WO2019088815A1 - Reactor sólido-gas-líquido (sgl) para la lixiviación de minerales polimetálicos y/o concentrados base plomo, cobre, zinc y/o sus mezclas - Google Patents

Reactor sólido-gas-líquido (sgl) para la lixiviación de minerales polimetálicos y/o concentrados base plomo, cobre, zinc y/o sus mezclas Download PDF

Info

Publication number
WO2019088815A1
WO2019088815A1 PCT/MX2017/000125 MX2017000125W WO2019088815A1 WO 2019088815 A1 WO2019088815 A1 WO 2019088815A1 MX 2017000125 W MX2017000125 W MX 2017000125W WO 2019088815 A1 WO2019088815 A1 WO 2019088815A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
gas
vertical
reactor according
impeller
Prior art date
Application number
PCT/MX2017/000125
Other languages
English (en)
French (fr)
Inventor
Ricardo BENAVIDES PÉREZ
Isaías ALMAGUER GUZMÁN
David Ezequiel VÁZQUEZ VÁZQUEZ
Original Assignee
Peñoles Tecnología, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peñoles Tecnología, S.A. De C.V. filed Critical Peñoles Tecnología, S.A. De C.V.
Priority to US16/652,256 priority Critical patent/US11110411B2/en
Priority to MX2020004740A priority patent/MX2020004740A/es
Priority to PCT/MX2017/000125 priority patent/WO2019088815A1/es
Priority to PE2020000417A priority patent/PE20201140A1/es
Priority to CA3077013A priority patent/CA3077013C/en
Publication of WO2019088815A1 publication Critical patent/WO2019088815A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/191Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/86Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis co-operating with deflectors or baffles fixed to the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/91Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/70Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
    • B01F33/71Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming working at super-atmospheric pressure, e.g. in pressurised vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/40Mounting or supporting mixing devices or receptacles; Clamping or holding arrangements therefor
    • B01F35/41Mounting or supporting stirrer shafts or stirrer units on receptacles
    • B01F35/412Mounting or supporting stirrer shafts or stirrer units on receptacles by supporting both extremities of the shaft
    • B01F35/4121Mounting or supporting stirrer shafts or stirrer units on receptacles by supporting both extremities of the shaft at the top and at the bottom of the receptacle, e.g. for performing a conical orbital movement about a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/22Obtaining zinc otherwise than by distilling with leaching with acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00067Liquid level measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/0009Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00779Baffles attached to the stirring means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to the equipment for leaching materials with metallic contents, and in particular, refers to a vertical reactor with a suspension system of three phases, solid-gas-liquid (SGL), whose function is to promote the reactions of solid-gas-liquid at low pressure to perform a chemical reaction of leaching of polymetallic minerals and / or concentrates based on lead, copper, zinc, iron and / or their mixtures, and in particular, to convert sulfur compounds metallic and / or partially oxidized (copper, zinc and iron) and / or mixtures thereof contained in minerals or concentrates, in soluble species and obtaining a respective solution of their ions.
  • SGL solid-gas-liquid
  • the international patent application WO 2014/118434 (Outotec Oyj, 2014), describes a stirred reactor tank for gas-liquid mass transfer, which includes: (i) a vertical drive shaft inside the reactor tank; (ii) a motor for rotating the drive shaft; (iii) a main impeller that generates a downward pumping to create a main flow pattern in the reactor tank; (iv) a gas inlet to the reactor to disperse the liquid, located in the lower part of the tank; and (v) a mechanical apparatus for bubbling the gas, coaxial to the drive shaft, and having a dispersion chamber with arrangement means for mixing the gas in the liquid by dispersing the gas into fine bubbles.
  • This reactor tank to be open, allows the loss of gas when the bubbles reach the top of it.
  • U.S. Patent 4,699,740 discloses a stirring system for the introduction of gases into liquids comprising: (i) a vertical stirring vessel; (ii) gas inlet means; (iii) a diffuser tube that extends vertically in said container; (iv) a stirring shaft that extends vertically in said diffuser tube; and (v) means for driving down a gas-liquid mixture through said diffuser tube, said means comprise impeller agitators mounted on said agitation shaft, an upper agitator is located at the upper end of said diffuser tube close to the gas space in said vessel, and a lower agitator placed at the lower end of said diffuser tube.
  • Still another object of the present invention is to provide a vertical reactor at low pressure of stirred tank, to three phases (SGL), with a stirring system that allows to improve the kinetics of leaching with respect to conventional reactors and reduce the operation times , for the efficient use of the gas reagent and its interaction with the other two phases.
  • the present invention relates to a vertical reactor at low pressure of stirred tank to three phases (SGL) to carry out a chemical reaction of leaching of polymetallic minerals and concentrates base lead, copper, zinc, iron and / or their mixtures, in 'a three-phase suspension system, solid-gas-liquid (SGL).
  • SGL stirred tank to three phases
  • the vertical reactor to low pressure of tank stirred to three phases includes two impellers agitators of different type to each other, coupled on an arrow agitator optionally three or four baffles attached to the vertical inner wall of the reactor with an equidistant distribution between them; a space of the reactor volume of between 20% to 35% of the total volume in the upper part of the reactor, which acts as an oxygen chamber to provide a continuous supply of oxygen; and a system of coils placed on the outer and / or inner surface of the reactor, to ensure efficient heat transfer performances and controlled kinetics.
  • Figure 1 is a vertical cross-sectional view of the three-phase stirred tank low pressure vertical reactor (SGL) of the invention, showing its main components.
  • SGL three-phase stirred tank low pressure vertical reactor
  • FIG. 2 is a schematic view of the gas chamber of the vertical three-stage stirred tank low pressure (SGL) reactor of the invention.
  • Figure 3 is a schematic cross-sectional view indicating the main geometric parameters of the vertical reactor at low pressure of tank stirred to three phases (SGL) of the invention.
  • Figure 4 is a schematic perspective view of the interior of the vertical reactor at low pressure of stirred tank to three phases (SGL) of the invention, in a mode with four deflectors.
  • Figure 5 is a schematic perspective view of the interior of the three-phase stirred tank low pressure vertical reactor (SGL) of the invention, in an embodiment with three deflectors.
  • Figure 6 is a schematic perspective view of the agitation system inside the vertical reactor at low pressure of tank stirred to three phases of the invention.
  • Figure 7 is a schematic perspective view of the upper impeller of the three stage stirred tank (SGL) vertical stirred reactor of the invention.
  • Figure 8 is a schematic perspective view of the lower impeller of the agitation system of the three-phase stirred tank low pressure vertical reactor (SGL) of the invention.
  • Figure 9 is a graph showing the reaction time for the leaching of copper concentrates (chalcopyrite) in a vertical low pressure stirred tank reactor to three phases (SGL) of 30 liters, and a base material chalcocite in reactor vertical to low pressure of stirred tank, of different capacity (30, 200 and 17,000 L).
  • the present invention relates to a vertical reactor at low pressure of stirred tank to three phases (SGL), designed to promote solid-gas-liquid reactions to perform a chemical reaction of leaching of polymetallic minerals and / or concentrates based on lead, copper, zinc, iron and / or their mixtures, and in particular, to convert sulfide compounds metallic and / or partially oxidized (copper, zinc and iron) and / or mixtures thereof contained in minerals or concentrates, in soluble species, obtaining a dissolution of their ions.
  • SGL stirred tank to three phases
  • Figure 1 shows a schematic view in vertical cross section of the vertical reactor at low pressure of stirred tank to three phases (SGL) of the present invention, in which the following actions are carried out: a) homogeneous gas dispersion and solids in the solution, due to the arrangement of the agitation system (6), deflectors (5) and vertical design of the low pressure stirred tank reactor in three phases (SGL), which generates a turbulent flow.
  • the vertical three-phase stirred tank low pressure (SGL) reactor of the invention is described below.
  • the three-phase stirred tank low pressure vertical reactor (SGL) of the invention consists of a vertical vessel of cylindrical shape (1) with upper torispherical caps (2) and lower (3), where the dimensions of the reactor depend on the volume occupied by the suspension (V S ) in the reactor, which is from 65% to 80% of the total volume (V T ) of it.
  • the reactor optionally has three or four baffles
  • each of the deflectors corresponds to 1/12 of the diameter of the reactor and separated from the wall 1/72 of the diameter of the reactor.
  • Figure 4 shows the inside of the cylindrical vertical vessel (1) of a three-phase stirred tank low pressure vertical reactor (SGL) of the invention in a four-deflector configuration (5a, 5b, 5c and 5d) arranged at 90 °; and Figure 5 corresponds to a configuration mode for three deflectors (5a, 5b and 5c) arranged at 120 °.
  • SGL stirred tank low pressure vertical reactor
  • the three-phase stirred tank low pressure vertical reactor (1) of the invention includes a system of agitation (6), which is shown in detail in Figure 6, where said agitation system (6) is composed of:
  • the impellers (12 and 13) are of different types from each other.
  • Figure 7 shows the first impeller (12) located in the upper part of the reactor (1), just below the level of the suspension, is of the high discharge type with a power number between 1.5 and 1.7 and a pumping number between 0.85 and 0.87; with 4 concave vanes (12a, 12b, 12c and 12d) which are half oval in shape and are placed in a hub (12e) at an angle (a) of 45 °, where the ratio between the diameter of the upper impeller (D) IS ) (12) and the diameter of the reactor (Da) is in the range of 0.38 to 0.5 (D XS / D R ).
  • Figure 8 shows the second impeller (13) located in the lower part of the reactor (1), at a height (Hn) from the bottom of the reactor of 1/3 of the diameter of the lower impeller (Du), with a number of power between 0.9 and 1.65 and a number of pumping between 0.68 and 0.88; it is of the axial type of 4 flat blades (13a, 13b, 13c and 13d) which are rectangle-shaped and are placed in a hub (13e) at an angle ( ⁇ ) in the range of 32 ° to 45 °; where the ratio between the diameter of the lower impeller (D II ) (13) and the reactor diameter (Pulse is in the range of 0.36 to 0.40 (D II / D R ).
  • the agitation system (6) operates effectively by introducing gas from the upper part of the reactor (1) to the sine of the suspension, with the peripheral speed necessary to homogeneously disperse the gas in the liquid phase (in the range of 680 to 770 m / min).
  • the separation between the upper impeller (12) and the lower impeller (13) maintains a relationship between the height of the upper impeller (H Is ) with respect to the height of the lower impeller (H II ) in the range of 7.65 to 7.75 ( Hxs / Hn), which allows to establish a synergic action between the induction of the gas to the liquid sine and the dispersion of the gas, achieving an effective system of attrition between impellers-particle-particle that avoids passivation.
  • impellers (12) and (13) in the reactor (1) keep the solid particles suspended and distributed in a homogeneous manner, which provides the appropriate interaction of mineralogical species of interest with the liquid and gas phase so that carry out the desired reactions, increasing the reaction rate with efficient consumption of the gas reagent greater than 95%.
  • the reactor has a system of coils (14) that can be placed on the outer and / or inner surface of the reactor depending on the amount of energy to be transferred.
  • Figure 1 shows the reactor with the arrangement of the external coil system. This system is to ensure efficient heat transfer performance regardless of whether the reaction is endothermic or exothermic.
  • water is used as a cooling medium to prevent the temperature from exceeding 110 ° C, and when the reaction is endothermic, heating medium, steam or thermal oil is used to increase the temperature of the suspension.
  • the general purpose of the reactor is to promote solid-gas-liquid reactions and, in particular, to transform the sulphide and / or partially oxidized sulphide compounds (copper, zinc and iron) of sizes smaller than 100. meshes (150 microns), and / or mixtures thereof contained in minerals or concentrates, in soluble species and obtaining a respective solution of their ions.
  • the conditions in which the reactor (1) operates depend on the material to be leached; in general, the reactor operates at a partial pressure of oxygen in a range of 7 to 207 kPa (1 psia to 30 psia); with a stirring speed between 50 to 700 rpm depending on the reactor diameter; the speed of agitation should guarantee that the peripheral speed is between 680 and 770 m / min to obtain an efficient contact between solid-gas-liquid; the temperature is in the range of 90 to 110 ° C; the concentration of solids varies from 50 to 500 g / L; the acidity or alkalinity such as sulfuric acid or sodium hydroxide will depend on the type and metallic content of the solid material to be leached and its concentration at the end of the reaction; The reaction time is less than 16 hours. Achieving a quasi-stoichiometric use of oxygen greater than 95% efficiency.
  • the process considers the three solid-gas-liquid (SGL) phases, that is, the acid or alkaline leaching solution as the liquid phase, the sulfide mineral and / or the metal oxides and / or the mixtures of these as the solid phase, and oxygen as the gas phase.
  • SGL solid-gas-liquid
  • the reactor (1) and its agitation system (6) provide the adequate interaction of the metallic species of interest with the liquid and gaseous phases, this interaction causes the reaction rate to increase, decreasing the required residence times and increasing extractions. at higher levels of 97%.
  • the reaction time is between 4 and 7 hours; at an oxygen partial pressure of 83 to 138 kPa (12 to 20 psia); obtaining copper extractions greater than 97%. In other equipment operating at low pressure, the reaction time reported is greater than 12 hours.
  • the graph of Figure 9 shows the copper extraction profiles with respect to time obtained experimentally, for two types of copper materials, that is, roatte (CuS) and chalcopyrite (CUFeS 2 ), under operating conditions from 83 to 138 kPa (12 to 20 psia); from 95 to 105 oC and initial concentration of solids from 150 to 240 g / L.
  • roatte CuS
  • CCFeS 2 chalcopyrite
  • EXAMPLE 1 Leaching of matte-speiss material (Cu 2 S-Cu 3 As) from a lead smelter using the solid-qas-liquid three-phase reactor (SGL) of the invention.
  • a matte-speiss sample containing 40.13% copper, 20.40% lead, 10.5% total sulfur, 6.73% iron and 4.22% arsenic is subjected to dry grinding to achieve a P 90 particle size of 45 microns.
  • the solution at 95 ° C contains 125 g / L of free sulfuric acid.
  • the reactor is closed and maintained at an oxygen partial pressure of 83 to 124 kPa (12-18 lbs / in 2 ), the reaction temperature is 95 and 105 ° C;
  • the stirring speed is kept constant at 588 rpm.
  • Table 2 shows the extraction of copper as a function of the leaching time. Table 2. Extraction of copper as a function of the leaching time for the case of the treatment of copper concentrates based on chalcopyrites
  • SGL solid-gas-liquid
  • the reactor is closed and maintained at a partial pressure of oxygen of 83 kPa (12 lbs / in 2 ), the reaction temperature is 90 ° C and it is allowed to react during a range of 4-10 hours, depending on the mineral species involved, the REDOX potential during this reaction time it is maintained between 400 and 500 mv, with respect to the Ag / AgCl electrode.
  • Table 3 shows the extraction of zinc as a function of the leaching time. Table 3. Extraction of zinc as a function of leaching time in the case of the treatment of zinc concentrates based on sphalerite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

La presente invención se refiere a un reactor vertical a baja presión de tanque agitado para la lixiviación de minerales polimetálicos y concentrados base plomo, cobre, zinc, fierro y/o sus mezclas, en un sistema de suspensión de tres fases, sólido-gas-líquido. El reactor vertical a baja presión de tanque agitado consiste en: un recipiente vertical de forma cilíndrica con tres o cuatro deflectores en una distribución equidistante en los 360°; un sistema de agitación compuesto de dos impulsores acoplados sobre una flecha agitadora, que provee la adecuada reacción e interacción de las especies metálicas de interés; un espacio del volumen del reactor que corresponde a entre el 20% al 35% del total del volumen del recipiente, ubicado en la parte superior del reactor y que actúa como una cámara de gas que provee de una alimentación continua de oxígeno; y un sistema de serpentinas colocado sobre la superficie exterior o interior del reactor para asegurar rendimientos de transferencia de calor eficientes y una cinética controlada.

Description

REACTOR SÓLIDO-GAS-LÍQUIDO (SGL) PARA LA LIXIVIACIÓN DE MINERALES POLIMETÁLICOS Y/O CONCENTRADOS BASE PLOMO,
COBRE, ZINC, FIERRO Y/O SUS MESCLAS
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se relaciona con los equipos para realizar la lixiviación de materiales con contenidos metálicos, y en especial, se refiere a un reactor vertical con un sistema de suspensión de tres fases, sólido-gas-liquido (SGL) , cuya función es promover las reacciones del tipo sólido-gas-líquido a baja presión para realizar una reacción química de lixiviación de minerales polimetálicos y/o concentrados base plomo, cobre, zinc, fierro y/o sus mezclas, y en particular, para convertir los compuestos de sulfures metálicos y/o parcialmente oxidados (cobre, zinc y fierro) y/o mezclas de los mismos contenidos en minerales o concentrados, en especies solubles y obteniendo una disolución respectiva de sus iones.
En aplicaciones hidrametalúrgicas existen diversos tipos de equipo para realizar la lixiviación de materiales con contenidos metálicos. Entre otros, se encuentran los reactores de tanque agitado a presiones superiores y cuyas desventajas están asociadas al riesgo debido al manejo de condiciones de alta temperatura y presión que demanda su operación, además de los elevados costos de inversión y gasto operativo asociados. En reactores de biolixiviación y lixiviación terreros, los tiempos de recuperación son considerables, por lo que la eficiencia de extracción es menor, y en algunos casos, puede representar un retraso significativo del flujo de efectivo de la operación. A continuación se describen algunas alternativas de equipos que existen actualmente.
La solicitud internacional de patente WO 2014/118434 (Outotec Oyj, 2014), describe un tanque reactor agitado para la transferencia de masa gas-líquido, que incluye: (i) un eje de accionamiento vertical en el interior del tanque reactor; (ii) un motor para girar el árbol de accionamiento; (iii) un impulsor principal que genera un bombeo hacia abajo para crear un patrón de flujo principal en el tanque de reactor; (iv) una entrada de gas al reactor para dispersar al liquido, ubicada en la parte inferior del tanque; y (v) un aparato mecánico para el burbujeo del gas, coaxial al eje de accionamiento, y que tiene una cámara de dispersión con medios de arreglos para mezclado del gas en el líquido mediante la dispersión del gas en burbujas finas. Este tanque reactor al ser abierto, permite la pérdida de gas al llegar las burbujas a la parte superior del mismo.
La patente de los Estados Unidos 4,699,740 (Huís Aktiengesellschaft, 1987) da a conocer un sistema de agitación para la introducción de gases en líquidos que comprende: (i) un recipiente de agitación vertical; (ii) medios de entrada de gas; (iii) un tubo difusor que se extiende de forma vertical en dicho recipiente; (iv) un eje de agitación que se extiende verticalmente en dicho tubo difusor; y (v) medios para impulsar hacia abajo una mezcla gas-liquido a través de dicho tubo difusor, dichos medios comprenden agitadores impulsores montados en dicho eje de agitación, un agitador superior está situado en el extremo superior de dicho tubo difusor próximo al espacio del gas en dicho recipiente, y un agitador inferior colocado en el extremo inferior de dicho tubo difusor. En la etapa de llenado de dicho recipiente de mezcla con el líquido en el que el gas se va a inyectar, se limita de tal manera que, un espacio de gas se mantendrá por encima del líquido en todo momento durante el funcionamiento, y dicho gas se alimenta por el extremo inferior de dicho tubo difusor. En la patente no se menciona como es la interacción de la fase sólida con la mezcla liquido-gas.
Existen además desarrollos de aparatos para mezclar gas en suspensión en un reactor de mezcla cerrado, y que utilizan gas como producto químico de proceso con alta eficiencia, y cuyos contenidos de sólidos en solución es alto. Al respecto, la solicitud de patente internacional con número de publicación WO 2007/093668A1 (Outotec Oyj, 2007), describe un aparato mezclador para mezclar gas en una suspensión formada de un líquido y sólidos, en donde el aparato consiste de: (i) un reactor cerrado; (ii) un mezclador situado dentro del reactor; (iii) deflectores de flujo dirigido hacia el interior desde la pared del reactor; y (iv) un tubo de alimentación de gas situado en la sección inferior del reactor.
En las referencias presentadas en los antecedentes de la invención, no se menciona cómo se evita el efecto de pasivación de las partículas por la formación de la capa de los productos de reacción. La pasivación de las partículas provoca una disminución en la velocidad de reacción. OBJETOS DE LA INVENCION
En vista de las limitantes y desventajas señaladas para los equipos descritos que forman parte del estado de la técnica, es un objeto de la presente invención proporcionar un novedoso reactor vertical a baja presión de tanque agitado a tres fases (SGL) . Es otro objeto de la presente invención proporcionar un reactor vertical a baja presión de tanque agitado a tres fases (SGL) para llevar a cabo una reacción química de lixiviación en un sistema de suspensión que incluye tres fases sólido-gas-liquido (SGL) .
Otro objeto más de la presente invención es proporcionar un reactor vertical a baja presión de tanque agitado, a tres fases (SGL) , con un sistema de agitación que permita mejorar la cinética de lixiviación con respecto a los reactores convencionales y reducir los tiempos de operación, por el uso eficiente del reactivo gas y su interacción con las otras dos fases.
Es aún otro objeto de la invención proporcionar un reactor vertical a baja presión de tanque agitado a tres fases (SGL) con un arreglo o disposición del sistema de agitación que posibilite generar y desarrollar esfuerzos de corte para evitar el efecto de pasivación de las partículas, promoviendo la permanente remoción de la capa de producto de reacción y exponiendo invariablemente nueva área superficial proclive a reacción. Otro objeto más de la presente Invención es proveer de un reactor vertical a baja presión de tanque agitado a tres fases (SGL) para el tratamiento de minerales o concentrados, conteniendo compuestos de sulfuros metálicos y/o parcialmente oxidados (cobre, zinc y fierro) y/o mezclas de los mismos, transformándolos en especies solubles, en disolución.
Es otro objeto de la presente invención proporcionar un reactor vertical a baja presión de tanque agitado a tres fases (SGL) , que ofrezca un aprovechamiento de gas oxigeno superior al 95% de eficiencia, con un consumo cuasi-estequiamétrico de oxigeno.
Otros objetos y ventajas de la presente invención podrán ser aparentes a partir de la siguiente descripción y las figuras que le acompañan, las cuales tienen fines exclusivamente ilustrativos y no limitativos del alcance de la invención.
BREVE DESCRIPCIÓN DE LE INVENCIÓN
La presente invención se refiere a un reactor vertical a baja presión de tanque agitado a tres fases (SGL) para llevar a cabo una reacción química de lixiviación de minerales polimetálicos y concentrados base plomo, cobre, zinc, fierro y/o sus mezclas, en' un sistema de suspensión de tres fases, sólido-gas-liquido (SGL) .
El reactor vertical a baja presión de tanque agitado a tres fases (SGL), incluye dos impulsores agitadores de diferente tipo entre si, acoplados sobre una flecha agitadora; opcionalmente tres o cuatro deflectores sujetos a la pared vertical interna del reactor con una distribución equidistante entre ellos; un espacio del volumen del reactor de entre el 20% al 35% del total del volumen en la parte superior del reactor, que actúa como una cámara de oxigeno para proveer una alimentación continua de oxigeno; y un sistema de serpentines colocados sobre la superficie exterior y/o interior del reactor, para asegurar rendimientos eficientes de transferencia de calor y una cinética controlada.
BREVE DESCRIPCION DE LAS FIGURAS
La Figura 1 es una vista en sección transversal vertical del reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la invención, que muestra sus principales componentes.
La Figura 2 es una vista esquemática de la cámara de gas del reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la invención.
La Figura 3 es una vista esquemática en sección transversal indicando los principales parámetros geométricos del reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la invención.
La Figura 4 es una vista esquemática en perspectiva del interior del reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la invención, en una modalidad con cuatro deflectores. La Figura 5 es una vista esquemática en perspectiva del interior del reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la invención, en una modalidad con tres deflectores.
La Figura 6 es una vista esquemática en perspectiva del sistema de agitación al interior del reactor vertical a baja presión de tanque agitado a tres fases de la invención.
La Figura 7 es una vista esquemática en perspectiva del impulsor superior del sistema de agitación del reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la invención.
La Figura 8 es una vista esquemática en perspectiva del impulsor inferior del sistema de agitación del reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la invención.
La Figura 9 es un gráfico que muestra el tiempo de reacción para la lixiviación de concentrados de cobre (calcopirita) en un reactor vertical a baja presión de tanque agitado a tres fases (SGL) de 30 litros, y de un material base calcocitas en reactor vertical a baja presión de tanque agitado, de diferente capacidad (30, 200 y 17,000 L) .
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere a un reactor vertical a baja presión de tanque agitado a tres fases (SGL) , diseftado para promover las reacciones del tipo sólido- gas-líquido para realizar una reacción química de lixiviación de minerales polimetálicos y/o concentrados base plomo, cobre, zinc, fierro y/o sus mezclas, y en particular, para convertir los compuestos de sulfuros metálicos y/o parcialmente oxidados (cobre, zinc y fierro) y/o mezclas de los mismos contenidos en minerales o concentrados, en especies solubles, obteniendo una disolución de sus iones.
En la Figura 1 se muestra una vista esquemática en sección transversal vertical del reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la presente invención, en el que se llevan a cabo las acciones siguientes: a) Dispersión homogénea de gas y sólidos en la solución, debido al arreglo del sistema de agitación (6), deflectores (5) y diseño del reactor vertical a baja presión de tanque agitado a tres fases (SGL) , que genera un flujo turbulento. b) Interacción de las tres fases sólido-gas-líquido, debido al sistema de agitación (6) conformado por dos impulsores (12 y 13); un impulsor superior (12) que genera un patrón de flujo que permite la introducción de gas y, un impulsor inferior (13) que genera un patrón de flujo que permite la suspensión homogénea, interacción, y difusión de las tres fases (SGL) , promoviendo las reacciones del lixiviación tipo sólido-gas-líquido. c) Remoción dinámica y continua de la capa de pasivación que se encuentra en la superficie de la partícula, debido a reacciones de transformación química que son favorecidas por la fuerza mecánica de corte y de fricción, y por choques entre partículas que son generados a su vez por el arreglo del sistema de agitación (6), los deflectores (5), y el patrón de flujo sobre las partículas parcialmente reaccionadas. d) Control energético debido a un sistema de serpentines (14) colocados sobre la superficie exterior y/o interior del reactor, para asegurar rendimientos eficientes de transferencia de calor independientemente de que la reacción sea endotérmica o exotérmica. e) Consumo eficiente de oxigeno debido a que es un reactor cerrado, evitando asi las pérdidas por escape de oxigeno sin reaccionar.
Para evitar la presión parcial del vapor de agua y que se mantenga la presión parcial de oxigeno en la cámara de gas (Figura 2), es necesario que el reactor opere a presiones preferentemente entre 83 y 138 kPa (12 y 20 psia), y temperaturas inferiores de 110°C.
El reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la invención se describe a continuación.
De acuerdo con las Figuras 1 y 3, el reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la invención, consiste en un recipiente vertical de forma cilindrica (1) con tapas toriesféricas superior (2) e inferior (3), en donde las dimensiones del reactor dependen del volumen que ocupa la suspensión (VS) en el reactor, el cual es del 65% al 80% del volumen total (VT) del mismo. El espacio restante situado en la parte superior del reactor (VB) que corresponde al 20% al 35% del volumen total del reactor, actúa como cámara de gas
(4) que provee de una alimentación continua de gas, siendo el oxigeno (O2) el reactivo gas utilizado, el cual entra por la parte superior del reactor para llenar la cámara de gas (4). La relación entre la altura del nivel de la suspensión (Hs) y el diámetro del reactor (DR) está en el rango de 0.97 a 1.03 (HS/DR) .
El reactor tiene opcionalmente, tres o cuatro deflectores
(5) colocados verticalxnente en la pared vertical recta del reactor (1), distribuidos equidistantemente en los 360°. El ancho de cada uno de los deflectores corresponde a 1/12 del diámetro del reactor y separados de la pared 1/72 del diámetro del reactor.
La Figura 4 muestra el interior del recipiente vertical de forma cilindrica (1) de un reactor vertical a baja presión de tanque agitado a tres fases (SGL) de la invención en una modalidad con una configuración de cuatro deflectores (5a, 5b, 5c y 5d) dispuestos a 90°; y la Figura 5 corresponde a una modalidad de configuración para tres deflectores (5a, 5b y 5c) dispuestos a 120°.
El reactor vertical a baja presión de tanque agitado a tres fases (1) de la invención incluye un sistema de agitación (6), que se muestra en detalle en la Figura 6, donde dicho sistema de agitación (6) está compuesto por:
• un motor eléctrico (7),
• un transmisor de torque (8),
• un sello mecánico (9),
• una flecha agitadora (10),
• una guia (11) para evitar movimiento excéntrico (véase la figura 1) , y
• dos impulsores, un primer impulsor (12) superior, y un segundo impulsor (13) inferior.
Los impulsores (12 y 13) son de diferente tipo entre si. La Figura 7 muestra el primer impulsor (12) ubicado en la parte superior del reactor (1), justo por debajo del nivel de la suspensión, es del tipo de alta descarga con un número de potencia entre 1.5 y 1.7 y un número de bombeo entre 0.85 y 0.87; con 4 álabes cóncavos (12a, 12b, 12c y 12d) que tienen forma de medio óvalo y están colocados en una maza (12e) en un ángulo (a) de 45°, en donde la relación entre el diámetro del impulsor superior (DIS) (12) y el diámetro del reactor (Da) se encuentra en el rango de 0.38 a 0.5 (DXS/DR) . La Figura 8 muestra el segundo impulsor (13) que se ubica en la parte inferior del reactor (1), a una altura (Hn) desde el fondo del reactor de 1/3 del diámetro del impulsor inferior (Du) , con un número de potencia entre 0.9 y 1.65 y un número de bombeo entre 0.68 y 0.88; es de tipo axial de 4 álabes planos (13a, 13b, 13c y 13d) que tienen forma de rectángulo y están colocados en una maza (13e) en un ángulo (β) en el rango de 32° a 45°; en donde la relación entre el diámetro del impulsor inferior (DII) (13) y el diámetro del reactor (Pulse encuentra en el intervalo de 0.36 a 0.40 (DII/DR) .
El sistema de agitación (6) opera de forma efectiva introduciendo gas desde la parte superior del reactor (1) hasta el seno de la suspensión, con la velocidad periférica necesaria para dispersar homogéneamente el gas en la fase líquida (en el rango de 680 a 770 m/min) . La separación entre el impulsor superior (12) y el impulsor inferior (13), mantiene una relación entre la altura del impulsor superior (HIs) con respecto a la altura del impulsor inferior (HII) en el rango de 7.65 a 7.75 (Hxs/Hn) , lo que permite establecer una acción sinérgica entre la inducción del gas al seno del líquido y la dispersión del gas, logrando un efectivo sistema de atrición entre impulsores-partícula-partícula que evita la pasivación.
Adicionalmente, los impulsores (12) y (13) en el reactor (1), mantienen las partículas sólidas suspendidas y distribuidas en forma homogénea, lo que provee la adecuada interacción de las especies mineralógicas de interés con la fase liquida y gaseosa para que se lleven a cabo las reacciones deseadas, incrementando la velocidad de reacción con consumos eficientes del reactivo gas mayor al 95%.
De acuerdo con la Figura 1, el reactor cuenta con un sistema de serpentines (14) que pueden ser colocados sobre la superficie exterior y/o interior del reactor dependiendo de la cantidad de energía a transferir. La Figura 1 muestra el reactor con el arreglo del sistema de serpentines exterior. Este sistema es para asegurar rendimientos eficientes de transferencia de calor independientemente de que la reacción sea endotérmica o exotérmica. Cuando la reacción es exotérmica se utiliza agua como medio de enfriamiento para evitar que la temperatura supere los 110°C, y cuando la reacción es endotérmica se emplea como medio de calentamiento, vapor de agua o aceite térmico para aumentar la temperatura de la suspensión. El reactor tiene como función, de manera general, promover las reacciones del tipo sólido-gas-líquido y, de manera particular, transformar los conpuestos de sulfuros metálicos y/o parcialmente oxidados (cobre, zinc y fierro) de tamaños dao menor a 100 mallas (150 mieras), y/o mezclas de los mismos contenidos en minerales o concentrados, en especies solubles y obteniendo una disolución respectiva de sus iones.
Las condiciones en las que opera el reactor (1) dependen del material a lixiviar;, en general el reactor opera a una presión parcial de oxigeno en un rango de 7 a 207 kPa (1 psia a 30 psia); con una velocidad de agitación entre 50 a 700 rpm dependiendo del diámetro de reactor; la velocidad de agitación deberá garantizar que la velocidad periférica se encuentre entre 680 y 770 m/min para obtener un contacto eficiente entre sólido-gas-liquido; la tenperatura se encuentra en el rango de 90 a 110°C; la concentración de sólidos varia de 50 a 500 g/L; la acidez o alcalinidad como son el ácido sulfúrico o el hidróxido de sodio dependerá del tipo y contenido metálico del material sólido a lixiviar y su concentración al final de la reacción; el tienpo de reacción es menor a 16 horas. logrando un aprovechamiento cuasi estequiométrico del oxigeno superior al 95% de eficiencia.
Además, el proceso considera las tres fases sólido-gas- liquido (SGL), es decir, la solución lixiviante ácida o alcalina como la fase liquida, el mineral de sulfures y/o los óxidos metálicos y/o las mezclas de éstos como la fase sólida, y el oxigeno como la fase gas.
El reactor (1) y su sistema de agitación (6) proveen la adecuada interacción de las especies metálicas de interés con las fases liquida y gaseosa, esta interacción provoca que la velocidad de reacción aumente, disminuyendo los tiempos de residencia requeridos e incrementando las extracciones a niveles superiores del 97%.
Para materiales que contienen especies de sulfuros de cobre (calcocita o calcopirita), el tiempo de reacción es entre 4 y 7 horas; a una presión parcial de oxigeno de 83 a 138 kPa (12 a 20 psia); obteniendo extracciones de cobre superiores al 97%. En otros equipos que operan a baja presión, el tiempo de reacción reportado es superior a las 12 horas.
La gráfica de la Figura 9 muestra los perfiles de extracción de cobre con respecto al tiempo obtenidos experimentalmente, para dos tipos de materiales cobrizos, es decir, roatte (CuS) y calcopirita (CUFeS2) , bajo condiciones de operación de 83 a 138 kPa (12 a 20 psia); de 95 a 105 ºC y concentración inicial de sólidos de 150 a 240 g/L. En dicha Figura 9 se observa que la velocidad de extracción de cobre de ambos materiales es prácticamente la misma en reactores de diferentes capacidades, es decir, el desempeño del reactor es igual para capacidades diferentes.
La presente invención se describe adicionalmente por medio de los siguientes ejemplos que no deben ser considerados limitantes del alcance de la protección, sino ilustrativos de la aplicación de la invención.
Ejemplo 1 Lixiviación de material matte-speiss (Cu2S- Cu3As) proveniente de una fundición de plomo empleando el Reactor de tres fases sólido-qas- liquido (SGL) de la invención. Una muestra matte-speiss conteniendo 40.13 % de cobre, 20.40% de plomo, 10.5% de azufre total, 6.73% de fierro y 4.22 de arsénico, se somete a molienda en seco hasta lograr un tamaño de partícula P90 de 45 mieras. Posteriormente, 4,310 g de material matte-speiss se somete a lixiviación en un reactor vertical a baja presión de tanque agitado de tres fases sólido-gas- líquido (SGL) de acuerdo con la presente invención, en donde la muestra se mezcla con una solución ácida conteniendo 5 g/1 de hierro como sulfato de fierro, 18 g de un reactivo tensoactivo, y 180 g/1 de acidez libre inicial. El reactor se cierra y se mantiene a una presión parcial de oxigeno de 83 kPa (12 lbs/pulg2) , la temperatura de reacción es de 90°C y se deja reaccionar durante 7 horas. En la Tabla 1 se presentan los resultados obtenidos de la extracción de cobre en función del tiempo de lixiviación. Tabla 1. Extracción de cobre en función del tiempo de lixiviación, para el caso del tratamiento de material matte-speiss (CU2S-CU3AS) proveniente de una fundición de plomo
Figure imgf000018_0001
Ejemplo 2 Lixiviación de concentrados de cobre basados en calcopiritas empleando el Reactor de tres fases sólido-qas-liquido (SGL) de la invención.
Una muestra de un concentrado de calcopirita conteniendo 21.43 % de cobre, 6.36 % de zinc, 22.04 % de hierro, se somete a lixiviación en un reactor vertical a baja presión de tanque agitado de tres fases sólido-gas- líquido (SGL) de acuerdo con la presente invención, en donde la muestra se mezcla con una solución a razón de 100 g de sólido por litro. La solución a 95 °C, contiene 125 g/L de ácido sulfúrico libre. El reactor se cierra y se mantiene a una presión parcial de oxigeno de 83 a 124 kPa (12-18 lbs/pulg2), la temperatura de reacción es de 95 y 105°C; la velocidad de agitación se mantiene constante a 588 rpm. En la Tabla 2 se presenta la extracción de cobre en función del tiempo de lixiviación. Tabla 2. Extracción de cobre en función del tiempo de lixiviación para el caso del tratamiento de concentrados de cobre basados en calcopiritas
Figure imgf000019_0001
Ejemplo 3 Lixiviación de concentrado· de sino basados en esfalerita empliando el Reactor de tres fases sólido-gas-liquido (SGL) de le invención.
Una muestra de 262 g de un concentrado de - zinc conteniendo 48.5 % de zinc, 12.39 % de hierro y 34.6 % de azufre total, se somete a molienda hasta obtener un tamaño de partícula Ρ90 de 45 micras, el material obtenido se envía a lixiviación en un reactor vertical a baja presión de tanque agitado de tres fases sólido-gas- liquido (SGL) de acuerdo con la presente invención, en donde lá muestra se mezcla con 239 g de ferrita de zinc conteniendo 19.8 % de zinc, 25 % de hierro total y 21.6 % como hierro (+3) , esta mezcla de material se adiciona a una solución compuesta de 0.4 1 de agua, 0.043 1 de ácido sulfúrico al 98 % de pureza y 3.0701 de una solución de sulfato de zinc conteniendo 36.50 g/1 de zinc como sulfato de zinc y 165.6 g/1 de ácido sulfúrico libre. El reactor se cierra y se mantiene a una presión parcial de oxígeno de 83 kPa (12 lbs/pulg2), la temperatura de reacción es de 90°C y se deja reaccionar durante en un rango de 4-10 horas, dependiendo de las especias minerales involucradas, el potencial REDOX durante este tiempo de reacción se mantiene entre 400 y 500 mv, respecto al electrodo Ag/AgCl. En la Tabla 3 se presenta la extracción de zinc en función del tiempo de lixiviación. Tabla 3. Extracción de zinc en función del tiempo de lixiviación para el caso del tratamiento de concentrados de zinc basados en esfalerita
Figure imgf000020_0001
Será evidente para una persona con conocimientos en el campo técnico, que diversas modificaciones en la composición y naturaleza de la materia prima que se alimente al reactor de la invención, requerirán de ajustes en los parámetros de operación o de fabricación, sin embargo, dichas modificaciones y ajustes se deben considerar dentro del alcance de la presente invención.

Claims

REIVINDICACIONES Habiéndose descrito la invención, lo que se considera novedoso, y por tanto se reclama como propiedad, es lo contenido en las siguientes reivindicaciones:
1. Un reactor para la lixiviación de minerales polimetálicos y concentrados base plomo, cobre, zinc, fierro y/o sus mezclas, en un sistema de suspensión de tres fases, sólido-gas-liquido (SGL), que consta de: a. un recipiente vertical de forma cilindrica con tapas toriesféricas;
b. un sistema de agitación al interior del recipiente vertical, conformado por:
a. un motor eléctrico,
b. un transmisor de torque,
c. un sello mecánico,
d. una flecha agitadora,
e. una guia para evitar movimiento excéntrico, y f. dos impulsores agitadores acoplados a la flecha agitadora; y
c. un sistema de serpentines para intercambio de calor, colocados sobre la superficie exterior y/o interior del reactor;
dicho reactor estando caracterizado porque:
i. el volumen útil del recipiente vertical es de entre el 65% y el 60% de su volumen total y el volumen restante, de entre el 20% y el 35% del total del volumen del recipiente vertical, conforma una cámara de gas en la zona superior del recipiente vertical; ii. la relación entre el diámetro del reactor y la altura del volumen útil en dicho recipiente vertical, es de 0.97 a 1.03;
iii. dicho recipiente vertical cuenta en su interior con un arreglo de deflectores distribuidos equidistantemente en la pared vertical del reactor;
iv. los impulsores del sistema de agitación son de diferente tipo entre si; el primer impulsor se ubica en la parte superior de la flecha, justo por debajo del nivel de la suspensión; el segundo impulsor se ubica en la parte inferior de la flecha, a una altura desde el fondo del reactor de 1/3 del diámetro del impulsor.
2. El reactor de acuerdo con la reivindicación 1, caracterizado porque los deflectores del arreglo de deflectores al interior del recipiente vertical tienen un ancho de 1/12 del diámetro del reactor y están separados de la pared 1/72 del diámetro del reactor.
3. El reactor de acuerdo con las reivindicaciones 1 y 2, oaraoteriaado porque el arreglo de deflectores, consta de 3 deflectores estando dispuestos a 120° entre si.
4. El reactor de acuerdo con las reivindicaciones 1 y 2, caracterizado porque el arreglo de deflectores, consta de 4 deflectores estando dispuestos a 90° entre sí. 5. El reactor de acuerdo con la reivindicación 1, caracterizado porque el impulsor superior es del tipo de alta descarga de 4 álabes cóncavos con forma de medio óvalo y colocados en una maza en un ángulo de 45°; en donde la relación entre el diámetro del impulsor superior y el diámetro del reactor se encuentra en el rango de 0.38 a 0.
5.
6. El reactor de acuerdo con la reivindicación 1, caracterizado porque el impulsor inferior es de tipo axial; de 4 álabes planos con forma de un rectángulo, colocados en una maza en un ángulo de 32° a 45°; en donde la relación entre el diámetro del impulsor inferior y el diámetro del reactor se encuentra en el intervalo de 0.36 a 0.40.
7. El reactor de acuerdo con la reivindicación 1, caracterizado porque la relación de la altura del impulsor superior a la altura del impulsor inferior está en el rango de 7.65 a 7.75
8. El reactor de acuerdo con la reivindicación 1, caracterizado porque la cámara de gas en la zona superior del recipiente vertical contiene oxigeno como reactivo gas.
9. El reactor de acuerdo con la reivindicación 1, caracterizado porque las condiciones de operación se encuentran dentro de los rangos siguientes:
a. una presión parcial de oxigeno de 7 a 207 kPa; b. una velocidad periférica de 680 a 770 m/min para dispersar homogéneamente la fase sólida y gaseosa en la fase liquida;
c. una temperatura de 90"C a 110 °C;
d. una acidez o alcalinidad de 20 g/l a 300 g/l; e. una concentración de sólidos de 50 a 500 g/L; y f. un tiempo de reacción de 2 a 16 horas.
10. El reactor de acuerdo con la reivindicación 1, caracterizado porque opera a una presión parcial de oxigeno preferentemente de 83 a 138 kPa.
11. El reactor de acuerdo con la reivindicación 4, caracteriaado porque cuando se usa con un material base sulfuros de cobre (CU2S), los tiempos de operación están en el rango de 6-8 horas.
12. Un reactor de acuerdo con la reivindicación 1, caracterizado porque el consumo de oxigeno es cuasi- estequiométrico, con un aprovechamiento de gas oxigeno superior al 95% de eficiencia.
13. Un reactor de acuerdo con la reivindicación 1, caracterizado porque cuando se usan materiales que contienen especies de sulfuros de cobre, a una presión parcial de oxigeno de 83 a 138 kPa, el tiempo de reacción está en el rango entre 4 y 7 horas, obteniéndose extracciones de cobre superiores al 97%.
PCT/MX2017/000125 2017-11-06 2017-11-06 Reactor sólido-gas-líquido (sgl) para la lixiviación de minerales polimetálicos y/o concentrados base plomo, cobre, zinc y/o sus mezclas WO2019088815A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/652,256 US11110411B2 (en) 2017-11-06 2017-11-06 Solid-gas-liquid (SGL) reactor for leaching polymetal minerals and/or concentrates based on lead, copper, zinc, iron and/or the mixtures thereof
MX2020004740A MX2020004740A (es) 2017-11-06 2017-11-06 Reactor sólido-gas-líquido (sgl) para la lixiviación de minerales polimetálicos y/o concentrados base plomo, cobre, zinc, fierro y/o sus mezclas.
PCT/MX2017/000125 WO2019088815A1 (es) 2017-11-06 2017-11-06 Reactor sólido-gas-líquido (sgl) para la lixiviación de minerales polimetálicos y/o concentrados base plomo, cobre, zinc y/o sus mezclas
PE2020000417A PE20201140A1 (es) 2017-11-06 2017-11-06 Reactor solido-gas-liquido (sgl) para la lixiviacion de minerales polimetalicos y/o concentrados base plomo, cobre, zinc y/o sus mezclas
CA3077013A CA3077013C (en) 2017-11-06 2017-11-06 Solid-gas-liquid (sgl) reactor for leaching polymetal minerals and/or concentrates based on lead, copper, zinc, iron and/or the mixtures thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2017/000125 WO2019088815A1 (es) 2017-11-06 2017-11-06 Reactor sólido-gas-líquido (sgl) para la lixiviación de minerales polimetálicos y/o concentrados base plomo, cobre, zinc y/o sus mezclas

Publications (1)

Publication Number Publication Date
WO2019088815A1 true WO2019088815A1 (es) 2019-05-09

Family

ID=66332221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000125 WO2019088815A1 (es) 2017-11-06 2017-11-06 Reactor sólido-gas-líquido (sgl) para la lixiviación de minerales polimetálicos y/o concentrados base plomo, cobre, zinc y/o sus mezclas

Country Status (5)

Country Link
US (1) US11110411B2 (es)
CA (1) CA3077013C (es)
MX (1) MX2020004740A (es)
PE (1) PE20201140A1 (es)
WO (1) WO2019088815A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341093A (zh) * 2022-07-21 2022-11-15 永州市瑞祥锌材料有限公司 一种基于锌元素浸出装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111921229B (zh) * 2020-10-14 2020-12-25 南昌市第三中学 萃取装置
CN115572822A (zh) * 2022-10-08 2023-01-06 赣州西克节能自动化设备有限公司 一种原矿浸出工艺易监测控制的反应装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344238A1 (en) * 1987-10-21 1989-12-06 Outokumpu Oy A reactor for mixing liquids together
EP1309394A1 (en) * 2000-07-21 2003-05-14 Outokumpu Oyj Mixing apparatus and method for mixing gas in a closed reactor
US6955461B2 (en) * 2003-01-24 2005-10-18 Dow Global Technologies, Inc. Tickler for slurry reactors and tanks
CN102965497A (zh) * 2012-12-11 2013-03-13 北京矿冶研究总院 一种湿法冶金反应器的给料搅拌装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130015A (en) * 1958-10-31 1964-04-21 Mid Century Corp High pressure reactor
US3149888A (en) * 1962-11-14 1964-09-22 Nettco Corp Foot bearing construction for mixers
DE3516027A1 (de) 1985-05-04 1986-11-06 Huels Chemische Werke Ag Ruehrsystem und verfahren zum begasen von fluessigkeiten
US5240327A (en) * 1987-10-21 1993-08-31 Outokumpu Oy Method for creating double loop flow
US5211924A (en) * 1988-02-29 1993-05-18 Amoco Corporation Method and apparatus for increasing conversion efficiency and reducing power costs for oxidation of an aromatic alkyl to an aromatic carboxylic acid
FI123662B (fi) 2006-02-17 2013-08-30 Outotec Oyj Menetelmä ja sekoitinlaitteisto kaasun sekoittamiseksi lietteeseen suljetussa reaktorissa
US20090134173A1 (en) * 2007-11-26 2009-05-28 Paul Mueller Company Baffle System for a Vessel
CN103038261B (zh) * 2010-07-30 2015-05-06 道达尔研究技术弗吕公司 催化剂淤浆制备系统的用途
US20120189746A1 (en) * 2011-01-20 2012-07-26 Delong Timothy Stirring apparatus for cooking vessel
FI124934B (fi) 2013-01-30 2015-03-31 Outotec Oyj Sekoitussäiliöreaktori

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344238A1 (en) * 1987-10-21 1989-12-06 Outokumpu Oy A reactor for mixing liquids together
EP1309394A1 (en) * 2000-07-21 2003-05-14 Outokumpu Oyj Mixing apparatus and method for mixing gas in a closed reactor
US6955461B2 (en) * 2003-01-24 2005-10-18 Dow Global Technologies, Inc. Tickler for slurry reactors and tanks
CN102965497A (zh) * 2012-12-11 2013-03-13 北京矿冶研究总院 一种湿法冶金反应器的给料搅拌装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LATVA-KOKKO M ET AL.: "Sustainable agitator and reactor design for demanding applications in hydrometallurgy", HYDROPROCESS 2016, 8TH INTERNATIONAL SEMINAR ON PROCESS HYDROMETALLURGY, 2016, pages 1 - 10, XP055613641 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341093A (zh) * 2022-07-21 2022-11-15 永州市瑞祥锌材料有限公司 一种基于锌元素浸出装置
CN115341093B (zh) * 2022-07-21 2023-10-24 永州市瑞祥锌材料有限公司 一种基于锌元素浸出装置

Also Published As

Publication number Publication date
PE20201140A1 (es) 2020-10-26
MX2020004740A (es) 2022-02-25
CA3077013C (en) 2021-08-17
CA3077013A1 (en) 2019-05-09
US20200254405A1 (en) 2020-08-13
US11110411B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2019088815A1 (es) Reactor sólido-gas-líquido (sgl) para la lixiviación de minerales polimetálicos y/o concentrados base plomo, cobre, zinc y/o sus mezclas
US8061888B2 (en) Autoclave with underflow dividers
US10865459B2 (en) Reactor for gas-liquid mass transfer
CN105063349A (zh) 从熔炼合金中浸出铜钴镍的方法
AU2012324598B2 (en) Bioleaching bioreactor with a system for injection and diffusion of air
WO2007093668A1 (en) Method and mixer apparatus for mixing gas into slurry in a closed reactor
AU694493B2 (en) Method and apparatus for forming controlled vortexes and for recirculating gas
CA2420630C (en) Method and apparatus for chemical processing
AU2001293306A1 (en) Method and apparatus for chemical processing
EP2344272B1 (en) Mixer and method for mixing a gas and solution
CN214514423U (zh) 高压釜
JP7380424B2 (ja) 酸化中和反応装置、及び、酸化中和反応装置の運転方法
KR101586649B1 (ko) 트위스터 와류생성을 통한 스마트 쓰리 이펙트 표출생성장치
CN202730202U (zh) 一种浸出槽
CN202730200U (zh) 一种浸出槽
CN207413236U (zh) 一种全能导流型搅拌器
Fan et al. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles
CN205413007U (zh) 一种用于化工设备的搅拌装置
WO2022038530A1 (es) Sistema de difusión de oxigeno en tanques de lixiviación y destrucción de cianuro cryomining
JP2021094548A (ja) 攪拌装置
AU764618B2 (en) Autoclave using agitator and sparge tube to provide highgen oxygen transfer rate to metal-containing solutions
CN115318226A (zh) 一种化学反应装置与生产线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3077013

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930259

Country of ref document: EP

Kind code of ref document: A1