slot作为单位)不小于所述K,且满足所述时隙slot s是不小于所述K中的最小正整数,并且所述时隙slot s上含有配置的周期为所述N的PSFCH资源。
可选地,所述用户设备根据所述slot s、和/或所述N、和/或所述K、和/或所述资源池配置信息中的除所述N和所述K之外的至少一个信息(可选地,资源池侧行通信时域资源的配置信息),确定所述slot s对应的N个连续的时隙。可选地,所述N个连续的时隙上接收到的PSSCH对应的PSFCH时域上在所述slot s上。
可选地,所述用户设备确定所述slotPSSCH为所述N个连续的时隙中的第i+1个,其中,i=0,1,...,N-1。
可选地,所述用户设备根据所述资源池配置信息确定所述时隙slot s上的PSFCHoccasion(时机)的数目,表示为PSFCHoccasion。
可选地,在所述时隙slot s中,时域上仅有一个OFDM符号含有所述PSFCHoccasion,或者,可选地,时域上多于一个OFDM符号上(OFDM符号数目表示为Nsym)含有所述PSFCH occasion。
可选地,所述用户设备确定所述时隙slot s上的PSFCH资源的编号,表示为编号0至编号PSFCHoccasion*12n-1。可选地,如果PSFCH资源编号k+1和PSFCH资源编号k属于相同的PSFCH occasion,那么PSFCH资源编号k+1对应的循环移位等于PSFCH资源编号k对应的循环移位加1。其中,k为非负的整数。
可选地,所述用户设备确定组内标识identifier,使用m表示。
可选地,所述用户设备根据所述i,和/或,所述m,和/或,所述IndexstartSubchannel确定PSFCH的资源,或者,确定PSFCH的资源编号。
可选地,所述用户设备确定变量
Figure BDA0002100229240000561
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000562
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000563
或者,可选地,所述用户设备确定变量
Figure BDA0002100229240000564
或者,
可选地,所述变量CapacityUE包含在所述侧行通信配置信息中,或者,在所述用户设备的预配置信息中,或者,预定义的数值。
可选地,如果所述用户设备HARQ反馈的比特数目为1比特,则,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+12n/2。或者,可选地,用户设备确定反馈HARQ NACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈HARQ ACK的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+12n/2。
或者,
可选地,如果所述用户设备HARQ反馈的比特数目为2比特,则,可选地,所述用户设备确定反馈“00”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+1,或者,可选地,所述用户设备确定反馈“01”的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+12n/4,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+2,或者,可选地,所述用户设备确定反馈“11”的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+2×12n/4,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号为IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+3,或者,可选地,所述用户设备确定反馈“10”的PSFCH资源的编号IndexstartSubchannel×CapacityUE+m+i×PSFCHoccasion×12n/N+3×12n/4。所述“00”“01”“11”“10”对应PSFCH资源的编号包括但不限于上述实施方式。
可选地,如果所述用户设备的组内标识m>CapacityUE,则,可选地,所述用户设备不反馈HARQ信息,或者,所述用户设备假设HARQ反馈是去使能的(disable)。
图4是示出了本公开的各个实施例十三和实施例十四的由用户设备执行的方法的基本流程图。
下面,结合图4所示的基本流程图来详细说明本公开的实施例十三和实施例十四的由用户设备执行的方法。
[实施例十三]
如图4所示,在本发明的实施例十三中,用户设备执行的方法包括:
在步骤S201,侧行通信用户设备确定侧行通信资源池resource pool的配置信息。
可选地,所述侧行通信资源池配置信息是基站通过RRC信令发送的配置信息,
或者,
可选地,所述侧行通信资源池配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信资源池配置信息包括PSFCH的配置信息。
可选地,所述PSFCH的配置信息指示PSFCH资源的起始OFDM符号sstart,或者,PSFCH资源的OFDM符号数nofdm
在步骤S202,用户设备确定资源池中PSFCH的时域资源。
可选地,如果所述PSFCH的配置信息指示PSFCH资源的起始OFDM符号sstart,则所述UE确定所述PSFCH的时域资源从OFDM符号sstart到OFDM符号
Figure BDA0002100229240000591
或者,所述UE确定所述PSFCH的时域资源从OFDM符号sstart到OFDM符号
Figure BDA0002100229240000592
或者,
可选地,如果所述PSFCH的配置信息指示PSFCH资源的OFDM符号数nofdm,则所述UE确定所述PSFCH的时域资源从OFDM符号
Figure BDA0002100229240000593
到OFDM符号
Figure BDA0002100229240000594
或者,所述UE确定所述PSFCH的时域资源从OFDM符号
Figure BDA0002100229240000595
到OFDM符号
Figure BDA0002100229240000596
[实施例十四]
如图4所示,在本发明的实施例十四中,用户设备执行的方法包括:
在步骤S201,侧行通信用户设备确定侧行通信资源池resource pool的配置信息。
可选地,所述侧行通信资源池配置信息是基站通过RRC信令发送的配置信息,
或者,
可选地,所述侧行通信资源池配置信息包含在所述用户设备的预配置(Pre-configuration)信息中。
可选地,所述侧行通信资源池配置信息包括PSFCH的配置信息。
可选地,所述PSFCH的配置信息包括至少一种PSFCH格式(format)的配置信息。
可选地,所述至少一种PSFCH格式包括第一PSFCH格式,所述第一PSFCH格式在时域上占用1个OFDM符号。
可选地,所述至少一种PSFCH格式包括第二PSFCH格式,所述第二PSFCH格式在时域上占用p个OFDM符号,p为大于或者等于1的正整数。
可选地,所述第一PSFCH格式的配置信息指示所述第一PSFCH格式资源的起始OFDM符号sstart1,或者,PSFCH资源的OFDM符号数nofaml
可选地,所述第二PSFCH格式的配置信息指示所述第二PSFCH格式资源的起始OFDM符号sstart2,或者,PSFCH资源的OFDM符号数nofdm2
在步骤S202,用户设备确定资源池中PSFCH的时域资源。
可选地,如果所述PSFCH的配置信息指示第一PSFCH格式资源的起始OFDM符号sstart1,第二PSFCH格式资源的起始OFDM符号sstart2,则所述UE确定所述第一PSFCH格式的时域资源从OFDM符号Sstart1到OFDM符号sstart2-1,所述UE确定所述第二PSFCH格式的时域资源从OFDM符号sstart2到OFDM符号
Figure BDA0002100229240000601
或者,所述UE确定所述第一PSFCH格式的时域资源从OFDM符号sstart1到OFDM符号sstart2-1,所述UE确定所述第二PSFCH格式的时域资源从OFDM符号sstart2到OFDM符号
Figure BDA0002100229240000602
或者,所述UE确定所述第二PSFCH格式的时域资源从OFDM符号sstart2到OFDM符号sstart1-1,所述UE确定所述第一PSFCH格式的时域资源从OFDM符号sstart1到OFDM符号
Figure BDA0002100229240000603
或者,所述UE确定所述第二PSFCH格式的时域资源从OFDM符号sstart2到OFDM符号sstart1-1,所述UE确定所述第一PSFCH格式的时域资源从OFDM符号sstart1到OFDM符号
Figure BDA0002100229240000611
或者,
可选地,如果所述PSFCH的配置信息指示第一PSFCH格式资源的OFDM符号数nofdm1,第二PSFCH格式资源的OFDM符号数nofdm2,则所述UE确定所述第一PSFCH的时域资源从OFDM符号
Figure BDA0002100229240000612
Figure BDA0002100229240000613
到OFDM符号
Figure BDA0002100229240000614
所述UE确定所述第二PSFCH的时域资源从OFDM符号
Figure BDA0002100229240000615
到OFDM符号
Figure BDA0002100229240000616
或者,所述UE确定所述第一PSFCH的时域资源从OFDM符号
Figure BDA0002100229240000617
到OFDM符号
Figure BDA0002100229240000618
所述UE确定所述第二PSFCH的时域资源从OFDM符号
Figure BDA0002100229240000619
Figure BDA00021002292400006110
到OFDM符号
Figure BDA00021002292400006111
或者,所述UE确定所述第二PSFCH的时域资源从OFDM符号
Figure BDA00021002292400006112
到OFDM符号
Figure BDA00021002292400006113
所述UE确定所述第一PSFCH的时域资源从OFDM符号
Figure BDA00021002292400006114
到OFDM符号
Figure BDA00021002292400006115
或者,所述UE确定所述第二PSFCH的时域资源从OFDM符号
Figure BDA00021002292400006116
Figure BDA00021002292400006117
到OFDM符号
Figure BDA00021002292400006118
所述UE确定所述第一PSFCH的时域资源从OFDM符号
Figure BDA00021002292400006119
到OFDM符号
Figure BDA00021002292400006120
图5是表示本公开所涉及的用户设备UE的框图。如图5所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本公开详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本公开的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本公开的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本公开并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本公开的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本公开的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本公开的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本公开实施例所述的操作(方法)。本公开的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本公开实施例所描述的技术方案。
此外,上每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本公开也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本公开的优选实施例示出了本公开,但是本领域的技术人员将会理解,在不脱离本公开的精神和范围的情况下,可以对本公开进行各种修改、替换和改变。因此,本公开不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

1.一种由用户设备执行的方法,包括:
确定侧行通信的配置信息即第一配置信息;
接收其他用户设备发送的侧行通信控制信息SCI和对应的物理侧行通信共享信道PSSCH;
确定所述PSSCH对应的物理侧行通信反馈信道PSFCH的资源。
2.根据权利要求1所述的方法,其特征在于,
所述第一配置信息是基站通过无线资源控制RRC信令发送的配置信息;或
所述第一配置信息包含在所述用户设备的预配置信息中,
所述第一配置信息中包含资源池的配置信息即第二配置信息。
3.根据权利要求2所述的方法,其特征在于,
所述第二配置信息包含:子信道大小的信息SubchannelSize;和/或所述子信道数目的信息Nsubchannel;和/或所述PSFCH的周期N,其中N是正整数;和/或反馈间隔K,其中K是正整数。
4.根据权利要求3所述的方法,其特征在于,
所述其他用户设备发送的所述SCI包含指示所述SCI和对应的所述PSSCH为单播传输的指示信息,和/或
所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
5.根据权利要求4所述的方法,其特征在于,
所述用户设备的HARQ反馈的比特数目为x比特,其中x为正整数;和/或
所述PSSCH在频域上占据n个连续的物理资源块PRB,其中n为正整数;和/或
所述用户设备根据所述PSSCH最后一个OFDM符号所在的时隙、和/或所述K、和/或所述N、和/或除所述N和所述K之外的所述第二配置信息中的至少一项,确定所述PSSCH对应的PSFCH所在的时隙slot s;和/或
所述用户设备根据所述时隙slot s、和/或所述N、和/或所述K、和/或除所述N和所述K之外的所述第二配置信息中的至少一项,确定所述slot s对应的N个连续的时隙;和/或
所述用户设备确定所述PSSCH最后一个OFDM符号所在的时隙为所述N个连续时隙的第i+1个;和/或
所述用户设备确定所述时隙slot s上的PSFCH资源的编号;和/或
所述用户设备根据所述i、和/或所述IndexstartSubchannel来确定所述PSFCH资源或所述PSFCH资源的编号。
6.根据权利要求2所述的方法,其特征在于,
所述第二配置信息包含:子信道大小的信息SubchannelSize、和/或所述子信道数目的信息Nsubchannel、和/或所述PSFCH的周期N、和/或反馈间隔K、和/或所述资源池中的侧行通信为组播的配置信息、和/或接收用户设备反馈HARQ ACK和HARQ NACK的配置信息,其中N和K是正整数。
7.根据权利要求6所述的方法,其特征在于,
所述其他用户设备发送的所述SCI包含指示所述SCI和对应的所述PSSCH为组播传输的指示信息,和/或
所述用户设备根据所述SCI确定所述PSSCH的起始子信道的编号IndexstartSubchannel
8.根据权利要求7所述的方法,其特征在于,
所述用户设备的HARQ反馈的比特数目为x比特,其中x为正整数;和/或
所述PSSCH在频域上占据n个连续的物理资源块PRB,其中n为正整数;和/或
所述用户设备根据所述PSSCH最后一个OFDM符号所在的时隙、和/或所述K、和/或所述N、和/或除所述N和所述K之外的所述第二配置信息中的至少一项,确定所述PSSCH对应的PSFCH所在的时隙slot s;和/或
所述用户设备根据所述时隙slot s、和/或所述N、和/或所述K、和/或除所述N和所述K之外的所述第二配置信息中的至少一项,确定所述slot s对应的N个连续的时隙;和/或
所述用户设备确定所述PSSCH最后一个OFDM符号所在的时隙为所述N个连续时隙的第i+1个;和/或
所述用户设备确定所述时隙slot s上的PSFCH资源的编号;和/或
所述用户设备确定组内标识m;和/或
所述用户设备根据所述i、和/或所述IndexstartSubchannel、和/或所述m来确定所述PSFCH资源或所述PSFCH资源的编号;和/或
所述用户设备确定变量
Figure FDA0002100229230000031
Figure FDA0002100229230000032
Figure FDA0002100229230000033
9.根据权利要求8所述的方法,其特征在于,
在所述用户设备的所述组内标识m>CapacityUE的情况下,所述用户设备不反馈HARQ信息,或者所述用户设备假设HARQ反馈是去使能的。
10.一种用户设备,包括:
处理器;以及
存储器,存储有指令;
其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的方法。
CN201910535303.6A 2019-06-19 2019-06-19 由用户设备执行的方法以及用户设备 Pending CN112118628A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910535303.6A CN112118628A (zh) 2019-06-19 2019-06-19 由用户设备执行的方法以及用户设备
US17/617,914 US20220312388A1 (en) 2019-06-19 2020-06-18 Method performed by user equipment, and user equipment
PCT/CN2020/096790 WO2020253770A1 (zh) 2019-06-19 2020-06-18 由用户设备执行的方法以及用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910535303.6A CN112118628A (zh) 2019-06-19 2019-06-19 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
CN112118628A true CN112118628A (zh) 2020-12-22

Family

ID=73795846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910535303.6A Pending CN112118628A (zh) 2019-06-19 2019-06-19 由用户设备执行的方法以及用户设备

Country Status (3)

Country Link
US (1) US20220312388A1 (zh)
CN (1) CN112118628A (zh)
WO (1) WO2020253770A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274012A1 (zh) * 2021-06-30 2023-01-05 华为技术有限公司 侧行链路反馈信息传输的方法和通信装置
WO2023025137A1 (zh) * 2021-08-27 2023-03-02 维沃移动通信有限公司 信息指示方法、装置、终端及可读存储介质
WO2023184050A1 (en) * 2022-03-26 2023-10-05 Qualcomm Incorporated Multi-bit sidelink feedback

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2021137728A (ru) * 2018-08-08 2022-01-19 Идак Холдингз, Инк. Способ и устройство для структуры физического канала управления прямым соединением (pscch) в новой радиосети (nr)
US11863972B2 (en) * 2021-04-22 2024-01-02 Qualcomm Incorporated Resolving reservation ambiguity of sidelink control information repetition in sidelink communications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143786A1 (ko) * 2017-02-06 2018-08-09 엘지전자(주) 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 이를 위한 장치
CN110679190A (zh) * 2017-05-11 2020-01-10 Lg电子株式会社 用于在无线通信系统中使用中继ue来分配侧链路资源的方法和装置
WO2019031808A1 (en) * 2017-08-07 2019-02-14 Lg Electronics Inc. METHOD FOR TRANSMITTING AND RECEIVING SIGNALS IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREOF
US11844085B2 (en) * 2019-08-23 2023-12-12 Qualcomm Incorporated Configured grants for sidelink communications
KR102569243B1 (ko) * 2020-04-09 2023-08-22 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템의 네트워크 스케줄링 모드에서 사이드링크 harq(hybrid automatic repeat request)에 대한 시간 간격을 처리하는 방법 및 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274012A1 (zh) * 2021-06-30 2023-01-05 华为技术有限公司 侧行链路反馈信息传输的方法和通信装置
WO2023025137A1 (zh) * 2021-08-27 2023-03-02 维沃移动通信有限公司 信息指示方法、装置、终端及可读存储介质
WO2023184050A1 (en) * 2022-03-26 2023-10-05 Qualcomm Incorporated Multi-bit sidelink feedback

Also Published As

Publication number Publication date
WO2020253770A1 (zh) 2020-12-24
US20220312388A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2020253770A1 (zh) 由用户设备执行的方法以及用户设备
CN111356234A (zh) 由用户设备执行的方法以及用户设备
US20220361204A1 (en) Method performed by user equipment, and user equipment
CN111867059A (zh) 由用户设备执行的方法以及用户设备
CN111601274A (zh) 由用户设备执行的方法以及用户设备
CN111356237A (zh) 由用户设备执行的方法以及用户设备
CN114641066A (zh) 由用户设备执行的方法以及用户设备
WO2021204191A1 (zh) 由用户设备执行的方法以及用户设备
CN113452491A (zh) 由用户设备执行的方法以及用户设备
CN112312579A (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
US20230276473A1 (en) Method performed by user equipment, and user equipment
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
US20230156745A1 (en) Method performed by user equipment, and user equipment
US20220417959A1 (en) Method performed by user equipment, and user equipment
CN114071426A (zh) 由用户设备执行的方法以及用户设备
CN112291846A (zh) 由用户设备执行的方法以及用户设备
WO2021139619A1 (zh) 由用户设备执行的方法以及用户设备
US20230379121A1 (en) Method performed by user equipment, and user equipment
US20230107902A1 (en) Method performed by user equipment, and user equipment
WO2022063070A1 (zh) 由用户设备执行的方法以及用户设备
WO2021160034A1 (zh) 由用户设备执行的方法以及用户设备
CN112770402A (zh) 由用户设备执行的方法以及用户设备
CN113923629A (zh) 由用户设备执行的方法以及用户设备
CN116456467A (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination