WO2019091104A1 - 一种变容控制结构、压缩机及其变容控制方法 - Google Patents

一种变容控制结构、压缩机及其变容控制方法 Download PDF

Info

Publication number
WO2019091104A1
WO2019091104A1 PCT/CN2018/089784 CN2018089784W WO2019091104A1 WO 2019091104 A1 WO2019091104 A1 WO 2019091104A1 CN 2018089784 W CN2018089784 W CN 2018089784W WO 2019091104 A1 WO2019091104 A1 WO 2019091104A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
pressure
varactor
variable displacement
assembly
Prior art date
Application number
PCT/CN2018/089784
Other languages
English (en)
French (fr)
Inventor
胡艳军
阙沛祯
杨欧翔
翟元彬
向柳
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to US16/651,694 priority Critical patent/US11519410B2/en
Priority to EP18875486.5A priority patent/EP3663586A4/en
Publication of WO2019091104A1 publication Critical patent/WO2019091104A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/811Actuator for control, e.g. pneumatic, hydraulic, electric

Definitions

  • the invention belongs to the technical field of compressors, and particularly relates to a variable volume control structure, a compressor and a variable capacity control method thereof, in particular to a variable volume control structure of a rolling rotor type variable displacement compressor, and the variable volume control structure having the same a compressor, and a variable volume control method of the compressor.
  • the rotor compressor is driven by an engine or an electric motor (mostly driven by a motor), and the other rotor (also called a female rotor or a concave rotor) is driven by an oil film formed by the main rotor by injection, or by a main rotor end and a concave rotor. Synchronous gear drive at the end.
  • the air conditioning system using rolling rotor compressors generally adopts frequency conversion technology to control the cooling and heating output of the compressor speed regulation air conditioning system.
  • the technology has the characteristics of relatively simple control, large adjustment range of cold and heat output.
  • variable-capacity control technology In recent years, many manufacturers have developed variable-capacity control technology on multi-cylinder compressors. However, when variable-capacity control technology is used to adjust the working capacity of the compressor, when the variable-capacity cylinder is switched from the idling state to the working state or from the working state to the idling state, The load of the compressor suddenly increases or decreases, causing the compressor to violently shake, which may cause the compressor to suddenly stop or the compressor pipeline to break, and the compressor controller may also be subjected to severe current surge. The existence of these problems has made it difficult for large-scale application of variable-capacity control technology to become an urgent problem to be solved in the industry.
  • the object of the present invention is to provide a variable volume control structure, a compressor and a variable capacity control method thereof, in order to solve the problem of violent jitter caused by sudden load change when a varactor is switched in mode in the prior art. , to achieve a significant reduction in jitter.
  • the present invention provides a variable volume control structure, comprising: a varactor assembly and a slide restraint unit; wherein the varactor assembly is disposed outside the outer casing of the compressor to which the variable capacity control structure belongs, and is configured to be set by Sequential action; the slide restraint unit is disposed inside the pump body of the compressor, and is configured to place the variable capacity cylinder assembly in the compressor under the control of the varactor assembly operating in a set sequence Working status or idling status.
  • the varactor assembly includes: a one-way valve; the one-way valve is disposed in a variable-capacity cylinder suction port of the variable-capacity cylinder in the variable-capacity cylinder assembly, and is separated from the compressor In the pipeline between the second outlet of the liquid separator of the device, for being in a conducting state when the refrigerant flows from the second outlet of the liquid separator to the suction port of the variable displacement cylinder, or when the refrigerant is changed by the The tank intake port is in an off state when flowing to the second outlet of the dispenser.
  • the varactor assembly further includes: at least one of a throttle member and an on-off member; wherein the throttle member is disposed on a high-voltage side of the high-pressure exhaust side from the inside of the outer casing a pipeline in which the control pipe is located, when the check valve and the throttle member are both in a closed state, and the throttle member is in an open state, the high-pressure exhaust side is set according to a set flow area a high-pressure refrigerant is introduced between the one-way valve and the variable-capacity intake port; the through-cut member is disposed in a tube of the low-pressure side control pipe drawn from the low-pressure suction side inside the liquid separator In the road, when the one-way valve, the throttle member and the on-off member are both in an open state, introducing the low-pressure refrigerant on the low-pressure suction side to the one-way valve and the change Between the cylinder suction ports.
  • the throttle member is disposed on a high-voltage side of the high-pressure exhaust side from the inside
  • a common connecting pipe is further drawn from the variator cylinder suction port and the one-way valve, and the high-pressure side control pipe and the low-voltage side control
  • the other end of the tube is connected to the common connecting pipe; and/or the varactor assembly further includes: a buffer; the buffer is disposed at the air inlet from the varactor and the single The pipeline in which the common connecting pipe is drawn between the valves is used to slow down the pressure of the internal pressure of the variable displacement cylinder when the variable displacement cylinder is switched from the idle state to the operating state.
  • the throttle member comprises: at least one of a first solenoid valve, an electronic expansion valve, and a capillary tube; and/or an upper limit of the set flow area that the throttle member can adjust And greater than or equal to: a first set coefficient multiple of a product of a maximum operating frequency allowed by the variable-capacity cylinder assembly when the state is switched, and a working volume when the variable-capacity cylinder is in an operating state; wherein the state switching , including: switching from the working state to the idling state, or switching from the idling state to the working state; and/or, when the varactor cylinder assembly is switched from the working state to the idling state, the opening of the throttle member is The time when the upper limit of the set flow area is reduced to the lower limit of the set flow area is the first transition time; and when the variable capacity cylinder assembly is switched from the idling state to the active state, the opening of the throttle member The time from the lower limit of the set flow area to the upper limit of the set flow
  • the slider constraint unit includes: a pin constraint unit, a magnetic component constraint unit, and a slider constraint hole constraint unit; wherein the pin constraint unit comprises: a pin and a pin spring; wherein The pin is disposed in a vertical direction of the variable displacement sliding plate of the variable displacement cylinder assembly and located in a bearing adjacent to the variable displacement cylinder in the compressor; the pin spring is disposed on the a tail portion of the pin; and/or the magnetic element restraining unit includes: a magnetic member; the magnetic member disposed at a tail of the variable displacement slider in the variable displacement cylinder assembly for attracting the variable displacement slider And moving the variable displacement sliding piece to the magnetic element; and/or the sliding piece constraining the hole confining unit comprises: a sliding piece constraining hole; the sliding piece confining hole is located at the variable volume cylinder The moving direction of the variable displacement sliding piece in the assembly is in a direction of a set angle, and is disposed on a side of the variable displacement cylinder of the variable displacement cylinder assembly opposite to
  • the pin restraining unit further comprises: a pin groove; the pin groove is disposed at a tail portion of the variable displacement sliding piece; the pin is disposed in the pin groove; And/or, in the pin restraining unit, a tail portion of the variable displacement sliding piece and a head of the pin are in communication with a high pressure gas inside the outer casing; a head pressure of the variable displacement sliding piece
  • the internal pressure of the variable displacement cylinder is the same; the tail portion of the pin communicates with the suction port of the variable capacity cylinder of the variable displacement cylinder through a pin communication passage inside the pump body; and/or
  • the high pressure gas in the outer casing introduced by the sliding plate constraining hole to the side of the variable displacement sliding vane of the variable displacement sliding piece is formed on the variable displacement sliding piece.
  • variable displacement vane a pressure that causes the variable displacement vane to be in close contact with the other side of the variable displacement vane groove; the direction of the pressure is perpendicular to a direction in which the variable displacement vane moves linearly, and the variable volume is made
  • a frictional force is generated between the sliding piece and the abutting side of the variable displacement sliding vane to block the movement of the variable displacement sliding piece.
  • another aspect of the invention provides a compressor comprising: at least one constant operating compression cylinder assembly; further comprising: at least one varactor capable of being selectively in an operative or idling state The assembly; wherein the variable capacity cylinder assembly comprises: the variable volume control structure described above.
  • a further aspect of the present invention provides a variable volume control method for a compressor, comprising: causing the varactor assembly to operate in a set sequence; and causing the slider constraint unit to be in the variable volume
  • the variable capacity cylinder assembly in the compressor is in an operating state or an idling state under the control of the components operating in a set sequence.
  • the varactor assembly when the varactor assembly includes a one-way valve, a throttle, and an on-off member, causing the varactor assembly to operate in a set sequence, including: switching the variable-capacity assembly from an operational state to During the idling state: the opening and closing member is in a closed state; and the opening of the throttle member is gradually increased from a lower limit of the set flow area to the set flow area within a first transition time An upper limit; after the switching process of the variable displacement cylinder assembly from the working state to the idling state is completed, the opening degree of the throttle member is in a lower limit of the set flow area and an upper limit of the set flow area Any opening degree, and maintaining the closed state of the on-off member; or, in the process of switching the variable-capacity cylinder assembly from the idling state to the working state: setting the opening of the throttle member to the set flow area The upper limit of the opening and closing member; the opening of the throttle member is gradually reduced from the upper limit of the set flow area to the lower limit of
  • the varactor component when the varactor component further includes a buffer, causing the varactor component to operate in a set order, further comprising: passing, by the buffer, the idling cylinder component from an idling state to a working state During the switching process, the speed of the pressure reduction in the variable volume cylinder in the variable volume cylinder assembly is slowed down.
  • slowing down the speed of the pressure change in the variable volume cylinder in the variable volume cylinder assembly comprises: gradually reducing the opening degree of the throttle member from the upper limit of the set flow area to the set flow area a lower limit process for reducing a capacity of the high pressure gas entering the damper from the outer casing and changing a capacity of the high pressure gas flowing out of the damper from the through-off member; and
  • the pressure of the gas of the varactor of the varactor to the damper gradually decreases; and the pressure difference between the reduced pressure and the exhaust back pressure of the compressor satisfies the varactor
  • the variable displacement slider of the assembly is free of the condition that the slider constraint unit is bound.
  • the sliding blade restraining unit comprises a pin restraining unit, causing the variable capacity cylinder assembly in the compressor to be in an operating state or an idling state, comprising: switching the variable capacity cylinder assembly from an operating state to an idle state During the process: the pressure in the suction side of the varactor of the varactor in the varactor assembly is gradually raised by the varactor assembly until the pin spring of the tail of the pin is sufficient to overcome the spring force with the pin spring When the gas force is opposite in direction, the pressure difference between the head and the tail of the pin is a first pressure difference; when the variable displacement vane of the variable displacement cylinder assembly is pushed under the rotation of the roller of the variable capacity cylinder assembly When the position is set in the variable cylinder sliding groove of the variable displacement cylinder assembly, the pin enters the pin groove on the variable displacement sliding plate to restrain the movement of the variable displacement sliding piece; The varistor slide is disengaged from the roller; the pressure in the varactor is continuously increased until the pressure in the varactor is equal to the high pressure
  • variable capacity cylinder assembly is in an operating state; or, when the sliding When the restraining unit includes the magnetic element restraining unit, causing the variable-capacity cylinder assembly in the compressor to be in an operating state or an idling state, including: in the process of switching the variable-capacity cylinder assembly from the working state to the idling state:
  • the volumetric assembly gradually increases the pressure in the variable volume cylinder of the variable volume cylinder assembly, causing the one-way valve in the variable volume assembly to close until the pressure in the variable volume cylinder rises to the magnetic element sufficient to overcome the
  • the pressure difference between the head and the tail of the variable displacement sliding piece is a third pressure difference; the variable displacement sliding piece is freed from the frictional force, and the pressure difference between the head and the tail is changed in the variable displacement sliding piece
  • the generated gas force moves to the roller in the compressor until the variable displacement sliding piece is fitted with the roller, and the space in the varactor assembly is divided into the suction side and the exhaust side.
  • the check valve in the varactor assembly is turned on, the switching process ends, and the variable capacity cylinder assembly is in an operating state.
  • the solution of the invention greatly reduces the jitter of the compressor during mode switching by controlling the orderly action of the varactor, and avoids problems such as downtime, pipe breakage and the like when the compressor is switched.
  • the solution of the present invention greatly reduces the probability of jitter and shutdown of the compressor during mode switching by controlling the orderly action of the variable capacitance component, avoids pipeline breakage caused by switching, and improves the reliability of compressor switching.
  • variable displacement component by making the variable displacement component act in an orderly manner, combined with the sliding blade restraining unit, enables the variable capacity cylinder assembly to be in a working or idling state, greatly reducing the violent shaking during state switching, and improving the compressor state switching and operation. Reliability.
  • the solution of the present invention solves the problem that the variable capacity compressor is in the working state or the idling state by setting the varactor assembly and the slider restraining unit and controlling the orderly action of the varactor assembly.
  • the problem of severe jitter caused by the sudden change of the load overcomes the defects of the prior art, such as sharp jitter, easy shutdown, and easy breakage of the pipeline, thereby realizing the beneficial effects of reducing jitter, being difficult to stop, and the pipeline not being easily broken.
  • FIG. 1 is a schematic structural view of an embodiment of a pin restraining structure in the present invention
  • FIG. 2 is a schematic structural view of an embodiment in which a variable displacement sliding piece and a roller are in a disengaged state
  • FIG. 3 is a schematic structural view of an embodiment in which a variable displacement sliding piece and a roller are in a fitting state
  • FIG. 4 is a schematic structural view of an embodiment of a magnetic component restraining structure according to the present invention.
  • FIG. 5 is a schematic structural view of another embodiment in which the variable displacement sliding piece and the roller are in a disengaged state
  • FIG. 6 is a schematic structural view of an embodiment of a sliding sheet constraining hole structure according to the present invention.
  • variable displacement sliding piece and the roller are in a disengaged state
  • Figure 8 is a timing chart showing an embodiment of a flow area of a solenoid valve when the varactor is idling and switching in an operating state
  • Figure 9 is a timing chart showing an embodiment of the suction side pressure of the varactor when the varactor is idling and switching in the working state;
  • FIG. 10 is a timing chart of an embodiment of a compressor current when the varactor is idling and switching in an operating state
  • Figure 11 is a timing chart showing an embodiment of the flow area of the solenoid valve when the variable displacement cylinder assembly is switched from the normal operating state to the idling state;
  • Figure 12 is a timing chart showing an embodiment of the pressure on the suction side of the varactor when the varactor cylinder assembly is switched from the normal operating state to the idling state;
  • Figure 13 is a timing chart showing an embodiment of a compressor current when the varactor cylinder assembly is switched from an idling state to a normal operating state;
  • Figure 14 is a schematic view showing an embodiment of an embodiment of a variable displacement cylinder assembly operating state and a suction side pressure change trend as the flow area of the first solenoid valve increases;
  • Figure 15 is a timing diagram of compressor current when a conventional structure double cylinder is switched to a single cylinder
  • Figure 16 is a timing chart of compressor current when a conventional structure is switched from a single cylinder to a double cylinder;
  • Figure 17 is a schematic view showing an embodiment of a variation of a maximum vibration acceleration of a compressor with a time length of a transition zone when a mode changeover of the variable displacement cylinder assembly is performed;
  • Figure 18 is a schematic view showing the structure of an embodiment of a variable displacement sliding vane according to the present invention.
  • variable capacity cylinder suction port 11, liquid separator; 12, the first outlet of the liquid separator; 13, the second outlet of the liquid separator; 14, one-way valve; 15, the suction port of the liquid separator; , damper; 17, first solenoid valve; 18, second solenoid valve; 19, exhaust pipe; 20, roller; 21, sliding piece; 22, magnetic component; 23, sliding plate constraining hole; Head; 25, slide tail; 26, pin slot; 27, low pressure suction side; 28, high pressure exhaust side; 29, low pressure side control tube; 30, common connection pipe; 31, high pressure side control pipe.
  • a variable volume control structure may be disposed on one or more of the compression cylinders such that the vanes in the cylinder are in contact with the rollers for normal operation (the cylinder is referred to as a variable volume cylinder), or a variable capacity cylinder is provided.
  • the inner slide is idling away from the roller, changing the current working volume of the compressor and realizing the compressor capacity adjustment.
  • the compressor when there is a sudden change in load during mode switching, the compressor generates severe jitter when performing mode switching, which affects the application of the technology.
  • variable volume control structure is provided according to an embodiment of the present invention, in which the variable displacement control structure of the present invention is shown in FIG. A schematic structural view of an embodiment.
  • the varactor control structure may include a varactor assembly and a slider constraint unit 8.
  • the varactor assembly is disposed outside the outer casing 1 of the compressor to which the varactor control structure belongs, and can be used to operate in a set sequence.
  • the compressor may include: a casing, a motor and a pump body.
  • the motor may include a stator and a rotor, and the rotor and the pump body are integrally connected by a crankshaft.
  • the pump body may include: a compression cylinder assembly.
  • the compression cylinder assembly may include a compression cylinder assembly that is selectively operable or idling, that is, a variable displacement cylinder assembly.
  • variable capacity cylinder For example, the process of changing the variable capacity cylinder from working mode to idle mode is:
  • the flow area of the first solenoid valve is gradually increased from 0 to the maximum value S 1 , and the length of time is T1.
  • state of the first solenoid valve is in flow area may be any state or a maximum between 10 S, continues to the second solenoid valve is in a closed state.
  • variable capacity cylinder For example, the process of changing the variable capacity cylinder from idle mode to working mode is:
  • the flow area of the first solenoid valve is gradually reduced from the maximum value S 1 to 0, and the length of time is T2.
  • the flow path of the first solenoid valve is 0 (ie, in a completely closed state), and the second solenoid valve continues to remain open or remain closed.
  • the operation can be performed in a set sequence, which greatly reduces the probability of the compressor shaking and stopping when the mode is switched, avoids the pipeline breakage caused by the switching, and realizes the state switching of the variable capacity cylinder assembly.
  • the reliability of the control improves the reliability of the compressor switching.
  • the varactor assembly may include a one-way valve 14.
  • the one-way valve 14 is disposed in the variable-capacity intake port 10 of the variable-capacity cylinder 4 in the variable-capacity cylinder assembly, and is separated from the liquid separator 11 in the compressor.
  • it can be used to be in a conducting state when the refrigerant flows from the second outlet 13 of the liquid separator to the suction port 10 of the variable displacement cylinder, or when the refrigerant changes from the said The cylinder suction port 10 is in an off state when flowing to the second outlet 13 of the liquid separator.
  • the second outlet 13 of the liquid separator is an outlet of the outlet of the liquid separator 11 that communicates with the suction port 10 of the variable capacity cylinder.
  • the varactor assembly may include: a check valve disposed at the variator cylinder suction port (eg, the varactor intake port 10) and the second outlet of the dispenser (eg, the second outlet 13 of the dispenser) (Example: check valve 14).
  • the check valve when the refrigerant has a tendency to flow from the second outlet of the dispenser to the suction port of the varactor, the check valve is in an on state.
  • the one-way valve When the refrigerant has a tendency to flow from the variable cylinder suction port to the second outlet of the liquid separator, the one-way valve is in a closed state, that is, the one-way valve has a feature of forward conduction and reverse cutoff.
  • the control structure is simple, and the control convenience is good.
  • the varactor assembly may further include: at least one of a throttle member and an on-off member.
  • a low-pressure refrigerant or a high-pressure refrigerant between the check valve and the variable-capacity intake port.
  • the second solenoid valve when the second solenoid valve is turned on and the first solenoid valve is closed, the low pressure refrigerant can be directed thereto, and the check valve is in an on state; when the first solenoid valve is turned on, the second solenoid valve is turned on When closed, the high pressure refrigerant can be directed there, and the check valve is closed.
  • the throttle member is disposed in a line in which the high pressure side control pipe 31 leading from the high pressure exhaust side 28 inside the outer casing 1 is located, and can be used in the check valve 14 And the throttle member is in a closed state, and when the throttle member is in an open state, the high pressure refrigerant of the high pressure exhaust side 28 is introduced to the one-way valve 14 according to a set flow area. Between the variable cylinder suction ports 10.
  • high-pressure refrigerant can be introduced between the one-way valve 14 and the variable-capacity intake port 10, and the check valve 14 is in a closed state.
  • the first solenoid valve has the ability to adjust the flow area, and its adjustment range can be gradually adjusted from 0 (ie, fully closed) to the maximum capacity.
  • the high-pressure refrigerant on the high-pressure exhaust side of the compressor is controlled by the throttle member to be introduced into the flow area of the check valve and the variable-capacity intake port, and the control method is simple, and the control result is accurate and reliable. high.
  • the throttle member may include at least one of a first electromagnetic valve 17, an electronic expansion valve, and a capillary tube.
  • the first solenoid valve can be replaced with an electronic expansion valve.
  • the first solenoid valve needs to have a feature that the flow area is adjustable.
  • the electronic expansion valve currently used for throttling in an air conditioner has a feature that the flow area is adjustable.
  • an upper limit of the set flow area that can be adjusted by the throttle member is greater than or equal to: a maximum operating frequency allowed by the variable-capacity cylinder assembly when the state is switched, and the variable-capacity cylinder 4 is The first set factor multiplied by the product of the working volume at the working state.
  • the state switching may include: switching from the working state to the idle state, or switching from the idle state to the working state.
  • the maximum flow area of the first solenoid valve S 1 ⁇ 0.0147 fV, the unit is mm 2 .
  • f is the maximum operating frequency allowed when the variable capacity cylinder assembly is switched
  • V is the working volume when the variable capacity cylinder is working normally, in units of cm 3 .
  • the opening degree of the throttle member is adjusted from an upper limit of the set flow-through area to a lower limit of the set flow-through area.
  • Time is the first transition time.
  • variable volume cylinder is provided with a transition zone from the working mode to the idle mode, and the time length of the transition zone is T1 ⁇ 5 seconds.
  • the opening of the throttle member is adjusted from the lower limit of the set flow area to the set circulation
  • the time of the upper limit of the area is the second transition time.
  • the first transition time is greater than or equal to the first set time
  • the second transition time is greater than or equal to the second set time
  • the second set time is greater than the first set time.
  • variable volume cylinder is provided with a transition zone from the idle mode to the working mode, and the length of the transition zone is T2 ⁇ 10.
  • the opening adjustment speed can be flexibly controlled, thereby improving the reliability and accuracy of the control of the refrigerant flow area.
  • the through-cut member is disposed in a pipeline in which the low-pressure side control pipe 29 drawn from the low-pressure suction side 27 inside the liquid separator 11 is located, and can be used in the one-way
  • the valve 14 the throttle member and the on-off member are both in an open state, the low-pressure refrigerant of the low-pressure suction side 27 is introduced to the check valve 14 and the variable-capacity intake port 10 between.
  • low-pressure refrigerant can be led between the one-way valve 14 and the variable-capacity intake port 10, and the check valve 14 is in an on state. (ie open state).
  • the low-pressure refrigerant on the low-pressure suction side of the compressor is controlled to be turned on or off between the check valve and the variable-capacity intake port by the on-off member, the control method is simple, and the control result is highly reliable.
  • the through-off member may include at least one of a second electromagnetic valve 18, an electric switch, and a manual switch.
  • the second solenoid valve can also be used to manually control the opening and closing of the valve, but the valve can not achieve automatic control, and the operation is inconvenient.
  • the through-cutting member Therefore, through various forms of the through-cutting member, the convenience and flexibility of the on-off control are improved, and the universality is strong and the applicable range is wide.
  • the allowable flow area when the through-cut member is opened is less than or equal to a second set factor multiple of the working volume when the variable-capacity cylinder 4 is in the working state.
  • the second solenoid valve has a fully closed state and an open state, and when opened, the maximum flow area S 2 ⁇ 0.587 V is allowed, and the unit is mm 2 .
  • V is the working volume of the variable displacement cylinder during normal operation, and the unit is cm 3 .
  • a common connecting pipe 30 is also drawn from the variator cylinder suction port 10 and the check valve 14, and the high pressure side control pipe 31 The other end of the low pressure side control pipe 29 is connected to the common connection pipe 30.
  • the varactor assembly may further include: drawing a tube from the inside of the outer casing (for example, the outer casing 1) (for example, from the compressor exhaust port, that is, the high-pressure exhaust side 28), and the first electromagnetic valve (for example: The first solenoid valve 17) is connected to a high-pressure side control pipe (for example, the exhaust pipe 19), and a pipe is taken from the low-pressure suction side (for example, the low-pressure suction side 27), and is connected to the second solenoid valve (for example, the second The solenoid valve 18) is connected to a low-pressure side control pipe (for example, the low-pressure side control pipe 29), and a common connecting pipe (for example, a common connecting pipe 30) that is taken out from the variable-capacity intake port and the check valve.
  • the common connecting pipe is respectively connected to the other end of the high-pressure side control pipe and the low-pressure side control pipe (for example, refer to the examples shown in FIGS. 1 to 3, 4 and 5, and FIGS. 6 and 7).
  • the common connecting pipe is drawn between the suction port of the varactor and the check valve, so that the high-pressure side control pipe and the low-pressure side control pipe can be connected to the common connecting pipe, the pipeline structure is simple, and the connection reliability is high. .
  • the varactor component may further include: a buffer 16 .
  • the buffer 16 is disposed in a pipeline from the common connecting pipe 30 drawn between the variable-capacity intake port 10 and the one-way valve 14 and can be used in When the varactor cylinder 4 is switched from the idling state to the operative state, the speed at which the internal pressure of the varactor cylinder 4 is lowered is slowed down.
  • the roller rotor compressor may include: a constant-operating compression cylinder assembly and a variable-capacity cylinder assembly with selectable performance for normal operation or idling; the switching of the working mode of the variable-capacity cylinder assembly is set externally.
  • the varactor assembly includes a one-way valve disposed between the variator inlet and the second outlet of the dispenser, and a suction port from the dispenser (or dispensing).
  • the low-pressure side control pipe and the second electromagnetic valve are taken out from the position where the suction port pressure is connected, and the high-pressure side control pipe and the first electromagnetic valve which are led out from the exhaust pipe (or the same position as the pressure in the outer casing) a common side connecting pipe drawn between the cylinder suction port and the check valve and a buffer connected thereto;
  • the high side control pipe, the low pressure side control pipe and the common side control pipe are connected to each other to have a casing (for example: casing 1)
  • the high pressure inside is introduced into the variator inlet or the ability to introduce high pressure in the varactor and damper into the dispenser.
  • the presence of the buffer and the flow area of the first solenoid valve are at a maximum state, and the pressure of the suction port of the variable capacity cylinder is decreased by a certain extent, but the pressure drop is controlled.
  • Gradually reducing the flow area of the first solenoid valve the high pressure gas entering the buffer from the inside of the casing is reduced, and the high pressure gas flowing out of the buffer from the second solenoid valve is unchanged, so that the pressure of the suction port of the variable capacity cylinder into the buffer is reduced.
  • the pressure difference that is gradually lowered and with the exhaust back pressure is ⁇ P 0 .
  • the speed of the internal pressure of the varactor in the idling state to the working state can be further slowed down, and further Further reduce the degree of jitter of the compressor during state switching, and improve the reliability and safety of state switching and operation.
  • the volume of gas that the buffer 16 can accommodate is greater than or equal to the third of the working volume of the variable cylinder 4 when in the working state. Set the factor multiple.
  • the volume of gas that the buffer can hold is V h ⁇ 10V.
  • the slide restraint unit 8 is disposed inside the pump body of the compressor, and can be used to make the compressor under the control of the varactor assembly operating in a set sequence
  • the medium varactor cylinder assembly is in an operating state or an idling state, thereby achieving capacity control of the compressor.
  • the slide restraint unit 8 realizes state switching of the varactor cylinder assembly in the compressor under the control of the varactor assembly operating in a set sequence.
  • the state switching may include: switching from the working state to the idle state, or switching from the idle state to the working state.
  • variable displacement cylinder 4 of the variable displacement cylinder assembly when the slide 21 in the variable displacement cylinder 4 of the variable displacement cylinder assembly is in contact with the roller 20, the space in the variable displacement cylinder 4 is divided into a low pressure suction side 27 and a high pressure exhaust gas whose volume varies with the rotation angle. Side 28. The gas sucked into the variable displacement cylinder 4 is compressed when the crankshaft of the compressor rotates, so that the variable displacement cylinder 4 is in a normal working state.
  • the sliding piece 21 in the variable-capacity cylinder 4 is retracted into the sliding groove of the variable-capacity cylinder assembly, and is bound by the sliding plate restraining unit 8 in the sliding groove, the sliding The sheet 21 is separated from the roller 20 of the variable-capacity cylinder assembly, and only one chamber remains in the variable-capacity cylinder 4 and the suction side of the variable-capacity cylinder (ie, the side of the variable-capacity intake port 10) Connected.
  • the crankshaft rotates, the gas in the variable displacement cylinder assembly is no longer compressed, causing the variable displacement cylinder 4 to be in an idling state.
  • variable-capacity cylinder for example, the variable-capacity cylinder 4
  • the space in the variable-capacity cylinder is divided into a low-pressure suction side and a high-pressure exhaust side whose volume varies with the rotation angle.
  • the crankshaft rotates, the gas in the variable-capacitor cylinder is compressed, and the variable-capacity cylinder is in a normal working state.
  • variable capacity cylinder when the sliding piece in the variable capacity cylinder retreats into the sliding groove and is restrained by the sliding piece restraining unit disposed in the pump body, the sliding piece is separated from the roller, and only one chamber remains in the variable capacity cylinder. And connected to the suction side of the variable capacity cylinder. When the crankshaft rotates, the gas in the variable capacity cylinder assembly is no longer compressed, and the variable capacity cylinder is in an idling state.
  • the working mode of the variable capacity cylinder assembly (eg, working state, idling state, etc.) is determined by a combination of a varactor assembly disposed outside the casing and a slider restraining unit disposed within the pump body.
  • the ordered movement of the varactor can be controlled, the jitter of the compressor during mode switching is greatly reduced, and the shutdown and the pipeline are avoided when the compressor is switched. Problems such as breakage.
  • the sliding sheet restraining unit 8 may include: a pin restraining unit.
  • the pin restraining unit may include: a pin 6 and a pin spring 7.
  • the pin 6 is disposed in a vertical direction of the variable displacement vane 5 in the variable displacement cylinder assembly and is located in the compressor adjacent to the variable displacement cylinder 4 Inside.
  • the pin spring 7 is disposed at the tail of the pin 6. The tail of the pin 6 is the end of the pin 6 away from the variable displacement sliding piece 5.
  • the restraining force on the variable displacement sliding piece is large, thereby improving the reliability and safety of the variable displacement sliding piece control.
  • the tail portion of the varactor slide 5 and the head of the pin 6 are both in communication with a high pressure gas inside the outer casing 1.
  • the tail of the variator slide 5 is near one end of the head of the pin 6.
  • the head of the variator slide 5 is one end away from the head of the pin 6.
  • the head pressure of the variable displacement slide 5 is the same as the internal pressure of the variable displacement cylinder 4.
  • the tail portion of the pin 6 communicates with the varactor intake port 10 of the varactor cylinder 4 through a pin communication passage 9 in the pump body.
  • the pin restraining unit may further include: a pin slot 26.
  • the pin groove 26 is disposed at a tail portion of the variable displacement slider 5 in the vertical direction.
  • the pin 6 is disposed in the pin groove 26.
  • the sliding blade restraining unit may include: a pin disposed in a vertical direction of the variable displacement sliding piece (for example, the variable displacement sliding piece 5) in the variable displacement cylinder assembly (for example, the pin 6), and a spring disposed at the tail end of the pin ( For example: pin spring 7).
  • variable displacement sliding piece is close to the roller (for example, the roller 20) at one end in the radial direction of the cylinder, and is called a sliding head, such as the sliding head 24; and the other end is away from the roller, which is called the tail of the sliding piece.
  • the slider tail 25 Such as the slider tail 25.
  • the varistor slide is restrained by the bearings on both sides in the axial direction of the cylinder, and a pin groove (for example, the pin groove 26) is provided near the pin side.
  • the pin is disposed in a bearing adjacent to the variable displacement cylinder, one end is adjacent to the variable displacement sliding vane (referred to as the pin head), and one end is away from the variable displacement sliding vane (referred to as the pin tail).
  • the tail of the slider and the head of the pin communicate with the high pressure inside the casing.
  • the pressure of the slider head is the same as the pressure in the variable displacement cylinder.
  • the tail of the pin passes through the pin communication passage inside the pump body (for example, the pin communication passage 9) and the variable capacity cylinder.
  • the suction port is connected.
  • variable capacity cylinder assembly is switched from the normal operating mode to the idle mode, and may include:
  • variable displacement cylinder assembly When the pressure in the variable displacement cylinder is at a low pressure and the pressure is equal to the pressure at the suction port of the dispenser, the variable displacement cylinder assembly is in a normal working state.
  • the pressure in the suction side of the variable displacement cylinder is gradually increased by the varactor assembly until the spring of the tail of the pin is sufficient to overcome the gas force opposite to the direction of the spring force (the pressure difference between the head and the tail of the pin is ⁇ Pa);
  • the pin When the piece is pushed into the variable displacement cylinder slide groove to a certain position under the rotation of the roller, the pin enters the pin groove on the variable displacement sliding piece to restrain the movement of the variable displacement sliding piece, and thereafter the variable displacement sliding piece is separated from the roller, and
  • the pressure in the variable volume cylinder continues to rise until its pressure equals the high pressure in the housing, the switching process ends and the variable capacity cylinder assembly enters the idle mode.
  • variable capacity cylinder assembly is switched from the idle mode to the normal operating mode process, and may include:
  • the varactor assembly is idling when the pressure in the varactor is at a high pressure and the pressure is equal to the pressure within the housing.
  • the pressure in the variable volume cylinder is gradually reduced by the varactor assembly until the gas force is sufficient to overcome the spring force and push the pin away from the varactor (the pressure difference between the head and the tail of the pin is ⁇ Pa), and the volume is changed.
  • the constraint on the slider is released, and at the same time, the pressure difference in the variable volume cylinder is reduced and the pressure difference between the head and the tail of the slider is also ⁇ Pa, and the generated gas force pushes the variable displacement slider toward the roller until the roller is moved. Fitted with the roller.
  • variable capacity cylinder assembly starts to inhale and compress, and the compressor power starts to rise accordingly.
  • the pressure in the variable capacity cylinder is equal to the pressure of the liquid inlet of the liquid separator, the one-way valve is turned on, and the switching process ends.
  • the variable capacity cylinder assembly enters the normal operating mode.
  • the sliding sheet restraining unit 8 may include: a magnetic element restraining unit.
  • the magnetic element restraining unit may include: a magnetic element 22.
  • the magnetic element 22 is disposed at the tail of the variable displacement sliding plate 5 of the variable displacement cylinder assembly, and can be used to attract the variable displacement sliding plate 5 to make the variable displacement sliding The sheet 5 is moved toward the magnetic element 22.
  • the slider restraining unit may be mainly constituted by a magnetic member (for example, the magnetic member 22) provided at the tail of the variable displacement slider.
  • the magnetic element is fixed to the tail portion of the vane slot of the variable displacement cylinder, and has a magnetic force that attracts the variable displacement sliding piece to have a tendency to move toward the magnetic element.
  • variable capacity cylinder assembly is switched from the normal operating mode to the idle mode, and may include:
  • variable displacement cylinder assembly When the pressure in the variable displacement cylinder is at a low pressure and the pressure is equal to the pressure at the suction port of the dispenser, the variable displacement cylinder assembly is in a normal working state.
  • the pressure in the varactor is gradually increased, and the check valve is closed until the pressure in the varactor is raised until the magnetic component is sufficient to overcome the gas force generated by the pressure difference of the varistor slide (at this time, the volume is changed)
  • the pressure difference between the head and the tail of the slider is ⁇ Pb), and the variable displacement slider is pushed into the variable cylinder sliding slot by the rotating roller, and is restrained in the sliding slot by the magnetic force generated by the magnetic component
  • the pressure continues to rise to the same level as the pressure inside the casing, the switching process ends, and the variable capacity cylinder assembly enters the idle mode.
  • variable capacity cylinder assembly is switched from the idle mode to the normal operating mode process, and may include:
  • the varactor assembly is idling when the pressure in the varactor is at a high pressure and the pressure is equal to the pressure within the housing.
  • the pressure in the variable-capacity cylinder is gradually reduced by the varactor assembly until the pressure in the variable-capacity cylinder is reduced to the gas force generated by the pressure difference between the head and the tail of the variable-capacity slider to overcome the magnetic force exerted by the magnetic element on the variable-capacity slider At this time (the pressure difference between the head and the tail of the variable displacement vane is ⁇ Pb), the variable displacement vane is free from the binding of the magnetic element and moves to the roller under the action of the gas force until it is fitted with the roller, and the varactor assembly
  • the space inside is divided into an intake side and an exhaust side.
  • variable capacity cylinder assembly enters the normal operating mode.
  • variable displacement sliding piece is restrained by the magnetic element, the structure is simple, and the control mode is simple.
  • the slider constraint unit 8 may include: a slider constraint hole constraint unit.
  • the slide restricting hole restraining unit may include: a slide restricting hole 23 .
  • the slide restricting hole 23 is located at a set angle with a moving direction of the variable displacement sliding plate 5 of the variable displacement cylinder assembly, and is disposed in the variable displacement cylinder assembly.
  • the side of the intermediate variable cylinder 4 opposite to the variable cylinder intake port 10 of the variable displacement cylinder 4 can be used to guide the high pressure gas in the outer casing 1 to the variable volume of the variable displacement vane 5 One side of the sliding slot and communicating with the variable displacement sliding slot.
  • the side of the variable-capacity cylinder assembly 4 on the variable-capacity cylinder 4 opposite to the variable-capacity cylinder inlet port 10 of the variable-capacity cylinder 4 is one of the variable-capacity cylinders 4 away from the variable-capacity cylinder suction port 10. side.
  • variable displacement sliding piece is restrained by the sliding plate constraining hole, the constraint mode is simple, and the constraint reliability is high, the flexibility and convenience of the sliding piece restraint can be improved, and the scope of application of the compressor can be improved. Versatility.
  • the sliding plate constraining hole 23 introduces the high pressure gas in the outer casing 1 to the side of the variable displacement sliding vane of the variable displacement sliding vane 5,
  • the pressure acting on the variable displacement sliding vane 5 is formed such that the variable displacement sliding vane 5 is in close contact with the other side of the variable displacement sliding vane.
  • the direction of the pressure is perpendicular to the direction in which the variable displacement sliding plate 5 moves linearly, and the variable displacement sliding plate 5 and the variable displacement sliding groove are in close contact with each other. Friction is generated to block the movement of the variable displacement slider 5.
  • slider constrained hole constraining unit structure introduction Embodiment 3 shown in FIG. 6 and FIG.
  • a sliding piece restraining hole for example, a sliding piece restricting hole 23
  • the high pressure in the outer casing is directed to the variable displacement sliding piece.
  • One side of the slot and communicates with the variable displacement vane slot.
  • variable displacement sliding vane acts on the variable displacement sliding vane to be in close contact with the other side of the variable displacement sliding vane, the direction of the pressure being perpendicular to the linear motion direction of the variable displacement sliding vane, and thereby causing the variable volume
  • a frictional force is generated between the sliding piece and the abutting side of the variable-capacity cylinder vane groove, and the frictional force has a tendency to hinder the movement of the variable displacement sliding piece.
  • variable capacity cylinder assembly is switched from the normal operating mode to the idle mode, and may include:
  • variable displacement cylinder assembly When the pressure in the variable displacement cylinder is at a low pressure and the pressure is equal to the pressure at the suction port of the dispenser, the variable displacement cylinder assembly is in a normal working state.
  • the pressure in the suction side of the variable displacement cylinder is gradually increased by the varactor assembly until the frictional force generated by the slider restraining hole on the variable displacement sliding vane is sufficient to overcome the gas force generated by the pressure difference of the variable displacement sliding vane (at this time, the displacement is slippery)
  • the pressure difference between the head and the tail is ⁇ Pc), and the variable displacement slide is pushed into the variable displacement cylinder slide groove and the friction is restrained in the variable displacement cylinder slide groove. Thereafter, the pressure continues to rise to equal the pressure in the outer casing, the switching process ends, and the variable capacity cylinder assembly enters an idling state.
  • variable capacity cylinder assembly is switched from the idle mode to the normal operating mode process, and may include:
  • variable capacity cylinder assembly When the pressure in the variable capacity cylinder is at a high pressure and the pressure is equal to the pressure in the outer casing, the variable capacity cylinder assembly is in an idling state.
  • the pressure in the variable-capacity cylinder is gradually reduced by the varactor assembly until the pressure in the variable-capacity cylinder is reduced to the gas force generated by the pressure difference between the head and the tail of the variable-capacity slider, which is sufficient to overcome the high-pressure slippage introduced by the slider-constrained hole.
  • the friction generated by the sheet the pressure difference between the head and the tail of the variable displacement vane is ⁇ Pb
  • the variable displacement vane is free from the frictional force and moves to the roller under the action of the gas force until it is fitted with the roller.
  • the space within the varactor assembly is divided into a suction side and an exhaust side.
  • the pressure on the suction side of the variable capacity cylinder continues to decrease and the compressor power is gradually increased until the pressure on the suction side of the variable displacement cylinder is equal to the pressure at the suction port of the liquid separator, the one-way valve is turned on, and the switching process ends.
  • the variable capacity cylinder assembly enters the normal operating mode.
  • the structure is simpler, the control mode is more simple, and the reliability can be ensured.
  • a compressor corresponding to a variable volume control structure is also provided.
  • the compressor can include at least one constant operating compression cylinder assembly. It may also include at least one variable capacity cylinder assembly that is selectively operable or idling. Wherein, the variable capacity cylinder assembly may include: the variable volume control structure described above.
  • the compression cylinder assembly of the compressor may include at least one compressor cylinder assembly that is constantly operating and at least one compressor cylinder assembly that is selectively operable or idling (referred to as a variable cylinder assembly to distinguish).
  • the roller rotor compressor may include: a constant-operating compression cylinder assembly and a variable-capacity cylinder assembly with selectable performance for normal operation or idling; the variable-capacity cylinder assembly operating mode The switching is achieved by the externally disposed varactor assembly and the slider restraining unit; the varactor assembly includes a one-way valve disposed between the variable cylinder intake port and the second outlet of the dispenser, and inhaling from the dispenser a low-pressure side control pipe and a second electromagnetic valve drawn from the port (or a position communicating with the pressure at the suction port of the dispenser), and a high-pressure side control pipe drawn from the exhaust pipe (or the same position as the pressure inside the casing) and the first a solenoid valve, a common-side connecting pipe drawn from the variable-capacity intake port and the check valve, and a buffer connected thereto; the high-pressure side control pipe, the low-pressure side control pipe and the common-side control pipe are connected to each other to have The high pressure in the outer cas
  • the constant-operating compression cylinder assembly is a constant-capacity cylinder assembly relative to the variable-capacity cylinder assembly.
  • the non-variable-capacity cylinder 2 and the pump spring 3 may be included.
  • the constant volume cylinder assembly is in communication with the liquid separator first outlet 12 of the dispenser 11.
  • the volume of gas (ie, displacement) discharged by one rotation of the constant volume component is V a
  • the volume of gas discharged by one rotation of the variable volume cylinder assembly is V b .
  • the displacement of the fixed capacity cylinder assembly can only be V a
  • the displacement of the variable capacity cylinder assembly can be V b or 0 (depending on the compressor operating mode).
  • the first solenoid valve has the ability to adjust the flow area to a range that can be adjusted from zero (ie, fully closed) to maximum capacity.
  • the first solenoid valve needs to have a feature that the flow area is adjustable.
  • the electronic expansion valve currently used for throttling in an air conditioner has a feature that the flow area is adjustable.
  • the first solenoid valve has a maximum flow area S 1 ⁇ 0.0147 fV, and the unit is mm 2 .
  • f is the maximum operating frequency allowed when the variable capacity cylinder assembly is switched
  • V is the working volume when the variable capacity cylinder is working normally, in units of cm 3 .
  • the first solenoid valve may be replaced with an electronic expansion valve.
  • the second solenoid valve has a fully closed state and an open state that allows the maximum flow area S 2 ⁇ 0.587V when opened, in mm 2 .
  • V is the working volume of the variable displacement cylinder during normal operation, and the unit is cm 3 .
  • the second solenoid valve may also use a valve that can be manually controlled to open and close, but the valve cannot be automatically controlled, and the operation is inconvenient.
  • the volume V h ⁇ 10V buffer gas can be accommodated.
  • variable volume cylinder is provided with a transition zone from the working mode to the idle mode, and the transition zone has a time length T1 ⁇ 5 seconds.
  • variable volume cylinder is provided with a transition zone from the idle mode to the working mode, and the transition zone has a time length T2 ⁇ 10.
  • the process of changing the varactor from operating mode to idling mode is:
  • the flow area of the first solenoid valve is gradually increased from 0 to the maximum value S 1 , and the length of time is T1.
  • state of the first solenoid valve is in flow area may be any state or a maximum between 10 S, continues to the second solenoid valve is in a closed state.
  • the process of changing the varactor from idle mode to operating mode is:
  • the flow area of the first solenoid valve is gradually reduced from the maximum value S 1 to 0, and the length of time is T2.
  • the flow path of the first solenoid valve is 0 (ie, in a completely closed state), and the second solenoid valve continues to remain open or remain closed.
  • the compressor of the compressor of the present invention may comprise: a rolling rotor type refrigeration compressor.
  • the rolling rotor type refrigeration compressor may include: a casing, a motor, and a pump body. Wherein, the motor and the pump body are coaxially and tightly disposed in the outer casing.
  • the motor is disposed at the upper portion of the outer casing.
  • the motor may include: a stator and a rotor, wherein the stator is annularly disposed in the outer casing, and the rotor is sleeved in the stator.
  • the rotor and the pump body are integrally connected by a crankshaft, and the rotating electromagnetic force generated by the coil provided on the stator drives the rotation of the rotor and the crankshaft.
  • the pump body to which the pump body belongs has a plurality of compression cylinder assemblies, each of which is hermetically separated by a bearing.
  • Each of the compression cylinder assemblies may include: a cylinder, a roller sleeved on the eccentric portion of the crankshaft (for example, the roller 20), and a slider that is linearly slidable in the cylinder slide groove and has one end in contact with the roller (for example: Slide 21).
  • variable capacity cylinder assembly there may be included at least one constant operation compression cylinder assembly and at least one selectively operable or idling compression cylinder assembly (referred to as a variable capacity cylinder assembly to distinguish).
  • variable-capacity cylinder when the vane in the variable-capacity cylinder (for example, the variable-capacity cylinder 4) is in contact with the roller, the space in the variable-capacity cylinder is divided into a low-pressure suction side and a high pressure whose volume varies with the rotation angle. Exhaust side.
  • the crankshaft rotates, the gas in the variable-capacitor cylinder is compressed, and the variable-capacity cylinder is in a normal working state.
  • variable capacity cylinder when the sliding piece in the variable capacity cylinder is retracted into the sliding groove and is disposed in the sliding body of the pump body, the sliding piece is separated from the roller, and the variable displacement cylinder is separated. There is only one chamber left and communicates with the suction side of the variable tank. When the crankshaft rotates, the gas in the variable capacity cylinder assembly is no longer compressed, and the variable capacity cylinder is in an idling state.
  • the working mode of the variable capacity cylinder assembly (eg, working state, idling state, etc.) is determined by a combination of a varactor assembly disposed outside the casing and a slider restraining unit disposed within the pump body.
  • the varactor assembly may include: a ventilator intake port (eg, a varactor intake port 10) and a second outlet of the dispenser (eg, the second outlet 13 of the dispenser) Check valve (for example: check valve 14).
  • a ventilator intake port eg, a varactor intake port 10
  • a second outlet of the dispenser eg, the second outlet 13 of the dispenser
  • Check valve for example: check valve 14
  • the one-way valve is in an on state when the refrigerant has a tendency to flow from the second outlet of the dispenser to the suction port of the varactor.
  • the check valve when the refrigerant has a tendency to flow from the variable cylinder suction port to the second outlet of the liquid separator, the check valve is in a closed state, that is, the check valve has a forward conduction and a reverse cutoff. Characteristics.
  • the varactor assembly may further include: drawing a tube from the inside of the outer casing (for example, the outer casing 1) (for example, from the compressor exhaust port, that is, the high-pressure exhaust side 28), and the first electromagnetic valve (for example)
  • the first solenoid valve 17) is connected to the high-pressure side control pipe (for example, the exhaust pipe 19), and a pipe is taken from the low-pressure suction side (for example, the low-pressure suction side 27), and the second solenoid valve (for example:
  • the two solenoid valves 18) are connected to a low-pressure side control pipe (for example, the low-pressure side control pipe 29), and a common connecting pipe (for example, a common connecting pipe 30) that is taken out from the variable-capacity intake port and the check valve.
  • the common connecting pipe is respectively connected to the other end of the high-pressure side control pipe and the low-pressure side control pipe (for example, refer to the examples shown in FIGS. 1 to 3, 4 and 5, and FIGS. 6 and 7).
  • the low-pressure refrigerant or the high-pressure refrigerant can be selectively introduced between the check valve and the variable-capacity intake port.
  • the second solenoid valve when the second solenoid valve is turned on and the first solenoid valve is closed, the low pressure refrigerant can be directed thereto, and the check valve is in an on state; when the first solenoid valve is turned on, the second solenoid valve is turned on When closed, the high pressure refrigerant can be directed there, and the check valve is closed.
  • the slider constraint unit (for example, the slider constraint unit 8) may have the following three structural forms.
  • the sliding blade restraining unit may include: a pin disposed in a vertical direction of the variable displacement sliding piece (for example, the variable displacement sliding piece 5) in the variable displacement cylinder assembly (for example, the pin 6), and a spring disposed at the tail end of the pin (for example: pin spring 7).
  • variable displacement sliding piece is close to the roller (for example, the roller 20) at one end in the radial direction of the cylinder, and is called a sliding head, such as the sliding head 24; and the other end is away from the roller, which is called the tail of the sliding piece.
  • the slider tail 25 Such as the slider tail 25.
  • the varistor slide is restrained by the bearings on both sides in the axial direction of the cylinder, and a pin groove (for example, the pin groove 26) is provided near the pin side.
  • the pin is disposed in a bearing adjacent to the variable displacement cylinder, one end is adjacent to the variable displacement sliding vane (referred to as the pin head), and one end is away from the variable displacement sliding vane (referred to as the pin tail).
  • the tail of the slider and the head of the pin communicate with the high pressure inside the casing.
  • the pressure of the slider head is the same as the pressure in the variable displacement cylinder.
  • the tail of the pin passes through the pin communication passage inside the pump body (for example, the pin communication passage 9) and the variable capacity cylinder.
  • the suction port is connected.
  • variable capacity cylinder assembly is switched from the normal operating mode to the idle mode, and may include:
  • variable displacement cylinder assembly When the pressure in the variable displacement cylinder is at a low pressure and the pressure is equal to the pressure at the suction port of the dispenser, the variable displacement cylinder assembly is in a normal working state.
  • the pressure in the suction side of the variable displacement cylinder is gradually increased by the varactor assembly until the spring of the tail of the pin is sufficient to overcome the gas force opposite to the direction of the spring force (the pressure difference between the head and the tail of the pin is ⁇ Pa);
  • the pin When the piece is pushed into the variable displacement cylinder slide groove to a certain position under the rotation of the roller, the pin enters the pin groove on the variable displacement sliding piece to restrain the movement of the variable displacement sliding piece, and thereafter the variable displacement sliding piece is separated from the roller, and
  • the pressure in the variable volume cylinder continues to rise until its pressure equals the high pressure in the housing, the switching process ends and the variable capacity cylinder assembly enters the idle mode.
  • variable capacity cylinder assembly is switched from the idle mode to the normal operating mode process, and may include:
  • the varactor assembly is idling when the pressure in the varactor is at a high pressure and the pressure is equal to the pressure within the housing.
  • the pressure in the variable volume cylinder is gradually reduced by the varactor assembly until the gas force is sufficient to overcome the spring force and push the pin away from the varactor (the pressure difference between the head and the tail of the pin is ⁇ Pa), and the volume is changed.
  • the constraint on the slider is released, and at the same time, the pressure difference in the variable volume cylinder is reduced and the pressure difference between the head and the tail of the slider is also ⁇ Pa, and the generated gas force pushes the variable displacement slider toward the roller until the roller is moved. Fitted with the roller.
  • variable capacity cylinder assembly starts to inhale and compress, and the compressor power starts to rise accordingly.
  • the pressure in the variable capacity cylinder is equal to the pressure of the liquid inlet of the liquid separator, the one-way valve is turned on, and the switching process ends.
  • the variable capacity cylinder assembly enters the normal operating mode.
  • the slider restraining unit may be mainly constituted by a magnetic member (for example, the magnetic member 22) provided at the tail of the variable displacement slider.
  • the magnetic element is fixed to the tail portion of the vane slot of the variable displacement cylinder, and has a magnetic force that attracts the variable displacement sliding piece to have a tendency to move toward the magnetic element.
  • variable capacity cylinder assembly is switched from the normal operating mode to the idle mode, and may include:
  • variable displacement cylinder assembly When the pressure in the variable displacement cylinder is at a low pressure and the pressure is equal to the pressure at the suction port of the dispenser, the variable displacement cylinder assembly is in a normal working state.
  • the pressure in the varactor is gradually increased, and the check valve is closed until the pressure in the varactor is raised until the magnetic component is sufficient to overcome the gas force generated by the pressure difference of the varistor slide (at this time, the volume is changed)
  • the pressure difference between the head and the tail of the slider is ⁇ Pb), and the variable displacement slider is pushed into the variable cylinder sliding slot by the rotating roller, and is restrained in the sliding slot by the magnetic force generated by the magnetic component
  • the pressure continues to rise to the same level as the pressure inside the casing, the switching process ends, and the variable capacity cylinder assembly enters the idle mode.
  • variable capacity cylinder assembly is switched from the idle mode to the normal operating mode process, and may include:
  • the varactor assembly is idling when the pressure in the varactor is at a high pressure and the pressure is equal to the pressure within the housing.
  • the pressure in the variable-capacity cylinder is gradually reduced by the varactor assembly until the pressure in the variable-capacity cylinder is reduced to the gas force generated by the pressure difference between the head and the tail of the variable-capacity slider to overcome the magnetic force exerted by the magnetic element on the variable-capacity slider At this time (the pressure difference between the head and the tail of the variable displacement vane is ⁇ Pb), the variable displacement vane is free from the binding of the magnetic element and moves to the roller under the action of the gas force until it is fitted with the roller, and the varactor assembly
  • the space inside is divided into an intake side and an exhaust side.
  • variable capacity cylinder assembly enters the normal operating mode.
  • a sliding piece restraining hole (for example, a sliding piece restricting hole 23) is disposed on the side of the variable displacement cylinder away from the suction opening, and the high pressure in the outer casing is directed to the variable displacement sliding piece.
  • One side of the slot and communicates with the variable displacement vane slot.
  • variable displacement sliding vane acts on the variable displacement sliding vane to be in close contact with the other side of the variable displacement sliding vane, the direction of the pressure being perpendicular to the linear motion direction of the variable displacement sliding vane, and thereby causing the variable volume
  • a frictional force is generated between the sliding piece and the abutting side of the variable-capacity cylinder vane groove, and the frictional force has a tendency to hinder the movement of the variable displacement sliding piece.
  • variable capacity cylinder assembly is switched from the normal operating mode to the idle mode, and may include:
  • variable displacement cylinder assembly When the pressure in the variable displacement cylinder is at a low pressure and the pressure is equal to the pressure at the suction port of the dispenser, the variable displacement cylinder assembly is in a normal working state.
  • the pressure in the suction side of the variable displacement cylinder is gradually increased by the varactor assembly until the frictional force generated by the slider restraining hole on the variable displacement sliding vane is sufficient to overcome the gas force generated by the pressure difference of the variable displacement sliding vane (at this time, the displacement is slippery)
  • the pressure difference between the head and the tail is ⁇ Pc), and the variable displacement slide is pushed into the variable displacement cylinder slide groove and the friction is restrained in the variable displacement cylinder slide groove. Thereafter, the pressure continues to rise to equal the pressure in the outer casing, the switching process ends, and the variable capacity cylinder assembly enters an idling state.
  • variable capacity cylinder assembly is switched from the idle mode to the normal operating mode process, and may include:
  • variable capacity cylinder assembly When the pressure in the variable capacity cylinder is at a high pressure and the pressure is equal to the pressure in the outer casing, the variable capacity cylinder assembly is in an idling state.
  • the pressure in the variable-capacity cylinder is gradually reduced by the varactor assembly until the pressure in the variable-capacity cylinder is reduced to the gas force generated by the pressure difference between the head and the tail of the variable-capacity slider, which is sufficient to overcome the high-pressure slippage introduced by the slider-constrained hole.
  • the friction generated by the sheet the pressure difference between the head and the tail of the variable displacement vane is ⁇ Pb
  • the variable displacement vane is free from the frictional force and moves to the roller under the action of the gas force until it is fitted with the roller.
  • the space within the varactor assembly is divided into a suction side and an exhaust side.
  • the pressure on the suction side of the variable capacity cylinder continues to decrease and the compressor power is gradually increased until the pressure on the suction side of the variable displacement cylinder is equal to the pressure at the suction port of the liquid separator, the one-way valve is turned on, and the switching process ends.
  • the variable capacity cylinder assembly enters the normal operating mode.
  • variable capacity cylinder assembly When the variable capacity cylinder assembly is in the working mode, the pressure on the suction side of the variable capacity cylinder is equal to the pressure of the suction port of the liquid separator, the check valve is in the on state, the first electromagnetic valve is in the closed state, and the second electromagnetic The valve is in the on or off state.
  • the second electromagnetic valve is closed (if it is previously in the on state), the first electromagnetic valve is opened, and the high-pressure gas in the outer casing is introduced into the variable-capacity intake port. After the check valve is closed, it flows into the suction side of the variable displacement cylinder. When the high-pressure gas flows through the first electromagnetic valve, it is limited by the flow cross-section, and a certain degree of pressure drop will occur. If the high-pressure pressure drop introduced at this time is too large, the sliding piece restraining unit restricts the variable-capacity sliding piece to the variable capacity.
  • variable capacity cylinder assembly When the cylinder slide groove and the variable displacement sliding plate are separated from the roller, the variable capacity cylinder assembly in turn compresses and exhausts the gas flowing from the inside of the casing through the high pressure side control pipe and introduced into the suction side of the variable displacement cylinder. At this time, the pressure on the suction side of the variable capacity cylinder will be further reduced, but the pressure is higher than the pressure in the liquid separator, the check valve remains closed, and the current of the compressor and the switching operation have a certain extent.
  • a varactor cylinder assembly is switched from 0 (i.e., the first solenoid valve is in a closed state) to the variable flow area wherein S 0 from the normal operating mode to the idle mode, gradually increasing The maximum flow area of the large first solenoid valve will gradually increase the pressure in the variable volume cylinder, and the compressor current will gradually decrease until it reaches the minimum value.
  • variable-capacity cylinder When the variable-capacity cylinder is in the idle mode, the pressure in the variable-capacity cylinder is high pressure and equal to the pressure in the outer casing; the states of the variable-capacity components are: the one-way valve is closed, the second electromagnetic valve is closed, and the first electromagnetic valve is Open or close; the variable displacement slide is restrained by the slide restraint unit in the variable displacement cylinder slide groove.
  • variable-capacity cylinder assembly needs to be switched to the normal working state at a certain time, the first electromagnetic valve is closed (if it is previously opened), the second electromagnetic valve is opened, and the high-pressure gas in the variable-capacity cylinder is connected along the common side.
  • the tube, the low pressure side connecting tube flows into the liquid inlet of the dispenser.
  • the flow rate of gas flowing into the suction port of the dispenser from the variable volume cylinder is limited by the flow area of the second solenoid valve.
  • variable displacement sliding piece Since the gas in the space between the variable capacity cylinder and the second solenoid valve is reduced, the pressure is gradually decreased, and when the pressure is lowered to satisfy the condition that the variable displacement sliding vane is free from the constraint of the sliding piece restraining unit, the variable displacement sliding piece is in the gas force. Under the action of the roller, move to the direction of the roller until the head fits the roller.
  • variable-capacity cylinder assembly begins to compress and exhaust the remaining gas in the variable-capacity cylinder, and the pressure in the variable-capacity cylinder decreases as the remaining gas decreases. If the flow area of the second solenoid valve is too large, The amount of the remaining gas is reduced faster, the load of the variable capacity cylinder assembly is rapidly increased, and the compressor will be subjected to huge vibration due to sudden increase of the load, which may cause the compressor to suddenly stop, or even the compressor connecting line is broken, so The flow area S 2 of the second solenoid valve must be limited. After testing, the flow area S 2 of the second solenoid valve should meet the following conditions:
  • V is the working volume of the variable volume cylinder
  • S 2 is smaller than the maximum flow area of the first electromagnetic valve
  • a buffer for example, the buffer 16
  • the volume of gas that the damper can accommodate is V h ⁇ 10V, and V is the working volume of the varactor.
  • first solenoid valve and the second solenoid valve may be operated as follows when the varactor component is switched from the working mode to the idling mode:
  • variable capacity cylinder assembly when the variable capacity cylinder assembly is in an operating state (also referred to as an operating mode), the first solenoid valve is in a closed state (ie, the flow area is 0), and the second solenoid valve is in an open state (ie, a flow area)
  • an operating state also referred to as an operating mode
  • the first solenoid valve is in a closed state (ie, the flow area is 0)
  • the second solenoid valve is in an open state (ie, a flow area)
  • S 2 in order to save power, keep it off at this time).
  • the slider constraint unit reaches the condition for binding the varisible slide (for Example 1 ⁇ P 1 ⁇ ⁇ P a , for Example 2 ⁇ P 1 ⁇ ⁇ P b , for Example 3 ⁇ P 1 ⁇ ⁇ P c )
  • the displacement vane is disengaged from the roller.
  • the pressure in the variable displacement cylinder rises to the same pressure as the inner casing (also called the exhaust back pressure)
  • the compressor current is reduced to the minimum
  • the switching process ends, and the variable capacity cylinder enters the idle state. mode.
  • variable capacity cylinder assembly adds a transition zone t1 ⁇ t3 from the working mode to the idle mode.
  • T1 transition time
  • the compressor vibration can be greatly reduced when the mode is switched.
  • first solenoid valve and the second solenoid valve may be operated as follows when the varactor assembly is switched from the idle mode to the working mode:
  • the first solenoid valve when the cylinder is in an idling state varactor (also known as idle mode), the first solenoid valve is open or closed state (which is in flow area may be any value between 0 to S, the flow area When it is 0, it is in the closed state), and the second solenoid valve is in the closed state.
  • the pressure of the venting port of the varactor is reduced to a certain extent, but the pressure drop is controlled.
  • the high pressure gas entering the buffer from the inside of the casing is reduced, and the high pressure gas flowing out of the buffer from the second solenoid valve is unchanged, so that the pressure of the suction port of the variable capacity cylinder into the buffer is reduced.
  • the pressure difference that is gradually lowered and with the exhaust back pressure is ⁇ P 0 .
  • the pressure difference satisfies the condition that the variator slide is free from the constraint of the slider constraint unit (for the first embodiment: ⁇ P 0 ⁇ ⁇ P a , for the second embodiment: ⁇ P 0 ⁇ ⁇ P b ; for the third embodiment : ⁇ P 0 ⁇ ⁇ P c ), the variable displacement sliding piece moves to the roller under the action of the gas force until it fits with the roller, and divides the variable displacement cylinder into the suction side and the exhaust side; the gas is driven by the crankshaft Compress and vent. Since the high pressure gas is continuously replenished at the first solenoid valve, the pressure in the variable capacity cylinder assembly does not decrease rapidly.
  • the flow area of the first solenoid valve is further reduced and the second solenoid valve is kept open (or the second solenoid valve is closed), and the pressure on the suction side of the varactor and the compressor current are gradually increased (for example, see FIG. 11 In the example shown), until the flow rate of the first solenoid valve is 0 (ie, fully closed) at time t2, the pressure on the suction side of the varactor is equal to the pressure at the suction port of the dispenser (for example, see Figure 9 As shown in the example), the check valve is turned on and the compressor current rises to the maximum value. At the end of the switching process, the variable capacity cylinder is turned into the working state.
  • variable volume cylinder assembly also adds a transition zone t1 ⁇ t3 from the idle mode to the working mode (for example, see the example shown in FIG. 8).
  • T1 transition time
  • the compressor vibration can be greatly reduced when the mode is switched.
  • variable frequency plus varactor combination can further expand the range of cold and heat regulation, and has broad application prospects.
  • variable volume control method of a compressor corresponding to a compressor is also provided.
  • the variable volume control method of the compressor may include:
  • the varactor components are operated in a set order.
  • variable capacity cylinder for example, the process of changing the variable capacity cylinder from the operating mode to the idle mode is:
  • the flow area of the first solenoid valve is gradually increased from 0 to the maximum value S 1 , and the length of time is T1.
  • state of the first solenoid valve is in flow area may be any state or a maximum between 10 S, continues to the second solenoid valve is in a closed state.
  • variable capacity cylinder For example, the process of changing the variable capacity cylinder from idle mode to working mode is:
  • the flow area of the first solenoid valve is gradually reduced from the maximum value S 1 to 0, and the length of time is T2.
  • the flow path of the first solenoid valve is 0 (ie, in a completely closed state), and the second solenoid valve continues to remain open or remain closed.
  • the operation can be performed in a set sequence, which greatly reduces the probability of the compressor shaking and stopping when the mode is switched, avoids the pipeline breakage caused by the switching, and realizes the state switching of the variable capacity cylinder assembly.
  • the reliability of the control improves the reliability of the compressor switching.
  • the varactor assembly when the varactor assembly may include the one-way valve 14, the throttle, and the on-off member, the varactor assembly is operated in the set sequence in step (1), and may include: The process of changing the variable capacity cylinder assembly from the working state to the idling state.
  • the opening degree of the throttle member is gradually increased from the lower limit of the set flow area to the upper limit of the set flow area within the first transition time.
  • the opening degree of the throttle member is at a lower limit of the set flow-through area and an upper limit of the set flow-through area Any opening degree, and maintaining the closed state of the on-off member.
  • the one-way valve 14 is in a closed state when the throttle member is in an open state and the on-off member is in a closed state.
  • variable capacity cylinder For example, the process of changing the variable capacity cylinder from working mode to idle mode is:
  • the flow area of the first solenoid valve is gradually increased from 0 to the maximum value S 1 , and the length of time is T1.
  • state of the first solenoid valve is in flow area may be any state or a maximum between 10 S, continues to the second solenoid valve is in a closed state.
  • the step of moving the varactor component in the set sequence in step (1) may further include: a process of switching the varactor cylinder assembly from an idle state to an active state.
  • the opening degree of the throttle member is gradually reduced from the upper limit of the set flow area to the lower limit of the set flow area in the second transition time.
  • the one-way valve 14 is in an on state when the throttle member is in a closed state and the on-off member is in an open state.
  • variable capacity cylinder For example, the process of changing the variable capacity cylinder from idle mode to working mode is:
  • the flow area of the first solenoid valve is gradually reduced from the maximum value S 1 to 0, and the length of time is T2.
  • the flow path of the first solenoid valve is 0 (ie, in a completely closed state), and the second solenoid valve continues to remain open or remain closed.
  • the high-pressure refrigerant on the high-pressure exhaust side of the compressor is controlled by the throttle member to be introduced into the flow area of the check valve and the variable-capacity intake port, and the control method is simple, and the control result is accurate and reliable.
  • the low-pressure refrigerant on the low-pressure suction side of the compressor is controlled to be turned on or off between the check valve and the variable-capacity intake port by the on-off piece, the control mode is simple, and the control result is highly reliable.
  • the step of causing the varactor component to operate in a set order in step (1) may further include: passing the buffer 16, During the switching of the variable capacity cylinder assembly from the idling state to the working state, the speed of the pressure reduction in the varactor cylinder 4 in the varactor cylinder assembly is slowed down.
  • the speed of the internal pressure of the varactor in the idling state to the working state can be further slowed down, and further Further reduce the degree of jitter of the compressor during state switching, and improve the reliability and safety of state switching and operation.
  • slowing down the speed of pressure reduction in the variable displacement cylinder 4 in the variable volume cylinder assembly may include:
  • the presence of the buffer and the flow area of the first solenoid valve are at a maximum state, and the pressure of the suction port of the variable capacity cylinder is decreased by a certain extent, but the pressure drop is controlled.
  • Gradually reducing the flow area of the first solenoid valve the high pressure gas entering the buffer from the inside of the casing is reduced, and the high pressure gas flowing out of the buffer from the second solenoid valve is unchanged, so that the pressure of the suction port of the variable capacity cylinder into the buffer is reduced.
  • the pressure difference that is gradually lowered and with the exhaust back pressure is ⁇ P 0 .
  • variable-capacity cylinder for example, the variable-capacity cylinder 4
  • the space in the variable-capacity cylinder is divided into a low-pressure suction side and a high-pressure exhaust side whose volume varies with the rotation angle.
  • the crankshaft rotates, the gas in the variable-capacitor cylinder is compressed, and the variable-capacity cylinder is in a normal working state.
  • variable capacity cylinder when the sliding piece in the variable capacity cylinder retreats into the sliding groove and is restrained by the sliding piece restraining unit disposed in the pump body, the sliding piece is separated from the roller, and only one chamber remains in the variable capacity cylinder. And connected to the suction side of the variable capacity cylinder. When the crankshaft rotates, the gas in the variable capacity cylinder assembly is no longer compressed, and the variable capacity cylinder is in an idling state.
  • the working mode of the variable capacity cylinder assembly (eg, working state, idling state, etc.) is determined by a combination of a varactor assembly disposed outside the casing and a slider restraining unit disposed within the pump body.
  • the ordered movement of the varactor can be controlled, the jitter of the compressor during mode switching is greatly reduced, and the shutdown and the pipeline are avoided when the compressor is switched. Problems such as breakage.
  • the variable volume cylinder assembly in the compressor is in an active state or an idling state in the step (2), and may include: The process of switching the cylinder assembly from the working state to the idling state.
  • variable displacement vane 5 of the variable displacement cylinder assembly when the variable displacement vane 5 of the variable displacement cylinder assembly is pushed into the set position in the variable displacement cylinder vane groove of the variable displacement cylinder assembly under the rotation of the roller of the variable displacement cylinder assembly
  • the pin 6 enters the pin groove 26 on the variable displacement slider 5 to restrain the movement of the variable displacement slider 5. Thereafter, the variable displacement slider 5 is disengaged from the roller.
  • variable-capacity cylinder assembly is in an idling state.
  • the variable capacity cylinder assembly in the compressor is in an active state or an idling state, and may further include: a process in which the variable capacity cylinder assembly is switched from an idle state to an active state.
  • variable displacement slide 5 pushing the variable displacement slide 5 by the gas force generated by the first pressure difference to move toward the roller adjacent to the variable displacement cylinder assembly until the variable displacement slide 5 and the roll
  • the varactor assembly begins to inhale and compress, and the power of the compressor begins to rise.
  • the check valve 14 in the varactor assembly is turned on until the pressure in the varactor 4 is equal to the pressure of the dispenser inlet 15 in the compressor. At the end of the switching process, the variable capacity cylinder assembly is in an operational state.
  • the sliding blade restraining unit may include: a pin disposed in a vertical direction of the variable displacement sliding piece (for example, the variable displacement sliding piece 5) in the variable displacement cylinder assembly (for example, the pin 6), and a spring disposed at the tail end of the pin ( For example: pin spring 7).
  • variable displacement sliding piece is close to the roller (for example, the roller 20) at one end in the radial direction of the cylinder, and is called a sliding head, such as the sliding head 24; the other end is away from the roller, called the tail of the sliding piece, such as Slide tail 25.
  • the varistor slide is restrained by the bearings on both sides in the axial direction of the cylinder, and a pin groove (for example, the pin groove 26) is provided near the pin side.
  • the pin is disposed in a bearing adjacent to the variable displacement cylinder, one end is adjacent to the variable displacement sliding vane (referred to as the pin head), and one end is away from the variable displacement sliding vane (referred to as the pin tail).
  • the tail of the slider and the head of the pin communicate with the high pressure inside the casing.
  • the pressure of the slider head is the same as the pressure in the variable displacement cylinder.
  • the tail of the pin passes through the pin communication passage inside the pump body (for example, the pin communication passage 9) and the variable capacity cylinder.
  • the suction port is connected.
  • variable capacity cylinder assembly is switched from the normal operating mode to the idle mode, and may include:
  • variable displacement cylinder assembly When the pressure in the variable displacement cylinder is at a low pressure and the pressure is equal to the pressure at the suction port of the dispenser, the variable displacement cylinder assembly is in a normal working state.
  • the pressure in the suction side of the variable displacement cylinder is gradually increased by the varactor assembly until the spring of the tail of the pin is sufficient to overcome the gas force opposite to the direction of the spring force (the pressure difference between the head and the tail of the pin is ⁇ Pa);
  • the pin When the piece is pushed into the variable displacement cylinder slide groove to a certain position under the rotation of the roller, the pin enters the pin groove on the variable displacement sliding piece to restrain the movement of the variable displacement sliding piece, and thereafter the variable displacement sliding piece is separated from the roller, and
  • the pressure in the variable volume cylinder continues to rise until its pressure equals the high pressure in the housing, the switching process ends and the variable capacity cylinder assembly enters the idle mode.
  • variable capacity cylinder assembly is switched from the idle mode to the normal operating mode process, and may include:
  • the varactor assembly is idling when the pressure in the varactor is at a high pressure and the pressure is equal to the pressure within the housing.
  • the pressure in the variable volume cylinder is gradually reduced by the varactor assembly until the gas force is sufficient to overcome the spring force and push the pin away from the varactor (the pressure difference between the head and the tail of the pin is ⁇ Pa), and the volume is changed.
  • the constraint on the slider is released, and at the same time, the pressure difference in the variable volume cylinder is reduced and the pressure difference between the head and the tail of the slider is also ⁇ Pa, and the generated gas force pushes the variable displacement slider toward the roller until the roller is moved. Fitted with the roller.
  • variable capacity cylinder assembly starts to inhale and compress, and the compressor power starts to rise accordingly.
  • the pressure in the variable capacity cylinder is equal to the pressure of the liquid inlet of the liquid separator, the one-way valve is turned on, and the switching process ends.
  • the variable capacity cylinder assembly enters the normal operating mode.
  • the step of changing the cylinder assembly in the compressor to be in an active state or an idle state in step (2) may include: The process of changing the variable capacity cylinder assembly from the working state to the idle state.
  • variable displacement slide 5 (62) pushing the variable displacement slide 5 by the roller rotating in the variable displacement cylinder assembly into the variable displacement cylinder slide groove in the variable displacement cylinder assembly, and the magnetic element 22 is opposite
  • the magnetic force generated by the variable displacement slider 5 is confined in the variable displacement cylinder vane groove.
  • the pressure in the variable displacement cylinder 4 continues to rise to equal the pressure in the outer casing 1, the switching process ends, and the variable capacity cylinder assembly is in an idling state.
  • the variable capacity cylinder assembly in the compressor is in an active state or an idling state, and may further include: a process in which the variable capacity cylinder assembly is switched from an idle state to an active state.
  • the slider restraining unit may be mainly constituted by a magnetic member (for example, the magnetic member 22) provided at the tail of the variable displacement slider.
  • the magnetic element is fixed to the tail portion of the vane slot of the variable displacement cylinder, and has a magnetic force that attracts the variable displacement sliding piece to have a tendency to move toward the magnetic element.
  • variable capacity cylinder assembly is switched from the normal operating mode to the idle mode, and may include:
  • variable displacement cylinder assembly When the pressure in the variable displacement cylinder is at a low pressure and the pressure is equal to the pressure at the suction port of the dispenser, the variable displacement cylinder assembly is in a normal working state.
  • the pressure in the varactor is gradually increased, and the check valve is closed until the pressure in the varactor is raised until the magnetic component is sufficient to overcome the gas force generated by the pressure difference of the varistor slide (at this time, the volume is changed)
  • the pressure difference between the head and the tail of the slider is ⁇ Pb), and the variable displacement slider is pushed into the variable cylinder sliding slot by the rotating roller, and is restrained in the sliding slot by the magnetic force generated by the magnetic component
  • the pressure continues to rise to the same level as the pressure inside the casing, the switching process ends, and the variable capacity cylinder assembly enters the idle mode.
  • variable capacity cylinder assembly is switched from the idle mode to the normal operating mode process, and may include:
  • the varactor assembly is idling when the pressure in the varactor is at a high pressure and the pressure is equal to the pressure within the housing.
  • the pressure in the variable-capacity cylinder is gradually reduced by the varactor assembly until the pressure in the variable-capacity cylinder is reduced to the gas force generated by the pressure difference between the head and the tail of the variable-capacity slider to overcome the magnetic force exerted by the magnetic element on the variable-capacity slider At this time (the pressure difference between the head and the tail of the variable displacement vane is ⁇ Pb), the variable displacement vane is free from the binding of the magnetic element and moves to the roller under the action of the gas force until it is fitted with the roller, and the varactor assembly
  • the space inside is divided into an intake side and an exhaust side.
  • variable capacity cylinder assembly enters the normal operating mode.
  • variable displacement sliding piece is restrained by the magnetic element, the structure is simple, and the control mode is simple.
  • the slider constraint unit 8 may include a slider-constrained hole-constraining unit
  • the variable-capacity cylinder assembly in the compressor is in an active state or an idling state in the step (2), and may include: The process of switching the variable capacity cylinder assembly from an operating state to an idle state.
  • variable displacement sliding vane 5 (82) causing the variable displacement sliding vane 5 to be pushed into a variable displacement cylinder vane groove in the variable displacement cylinder assembly, and the variable displacement sliding vane 5 is constrained to the variable volume by the frictional force Cylinder slide slot. Thereafter, the pressure in the suction side of the varactor of the varactor cylinder 4 continues to rise to equal the pressure in the outer casing 1, the switching process ends, and the varactor assembly is in an idling state.
  • the variable capacity cylinder assembly in the compressor is in an active state or an idling state, and may further include: a process in which the variable capacity cylinder assembly is switched from an idle state to an active state.
  • slider constrained hole constraining unit structure introduction Embodiment 3 shown in FIG. 6 and FIG.
  • a sliding piece restraining hole for example, a sliding piece restricting hole 23
  • the high pressure in the outer casing is directed to the variable displacement sliding piece.
  • One side of the slot and communicates with the variable displacement vane slot.
  • variable displacement sliding vane acts on the variable displacement sliding vane to be in close contact with the other side of the variable displacement sliding vane, the direction of the pressure being perpendicular to the linear motion direction of the variable displacement sliding vane, and thereby causing the variable volume
  • a frictional force is generated between the sliding piece and the abutting side of the variable-capacity cylinder vane groove, and the frictional force has a tendency to hinder the movement of the variable displacement sliding piece.
  • variable capacity cylinder assembly is switched from the normal operating mode to the idle mode, and may include:
  • variable displacement cylinder assembly When the pressure in the variable displacement cylinder is at a low pressure and the pressure is equal to the pressure at the suction port of the dispenser, the variable displacement cylinder assembly is in a normal working state.
  • the pressure in the suction side of the variable displacement cylinder is gradually increased by the varactor assembly until the frictional force generated by the slider restraining hole on the variable displacement sliding vane is sufficient to overcome the gas force generated by the pressure difference of the variable displacement sliding vane (at this time, the displacement is slippery)
  • the pressure difference between the head and the tail is ⁇ Pc), and the variable displacement slide is pushed into the variable displacement cylinder slide groove and the friction is restrained in the variable displacement cylinder slide groove. Thereafter, the pressure continues to rise to equal the pressure in the outer casing, the switching process ends, and the variable capacity cylinder assembly enters an idling state.
  • variable capacity cylinder assembly is switched from the idle mode to the normal operating mode process, and may include:
  • variable capacity cylinder assembly When the pressure in the variable capacity cylinder is at a high pressure and the pressure is equal to the pressure in the outer casing, the variable capacity cylinder assembly is in an idling state.
  • the pressure in the variable-capacity cylinder is gradually reduced by the varactor assembly until the pressure in the variable-capacity cylinder is reduced to the gas force generated by the pressure difference between the head and the tail of the variable-capacity slider, which is sufficient to overcome the high-pressure slippage introduced by the slider-constrained hole.
  • the friction generated by the sheet the pressure difference between the head and the tail of the variable displacement vane is ⁇ Pb
  • the variable displacement vane is free from the frictional force and moves to the roller under the action of the gas force until it is fitted with the roller.
  • the space within the varactor assembly is divided into a suction side and an exhaust side.
  • the pressure on the suction side of the variable capacity cylinder continues to decrease and the compressor power is gradually increased until the pressure on the suction side of the variable displacement cylinder is equal to the pressure at the suction port of the liquid separator, the one-way valve is turned on, and the switching process ends.
  • the variable capacity cylinder assembly enters the normal operating mode.
  • the structure is simpler, the control mode is more simple, and the reliability can be ensured.
  • the technical solution of the present invention is used to make the variable-capacity component in a working or idling state by the orderly action of the variable-capacity component, and the slider-constraining unit is combined, thereby greatly reducing the violent jitter during state switching and improving Compressor state switching and operational reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种变容控制结构、压缩机及其变容控制方法,该结构包括:变容组件和滑片约束单元(8);其中,变容组件,设置于变容控制结构所属压缩机的外壳(1)的外部,用于按设定顺序动作;滑片约束单元(8),设置于压缩机的泵体的内部,用于在变容组件按设定顺序动作的控制下,使压缩机中变容缸组件处于工作状态或空转状态,本发明的方案,实现降低抖动、不易停机和管路不易断裂的有益效果。

Description

一种变容控制结构、压缩机及其变容控制方法 技术领域
本发明属于压缩机技术领域,具体涉及一种变容控制结构、压缩机及其变容控制方法,尤其涉及一种滚动转子式变容压缩机的变容控制结构、具有该变容控制结构的压缩机、以及该压缩机的变容控制方法。
背景技术
转子式压缩机通过由发动机或电动机驱动(多数为电动机驱动),另一转子(又称阴转子或凹转子)是由主转子通过喷油形成的油膜进行驱动,或由主转子端和凹转子端的同步齿轮驱动。应用滚动转子式压缩机的空调系统,目前普遍采用变频技术控制压缩机转速调节空调系统的制冷、制热输出。该技术具有控制相对简单,冷、热量输出调节范围大等特点。
近年来多个厂家在多缸压缩机上开发了变容控制技术,但采用变容控制技术调节压缩机工作容量时,变容缸由空转状态转换到工作状态时或由工作状态转换到空转状态时,压缩机的负载突然增大或减小,引起压缩机剧烈抖动,易导致压缩机突然停机或压缩机管路断裂,压缩机控制器也会受到剧烈的电流冲击。这些问题的存在导致了变容控制技术难以大规模推广应用,成为行业内急需解决的问题。
现有技术中,存在抖动剧烈、易停机和管路易断裂等缺陷。
发明内容
本发明的目的在于,针对上述缺陷,提供一种变容控制结构、压缩机及其变容控制方法,以解决现有技术中变容压缩机在进行模式切换时由于负载突变引起剧烈抖动的问题,达到大幅降低抖动的效果。
本发明提供一种变容控制结构,包括:变容组件和滑片约束单元;其中,所述变容组件,设置于所述变容控制结构所属压缩机的外壳的外部,用于按设定顺序动作;所述滑片约束单元,设置于所述压缩机的泵体的内部,用于在所述变容组件按设定顺序动作的控制下,使所述压缩机中变容缸组件处于工作状态或空转状态。
可选地,所述变容组件,包括:单向阀;所述单向阀,设置于所述变容缸组件中变容缸的变容缸吸气口、与所述压缩机中分液器的分液器第二出口之间的管路中,用于当冷媒由所述分液器第二出口流向所述变容缸吸气口时处于导通状态,或当冷媒由所述变容缸吸气口流向所述分液器第二出口时处于截止状态。
可选地,所述变容组件,还包括:节流件和通断件中的至少之一;其中,所述节流件,设置于自所述外壳内部的高压排气侧引出的高压侧控制管所在管路中,用于在所述单向阀和 所述节流件均处于关闭状态、且所述节流件处于开启状态时,按设定流通面积,将所述高压排气侧的高压冷媒引入至所述单向阀与所述变容缸吸气口之间;所述通断件,设置于自所述分液器内部的低压吸气侧引出的低压侧控制管所在管路中,用于在所述单向阀、所述节流件和所述通断件均处于开启状态时,将所述低压吸气侧的低压冷媒引入至所述单向阀与所述变容缸吸气口之间。
可选地,其中,在所述变容组件中,自所述变容缸吸气口与所述单向阀之间还引出有公共连接管,所述高压侧控制管和所述低压侧控制管的另一端,均连通至所述公共连接管;和/或,所述变容组件,还包括:缓冲器;所述缓冲器,设置于自所述变容缸吸气口与所述单向阀之间引出的公共连接管所在管路中,用于在所述变容缸由所述空转状态切换至所述工作状态时,减缓所述变容缸内部压力降低的速度。
可选地,其中,所述节流件,包括:第一电磁阀、电子膨胀阀、毛细管中的至少之一;和/或,所述节流件能够调节的所述设定流通面积的上限,大于或等于:所述变容缸组件在状态切换时允许的最大运行频率、与所述变容缸处于工作状态时的工作容积的乘积的第一设定系数倍;其中,所述状态切换,包括:由工作状态切换至空转状态,或由空转状态切换至工作状态;和/或,当所述变容缸组件由工作状态切换至空转状态时,所述节流件的开度由所述设定流通面积的上限调小到所述设定流通面积的下限的时间为第一过渡时间;当所述变容缸组件由空转状态切换至工作状态时,所述节流件的开度由所述设定流通面积的下限调大到所述设定流通面积的上限的时间为第二过渡时间;其中,所述第一过渡时间大于或等于第一设定时间,所述第二过渡时间大于或等于第二设定时间,且所述第二设定时间大于所述第一设定时间;和/或,所述通断件,包括:第二电磁阀、电动开关、手动开关中的至少之一;和/或,所述通断件开启时的允许流通面积,小于或等于所述变容缸处于工作状态时的工作容积的第二设定系数倍;和/或,当所述变容组件还包括缓冲器时,所述缓冲器所能容纳的气体体积,大于或等于所述变容缸处于工作状态时的工作容积的第三设定系数倍。
可选地,所述滑片约束单元,包括:销钉约束单元、磁性元件约束单元、滑片约束孔约束单元中的任意一个;其中,所述销钉约束单元,包括:销钉和销弹簧;其中,所述销钉,设置于所述变容缸组件中变容滑片的竖直方向、且位于所述压缩机中与所述变容缸相邻的轴承内;所述销弹簧,设置于所述销钉的尾部;和/或,所述磁性元件约束单元,包括:磁性元件;所述磁性元件,设置于所述变容缸组件中变容滑片的尾部,用于吸引所述变容滑片,以使所述变容滑片向所述磁性元件移动;和/或,所述滑片约束孔约束单元,包括:滑片约束孔;所述滑片约束孔,位于与所述变容缸组件中变容滑片的运动方向呈设定角度的方向上,且设置于所述变容缸组件中变容缸上与所述变容缸的变容缸吸气口相对的一侧,用于将所述外壳内的高压气体引向所述变容滑片的变容滑片槽一侧,并与所述变容滑片槽相通。
可选地,其中,所述销钉约束单元,还包括:销槽;所述销槽,设置于所述变容滑片的竖直方向的尾部;所述销钉,设置于所述销槽中;和/或,在所述销钉约束单元中,所述变容滑片的尾部及所述销钉的头部,均与所述外壳内部的高压气体连通;所述变容滑片的头部压力与所述变容缸的内部压力相同;所述销钉的尾部,通过所述压缩机中泵体内部的销钉连通 通道,与所述变容缸的变容缸吸气口连通;和/或,在所述滑片约束孔约束单元中,所述滑片约束孔向所述变容滑片的变容滑片槽一侧引入的所述外壳内的高压气体,形成作用在所述变容滑片上的压力,使所述变容滑片与所述变容滑片槽的另一侧贴紧;所述压力的方向,与所述变容滑片直线运动的方向垂直、并使所述变容滑片与所述变容滑片槽贴紧侧之间产生摩擦力,以阻碍所述变容滑片运动。
与上述变容控制结构相匹配,本发明另一方面提供一种压缩机,包括:至少一个恒定运行的压缩缸组件;还包括:至少一个能够选择性地处于工作状态或空转状态的变容缸组件;其中,所述变容缸组件,包括:以上所述的变容控制结构。
与上述压缩机相匹配,本发明再一方面提供一种压缩机的变容控制方法,包括:使所述变容组件按设定顺序动作;使所述滑片约束单元,在所述变容组件按设定顺序动作的控制下,使所述压缩机中变容缸组件处于工作状态或空转状态。
可选地,当所述变容组件包括单向阀、节流件和通断件时,使所述变容组件按设定顺序动作,包括:在所述变容缸组件由工作状态切换到空转状态的过程中:使所述通断件处于关闭状态;使所述节流件的开度在第一过渡时间内,由设定流通面积的下限逐渐调大至所述设定流通面积的上限;在所述变容缸组件由工作状态到空转状态的切换过程完成后,使所述节流件的开度处于所述设定流通面积的下限与所述设定流通面积的上限中的任一开度,且维持所述通断件的关闭状态;或者,在所述变容缸组件由空转状态切换到工作状态的过程中:使所述节流件的开度处于设定流通面积的上限;使所述通断件处于开启状态;使所述节流件的开度在第二过渡时间内,由设定流通面积的上限逐渐调小至所述设定流通面积的下限;在所述变容缸组件由空转状态到工作状态的切换过程完成后,使所述节流件的开度处于所述设定流通面积的下限,且维持所述通断件的开启状态、或使所述通断件处于关闭状态;其中,当所述节流件处于关闭状态、而所述通断件处于开启状态时,使所述单向阀处于导通状态;或者,当所述节流件处于开启状态、而所述通断件处于关闭状态时,使所述单向阀处于关闭状态。
可选地,当所述变容组件还包括缓冲器时,使所述变容组件按设定顺序动作,还包括:通过所述缓冲器,在所述变容缸组件由空转状态到工作状态的切换过程中,减缓所述变容缸组件中变容缸内压力降低的速度。
可选地,减缓所述变容缸组件中变容缸内压力降低的速度,包括:在所述节流件的开度由设定流通面积的上限逐渐调小至所述设定流通面积的下限的过程中,使从所述外壳内进入所述缓冲器内的高压气体的容量减少,并使从所述通断件流出所述缓冲器的高压气体的容量不变;以及,使所述变容缸的变容缸吸气口到所述缓冲器内气体的压力逐渐降低;并使降低后的所述压力与所述压缩机的排气背压的压差,满足所述变容缸组件的变容滑片摆脱所述滑片约束单元束缚的条件。
可选地,当所述滑片约束单元包括销钉约束单元时,使所述压缩机中变容缸组件处于工作状态或空转状态,包括:在所述变容缸组件由工作状态切换到空转状态的过程中:通过所述变容组件逐渐升高所述变容缸组件中变容缸的变容缸吸气侧内的压力,直到销钉尾部的销弹簧足以克服与所述销弹簧的弹簧力方向相反的气体力时,所述销钉头部与尾部的压力差为第一压力差;当所述变容缸组件的变容滑片在所述变容缸组件的滚子的旋转下被推入所述变容缸组件的变容缸滑片槽中设定位置时,所述销钉进入所述变容滑片上的所述销槽内,约束所述变容滑片运动;之后,所述变容滑片与所述滚子脱离;使所述变容缸内的压力继续升高,直到所述变容缸内的压力与所述外壳内的高压相等,切换过程结束,所述变容缸组件处于空转状态;或者,在所述变容缸组件由空转状态切换到工作状态的过程中:通过所述变容组件逐渐降低所述变容缸组件中变容缸内的压力,直到销钉所受的气体力足以克服销弹簧的弹簧力、并将销钉推离所述变容缸组件的变容滑片时,所述销钉头部与尾部的压力差为第一压力差;使所述变容滑片所受的约束被解除,同时由于所述变容缸内的压力降低、且所述变容滑片的头部与尾部的压差也为第一压力差;通过所述第一压力差所产生的气体力推动所述变容滑片,向靠近所述变容缸组件的滚子方向移动,直到所述变容滑片与所述滚子贴合时,所述变容缸组件开始进行吸气、压缩,所述压缩机的功率开始随之上升;直到所述变容缸内的压力与所述压缩机中分液器的分液器吸气口的压力相当时,所述变容组件中的单向阀导通,切换过程结束,所述变容缸组件处于工作状态;或者,当所述滑片约束单元包括磁性元件约束单元时,使所述压缩机中变容缸组件处于工作状态或空转状态,包括:在所述变容缸组件由工作状态切换到空转状态的过程中:通过所述变容组件使所述变容缸组件中变容缸内的压力逐渐升高,使所述变容组件中的单向阀关闭,直到所述变容缸内的压力上升到磁性元件足以克服所述变容缸组件的变容滑片因压差产生的气体力时,所述变容滑片的头部与尾部的压差为第二压力差;使所述变容滑片被所述变容缸组件中旋转的滚子,推入所述变容缸组件中的变容缸滑片槽,并因所述磁性元件对所述变容滑片产出的磁力而被约束在所述变容缸滑片槽内;之后,所述变容缸内的压力继续上升至与所述外壳内的压力相等,切换过程结束,所述变容缸组件处于空转状态;或者,在所述变容缸组件由空转状态切换到工作状态的过程中:通过所述变容组件逐渐降低所述变容缸组件中变容缸内的压力,直到所述变容缸内的压力,降低到所述变容缸组件中变容滑片因头部与尾部的压差产生的气体力足以克服磁性元件对变容滑片施加的磁力时,所述变容滑片的头部与尾部的压差为第二压力差;使所述变容滑片摆脱所述磁性元件的束缚,并使所述变容滑片在所述气体力的作用下向所述压缩机的滚子移动,直到所述变容滑片与所述滚子贴合,使所述变容组件内的空间被分隔成吸气侧和排气侧;使所述变容缸的变容缸吸气侧的压力继续降低,而使所述压缩机的功率逐渐升高,直到所述变容缸吸气侧压力与所述压缩机中分液器的分液器吸气口处的压力相等时,使所述变容组件中单向阀导通,切换过程结束,所述变容缸组件处于工作状态;或者,当所述滑片约束单元包括滑片约束孔约束单元时,使所述压缩机中变容缸组件处于工作状态或空转状态,包括:在所述变容缸组件由工作状态切换到空转状态的过程中:通过所述变容组件逐渐升高所述变容缸组件中变容缸的变容缸吸气侧内的压力,直到滑片约束孔对所述变容缸组件中变容滑片产生的摩擦力足以克服所述变容滑片因压差产生的气体力时,所述变容滑片的头部与尾部的压差为第三压力差;使所述变容滑片被推入所述变容缸组件中的变容缸滑片槽,并通过所述摩 擦力使所述变容滑片被约束在所述变容缸滑片槽内;之后,所述变容缸的变容缸吸气侧内的压力继续上升至与所述外壳内的压力相等,切换过程结束,所述变容缸组件处于空转状态;或者,在所述变容缸组件由空转状态切换到工作状态的过程中:通过所述变容组件逐渐降低所述变容缸组件中变容缸内的压力,直到所述变容缸内的压力,降低到所述变容缸组件中变容滑片因头部与尾部的压差产生的气体力足以克服因滑片约束孔引入的高压对所述变容滑片产生的摩擦力时,所述变容滑片的头部与尾部的压差为第三压力差;使所述变容滑片摆脱所述摩擦力的束缚,并在所述变容滑片因头部与尾部的压差产生的气体力的作用下向所述压缩机中的滚子移动,直到所述变容滑片与所述滚子贴合时,变容组件内的空间被分隔成吸气侧和排气侧;使所述变容缸的变容缸吸气侧的压力继续降低,而使所述压缩机的功率逐渐升高,直到所述变容缸吸气侧的压力与所述压缩机中分液器的分液器吸气口处的压力相等时,使所述变容组件中单向阀导通,切换过程结束,所述变容缸组件处于工作状态。
本发明的方案,通过控制变容组件有序动作,大幅降低了压缩机在进行模式切换时的抖动,避免了压缩机切换时出现停机、管路断裂等问题的出现。
进一步,本发明的方案,通过控制变容组件有序动作,大幅降低了压缩机在进行模式切换时的抖动及停机的概率,避免切换导致的管路断裂,提高了压缩机切换的可靠性。
进一步,本发明的方案,通过使变容组件有序动作,结合滑片约束单元,使变容缸组件处于工作或空转的状态,大幅降低状态切换时的剧烈抖动,提升压缩机状态切换及运行的可靠性。
由此,本发明的方案,通过设置变容组件和滑片约束单元,并控制变容组件有序动作,控制变容缸组件处于工作状态或空转状态,解决现有技术中变容压缩机在进行模式切换时由于负载突变引起剧烈抖动的问题,从而,克服现有技术中抖动剧烈、易停机和管路易断裂的缺陷,实现降低抖动、不易停机和管路不易断裂的有益效果。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明中销钉约束结构的一实施例的结构示意图;
图2为变容滑片与滚子处于脱离状态的一实施例的结构示意图;
图3为变容滑片与滚子处于贴合状态的一实施例的结构示意图;
图4为本发明中磁性元件约束结构的一实施例的结构示意图;
图5为变容滑片与滚子处于脱离状态的另一实施例的结构示意图;
图6为本发明中滑片约束孔结构的一实施例的结构示意图;
图7为变容滑片与滚子处于脱离状态的再一实施例的结构示意图;
图8为本发明中变容缸空转切换工作状态时电磁阀流通面积的一实施例的时序图;
图9为本发明中变容缸空转切换工作状态时变容缸吸气侧压力的一实施例的时序图;
图10为本发明中变容缸空转切换工作状态时压缩机电流的一实施例的时序图;
图11为本发明中变容缸组件由正常工作状态切换空转状态时电磁阀流通面积的一实施例的时序图;
图12为本发明中变容缸组件由正常工作状态切换空转状态时变容缸吸气侧压力的一实施例的时序图;
图13为本发明中变容缸组件由正常工作状态切换空转状态时压缩机电流的一实施例的时序图;
图14为本发明中随着第一电磁阀流通面积的增大变容缸组件工作状态及吸气侧压力变化趋势的一实施例的曲线示意图;
图15为常规结构双缸切换到单缸时压缩机电流的时序图;
图16为常规结构单缸切换到双缸时压缩机电流的时序图;
图17为本发明中变容缸组件进行模式切换时压缩机最大振动加速度随过渡区时间长度变化规律的一实施例的曲线示意图;
图18为本发明中变容滑片结构的一实施例的结构示意图。
结合附图,本发明实施例中附图标记如下:
1、外壳;2、非变容缸;3、泵弹簧;4、变容缸;5、变容滑片;6、销钉;7、销弹簧;8、滑片约束单元;9、销钉连通通道;10、变容缸吸气口;11、分液器;12、分液器第一出口;13、分液器第二出口;14、单向阀;15、分液器吸气口;16、缓冲器;17、第一电磁阀;18、第二电磁阀;19、排气管;20、滚子;21、滑片;22、磁性元件;23、滑片约束孔;24、滑片头部;25、滑片尾部;26、销槽;27、低压吸气侧;28、高压排气侧;29、低压侧控制管;30、公共连接管;31、高压侧控制管。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在一个实施方式中,可以在其中一个或多个压缩缸上设置变容控制结构,使气缸内的滑片与滚子接触而正常工作(该气缸称为变容缸),或使变容缸内的滑片与滚子脱离而空转,改变压缩机当前的工作容积,实现压缩机容量调节。在滚动转子式变容压缩机在进行模式切换时因存在负载突变,导致压缩机在进行模式切换时产生剧烈了抖动,影响了该技术的应用。
针对上述变容压缩机在进行模式切换时压缩机抖动剧烈、易停机等问题,根据本发明的实施例,提供了一种变容控制结构,如图1所示本发明的变容控制结构的一实施例的结构示意图。该变容控制结构可以包括:变容组件和滑片约束单元8。
在一个可选例子中,所述变容组件,设置于所述变容控制结构所属压缩机的外壳1的外部,可以用于按设定顺序动作。
其中,所述压缩机,可以包括:外壳、电机和泵体。所述电机,可以包括:定子和转子,所述转子与所述泵体之间通过曲轴连为一体。所述泵体,可以包括:压缩缸组件。所述压缩缸组件,可以包括:能够选择性处于工作状态或空转状态的压缩缸组件,即变容缸组件。
例如:变容缸从工作模式切换到空转模式的过程为:
①、关闭第二电磁阀(若此前处于关闭状态,则继续维持该状态)。
②、第一电磁阀的流通面积由0逐渐增至最大值S 1,时间长度为T1。
③、切换过程完成后第一电磁阀的状态可处于流通面积为0或最大值S 1之间的任一状态,继续使第二电磁阀处于关闭状态。
例如:变容缸从空转模式切换到工作模式的过程为:
①、控制第一电磁阀开启的流通面积至最大值S 1
②、使第二电磁阀由关闭状态转为开启状态,其允许最大流通面积为S 2
③、第一电磁阀的流通面积由最大值S 1逐渐减小至0,其时间长度为T2。
④、切换完成后第一电磁阀的流通截面为0(即处于完全关闭状态),第二电磁阀继续维持开启状态或保持关闭状态。
由此,通过变容组件的设置,可以按设定顺序动作,大幅降低了压缩机在进行模式切换时的抖动及停机的概率,避免切换导致的管路断裂,实现对变容缸组件状态切换控制的可靠性,提高了压缩机切换的可靠性。
可选地,所述变容组件,可以包括:单向阀14。
在一个可选具体例子中,所述单向阀14,设置于所述变容缸组件中变容缸4的变容缸吸气口10、与所述压缩机中分液器11的分液器第二出口13之间的管路中,可以用于当冷媒由所述分液器第二出口13流向所述变容缸吸气口10时处于导通状态,或当冷媒由所述变容缸吸气口10流向所述分液器第二出口13时处于截止状态。
其中,所述分液器第二出口13,是所述分液器11的出口中与所述变容缸吸气口10连通的一个出口。
例如:变容组件,可以包括:在变容缸吸气口(例如:变容缸吸气口10)与分液器第二出口(例如:分液器第二出口13)设置的单向阀(例如:单向阀14)。
例如:当冷媒具有从分液器第二出口向变容缸吸气口流动的趋势时,单向阀处于导通状态。当冷媒具有从变容缸吸气口向分液器第二出口流动的趋势时,单向阀处于关闭状态,即该单向阀具有正向导通、逆向截止的特征。
由此,通过设置单向阀,可以对分液器第二出口与变容缸吸气口之间的冷媒流向进行控制,控制结构简单,且控制便捷性好。
可选地,所述变容组件,还可以包括:节流件和通断件中的至少之一。
例如:即能选择性地将低压冷媒或高压冷媒引入单向阀和变容缸吸气口之间。具体地,当第二电磁阀导通、而第一电磁阀关闭时,可将低压冷媒引向该处,此时单向阀处于导通状态;当第一电磁阀导通、第二电磁阀关闭时,可将高压冷媒引向该处,此时单向阀处于关闭状态。
在一个可选具体例子中,所述节流件,设置于自所述外壳1内部的高压排气侧28引出的高压侧控制管31所在管路中,可以用于在所述单向阀14和所述节流件均处于关闭状态、且所述节流件处于开启状态时,按设定流通面积,将所述高压排气侧28的高压冷媒引入至所述单向阀14与所述变容缸吸气口10之间。
例如:当节流件开启、通断件关闭时,可将高压冷媒引向所述单向阀14与所述变容缸吸气口10之间,此时单向阀14处于关闭状态。
例如:第一电磁阀具有流通面积可调的能力,其调节范围可从0(即完全关闭)逐渐调节至最大的能力。
由此,通过节流件控制压缩机的高压排气侧的高压冷媒引入至单向阀与变容缸吸气口之家的流通面积,控制方式简便,且控制结果的精准性好、可靠性高。
其中,所述节流件,可以包括:第一电磁阀17、电子膨胀阀、毛细管中的至少之一。
例如:第一电磁阀可以使用电子膨胀阀代替。
例如:第一电磁阀需要具备流通面积可调的特征。目前在空调中用于节流的电子膨胀阀便具有流通面积可调的特征。
由此,通过多种形式的节流件,有利于提升对冷媒流通面积控制的便捷性和灵活性。
更可选地,所述节流件能够调节的所述设定流通面积的上限,大于或等于:所述变容缸组件在状态切换时允许的最大运行频率、与所述变容缸4处于工作状态时的工作容积的乘积的第一设定系数倍。其中,所述状态切换,可以包括:由工作状态切换至空转状态,或由空转状态切换至工作状态。
例如:第一电磁阀最大流通面积S 1≥0.0147fV,单位为mm 2。其中,f为变容缸组件切换时允许最大运行频率,V为变容缸正常工作时的工作容积,单位为cm 3
由此,通过限定节流件能够调节的冷媒流通面积的范围,可以提升对冷媒流通面积控制的合理性和可靠性。
更可选地,当所述变容缸组件由工作状态切换至空转状态时,所述节流件的开度由所述设定流通面积的上限调小到所述设定流通面积的下限的时间为第一过渡时间。
例如:变容缸从工作模式到空转模式之间设置了过渡区,该过渡区的时间长度T1≥5秒。
在一个更可选具体例子中,当所述变容缸组件由空转状态切换至工作状态时,所述节流件的开度由所述设定流通面积的下限调大到所述设定流通面积的上限的时间为第二过渡时间。其中,所述第一过渡时间大于或等于第一设定时间,所述第二过渡时间大于或等于第二设定时间,且所述第二设定时间大于所述第一设定时间。
例如:变容缸从空转模式到工作模式之间设置了过渡区,该过渡区的时间长度T2≥10。
由此,通过设定节流件的开度调大时间和调小时间,可以灵活控制开度调节速度,进而提升对冷媒流通面积控制的可靠性和精准性。
在一个可选具体例子中,所述通断件,设置于自所述分液器11内部的低压吸气侧27引出的低压侧控制管29所在管路中,可以用于在所述单向阀14、所述节流件和所述通断件均处于开启状态时,将所述低压吸气侧27的低压冷媒引入至所述单向阀14与所述变容缸吸气口10之间。
例如:当通断件开启、而节流件关闭时,可将低压冷媒引向所述单向阀14与所述变容缸吸气口10之间,此时单向阀14处于导通状态(即开启状态)。
由此,通过通断件控制压缩机的低压吸气侧的低压冷媒引入至单向阀与变容缸吸气口之间的接通或断开,控制方式简便,控制结果可靠性高。
其中,所述通断件,可以包括:第二电磁阀18、电动开关、手动开关中的至少之一。
例如:第二电磁阀,也可以使用可手动控制开启、关闭的阀,但该阀无法实现自动控制,操作不方便。
由此,通过多种形式的通断件,有利于提升通断控制的便捷性和灵活性,且通用性强,适用范围广。
更可选地,所述通断件开启时的允许流通面积,小于或等于所述变容缸4处于工作状态时的工作容积的第二设定系数倍。
例如:第二电磁阀具有完全关闭状态和开启状态,其开启时允许最大流通面积S 2≤0.587V,单位为mm 2。其中,V为该变容缸正常工作时的工作容积,单位为cm 3
由此,通过设定通断件的允许流通面积,可以提升对低压冷媒流量控制的合理性和可靠性。
在一个可选具体例子中,在所述变容组件中,自所述变容缸吸气口10与所述单向阀14之间还引出有公共连接管30,所述高压侧控制管31和所述低压侧控制管29的另一端,均连通至所述公共连接管30。
例如:该变容组件,还可以包括:从外壳(例如:外壳1)内部引出一条管(例如:从压缩机排气口即高压排气侧28引出)、并与第一电磁阀(例如:第一电磁阀17)相连的高压侧控制管(例如:排气管19),从低压吸气侧(例如:低压吸气侧27)引出一条管、并与第二电磁阀(例如:第二电磁阀18)相连的低压侧控制管(例如:低压侧控制管29),以及,从变容缸吸气口与单向阀之间引出的公共连接管(例如:公共连接管30)。其中,该公共连接管分别与高压侧控制管、低压侧控制管的另一端连通(例如:可以参见图1至图3、图4与图5、以及图6与图7所示的例子)。
由此,通过自变容缸吸气口与单向阀之间引出公共连接管,可以使高压侧控制管和低压侧控制管均连通至公共连接管,管路结构简单,且连通可靠性高。
可选地,所述变容组件,还可以包括:缓冲器16。
在一个可选具体例子中,所述缓冲器16,设置于自所述变容缸吸气口10与所述单向阀14之间引出的公共连接管30所在管路中,可以用于在所述变容缸4由所述空转状态切换至所述工作状态时,减缓所述变容缸4内部压力降低的速度。
例如:该滚子转子式压缩机,可以包括:一个恒定运行的压缩缸组件和一个可选择性能进行正常工作或空转的变容缸组件;该变容缸组件工作模式的切换由设置在外部的变容组件和滑片约束单元共同作用实现;变容组件包括设置在变容缸吸气口与分液器第二出口之间的单向阀、从分液器吸气口(或与分液器吸气口压力相通的位置)引出的低压侧控制管及第二电磁阀、从排气管(或与外壳内压力相同的位置)引出的高压侧控制管及第一电磁阀、从变容缸吸气口与单向阀之间引出的公共侧连接管及与其连接的缓冲器;高压侧控制管、低压侧控制管与公共侧控制管相互连接,使其具有将外壳(例如:外壳1)内的高压引入变容缸吸气口或将变容缸及缓冲器内的高压引入分液器内的能力。
例如:缓冲器的存在及第一电磁阀流通面积处于最大状态,变容缸吸气口的压力一定幅度的降低,但是压力降幅受控。逐渐减小第一电磁阀的流通面积,从外壳内进入缓冲器内的高压气体减少,从第二电磁阀流出缓冲器的高压气体不变,使变容缸吸气口到缓冲器内的压力逐渐降低并与排气背压的压差为ΔP 0
由此,通过在自变容缸吸气口与单向阀之间的公共连接管中设置缓冲器,可以进一步减缓变容缸在空转状态至工作状态的切换中其内部压力降低的速度,进而进一步降低状态切换过程中压缩机的抖动程度,提升状态切换及运行的可靠性和安全性。
更可选地,当所述变容组件还可以包括缓冲器16时,所述缓冲器16所能容纳的气体体积,大于或等于所述变容缸4处于工作状态时的工作容积的第三设定系数倍。
例如:缓冲器所能容纳的气体的体积V h≥10V。
由此,通过设置缓冲器的气体体积,可以更加合理、更加可靠地对变容缸内部压力的降低程度进行控制。
在一个可选例子中,所述滑片约束单元8,设置于所述压缩机的泵体的内部,可以用于在所述变容组件按设定顺序动作的控制下,使所述压缩机中变容缸组件处于工作状态或空转状态,进而实现对所述压缩机的容量控制。
例如:所述滑片约束单元8,在所述变容组件按设定顺序动作的控制下,实现所述压缩机中变容缸组件的状态切换。其中,所述状态切换,可以包括:由工作状态切换至空转状态,或由空转状态切换至工作状态。
例如:当所述变容缸组件中变容缸4内的滑片21与滚子20接触时,变容缸4内的空间被分隔成容积随转角变化的低压吸气侧27和高压排气侧28。当所述压缩机的曲轴旋转时对吸入所述变容缸4内的气体进行压缩,使所述变容缸4处于正常的工作状态。
又如:当所述变容缸4内的滑片21退入所述变容缸组件的滑片槽、并被所述滑片约束单元8束缚于所述滑片槽内,使所述滑片21与所述变容缸组件的滚子20分离,所述变容缸4内只剩一个腔室并与所述变容缸吸气侧(即变容缸吸气口10的一侧)连通。当所述曲轴旋转时,所述变容缸组件内的气体不再被压缩,使所述变容缸4处于空转状态。
例如:当变容缸(例如:变容缸4)内的滑片与滚子接触时,变容缸内的空间被分隔成容积随转角变化的低压吸气侧和高压排气侧。当曲轴旋转时对吸入变容缸内的气体进行压缩,此时变容缸处于正常的工作状态。
例如:当变容缸内的滑片退入滑片槽、并被设置于泵体内的滑片约束单元束缚于滑片槽内,滑片与滚子分离,变容缸内只剩一个腔室并与变容缸吸气侧连通。当曲轴旋转时,变容缸组件内的气体不再被压缩,此时变容缸处于空转状态。
其中,变容缸组件的工作模式(例如:工作状态、空转状态等)由设置在外壳外部的变容组件和设置在泵体内的滑片约束单元共同作用决定。
由此,通过变容组件和滑片约束单元的配合设置,可以通过控制变容组件有序动作,大幅降低了压缩机在进行模式切换时的抖动,避免了压缩机切换时出现停机、管路断裂等问题的出现。
可选地,所述滑片约束单元8,可以包括:销钉约束单元。其中,所述销钉约束单元,可以包括:销钉6和销弹簧7。
在一个可选具体例子中,所述销钉6,设置于所述变容缸组件中变容滑片5的竖直方向、且位于所述压缩机中与所述变容缸4相邻的轴承内。在一个可选具体例子中,所述销弹簧7,设置于所述销钉6的尾部。其中,所述销钉6的尾部,为所述销钉6远离所述变容滑片5的一端。
由此,通过销钉和销弹簧的适配设置,使得对变容滑片的约束力度大,进而提升对变容滑片控制的可靠性和安全性。
更可选地,在所述销钉约束单元中,所述变容滑片5的尾部及所述销钉6的头部,均与所述外壳1内部的高压气体连通。其中,所述变容滑片5的尾部,为靠近所述销钉6的头部的一端。所述变容滑片5的头部,为远离所述销钉6的头部的一端。
在一个更可选具体例子中,所述变容滑片5的头部压力与所述变容缸4的内部压力相同。
在一个更可选具体例子中,所述销钉6的尾部,通过所述压缩机中泵体内部的销钉连通通道9,与所述变容缸4的变容缸吸气口10连通。
更可选地,所述销钉约束单元,还可以包括:销槽26。所述销槽26,设置于所述变容滑片5的竖直方向的尾部。所述销钉6,设置于所述销槽26中。
例如:销钉约束单元结构介绍:如图1至图3所示的实施例一。该滑片约束单元,可以包括:在变容缸组件中的变容滑片(例如:变容滑片5)的竖直方向设置的销钉(例如:销钉6)、设置于销钉尾部的弹簧(例如:销弹簧7)。
其中,变容滑片在气缸径向方向一端靠近滚子(例如:滚子20),称为滑片头部,如滑片头部24;,另一端远离滚子,称为滑片尾部,如滑片尾部25。变容滑片在气缸轴向方向由两侧的轴承约束,且在靠近销钉侧设置有销槽(例如:销槽26)。
具体地,销钉设置于与变容缸相邻的轴承内,一端靠近变容滑片(称为销钉头部)、一端远离变容滑片(称为销钉尾部)。滑片尾部及销钉头部与外壳内部的高压连通,滑片头部压力与变容缸内的压力相同,销钉尾部通过泵体内部的销钉连通通道(例如:销钉连通通道9)与变容缸的吸气口连通。
在一个更可选具体例子中,变容缸组件由正常工作模式切换到空转模式过程,可以包括:
当变容缸内的压力处于低压、且该压力与分液器吸气口处的压力相等时,变容缸组件处于正常的工作状态。通过变容组件逐渐升高变容缸吸气侧内的压力直到销钉尾部的弹簧足以克服与弹簧力方向相反的气体力(此时销钉头部与尾部的压力差为ΔPa);而变容滑片在滚子 的旋转下被推入变容缸滑片槽至某一位置时,销钉进入变容滑片上的销槽内约束变容滑片运动,此后变容滑片与滚子脱离,而变容缸内的压力继续升高直到其压力与外壳内的高压相等,切换过程结束,变容缸组件进入空转模式。
在一个更可选具体例子中,变容缸组件由空转模式切换到正常工作模式过程,可以包括:
当变容缸内的压力处于高压、且该压力与外壳内的压力相等时变容缸组件处于空转状态。通过变容组件逐渐降低变容缸内的压力直到所受的气体力足以克服弹簧力、并将销钉推离变容滑片时(此时销钉头部与尾部的压力差为ΔPa),变容滑片所受的约束被解除、同时由于变容缸内的压力降低且滑片头部与尾部的压差也为ΔPa,其所产生的气体力推动变容滑片向靠近滚子方向移动直到与滚子贴合。此时变容缸组件开始进行吸气、压缩,压缩机功率开始随之上升,直到变容缸内的压力与分液器吸气口的压力相当时,单向阀导通,切换过程结束,变容缸组件进入正常工作模式。
由此,通过设置销槽,便于销钉安装,也便于销钉和销弹簧对变容滑片的控制,安装牢固性好,控制的可靠性也高。
可选地,所述滑片约束单元8,可以包括:磁性元件约束单元。其中,所述磁性元件约束单元,可以包括:磁性元件22。
在一个可选具体例子中,所述磁性元件22,设置于所述变容缸组件中变容滑片5的尾部,可以用于吸引所述变容滑片5,以使所述变容滑片5向所述磁性元件22移动。
例如:磁性元件约束单元介绍:如图4和图5所示的实施例二。该滑片约束单元,主要可以由设置在变容滑片尾部的磁性元件(例如:磁性元件22)构成。
其中,该磁性元件固定在变容缸滑片槽尾部,并具有吸引变容滑片、使其具有向磁性元件运动趋势的磁力。
在一个更可选具体例子中,变容缸组件由正常工作模式切换到空转模式过程,可以包括:
当变容缸内的压力处于低压、且该压力与分液器吸气口处的压力相等时,变容缸组件处于正常工作状态。通过变容组件中变容缸内的压力逐渐升高,单向阀关闭,直到变容缸内的压力上升到磁性元件足以克服变容滑片因压差产生的气体力时(此时变容滑片头部与尾部的压差为ΔPb),变容滑片被旋转的滚子推入变容缸滑片槽、并因磁性元件对其产出的磁力而被约束在该滑片槽内,此后压力继续上升至与外壳内的压力相等,切换过程结束,变容缸组件进入空转模式。
在一个更可选具体例子中,变容缸组件由空转模式切换到正常工作模式过程,可以包括:
当变容缸内的压力处于高压、且该压力与外壳内的压力相等时变容缸组件处于空转状态。通过变容组件逐渐降低变容缸内的压力,直到变容缸内的压力降低到变容滑片因头部与尾部的压差产生的气体力足以克服磁性元件对变容滑片施加的磁力时(此时变容滑片头部与尾部的压差为ΔPb),变容滑片摆脱磁性元件的束缚、并在气体力的作用下向滚子移动直到与滚子 贴合,变容组件内的空间被分隔成吸气侧和排气侧。变容缸吸气侧的压力继续降低而使压缩机功率逐渐升高,直到变容缸吸气侧压力与分液器吸气口处的压力相等时,单向阀导通,切换过程结束,变容缸组件进入正常工作模式。
由此,通过磁性元件对变容滑片进行约束,结构简单,控制方式简便。
可选地,所述滑片约束单元8,可以包括:滑片约束孔约束单元。其中,所述滑片约束孔约束单元,可以包括:滑片约束孔23。
在一个可选具体例子中,所述滑片约束孔23,位于与所述变容缸组件中变容滑片5的运动方向呈设定角度的方向上,且设置于所述变容缸组件中变容缸4上与所述变容缸4的变容缸吸气口10相对的一侧,可以用于将所述外壳1内的高压气体引向所述变容滑片5的变容滑片槽一侧,并与所述变容滑片槽相通。其中,所述变容缸组件中变容缸4上与变容缸4的变容缸吸气口10相对的一侧,为所述变容缸4上远离变容缸吸气口10的一侧。
由此,通过滑片约束孔对变容滑片进行约束,约束方式简便,且约束可靠性高,可以提升对滑片约束的灵活性和便捷性,还可以提升压缩机适用范围的广泛性和通用性。
更可选地,在所述滑片约束孔约束单元中,所述滑片约束孔23向所述变容滑片5的变容滑片槽一侧引入的所述外壳1内的高压气体,形成作用在所述变容滑片5上的压力,使所述变容滑片5与所述变容滑片槽的另一侧贴紧。
在一个更可选具体例子中,所述压力的方向,与所述变容滑片5直线运动的方向垂直、并使所述变容滑片5与所述变容滑片槽贴紧侧之间产生摩擦力,以阻碍所述变容滑片5运动。
例如:滑片约束孔约束单元结构介绍:如图6和图7所示的实施例三。在与变容滑片运动方向呈一定角度的方向,在变容气缸远离吸气口侧设置一个滑片约束孔(例如:滑片约束孔23),将外壳内的高压引向变容滑片槽一侧,并与变容滑片槽相通。
其中,引入的高压所产生的压力作用在变容滑片上使其与变容滑片槽的另一侧贴紧,该压力的方向与变容滑片直线运动方向垂直、并由此使变容滑片与变容气缸滑片槽贴紧侧之间产生摩擦力,该摩擦力具有阻碍变容滑片运动的趋势。
在一个更可选具体例子中,变容缸组件由正常工作模式切换到空转模式过程,可以包括:
当变容缸内的压力处于低压且该压力与分液器吸气口处的压力相等时,变容缸组件处于正常工作状态。通过变容组件逐渐升高变容缸吸气侧内的压力直到滑片约束孔对变容滑片产生的摩擦力足以克服变容滑片因压差产生的气体力时(此时变容滑片头部与尾部的压差为ΔPc),变容滑片被推入变容缸滑片槽并该摩擦力约束在变容缸滑片槽内。此后压力继续上升至与外壳内的压力相等,切换过程结束,变容缸组件进入空转状态。
在一个更可选具体例子中,变容缸组件由空转模式切换到正常工作模式过程,可以包括:
当变容缸内的压力处于高压且该压力与外壳内的压力相等时,变容缸组件处于空转状态。通过变容组件逐渐降低变容缸内的压力,直到变容缸内的压力降低到变容滑片因头部与尾部 的压差产生的气体力足以克服因滑片约束孔引入的高压对滑片产生的摩擦力时(此时变容滑片头部与尾部的压差为ΔPb),变容滑片摆脱摩擦力的束缚并在气体力的作用下向滚子移动直到与滚子贴合,变容组件内的空间被分隔成吸气侧和排气侧。变容缸吸气侧的压力继续降低而使压缩机功率逐渐升高,直到变容缸吸气侧压力与分液器吸气口处的压力相等时,单向阀导通,切换过程结束,变容缸组件进入正常工作模式。
由此,通过借助于变容滑片在滑片约束孔引入的压力作用下形成的摩擦力进行约束,结构更加简单,控制方式也更加简便,且可靠性可以得到保障。
经大量的试验验证,采用本实施例的技术方案,通过控制变容组件有序动作,大幅降低了压缩机在进行模式切换时的抖动,避免了压缩机切换时出现停机、管路断裂等问题的出现。
根据本发明的实施例,还提供了对应于变容控制结构的一种压缩机。该压缩机可以包括:至少一个恒定运行的压缩缸组件。还可以包括:至少一个能够选择性地处于工作状态或空转状态的变容缸组件。其中,所述变容缸组件,可以包括:以上所述的变容控制结构。
例如:所述压缩机的压缩缸组件中,可以包括:至少一个恒定运行的压缩缸组件和至少一个可选择性工作或空转的压缩缸组件(记为变容缸组件以示区别)。
在一个可选实施方式中,该滚子转子式压缩机,可以包括:一个恒定运行的压缩缸组件和一个可选择性能进行正常工作或空转的变容缸组件;该变容缸组件工作模式的切换由设置在外部的变容组件和滑片约束单元共同作用实现;变容组件包括设置在变容缸吸气口与分液器第二出口之间的单向阀、从分液器吸气口(或与分液器吸气口压力相通的位置)引出的低压侧控制管及第二电磁阀、从排气管(或与外壳内压力相同的位置)引出的高压侧控制管及第一电磁阀、从变容缸吸气口与单向阀之间引出的公共侧连接管及与其连接的缓冲器;高压侧控制管、低压侧控制管与公共侧控制管相互连接,使其具有将外壳(例如:外壳1)内的高压引入变容缸吸气口或将变容缸及缓冲器内的高压引入分液器内的能力。
其中,相对于变容缸组件,该恒定运行的压缩缸组件,是定容缸组件。例如:定容缸组件中,可以包括:非变容缸2和泵弹簧3。定容缸组件与分液器11的分液器第一出口12连通。
例如:若该定容组件的旋转一圈所排出的气体体积(即排量)为V a,变容缸组件旋转一圈所排出的气体体积为V b。当压缩机处于运行状态时,定容缸组件排量只能是V a,而变容缸组件的排量可以是V b,也可以为0(根据压缩机运行模式而定)。
在一个可选例子中,第一电磁阀具有流通面积可调的能力,其调节范围可从0(即完全关闭)逐渐调节至最大的能力。
可选地,第一电磁阀需要具备流通面积可调的特征。目前在空调中用于节流的电子膨胀阀便具有流通面积可调的特征。
可选地,第一电磁阀最大流通面积S 1≥0.0147fV,单位为mm 2。其中,f为变容缸组件切换时允许最大运行频率,V为变容缸正常工作时的工作容积,单位为cm 3
可选地,第一电磁阀可以使用电子膨胀阀代替。
在一个可选例子中,第二电磁阀具有完全关闭状态和开启状态,其开启时允许最大流通面积S 2≤0.587V,单位为mm 2。其中,V为该变容缸正常工作时的工作容积,单位为cm 3
可选地,第二电磁阀,也可以使用可手动控制开启、关闭的阀,但该阀无法实现自动控制,操作不方便。
在一个可选例子中,缓冲器所能容纳的气体的体积V h≥10V。
可选地,变容缸从工作模式到空转模式之间设置了过渡区,该过渡区的时间长度T1≥5秒。
可选地,变容缸从空转模式到工作模式之间设置了过渡区,该过渡区的时间长度T2≥10。
在一个可选例子中,变容缸从工作模式切换到空转模式的过程为:
①、关闭第二电磁阀(若此前处于关闭状态,则继续维持该状态)。
②、第一电磁阀的流通面积由0逐渐增至最大值S 1,时间长度为T1。
③、切换过程完成后第一电磁阀的状态可处于流通面积为0或最大值S 1之间的任一状态,继续使第二电磁阀处于关闭状态。
在一个可选例子中,变容缸从空转模式切换到工作模式的过程为:
①、控制第一电磁阀开启的流通面积至最大值S 1
②、使第二电磁阀由关闭状态转为开启状态,其允许最大流通面积为S 2
③、第一电磁阀的流通面积由最大值S 1逐渐减小至0,其时间长度为T2。
④、切换完成后第一电磁阀的流通截面为0(即处于完全关闭状态),第二电磁阀继续维持开启状态或保持关闭状态。
在一个可选实施方式中,本发明中压缩机的压缩机,可以包括:滚动转子式制冷压缩机。该滚动转子式制冷压缩机,可以包括:外壳、电机、泵体。其中,电机与泵体同轴、密闭地设置在外壳内。
具体地,在外壳的内部空间中,电机设置在外壳上部。该电机,可以包括:定子、转子,定子呈环形地设置在外壳内,转子有间隙地套设在定子内。转子与泵体通过曲轴连为一体,利用定子上设置的线圈产生的旋转电磁力驱动转子和曲轴旋转。
在一个可选例子中,上述泵体所属的泵体组件,具有多个压缩缸组件,各压缩缸组件之间通过轴承密闭地隔开。各压缩缸组件,可以包括:气缸、套设在曲轴偏心部的滚子(例如:滚子20)、以及可在气缸滑片槽内直线滑动、并且一端与滚子接触的滑片(例如:滑片21)。
可选地,在上述压缩缸组件中,可以包括:至少一个恒定运行的压缩缸组件和至少一个可选择性工作或空转的压缩缸组件(记为变容缸组件以示区别)。
在一个可选具体例子中,当变容缸(例如:变容缸4)内的滑片与滚子接触时,变容缸内的空间被分隔成容积随转角变化的低压吸气侧和高压排气侧。当曲轴旋转时对吸入变容缸内的气体进行压缩,此时变容缸处于正常的工作状态。
在一个可选具体例子中,当变容缸内的滑片退入滑片槽、并被设置于泵体内的滑片约束单元束缚于滑片槽内,滑片与滚子分离,变容缸内只剩一个腔室并与变容缸吸气侧连通。当曲轴旋转时,变容缸组件内的气体不再被压缩,此时变容缸处于空转状态。
其中,变容缸组件的工作模式(例如:工作状态、空转状态等)由设置在外壳外部的变容组件和设置在泵体内的滑片约束单元共同作用决定。
更可选地,变容组件,可以包括:在变容缸吸气口(例如:变容缸吸气口10)与分液器第二出口(例如:分液器第二出口13)设置的单向阀(例如:单向阀14)。
在一个更可选具体例子中,当冷媒具有从分液器第二出口向变容缸吸气口流动的趋势时,单向阀处于导通状态。
在一个更可选具体例子中,当冷媒具有从变容缸吸气口向分液器第二出口流动的趋势时,单向阀处于关闭状态,即该单向阀具有正向导通、逆向截止的特征。
进一步地,该变容组件,还可以包括:从外壳(例如:外壳1)内部引出一条管(例如:从压缩机排气口即高压排气侧28引出)、并与第一电磁阀(例如:第一电磁阀17)相连的高压侧控制管(例如:排气管19),从低压吸气侧(例如:低压吸气侧27)引出一条管、并与第二电磁阀(例如:第二电磁阀18)相连的低压侧控制管(例如:低压侧控制管29),以及,从变容缸吸气口与单向阀之间引出的公共连接管(例如:公共连接管30)。
其中,该公共连接管分别与高压侧控制管、低压侧控制管的另一端连通(例如:可以参见图1至图3、图4与图5、以及图6与图7所示的例子)。
如此,即能选择性地将低压冷媒或高压冷媒引入单向阀和变容缸吸气口之间。具体地,当第二电磁阀导通、而第一电磁阀关闭时,可将低压冷媒引向该处,此时单向阀处于导通状态;当第一电磁阀导通、第二电磁阀关闭时,可将高压冷媒引向该处,此时单向阀处于关闭状态。
更可选地,滑片约束单元(例如:滑片约束单元8),可以具有如下3种结构形式。
①、销钉约束单元结构介绍:如图1至图3所示的实施例一。
该滑片约束单元,可以包括:在变容缸组件中的变容滑片(例如:变容滑片5)的竖直方向设置的销钉(例如:销钉6)、设置于销钉尾部的弹簧(例如:销弹簧7)。
其中,变容滑片在气缸径向方向一端靠近滚子(例如:滚子20),称为滑片头部,如滑片头部24;,另一端远离滚子,称为滑片尾部,如滑片尾部25。变容滑片在气缸轴向方向由两侧的轴承约束,且在靠近销钉侧设置有销槽(例如:销槽26)。
具体地,销钉设置于与变容缸相邻的轴承内,一端靠近变容滑片(称为销钉头部)、一端远离变容滑片(称为销钉尾部)。滑片尾部及销钉头部与外壳内部的高压连通,滑片头部压力与变容缸内的压力相同,销钉尾部通过泵体内部的销钉连通通道(例如:销钉连通通道9)与变容缸的吸气口连通。
在一个更可选具体例子中,变容缸组件由正常工作模式切换到空转模式过程,可以包括:
当变容缸内的压力处于低压、且该压力与分液器吸气口处的压力相等时,变容缸组件处于正常的工作状态。通过变容组件逐渐升高变容缸吸气侧内的压力直到销钉尾部的弹簧足以克服与弹簧力方向相反的气体力(此时销钉头部与尾部的压力差为ΔPa);而变容滑片在滚子的旋转下被推入变容缸滑片槽至某一位置时,销钉进入变容滑片上的销槽内约束变容滑片运动,此后变容滑片与滚子脱离,而变容缸内的压力继续升高直到其压力与外壳内的高压相等,切换过程结束,变容缸组件进入空转模式。
在一个更可选具体例子中,变容缸组件由空转模式切换到正常工作模式过程,可以包括:
当变容缸内的压力处于高压、且该压力与外壳内的压力相等时变容缸组件处于空转状态。通过变容组件逐渐降低变容缸内的压力直到所受的气体力足以克服弹簧力、并将销钉推离变容滑片时(此时销钉头部与尾部的压力差为ΔPa),变容滑片所受的约束被解除、同时由于变容缸内的压力降低且滑片头部与尾部的压差也为ΔPa,其所产生的气体力推动变容滑片向靠近滚子方向移动直到与滚子贴合。此时变容缸组件开始进行吸气、压缩,压缩机功率开始随之上升,直到变容缸内的压力与分液器吸气口的压力相当时,单向阀导通,切换过程结束,变容缸组件进入正常工作模式。
②、磁性元件约束单元介绍:如图4和图5所示的实施例二。
该滑片约束单元,主要可以由设置在变容滑片尾部的磁性元件(例如:磁性元件22)构成。
其中,该磁性元件固定在变容缸滑片槽尾部,并具有吸引变容滑片、使其具有向磁性元件运动趋势的磁力。
在一个更可选具体例子中,变容缸组件由正常工作模式切换到空转模式过程,可以包括:
当变容缸内的压力处于低压、且该压力与分液器吸气口处的压力相等时,变容缸组件处于正常工作状态。通过变容组件中变容缸内的压力逐渐升高,单向阀关闭,直到变容缸内的压力上升到磁性元件足以克服变容滑片因压差产生的气体力时(此时变容滑片头部与尾部的 压差为ΔPb),变容滑片被旋转的滚子推入变容缸滑片槽、并因磁性元件对其产出的磁力而被约束在该滑片槽内,此后压力继续上升至与外壳内的压力相等,切换过程结束,变容缸组件进入空转模式。
在一个更可选具体例子中,变容缸组件由空转模式切换到正常工作模式过程,可以包括:
当变容缸内的压力处于高压、且该压力与外壳内的压力相等时变容缸组件处于空转状态。通过变容组件逐渐降低变容缸内的压力,直到变容缸内的压力降低到变容滑片因头部与尾部的压差产生的气体力足以克服磁性元件对变容滑片施加的磁力时(此时变容滑片头部与尾部的压差为ΔPb),变容滑片摆脱磁性元件的束缚、并在气体力的作用下向滚子移动直到与滚子贴合,变容组件内的空间被分隔成吸气侧和排气侧。变容缸吸气侧的压力继续降低而使压缩机功率逐渐升高,直到变容缸吸气侧压力与分液器吸气口处的压力相等时,单向阀导通,切换过程结束,变容缸组件进入正常工作模式。
③、滑片约束孔约束单元结构介绍:如图6和图7所示的实施例三。
在与变容滑片运动方向呈一定角度的方向,在变容气缸远离吸气口侧设置一个滑片约束孔(例如:滑片约束孔23),将外壳内的高压引向变容滑片槽一侧,并与变容滑片槽相通。
其中,引入的高压所产生的压力作用在变容滑片上使其与变容滑片槽的另一侧贴紧,该压力的方向与变容滑片直线运动方向垂直、并由此使变容滑片与变容气缸滑片槽贴紧侧之间产生摩擦力,该摩擦力具有阻碍变容滑片运动的趋势。
在一个更可选具体例子中,变容缸组件由正常工作模式切换到空转模式过程,可以包括:
当变容缸内的压力处于低压且该压力与分液器吸气口处的压力相等时,变容缸组件处于正常工作状态。通过变容组件逐渐升高变容缸吸气侧内的压力直到滑片约束孔对变容滑片产生的摩擦力足以克服变容滑片因压差产生的气体力时(此时变容滑片头部与尾部的压差为ΔPc),变容滑片被推入变容缸滑片槽并该摩擦力约束在变容缸滑片槽内。此后压力继续上升至与外壳内的压力相等,切换过程结束,变容缸组件进入空转状态。
在一个更可选具体例子中,变容缸组件由空转模式切换到正常工作模式过程,可以包括:
当变容缸内的压力处于高压且该压力与外壳内的压力相等时,变容缸组件处于空转状态。通过变容组件逐渐降低变容缸内的压力,直到变容缸内的压力降低到变容滑片因头部与尾部的压差产生的气体力足以克服因滑片约束孔引入的高压对滑片产生的摩擦力时(此时变容滑片头部与尾部的压差为ΔPb),变容滑片摆脱摩擦力的束缚并在气体力的作用下向滚子移动直到与滚子贴合,变容组件内的空间被分隔成吸气侧和排气侧。变容缸吸气侧的压力继续降低而使压缩机功率逐渐升高,直到变容缸吸气侧压力与分液器吸气口处的压力相等时,单向阀导通,切换过程结束,变容缸组件进入正常工作模式。
进一步地,下面对第一电磁阀的流通面积S 1在切换时对变容缸内压力的影响进行说明:
(11)变容缸组件处于工作模式时,变容缸吸气侧的压力与分液器吸气口的压力相等,单向阀处于导通状态,第一电磁阀处于关闭状态,第二电磁阀处于导通或关闭状态。
(12)某一时刻变容缸组件需要切换到空转模式时,关闭第二电磁阀(若此前处于导通状态),开启第一电磁阀,外壳内的高压气体被引入变容缸吸气口并使单向阀关闭后流入变容缸吸气侧。该高压气体流经第一电磁阀时受流通截面的限制,将出现一定幅度的压力降低,若此时引入的高压压降过大达不到滑片约束单元将变容滑片约束在变容缸滑片槽内并使变容滑片与滚子脱离的条件时,变容缸组件转而对从外壳内流经高压侧控制管并引入变容缸吸气侧的气体进行压缩、排气;此时变容缸吸气侧的压力将进一步降低,但其压力比分液器内的压力高,单向阀保持关闭状态,压缩机的电流与切换操作前有一定幅度的降低。
(13)若此时逐渐增大第一电磁阀的流通面积,变容缸吸气侧的压力逐渐升高,直到达到滑片约束单元达到具备约束变容滑片的条件,变容滑片被约束在变容缸滑片槽内并与滚子脱离,变容缸内的压力上升至与外壳内的压力相等,切换过程结束,变容缸组件切换到空转模式。第一电磁阀的流通面积逐渐增大时变容缸吸气侧的压力曲线如图14所示。
上述现象说明变容缸由工作模式切换到空转模式能否成功受第一电磁阀的流通面积S限制。通过进一步试验,变容缸能否由工作模式切换到空转模式的条件是第一电磁阀的流通面积S≥临界流通面积S 0即:
S≥S 0=0.0147fV,单位为mm 2。其中,f为切换时压缩机运行频率,V为变容缸正常工作时的工作容积,单位为cm 3
其中,若第一电磁阀的流通面积S 1具有从0(即第一电磁阀处于关闭状态)到S 0可变流通面积特征,变容缸组件从正常工作模式切换到空转模式时,逐渐增大第一电磁阀的流通面积之最大值,其变容缸内的压力也会逐渐升高,压缩机电流将会逐渐降低直至达到最小值。适当控制第一电磁阀的流通面积S 1由0(即第一电磁阀处于关闭状态)增大到最大的速度,延长变容缸组件从正常工作模式切换到空转模式的时间T1,将使压缩机在该切换过程中所受的振动显著降低,提高压缩机切换的可靠性。
进一步地,下面对第二电磁阀的流通面积S 2在切换对变容缸内压力的影响说明:
(21)变容缸处于空转模式状态时,变容缸内压力为高压且与外壳内的压力相等;变容组件的状态分别为:单向阀关闭,第二电磁阀关闭,第一电磁阀开启或关闭;变容滑片被滑片约束单元约束在变容缸滑片槽内。
(22)某一时刻变容缸组件需要切换到正常工作状态时,关闭第一电磁阀(若此前处于开启状态),开启第二电磁阀,变容缸内的高压气体将沿着公共侧连接管,低压侧连接管流入分液器吸气口。从变容缸内流入分液器吸气口的气体流量(单位时间内流过的气体体积)受第二电磁阀的流通面积的限制。由于变容缸至第二电磁阀之间的空间内的气体减小,压力逐渐降低,当该压力降低到满足变容滑片摆脱滑片约束单元束缚的条件后,变容滑片在气体力的作用下向滚子方向移动直至其头部与滚子贴合。
(23)变容缸组件开始对变容缸内剩余的气体进行压缩、排气,变容缸内的压力随着剩余气体的减小而降低,若第二电磁阀的流通面积过大,将使该剩余气体的量降低速度更快,变容缸组件的负载迅速增大,压缩机因负载突然增大将会承受巨大的振动,可能导致压缩机突然停机,甚至压缩机连接管路断裂,因此必须对第二电磁阀的流通面积S 2进行限制。经过试验,第二电磁阀的流通面积S 2应满足如下条件:
S 2≤0.587V,单位为mm 2。其中,V为变容缸工作容积,且S 2小于第一电磁阀的最大流通面积。
为进一步减缓变容缸从空转模式切换到工作模式时变容缸内压力降低的速度,在变容缸吸气口和第二电磁阀之间应设置缓冲器(例如:缓冲器16),且缓冲器所能容纳的气体体积V h≥10V,V为该变容缸工作容积。
其中,变容组件由工作模式切换到空转模式时第一电磁阀、第二电磁阀动作过程可以如下:
(31)如图11所示,变容缸组件处于工作状态(也称工作模式)时,第一电磁阀处于关闭状态(即流通面积为0),第二电磁阀处于开启状态(即流通面积为S 2,为了省电,此时使其保持关闭状态)。
(32)在t1时刻,当需要变容缸组件由工作状态切换到空转状态时,使第二电磁阀处于关闭状态(即流通面积为0),此后逐渐增大第一电磁阀的流通面积,单向阀关闭,变容缸吸气侧的压力也逐渐增大,变容缸排气背压与吸气侧压力差值ΔP 1逐渐减小(例如:可参见图12所示的例子),压缩机电流也随之逐渐降低(例如:可参见图13所示的例子)。
(33)在t2时刻,滑片约束单元达到束缚变容滑片的条件(对于实施例一ΔP 1≤ΔP a,对于实施例二ΔP 1≤ΔP b,对于实施例三ΔP 1≤ΔP c),使变容滑片与滚子脱离,此后变容缸内的压力上升到与外壳内压力相同(也称排气背压),压缩机电流降至最低,切换过程结束,变容缸进入空转模式。
可见,变容缸组件从工作模式到空转模式之间增加了一个过渡区t1~t3。过渡区时间T1越长,模式切换时对压缩机冲击越小,压缩机振动越小。通过试验,当T1≥5秒时,可使模式切换时压缩机振动大幅降低。
其中,变容组件由空转模式切换到工作模式时第一电磁阀、第二电磁阀动作过程可以如下:
(41)如图8所示,变容缸处于空转状态时(也称空转模式),第一电磁阀处于开启或关闭状态(其流通面积可处于0到S 1之间的任意值,流通面积为0时表示处于关闭状态),第二电磁阀处于关闭状态。
(42)在t1时刻需要变容缸组件切换到工作模式时,将第一电磁阀的流通面积调节到最大值,再开启第二电磁阀(此时第二电磁阀的流通面积为S 2),此时外壳内的一部分高压气体 将会通过高压侧控制管及低压侧控制管进入分液器吸气口,变容缸吸气口到第二电磁阀之间的空间内也会有一部分高压气体通过低压侧吸气管流入分液器吸气口。由于缓冲器的存在及第一电磁阀流通面积处于最大状态,变容缸吸气口的压力一定幅度的降低,但是压力降幅受控。逐渐减小第一电磁阀的流通面积,从外壳内进入缓冲器内的高压气体减少,从第二电磁阀流出缓冲器的高压气体不变,使变容缸吸气口到缓冲器内的压力逐渐降低并与排气背压的压差为ΔP 0
(43)t2时刻,该压差满足变容滑片摆脱滑片约束单元束缚的条件时(对于实施例一:ΔP 0≥ΔP a,对于实施例二:ΔP 0≥ΔP b;对于实施例三:ΔP 0≥ΔP c),变容滑片在气体力的作用下向滚子移动直到与滚子贴合,将变容缸分隔成吸气侧和排气侧;在曲轴的带动下对气体进行压缩和排气。由于第一电磁阀处不断补充高压气体,变容缸组件内的压力也不会迅速降低。此后进一步减小第一电磁阀的流通面积且保持第二电磁阀继续开启(或者关闭第二电磁阀),变容缸吸气侧的压力、压缩机电流逐渐升高(例如:可以参见图11所示的例子),直到t2时刻时第一电磁阀流通面积为0(即完全关闭),变容缸吸气侧的压力与分液器吸气口的压力相等(例如:可以参见图9所示的例子),单向阀导通,压缩机电流升至最大值。切换过程结束,变容缸转入工作状态。
可见,变容缸组件从空转模式到工作模式之间同样增加了一个过渡区t1~t3(例如:可以参见图8所示的例子)。过渡区时间T1越长,模式切换时对压缩机冲击越小,压缩机振动越小。通过试验,当T2≥10秒时,可使模式切换时压缩机振动大幅降低。
在一个可选实施方式中,变频加变容结合能进一步扩大冷、热量调节范围,具有广阔的应用前景。
由于本实施例的压缩机所实现的处理及功能基本相应于前述图1至图18所示的变容控制结构的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本发明的技术方案,通过控制变容组件有序动作,大幅降低了压缩机在进行模式切换时的抖动及停机的概率,避免切换导致的管路断裂,提高了压缩机切换的可靠性。
根据本发明的实施例,还提供了对应于压缩机的一种压缩机的变容控制方法。该压缩机的变容控制方法可以包括:
(1)使所述变容组件按设定顺序动作。
由此,例如:变容缸从工作模式切换到空转模式的过程为:
①、关闭第二电磁阀(若此前处于关闭状态,则继续维持该状态)。
②、第一电磁阀的流通面积由0逐渐增至最大值S 1,时间长度为T1。
③、切换过程完成后第一电磁阀的状态可处于流通面积为0或最大值S 1之间的任一状态,继续使第二电磁阀处于关闭状态。
例如:变容缸从空转模式切换到工作模式的过程为:
①、控制第一电磁阀开启的流通面积至最大值S 1
②、使第二电磁阀由关闭状态转为开启状态,其允许最大流通面积为S 2
③、第一电磁阀的流通面积由最大值S 1逐渐减小至0,其时间长度为T2。
④、切换完成后第一电磁阀的流通截面为0(即处于完全关闭状态),第二电磁阀继续维持开启状态或保持关闭状态。
由此,通过变容组件的设置,可以按设定顺序动作,大幅降低了压缩机在进行模式切换时的抖动及停机的概率,避免切换导致的管路断裂,实现对变容缸组件状态切换控制的可靠性,提高了压缩机切换的可靠性。
在一个可选例子中,当所述变容组件可以包括单向阀14、节流件和通断件时,步骤(1)中使所述变容组件按设定顺序动作,可以包括:所述变容缸组件由工作状态切换到空转状态的过程。
其中,在所述变容缸组件由工作状态切换到空转状态的过程中:
(11)使所述通断件处于关闭状态。
(12)使所述节流件的开度在第一过渡时间内,由设定流通面积的下限逐渐调大至所述设定流通面积的上限。
(13)在所述变容缸组件由工作状态到空转状态的切换过程完成后,使所述节流件的开度处于所述设定流通面积的下限与所述设定流通面积的上限中的任一开度,且维持所述通断件的关闭状态。
更可选地,当所述节流件处于开启状态、而所述通断件处于关闭状态时,使所述单向阀14处于关闭状态。
例如:变容缸从工作模式切换到空转模式的过程为:
①、关闭第二电磁阀(若此前处于关闭状态,则继续维持该状态)。
②、第一电磁阀的流通面积由0逐渐增至最大值S 1,时间长度为T1。
③、切换过程完成后第一电磁阀的状态可处于流通面积为0或最大值S 1之间的任一状态,继续使第二电磁阀处于关闭状态。
可选地,步骤(1)中使所述变容组件按设定顺序动作,还可以包括:所述变容缸组件由空转状态切换到工作状态的过程。
其中,在所述变容缸组件由空转状态切换到工作状态的过程中:
(21)使所述节流件的开度处于设定流通面积的上限。
(22)使所述通断件处于开启状态。
(23)使所述节流件的开度在第二过渡时间内,由设定流通面积的上限逐渐调小至所述设定流通面积的下限。
(24)在所述变容缸组件由空转状态到工作状态的切换过程完成后,使所述节流件的开度处于所述设定流通面积的下限,且维持所述通断件的开启状态、或使所述通断件处于关闭状态。
更可选地,当所述节流件处于关闭状态、而所述通断件处于开启状态时,使所述单向阀14处于导通状态。
例如:变容缸从空转模式切换到工作模式的过程为:
①、控制第一电磁阀开启的流通面积至最大值S 1
②、使第二电磁阀由关闭状态转为开启状态,其允许最大流通面积为S 2
③、第一电磁阀的流通面积由最大值S 1逐渐减小至0,其时间长度为T2。
④、切换完成后第一电磁阀的流通截面为0(即处于完全关闭状态),第二电磁阀继续维持开启状态或保持关闭状态。
由此,通过节流件控制压缩机的高压排气侧的高压冷媒引入至单向阀与变容缸吸气口之家的流通面积,控制方式简便,且控制结果的精准性好、可靠性高;通过通断件控制压缩机的低压吸气侧的低压冷媒引入至单向阀与变容缸吸气口之间的接通或断开,控制方式简便,控制结果可靠性高。
在一个可选例子中,当所述变容组件还可以包括缓冲器16时,步骤(1)中使所述变容组件按设定顺序动作,还可以包括:通过所述缓冲器16,在所述变容缸组件由空转状态到工作状态的切换过程中,减缓所述变容缸组件中变容缸4内压力降低的速度。
由此,通过在自变容缸吸气口与单向阀之间的公共连接管中设置缓冲器,可以进一步减缓变容缸在空转状态至工作状态的切换中其内部压力降低的速度,进而进一步降低状态切换过程中压缩机的抖动程度,提升状态切换及运行的可靠性和安全性。
可选地,减缓所述变容缸组件中变容缸4内压力降低的速度,可以包括:
(31)在所述节流件的开度由设定流通面积的上限逐渐调小至所述设定流通面积的下限的过程中,使从所述外壳1内进入所述缓冲器16内的高压气体的容量减少,并使从所述通断件流出所述缓冲器16的高压气体的容量不变。以及,
(32)使所述变容缸4的变容缸吸气口10到所述缓冲器16内气体的压力逐渐降低。并使降低后的所述压力与所述压缩机的排气背压的压差,满足所述变容缸组件的变容滑片5摆脱所述滑片约束单元束缚的条件。
例如:缓冲器的存在及第一电磁阀流通面积处于最大状态,变容缸吸气口的压力一定幅度的降低,但是压力降幅受控。逐渐减小第一电磁阀的流通面积,从外壳内进入缓冲器内的高压气体减少,从第二电磁阀流出缓冲器的高压气体不变,使变容缸吸气口到缓冲器内的压力逐渐降低并与排气背压的压差为ΔP 0
由此,通过设置缓冲器的气体体积,可以更加合理、更加可靠地对变容缸内部压力的降低程度进行控制。
(2)使所述滑片约束单元8,在所述变容组件按设定顺序动作的控制下,使所述压缩机中变容缸组件处于工作状态或空转状态,进而实现对所述压缩机的容量控制。
例如:当变容缸(例如:变容缸4)内的滑片与滚子接触时,变容缸内的空间被分隔成容积随转角变化的低压吸气侧和高压排气侧。当曲轴旋转时对吸入变容缸内的气体进行压缩,此时变容缸处于正常的工作状态。
例如:当变容缸内的滑片退入滑片槽、并被设置于泵体内的滑片约束单元束缚于滑片槽内,滑片与滚子分离,变容缸内只剩一个腔室并与变容缸吸气侧连通。当曲轴旋转时,变容缸组件内的气体不再被压缩,此时变容缸处于空转状态。
其中,变容缸组件的工作模式(例如:工作状态、空转状态等)由设置在外壳外部的变容组件和设置在泵体内的滑片约束单元共同作用决定。
由此,通过变容组件和滑片约束单元的配合设置,可以通过控制变容组件有序动作,大幅降低了压缩机在进行模式切换时的抖动,避免了压缩机切换时出现停机、管路断裂等问题的出现。
在一个可选例子中,当所述滑片约束单元8可以包括销钉约束单元时,步骤(2)中使所述压缩机中变容缸组件处于工作状态或空转状态,可以包括:所述变容缸组件由工作状态切换到空转状态的过程。
其中,在所述变容缸组件由工作状态切换到空转状态的过程中:
(41)通过所述变容组件逐渐升高所述变容缸组件中变容缸4的变容缸吸气侧内的压力,直到销钉6尾部的销弹簧7足以克服与所述销弹簧7的弹簧力方向相反的气体力时,所述销钉6头部与尾部的压力差为第一压力差。
(42)当所述变容缸组件的变容滑片5在所述变容缸组件的滚子的旋转下被推入所述变容缸组件的变容缸滑片槽中设定位置时,所述销钉6进入所述变容滑片5上的所述销槽26内,约束所述变容滑片5运动。之后,所述变容滑片5与所述滚子脱离。
(43)使所述变容缸4内的压力继续升高,直到所述变容缸4内的压力与所述外壳1内的高压相等,切换过程结束,所述变容缸组件处于空转状态。
可选地,步骤(2)中使所述压缩机中变容缸组件处于工作状态或空转状态,还可以包括:所述变容缸组件由空转状态切换到工作状态的过程。
其中,在所述变容缸组件由空转状态切换到工作状态的过程中:
(51)通过所述变容组件逐渐降低所述变容缸组件中变容缸4内的压力,直到销钉6所受的气体力足以克服销弹簧7的弹簧力、并将销钉6推离所述变容缸组件的变容滑片5时,所述销钉6头部与尾部的压力差为第一压力差。
(52)使所述变容滑片5所受的约束被解除,同时由于所述变容缸4内的压力降低、且所述变容滑片5的头部与尾部的压差也为第一压力差。
(53)通过所述第一压力差所产生的气体力推动所述变容滑片5,向靠近所述变容缸组件的滚子方向移动,直到所述变容滑片5与所述滚子贴合时,所述变容缸组件开始进行吸气、压缩,所述压缩机的功率开始随之上升。
(54)直到所述变容缸4内的压力与所述压缩机中分液器11的分液器吸气口15的压力相当时,所述变容组件中的单向阀14导通,切换过程结束,所述变容缸组件处于工作状态。
例如:销钉约束单元结构介绍:如图1至图3所示的实施例一。该滑片约束单元,可以包括:在变容缸组件中的变容滑片(例如:变容滑片5)的竖直方向设置的销钉(例如:销钉6)、设置于销钉尾部的弹簧(例如:销弹簧7)。
其中,变容滑片在气缸径向方向一端靠近滚子(例如:滚子20),称为滑片头部,如滑片头部24;另一端远离滚子,称为滑片尾部,如滑片尾部25。变容滑片在气缸轴向方向由两侧的轴承约束,且在靠近销钉侧设置有销槽(例如:销槽26)。
具体地,销钉设置于与变容缸相邻的轴承内,一端靠近变容滑片(称为销钉头部)、一端远离变容滑片(称为销钉尾部)。滑片尾部及销钉头部与外壳内部的高压连通,滑片头部压力与变容缸内的压力相同,销钉尾部通过泵体内部的销钉连通通道(例如:销钉连通通道9)与变容缸的吸气口连通。
在一个更可选具体例子中,变容缸组件由正常工作模式切换到空转模式过程,可以包括:
当变容缸内的压力处于低压、且该压力与分液器吸气口处的压力相等时,变容缸组件处于正常的工作状态。通过变容组件逐渐升高变容缸吸气侧内的压力直到销钉尾部的弹簧足以克服与弹簧力方向相反的气体力(此时销钉头部与尾部的压力差为ΔPa);而变容滑片在滚子的旋转下被推入变容缸滑片槽至某一位置时,销钉进入变容滑片上的销槽内约束变容滑片运 动,此后变容滑片与滚子脱离,而变容缸内的压力继续升高直到其压力与外壳内的高压相等,切换过程结束,变容缸组件进入空转模式。
在一个更可选具体例子中,变容缸组件由空转模式切换到正常工作模式过程,可以包括:
当变容缸内的压力处于高压、且该压力与外壳内的压力相等时变容缸组件处于空转状态。通过变容组件逐渐降低变容缸内的压力直到所受的气体力足以克服弹簧力、并将销钉推离变容滑片时(此时销钉头部与尾部的压力差为ΔPa),变容滑片所受的约束被解除、同时由于变容缸内的压力降低且滑片头部与尾部的压差也为ΔPa,其所产生的气体力推动变容滑片向靠近滚子方向移动直到与滚子贴合。此时变容缸组件开始进行吸气、压缩,压缩机功率开始随之上升,直到变容缸内的压力与分液器吸气口的压力相当时,单向阀导通,切换过程结束,变容缸组件进入正常工作模式。
由此,通过设置销槽,便于销钉安装,也便于销钉和销弹簧对变容滑片的控制,安装牢固性好,控制的可靠性也高。
在一个可选例子中,当所述滑片约束单元8可以包括磁性元件约束单元时,步骤(2)中使所述压缩机中变容缸组件处于工作状态或空转状态,可以包括:所述变容缸组件由工作状态切换到空转状态的过程。
其中,在所述变容缸组件由工作状态切换到空转状态的过程中:
(61)通过所述变容组件使所述变容缸组件中变容缸4内的压力逐渐升高,使所述变容组件中的单向阀14关闭,直到所述变容缸4内的压力上升到磁性元件22足以克服所述变容缸组件的变容滑片5因压差产生的气体力时,所述变容滑片5的头部与尾部的压差为第二压力差。
(62)使所述变容滑片5被所述变容缸组件中旋转的滚子,推入所述变容缸组件中的变容缸滑片槽,并因所述磁性元件22对所述变容滑片5产出的磁力而被约束在所述变容缸滑片槽内。之后,所述变容缸4内的压力继续上升至与所述外壳1内的压力相等,切换过程结束,所述变容缸组件处于空转状态。
可选地,步骤(2)中使所述压缩机中变容缸组件处于工作状态或空转状态,还可以包括:所述变容缸组件由空转状态切换到工作状态的过程。
其中,在所述变容缸组件由空转状态切换到工作状态的过程中:
(71)通过所述变容组件逐渐降低所述变容缸组件中变容缸4内的压力,直到所述变容缸4内的压力,降低到所述变容缸组件中变容滑片5因头部与尾部的压差产生的气体力足以克服磁性元件对变容滑片施加的磁力时,所述变容滑片5的头部与尾部的压差为第二压力差。
(72)使所述变容滑片5摆脱所述磁性元件22的束缚,并使所述变容滑片5在所述气体力的作用下向所述压缩机的滚子移动,直到所述变容滑片5与所述滚子贴合,使所述变容组件内的空间被分隔成吸气侧和排气侧。
(73)使所述变容缸4的变容缸吸气侧的压力继续降低,而使所述压缩机的功率逐渐升高,直到所述变容缸吸气侧压力与所述压缩机中分液器11的分液器吸气口15处的压力相等时,使所述变容组件中单向阀14导通,切换过程结束,所述变容缸组件处于工作状态。
例如:磁性元件约束单元介绍:如图4和图5所示的实施例二。该滑片约束单元,主要可以由设置在变容滑片尾部的磁性元件(例如:磁性元件22)构成。
其中,该磁性元件固定在变容缸滑片槽尾部,并具有吸引变容滑片、使其具有向磁性元件运动趋势的磁力。
在一个更可选具体例子中,变容缸组件由正常工作模式切换到空转模式过程,可以包括:
当变容缸内的压力处于低压、且该压力与分液器吸气口处的压力相等时,变容缸组件处于正常工作状态。通过变容组件中变容缸内的压力逐渐升高,单向阀关闭,直到变容缸内的压力上升到磁性元件足以克服变容滑片因压差产生的气体力时(此时变容滑片头部与尾部的压差为ΔPb),变容滑片被旋转的滚子推入变容缸滑片槽、并因磁性元件对其产出的磁力而被约束在该滑片槽内,此后压力继续上升至与外壳内的压力相等,切换过程结束,变容缸组件进入空转模式。
在一个更可选具体例子中,变容缸组件由空转模式切换到正常工作模式过程,可以包括:
当变容缸内的压力处于高压、且该压力与外壳内的压力相等时变容缸组件处于空转状态。通过变容组件逐渐降低变容缸内的压力,直到变容缸内的压力降低到变容滑片因头部与尾部的压差产生的气体力足以克服磁性元件对变容滑片施加的磁力时(此时变容滑片头部与尾部的压差为ΔPb),变容滑片摆脱磁性元件的束缚、并在气体力的作用下向滚子移动直到与滚子贴合,变容组件内的空间被分隔成吸气侧和排气侧。变容缸吸气侧的压力继续降低而使压缩机功率逐渐升高,直到变容缸吸气侧压力与分液器吸气口处的压力相等时,单向阀导通,切换过程结束,变容缸组件进入正常工作模式。
由此,通过磁性元件对变容滑片进行约束,结构简单,控制方式简便。
在一个可选例子中,当所述滑片约束单元8可以包括滑片约束孔约束单元时,步骤(2)中使所述压缩机中变容缸组件处于工作状态或空转状态,可以包括:所述变容缸组件由工作状态切换到空转状态的过程。
其中,在所述变容缸组件由工作状态切换到空转状态的过程中:
(81)通过所述变容组件逐渐升高所述变容缸组件中变容缸4的变容缸吸气侧内的压力,直到滑片约束孔23对所述变容缸组件中变容滑片5产生的摩擦力足以克服所述变容滑片5因压差产生的气体力时,所述变容滑片5的头部与尾部的压差为第三压力差。
(82)使所述变容滑片5被推入所述变容缸组件中的变容缸滑片槽,并通过所述摩擦力使所述变容滑片5被约束在所述变容缸滑片槽内。之后,所述变容缸4的变容缸吸气侧内的压力继续上升至与所述外壳1内的压力相等,切换过程结束,所述变容缸组件处于空转状态。
可选地,步骤(2)中使所述压缩机中变容缸组件处于工作状态或空转状态,还可以包括:所述变容缸组件由空转状态切换到工作状态的过程。
其中,在所述变容缸组件由空转状态切换到工作状态的过程中:
(91)通过所述变容组件逐渐降低所述变容缸组件中变容缸4内的压力,直到所述变容缸4内的压力,降低到所述变容缸组件中变容滑片5因头部与尾部的压差产生的气体力足以克服因滑片约束孔23引入的高压对所述变容滑片5产生的摩擦力时,所述变容滑片的头部与尾部的压差为第三压力差。
(92)使所述变容滑片5摆脱所述摩擦力的束缚,并在所述变容滑片5因头部与尾部的压差产生的气体力的作用下向所述压缩机中的滚子移动,直到所述变容滑片5与所述滚子贴合时,变容组件内的空间被分隔成吸气侧和排气侧。
(93)使所述变容缸4的变容缸吸气侧的压力继续降低,而使所述压缩机的功率逐渐升高,直到所述变容缸吸气侧的压力与所述压缩机中分液器11的分液器吸气口15处的压力相等时,使所述变容组件中单向阀14导通,切换过程结束,所述变容缸组件处于工作状态。
例如:滑片约束孔约束单元结构介绍:如图6和图7所示的实施例三。在与变容滑片运动方向呈一定角度的方向,在变容气缸远离吸气口侧设置一个滑片约束孔(例如:滑片约束孔23),将外壳内的高压引向变容滑片槽一侧,并与变容滑片槽相通。
其中,引入的高压所产生的压力作用在变容滑片上使其与变容滑片槽的另一侧贴紧,该压力的方向与变容滑片直线运动方向垂直、并由此使变容滑片与变容气缸滑片槽贴紧侧之间产生摩擦力,该摩擦力具有阻碍变容滑片运动的趋势。
在一个更可选具体例子中,变容缸组件由正常工作模式切换到空转模式过程,可以包括:
当变容缸内的压力处于低压且该压力与分液器吸气口处的压力相等时,变容缸组件处于正常工作状态。通过变容组件逐渐升高变容缸吸气侧内的压力直到滑片约束孔对变容滑片产生的摩擦力足以克服变容滑片因压差产生的气体力时(此时变容滑片头部与尾部的压差为ΔPc),变容滑片被推入变容缸滑片槽并该摩擦力约束在变容缸滑片槽内。此后压力继续上升至与外壳内的压力相等,切换过程结束,变容缸组件进入空转状态。
在一个更可选具体例子中,变容缸组件由空转模式切换到正常工作模式过程,可以包括:
当变容缸内的压力处于高压且该压力与外壳内的压力相等时,变容缸组件处于空转状态。通过变容组件逐渐降低变容缸内的压力,直到变容缸内的压力降低到变容滑片因头部与尾部的压差产生的气体力足以克服因滑片约束孔引入的高压对滑片产生的摩擦力时(此时变容滑片头部与尾部的压差为ΔPb),变容滑片摆脱摩擦力的束缚并在气体力的作用下向滚子移动直到与滚子贴合,变容组件内的空间被分隔成吸气侧和排气侧。变容缸吸气侧的压力继续降低而使压缩机功率逐渐升高,直到变容缸吸气侧压力与分液器吸气口处的压力相等时,单向阀导通,切换过程结束,变容缸组件进入正常工作模式。
由此,通过借助于变容滑片在滑片约束孔引入的压力作用下形成的摩擦力进行约束,结构更加简单,控制方式也更加简便,且可靠性可以得到保障。
由于本实施例的压缩机的变容控制方法所实现的处理及功能基本相应于前述压缩机的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本发明的技术方案,通过使变容组件有序动作,结合滑片约束单元,使变容缸组件处于工作或空转的状态,大幅降低状态切换时的剧烈抖动,提升压缩机状态切换及运行的可靠性。
综上,本领域技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上所述仅为本发明的实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (13)

  1. 一种变容控制结构,其特征在于,包括:变容组件和滑片约束单元(8);其中,
    所述变容组件,设置于所述变容控制结构所属压缩机的外壳(1)的外部,用于按设定顺序动作;
    所述滑片约束单元(8),设置于所述压缩机的泵体的内部,用于在所述变容组件按设定顺序动作的控制下,使所述压缩机中变容缸组件处于工作状态或空转状态。
  2. 根据权利要求1所述的结构,其特征在于,所述变容组件,包括:单向阀(14);
    所述单向阀(14),设置于所述变容缸组件中变容缸(4)的变容缸吸气口(10)、与所述压缩机中分液器(11)的分液器第二出口(13)之间的管路中,用于当冷媒由所述分液器第二出口(13)流向所述变容缸吸气口(10)时处于导通状态,或当冷媒由所述变容缸吸气口(10)流向所述分液器第二出口(13)时处于截止状态。
  3. 根据权利要求2所述的结构,其特征在于,所述变容组件,还包括:节流件和通断件中的至少之一;其中,
    所述节流件,设置于自所述外壳(1)内部的高压排气侧(28)引出的高压侧控制管(31)所在管路中,用于在所述单向阀(14)和所述节流件均处于关闭状态、且所述节流件处于开启状态时,按设定流通面积,将所述高压排气侧(28)的高压冷媒引入至所述单向阀(14)与所述变容缸吸气口(10)之间;
    所述通断件,设置于自所述分液器(11)内部的低压吸气侧(27)引出的低压侧控制管(29)所在管路中,用于在所述单向阀(14)、所述节流件和所述通断件均处于开启状态时,将所述低压吸气侧(27)的低压冷媒引入至所述单向阀(14)与所述变容缸吸气口(10)之间。
  4. 根据权利要求3所述的结构,其特征在于,其中,
    在所述变容组件中,自所述变容缸吸气口(10)与所述单向阀(14)之间还引出有公共连接管(30),所述高压侧控制管(31)和所述低压侧控制管(29)的另一端,均连通至所述公共连接管(30);
    和/或,
    所述变容组件,还包括:缓冲器(16);
    所述缓冲器(16),设置于自所述变容缸吸气口(10)与所述单向阀(14)之间引出的公共连接管(30)所在管路中,用于在所述变容缸(4)由所述空转状态切换至所述工作状态时,减缓所述变容缸(4)内部压力降低的速度。
  5. 根据权利要求3或4所述的结构,其特征在于,其中,
    所述节流件,包括:第一电磁阀(17)、电子膨胀阀、毛细管中的至少之一;和/或,
    所述节流件能够调节的所述设定流通面积的上限,大于或等于:所述变容缸组件在状态切换时允许的最大运行频率、与所述变容缸(4)处于工作状态时的工作容积的乘积的第一设定系数倍;其中,所述状态切换,包括:由工作状态切换至空转状态,或由空转状态切换至工作状态;
    和/或,
    当所述变容缸组件由工作状态切换至空转状态时,所述节流件的开度由所述设定流通面积的上限调小到所述设定流通面积的下限的时间为第一过渡时间;
    当所述变容缸组件由空转状态切换至工作状态时,所述节流件的开度由所述设定流通面积的下限调大到所述设定流通面积的上限的时间为第二过渡时间;其中,所述第一过渡时间大于或等于第一设定时间,所述第二过渡时间大于或等于第二设定时间,且所述第二设定时间大于所述第一设定时间;
    和/或,
    所述通断件,包括:第二电磁阀(18)、电动开关、手动开关中的至少之一;和/或,
    所述通断件开启时的允许流通面积,小于或等于所述变容缸(4)处于工作状态时的工作容积的第二设定系数倍;
    和/或,
    当所述变容组件还包括缓冲器(16)时,所述缓冲器(16)所能容纳的气体体积,大于或等于所述变容缸(4)处于工作状态时的工作容积的第三设定系数倍。
  6. 根据权利要求1-4之一所述的结构,其特征在于,所述滑片约束单元(8),包括:销钉约束单元、磁性元件约束单元、滑片约束孔约束单元中的任意一个;其中,
    所述销钉约束单元,包括:销钉(6)和销弹簧(7);其中,
    所述销钉(6),设置于所述变容缸组件中变容滑片(5)的竖直方向、且位于所述压缩机中与所述变容缸组件中的变容缸(4)相邻的轴承内;
    所述销弹簧(7),设置于所述销钉(6)的尾部;
    和/或,
    所述磁性元件约束单元,包括:磁性元件(22);
    所述磁性元件(22),设置于所述变容缸组件中变容滑片(5)的尾部,用于吸引所述变容滑片(5),以使所述变容滑片(5)向所述磁性元件(22)移动;
    和/或,
    所述滑片约束孔约束单元,包括:滑片约束孔(23);
    所述滑片约束孔(23),位于与所述变容缸组件中变容滑片(5)的运动方向呈设定角度的方向上,且设置于所述变容缸组件中变容缸(4)上与所述变容缸(4)的变容缸吸气口(10)相对的一侧,用于将所述外壳(1)内的高压气体引向所述变容滑片(5)的变容滑片槽一侧,并与所述变容滑片槽相通。
  7. 根据权利要求6所述的结构,其特征在于,其中,
    所述销钉约束单元,还包括:销槽(26);所述销槽(26),设置于所述变容滑片(5)的竖直方向的尾部;所述销钉(6),设置于所述销槽(26)中;
    和/或,
    在所述销钉约束单元中,
    所述变容滑片(5)的尾部及所述销钉(6)的头部,均与所述外壳(1)内部的高压气体连通;
    所述变容滑片(5)的头部压力与所述变容缸(4)的内部压力相同;
    所述销钉(6)的尾部,通过所述压缩机中泵体内部的销钉连通通道(9),与所述变容缸(4)的变容缸吸气口(10)连通;
    和/或,
    在所述滑片约束孔约束单元中,
    所述滑片约束孔(23)向所述变容滑片(5)的变容滑片槽一侧引入的所述外壳(1)内的高压气体,形成作用在所述变容滑片(5)上的压力,使所述变容滑片(5)与所述变容滑片槽的另一侧贴紧;
    所述压力的方向,与所述变容滑片(5)直线运动的方向垂直、并使所述变容滑片(5)与所述变容滑片槽贴紧侧之间产生摩擦力,以阻碍所述变容滑片(5)运动。
  8. 一种压缩机,其特征在于,包括:至少一个恒定运行的压缩缸组件;
    还包括:至少一个能够选择性地处于工作状态或空转状态的变容缸组件;其中,
    所述变容缸组件,包括:如权利要求1-7中任一项所述的变容控制结构。
  9. 一种压缩机的变容控制方法,其特征在于,所述方法利用权利要求8所述的压缩机实现,所述压缩机的变容控制方法包括:
    使所述变容组件按设定顺序动作;
    使所述滑片约束单元(8),在所述变容组件按设定顺序动作的控制下,使所述压缩机中变容缸组件处于工作状态或空转状态。
  10. 根据权利要求9所述的方法,其特征在于,当所述变容组件包括单向阀(14)、节流件和通断件时,使所述变容组件按设定顺序动作,包括:
    在所述变容缸组件由工作状态切换到空转状态的过程中:
    使所述通断件处于关闭状态;
    使所述节流件的开度在第一过渡时间内,由设定流通面积的下限逐渐调大至所述设定流通面积的上限;
    在所述变容缸组件由工作状态到空转状态的切换过程完成后,使所述节流件的开度处于所述设定流通面积的下限与所述设定流通面积的上限中的任一开度,且维持所述通断件的关闭状态;
    或者,
    在所述变容缸组件由空转状态切换到工作状态的过程中:
    使所述节流件的开度处于设定流通面积的上限;
    使所述通断件处于开启状态;
    使所述节流件的开度在第二过渡时间内,由设定流通面积的上限逐渐调小至所述设定流通面积的下限;
    在所述变容缸组件由空转状态到工作状态的切换过程完成后,使所述节流件的开度处于所述设定流通面积的下限,且维持所述通断件的开启状态、或使所述通断件处于关闭状态;
    其中,
    当所述节流件处于关闭状态、而所述通断件处于开启状态时,使所述单向阀(14)处于导通状态;或者,
    当所述节流件处于开启状态、而所述通断件处于关闭状态时,使所述单向阀(14)处于关闭状态。
  11. 根据权利要求10所述的方法,其特征在于,当所述变容组件还包括缓冲器(16)时,使所述变容组件按设定顺序动作,还包括:
    通过所述缓冲器(16),在所述变容缸组件由空转状态到工作状态的切换过程中,减缓所述变容缸组件中变容缸(4)内压力降低的速度。
  12. 根据权利要求11所述的方法,其特征在于,减缓所述变容缸组件中变容缸(4)内压力降低的速度,包括:
    在所述节流件的开度由设定流通面积的上限逐渐调小至所述设定流通面积的下限的过程中,使从所述外壳(1)内进入所述缓冲器(16)内的高压气体的容量减少,并使从所述通断件流出所述缓冲器(16)的高压气体的容量不变;以及,
    使所述变容缸(4)的变容缸吸气口(10)到所述缓冲器(16)内气体的压力逐渐降低;并使降低后的所述压力与所述压缩机的排气背压的压差,满足所述变容缸组件的变容滑片(5)摆脱所述滑片约束单元束缚的条件。
  13. 根据权利要求9-12之一所述的方法,其特征在于,当所述滑片约束单元(8)包括销钉约束单元时,使所述压缩机中变容缸组件处于工作状态或空转状态,包括:
    在所述变容缸组件由工作状态切换到空转状态的过程中:
    通过所述变容组件逐渐升高所述变容缸组件中变容缸(4)的变容缸吸气侧内的压力,直到销钉(6)尾部的销弹簧(17)足以克服与所述销弹簧(17)的弹簧力方向相反的气体力时,所述销钉(6)头部与尾部的压力差为第一压力差;
    当所述变容缸组件的变容滑片(5)在所述变容缸组件的滚子的旋转下被推入所述变容缸组件的变容缸滑片槽中设定位置时,所述销钉(6)进入所述变容滑片(5)上的所述压缩机的销槽(26)内,约束所述变容滑片(5)运动;之后,所述变容滑片(5)与所述滚子脱离;
    使所述变容缸(4)内的压力继续升高,直到所述变容缸(4)内的压力与所述外壳(1)内的高压相等,切换过程结束,所述变容缸组件处于空转状态;或者,
    在所述变容缸组件由空转状态切换到工作状态的过程中:
    通过所述变容组件逐渐降低所述变容缸组件中变容缸(4)内的压力,直到销钉(6)所受的气体力足以克服销弹簧(17)的弹簧力、并将销钉(6)推离所述变容缸组件的变容滑片(5)时,所述销钉(6)头部与尾部的压力差为第一压力差;
    使所述变容滑片(5)所受的约束被解除,同时由于所述变容缸(4)内的压力降低、且所述变容滑片(5)的头部与尾部的压差也为第一压力差;
    通过所述第一压力差所产生的气体力推动所述变容滑片(5),向靠近所述变容缸组件的滚子方向移动,直到所述变容滑片(5)与所述滚子贴合时,所述变容缸组件开始进行吸气、压缩,所述压缩机的功率开始随之上升;
    直到所述变容缸(4)内的压力与所述压缩机中分液器(11)的分液器吸气口(15)的压力相当时,所述变容组件中的单向阀(4)导通,切换过程结束,所述变容缸组件处于工作状态;或者,
    当所述滑片约束单元(8)包括磁性元件约束单元时,使所述压缩机中变容缸组件处于工作状态或空转状态,包括:
    在所述变容缸组件由工作状态切换到空转状态的过程中:
    通过所述变容组件使所述变容缸组件中变容缸(4)内的压力逐渐升高,使所述变容组件中的单向阀(14)关闭,直到所述变容缸(4)内的压力上升到磁性元件(22)足以克服所述变容缸组件的变容滑片(5)因压差产生的气体力时,所述变容滑片(5)的头部与尾部的压差为第二压力差;
    使所述变容滑片(5)被所述变容缸组件中旋转的滚子,推入所述变容缸组件中的变容缸滑片槽,并因所述磁性元件(22)对所述变容滑片(5)产出的磁力而被约束在所述变容缸滑片槽内;之后,所述变容缸(4)内的压力继续上升至与所述外壳(1)内的压力相等,切换过程结束,所述变容缸组件处于空转状态;
    或者,
    在所述变容缸组件由空转状态切换到工作状态的过程中:
    通过所述变容组件逐渐降低所述变容缸组件中变容缸(4)内的压力,直到所述变容缸(4)内的压力,降低到所述变容缸组件中变容滑片(5)因头部与尾部的压差产生的气体力足以克服磁性元件对变容滑片施加的磁力时,所述变容滑片(5)的头部与尾部的压差为第二压力差;
    使所述变容滑片(5)摆脱所述磁性元件(22)的束缚,并使所述变容滑片(5)在所述气体力的作用下向所述压缩机的滚子移动,直到所述变容滑片(5)与所述滚子贴合,使所述变容组件内的空间被分隔成吸气侧和排气侧;
    使所述变容缸(4)的变容缸吸气侧的压力继续降低,而使所述压缩机的功率逐渐升高,直到所述变容缸吸气侧压力与所述压缩机中分液器(11)的分液器吸气口(15)处的压力相等时,使所述变容组件中单向阀(14)导通,切换过程结束,所述变容缸组件处于工作状态;
    或者,
    当所述滑片约束单元(8)包括滑片约束孔约束单元时,使所述压缩机中变容缸组件处于工作状态或空转状态,包括:
    在所述变容缸组件由工作状态切换到空转状态的过程中:
    通过所述变容组件逐渐升高所述变容缸组件中变容缸(4)的变容缸吸气侧内的压力,直到滑片约束孔(23)对所述变容缸组件中变容滑片(5)产生的摩擦力足以克服所述变容滑片(5)因压差产生的气体力时,所述变容滑片(5)的头部与尾部的压差为第三压力差;
    使所述变容滑片(5)被推入所述变容缸组件中的变容缸滑片槽,并通过所述摩擦力使所述变容滑片(5)被约束在所述变容缸滑片槽内;之后,所述变容缸(4)的变容缸 吸气侧内的压力继续上升至与所述外壳(1)内的压力相等,切换过程结束,所述变容缸组件处于空转状态;
    或者,
    在所述变容缸组件由空转状态切换到工作状态的过程中:
    通过所述变容组件逐渐降低所述变容缸组件中变容缸(4)内的压力,直到所述变容缸(4)内的压力,降低到所述变容缸组件中变容滑片(5)因头部与尾部的压差产生的气体力足以克服因滑片约束孔(23)引入的高压对所述变容滑片(5)产生的摩擦力时,所述变容滑片的头部与尾部的压差为第三压力差;
    使所述变容滑片(5)摆脱所述摩擦力的束缚,并在所述变容滑片(5)因头部与尾部的压差产生的气体力的作用下向所述压缩机中的滚子移动,直到所述变容滑片(5)与所述滚子贴合时,变容组件内的空间被分隔成吸气侧和排气侧;
    使所述变容缸(4)的变容缸吸气侧的压力继续降低,而使所述压缩机的功率逐渐升高,直到所述变容缸吸气侧的压力与所述压缩机中分液器(11)的分液器吸气口(15)处的压力相等时,使所述变容组件中单向阀(14)导通,切换过程结束,所述变容缸组件处于工作状态。
PCT/CN2018/089784 2017-11-08 2018-06-04 一种变容控制结构、压缩机及其变容控制方法 WO2019091104A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/651,694 US11519410B2 (en) 2017-11-08 2018-06-04 Variable-capacity control structure, compressor and variable-capacity control method thereof
EP18875486.5A EP3663586A4 (en) 2017-11-08 2018-06-04 CONTROL STRUCTURE WITH VARIABLE CAPACITY, COMPRESSORS AND CONTROL PROCEDURES WITH VARIABLE CAPACITY FOR IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711093414.3 2017-11-08
CN201711093414.3A CN107917078B (zh) 2017-11-08 2017-11-08 一种变容控制结构、压缩机及其变容控制方法

Publications (1)

Publication Number Publication Date
WO2019091104A1 true WO2019091104A1 (zh) 2019-05-16

Family

ID=61896195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089784 WO2019091104A1 (zh) 2017-11-08 2018-06-04 一种变容控制结构、压缩机及其变容控制方法

Country Status (4)

Country Link
US (1) US11519410B2 (zh)
EP (1) EP3663586A4 (zh)
CN (1) CN107917078B (zh)
WO (1) WO2019091104A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917078B (zh) * 2017-11-08 2024-03-29 珠海格力节能环保制冷技术研究中心有限公司 一种变容控制结构、压缩机及其变容控制方法
CN108800481B (zh) * 2018-08-17 2019-04-26 珠海格力电器股份有限公司 一种控制压缩机切缸的方法、装置及机组、空调系统
CN109098958B (zh) * 2018-08-22 2019-11-29 珠海格力电器股份有限公司 变容压缩机、变容压缩机的切缸控制方法及介质
CN108931021B (zh) * 2018-09-19 2023-12-08 珠海格力电器股份有限公司 热泵系统及具有其的空调器
CN110215849B (zh) * 2019-07-01 2021-08-03 湘南学院附属医院 一种肾内科用半透膜粗坯的制备装置
CN111219880B (zh) * 2019-12-02 2020-12-18 珠海格力电器股份有限公司 三缸压缩机模式切换方法和装置
CN111075721B (zh) * 2019-12-26 2021-11-19 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及变容压缩机
CN112412787B (zh) * 2020-11-06 2022-05-17 珠海格力节能环保制冷技术研究中心有限公司 变容压缩机和空调器
CN114165450B (zh) * 2021-12-09 2022-11-15 珠海格力电器股份有限公司 一种泵体结构、压缩机及空调器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020138A (zh) * 2014-04-17 2015-11-04 珠海格力节能环保制冷技术研究中心有限公司 双缸变容压缩机及控制方法
CN105332916A (zh) * 2015-12-11 2016-02-17 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机及具有其的制冷系统和控制方法
CN105444474A (zh) * 2014-07-30 2016-03-30 珠海格力节能环保制冷技术研究中心有限公司 制冷循环装置
CN105485013A (zh) * 2016-01-12 2016-04-13 珠海格力节能环保制冷技术研究中心有限公司 变容压缩机的变容控制机构及变容压缩机
CN105545752A (zh) * 2016-01-21 2016-05-04 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的制冷系统
CN105545742A (zh) * 2016-02-24 2016-05-04 珠海格力节能环保制冷技术研究中心有限公司 多缸双级变容压缩机系统及其运行模式切换的控制方法
CN105756930A (zh) * 2014-12-19 2016-07-13 珠海格力节能环保制冷技术研究中心有限公司 压缩机
CN105805003A (zh) * 2016-03-04 2016-07-27 广东美芝制冷设备有限公司 多缸旋转式压缩机和旋转式压缩机
CN106050663A (zh) * 2016-07-13 2016-10-26 珠海格力节能环保制冷技术研究中心有限公司 变容压缩机及空调系统
CN106122012A (zh) * 2016-08-22 2016-11-16 珠海格力节能环保制冷技术研究中心有限公司 压缩机单双缸切换装置及变容压缩机
CN207195139U (zh) * 2017-08-10 2018-04-06 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN107917078A (zh) * 2017-11-08 2018-04-17 珠海格力节能环保制冷技术研究中心有限公司 一种变容控制结构、压缩机及其变容控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658280A (ja) * 1992-08-06 1994-03-01 Toshiba Corp 多気筒型回転圧縮機
KR20050004324A (ko) * 2003-07-02 2005-01-12 삼성전자주식회사 용량가변 회전압축기
KR100795958B1 (ko) * 2006-11-20 2008-01-21 엘지전자 주식회사 용량 가변형 로터리 압축기
EP1923571B1 (en) * 2006-11-20 2015-10-14 LG Electronics Inc. Capacity-variable rotary compressor
KR100747496B1 (ko) * 2006-11-27 2007-08-08 삼성전자주식회사 로터리 압축기 및 그 제어방법 그리고 이를 이용한공기조화기
KR101116215B1 (ko) * 2007-02-14 2012-03-06 삼성전자주식회사 회전압축기
CN202579193U (zh) * 2012-05-22 2012-12-05 珠海格力节能环保制冷技术研究中心有限公司 双级变容量压缩机
CN103557159B (zh) * 2013-10-11 2016-04-20 广东美芝制冷设备有限公司 旋转式压缩机
CN104019013B (zh) * 2014-06-20 2016-04-27 珠海格力电器股份有限公司 变容压缩机及其控制方法、变容机组和空调
CN106704189A (zh) * 2015-08-10 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 压缩机和换热系统
CN207568845U (zh) * 2017-11-08 2018-07-03 珠海格力节能环保制冷技术研究中心有限公司 一种变容控制结构及压缩机

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020138A (zh) * 2014-04-17 2015-11-04 珠海格力节能环保制冷技术研究中心有限公司 双缸变容压缩机及控制方法
CN105444474A (zh) * 2014-07-30 2016-03-30 珠海格力节能环保制冷技术研究中心有限公司 制冷循环装置
CN105756930A (zh) * 2014-12-19 2016-07-13 珠海格力节能环保制冷技术研究中心有限公司 压缩机
CN105332916A (zh) * 2015-12-11 2016-02-17 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机及具有其的制冷系统和控制方法
CN105485013A (zh) * 2016-01-12 2016-04-13 珠海格力节能环保制冷技术研究中心有限公司 变容压缩机的变容控制机构及变容压缩机
CN105545752A (zh) * 2016-01-21 2016-05-04 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的制冷系统
CN105545742A (zh) * 2016-02-24 2016-05-04 珠海格力节能环保制冷技术研究中心有限公司 多缸双级变容压缩机系统及其运行模式切换的控制方法
CN105805003A (zh) * 2016-03-04 2016-07-27 广东美芝制冷设备有限公司 多缸旋转式压缩机和旋转式压缩机
CN106050663A (zh) * 2016-07-13 2016-10-26 珠海格力节能环保制冷技术研究中心有限公司 变容压缩机及空调系统
CN106122012A (zh) * 2016-08-22 2016-11-16 珠海格力节能环保制冷技术研究中心有限公司 压缩机单双缸切换装置及变容压缩机
CN207195139U (zh) * 2017-08-10 2018-04-06 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN107917078A (zh) * 2017-11-08 2018-04-17 珠海格力节能环保制冷技术研究中心有限公司 一种变容控制结构、压缩机及其变容控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3663586A4 *

Also Published As

Publication number Publication date
US20200232464A1 (en) 2020-07-23
EP3663586A1 (en) 2020-06-10
CN107917078A (zh) 2018-04-17
US11519410B2 (en) 2022-12-06
CN107917078B (zh) 2024-03-29
EP3663586A4 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
WO2019091104A1 (zh) 一种变容控制结构、压缩机及其变容控制方法
CN101018988B (zh) 压缩机、制冷剂循环以及控制压缩机的方法
US8920149B2 (en) Single-screw compressor having an adjustment mechanism for adjusting a compression ratio of the compression chamber
EP3647635A1 (en) Electric valve
WO2023040210A1 (zh) 一种制冷系统
KR20050012633A (ko) 용량 조절식 스크롤 압축기
CN101846201A (zh) 二氧化碳汽车空调系统膨胀阀
US9631620B2 (en) Stationary volume ratio adjustment mechanism
CN103883525B (zh) 双级压缩机
JP2011202709A (ja) 逆止弁
CN207568845U (zh) 一种变容控制结构及压缩机
WO2023155448A1 (zh) 螺杆压缩机及其控制方法以及空调设备
CN216812148U (zh) 螺杆压缩机以及空调设备
CN206054232U (zh) 喷油量可调的节能空压机
US20180017059A1 (en) Variable economizer injection position
CN210317754U (zh) 压缩机变容结构、压缩机及制冷循环装置
WO2021031488A1 (zh) 压缩机及空调系统
EP3933204A1 (en) Screw compressor
CN113490793A (zh) 用于运行涡旋式压缩机的方法、设备和空调设施
CN218991870U (zh) 一种可调内容积比的螺杆压缩机
CN217058000U (zh) 空调器
JPH0278775A (ja) オイルフリースクリュ圧縮機の容量制御装置
CN218760419U (zh) 一种变容量气缸及包括其的压缩机
CN101315233B (zh) 具有变温调节特性的二氧化碳制冷系统节流阀
JPH0623755Y2 (ja) 圧縮機の容量制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018875486

Country of ref document: EP

Effective date: 20200306

NENP Non-entry into the national phase

Ref country code: DE