WO2019091057A1 - 基于密切锥理论的定平面乘波体设计方法 - Google Patents
基于密切锥理论的定平面乘波体设计方法 Download PDFInfo
- Publication number
- WO2019091057A1 WO2019091057A1 PCT/CN2018/085426 CN2018085426W WO2019091057A1 WO 2019091057 A1 WO2019091057 A1 WO 2019091057A1 CN 2018085426 W CN2018085426 W CN 2018085426W WO 2019091057 A1 WO2019091057 A1 WO 2019091057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- icc
- point
- fct
- plane
- relationship
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000035939 shock Effects 0.000 claims description 24
- 230000037237 body shape Effects 0.000 claims description 6
- 238000010408 sweeping Methods 0.000 claims description 2
- 230000007547 defect Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/0009—Aerodynamic aspects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C30/00—Supersonic type aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/10—All-wing aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F5/00—Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/10—All-wing aircraft
- B64C2039/105—All-wing aircraft of blended wing body type
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
Definitions
- the invention relates to the field of aerodynamic design of hypersonic aircraft layout, in particular to the form of a wave body layout.
- High-lift supersonic/hyper-sonic shape has always been the unremitting pursuit of mankind. According to the hyperbolic characteristics of hypersonic non-viscous flow, the aerodynamic performance of the aircraft can be greatly improved, and the multiplier is a typical shape that utilizes this characteristic.
- the wave body is divided into the lower surface of the aircraft to prevent flow leakage by attaching shock waves, which effectively breaks through the lift barrier of the hypersonic vehicle and has a high lift-to-drag ratio. After several decades of development, the wave body has gradually evolved from an early single configuration to a complex configuration with different characteristics, especially the proposal of the close cone method, which can be designed by the given shock wave exit line. The shape of the wave body with more characteristics.
- the main problems include poor aerodynamic performance at low speed and difficulty in ensuring longitudinal stability.
- the shape of the wave body is generally obtained by streamlined tracking according to the hypersonic flow field.
- the generated surface has unique features and is difficult to design freely, but the plane shape of the wave body can be modified by the design curve to control the plane shape of the wave body. It is an effective way to improve the performance defects of the wave body.
- the technical solution of the present invention solves the problem: the relationship between the contour shape contour line and the design curve in the design method of the close cone wave-passing body is established, and the shape of the wave-body body can be specified by the differential equation group description.
- the design improves the flexibility of the design of the wave-passing body, and provides a new idea for improving performance defects such as poor low-speed performance and poor longitudinal stability.
- the technical solution of the present invention is: a method for designing a fixed-plane multiplier based on the close cone theory, the steps are as follows:
- step (1) is established by:
- (1.2) Define the intersection of two tangent lines of G and F points as H, and obtain the geometric relationship.
- ⁇ 1 and ⁇ 2 are the slope inclination angles of the straight lines GH and FH, respectively, and the sign is consistent with the local cut rate of ICC and FCT;
- W local is the width of the sub-spaced wave body generated according to the close face FG;
- the definition functions c(y), f(y) and p(y) respectively represent the shock exit profile ICC, the streamline tracking tube FCT and the contour of the plane shape PLF;
- the three relations in the second step are combined with the definition of the close face and the relation in the step (3) of claim 1, to obtain a system of equations composed of five relations;
- c(y), p(y) is known, and f(y) can be solved by the differential equation theory; or f(y) and p(y) are known, and c can be solved by the differential equation theory. y);
- the shape of the wave body is generated using the close cone method.
- equations in the third step are in the form:
- the boundary condition solved in the fourth step is: the three function values are equal at the semi-expansion y K , that is,
- step size ⁇ y ranges from [y K /2000, y K /100].
- contour line PLF of the plane shape is a delta wing wave shape, a double swept wave body shape or an S front edge wave body shape, but is not limited to the above three shapes.
- the shape of the plane in the traditional wave-body design is derived from other design curves and cannot be freely specified.
- the known design variables are the streamline tracking start line and the shock exit line.
- the invention establishes the relationship between the planar shape of the wave-passing body and the design parameters, and gives a relationship equation, which allows the design of the plane shape freely. Increased flexibility in designing the wave body. Since the planar shape has a great influence on the performance of the aircraft, the design method of the fixed plane wave body provides a way to improve the performance defects such as low speed performance and longitudinal stability of the wave body.
- the relationship between the contour line of the wave body plane and the two design parameters is expressed by a differential equation group, and the differential equation group can be solved by a numerical solution.
- the boundary conditions are given as the intersection of the three curves at the semi-stretching point, and the solution is continuously pushed from the semi-expansion to the inner side to ensure the robustness of the propulsion process.
- the step size of the propulsion solution needs reasonable selection.
- the range given by the invention can ensure the efficiency of the numerical solution, and the distribution of the obtained curve points is reasonable, which ensures the smoothness of the curve to be solved.
- FIG. 1 is a schematic view showing a design method of a close cone wave-passing body according to the present invention
- FIG. 3 is a schematic view showing a typical example of a wave-passing body provided by the present invention.
- the design principle of the invention According to several elements and hypotheses in the close cone method, the correspondence between the shock exit profile line, the streamline tracking start line and the plane shape contour line of the wave body is derived, and the numerical values are given. Solution. According to this relationship, the plane shape contour design shape of the wave body can be set, that is, the customized plane shape, and the reasonably designed fixed plane shape wave-passing body, such as double sweep shape, S front edge wave carrier body, etc., at low speed performance , performance advantages in terms of longitudinal stability.
- ICC is the exit line of the shock wave.
- the point on the ICC curve is taken as a tangent line, and the plane perpendicular to this tangent line is called the close plane.
- the radius of curvature uses a quasi-two-dimensional cone flow field in an intimate plane, which combines a series of conical flows in an in-plane to fit the overall three-dimensional flow field.
- FCT flow capture tube
- a close cone-shaped wave body can be thought of as a combination of a series of closely planar inner sub-waveforms. Take any one of the close planes here as an example to derive the geometric relationship.
- G is any point on the ICC curve
- the tangent angle is ⁇ 1
- the G point is used as the local vertical line of ICC
- the FCT curve is at point F
- the cut angle is ⁇ 2 .
- FG also represents an intimate plane with a direction perpendicular to the paper.
- the PLF curve in the top view is the outline of the planar shape of the top view, that is, the projection of the leading edge contour of the wave body in the xy plane.
- the F' point is the corresponding point of the F point on the PLF, and its abscissa position is the same.
- the cut angle of the F' point is the leading edge sweep angle ⁇ .
- ICC, FCT and PLF can be represented by three equations c(y), f(y) and p(y).
- the curve p is not limited to the shape of the wave body such as a delta wing, a double sweep, and a S leading edge.
- the length and width of the sub-multiplied wave body corresponding to the FG are L local and W local respectively . According to the definition of the leading edge sweep angle, there are:
- the flow selects a pseudo-two-dimensional cone flow of the corresponding scale according to its local radius of curvature. If the radius of curvature is infinite, a two-dimensional wedge flow is used.
- the flow shock angle ⁇ in each close plane is the same, and the shock waves in the cone flow or the wedge flow are straight lines, thus:
- the shape of the plucked wave body can be generated.
- the leading edge of the wave body is a straight line with a fixed angle ⁇ , and then one of the ICC or FCT is given, that is, ⁇ 1 or ⁇ 2 has been It is known to find the distribution of ⁇ 2 or ⁇ 1 and then use the traditional close cone method to generate the shape of the wave body.
- the equations composed of equations (1) and (2) and (3) are the geometric relationships in the present invention and can be solved by numerical methods.
- the boundary condition needs to be set in the solution.
- the boundary condition is the intersection point K of the three curves, that is, , y K is the semi-expansion of the aircraft. Therefore, it can be unified as:
- boundary conditions can also be set on the axis of symmetry of the aircraft.
- equations (4) are derived from a single close plane, this relationship is true in all spans of the wave body.
- y G , y F , ⁇ 1 , ⁇ 2 , ⁇ are unknown variables, and ⁇ is a known amount of cone flow shock angle.
- the number of equations is 5, and any two of the functions f(y), c(y), and p(y) are known.
- the unknowns are five unknown variables and one unknown equation, and the number is 6, according to the theory of ordinary differential equations. The third function can be found.
- the equation (4) two of the f(y), c(y), and p(y) functions are known, and the third one can be solved.
- the specific implementation step is to give a curve p(y), generally a quadratic derivative curve, and give any one of c(y) or f(y) to obtain a third curve.
- the plane shape outline of the shape of the wave body generated by the close cone wave-wave design method is p(y). The points are as follows:
- the f(y) curve is the upper surface profile at the exit, and is also the projection of the contour of the wave body in the y-z plane.
- p(y) is the projection of the contour of the wave body on the x-y plane. In this case, the wave body is generated by the three-dimensional contour of the shape.
- c(y) represents the shock line at the exit.
- c determines the reference flow field generated by the wave body. This case is the shape of the known wave body and the design of the reference flow field. method.
- y [0,y K is obtained. ]form.
- y [0,y K is obtained. ]form.
- the shape of the multiplier body can be generated.
- the plane shape outline of the shape of the wave is the one we set.
- the fixed curve p(y) allows us to customize the planar shape of the wave body.
- Figure 3 shows several typical multiplier shapes obtained using this relationship, including single swept, elbow double swept, and pointed double swept profiles. Preliminary analysis proves that the double sweep shape has performance advantages in low speed performance and longitudinal stability compared to the conventional wave body shape, and maintains the high lift-to-drag ratio characteristics in the hypersonic stage.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Transportation (AREA)
- Manufacturing & Machinery (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Complex Calculations (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
一种基于密切锥理论的定平面乘波体设计方法,步骤如下:(1)建立乘波体前缘后掠角λ与ICC、FCT之间的关系式(I),(2)根据(1)中的关系式,指定乘波体的前缘为固定切角λ的直线,然后给出ICC或FCT中的一条,即δ 1或δ 2已知,求出δ 2或δ 1的分布,再利用传统的密切锥方法生成乘波体外形。
Description
本申请要求于2017年11月9日提交中国专利局、申请号为201711100044.1、发明名称为“基于密切锥理论的定平面乘波体设计方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及高超声速飞行器布局气动设计领域,特别是乘波体布局形式。
高升力超声速/高超声速外形一直是人类不懈的追求。根据高超声速无粘流动的双曲线特征,飞行器的气动性能可以在很大程度上得以提高,乘波体就是利用这一特性的典型外形。乘波体通过附着激波将高压气动分割在飞行器下表面阻止流动泄露,有效突破了高超声速飞行器的升阻屏障,具有很高的升阻比。经过几十年的发展,乘波体从早期的单一构型逐渐发展为具有不同特点的复杂构型,尤其是密切锥方法的提出,可以通过给定激波出口型线进行乘波体设计,具有更多特性的乘波体外形。
乘波体的工程应用目前仍然有诸多的限制,主要问题包括低速状态气动性能不好、纵向稳定性难以保证等。乘波体外形一般根据高超声速流场通过流线追踪得到,其生成曲面具有独特的特征,难以自由设计,但乘波体的平面形状可以通过设计曲线进行修改,而控制乘波体的平面形状是改善乘波体性能缺陷的有效途径。
发明内容
本发明的技术解决问题是:建立了密切锥乘波体设计方法中外形平面形状 轮廓线与设计曲线之间的关系,通过微分方程组描述,可以指定乘波体的平面形状进行乘波体外形设计,提高了乘波体设计的灵活性,为改善其低速性能差、纵向稳定性不好等性能缺陷提供了新的思路。
本发明的技术解决方案是:一种基于密切锥理论的定平面乘波体设计方法,步骤如下:
(2)根据(1)中的关系式,指定乘波体的前缘为固定切角λ的直线,然后给出ICC或FCT中的一条,即δ
1或δ
2已知,求出δ
2或δ
1的分布,再利用密切锥方法生成乘波体外形。
进一步的,所述步骤(1)中的关系式通过下述方式建立:
(1.1)假设每个密切平面中的锥形流动激波角β都相同,且锥形流或楔形流动中激波都是直线,计算FG的长度
其中,G点为激波出口型线ICC上的任一点,F点为ICC上过G点的垂线与流动捕获管FCT的交点;L
local为在密切面FG内所生成的子乘波体的长度;
(1.2)定义过G点、F点两条切线的交点为H,得到几何关系式
其中,δ
1和δ
2分别为直线GH、FH的斜率倾角,其正负号与ICC和FCT的当地切率一致;W
local为根据密切面FG所生成的子乘波体的宽度;
(1.3)根据上述(1.1)、(1.2)的关系式结合前缘后掠角的定义,建立乘波体前缘后掠角λ与ICC、FCT之间的关系式。
一种基于密切锥理论的定平面乘波体设计方法,步骤如下:
第一步,定义函数c(y),f(y)和p(y)分别表示激波出口型线ICC,流线追踪管FCT和平面形状的轮廓线PLF;
第二步,根据激波出口型线ICC,流线追踪管FCT和平面形状的轮廓线PLF的定义,分别得到c(y),f(y)和p(y)与δ
1和δ
2、乘波体前缘后掠角λ的关系式;令G点为激波出口型线ICC上的任一点,F点为ICC上过G点的垂线与流动捕获管FCT的交点;δ
1和δ
2分别ICC过G点、FCT过F点的切角;
第三步,将第二步中的三个关系式结合密切面的定义以及权利要求1步骤(3)中的关系式,得到五个关系式组成的方程组;
第四步,已知c(y),p(y),利用微分方程理论即可求解f(y);或者已知f(y)、p(y),利用微分方程理论即可求解c(y);
第五步,利用第四步中的f(y)和c(y),使用密切锥方法生成乘波体外形。
进一步的,第三步中的方程组形式如下:
tan(δ
1)=c
(1)(y
G)
tan(δ
2)=f
(1)(y
F)
tan(λ)=
p
(1)(y
F)
式中,y
F、y
G为F和G点的展向坐标,β为锥形流动激波角,上标'(1)'代表一阶导数。
进一步的,所述第四步中当已知f(y)、p(y),求解c(y)的数值求解过程如下:
①从边界y
K出发向y
F=0推进,在边界处令(y
G)
0=(y
F)
0=y
K,c((y
G)
0)=f((y
F)
0);
②已知c(y)上的前一个推进点((y
G)
i,c((y
G)
i));再已知(y
F)
i,取推进步长Δy,(y
F)
i+
1=(y
F)
i-Δy,求出f((y
F)
i+
1);已知f(y)、p(y),根据方程组中的关系式,依次求得(δ
2)
i+1,λ
i+1,(δ
1)
i+1;根据微分法则,离散c(y)与δ
1的关系式为
根据上述离散关系式再联立
即可求得((y
G)
i+1,c((y
G)
i+1))。
③通过步骤②不断推进,一直到(y
F)
i+1=0为止。
进一步的,所述第四步中已知c(y),p(y),求解f(y)的数值求解过程如下:
①从边界y
K出发向y
G=0推进,在边界处令(y
F)
0=(y
G)
0=y
K,f((y
F)
0)=c((y
G)
0);
②已知f(y)上的前一个推进点((y
F)
i,f((y
F)
i));再已知(y
G)
i,求(δ
1)
i,取推进步长Δy,(y
G)
i+1=(y
G)
i-Δy,求出c((y
G)
i+1)和c
(1)((y
G)
i+1);已知p(y),求出λ
i;根据(δ
1)
i和λ
i求(δ
2)
i;根据微分法则,离散f(y)与δ
2的关系式为
再联立
即可求得((y
F)
i+1,c((y
F)
i+1))。
③通过步骤②不断推进,一直到(y
G)
i+1=0为止。
进一步的,步长Δy取值范围[y
K/2000,y
K/100]。
进一步的,步长最优Δy=y
K/1000。
进一步的,平面形状的轮廓线PLF为三角翼乘波体外形、双后掠乘波体外形或S前缘乘波体外形但不限于上述三种外形。
本发明与现有技术相比有益效果为:
(1)传统的乘波体设计中平面形状是由其他设计曲线衍生出来的,无法自由指定。在密切锥方法中,已知的设计变量为流线追踪起始线和激波出口型线,要设计具有某种平面特征的外形,必须采取不断试错逼近的方法,设计灵活性较差。本发明建立了乘波体平面形状与设计参数之间的关系,给出关系方程,允许自由指定平面形状进行设计。提高了乘波体设计的灵活性。由于平面形状对飞行器的性能影响很大,此定平面乘波体设计方法为改善乘波体低速性能、纵向稳定性等性能缺陷提供了途径。
(2)本发明中乘波体平面形状轮廓线与两条设计参数之间的关系通过一个微分方程组表达,此微分方程组可采用数值解法推进求解。给出边界条件为半展长处三条曲线交汇在一点,由半展长向内侧不断推进求解,保证了推进过程的鲁棒性。
(3)推进求解的步长需要合理选择,本发明给出的范围可以保证数值求解的效率,同时求解得到的曲线点的分布合理,保证了所求解曲线的光滑性。
(4)根据本发明提出的函数关系组和求解方法,结合密切锥方法,可以生成诸如单后掠、双后掠、S前缘等乘波体外形,为提高低速性能、改善纵向稳定性奠定了基础。
图1为本发明密切锥乘波体设计方法示意图;
图2为本发明几何关系示意图;
图3为本发明提供的典型示例乘波体外形图;
本发明设计原理:根据密切锥方法中的几个要素和假设,推导了激波出口型线、流线追踪起始线与乘波体平面形状轮廓线之间的对应关系,并给出了数值求解方法。根据此关系式可以设定乘波体的平面形状轮廓线设计外形,即定制平面形状,合理设计的定平面形状乘波体,比如双后掠外形、S前缘乘波体等,在低速性能、纵向稳定性方面具有性能优势。
首先简要介绍密切锥乘波体的设计原理,如图1所示,ICC为激波的出口型线,在ICC曲线上取点作切线,垂直于此切线的平面叫作密切平面,根据当地点的曲率半径在密切平面内使用拟二维锥形流场,将一系列密切平面内的锥形流动组合起来即可拟合整体的三维流场。将流动捕捉管(Flow Capture Tube,FCT)投影到激波作为追踪的初始点进行流线追踪,生成乘波体下表面。上表面一般在自由流动中追踪流线得到。因此在传统的密切锥乘波体中,设计变量为ICC和FCT曲线。
密切锥乘波体可以看作是一系列密切平面内子乘波体外形的组合。在这里取其中任意一个密切平面为例推导几何关系式。如图2所示,后视图中,G为ICC曲线上的任意一点,切线倾角为δ
1,过G点作ICC的当地垂线,交FCT曲线于F点,切角为δ
2,此时FG也代表了密切平面,方向为垂直于纸面方向。 俯视图中PLF曲线为俯视图平面形状的轮廓线,即乘波体前缘轮廓线在x-y平面的投影。F'点为F点在PLF上的对应点,其横坐标位置相同。F'点的切角为前缘后掠角λ。以y坐标为横坐标自变量,ICC,FCT和PLF可由三个方程c(y),f(y)和p(y)表示。曲线p为并不限于三角翼、双后掠、S前缘等乘波体外形
密切面FG对应的子乘波体的长度和宽度分别为L
local和W
local,根据前缘后掠角的定义,有:
tanλ=L
local/W
local
每个密切面中,流动根据其当地的曲率半径选择相应尺度的拟二维锥形流动,如果曲率半径无穷大,则使用二维楔形流动。密切锥方法中,每个密切平面中的流动激波角β都相同,且锥形流或楔形流动中激波都是直线,因此:
查看∠FHG,注意δ
1和δ
2的正负号与ICC和FCT的当地切率一致,因此∠FHG=δ
1-δ
2。存在如下的几何关系:
整理以上三个关系式,得到:
根据关系式(1)可以生成定后掠的乘波体外形,一般指定乘波体的前缘为固定切角λ的直线,然后给出ICC或FCT中的一条,即δ
1或δ
2已知,求出δ
2或δ
1的分布,再利用传统的密切锥方法生成乘波体外形。
根据f(y),c(y)和p(y)的定义,存在三个关系式:
同时根据密切面的定义,存在关系式:
其中y
F、y
G为F和G点的y坐标,上标'(1)'代表一阶导数。
除了在K处交汇作为边界条件外,在飞行器对称轴上也可以设定边界条件。
需要注意的是方程组(4)虽然是根据单一密切面导出的,但此关系在乘波体全部展长范围内均成立。在方程组(4)中,y
G,y
F,δ
1,δ
2,λ为未知变量,β为锥形流激波角已知量。方程个数为5,已知函数f(y),c(y),p(y)中的任意两个,未知量为五个未知变量和一个未知方程,数目为6,根据常微分方程理论,第三个函数即可求出。
根据方程组(4),已知f(y),c(y),p(y)函数式中的两个,第三个即可求解得到。使用方程组(4)即可定制平面形状-即轮廓线p(y)-设计乘波体外形。具体实施步骤为给出曲线p(y),一般为一条二次可导的曲线,给出c(y)或f(y)中的任意一条,求得第三条曲线。将如上方法得到的c(y)和f(y)作为输入使用密切锥乘波体设计方法生成的乘波体外形的平面形状轮廓线就是p(y)。分情况如下:
①已知f(y)和p(y),求c(y)。当乘波体上表面通过自由流面生成时,f(y)曲线为出口处上表面型线,也是乘波体轮廓线在y-z平面的投影。而p(y)为乘波体轮廓线在x-y平面的投影。此种情况为通过外形的三维轮廓线生成乘波体。
②已知p(y)和c(y),求f(y)。c(y)表示出口处的激波型线,在密切锥方法中,c决定了乘波体生成的基准流场,此种情况为已知乘波体的平面形状和基准流 场设计外形的方法。
以上两种情况中c(y)或f(y)的求解可以采取数值方法推进求解,当已知f(y),p(y)求c(y)时,数值求解过程如下:
①从边界y
K出发向y
F=0推进,在边界处(y
G)
0=(y
F)
0=y
K,c((y
G)
0)=f((y
F)
0);
②已知c(y)上的前一个推进点((y
G)
i,c((y
G)
i));再已知(y
F)
i,取推进步长Δy,(y
F)
i+1=(y
F)
i-Δy,求出f((y
F)
i+1);已知f(y)、p(y),根据方程组中的关系式,依次求得(δ
2)
i+1,λ
i+1,(δ
1)
i+1;根据微分法则,离散c(y)与δ
1的关系式为
根据上述离散关系式再联立
即可求得((y
G)
i+1,c((y
G)
i+1))。
③通过步骤②不断推进,一直到(y
F)
i+1=0为止,这样c(y)上的所有坐标点就可以给出,即求得了c(y)|y=[0,y
K]的形式。
当已知f(y),p(y)求c(y)时,数值求解过程如下:
①从边界y
K出发向y
G=0推进,在边界处(y
F)
0=(y
G)
0=y
K,f((y
F)
0)=c((y
G)
0);
②已知f(y)上的前一个推进点((y
F)
i,f((y
F)
i));再已知(y
G)
i,求(δ
1)
i,取推进步长Δy,(y
G)
i+1=(y
G)
i-Δy,求出c((y
G)
i+1)和c
(1)((y
G)
i+1);已知p(y),求出λ
i;根据(δ
1)
i和λ
i求(δ
2)
i;根据微分法则,离散f(y)与δ
2的关系式为
再联立
即可求得((y
F)
i+1,c((y
F)
i+1))。
③通过步骤②不断推进,一直到(y
G)
i+1=0为止,这样f(y)上的所有坐标点就可以给出,即求得了f(y)|y=[0,y
K]的形式。
通过以上两种情况得到c(y)和f(y),再使用传统的密切锥乘波体设计方法即可生成乘波体外形,此时乘波体外形的平面形状轮廓线就是我们所设定的曲线p(y),即允许我们定制乘波体的平面形状。
图3给出了使用此关系式得到的几种典型的乘波体外形,包括单后掠、弯头 双后掠和尖头双后掠外形。初步分析证明,与传统乘波体外形相比,双后掠外形在低速性能和纵向稳定性方面具有性能优势,且保持了高超声速阶段的高升阻比特性。
本发明未详细说明部分属本领域技术人员公知常识。
Claims (10)
- 根据权利要求1所述的方法,其特征在于:所述步骤(1)中的关系式通过下述方式建立:(1.1)假设每个密切平面中的锥形流动激波角β都相同,且锥形流或楔形流动中激波都是直线,计算FG的长度 其中,G点为激波出口型线ICC上的任一点,F点为ICC上过G点的垂线与流动捕获管FCT的交点;L local为在密切面FG内所生成的子乘波体的长度;(1.2)定义过G点、F点两条切线的交点为H,得到几何关系式 其中,δ 1和δ 2分别为直线GH、FH的斜率倾角,其正负号与ICC和FCT的当地切率一致;W local为根据密切面FG所生成的子乘波体的宽度;(1.3)根据上述(1.1)、(1.2)的关系式结合前缘后掠角的定义,建立乘波体前缘后掠角λ与ICC、FCT之间的关系式。
- 一种基于密切锥理论的定平面乘波体设计方法,其特征在于步骤如下:第一步,定义函数c(y),f(y)和p(y)分别表示激波出口型线ICC,流线追踪管FCT和平面形状的轮廓线PLF;第二步,根据激波出口型线ICC,流线追踪管FCT和平面形状的轮廓线PLF的定义,分别得到c(y),f(y)和p(y)与δ 1和δ 2、乘波体前缘后掠角λ的关系式; 令G点为激波出口型线ICC上的任一点,F点为ICC上过G点的垂线与流动捕获管FCT的交点;δ 1和δ 2分别ICC过G点、FCT过F点的切角;第三步,将第二步中的三个关系式结合密切面的定义以及权利要求1步骤(3)中的关系式,得到五个关系式组成的方程组;第四步,已知c(y),p(y),利用微分方程理论即可求解f(y);或者已知f(y)、p(y),利用微分方程理论即可求解c(y);第五步,利用第四步中的f(y)和c(y),使用密切锥方法生成乘波体外形。
- 根据权利要求5所述的方法,其特征在于:所述第四步中当已知f(y)、p(y),求解c(y)的数值求解过程如下:①从边界y K出发向y F=0推进,在边界处令(y G) 0=(y F) 0=y K,c((y G) 0)=f((y F) 0);②已知c(y)上的前一个推进点((y G) i,c((y G) i));再已知(y F) i,取推进步长Δy,(y F) i+1=(y F) i-Δy,求出f((y F) i+1);已知f(y)、p(y),根据方程组中的关系式,依次求得(δ 2) i+1,λ i+1,(δ 1) i+1;根据微分法则,离散c(y)与δ 1的关系式为 根据上述离散关系式再联立 即可求得((y G) i+1,c((y G) i+1))。③通过步骤②不断推进,一直到(y F) i+1=0为止。
- 根据权利要求5所述的方法,其特征在于:所述第四步中已知c(y),p(y),求解f(y)的数值求解过程如下:①从边界y K出发向y G=0推进,在边界处令(y F) 0=(y G) 0=y K,f((y F) 0)=c((y G) 0);②已知f(y)上的前一个推进点((y F) i,f((y F) i));再已知(y G) i,求(δ 1) i,取推进步长Δy,(y G) i+1=(y G) i-Δy,求出c((y G) i+1)和c (1)((y G) i+1);已知p(y),求出λ i;根据(δ 1) i和λ i求(δ 2) i;根据微分法则,离散f(y)与δ 2的关系式为 再联立 即可求得((y F) i+1,c((y F) i+1))。③通过步骤②不断推进,一直到(y G) i+1=0为止。
- 根据权利要求6或7所述的方法,其特征在于:步长Δy取值范围[y K/2000,y K/100]。
- 根据权利要求8所述的方法,其特征在于:步长最优Δy=y K/1000。
- 根据权利要求3所述的方法,其特征在于:平面形状的轮廓线PLF为三角翼乘波体外形、双后掠乘波体外形或S前缘乘波体外形但不限于上述三种外形。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/761,844 US20200283169A1 (en) | 2017-11-09 | 2018-05-03 | Osculating cone theory-based fixed-plane waverider design method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711100044.1 | 2017-11-09 | ||
CN201711100044.1A CN107963236B (zh) | 2017-11-09 | 2017-11-09 | 基于密切锥理论的定平面乘波体设计方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019091057A1 true WO2019091057A1 (zh) | 2019-05-16 |
Family
ID=62000108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/085426 WO2019091057A1 (zh) | 2017-11-09 | 2018-05-03 | 基于密切锥理论的定平面乘波体设计方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200283169A1 (zh) |
CN (1) | CN107963236B (zh) |
WO (1) | WO2019091057A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110589010A (zh) * | 2019-09-09 | 2019-12-20 | 南京航空航天大学 | 高超声速大装载空间乘波体设计方法 |
CN111460580A (zh) * | 2020-03-26 | 2020-07-28 | 中国航天空气动力技术研究院 | 一种使用三次多项式扩充乘波体容积的方法 |
CN113148102A (zh) * | 2021-05-08 | 2021-07-23 | 厦门大学 | 基于局部偏转吻切理论的变马赫数乘波体反设计方法 |
CN116729637A (zh) * | 2023-08-15 | 2023-09-12 | 中国航空工业集团公司沈阳空气动力研究所 | 一种变马赫数变激波角轴导吻切流场乘波体设计方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107963236B (zh) * | 2017-11-09 | 2020-11-10 | 中国航天空气动力技术研究院 | 基于密切锥理论的定平面乘波体设计方法 |
CN109250144B (zh) * | 2018-09-30 | 2020-07-07 | 中国人民解放军国防科技大学 | 后掠角及上/下反角直接可控的吻切锥乘波体设计方法 |
CN109279043B (zh) * | 2018-10-23 | 2020-06-30 | 中国人民解放军国防科技大学 | 融合低速翼型的冯卡门乘波体设计方法 |
CN111152909A (zh) * | 2019-11-12 | 2020-05-15 | 湖南云顶智能科技有限公司 | 一种基于投影法的定平面形状的双后掠乘波体设计方法 |
CN112606996A (zh) * | 2020-12-30 | 2021-04-06 | 中国航天空气动力技术研究院 | 一种乘波体结构 |
CN112948976B (zh) * | 2021-03-15 | 2024-02-02 | 中国科学院力学研究所 | 一种平面前缘升力体前缘线优化方法、系统及升力体 |
CN113673038A (zh) * | 2021-09-03 | 2021-11-19 | 中国人民解放军国防科技大学 | 基于反设计壁面点的变马赫数“串联”宽速域乘波飞行器设计方法 |
CN114186351B (zh) * | 2022-02-14 | 2022-04-15 | 中国科学院力学研究所 | 一种宽速域飞行器乘波体构型设计方法 |
CN114840914B (zh) * | 2022-03-31 | 2024-10-15 | 南京航空航天大学 | 一种高超飞行器数据驱动和机理驱动融合的智能建模方法 |
CN114872921B (zh) * | 2022-07-11 | 2022-10-14 | 西北工业大学 | 一种带鸭翼的变工况马赫数乘波体设计方法及系统 |
CN116280240B (zh) * | 2023-05-19 | 2023-08-29 | 中国航天空气动力技术研究院 | 一种基于内锥流场的定平面形状乘波体设计方法及系统 |
CN116384156B (zh) * | 2023-05-26 | 2023-08-29 | 中国航天空气动力技术研究院 | 一种通过调节曲率分布提高密切锥乘波体适用性的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6634594B1 (en) * | 2002-05-03 | 2003-10-21 | The Boeing Company | Hypersonic waverider variable leading edge flaps |
CN105059530A (zh) * | 2015-09-02 | 2015-11-18 | 空气动力学国家重点实验室 | 一种后掠角可控的尖顶点密切锥乘波体 |
CN105173116A (zh) * | 2015-09-25 | 2015-12-23 | 北京航空航天大学 | 高超声速飞行器密切曲面乘波体设计方法 |
CN107253521A (zh) * | 2017-07-03 | 2017-10-17 | 中国空气动力研究与发展中心计算空气动力研究所 | 一种带过渡段的曲线头部双后掠密切锥乘波体 |
CN107298162A (zh) * | 2017-07-03 | 2017-10-27 | 中国空气动力研究与发展中心计算空气动力研究所 | 一种带过渡段的尖顶点双后掠密切锥乘波体 |
CN107963236A (zh) * | 2017-11-09 | 2018-04-27 | 中国航天空气动力技术研究院 | 基于密切锥理论的定平面乘波体设计方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105697150B (zh) * | 2016-03-07 | 2017-09-19 | 厦门大学 | 一种兼顾锥导与密切乘波的鼓包进气道设计方法 |
CN106250607B (zh) * | 2016-07-27 | 2019-05-10 | 中国航天空气动力技术研究院 | 基于非均匀有理b样条曲线的双后掠乘波体设计方法 |
-
2017
- 2017-11-09 CN CN201711100044.1A patent/CN107963236B/zh active Active
-
2018
- 2018-05-03 WO PCT/CN2018/085426 patent/WO2019091057A1/zh active Application Filing
- 2018-05-03 US US16/761,844 patent/US20200283169A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6634594B1 (en) * | 2002-05-03 | 2003-10-21 | The Boeing Company | Hypersonic waverider variable leading edge flaps |
CN105059530A (zh) * | 2015-09-02 | 2015-11-18 | 空气动力学国家重点实验室 | 一种后掠角可控的尖顶点密切锥乘波体 |
CN105173116A (zh) * | 2015-09-25 | 2015-12-23 | 北京航空航天大学 | 高超声速飞行器密切曲面乘波体设计方法 |
CN107253521A (zh) * | 2017-07-03 | 2017-10-17 | 中国空气动力研究与发展中心计算空气动力研究所 | 一种带过渡段的曲线头部双后掠密切锥乘波体 |
CN107298162A (zh) * | 2017-07-03 | 2017-10-27 | 中国空气动力研究与发展中心计算空气动力研究所 | 一种带过渡段的尖顶点双后掠密切锥乘波体 |
CN107963236A (zh) * | 2017-11-09 | 2018-04-27 | 中国航天空气动力技术研究院 | 基于密切锥理论的定平面乘波体设计方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110589010A (zh) * | 2019-09-09 | 2019-12-20 | 南京航空航天大学 | 高超声速大装载空间乘波体设计方法 |
CN111460580A (zh) * | 2020-03-26 | 2020-07-28 | 中国航天空气动力技术研究院 | 一种使用三次多项式扩充乘波体容积的方法 |
CN113148102A (zh) * | 2021-05-08 | 2021-07-23 | 厦门大学 | 基于局部偏转吻切理论的变马赫数乘波体反设计方法 |
CN113148102B (zh) * | 2021-05-08 | 2023-12-22 | 厦门大学 | 基于局部偏转吻切理论的变马赫数乘波体反设计方法 |
CN116729637A (zh) * | 2023-08-15 | 2023-09-12 | 中国航空工业集团公司沈阳空气动力研究所 | 一种变马赫数变激波角轴导吻切流场乘波体设计方法 |
CN116729637B (zh) * | 2023-08-15 | 2023-10-27 | 中国航空工业集团公司沈阳空气动力研究所 | 一种变马赫数变激波角轴导吻切流场乘波体设计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107963236A (zh) | 2018-04-27 |
CN107963236B (zh) | 2020-11-10 |
US20200283169A1 (en) | 2020-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019091057A1 (zh) | 基于密切锥理论的定平面乘波体设计方法 | |
CN107140230B (zh) | 一种满足装填需求的乘波概念滑翔飞行器外形设计方法 | |
CN105059530B (zh) | 一种后掠角可控的尖顶点密切锥乘波体 | |
Rodi | The osculating flowfield method of waverider geometry generation | |
KR102616901B1 (ko) | 넓은 속도 범위 극초음속기의 공기역학적 구성 설계 방법 및 시스템 | |
WO2022247050A1 (zh) | 一种适用于复杂前缘形状的密切曲面乘波体正设计方法 | |
CN112389626A (zh) | 一种尖化前缘涡波一体固定翼跨域高超气动布局 | |
CN110525679B (zh) | 高超声速嵌入式乘波体设计方法 | |
Yu et al. | 3D inverse method of characteristics for hypersonic bump-inlet integration | |
CN113536458B (zh) | 一种基于类别形状函数变换的可变形机翼的快速几何建模方法 | |
Ashenberg et al. | Minimum induced drag of wings with curved planform | |
Mirels et al. | Line-vortex theory for calculation of supersonic downwash | |
CN109677630B (zh) | 基准流场激波形状可控的强几何约束下的乘波体设计方法 | |
Rogers et al. | An introduction to the flow about plane swept-back wings at transonic speeds | |
CN115659705B (zh) | 一种全参数化高隐身进气道设计方法及高隐身进气道 | |
CN107766673B (zh) | 一种半径可控的参数化三维前缘钝化设计方法 | |
CN110162901A (zh) | 高超声速飞行器轴对称构型前体的优化设计方法及系统 | |
Nayfeh et al. | Effect of a bulge on the subharmonic instability of boundary layers | |
CN214296427U (zh) | 一种乘波体结构 | |
Angelucci | A multivortex method for axisymmetric bodies at angle of attack. | |
Takovitskii | Analytical solution in the problem of constructing axisymmetric noses with minimum wave drag | |
Tsien et al. | The Glauert-Prandtl approximation for subsonic flows of a compressible fluid | |
Venn et al. | Shock patterns for simple caret wings | |
CN116341120B (zh) | 一种确定乘波特性依赖区的方法 | |
CN116280240B (zh) | 一种基于内锥流场的定平面形状乘波体设计方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18875758 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18875758 Country of ref document: EP Kind code of ref document: A1 |