WO2021031488A1 - 压缩机及空调系统 - Google Patents

压缩机及空调系统 Download PDF

Info

Publication number
WO2021031488A1
WO2021031488A1 PCT/CN2019/128010 CN2019128010W WO2021031488A1 WO 2021031488 A1 WO2021031488 A1 WO 2021031488A1 CN 2019128010 W CN2019128010 W CN 2019128010W WO 2021031488 A1 WO2021031488 A1 WO 2021031488A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cylinder
pressure
slide valve
compressor
Prior art date
Application number
PCT/CN2019/128010
Other languages
English (en)
French (fr)
Inventor
刘华
唐晗
李日华
张贺龙
杨亚洲
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021031488A1 publication Critical patent/WO2021031488A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves

Definitions

  • the present disclosure relates to the technical field of compression devices, in particular to a compressor and an air conditioning system.
  • the discharge pressure is always as close as possible to the condensing pressure.
  • the related technologies known to the inventor all use a spool valve drive mechanism (including manual rocker screw, servo cylinder and hydraulic cylinder, etc.) to drive the spool valve to move.
  • the adjustment command of the spool valve drive mechanism comes from manual observation and manual operation or based on The pressure or temperature detection result on the unit is fed back to the electric signal for adjustment, which makes the compressor structure complicated, and the reliability and accuracy are difficult to guarantee.
  • the present disclosure provides a compressor and an air conditioning system.
  • a first aspect of the present disclosure provides a compressor, including: a pair of rotors having a suction end and a discharge end, and a closed tooth groove is arranged between the suction end and the discharge end; a slide valve is arranged at The rotor is paired and can slide freely relative to the rotor pair, the slide valve is provided with a first through hole communicating with the closed tooth groove; the first cylinder has a first piston, the first piston It is connected to the first end of the slide valve through a first connecting rod, and a first air pressure passage is provided in the first piston, the first connecting rod and the slide valve, and one end of the first air pressure passage Communicating with the first through hole, the other end communicating with the inside of the first cylinder; and a second cylinder having a second piston connected to the second end of the slide valve through a second connecting rod , And the second piston, the second connecting rod and the slide valve are provided with a second air pressure channel, one end of the second air pressure channel is connected with the exhaust end, and the other end is connected
  • the distance from the first through hole to the exhaust end is smaller than the distance from the first through hole to the suction end.
  • the stroke of the first piston in the first cylinder and the stroke of the second piston in the second cylinder are the same.
  • the closed tooth groove is divided into a suction part, a compression part, and a discharge part that are connected in sequence along the suction end to the discharge end, and within the range of the stroke, the The first through hole communicates with the exhaust part.
  • the compressor further includes a housing, the rotor pair and the slide valve are both arranged in the housing, and an exhaust cavity is enclosed between the exhaust end and the housing One end of the second air pressure passage is connected with the exhaust chamber, and the other end is connected with the second cylinder.
  • the free sliding of the slide valve includes: when the pressure in the exhaust chamber is greater than the pressure of the exhaust portion, the slide valve slides in the direction of the first cylinder to compress The internal volume ratio of the compressor increases; when the pressure in the discharge chamber is less than the pressure of the discharge portion, the slide valve slides in the direction of the second cylinder to reduce the internal volume ratio of the compressor; When the pressure in the exhaust cavity is equal to the pressure of the exhaust portion, the pair of slide valves and the rotor remain relatively stationary.
  • the absolute value of the change in the difference in the force of the first piston and the second piston is smaller than that of the slide valve
  • a spring is provided in the first cylinder, one end of the spring abuts against the first piston, and the other end abuts against the bottom of the first cylinder.
  • a second aspect of the present disclosure provides an air conditioning system including the compressor according to the first aspect of the present disclosure.
  • FIG. 1 is a schematic diagram of the structure of the rotor pair and the sliding valve of an embodiment of a compressor and an air conditioning system provided by the present disclosure.
  • the compressor of the embodiment of the present disclosure includes:
  • the rotor pair 1 has a suction end and an exhaust end, and a closed tooth groove is arranged between the suction end and the exhaust end.
  • the refrigerant flows through the rotor pair 1 from the closed tooth groove and is inside the closed tooth groove Complete compression;
  • the slide valve 2 is arranged on the rotor pair 1 and can slide freely relative to the rotor pair 1.
  • the slide valve 2 is provided with a first through hole 21 communicating with the closed tooth groove. 2 position, adjust the condensing pressure and discharge pressure of the compressor to fit;
  • the first cylinder 3 has a first piston 31.
  • the first piston 31 is connected to the first end of the slide valve 2 through a first connecting rod 33, and the first piston 31 and the first connecting rod 33
  • the slide valve 2 is provided with a first air pressure passage 32, one end of the first air pressure passage 32 is in communication with the first through hole 21, and the other end is in communication with the inside of the first cylinder 3, closing the tooth groove
  • the exhaust pressure of the refrigerant is transferred to the first cylinder 3 by the first air pressure passage 32, and the exhaust pressure is used to push the first piston 31 to move freely in the first cylinder 3;
  • the second cylinder 4 has a second piston 41.
  • the second piston 41 is connected to the second end of the slide valve 2 through a second connecting rod 43, and the second piston 41 and the second connecting rod 43
  • a second air pressure passage 42 is provided in the slide valve 2, and one end of the second air pressure passage 42 is in communication with the exhaust end (the left end in FIG. 1), and the other end is in communication with the second cylinder 4,
  • the condensation pressure of the compressor is introduced into the second cylinder 4, and the second piston 41 is driven to move freely in the second cylinder 4 by the condensation pressure.
  • the pressure borne by the spool valve 2 is the difference between the pressure borne by the first piston 31 and the pressure borne by the second piston 41.
  • the piston 31 and the second piston 41 jointly drive the sliding valve 2 and the rotor pair 1 to slide or be relatively stationary.
  • the distance from the first through hole 21 to the exhaust end is smaller than the distance from the first through hole 21 to the suction end (the right end in FIG. 1), that is, as much as possible to close the largest gap in the tooth groove
  • the pressure value is introduced into the first cylinder 3 to ensure that the force of the spool valve 2 is the difference between the discharge pressure of the rotor pair 1 and the condensing pressure of the compressor, thereby increasing the reliability and accuracy of the spool valve 2.
  • the stroke of the first piston 31 in the first cylinder 3 and the stroke of the second piston 41 in the second cylinder 4 are the same.
  • the stroke is the same as the adjustment range of the slide valve 2. Ensure the reliable sliding of the slide valve 2.
  • the closed tooth groove is divided into a suction part, a compression part and a discharge part which are connected in sequence along the suction end to the discharge end, and within the range of the stroke, the first through hole 21 and The exhaust part is connected, and the refrigerant pressure in the exhaust part is the exhaust pressure of the rotor pair 1 at this time.
  • the compressor further includes a casing, the rotor pair 1 and the slide valve 2 are both arranged in the casing, and an exhaust cavity is enclosed between the exhaust end and the casing.
  • One end of the second air pressure passage 42 is in communication with the exhaust chamber, and the other end is in communication with the second cylinder 4, and the refrigerant pressure in the exhaust chamber is the condensation pressure of the compressor.
  • the discharge pressure at the first through hole 21 also increases, thereby increasing the pressure in the first cylinder 3 Until the pressure in the first cylinder is equal to the pressure in the second cylinder, that is, when the new condensing pressure matches the new exhaust pressure, the spool valve stops sliding and reaches an equilibrium state again; similarly, when the exhaust When the pressure in the air chamber is less than the pressure of the exhaust portion, the pressure in the first cylinder 3 rises, the balance of the spool valve is broken, and the spool valve 2 slides toward the second cylinder 4, causing the compressor The internal volume ratio is reduced, and the exhaust pressure at the first through hole 21 is also reduced, so that the pressure in the first cylinder 3 is reduced until the pressure in the first cylinder is equal to the pressure in the second cylinder, that is, the new condensation When the pressure matches the new exhaust pressure, the spool valve stops sliding and reaches an equilibrium state again; when the pressure in the exhaust cavity is equal to the pressure of the exhaust portion, the spool valve 2 and the rotor pair 1 Keep relatively
  • the absolute value of the change is smaller than the change in the spool valve 2 .
  • the slide valve 2 and the rotor pair 1 remain relatively static, that is to say, when the compressor is stable, although there will be slight pressure fluctuations, the friction can control the slide valve 2 to be relatively static. In order to avoid frequent sliding of the spool valve 2 and reduce the reliability of the compressor or even cause accidents.
  • the first cylinder 3 is provided with a spring. One end of the spring abuts against the first piston 31, and the other end abuts against the bottom of the first cylinder 3. The spring ensures that the first piston 31 is in the first The reliability in the cylinder 3 also provides the initial sliding force of the spool valve 2 when the compressor is started.
  • the embodiment of the present disclosure also provides an air conditioning system, including the above-mentioned compressor.
  • cylinders are respectively arranged at both ends of the slide valve, and the two cylinders are respectively connected with the exhaust cavity and the closed tooth groove, so that the two cylinders are respectively Introduce the discharge pressure and condensing pressure of the compressor, and use the difference between the two pressures to drive the spool valve to move.
  • the spool valve When there is a difference between the discharge pressure and the condensing pressure, the spool valve can move at the first time, and in the moving process In this way, the discharge pressure of the compressor will be equal to the condensing pressure, which increases the reaction efficiency and adjustment accuracy of the spool valve, thereby achieving the purpose of automatically adjusting the spool valve and overcoming the need to install an additional spool valve adjustment mechanism inside the compressor Etc., effectively reducing the structural complexity of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种具有自动调节滑阀位置的压缩机及空调系统,该压缩机包括:转子对(1),具有吸气端和排气端,吸气端和排气端之间设置有封闭齿槽;滑阀(2),能够相对转子对(1)滑动,设置有与封闭齿槽连通的第一通孔(21);第一气缸(3),其第一活塞(31)通过其第一连杆(33)与滑阀(2)的第一端连接,第一活塞(31)、第一连杆(33)和滑阀(2)内设置有第一气压通道(32),第一气压通道(32)的一端与第一通孔(21)连通,另一端与第一气缸(3)内部连通;第二气缸(4),其第二活塞(41)通过其第二连杆(43)与滑阀(2)的第二端连接,第二活塞(41)、第二连杆(43)和滑阀(2)内设置有第二气压通道(42),第二气压通道(42)的一端与排气端连通,另一端与第二气缸(4)连通;第一活塞(31)和第二活塞(41)共同带动滑阀(2)与转子对(1)产生相对滑动或相对静止。

Description

压缩机及空调系统
相关申请
本公开是以申请号为201910775069.4,申请日为2019年8月21日,发明名称为“具有自动调节滑阀位置的压缩机及空调系统”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及压缩装置技术领域,特别是一种压缩机及空调系统。
背景技术
由于冷量消耗和环境温度的时刻变化,制冷系统在运行中的蒸发温度和冷凝温度及其对应饱和压力随之变化,由此制冷压缩机在系统中时刻面临着进气口之前和排气口之后的压力变化。同时,对于螺杆式压缩机而言,当压缩机的排气压力低于排气口之后冷凝压力时,需要螺杆转子额外做功将转子对里的气体强制挤出,降低压缩机效率,当压缩机的排气压力高于排气口之后冷凝压力时,说明驱动机械在压缩过程中已经存在不必要的额外功耗,此时也会降低压缩机效率。因此,螺杆压缩机自身需进行相应的内压比/内容积比调节,在蒸发压力(即吸气压力)和冷凝压力不断变化的过程中,保证排气压力总是尽可能地接近冷凝压力,以实现在不同工况下的设备高效率运行。发明人已知的相关技术中均采用滑阀驱动机构(包括手动摇柄丝杆、伺服气缸和液压油缸等)驱动滑阀移动,然而滑阀驱动机构的调节命令来自人工观察并手动操作或基于机组上压力或温度检测结果反馈电信号进行调节,造成压缩机结构复杂,且可靠性和精确度难以保证。
发明内容
本公开提供一种压缩机及空调系统。
本公开第一方面提供一种压缩机,包括:转子对,具有吸气端和排气端,且所述吸气端和所述排气端之间设置有封闭齿槽;滑阀,设置于所述转子对上,且能够相对所述转子对自由滑动,所述滑阀上设置有与所述封闭齿槽连通的第一通孔;第一气缸,具有第一活塞,所述第一活塞通过第一连杆与所述滑阀的第一端连接,且所述第一活 塞、所述第一连杆和所述滑阀内设置有第一气压通道,所述第一气压通道的一端与所述第一通孔连通,另一端与所述第一气缸内部连通;和第二气缸,具有第二活塞,所述第二活塞通过第二连杆与所述滑阀的第二端连接,且所述第二活塞、所述第二连杆和所述滑阀内设置有第二气压通道,所述第二气压通道的一端与所述排气端连通,另一端与所述第二气缸连通;其中所述第一活塞和所述第二活塞共同带动所述滑阀与所述转子对产生相对滑动或相对静止。
在一些实施例中,所述第一通孔到所述排气端的距离小于所述第一通孔到所述吸气端的距离。
在一些实施例中,所述第一活塞在所述第一气缸内的行程和所述第二活塞在所述第二气缸内的行程尺寸相同。
在一些实施例中,所述封闭齿槽沿所述吸气端至所述排气端分为依次连通的吸气部、压缩部和排气部,且在所述行程的范围内,所述第一通孔与所述排气部连通。
在一些实施例中,所述压缩机还包括壳体,所述转子对和所述滑阀均设置于所述壳体内,且所述排气端与所述壳体之间围成排气腔,所述第二气压通道的一端与所述排气腔连通,另一端与所述第二气缸连通。
在一些实施例中,在所述滑阀自由滑动中包括:当所述排气腔内的压力大于所述排气部的压力时,所述滑阀向所述第一气缸方向滑动以使压缩机内容积比增大;当所述排气腔内的压力小于所述排气部的压力时,所述滑阀向所述第二气缸方向滑动以使压缩机内容积比减小;当所述排气腔内的压力等于所述排气部的压力时,所述滑阀与所述转子对保持相对静止。
在一些实施例中,当所述排气腔内的压力与所述排气部的压力的差值引起的第一活塞和第二活塞的作用力的差值变化的绝对值小于所述滑阀受到的摩擦力时,所述滑阀与所述转子对保持相对静止。
在一些实施例中,所述第一气缸内设置有弹簧,所述弹簧的一端与所述第一活塞抵接,另一端与所述第一气缸的底部抵接。
本公开第二方面提供一种空调系统,包括本公开第一方面所述的压缩机。
附图说明
图1为本公开提供的压缩机及空调系统的实施例的转子对与滑阀配合的结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本公开,并不用于限定本公开。
如图1所示,本公开实施例的压缩机,包括:
转子对1,具有吸气端和排气端,且所述吸气端和所述排气端之间设置有封闭齿槽,冷媒由封闭齿槽流经转子对1,并在封闭齿槽内部完成压缩;
滑阀2,设置于所述转子对1上,且能够相对所述转子对1自由滑动,所述滑阀2上设置有与所述封闭齿槽连通的第一通孔21,通过调节滑阀2的位置,调节压缩机的冷凝压力和排气压力进行契合;
第一气缸3,具有第一活塞31,所述第一活塞31通过第一连杆33与所述滑阀2的第一端连接,且所述第一活塞31、所述第一连杆33和所述滑阀2内设置有第一气压通道32,所述第一气压通道32的一端与所述第一通孔21连通,另一端与所述第一气缸3内部连通,封闭齿槽内的冷媒的排气压力由第一气压通道32传递至第一气缸3内,利用排气压力推动第一活塞31在第一气缸3内自由移动;
第二气缸4,具有第二活塞41,所述第二活塞41通过第二连杆43与所述滑阀2的第二端连接,且所述第二活塞41、所述第二连杆43和所述滑阀2内设置有第二气压通道42,所述第二气压通道42的一端与所述排气端(图1中为左端)连通,另一端与所述第二气缸4连通,将压缩机的冷凝压力引至第二气缸4内,利用冷凝压力驱动第二活塞41在第二气缸4内自由移动。
由于第一活塞31和第二活塞41均设置在滑阀2上,所以滑阀2所承受的压力为第一活塞31承受的压力与第二活塞41承受的压力的差值,所述第一活塞31和所述第二活塞41共同带动所述滑阀2与所述转子对1产生相对滑动或相对静止。
所述第一通孔21到所述排气端的距离小于所述第一通孔21到所述吸气端(图1中为右端)的距离,也即尽可能的将封闭齿槽内的最大压力值引至第一气缸3内,保证滑阀2的受力为转子对1的排气压力与压缩机的冷凝压力的差值,从而增加滑阀2的可靠性和精确性。
所述第一活塞31在所述第一气缸3内的行程和所述第二活塞41在所述第二气缸4内的行程尺寸相同,特别的所述行程与滑阀2的调节范围相同,保证滑阀2的可靠 滑动。
所述封闭齿槽沿所述吸气端至所述排气端分为依次连通的吸气部、压缩部和排气部,且在所述行程的范围内,所述第一通孔21与所述排气部连通,此时排气部内的冷媒压力为转子对1的排气压力。
所述压缩机还包括壳体,所述转子对1和所述滑阀2均设置于所述壳体内,且所述排气端与所述壳体之间围成排气腔,所述第二气压通道42的一端与所述排气腔连通,另一端与所述第二气缸4连通,所述排气腔内的冷媒压力为压缩机的冷凝压力。
在所述滑阀2自由滑动中,当所述排气腔内的压力大于所述排气部的压力时,第二气缸4内的压力升高,滑阀的平衡被打破,所述滑阀2向所述第一气缸3方向滑动,使压缩机内容积比增大,此时第一通孔21处的排气压力也随之升高,由此使得第一气缸3内的压力也升高,直至第一气缸内的压力和第二气缸内的压力相等,也即新的冷凝压力和新的排气压力相契合时,滑阀停止滑动再次达到平衡状态;同理,当所述排气腔内的压力小于所述排气部的压力时,第一气缸3内的压力升高,滑阀的平衡被打破,所述滑阀2向所述第二气缸4方向滑动,使得压缩机内容积比减小,第一通孔21处的排气压力也降低,使得第一气缸3内的压力降低,直至第一气缸内的压力和第二气缸内的压力相等,也即新的冷凝压力和新的排气压力相契合时,滑阀停止滑动再次达到平衡状态;当所述排气腔内的压力等于所述排气部的压力时,所述滑阀2与所述转子对1保持相对静止;也即直接利用冷凝压力的变化驱动滑阀达到对应的位置,进而达到调节压缩机容积比的目的,实现了滑阀自动调节(自适应)的目的。
当所述排气腔内的压力与所述排气部的压力引起的所述第一活塞31和所述第二活塞41的作用力的差值变化的绝对值小于所述滑阀2受到的摩擦力时,所述滑阀2与所述转子对1保持相对静止,也就是说在压缩机工况稳定时,虽然会存在微小的压力波动,但是摩擦力能够控制滑阀2处于相对静止的状态,避免滑阀2频繁滑动而造成压缩机的可靠性降低甚至产生意外。
所述第一气缸3内设置有弹簧,所述弹簧的一端与所述第一活塞31抵接,另一端与所述第一气缸3的底部抵接,利用弹簧保证第一活塞31在第一气缸3内的可靠性,同时在压缩机启动时,提供滑阀2的初始滑动力。
本公开实施例还提供一种空调系统,包括上述的压缩机。
本公开提供的具有自动调节滑阀位置的压缩机及空调系统,在滑阀的两端分别设置气缸,并使两个气缸分别与排气腔和封闭齿槽连通,从而在两个气缸内分别引入压 缩机的排气压力和冷凝压力,利用两个压力的差值驱动滑阀移动,而当排气压力和冷凝压力存在差值时,滑阀能够在第一时间进行移动,并且在移动过程中使压缩机的排气压力会与冷凝压力趋于相等,增加了滑阀的反应效率和调节的精度,从而达到自动调节滑阀的目的,克服了需要在压缩机内部额外设置滑阀调节机构等,有效降低压缩机的结构复杂度。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本公开专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种压缩机,包括:
    转子对(1),具有吸气端和排气端,且所述吸气端和所述排气端之间设置有封闭齿槽;
    滑阀(2),设置于所述转子对(1)上,且能够相对所述转子对(1)自由滑动,所述滑阀(2)上设置有与所述封闭齿槽连通的第一通孔(21);
    第一气缸(3),具有第一活塞(31),所述第一活塞(31)通过第一连杆(33)与所述滑阀(2)的第一端连接,且所述第一活塞(31)、所述第一连杆(33)和所述滑阀(2)内设置有第一气压通道(32),所述第一气压通道(32)的一端与所述第一通孔(21)连通,另一端与所述第一气缸(3)内部连通;和
    第二气缸(4),具有第二活塞(41),所述第二活塞(41)通过第二连杆(43)与所述滑阀(2)的第二端连接,且所述第二活塞(41)、所述第二连杆(43)和所述滑阀(2)内设置有第二气压通道(42),所述第二气压通道(42)的一端与所述排气端连通,另一端与所述第二气缸(4)连通;
    其中所述第一活塞(31)和所述第二活塞(41)共同带动所述滑阀(2)与所述转子对(1)产生相对滑动或相对静止。
  2. 根据权利要求1所述的压缩机,其中所述第一通孔(21)到所述排气端的距离小于所述第一通孔(21)到所述吸气端的距离。
  3. 根据权利要求1所述的压缩机,其中所述第一活塞(31)在所述第一气缸(3)内的行程和所述第二活塞(41)在所述第二气缸(4)内的行程尺寸相同。
  4. 根据权利要求3所述的压缩机,其中所述封闭齿槽沿所述吸气端至所述排气端分为依次连通的吸气部、压缩部和排气部,且在所述行程的范围内,所述第一通孔(21)与所述排气部连通。
  5. 根据权利要求4所述的压缩机,其中所述压缩机还包括壳体,所述转子对(1)和所述滑阀(2)均设置于所述壳体内,且所述排气端与所述壳体之间围成排气腔, 所述第二气压通道(42)的一端与所述排气腔连通,另一端与所述第二气缸(4)连通。
  6. 根据权利要求5所述的压缩机,其中在所述滑阀(2)自由滑动中,
    当所述排气腔内的压力大于所述排气部的压力时,所述滑阀(2)向所述第一气缸(3)方向滑动以使压缩机内容积比增大;
    当所述排气腔内的压力小于所述排气部的压力时,所述滑阀(2)向所述第二气缸(4)方向滑动以使压缩机内容积比减小;
    当所述排气腔内的压力等于所述排气部的压力时,所述滑阀(2)与所述转子对(1)保持相对静止。
  7. 根据权利要求6所述的压缩机,其中当所述排气腔内的压力与所述排气部的压力的差值引起的所述第一活塞(31)和所述第二活塞(41)的作用力的差值变化的绝对值小于所述滑阀(2)受到的摩擦力时,所述滑阀(2)与所述转子对(1)保持相对静止。
  8. 根据权利要求1所述的压缩机,其中所述第一气缸(3)内设置有弹簧,所述弹簧的一端与所述第一活塞(31)抵接,另一端与所述第一气缸(3)的底部抵接。
  9. 一种空调系统,包括权利要求1至8中任一项所述的压缩机。
PCT/CN2019/128010 2019-08-21 2019-12-24 压缩机及空调系统 WO2021031488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910775069.4 2019-08-21
CN201910775069.4A CN110410328A (zh) 2019-08-21 2019-08-21 具有自动调节滑阀位置的压缩机及空调系统

Publications (1)

Publication Number Publication Date
WO2021031488A1 true WO2021031488A1 (zh) 2021-02-25

Family

ID=68368376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128010 WO2021031488A1 (zh) 2019-08-21 2019-12-24 压缩机及空调系统

Country Status (2)

Country Link
CN (1) CN110410328A (zh)
WO (1) WO2021031488A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410328A (zh) * 2019-08-21 2019-11-05 珠海格力电器股份有限公司 具有自动调节滑阀位置的压缩机及空调系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030215336A1 (en) * 2001-02-15 2003-11-20 Mayekawa Mfg. Co., Ltd. Multi-stage screw compressor unit accommodating high suction pressure and pressure fluctuations and method of operation thereof
EP2287444A1 (en) * 2009-08-19 2011-02-23 Hanbell Precise Machinery Co., Ltd. Rotary screw compressor with improved volume ratio regulation means
CN102042226A (zh) * 2011-01-05 2011-05-04 上海维尔泰克螺杆机械有限公司 具有柔性容积比滑阀的螺杆压缩机
CN203257684U (zh) * 2012-12-26 2013-10-30 福建雪人压缩机科技有限公司 一种组合式螺杆压缩机能量及内容积比滑阀调节机构
CN103470504A (zh) * 2013-08-29 2013-12-25 吴家伟 一种螺杆压缩机能量及内容积比合一的调节机构
CN105715548A (zh) * 2016-04-01 2016-06-29 浙江开山凯文螺杆机械有限公司 带柔性滑阀的两级螺杆压缩机
CN110410328A (zh) * 2019-08-21 2019-11-05 珠海格力电器股份有限公司 具有自动调节滑阀位置的压缩机及空调系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211039038U (zh) * 2019-08-21 2020-07-17 珠海格力电器股份有限公司 压缩机及空调系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030215336A1 (en) * 2001-02-15 2003-11-20 Mayekawa Mfg. Co., Ltd. Multi-stage screw compressor unit accommodating high suction pressure and pressure fluctuations and method of operation thereof
EP2287444A1 (en) * 2009-08-19 2011-02-23 Hanbell Precise Machinery Co., Ltd. Rotary screw compressor with improved volume ratio regulation means
CN102042226A (zh) * 2011-01-05 2011-05-04 上海维尔泰克螺杆机械有限公司 具有柔性容积比滑阀的螺杆压缩机
CN203257684U (zh) * 2012-12-26 2013-10-30 福建雪人压缩机科技有限公司 一种组合式螺杆压缩机能量及内容积比滑阀调节机构
CN103470504A (zh) * 2013-08-29 2013-12-25 吴家伟 一种螺杆压缩机能量及内容积比合一的调节机构
CN105715548A (zh) * 2016-04-01 2016-06-29 浙江开山凯文螺杆机械有限公司 带柔性滑阀的两级螺杆压缩机
CN110410328A (zh) * 2019-08-21 2019-11-05 珠海格力电器股份有限公司 具有自动调节滑阀位置的压缩机及空调系统

Also Published As

Publication number Publication date
CN110410328A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
JPH0744775Y2 (ja) 圧縮機の容量制御装置
EP3812591B1 (en) Slide valve, slide valve adjustment mechanism and screw compressor
US10145372B2 (en) Variable capacity reciprocating compressor
EP3392507B1 (en) Variable-capacity cylinder with sliding vane control structure and variable-capacity compressor
WO2017096999A1 (zh) 压缩机及减小压缩机泄漏和磨损的控制方法
US10746163B2 (en) Variable capacity compressor
WO2021031488A1 (zh) 压缩机及空调系统
EP2423508B1 (en) capacity control for a screw compressor
EP3133288B1 (en) Screw compressor
US10072657B2 (en) Screw compressor with an hydropneumatic cylinder integral with the bearing holder
CN211039038U (zh) 压缩机及空调系统
WO2009125749A1 (ja) 斜板式圧縮機
KR102038538B1 (ko) 사판식 압축기의 크랭크실 냉매 배출장치
JP2019019671A (ja) スクリュー圧縮機
JP2001349278A (ja) 可変容量圧縮機用制御弁
CN208966587U (zh) 泵体组件、变容压缩机、空气调节系统
US3473726A (en) Compressor for a mechanical refrigerator
US20210140419A1 (en) Variable displacement swash plate type compressor
JP2777713B2 (ja) 密閉型スクリュ圧縮機の容量制御装置
US12037995B2 (en) Swash plate compressor
KR101882672B1 (ko) 가변 용량형 사판식 압축기
KR101763979B1 (ko) 가변 용량형 사판식 압축기
CN112211818B (zh) 一种旋转式压缩机及其控制方法
US9284954B2 (en) Variable displacement swash plate type compressor
CN112211819B (zh) 一种旋转式压缩机以及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942028

Country of ref document: EP

Kind code of ref document: A1