WO2019091409A1 - 自调谐方法、自调谐系统及移动终端 - Google Patents
自调谐方法、自调谐系统及移动终端 Download PDFInfo
- Publication number
- WO2019091409A1 WO2019091409A1 PCT/CN2018/114408 CN2018114408W WO2019091409A1 WO 2019091409 A1 WO2019091409 A1 WO 2019091409A1 CN 2018114408 W CN2018114408 W CN 2018114408W WO 2019091409 A1 WO2019091409 A1 WO 2019091409A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- self
- tuning
- frequency
- matching module
- tuning system
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0458—Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0278—Arrangements for impedance matching
Definitions
- the present application relates to the field of antenna technologies, and in particular, to a self-tuning method, a self-tuning system, and a mobile terminal.
- An antenna is a type of transducer that converts a guided wave propagating on a transmission line into an electromagnetic wave propagating in free space, or vice versa, and is a component used in a radio device to transmit or receive electromagnetic waves. Then, as a mobile terminal for information transmission, antennas are naturally installed, but because the environment in which the mobile terminal is used is diverse, and the environment around the mobile terminal is also changed at any time, the influence on the received signal and the transmitted signal of the antenna is very large, and the conventional The solution usually sets the aperture switch on the antenna of the mobile terminal for tuning, but it is still difficult to maintain good transmission and reception performance of the antenna in various environments.
- a self-tuning method for applying to a self-tuning system comprising:
- the self-tuning system is controlled to perform tuning until the self-tuning system tuned all states thereof. Obtaining a reflected signal corresponding to each state;
- the tuning parameter corresponding to the comparison result in the first preset range is used as the tuning parameter in the current use environment of the self-tuning system.
- the self-tuning system includes a frequency matching module and an impedance matching module.
- the frequency matching module when it is determined that the difference between the actual performance indicator value and the preset performance indicator value in the current usage environment is greater than a preset value, the frequency matching module is controlled to adjust the frequency, and the control center is controlled.
- the impedance matching module adjusts the impedance until the frequency matching module adjusts all of its own frequencies, and the impedance matching module adjusts all impedances corresponding to each frequency and obtains a reflected signal corresponding to each frequency.
- the tuning parameters matched by the self-tuning system include: a frequency matched by the frequency matching module and an impedance matched by the impedance matching module.
- the comparison result includes a standing wave ratio, a signal to noise ratio.
- a self-tuning system comprising:
- a first obtaining module configured to obtain an actual performance indicator value of the self-tuning system in a current use environment
- a tuning control module configured to: when the difference between the actual performance indicator value and the preset performance indicator value in the current usage environment is greater than a preset value, control the self-tuning system to perform tuning until the self-tuning system Tuning all states of itself to obtain a reflected signal corresponding to each state;
- a second acquiring module configured to compare each of the reflected signals with a radio frequency signal received by the self-tuning system to obtain a comparison result
- the tuning determination module is configured to use a tuning parameter corresponding to the comparison result in the first preset range as a tuning parameter in a current use environment of the self-tuning system.
- the self-tuning system includes a frequency matching module and an impedance matching module.
- the tuning control module is further configured to: when the difference between the actual performance indicator value and the preset performance indicator value in the current usage environment is greater than a preset value, control the frequency matching module. Adjusting the frequency, and controlling the impedance matching module to adjust the impedance until the frequency matching module adjusts all of its own frequencies, and the impedance matching module adjusts all impedances corresponding to each frequency, and obtains The reflected signal corresponding to each frequency.
- the tuning parameters matched by the self-tuning system include: a frequency matched by the frequency matching module and an impedance matched by the impedance matching module.
- a mobile terminal includes the application of the self-tuning method described above.
- a non-transitory computer readable storage medium storing computer instructions that cause the computer to perform the self-tuning method described above.
- a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, the computer being capable of executing the application when the program instructions are executed by a computer The self-tuning method described above.
- the self-tuning method first obtains the actual performance index value of the self-tuning system in the current use environment; and determines that the difference between the actual performance index value and the preset performance index value in the current usage environment is greater than a preset. Controlling the self-tuning system to perform tuning until the self-tuning system tunes out all of its states to obtain a reflected signal corresponding to each state; and second, respectively, each of the reflected signals and the self-tuning The RF signals received by the system are compared to obtain a comparison result. Finally, the tuning parameter corresponding to the comparison result in the first preset range is used as the tuning parameter of the self-tuning system.
- the self-tuning method can perform adaptive tuning according to the environment in which the self-tuning antenna is located, so that the self-tuning system maintains good transceiving performance.
- FIG. 1 is a schematic flow chart of a self-tuning method provided by an embodiment
- FIG. 2 is a comparison diagram of frequency response of one embodiment of the self-tuning system of the embodiment shown in FIG. 1;
- FIG. 3 is a schematic structural diagram of a self-tuning system provided by an embodiment
- FIG. 4 is a schematic structural diagram of a mobile terminal according to an embodiment
- FIG. 5 is a schematic structural diagram of one embodiment of a self-tuning antenna of the embodiment shown in FIG. 3; FIG.
- FIG. 6 is a schematic structural diagram of one embodiment of an impedance matching module and a frequency matching module of the self-tuning antenna of the embodiment shown in FIG. 3;
- FIG. 7 is a schematic structural diagram of one embodiment of a second inverted "F" antenna in the self-tuning antenna of the embodiment shown in FIG. 3;
- FIG. 8 is a schematic structural diagram of one embodiment of a second inverted "F" antenna of the embodiment shown in FIG. 3 having a tuning function;
- FIG. 9 is a schematic structural diagram of one embodiment of a self-tuning antenna of the embodiment shown in FIG. 3 having a coupling slot;
- FIG. 10 is a frequency response diagram of one embodiment of the self-tuning antenna of the embodiment of FIG.
- an embodiment provides a self-tuning method.
- the self-tuning method is applied to a self-tuning system, and when the usage environment changes, adaptive tuning can be performed according to the environment, so that the self-tuning system maintains good transceiving performance.
- the above methods include:
- Step S110 obtaining actual performance index values of the self-tuning system in the current use environment.
- the actual performance index value may be a performance parameter such as a standing wave ratio, a signal to noise ratio, or an impedance of the self-tuning system.
- the use environment can be in the use scene such as hand grip. Specifically, when the self-tuning system is in a different use environment, the self-tuning system has different resonance point positions in the Smith chart. When the self-tuning system is in a certain use environment, the mismatch sensor tracks the running status of the self-tuning system and provides real-time feedback of the impedance information of its operating conditions.
- Step S120 When it is determined that the difference between the actual performance indicator value and the preset performance indicator value in the current use environment is greater than a preset value, the self-tuning system is controlled to perform tuning until the self-tuning system tunes all states to obtain The reflected signal corresponding to each state.
- the preset value may be determined according to actual conditions.
- the self-tuning system is in a certain use environment, by comparing the position of the impedance information of the self-tuning system in the Smith chart information, when the impedance information of the two is greater than the preset value, the tuning function of the self-tuning system is started. During this time, the self-tuning system tunes out all of its states and obtains a reflected signal corresponding to each state.
- Step S130 comparing each reflected signal with a radio frequency signal received by the self-tuning system to obtain a comparison result.
- each reflected signal is compared with the radio frequency signal received by the self-tuning system to obtain a corresponding comparison result.
- Step S140 the tuning parameter corresponding to the comparison result in the first preset range is used as the tuning parameter in the current use environment of the self-tuning system.
- the tuning parameter matched by the self-tuning system corresponding to the comparison result in the first preset range is used as the optimal tuning parameter.
- the self-tuning system has the best transmission and reception performance.
- the above self-tuning method can perform adaptive tuning according to the environment in which the self-tuning system is located, so that the self-tuning system maintains good transceiving performance.
- the self-tuning system includes a frequency matching module and an impedance matching module.
- the frequency matching module is operative to adjust the frequency to match the frequency of the self-tuning system to the frequency of the radio frequency signal.
- An impedance matching module is used to adjust the impedance to match the impedance of the self-tuning system to the impedance of the RF signal.
- control frequency matching module when it is determined that the difference between the actual performance indicator value and the preset performance indicator value in the current use environment is greater than a preset value, the control frequency matching module adjusts the frequency, and controls the impedance matching module to perform impedance Adjust until the frequency matching module adjusts all of its own frequencies, and the impedance matching module adjusts all the impedances corresponding to each frequency and obtains a reflected signal corresponding to each frequency.
- the impedance of the self-tuning system is compared with the position in the Smith chart.
- the frequency matching module adjusts its own frequency and the impedance.
- the matching module adjusts its own impedance until the frequency matching module and the impedance matching module adjust all of their own frequency and impedance states.
- Each of the frequencies corresponds to all the impedances adjusted by the impedance matching module to obtain a corresponding reflected signal.
- the tuning parameters matched by the self-tuning system include a frequency matched by the frequency matching module and an impedance matched by the impedance matching module.
- the comparison result includes a standing wave ratio, a signal to noise ratio.
- a standing wave ratio In the antenna system, due to the impedance mismatch between the antenna and the feeder or the impedance of the antenna and the transmitter do not match, a reflected signal is generated in the antenna, and the incident signal and the reflected signal merge to generate a standing wave.
- R and r are the output impedance and the input impedance, respectively. When the two impedance values are the same, a perfect match is reached, the reflection coefficient K is equal to 0, and the standing wave ratio is 1.
- the standing wave ratio is usually used as the basis for the radiation efficiency of the antenna.
- the parameter ratio may also be other performance parameters that reflect the radiation efficiency of the antenna.
- the abscissa is the frequency (Frequency), and the unit is MHz; and the vertical axis is the return loss characteristic (S11) parameter, and the unit is dB.
- the standing wave comparison of the self-tuning system before and after the impedance matching module 300 and the frequency matching module 400a of the self-tuning system are in the range of 700 MHz to 900 MHz.
- the performance of the self-tuning system can be improved by at least 4 dB, and the maximum can be improved by about 15 dB.
- another embodiment provides a self-tuning system including:
- the first obtaining module 10 is configured to obtain an actual performance indicator value of the self-tuning system in a current use environment.
- the tuning control module 20 is configured to control the self-tuning system to perform tuning until the self-tuning is performed when the difference between the actual performance indicator value and the preset performance indicator value in the current usage environment is greater than a preset value.
- the system tunes out all of its states to obtain a reflected signal corresponding to each state.
- the second obtaining module 30 is configured to compare each of the reflected signals with a radio frequency signal received by the self-tuning system to obtain a comparison result.
- the tuning determination module 40 is configured to use a tuning parameter corresponding to the comparison result in the first preset range as a tuning parameter in a current use environment of the self-tuning system.
- the self-tuning system includes a frequency matching module and an impedance matching module.
- the tuning control module 20 is further configured to: when the difference between the actual performance indicator value and the preset performance indicator value in the current usage environment is greater than a preset value, the control frequency matching module adjusts the frequency, and The impedance matching module controls the impedance until the frequency matching module adjusts all of its own frequencies, and the impedance matching module adjusts all the impedances corresponding to each frequency and obtains a reflected signal corresponding to each frequency.
- the tuning parameters matched by the self-tuning system include a frequency matched by the frequency matching module and an impedance matched by the impedance matching module.
- Another embodiment provides a mobile terminal including applying the self-tuning method described above.
- the mobile terminal includes a back shell 700, and the antenna feed 100, the impedance matching module 300, the first frequency matching module 400a, the first ground end 500a, and the second ground end 500b are all located on the back shell 700. .
- the first connection end 211, the second connection end 212, and the third connection end 213 are located on the radiator 200.
- the radiator 200 and the back shell 700 may be connected into an integrated body by a nano-injection process, and the back shell 700 may be made of glass material, metal material, ceramic material, or the like. Any of them.
- the shape of the antenna slot may be a "C" slot or a straight slit, and the width of the antenna slot is between 0.1 mm and 3 mm, and the antenna slot is generally filled with a medium.
- the back shell 700 may be made of any one of a glass material and a ceramic material, and the radiator 200 is surrounded by the metal frame to surround the back shell 700.
- the self-tuning system can be a self-tuning antenna.
- the present application will be described in detail by taking a self-tuning antenna as an example.
- the self-tuning antenna includes an antenna feed 100, a radiator 200, an impedance matching module 300, and a first frequency matching module 400a.
- the self-tuning antenna is also provided with a first ground terminal 500a.
- the antenna feed 100, the impedance matching module 300, and the radiator 200 are electrically connected in sequence, and the connection point of the impedance matching module 300 and the radiator 200 is the first connection end 211, the radiator 200, and the first frequency matching module.
- the first ground terminal 500a and the first ground terminal 500a are electrically connected in sequence, and the connection point of the first frequency matching module 400a and the radiator 200 is the second connection end 212.
- the first connection end 211 is located at a different position than the second connection end 212.
- antenna feed 100 is used to provide input power to a self-tuning antenna.
- the impedance matching module 300 is used to adjust the impedance of the self-tuning antenna.
- the first frequency matching module 400a is for adjusting the frequency of the self-tuning antenna.
- the antenna feed 100, the impedance matching module 300, and the first connection end 211 on the radiator 200 are sequentially connected to form a first branch, the second connection end 212 on the radiator 200, the first frequency matching module 400, and the second
- the grounding ends are sequentially connected to form a second branch, and the first branch, the radiator 200 and the second branch are sequentially connected to form a first inverted "F" antenna disposed laterally, and the opening of the "F" is disposed toward the antenna feed 100.
- the antenna feed 100 emits a radio frequency signal
- the impedance matching module 300 adjusts according to the input impedance of the antenna feed 100 to match the impedance of the self-tuning antenna with the input impedance of the antenna feed 100; according to the frequency of the radio frequency signal,
- the first frequency matching module 400 adjusts to match the operating frequency of the self-tuning antenna with the resonant frequency, thereby reducing the reflected signal, thereby enabling the self-tuning antenna to have higher radiation efficiency.
- the distance between the first connection end 211 of the first inverted "F" antenna and the long side of the radiator 200 is 23 mm
- the position of the second connection end 212 is opposite to the long side of the radiator 200. When the side distance is 20 mm (the long side of the radiator 200 is opposite to the other side of the long side of the radiator 200), the first inverted "F" antenna can generate a low frequency.
- the self-tuning antenna is connected to the first frequency matching module 400a between the first grounding end 500a and the radiator 200, and the impedance matching module 300 is connected between the antenna feeding source 100 and the radiator 200, and is adjusted by the first frequency matching module 400a.
- the frequency of the self-tuning antenna is matched with the resonant frequency, and the impedance of the self-tuning antenna is adjusted by the impedance matching module 300 to match the target impedance, thereby minimizing the standing wave ratio of the RF signal and the reflected signal, thereby making the self-tuning antenna in the environment
- adaptive tuning can be performed according to the actual situation, so as to maintain good transmission and reception performance.
- the impedance matching module 300 includes a tunable unit 310 .
- a tunable unit 310 is coupled between the antenna feed 100 and the radiator 200 for adjusting the impedance of the self-tuning antenna.
- the antenna feed 100, the tunable unit 310, and the first connection end 211 on the radiator 200 are sequentially connected to form a first branch, the second connection end 212 on the radiator 200, the first frequency matching module 400, and the second
- the ground ends are sequentially connected to form a second branch, and the first branch, the radiator 200 and the second branch are sequentially connected to form a first inverted "F" antenna disposed laterally, and the opening of the "F" is disposed toward the end of the antenna feed 100 .
- the tunable unit 310 is configured to adjust its own impedance to match the impedance of the first inverted "F” antenna with the target impedance of the self-tuning antenna.
- the impedance matching module 300 further includes a first matching unit 320.
- the first matching unit 320 is connected between the antenna feed 100 and the tunable unit 310 for adjusting the self-tuning antenna to resonate with the RF signal transmitted by the antenna feed.
- the antenna feed source 100, the first matching unit 320, the tunable unit 310, and the first connection end 211 on the radiator 200 are sequentially connected to form a first branch, and the second connection end 212 on the radiator 200 is first.
- the frequency matching module 400 and the second ground end are sequentially connected to form a second branch, and the first branch, the radiator 200 and the second branch are sequentially connected to form a first inverted "F" antenna disposed laterally, and the opening of the "F" Set toward the antenna feed 100 end.
- the first matching unit 320 is configured to coordinate the self-tuning antenna to enable the self-tuning antenna to resonate with external signals of more frequency bands, thereby better implementing multi-band operation.
- the first matching unit 320 may be a tunable capacitor, and the self-tuning antenna can achieve multi-band operation by adjusting the size of the tunable capacitor.
- the first frequency matching module 400a includes an aperture switch unit 410.
- the aperture switch unit 410 is coupled between the radiator 200 and the first ground terminal 500a for adjusting the frequency of the self-tuning antenna.
- the antenna feed 100, the impedance matching module 300, and the first connection end 211 on the radiator 200 are sequentially connected to form a first branch, the second connection end 212 on the radiator 200, the aperture switch unit 410, and the first ground.
- the ends 500a are sequentially connected to form a second branch, and the first branch, the radiator 200 and the second branch are sequentially connected to form a first inverted "F" antenna disposed laterally, and the opening of the "F" is disposed toward the antenna feed 100.
- the aperture switch unit 410 is configured to adjust its own frequency to match the frequency of the first inverted "F" antenna with the frequency of the radio frequency signal.
- the aperture switch unit 410 can be a high-Q variable capacitor. When the frequency of the RF signal changes, the load of the variable capacitor is also adjusted so that the frequency of the first inverted "F" antenna matches the frequency of the RF signal.
- the first frequency matching module 400 further includes a second matching unit 420.
- the second matching unit 420 is connected between the aperture switch unit 410 and the first ground end 500a for adjusting the self-tuning antenna to resonate with the radio frequency signal transmitted by the antenna feed.
- the second matching unit 420 can be a tunable capacitor. By adjusting the size of the tunable capacitor, the self-tuning antenna can resonate with external signals of more frequency bands, receive or transmit information, and better realize multi-band operation.
- the self-tuning antenna is further provided with a second ground end 500b.
- the radiator 200 is electrically connected to the second ground end 500b.
- the connection point between the radiator 200 and the second ground end 500b is the third connection end 213.
- the position of the third connection end 213 is different from the position of the first connection end 211.
- the antenna connection 100, the impedance matching module 300, and the first connection end 211 on the radiator 200 are sequentially connected to form a third branch, and the third connection end 213 and the second ground end 500b on the radiator 200 are sequentially connected to form a first
- the four branches, the third branch, the radiator 200 and the fourth branch are sequentially connected to form a second inverted "F" antenna disposed laterally, and the opening of the "F" is disposed toward the end of the antenna feed 100.
- the distance between the first connection end 211 of the second inverted “F” antenna and the long side of the radiator 200 is 23 mm
- the position of the third connection end 213 and the first connection end 211 are The distance between the positions is 4 mm
- the position of the third connection end 213 is located to the right of the position where the first connection end 211 is located.
- the second inverted “F” antenna can generate an intermediate frequency, further broadening the operating frequency of the self-tuning antenna.
- the first connection end 211 of the second inverted “F” antenna is located at a distance of 23 mm from the long side of the radiator 200
- the third connection end 213 is located at the first connection.
- the left end of the position where the end 211 is located and the distance between the position where the first connection end 211 is located is 3.5 mm, and the second inverted "F” antenna can still generate an intermediate frequency.
- the self-tuning antenna further includes a second frequency matching module 400b.
- the second frequency matching module 400b is connected between the radiator 200 and the second ground terminal 500b.
- the antenna feed 100, the impedance matching module 300, and the first connection end 211 on the radiator 200 are sequentially connected to form a third branch, the third connection end 213 on the radiator 200, the second frequency matching module 400b, and the The two grounding ends 500b are sequentially connected to form a fourth branch, and the third branch, the radiator 200 and the fourth branch are sequentially connected to form a second inverted "F" antenna disposed laterally, and the opening of the "F" faces the antenna feed 100.
- Settings are provided.
- the second inverted "F" antenna can not only perform impedance adjustment to match the input impedance of the antenna feed 100, but also adjust the intermediate frequency range according to the environment, so that The self-tuning antenna maintains good transceiving performance in the mid-range.
- the radiator 200 is provided with a coupling slit 600.
- the width of the coupling slit 600 is between 0.2 mm and 2.0 mm.
- the width of the coupling slit 600 is 0.6 mm, and the distance between the center of the coupling slit 600 and the left side of the radiator 200 is 16 mm.
- the coupling slot may have a width of 0.2 mm.
- the coupling slot 600 divides the radiator 200 into a first radiating unit 210 and a second radiating unit 220, and an area of the first radiating unit 210 is larger than an area of the second radiating unit 220.
- the first connection end 211 and the second connection end 212 are located in the second radiation unit 220.
- the energy of the antenna feed 100 to the first radiating element 210 can be coupled to the second radiating element 220 through the coupling slot 600, thereby forming a new radiated electromagnetic wave for the purpose of extending the frequency band.
- the first inverted "F" antenna can generate a low frequency, and after being coupled through the coupling slot 600, the first inverted "F” antenna can operate in the high and low frequency ranges.
- the second inverted “F” antenna can generate an intermediate frequency. After being coupled through the coupling slot 600, the second inverted “F” antenna can operate in the medium and high frequency range.
- the self-tuning antenna further includes a first inverted “F” antenna and a second inverted “F” antenna, so that the self-tuning antenna can operate in the low, medium and high frequency ranges. Therefore, the coupling slot 600 can couple the energy of the antenna feed 100 to the first radiating element to the second radiating element, thereby generating a high frequency, so that the self-tuning antenna can work normally at a high frequency, which can further broaden the self.
- the operating frequency of the antenna is tuned to cover all frequency bands required by LTE technology.
- the abscissa is Frequency (in frequency) and the unit is MHz; and the vertical axis is S11 (return loss characteristic) parameter, and the unit is dB.
- the self-tuning antenna has very good broadband characteristics when the first frequency matching module 400a and the impedance matching module 300 are not adjusted.
- the mobile terminal can support 6-mode 34-frequency and more than 200 carrier aggregation combinations, and the radiation efficiency of the self-tuning antenna in each frequency band is also ideal, thereby enabling self-tuning.
- the antenna maintains good transceiving performance in all frequency bands.
- a mismatch sensor is attached to the external connection of the self-tuning antenna.
- the mismatch sensor tracks the running status of the self-tuning antenna and provides feedback values reflecting the actual situation of the self-tuning antenna, such as VSWR, signal-to-noise ratio, Smith chart information, etc., and then compares the actual performance index value and ideal performance index of the self-tuning antenna. If the relationship between the values is greater than the preset value, the mismatch sensor controls and adjusts the first frequency matching module 400a and the impedance matching module 300 in the use environment in real time.
- the actual performance index value is numerical information such as a standing wave ratio, a signal-to-noise ratio, and an impedance of the self-tuning antenna under actual conditions
- the ideal performance index value is a target standing wave ratio and a target when the self-tuning antenna has the best radiation efficiency.
- Numerical information such as signal-to-noise ratio and target impedance.
- the position of the self-tuning antenna in the Smith chart also changes when the environment in which the self-tuning antenna is placed changes. Therefore, when the self-tuning antenna is in a certain use environment, the mismatch sensor tracks the operating state of the self-tuning antenna and provides Smith chart information in the usage environment, and compares the impedance of the self-tuning antenna with the target impedance. The difference between the two, when the difference between the two is greater than the preset value, can identify the use environment in which the self-tuning antenna is located, and then activate the impedance matching module 300 and the first frequency matching module 400a in the use environment.
- the mismatch sensor controls the aperture switch unit 410 of the self-tuning antenna to quickly switch to the pre-write state to match the frequency of the self-tuning antenna to the frequency of the radio frequency signal.
- the mismatch sensor controls the tunable unit 310 to perform impedance adjustment, and compares the standing wave ratio of the RF signal and the reflected signal of the self-tuning antenna, each operation time is very short, and automatically traverses the self-tuning antenna by repeatedly repeating the operation. All states of the tunable unit 310 find the minimum standing wave ratio, which is the best state for the self-tuning antenna transceiver performance.
- a non-transitory computer readable storage medium storing computer instructions for causing a computer to perform the self-tuning method described herein.
- a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, the computer being capable of performing the self-tuning method of the present application described above when the program instructions are executed by a computer.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Details Of Aerials (AREA)
- Transceivers (AREA)
Abstract
本申请涉及一种自调谐方法,应用于自调谐系统,该方法包括:获取所述自调谐系统在当前使用环境下的实际性能指标值;判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述自调谐系统进行调谐,直至所述自调谐系统调谐出自身所有状态,以获得与每一状态相对应的反射信号;将各所述反射信号分别与所述自调谐系统接收的射频信号进行比较,得到比较结果;将处于第一预设范围内的比较结果对应的调谐参数作为所述自调谐系统当前使用环境下的调谐参数。上述自调谐方法,可根据自调谐天线所处的环境,进行自适应调谐,从而使自调谐天线保持良好的收发性能。
Description
本申请要求于2017年11月13日提交中国专利局、申请号为201711115376.7、发明名称为“自调谐方法、自调谐系统及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及天线技术领域,特别是涉及一种自调谐方法、自调谐系统及移动终端。
天线作为一种变换器,它把传输线上传播的导行波,变换成在自由空间中传播的电磁波,或者进行相反的变换,是无线电设备中用来发射或接收电磁波的部件。那么,作为信息传输的移动终端自然也少不了安装天线,但是由于移动终端的使用环境具有多样性,而且移动终端周边的环境也是随时变化的,对天线接收信号和发射信号的影响非常大,而传统的解决方案通常在移动终端的天线设置孔径开关以进行调谐,但还是很难使天线在各种环境下都能保持良好的收发性能。
申请内容
基于此,有必要针对使用环境条件的变化影响天线收发性能的问题,提供一种自调谐方法、自调谐系统。此外,还提供一种应用上述自调谐方法的移动终端。
一种自调谐方法,应用于自调谐系统,所述方法包括:
获取所述自调谐系统在当前使用环境下的实际性能指标值;
判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述自调谐系统进行调谐,直至所述自调谐系统调谐出自身所有状态,以获得与每一状态相对应的反射信号;
将各所述反射信号分别与所述自调谐系统接收的射频信号进行比较,得到比较结果;
将处于第一预设范围内的比较结果对应的调谐参数作为所述自调谐系统当前使用环境下的调谐参数。
在其中一个实施例中,所述自调谐系统包括频率匹配模块和阻抗匹配模块。
在其中一个实施例中,判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述频率匹配模块对频率进行调节,并控制所述阻抗匹配模块对阻抗进行调节,直至所述频率匹配模块调节出自身的所有频率,所述阻抗匹配模块调节出与每一频率相对应的所有阻抗,并获得与每一频率相对应的反射信号。
在其中一个实施例中,所述自调谐系统所匹配的调谐参数包括:频率匹配模块所匹配的频率及阻抗匹配模块所匹配的阻抗。
在其中一个实施例中,所述比较结果包括驻波比、信噪比。
一种自调谐系统,包括:
第一获取模块,用于获取所述自调谐系统在当前使用环境下的实际性能指标值;
调谐控制模块,用于判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述自调谐系统进行调谐,直至所述自调谐系统调谐出自身所有状态,以获得与每一状态相对应的反射信号;
第二获取模块,用于将各所述反射信号分别与所述自调谐系统接收的射频信号进行比较,得到比较结果;
调谐确定模块,用于将处于第一预设范围内的比较结果对应的调谐参数作为所述自调谐系统当前使用环境下的调谐参数。
在其中一个实施例中,所述自调谐系统包括频率匹配模块和阻抗匹配模块。
在其中一个实施例中,所述调谐控制模块还用于判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述频率匹配模块对频率进行调节,并控制所述阻抗匹配模块对阻抗进行调节,直至所述频率匹配模块调节出自身的所有频率,所述阻抗匹配模块调节出与每一频率相对应的所有阻抗,并获得与每一频率相对应的反射信号。
在其中一个实施例中,所述自调谐系统所匹配的调谐参数包括:频率匹配模块所匹配的频率及阻抗匹配模块所匹配的阻抗。
一种移动终端,包括应用上述的自调谐方法。
一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机指令,所述计算机指令使所述计算机执行本申请上述的自调谐方法。
一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行本申请上述的自调谐方法。
上述自调谐方法,先获取所述自调谐系统在当前使用环境下的实际性能指标值;再判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述自调谐系统进行调谐,直至所述自调谐系统调谐出自身所有状态,以获得与每一状态相对应的反射信号;其次,将各所述反射信号分别与所述自调谐系统接收的射频信号进行比较,得到比较结果;最后,将处于第一预设范围内的比较结果对应的调谐参数作为所述自调谐系统的调谐参数。该自调谐方法可根据自调谐天线所处的环境,进行自适应调谐,从而使自调谐系统保持良好的收发性能。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施方式提供的自调谐方法的流程示意图;
图2为图1所示实施方式的自调谐系统的其中一个实施例的频率响应对比图;
图3为一实施方式提供的自调谐系统的结构示意图;
图4为一实施方式提供的移动终端的结构示意图;
图5为图3所示实施方式的自调谐天线的其中一个实施例的结构示意图;
图6为图3所示实施方式的自调谐天线的阻抗匹配模块和频率匹配模块的其中一个实施例的结构示意图;
图7为图3所示实施方式的自调谐天线中第二倒“F”天线的其中一个实施例的结构示意图;
图8为图3所示实施方式的第二倒“F”天线具备调谐功能的其中一个实施例的结构示意图;
图9为图3所示实施方式的自调谐天线具有耦合缝隙的其中一个实施例的结构示意图;
图10为图3所示实施方式的自调谐天线的其中一个实施例的频率响应图。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于发明的技 术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参考图1,一实施方式提供了一种自调谐方法。该自调谐方法应用于自调谐系统,在使用环境变化时,能够根据所处环境进行自适应调谐,以使自调谐系统保持良好的收发性能。上述方法包括:
步骤S110,获取自调谐系统在当前使用环境下的实际性能指标值。
其中,实际性能指标值可以是自调谐系统的驻波比、信噪比或阻抗等性能参数。使用环境可以是手握等使用场景下。具体地,当自调谐系统处于不同的使用环境下,自调谐系统在史密斯圆图中的谐振点位置各不相同。当自调谐系统处于某种使用环境下,失配传感器跟踪自调谐系统的运行状况,并将其运行状况的阻抗信息进行实时反馈。
步骤S120,判断实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制自调谐系统进行调谐,直至自调谐系统调谐出自身所有状态,以获得与每一状态相对应的反射信号。
具体地,预设值可以根据实际情况确定。当自调谐系统处于某一使用环境下,通过对比自调谐系统的阻抗信息在史密斯圆图信息中的位置,当两者的阻抗信息大于预设值时,启动自调谐系统的调谐功能。期间,自调谐系统调谐出自身所有的状态,并获得与每一状态相对应的反射信号。
步骤S130,将各反射信号分别与自调谐系统接收的射频信号进行比较,得到比较结果。
具体地,将各反射信号与自调谐系统接收的射频信号一一进行比较,得到相对应的比较结果。
步骤S140,将处于第一预设范围内的比较结果对应的调谐参数作为自调谐系统当前使用环境下的调谐参数。
具体地,根据比较结果的大小,将处于第一预设范围内的比较结果所 对应的自调谐系统所匹配的调谐参数作为最佳的调谐参数,此时,自调谐系统的收发性能最佳。
上述自调谐方法,可根据自调谐系统所处的环境,进行自适应调谐,从而使自调谐系统保持良好的收发性能。
在一实施例中,自调谐系统包括频率匹配模块和阻抗匹配模块。
具体地,频率匹配模块用于对频率进行调节,以使自调谐系统的频率与射频信号的频率相匹配。阻抗匹配模块用于对阻抗进行调节,以使自调谐系统的阻抗与射频信号的阻抗相匹配。
在一实施例中,判断实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制频率匹配模块对频率进行调节,并控制阻抗匹配模块对阻抗进行调节,直至频率匹配模块调节出自身的所有频率,阻抗匹配模块调节出与每一频率相对应的所有阻抗,并获得与每一频率相对应的反射信号。
具体地,在自调谐系统处于某一使用环境下时,对比自调谐系统的阻抗在史密斯圆图中的位置,当两者大于预设值时,频率匹配模块对自身的频率进行调节,并且阻抗匹配模块对自身的阻抗进行调节,直至频率匹配模块和阻抗匹配模块调节出自身所有的频率和阻抗状态。其中,每一个频率均对应阻抗匹配模块所调节出的所有阻抗,以获得与之相对应的反射信号。
在一实施例中,自调谐系统所匹配的调谐参数包括频率匹配模块所匹配的频率及阻抗匹配模块所匹配的阻抗。
在一实施例中,比较结果包括驻波比、信噪比。在天线系统中,由于天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,都会在天线中产生反射信号,而入射信号和反射信号汇合后产生驻波。驻波比的计算公式为VSWR=R/r=(1+K)/(1-K),其中反射系数K=(R-r)/(R+r),K为负值时,表明相位相反,R和r分别是输出阻抗和输入阻抗。当两个阻抗数值一样时,即达到完全匹配,反射系数K等于0,驻波比为1。这是一种理想的 状况,实际上总存在反射信号,所以驻波比总是大于1的。因此,驻波比通常作为天线辐射效率的依据,驻波比越小,说明反射信号也越少,天线的辐射效率也越高。另外,参数比也可以是其他可以反映天线辐射效率高低的性能参数。
请参考图2,采用上述自调谐方法时,在频率响应对比图中,横坐标为频率(Frequency),单位为MHz;纵轴为回波损耗特性(S11)参数,单位为dB。从图中可以看出,在700MHZ-900MHZ范围内,自调谐系统的阻抗匹配模块300和频率匹配模块400a启动前后,自调谐系统的驻波对比情况。可见,利用自调谐系统的阻抗匹配模块300和频率匹配模块400a进行自适应时,自调谐系统的性能至少可提升4dB,最大可提升达15dB左右。
请参考图3,另一实施方式提供了一种自调谐系统,包括:
第一获取模块10,用于获取所述自调谐系统在当前使用环境下的实际性能指标值。
调谐控制模块20,用于判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述自调谐系统进行调谐,直至所述自调谐系统调谐出自身所有状态,以获得与每一状态相对应的反射信号。
第二获取模块30,用于将各所述反射信号分别与所述自调谐系统接收的射频信号进行比较,得到比较结果。
调谐确定模块40,用于将处于第一预设范围内的比较结果对应的调谐参数作为所述自调谐系统当前使用环境下的调谐参数。
在一实施例中,自调谐系统包括频率匹配模块和阻抗匹配模块。
在一实施例中,调谐控制模块20还用于判断实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制频率匹配模块对频率进行调节,并控制阻抗匹配模块对阻抗进行调节,直至频率匹配模块调节出自身的所有频率,阻抗匹配模块调节出与每一频率相对应的所 有阻抗,并获得与每一频率相对应的反射信号。
在一实施例中,自调谐系统所匹配的调谐参数包括频率匹配模块所匹配的频率及阻抗匹配模块所匹配的阻抗。
另一实施方式提供了一种移动终端,包括应用上述的自调谐方法。
具体地,请参考图4,该移动终端包括背壳700,天线馈源100、阻抗匹配模块300、第一频率匹配模块400a、第一接地端500a及第二接地端500b均位于背壳700上。而第一连接端211、第二连接端212及第三连接端213位于辐射体200上。当背壳700和辐射体200之间存在天线缝隙时,可采用纳米注塑工艺将辐射体200和背壳700连接成一体化机身,同时背壳700可采用玻璃材质、金属材质及陶瓷材质等中的任一种。另外,天线缝隙的形状可以是“C”形缝或者直缝,天线缝隙的宽度介于0.1mm至3mm之间,且该天线缝隙一般由介质填充。当背壳700和辐射体200之间不存在天线缝隙时,背壳700可采用玻璃材质及陶瓷材质等中的任一种,而辐射体200开采用金属边框环绕在背壳700的四周。
另外,自调谐系统可以是自调谐天线。为了便于说明,本申请以自调谐天线为例进行详细说明。
请参考图5,自调谐天线包括:天线馈源100、辐射体200、、阻抗匹配模块300及第一频率匹配模块400a。自调谐天线还设有第一接地端500a。
本实施方式中,天线馈源100、阻抗匹配模块300及辐射体200依次电连接,且阻抗匹配模块300与辐射体200的连接点为第一连接端211,辐射体200、第一频率匹配模块400a及第一接地端500a依次电连接,且第一频率匹配模块400a与辐射体200的连接点为第二连接端212。第一连接端211所处位置不同于第二连接端212所处位置。具体地,天线馈源100用于为自调谐天线提供输入功率。阻抗匹配模块300用于调节自调谐天线的阻抗。第一频率匹配模块400a用于调节自调谐天线的频率。
其中,天线馈源100、阻抗匹配模块300及辐射体200上的第一连接端211依次连接形成第一支路,辐射体200上的第二连接端212、第一频 率匹配模块400及第二接地端依次连接形成第二支路,第一支路、辐射体200及第二支路依次连接形成横向设置的第一倒“F”天线,且“F”的开口朝向天线馈源100设置。例如,天线馈源100发出射频信号,根据天线馈源100的输入阻抗,阻抗匹配模块300进行调节,以使自调谐天线的阻抗与天线馈源100的输入阻抗相匹配;根据射频信号的频率,第一频率匹配模块400进行调节,以使自调谐天线的工作频率与谐振频率相匹配,从而降低反射信号,进而使自调谐天线具有较高的辐射效率。另外,在第一倒“F”天线的第一连接端211所处位置与辐射体200的长边一侧的距离为23mm,第二连接端212所处位置与辐射体200的长边另一侧的距离为20mm时(辐射体200的长边一侧与辐射体200的长边另一侧相对),该第一倒“F”天线可产生低频。
上述自调谐天线,在第一接地端500a与辐射体200之间接入第一频率匹配模块400a及在天线馈源100和辐射体200之间接入阻抗匹配模块300,通过第一频率匹配模块400a调节自调谐天线的频率以与谐振频率相匹配,通过阻抗匹配模块300调节自调谐天线的阻抗以与目标阻抗相匹配,从而使射频信号和反射信号的驻波比最小,进而使得自调谐天线在环境变化时,可根据实际情况进行自适应调谐,进而保持良好的收发性能。
在一实施例中,请参考图6,阻抗匹配模块300包括可调谐单元310。可调谐单元310连接于天线馈源100与辐射体200之间,用于调节自调谐天线的阻抗。其中,天线馈源100、可调谐单元310及辐射体200上的第一连接端211依次连接形成第一支路,辐射体200上的第二连接端212、第一频率匹配模块400及第二接地端依次连接形成第二支路,第一支路、辐射体200及第二支路依次连接形成横向设置的第一倒“F”天线,且“F”的开口朝向天线馈源100端设置。其中,可调谐单元310用于调节自身阻抗以使第一倒“F”天线的阻抗与自调谐天线的目标阻抗相匹配。
进一步地,阻抗匹配模块300还包括第一匹配单元320。第一匹配单元320连接于天线馈源100与可调谐单元310之间,用于调节自调谐天线 以与天线馈源传输的射频信号谐振。具体地,天线馈源100、第一匹配单元320、可调谐单元310及辐射体200上的第一连接端211依次连接形成第一支路,辐射体200上的第二连接端212、第一频率匹配模块400及第二接地端依次连接形成第二支路,第一支路、辐射体200及第二支路依次连接形成横向设置的第一倒“F”天线,且“F”的开口朝向天线馈源100端设置。第一匹配单元320用于协调自调谐天线以使自调谐天线能与更多频段的外界信号进行谐振,更好的实现多频段工作。具体地,第一匹配单元320可以是可调电容,可通过调节可调电容的大小,以使自调谐天线实现多频段工作。
在一实施例中,请继续参考图6,第一频率匹配模块400a包括孔径开关单元410。孔径开关单元410连接于辐射体200与第一接地端500a之间,用于调节自调谐天线的频率。具体地,天线馈源100、阻抗匹配模块300及辐射体200上的第一连接端211依次连接形成第一支路,辐射体200上的第二连接端212、孔径开关单元410及第一接地端500a依次连接形成第二支路,第一支路、辐射体200及第二支路依次连接形成横向设置的第一倒“F”天线,且“F”的开口朝向天线馈源100设置。其中,孔径开关单元410用于调节自身频率以使第一倒“F”天线的频率与射频信号的频率相匹配。孔径开关单元410可以是高Q值的可变电容,当射频信号频率发生变化时,可变电容的负载也会被调节,使得第一倒“F”天线的频率与射频信号的频率相匹配。
进一步地,第一频率匹配模块400还包括第二匹配单元420。第二匹配单元420连接于孔径开关单元410与第一接地端500a之间,用于调节自调谐天线以与天线馈源传输的射频信号谐振。具体地,第二匹配单元420可以是可调电容,通过调节可调电容的大小,能够使得自调谐天线与更多频段的外界信号进行谐振,接收或发送信息,更好的实现多频段工作。
在一实施例中,请参考图7,自调谐天线还设有第二接地端500b。辐射体200与第二接地端500b电连接,辐射体200与第二接地端500b的连 接点为第三连接端213,第三连接端213所处位置不同于第一连接端211所处位置与第二连接端212所处位置。
其中,天线馈源100、阻抗匹配模块300及辐射体200上的第一连接端211依次连接形成第三支路,辐射体200上的第三连接端213及第二接地端500b依次连接形成第四支路,第三支路、辐射体200及第四支路依次连接形成横向设置的第二倒“F”天线,且“F”的开口朝向天线馈源100端设置。具体地,第二倒“F”天线的第一连接端211所处位置与辐射体200的长边一侧之间的距离为23mm,第三连接端213所处位置与第一连接端211所处位置之间的距离为4mm,且第三连接端213所处位置位于第一连接端211所处位置的右侧。由此,该第二倒“F”天线可产生中频,进一步拓宽了自调谐天线的工作频率。在其他实施例中,第二倒“F”天线的第一连接端211所处位置与辐射体200的长边一侧之间的距离为23mm,第三连接端213所处位置位于第一连接端211所处位置的左侧,且与第一连接端211所处位置之间的距离为3.5mm,该第二倒“F”天线依然可产生中频。
在一实施例中,请参考图8,自调谐天线还包括第二频率匹配模块400b。第二频率匹配模块400b连接于辐射体200与第二接地端500b之间。具体地,天线馈源100、阻抗匹配模块300及辐射体200上的第一连接端211依次连接形成第三支路,辐射体200上的第三连接端213、第二频率匹配模块400b及第二接地端500b依次连接形成第四支路,第三支路、辐射体200及第四支路依次连接形成横向设置的第二倒“F”天线,且“F”的开口朝向天线馈源100设置。由于接入第二频率匹配模块400b,该第二倒“F”天线不仅可以进行阻抗调节以与天线馈源100的输入阻抗相匹配,也可以根据所处环境进行中频范围内的调节,以使自调谐天线在中频范围内保持良好的收发性能。
在一实施例中,请参考图9,辐射体200设有耦合缝隙600。其中,耦合缝隙600的宽度介于0.2mm至2.0mm之间。具体地,该耦合缝隙600 的宽度为0.6mm,且该耦合缝隙600的中心与辐射体200的左侧边之间的距离为16mm。在其他实施例中,该耦合缝隙的宽度可为0.2mm。
耦合缝隙600将所述辐射体200分为第一辐射单元210和第二辐射单元220,且第一辐射单元210的面积大于第二辐射单元220的面积。第一连接端211和第二连接端212位于第二辐射单元220。具体地,天线馈源100给第一辐射单元210的能量可以通过耦合缝隙600耦合给第二辐射单元220,从而形成新的辐射电磁波,达到扩展频带的目的。例如,第一倒“F”天线可产生低频,通过该耦合缝隙600耦合后,第一倒“F”天线可在高、低频范围内工作。第二倒“F”天线可产生中频,通过该耦合缝隙600耦合后,第二倒“F”天线可在中、高频范围内工作。而自调谐天线又包括第一倒“F”天线和第二倒“F”天线,从而使该自调谐天线可在低、中、高频范围内工作。因此,该耦合缝隙600可将天线馈源100给第一辐射单元的能量耦合给第二辐射单元,从而产生高频,以使自调谐天线可在高频下正常工作,可进一步拓宽了该自调谐天线的工作频率,从而可以覆盖LTE技术要求的全部频段。
请参考图10,在上述自调谐天线的频率响应图中,横坐标为Frequency(频率),单位为MHz;纵轴为S11(回波损耗特性)参数,单位为dB。从图中可以看出,在不调节第一频率匹配模块400a和阻抗匹配模块300时,该自调谐天线就具有非常好的宽频特性。通过调节第一频率匹配模块400a和阻抗匹配模块300,可以使移动终端支持6模34频以及两百多个载波聚合组合,同时各频段下自调谐天线的辐射效率也非常理想,从而使自调谐天线在各频段下均保持良好的收发性能。
此外,自调谐天线的外部连接有失配传感器。失配传感器跟踪自调谐天线的运行状况,并提供反映自调谐天线实际情况的反馈值,如VSWR、信噪比、史密斯圆图信息等,再对比自调谐天线的实际性能指标值和理想性能指标值之间的关系,若大于预设值则失配传感器实时控制并调节该使用环境下的第一频率匹配模块400a和阻抗匹配模块300。具体地,实际 性能指标值是自调谐天线在实际情况下的驻波比、信噪比和阻抗等数值信息,理想性能指标值是自调谐天线具有最佳辐射效率时的目标驻波比、目标信噪比及目标阻抗等数值信息。
具体地,当自调谐天线所处的环境变化时,自调谐天线在史密斯圆图中的位置也发生变化。因此,当自调谐天线处于某一使用环境时,失配传感器跟踪到该自调谐天线的运行状况,并提供该使用环境下的史密斯圆图信息,并对比自调谐天线的阻抗与目标阻抗之间的差值,当两者的差值大于预设值时,即可识别自调谐天线所处的使用环境,则启动该使用环境下的阻抗匹配模块300和第一频率匹配模块400a。接着,失配传感器控制自调谐天线的孔径开关单元410快速切换到预先写入状态,以使自调谐天线的频率与射频信号的频率相匹配。同时失配传感器控制可调谐单元310进行阻抗调节,并对比自调谐天线的射频信号和反射信号的驻波比,每一次操作时间会非常短,通过不停地重复操作,自动遍历自调谐天线中可调谐单元310的所有状态,找出最小驻波比,即为自调谐天线收发性能的最佳状态。
一种非暂态计算机可读存储介质,非暂态计算机可读存储介质存储有计算机指令,计算机指令使计算机执行本申请上述的自调谐方法。
一种计算机程序产品,计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,计算机程序包括程序指令,当程序指令被计算机执行时,计算机能够执行本申请上述的自调谐方法。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的 保护范围应以所附权利要求为准。
Claims (12)
- 一种自调谐方法,应用于自调谐系统,其特征在于,所述方法包括:获取所述自调谐系统在当前使用环境下的实际性能指标值;判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述自调谐系统进行调谐,直至所述自调谐系统调谐出自身所有状态,以获得与每一状态相对应的反射信号;将各所述反射信号分别与所述自调谐系统接收的射频信号进行比较,得到比较结果;将处于第一预设范围内的比较结果对应的调谐参数作为所述自调谐系统当前使用环境下的调谐参数。
- 根据权利要求1所述的自调谐方法,其特征在于,所述自调谐系统包括频率匹配模块和阻抗匹配模块。
- 根据权利要求2所述的自调谐方法,其特征在于,所述判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述自调谐系统进行调谐,直至所述自调谐系统调谐出自身所有状态,以获得与每一状态相对应的反射信号的步骤包括:判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述频率匹配模块对频率进行调节,并控制所述阻抗匹配模块对阻抗进行调节,直至所述频率匹配模块调节出自身的所有频率,所述阻抗匹配模块调节出与每一频率相对应的所有阻抗,并获得与每一频率相对应的反射信号。
- 根据权利要求2所述的自调谐方法,其特征在于,所述自调谐系统所匹配的调谐参数包括:频率匹配模块所匹配的频率及阻抗匹配模块所匹配的阻抗。
- 根据权利要求1所述的自调谐方法,其特征在于,所述比较结果 包括驻波比、信噪比。
- 一种自调谐系统,其特征在于,包括:第一获取模块,用于获取所述自调谐系统在当前使用环境下的实际性能指标值;调谐控制模块,用于判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述自调谐系统进行调谐,直至所述自调谐系统调谐出自身所有状态,以获得与每一状态相对应的反射信号;第二获取模块,用于将各所述反射信号分别与所述自调谐系统接收的射频信号进行比较,得到比较结果;调谐确定模块,用于将处于第一预设范围内的比较结果对应的调谐参数作为所述自调谐系统当前使用环境下的调谐参数。
- 根据权利要求6所述的自调谐系统,其特征在于,所述自调谐系统包括频率匹配模块和阻抗匹配模块。
- 根据权利要求6所述的自调谐系统,其特征在于,所述调谐控制模块还用于判断所述实际性能指标值与当前使用环境下的预设性能指标值之间的差值大于预设值时,控制所述频率匹配模块对频率进行调节,并控制所述阻抗匹配模块对阻抗进行调节,直至所述频率匹配模块调节出自身的所有频率,所述阻抗匹配模块调节出与每一频率相对应的所有阻抗,并获得与每一频率相对应的反射信号。
- 根据权利要求6所述的自调谐系统,其特征在于,所述自调谐系统所匹配的调谐参数包括:频率匹配模块所匹配的频率及阻抗匹配模块所匹配的阻抗。
- 一种移动终端,其特征在于,包括应用权利要求1-5中任一项权利要求所述的自调谐方法。
- 一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行 权利要求1-5中任一项权利要求所述的自调谐方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行权利要求1-5中任一项权利要求所述的自调谐方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18875120.0A EP3696986A4 (en) | 2017-11-13 | 2018-11-07 | SELF-VOTING PROCEDURE, SELF-VOTING SYSTEM AND MOBILE DEVICE |
US16/869,270 US11265036B2 (en) | 2017-11-13 | 2020-05-07 | Self-tuning method, self-tuning system and mobile terminal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711115376.7A CN108199742B (zh) | 2017-11-13 | 2017-11-13 | 自调谐方法、自调谐系统及移动终端 |
CN201711115376.7 | 2017-11-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/869,270 Continuation US11265036B2 (en) | 2017-11-13 | 2020-05-07 | Self-tuning method, self-tuning system and mobile terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019091409A1 true WO2019091409A1 (zh) | 2019-05-16 |
Family
ID=62572908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/114408 WO2019091409A1 (zh) | 2017-11-13 | 2018-11-07 | 自调谐方法、自调谐系统及移动终端 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11265036B2 (zh) |
EP (1) | EP3696986A4 (zh) |
CN (1) | CN108199742B (zh) |
WO (1) | WO2019091409A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108199742B (zh) | 2017-11-13 | 2020-12-01 | 深圳市万普拉斯科技有限公司 | 自调谐方法、自调谐系统及移动终端 |
CN109194342B (zh) * | 2018-08-06 | 2020-11-03 | Oppo广东移动通信有限公司 | 一种调谐全集成电路和调谐方法、终端及存储介质 |
CN109150326A (zh) * | 2018-11-05 | 2019-01-04 | Oppo(重庆)智能科技有限公司 | 天线阻抗调试方法、电子装置及计算机可读存储介质 |
CN110444885A (zh) * | 2019-08-28 | 2019-11-12 | Oppo(重庆)智能科技有限公司 | 一种天线组件、手机、控制方法及电子设备 |
CN112134627B (zh) * | 2020-09-23 | 2023-04-14 | 广东天诺通讯科技有限公司 | 一种天线调谐方法、设备及计算机可读存储介质 |
CN114509156B (zh) * | 2020-11-16 | 2023-10-20 | 深圳市万普拉斯科技有限公司 | 一种线性马达的校准方法、电子装置及存储介质 |
CN114832237A (zh) * | 2022-03-30 | 2022-08-02 | 深圳磁利晟科技有限公司 | 动态磁场发生方法、装置、设备及计算机可读存储介质 |
CN114844516B (zh) * | 2022-03-30 | 2024-05-31 | 深圳磁利晟科技有限公司 | 频率自适应控制方法、系统、磁疗设备及可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102122969A (zh) * | 2010-12-30 | 2011-07-13 | 意法·爱立信半导体(北京)有限公司 | 改善多频段移动终端的天线的匹配性能的方法和移动终端 |
US20140167878A1 (en) * | 2011-08-08 | 2014-06-19 | Lg Innotek Co., Ltd. | Impedance matching apparatus |
CN107342460A (zh) * | 2016-04-29 | 2017-11-10 | 北京展讯高科通信技术有限公司 | 天线调谐控制方法、装置及系统 |
CN108199742A (zh) * | 2017-11-13 | 2018-06-22 | 深圳市万普拉斯科技有限公司 | 自调谐方法、自调谐系统及移动终端 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7865154B2 (en) * | 2000-07-20 | 2011-01-04 | Paratek Microwave, Inc. | Tunable microwave devices with auto-adjusting matching circuit |
US6960956B2 (en) * | 2001-01-12 | 2005-11-01 | Telefonatiebolaget L.M. Ericsson Telefonplan | Apparatus and methods for monitoring and controlling power amplifier linearity using detected fundamental and harmonic components |
US6816711B2 (en) | 2001-11-27 | 2004-11-09 | Qualcomm Incorporated | GPS equipped mobile phone with single shared antenna |
JP4469632B2 (ja) * | 2004-02-24 | 2010-05-26 | 富士通株式会社 | アンテナ整合回路用制御装置 |
US7834813B2 (en) * | 2004-10-15 | 2010-11-16 | Skycross, Inc. | Methods and apparatuses for adaptively controlling antenna parameters to enhance efficiency and maintain antenna size compactness |
US7839223B2 (en) * | 2008-03-23 | 2010-11-23 | Advanced Energy Industries, Inc. | Method and apparatus for advanced frequency tuning |
KR101086569B1 (ko) * | 2009-08-13 | 2011-11-23 | 엘지이노텍 주식회사 | 적응형 튜닝 안테나 회로의 임피던스 조절장치 |
US8923168B2 (en) * | 2010-06-03 | 2014-12-30 | Broadcom Corporation | Front end module with an antenna tuning unit |
CN102098243B (zh) * | 2010-12-29 | 2016-04-13 | 中兴通讯股份有限公司 | 天线阻抗匹配装置及方法 |
CN102122932B (zh) * | 2011-01-20 | 2015-06-03 | 中兴通讯股份有限公司 | 一种智能自适应阻抗匹配调节的方法和装置 |
US8452246B2 (en) * | 2011-04-07 | 2013-05-28 | Intel Mobile Communications GmbH | Antenna tuner in combination with modified feedback receiver for improved antenna matching |
EP2740221B1 (en) * | 2011-08-05 | 2019-06-26 | BlackBerry Limited | Method and apparatus for band tuning in a communication device |
WO2013138457A1 (en) * | 2012-03-15 | 2013-09-19 | Newlans, Inc. | Software-defined radio with broadband amplifiers and antenna matching |
CN102638280A (zh) * | 2012-04-19 | 2012-08-15 | 汤姆逊广播电视技术(北京)有限公司 | 中波广播发射天线自适应调谐系统 |
US8948889B2 (en) * | 2012-06-01 | 2015-02-03 | Blackberry Limited | Methods and apparatus for tuning circuit components of a communication device |
CN103580648B (zh) * | 2012-08-09 | 2016-04-06 | 上海宝信软件股份有限公司 | 具有三轴闭环自调谐的无源收发同频rfid系统 |
US8897734B2 (en) * | 2012-10-30 | 2014-11-25 | Ericsson Modems Sa | Standing wave ratio meter for integrated antenna tuner |
US9155182B2 (en) * | 2013-01-11 | 2015-10-06 | Lam Research Corporation | Tuning a parameter associated with plasma impedance |
US9203500B2 (en) * | 2013-05-22 | 2015-12-01 | Blackberry Limited | Method and apparatus for calibrating an iterative matching network tuner |
CN103546600B (zh) * | 2013-10-29 | 2017-04-26 | 华为终端有限公司 | 匹配参数的处理方法及移动终端 |
US9825364B2 (en) * | 2014-06-12 | 2017-11-21 | Verily Life Sciences Llc | Adaptive antenna tuning based on measured antenna impedance |
US10177744B2 (en) * | 2014-10-30 | 2019-01-08 | Mediatek Singapore Pte. Ltd. | Wireless communication unit, integrated circuit and method for antenna tuning |
US9362966B1 (en) * | 2015-03-31 | 2016-06-07 | Qualcomm Technologies International, Ltd. | Bidirectional ports for multi-tuner background radios |
US10418717B2 (en) * | 2015-05-18 | 2019-09-17 | Cavendish Kinetics, Inc. | Method and apparatus of maintaining constant antenna resonant frequency and impedance match in the presence of environmental changes and head/hand effect using variable reactance antenna aperture tuners |
CN105680886A (zh) * | 2015-06-24 | 2016-06-15 | 北京恒泰万博石油科技有限公司 | 适于随钻电磁波电阻率测量的双频发射调谐系统及方法 |
US9614524B1 (en) * | 2015-11-28 | 2017-04-04 | Applied Materials, Inc. | Automatic impedance tuning with RF dual level pulsing |
CN105743518B (zh) * | 2016-01-21 | 2019-11-08 | 努比亚技术有限公司 | 一种天线调谐方法及装置 |
CN106299609A (zh) * | 2016-10-10 | 2017-01-04 | 广东欧珀移动通信有限公司 | 实现天线调谐的方法和装置 |
CN106301603A (zh) * | 2016-10-27 | 2017-01-04 | 北京小米移动软件有限公司 | 驻波比调节方法、装置和电子设备 |
US10355662B2 (en) * | 2016-12-06 | 2019-07-16 | Honeywell International Inc. | Impedance matching using tunable elements |
CN106973408A (zh) * | 2017-03-27 | 2017-07-21 | 努比亚技术有限公司 | 天线配置方法和装置 |
WO2018206093A1 (en) | 2017-05-09 | 2018-11-15 | Arcelik Anonim Sirketi | System and method for tuning audio response of an image display device |
US10491182B2 (en) * | 2017-10-12 | 2019-11-26 | Ethertronics, Inc. | RF signal aggregator and antenna system implementing the same |
US10916830B2 (en) * | 2018-02-17 | 2021-02-09 | Bose Corporation | Earbud system |
US10727958B2 (en) * | 2018-11-27 | 2020-07-28 | Samsung Electronics Co., Ltd. | Method and device for measuring antenna reflection coefficient |
US20200212862A1 (en) * | 2018-12-27 | 2020-07-02 | Qualcomm Incorporated | Radio frequency front-end protection with tunable coupler |
US10673514B1 (en) * | 2019-12-12 | 2020-06-02 | Motorola Mobility Llc | Communication device with receive antenna tuning |
-
2017
- 2017-11-13 CN CN201711115376.7A patent/CN108199742B/zh active Active
-
2018
- 2018-11-07 EP EP18875120.0A patent/EP3696986A4/en not_active Withdrawn
- 2018-11-07 WO PCT/CN2018/114408 patent/WO2019091409A1/zh unknown
-
2020
- 2020-05-07 US US16/869,270 patent/US11265036B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102122969A (zh) * | 2010-12-30 | 2011-07-13 | 意法·爱立信半导体(北京)有限公司 | 改善多频段移动终端的天线的匹配性能的方法和移动终端 |
US20140167878A1 (en) * | 2011-08-08 | 2014-06-19 | Lg Innotek Co., Ltd. | Impedance matching apparatus |
CN107342460A (zh) * | 2016-04-29 | 2017-11-10 | 北京展讯高科通信技术有限公司 | 天线调谐控制方法、装置及系统 |
CN108199742A (zh) * | 2017-11-13 | 2018-06-22 | 深圳市万普拉斯科技有限公司 | 自调谐方法、自调谐系统及移动终端 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3696986A4 * |
Also Published As
Publication number | Publication date |
---|---|
US11265036B2 (en) | 2022-03-01 |
CN108199742A (zh) | 2018-06-22 |
EP3696986A1 (en) | 2020-08-19 |
EP3696986A4 (en) | 2021-07-21 |
US20200266849A1 (en) | 2020-08-20 |
CN108199742B (zh) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019091409A1 (zh) | 自调谐方法、自调谐系统及移动终端 | |
TWI511379B (zh) | 電子電路、無線通訊裝置、調校共振頻率以及判斷阻抗變化的方法 | |
EP2751928B1 (en) | Antenna tuning on an impedance trajectory | |
US10062629B2 (en) | Antenna impedance matching and aperture tuning circuitry | |
TWI568073B (zh) | 用於調諧一通訊裝置之方法及設備 | |
TWI466504B (zh) | 行動通訊裝置與其阻抗匹配方法 | |
WO2017128480A1 (zh) | 天线切换组件、切换方法、切换系统、天线和移动终端 | |
WO2018232677A1 (zh) | 一种移动终端的天线及具有该天线的移动终端 | |
KR102302452B1 (ko) | 안테나 및 단말 기기 | |
WO2018095114A1 (zh) | 一种移动终端及调谐天线的方法、装置及存储介质 | |
WO2019144810A1 (zh) | 天线组件、电子设备和天线配置方法 | |
WO2023226392A1 (zh) | 一种天线组件及电子设备 | |
US10305169B2 (en) | Antenna apparatus and terminal | |
CN204558645U (zh) | 一种双表位的集中器无线公网通信自动化测试的耦合天线 | |
CN204375955U (zh) | 一种双表位的采集终端gprs通信自动化测试的耦合天线 | |
EP3261178B1 (en) | Slot antenna | |
JP3628562B2 (ja) | 無線機 | |
CN204538245U (zh) | 一种双表位的专变终端无线公网通信自动化测试的耦合天线 | |
CN204558644U (zh) | 一种双表位的专变终端gprs通信自动化测试的耦合天线 | |
JP7243966B2 (ja) | アンテナシステム及び端末デバイス | |
CN204375962U (zh) | 一种双表位的集中器gprs通信自动化测试的耦合天线 | |
CN204375975U (zh) | 一种双表位的采集终端无线公网通信自动化测试的耦合天线 | |
US20220006197A1 (en) | Coupled-Feed Dipole Antenna | |
CN118249089A (zh) | 天线模组、电子设备、控制方法 | |
GB2406218A (en) | Dielectric resonator antenna with adjustable operating frequency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18875120 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018875120 Country of ref document: EP Effective date: 20200513 |