WO2019087931A1 - Shell treatment device and shell treatment method - Google Patents

Shell treatment device and shell treatment method Download PDF

Info

Publication number
WO2019087931A1
WO2019087931A1 PCT/JP2018/039714 JP2018039714W WO2019087931A1 WO 2019087931 A1 WO2019087931 A1 WO 2019087931A1 JP 2018039714 W JP2018039714 W JP 2018039714W WO 2019087931 A1 WO2019087931 A1 WO 2019087931A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
reduced
shells
pressure fermentation
shell processing
Prior art date
Application number
PCT/JP2018/039714
Other languages
French (fr)
Japanese (ja)
Inventor
眞一 下瀬
Original Assignee
株式会社下瀬微生物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社下瀬微生物研究所 filed Critical 株式会社下瀬微生物研究所
Publication of WO2019087931A1 publication Critical patent/WO2019087931A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass

Definitions

  • the present invention relates to a shell processing apparatus and shell processing method by reduced pressure fermentation and drying.
  • shell refers to a shell of at least one shellfish of scallop, oyster, pearl oyster, abalone, clam, clam, clam, etc.
  • the foreign substances for example, plastics, metals, etc.
  • the foreign matter mixed in the object to be treated includes a plastic string for hanging the scallop, a metal fitting, and the like.
  • the present invention has been made in consideration of the above situation, and can process a large amount of shells such as scallops and oysters, for example, and can remove foreign substances reliably and easily. It is an object of the present invention to provide a shell processing apparatus and a shell processing method.
  • means for solving the above-mentioned problems are configured as follows. That is, according to the present invention, an object to be treated including shells is housed in a closed vessel, stirred while heating to a predetermined temperature range under reduced pressure, and decomposed organic components of shells using microorganisms to reduce volume.
  • Shell processing apparatus wherein the fine granules are stored in a storage container, and the large granules are put into the closed container, whereby the reduced-pressure fermentation of the large granules by the reduced-pressure fermentation drying apparatus is performed again. It is characterized in that the drying process is performed.
  • a large amount of shells such as scallops and oysters can be processed, and further, fine particles (shell powder) after processing can be treated with fertilizer, animal feed, antifreeze agent ( It can be effectively reused as an additive such as a snow melting agent) or a soil conditioner.
  • the reduced-pressure fermentation-drying apparatus can efficiently dry the shell, promote the decomposition of the organic component of the shell using microorganisms, and can also decompose the malodorous component.
  • the particle size, the particle shape, and the like of this fine particle (shell powder) are obtained by sieving the dried product thus obtained into a fine particle with a small particle size and a large particle with a larger particle size by a sieving device. Since the moisture content becomes uniform and the generation of an offensive odor is also suppressed, it is suitable for additives such as fertilizers, livestock feed, antifreeze agents, soil conditioners and the like.
  • the obtained fine particles contain microorganisms, it is also effective to spray the fine particles on shells stacked in the field. That is, there is an advantage that the malodorous components are decomposed by the microbes contained in the fine granules, and the surrounding environment is not deteriorated even if untreated shells are piled up in the field.
  • shells (dried matter) subjected to reduced pressure fermentation and drying in a reduced pressure fermentation and drying apparatus are mainly separated as fine particles, and homogenization is promoted by the fermentation and drying, and fertilizers, livestock feed, It can be effectively reused as an additive such as an antifreezing agent or a soil conditioner.
  • pretreatment object when the pretreatment object is not subjected to pretreatment such as pre-sorting, foreign substances such as plastic and metal are mixed in addition to the shell, but the plastic and metal are under reduced pressure fermentation by the reduced pressure fermentation dryer. As it is not degraded by microorganisms in the drying process, it is separated into large particles. Therefore, foreign substances such as plastics mixed in the object to be treated can be reliably and easily removed from the fine particles (shell powder) without performing pretreatment such as pre-sorting.
  • the dried product processed by the reduced-pressure fermentation drying apparatus has an advantage that sieving is easy because it has less water than that before the processing. It is more preferable to repeat the reduced-pressure fermentation drying process to the large-grained material several times more preferably.
  • the dried matter which is not sufficiently decomposed by the microorganism is likely to be relatively large lumps, and is separated as large grains.
  • Such large particles are further treated in a reduced pressure fermentation drying apparatus to further promote degradation by microorganisms to become fine particles. Therefore, it is only necessary to reuse this fine-grained material as an additive such as fertilizer, feed for livestock, antifreeze, soil conditioner and the like.
  • a removal device for removing metal from the dried material obtained by the reduced pressure fermentation drying device is provided on the upstream side of the sieving device.
  • the metal contained in the object to be treated can be reliably and easily removed from the fine particles (shell powder) by the removing device.
  • the present invention is a shell processing method, wherein an object to be treated including a shell is contained in a closed vessel, stirred while heating to a predetermined temperature range under a reduced pressure, and organic components of the shell utilizing microorganisms Under reduced pressure fermentation and drying to obtain a reduced volume of the dried product, sieving to separate the dried product obtained by the reduced pressure fermentation and drying process into fine particles and larger particles, and the large particles It is characterized by including the re-processing process of performing again the reduced-pressure fermentation drying process with respect to the said large particle by throwing a thing into the said airtight container. In this case, it is preferable to repeat the reprocessing process a plurality of times. According to such a shell processing method of the present invention, the same effect as that of the above-described shell processing apparatus of the present invention can be obtained.
  • the shell processing apparatus and the shell processing method according to the present invention can process a large amount of shells such as scallops and oysters, and further, fine particles (shell powder) after the processing can be treated with fertilizer or animal feed It can be effectively reused as an additive such as antifreeze and soil conditioner.
  • foreign substances such as plastics and metals mixed in the object to be treated are separated into large particles because they are not decomposed by microorganisms even if they are subjected to reduced pressure fermentation and drying. Therefore, foreign substances such as plastics mixed in the object to be treated can be reliably and easily removed from the fine particles without performing pretreatment such as pre-sorting.
  • FIG. 1 It is a top view which shows schematic structure of the shell processing apparatus which concerns on embodiment of this invention. It is a front view of the shell processing apparatus of FIG. It is a side view of the shell processing apparatus of FIG. It is a schematic block diagram which shows typically the reduced-pressure fermentation drying apparatus of the shell processing apparatus of FIG. It is a schematic block diagram which shows typically the magnetic separator of the shell processing apparatus of FIG. It is a flowchart which shows an example of the driving
  • FIG. 1 is a plan view showing a schematic configuration of a shell processing apparatus 1 according to an embodiment of the present invention
  • FIG. 2 is a front view of the shell processing apparatus 1
  • FIG. 3 is a side view of the shell processing apparatus 1.
  • the shell processing apparatus 1 includes a shell input device 2, a reduced pressure fermentation drying device 3, a discharge conveyor 4 and a vibrating sieving machine 5.
  • the shell processing apparatus 1 inputs an object to be treated (raw material) including shells into the reduced pressure fermentation drying apparatus 3 by the shell feeding apparatus 2 and executes reduced pressure fermentation drying processing by the reduced pressure fermentation drying apparatus 3 to the input shells.
  • the dried material obtained by the reduced pressure fermentation and drying process of the reduced pressure fermentation and drying apparatus 3 is separated by the vibrating sieving machine 5, and the separated fine particles are stored in a storage container, and the low pressure fermentation of the separated large particles is performed.
  • the reduced pressure fermentation and drying process of the drying device 3 is repeated.
  • FIGS. 1 and 3 show, for example, a shell processing apparatus 1 in a state of being installed in a building 100, and a shell feeding apparatus 2, a reduced pressure fermentation drying apparatus 3, and a discharge conveyor 4 at a predetermined position in the building 100.
  • a vibrating sieving machine 5 are provided.
  • the wall, roof, shutter, etc. of the building 100 are indicated by a two-dot chain line.
  • the storage container 61 in which fine particles separated by the vibrating sieving machine 5 are stored is indicated by a two-dot chain line, and a plurality of storage containers 61 are used as empty spaces in the building 100. It is stored in an aligned state.
  • each apparatus with which the shell processing apparatus 1 is equipped is demonstrated.
  • the shell feeding device 2 supplies the shells (processing object) accommodated in the feeding box 21 to the feeding port 30 a of the reduced pressure fermentation drying device 3.
  • the shell feeding device 2 is configured, for example, as a reversing type feeding device.
  • the input box 21 is transported, for example, from a storage warehouse to a predetermined position of the shell input device 2 by a forklift F or the like.
  • the loading box 21 set at the predetermined position of the shell loading device 2 is lifted upward along a pair of rails 22 and 22 extending in the vertical direction by driving of an electric motor or the like (not shown).
  • the loading box 21 When the loading box 21 ascends to the upper end of the pair of rails 22, 22, the loading box 21 rotates around a horizontal axis 23 provided between the pair of rails 22, 22, and the loading box 21 is vertically inverted. With the reversing operation of the input box 21, shells (processing objects) accommodated in the input box 21 are input to the input port 30 a of the reduced pressure fermentation drying apparatus 3.
  • the reduced-pressure fermentation / drying apparatus 3 is a known apparatus as described in, for example, Patent Document 2 and the like, and the shell to be treated is stirred while heating to a predetermined temperature range under reduced pressure and using microorganisms. The organic components of the shell are decomposed to obtain a reduced-volume dried product.
  • the dried material processed by the reduced-pressure fermentation drying apparatus 3 is sieved (fractionated) into fine particles and large particles having a larger particle diameter by a vibrating sieving machine 5 (sieving device) described later. ing.
  • the vacuum fermentation and drying apparatus 3 is a substantially cylindrical container airtightly formed so as to keep the inside at an atmospheric pressure or less, as a sealed container for containing shells supplied by the shell charging apparatus 2 as schematically shown in FIG. 4.
  • Tank (pressure-resistant tank) 30 is provided.
  • a heating jacket 31 is provided on a peripheral wall portion of the tank 30, and heating steam is supplied from the steam generation boiler 7 to the heating jacket 31.
  • the temperature of the steam supplied from the steam generation boiler 7 is preferably, for example, about 140.degree.
  • a stirring shaft 32 extending in the longitudinal direction (left and right direction in FIG. 4) is provided inside the tank 30 so as to be surrounded by the heating jacket 31.
  • the stirring shaft 32 is rotated at a predetermined rotational speed by the electric motor 32a.
  • the stirring shaft 32 is provided with a plurality of stirring plates 32b spaced apart in the axial direction, and the shells are stirred by these stirring plates 32b, and after completion of the fermentation and drying, the shells are in the longitudinal direction of the tank 30. It is supposed to be sent.
  • a shell feeding port 30a supplied from the shell feeding device 2 is provided, and the shell loaded from the charging port 30a is stirred while being heated by the heating jacket 31. It is agitated by the rotation of the shaft 32. Then, after a predetermined time has elapsed, the treated shells (dried matter) are discharged from the discharge unit 30 b provided at the lower part of the tank 30.
  • a hydraulic motor may be used instead of the electric motor 32a.
  • a guide portion 30c for projecting steam generated from the heated shell to the condensation portion 33 is provided in a protruding manner.
  • two guides 30c are provided, and each guide 30c is disposed on each side of the tank 30 in the longitudinal direction with the inlet 30a interposed therebetween.
  • the condenser unit 33 includes a plurality of cooling pipes 33 b supported by a pair of heads 33 a, and a cooling water passage 80 is provided between the plurality of cooling pipes 33 b and the cooling tower 8.
  • the condensing portion 33 extends in parallel along the longitudinal direction of the tank 30, and the condensing portion 33 is disposed on the rear side of the inlet 30a and the guiding portion 30c.
  • the cooling water which flows in the cooling pipe 33b in the condenser section 33 and whose temperature has risen by heat exchange with high temperature steam flows in the cooling water passage 80 as schematically shown by the arrows in FIG. It flows into the 8 water receiving tank 81.
  • the cooling tower 8 is provided with a pumping pump 82 for pumping the cooling water from the water receiving tank 81 and a nozzle 83 for injecting the pumped cooling water.
  • the cooling water jetted from the nozzle 83 receives air from the fan 85 while flowing down the flow lower portion 84, and its temperature is lowered, and then flows into the water receiving tank 81 again.
  • the cooling water cooled by the cooling tower 8 is supplied by the cooling water pump 86, sent to the condenser 33 by the cooling water passage 80, and circulated again through the plurality of cooling pipes 33b. Then, after the temperature rises due to heat exchange with the steam generated inside the tank 30 as described above, it flows again through the cooling water passage 80 and flows into the water receiving tank 81 of the cooling tower 8. That is, the cooling water circulates through the cooling water path 80 between the condenser 33 and the cooling tower 8.
  • the condensed water in which the steam generated from the heated shell is condensed in the condensing part 33, is also injected.
  • condensed water generated by heat exchange with high-temperature steam is collected below the condensation unit 33.
  • a vacuum pump 36 is connected to the condensing section 33 via a communication passage 35 so that the pressure in the tank 30 is reduced.
  • the condensed water led to the water receiving tank 81 of the cooling tower 8 mixes with the cooling water and is pumped up by the pumping pump 82 as described above, and after being jetted from the nozzle 83, it is cooled while flowing down the downstream portion 84.
  • the condensed water contains the same microorganisms as those added to the shell in the tank 30, and the odor component etc. contained in this condensed water is decomposed, so that the odor does not escape to the outside of the tank It has become.
  • the shells contained in the tank 30 are stirred as the stirring shaft 32 rotates while being heated by the heating steam supplied to the heating jacket 31. Then, heating from the outside by the heating jacket 31 surrounding the inside of the tank 30 and heating from the inside by the stirring shaft 32 and the like effectively heats the shells contained in the tank 30, and also stirs.
  • the shell 32 is agitated by the shaft 32.
  • the pressure is reduced by the operation of the vacuum pump 36, the boiling point is lowered in the tank 30, the evaporation of water is accelerated, and the decomposition of the organic component of the shell is promoted by the microorganism.
  • one step is preferably, for example, 2 hours, and the organic components of the shell are first decomposed over 30 minutes.
  • the pressure in the tank 30 is reduced to ⁇ 0.06 to ⁇ 0.07 MPa (gauge pressure; hereinafter, the gauge pressure is omitted)
  • the water temperature in the tank 30 is maintained at 76 to 69 ° C. (saturated vapor temperature).
  • the shell is promoted to be fermented and decomposed by the microorganisms described later.
  • SHIMOSE 1 is March 14, 2003 to FERM BP-7504 (Patent Microorganisms Depositary Center, Institute of Technology for Industrial Science and Technology, Institute of Industrial Technology, Research Institute for Biotechnological Research, Institute of Technology and Technology, Ibaraki Prefecture, Japan). (The one deposited internationally).
  • SHIMOSE 2 is a microorganism belonging to FERM BP-7505 (as deposited internationally as in SHIMOSE 1), Pichiafarinosa resistant to a salt
  • SHIMOSE 3 is a microorganism belonging to FERM BP-7506 (SHIFOSE 1 and Similarly, those deposited internationally) are microorganisms that belong to Staphylococcus (Staphylococcus).
  • the discharge conveyor 4 conveys the dried product after the treatment under reduced pressure fermentation and drying by the reduced pressure fermentation and drying device 3 toward the vibrating sieving machine 5. That is, the dried material discharged from the discharge part 30b of the tank 30 lower part of the decompression fermentation dryer 3 by the discharge conveyor 4 is conveyed to the vibrating sieve 5 provided at a position higher than the discharge part 30b.
  • a magnetic separator 41 is provided in the middle of the discharge conveyor 4 and the magnetic separator 41 removes metal fittings such as metal pieces and iron pieces contained in the dried material.
  • the magnetic separator 41 is, for example, a hanging type, and is suspended on the discharge conveyor 4 as schematically shown in FIG.
  • the magnetic separator 41 adsorbs metal members (shown by black circles) such as metal pieces from the dried material conveyed by the discharge conveyor 4 by magnets, and continuously discharges the discharge container by the belt 41b moving between the pulleys 41a. It is configured to discharge to 41c.
  • the vibrating sieving machine 5 is for sieving the dried matter discharged from the reduced-pressure fermentation drying apparatus 3 and conveyed by the discharge conveyor 4 into fine grains and large grains having a larger particle size.
  • the vibrating screen 5 is provided with a wire mesh 51 having a mesh of a predetermined size and a vibration motor 52 for vibrating the wire mesh 51.
  • the vibrating sieve 5 is supported on the lower base 54 by a plurality of (for example, four) coil springs 53.
  • the wire mesh 51 is provided obliquely downward, and one end side (left end side in FIG. 3) of the wire net 51 is provided at a position lower than the other end side (right end side in FIG. 3) ing.
  • the fine particles are a dried product having a particle diameter of, for example, 5 mm or less, and the mesh of the wire mesh 51 is 5 mm ⁇ so as to correspond to the upper limit (5 mm) of the particle diameter of the fine particles.
  • the size is set to 5 mm.
  • the particle size (5 mm or less) of the fine particles is an example, and any other value may be used as long as the upper limit of the particle diameter of the fine particles is 2 to 5 mm.
  • the particle size of the fine particles is preferably 5 mm or less, for example, and more preferably 2 mm or less.
  • the vibrating screen 5 since the vibrating screen 5 is floatingly supported by the coil spring 53 with respect to the lower base 54, the dried matter supplied from the discharge conveyor 4 to the wire mesh 51 by the drive of the vibrating motor 52 becomes fine particles. It is sieved to larger particles having a larger particle size. Specifically, the fine particles pass through the mesh of the wire mesh 51 and fall downward, and are temporarily stored in the storage container 61 disposed below the vibrating sieving machine 5. When a predetermined amount of fine particles is accumulated in the storage container 61, the storage container 61 is replaced, and the fine particles are accumulated in a new storage container 61. The storage container 61 in which a predetermined amount of fine particles are accumulated is stored in an empty space in the building 100.
  • large particles are not decomposed by microorganisms as compared with fine particles, so they can be obtained as fine particles by again charging the large particles into the reduced pressure fermentation drying apparatus 3 and fermenting and drying again. It is like that.
  • the re-injection of the large-grained material into the reduced-pressure fermentation drying apparatus 3 is performed after the completion of the reduced-pressure fermentation drying process for one lot of objects to be treated.
  • such a large-scaled product is repeatedly subjected to the reduced-pressure fermentation / drying treatment a plurality of times.
  • the shell processing method according to the embodiment of the present invention at least includes a reduced pressure fermentation and drying step, a screening step, and a reprocessing step.
  • pretreatment such as prior sorting of shells and foreign matter, and crushing of shells by a crushing apparatus are not necessary.
  • step S1 a processing object including shells is introduced into the reduced pressure fermentation drying apparatus 3.
  • the lid of the inlet 30a of the tank 30 of the reduced pressure fermentation and drying apparatus 3 is opened, and the shell housed in the box 21 by the shell loader 2 is inserted from the inlet 30a.
  • the lid of the inlet 30a is closed, and the inside of the tank 30 is sealed at atmospheric pressure.
  • the heating steam is supplied from the steam generation boiler 7 to the tank 30 (heating jacket 31 or the like).
  • the vacuum pump 36 is operated to suck the air and the condensed water from the condensing unit 33.
  • the inside of the tank 30 is depressurized through the communication passage 34 and the guide portion 30c, and the boiling point of water is lowered to promote evaporation, and the latent heat thereof lowers the temperature in the tank 30.
  • the temperature in the tank 30 can be reduced earlier than natural heat radiation, and the processing time can be shortened. Then, when the temperature in the tank 30 decreases to some extent, the process proceeds to step S2, and the operation of the vacuum pump 36 is stopped, and the atmosphere release valve (shown in FIG. Omission).
  • the outside air flows into the communication passage 35 from the atmosphere release valve, and the pressure in the condensation portion 33, the communication passage 34, the guide portion 30c, and the tank 30 quickly becomes atmospheric pressure. Further, due to the flow of the gas at that time, a part of the microorganisms remaining in the condensation section 33 and the cooling tower 8 will be brought into the tank 30. In addition, since the inside of the tank 30 is at the atmospheric pressure, it is also conceivable to open the inlet 30a and input a predetermined microorganism.
  • step S 2 after a predetermined microorganism is added to the shell in the tank 30, the air release valve is closed to seal the inside of the tank 30. Then, in step S3, the inside of the tank 30 is heated under reduced pressure to promote fermentation and drying of the organic components of the shell contained therein (reduced pressure fermentation and drying step). That is, the heating steam is supplied from the steam generation boiler 7 to heat the inside of the tank 30.
  • the inside of the tank 30 is heated by the heating steam, the stirring shaft 32 is rotated at a predetermined rotation speed (for example, about 8 rpm), and the inside of the tank 30 is decompressed by the operation of the vacuum pump 36.
  • the temperature in the tank 30 becomes the optimum activity environment of the microorganism, and the decomposition of the organic component of the shell by the microorganism is suitably promoted.
  • the rotational speed (8 rpm) of the stirring shaft 32 is an example, Comprising: As long as decomposition
  • step S4 the dried matter discharged from the tank 30 is conveyed to the vibrating sieving machine 5 by the discharge conveyor 4, and the dried sifting machine 5 operates to dry the dried matter into fine particles and larger particle sizes.
  • Sieve into large particles sieving process. That is, as described above, the dried product is suitable for sieving by being fermented and dried and reduced in volume, and the dried product is conveyed by the discharge conveyor 4 and introduced into the vibrating sieving machine 5.
  • the magnetic separator 41 removes the metal.
  • step S5 The fine particles (shell powder) screened by the screening step are temporarily stored in the storage container 61 (step S5).
  • step S6 it is determined in step S6 whether or not the reduced-pressure fermentation drying process has been repeated a preset number of times (for example, 5 times). In the case of a negative determination (NO), the process returns to step S3. That is, large particles other than the fine particles are re-introduced into the reduced-pressure fermentation drying apparatus 3, and the reduced-pressure fermentation drying process for the large particles is repeated a set number of times (re-processing step).
  • step S6 the large granular material stored in the storage container 62 is mainly plastic etc., so it is discharged to the outside without being reinjected into the reduced pressure fermentation dryer 3 (step S7).
  • count (5 times) which repeats a decompression fermentation drying process is an example, Comprising: It is possible to change suitably according to the kind of shell, and the quantity of shell per lot.
  • the dried product obtained by the reduced-pressure fermentation drying apparatus 3 is separated by the vibrating sieving machine 5, and the separated large particles are reprocessed by the reduced-pressure fermentation drying apparatus 3.
  • a large amount of shells such as scallops and oysters can be treated, and further, fine particles (shell powder) after the treatment can be treated as fertilizers, animal feed, antifreeze agents (snowmelt agents), soil conditioners, etc. It can be effectively reused as an additive. This point will be described below.
  • the shell can be efficiently dried by the reduced-pressure fermentation / drying apparatus 3, and the decomposition of the organic component of the shell can be promoted by using the microorganism, and the malodorous component can also be decomposed.
  • the particle size of this fine particle (shell powder), the particles is determined by sieving the dried product thus obtained into fine particles with a smaller particle size and larger particles with a larger particle size by a vibrating sieving machine 5. Since the shape, moisture content, etc. become uniform, and the generation of malodor is also suppressed, it is suitable for additives such as fertilizers, livestock feed, antifreeze agents, soil conditioners and the like.
  • the obtained fine particles contain microorganisms, it is also effective to spray the fine particles on shells stacked in the field. That is, there is an advantage that the malodorous components are decomposed by the microbes contained in the fine granules, and the surrounding environment is not deteriorated even if untreated shells are piled up in the field.
  • shells (dry matter) subjected to reduced pressure fermentation and drying in the reduced pressure fermentation and drying apparatus 3 are mainly separated as fine particles, and homogenization is promoted by the fermentation and drying, and fertilizers and livestock feed It can be effectively reused as an additive such as antifreeze and soil conditioner.
  • pretreatment object when the pretreatment object is not subjected to pretreatment such as pre-sorting, foreign substances such as plastic and metal are mixed in addition to the shell, but the plastic and metal are reduced in pressure by the reduced pressure fermentation dryer 3 As it is not degraded by microorganisms in the fermentation and drying process, it is separated into large particles. Therefore, foreign substances such as plastics mixed in the object to be treated can be reliably and easily removed from the fine particles (shell powder) without performing pretreatment such as pre-sorting.
  • the dried product processed by the reduced-pressure fermentation drying apparatus 3 has an advantage that sieving is easy because the water content is smaller than before the processing. It is more preferable to repeat the reduced-pressure fermentation drying process to the large-grained material several times more preferably. In this case, the dried matter which is not sufficiently decomposed by the microorganism is likely to be relatively large lumps, and is separated as large grains. By reprocessing such large particles in the reduced pressure fermentation drying apparatus 3, the decomposition by microorganisms is further promoted to become fine particles. Therefore, it is only necessary to reuse this fine-grained material as an additive such as fertilizer, feed for livestock, antifreeze, soil conditioner and the like.
  • the magnetic separator 41 for removing metal from the dried material obtained by the reduced-pressure fermentation dryer 3 is provided on the upstream side of the vibrating sieving machine 5.
  • the metal mixed in the object can be reliably and easily removed from the fine particles (shell powder).
  • the shell loading device 2 described above is an example, and shells may be loaded into the reduced pressure fermentation drying device 3 by a shell loading device having another configuration.
  • the shells may be introduced into the reduced pressure fermentation drying apparatus 3 using a conveyer or the like.
  • the magnetic separator 41 mentioned above is an example, Comprising: You may use magnetic separators other than a suspension type.
  • a magnetic separator such as a pulley type or a drum type may be used, or an eddy current magnetic separator capable of removing non-ferrous metals such as aluminum may also be used.
  • the vibrating sieving machine 5 mentioned above is an example, Comprising: The sieving process of a dried material may be performed by the sieving apparatus of another structure.
  • the operation procedure of the shell processing apparatus 1 shown in FIG. 6 is an example, and the shell processing apparatus 1 may be operated by another procedure.
  • the present invention can be used for a shell processing apparatus and shell processing method by reduced pressure fermentation and drying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

[Problem] To provide a shell treatment device and a shell treatment method, which are capable of mass treatment of shells and reliably and easily removing foreign substances. [Solution] This shell treatment device 1 is configured to be provided with: a vacuum fermentation drying device 3 in which objects to be treated including shells are received in a tank 30 and stirred under a vacuum while being heated to a predetermined temperature range, organic components of the shells are decomposed using microorganisms, and a dry substance having a reduced volume is obtained; and a vibrating classifier for classifying the dry substance obtained from the vacuum fermentation drying device 3 into fine particles and coarse particles larger than the fine particles by means of a sieve, wherein the fine particles are stored in a storage container 61 and the coarse particles are introduced into the tank 30 to be subjected to vacuum fermentation drying again by means of the vacuum fermentation drying device 3.

Description

貝殻処理装置および貝殻処理方法Shell processing apparatus and shell processing method
 本発明は、減圧発酵乾燥による貝殻処理装置および貝殻処理方法に関する。本発明において、「貝殻」とは、ホタテ、カキ、アコヤガイ、アワビ、ハマグリ、アサリ、サザエ、シジミ等のうち少なくとも1つの貝の貝殻を言う。 The present invention relates to a shell processing apparatus and shell processing method by reduced pressure fermentation and drying. In the present invention, “shell” refers to a shell of at least one shellfish of scallop, oyster, pearl oyster, abalone, clam, clam, clam, etc.
 従来より、例えばホタテ、カキ等の貝殻は、廃棄物として大量に野積みされており、野積みによる悪臭が、地方自治体における産廃処理問題の1つとなっている。このため、貝殻を大量に処理し、しかも、処理後の貝殻を有効に再利用できる技術の開発が望まれている。貝殻を大量に処理する手法としては、例えば破砕装置を用いた処理が知られている(例えば、特許文献1参照)。 Conventionally, scallops, shells such as oysters, for example, are piled up in the field in large quantities as wastes, and the offensive odor caused by piling up of the fields has become one of the problems of waste treatment in local governments. Therefore, it is desirable to develop a technology that can process shells in large quantities and can effectively reuse the shells after processing. As a method of processing a large amount of shells, for example, processing using a crushing apparatus is known (see, for example, Patent Document 1).
 近年では、家畜用の飼料等のカルシウム添加物として貝殻を再利用することも検討されているが、この場合、貝殻を処理する際に、処理対象物に混入される異物(例えばプラスチック、金属等)を確実に除去する必要がある。例えばホタテの場合、処理対象物に混入される異物としては、ホタテを吊るすためのプラスチック紐や、金具などがある。 In recent years, it has been considered to reuse shells as calcium additives such as feeds for livestock, but in this case, when processing shells, foreign substances (for example, plastics, metals, etc.) mixed into the object to be treated Must be removed reliably. For example, in the case of a scallop, the foreign matter mixed in the object to be treated includes a plastic string for hanging the scallop, a metal fitting, and the like.
特開2017-137215号公報JP 2017-137215 A 特開2007-319738号公報JP 2007-319738 A
 しかしながら、破砕装置を用いて貝殻を処理する場合、異物も細かく粉砕されるため、例えばプラスチック等のような金属以外の異物を、破砕処理後に除去することは困難である。このため、例えば特許文献1に記載されているように、破砕処理の前段階の処理として、貝殻の洗浄処理等による貝殻と異物の事前選別が必要になるといった問題がある。 However, in the case of processing shells using a crushing apparatus, foreign substances are also finely pulverized, so it is difficult to remove foreign substances other than metals such as plastics after the crushing process. For this reason, as described in, for example, Patent Document 1, there is a problem that it is necessary to pre-sort shells and foreign substances by a shell washing process or the like as a process before the crushing process.
 本発明は、上述したような実情を考慮してなされたもので、例えばホタテ、カキ等の貝殻を大量に処理することが可能であり、しかも、異物を確実かつ容易に除去することが可能な貝殻処理装置および貝殻処理方法を提供することを目的としている。 The present invention has been made in consideration of the above situation, and can process a large amount of shells such as scallops and oysters, for example, and can remove foreign substances reliably and easily. It is an object of the present invention to provide a shell processing apparatus and a shell processing method.
 本発明は、上述の課題を解決するための手段を以下のように構成している。すなわち、本発明は、貝殻を含む処理対象物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して貝殻の有機成分を分解させ、減容した乾燥物を得る減圧発酵乾燥装置と、前記減圧発酵乾燥装置によって得られた乾燥物を、細粒物(粒径が例えば2~5mm)とそれよりも大きい大粒物とにふるい分けるふるい分け装置と、を備えた貝殻処理装置であって、前記細粒物が貯留容器に貯留されるとともに、前記大粒物が前記密閉容器に投入されることで、前記減圧発酵乾燥装置による大粒物に対する再度の減圧発酵乾燥処理が行われるように構成されていることを特徴とする。 In the present invention, means for solving the above-mentioned problems are configured as follows. That is, according to the present invention, an object to be treated including shells is housed in a closed vessel, stirred while heating to a predetermined temperature range under reduced pressure, and decomposed organic components of shells using microorganisms to reduce volume. A vacuum fermentation and drying apparatus for obtaining a dried product, and a sieving apparatus for sieving the dried product obtained by the vacuum fermentation and drying apparatus into fine particles (for example, 2 to 5 mm in particle diameter) and large particles having a larger particle size. Shell processing apparatus, wherein the fine granules are stored in a storage container, and the large granules are put into the closed container, whereby the reduced-pressure fermentation of the large granules by the reduced-pressure fermentation drying apparatus is performed again. It is characterized in that the drying process is performed.
 本発明の貝殻処理装置によれば、例えばホタテ、カキ等の貝殻を大量に処理することができ、しかも、処理後の細粒物(貝殻粉)を肥料や、家畜の飼料、凍結防止剤(融雪剤)、土壌改良剤等の添加物として有効に再利用することができる。詳細には、減圧発酵乾燥装置により、貝殻を効率良く乾燥させるとともに、微生物を利用して貝殻の有機成分の分解を促進することができ、悪臭成分も分解することができる。また、こうして得られた乾燥物を、ふるい分け装置によって、粒径の小さい細粒物と、それよりも大きい大粒物とにふるい分けることによって、この細粒物(貝殻粉)の粒度、粒形、含水率などが均一になり、悪臭の発生も抑制されることから、肥料や、家畜の飼料、凍結防止剤、土壌改良剤等の添加物に適したものとなる。 According to the shell processing apparatus of the present invention, for example, a large amount of shells such as scallops and oysters can be processed, and further, fine particles (shell powder) after processing can be treated with fertilizer, animal feed, antifreeze agent ( It can be effectively reused as an additive such as a snow melting agent) or a soil conditioner. Specifically, the reduced-pressure fermentation-drying apparatus can efficiently dry the shell, promote the decomposition of the organic component of the shell using microorganisms, and can also decompose the malodorous component. In addition, the particle size, the particle shape, and the like of this fine particle (shell powder) are obtained by sieving the dried product thus obtained into a fine particle with a small particle size and a large particle with a larger particle size by a sieving device. Since the moisture content becomes uniform and the generation of an offensive odor is also suppressed, it is suitable for additives such as fertilizers, livestock feed, antifreeze agents, soil conditioners and the like.
 さらに、得られた細粒物(貝殻粉)には、微生物が含まれているため、野積みされた貝殻に、細粒物を散布することも効果的である。つまり、細粒物に含まれる微生物によって悪臭成分が分解され、未処理の貝殻が野積みされている場合であっても周囲環境を悪化させないといったメリットがある。 Furthermore, since the obtained fine particles (shell powder) contain microorganisms, it is also effective to spray the fine particles on shells stacked in the field. That is, there is an advantage that the malodorous components are decomposed by the microbes contained in the fine granules, and the surrounding environment is not deteriorated even if untreated shells are piled up in the field.
 これに加え、減圧発酵乾燥装置において減圧発酵乾燥された貝殻(乾燥物)は、主に細粒物として分別されることになり、発酵乾燥によって均質化が促進され、肥料や、家畜の飼料、凍結防止剤、土壌改良剤等の添加物として有効に再利用することができる。ここで、処理対象物には、事前選別等の前処理を行わない場合、貝殻以外に、例えばプラスチックや金属などの異物が混入しているが、プラスチックや金属は、減圧発酵乾燥装置による減圧発酵乾燥処理では微生物によって分解されないため、大粒物に分別される。したがって、事前選別等の前処理を行わなくても、処理対象物に混入しているプラスチック等の異物を細粒物(貝殻粉)から確実かつ容易に除去することができる。 In addition to this, shells (dried matter) subjected to reduced pressure fermentation and drying in a reduced pressure fermentation and drying apparatus are mainly separated as fine particles, and homogenization is promoted by the fermentation and drying, and fertilizers, livestock feed, It can be effectively reused as an additive such as an antifreezing agent or a soil conditioner. Here, when the pretreatment object is not subjected to pretreatment such as pre-sorting, foreign substances such as plastic and metal are mixed in addition to the shell, but the plastic and metal are under reduced pressure fermentation by the reduced pressure fermentation dryer. As it is not degraded by microorganisms in the drying process, it is separated into large particles. Therefore, foreign substances such as plastics mixed in the object to be treated can be reliably and easily removed from the fine particles (shell powder) without performing pretreatment such as pre-sorting.
 また、細粒物および大粒物に分けるに際して、減圧発酵乾燥装置によって処理した乾燥物は、処理前に比べると水分が少ないことから、ふるい分けがしやすいというメリットがある。より好ましくは、大粒物に対する再度の減圧発酵乾燥処理を複数回繰り返し行うことである。こうすると、微生物による分解が不十分な乾燥物は、比較的大きな塊になりやすいことから、大粒物として分別されるようになる。そのような大粒物は、減圧発酵乾燥装置において再処理されることで、さらに微生物による分解が促進され、細粒物となる。よって、この細粒物のみを肥料や、家畜の飼料、凍結防止剤、土壌改良剤等の添加物として再利用すればよい。 In addition, when dividing into fine particles and large particles, the dried product processed by the reduced-pressure fermentation drying apparatus has an advantage that sieving is easy because it has less water than that before the processing. It is more preferable to repeat the reduced-pressure fermentation drying process to the large-grained material several times more preferably. In this case, the dried matter which is not sufficiently decomposed by the microorganism is likely to be relatively large lumps, and is separated as large grains. Such large particles are further treated in a reduced pressure fermentation drying apparatus to further promote degradation by microorganisms to become fine particles. Therefore, it is only necessary to reuse this fine-grained material as an additive such as fertilizer, feed for livestock, antifreeze, soil conditioner and the like.
 本発明において、前記ふるい分け装置の上流側には、前記減圧発酵乾燥装置によって得られた乾燥物の中から金属を除去する除去装置が設けられていることが好ましい。こうすると、除去装置によって、処理対象物に混入している金属を細粒物(貝殻粉)から確実かつ容易に除去することができる。 In the present invention, preferably, on the upstream side of the sieving device, a removal device for removing metal from the dried material obtained by the reduced pressure fermentation drying device is provided. In this case, the metal contained in the object to be treated can be reliably and easily removed from the fine particles (shell powder) by the removing device.
 また、本発明は、貝殻処理方法であって、貝殻を含む処理対象物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して貝殻の有機成分を発酵させ、減容した乾燥物を得る減圧発酵乾燥工程と、前記減圧発酵乾燥工程によって得られた乾燥物を、細粒物とそれよりも大きい大粒物とにふるい分けるふるい分け工程と、前記大粒物を前記密閉容器に投入することで、前記大粒物に対する再度の減圧発酵乾燥処理を行う再処理工程とを含むことを特徴とする。この場合、前記再処理工程を複数回繰り返し行うことが好ましい。このような本発明の貝殻処理方法によれば、上述した本発明の貝殻処理装置と同様の効果が得られる。 Further, the present invention is a shell processing method, wherein an object to be treated including a shell is contained in a closed vessel, stirred while heating to a predetermined temperature range under a reduced pressure, and organic components of the shell utilizing microorganisms Under reduced pressure fermentation and drying to obtain a reduced volume of the dried product, sieving to separate the dried product obtained by the reduced pressure fermentation and drying process into fine particles and larger particles, and the large particles It is characterized by including the re-processing process of performing again the reduced-pressure fermentation drying process with respect to the said large particle by throwing a thing into the said airtight container. In this case, it is preferable to repeat the reprocessing process a plurality of times. According to such a shell processing method of the present invention, the same effect as that of the above-described shell processing apparatus of the present invention can be obtained.
 本発明に係る貝殻処理装置および貝殻処理方法によれば、例えばホタテ、カキ等の貝殻を大量に処理することができ、しかも、処理後の細粒物(貝殻粉)を肥料や、家畜の飼料、凍結防止剤、土壌改良剤等の添加物として有効に再利用することができる。また、処理対象物の中に混入しているプラスチックや金属などの異物は、減圧発酵乾燥処理されても微生物による分解がされないため、大粒物に分別される。したがって、事前選別等の前処理を行わなくても、処理対象物に混入しているプラスチック等の異物を細粒物から確実かつ容易に除去することができる。 The shell processing apparatus and the shell processing method according to the present invention can process a large amount of shells such as scallops and oysters, and further, fine particles (shell powder) after the processing can be treated with fertilizer or animal feed It can be effectively reused as an additive such as antifreeze and soil conditioner. In addition, foreign substances such as plastics and metals mixed in the object to be treated are separated into large particles because they are not decomposed by microorganisms even if they are subjected to reduced pressure fermentation and drying. Therefore, foreign substances such as plastics mixed in the object to be treated can be reliably and easily removed from the fine particles without performing pretreatment such as pre-sorting.
本発明の実施形態に係る貝殻処理装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the shell processing apparatus which concerns on embodiment of this invention. 図1の貝殻処理装置の正面図である。It is a front view of the shell processing apparatus of FIG. 図1の貝殻処理装置の側面図である。It is a side view of the shell processing apparatus of FIG. 図1の貝殻処理装置の減圧発酵乾燥装置を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the reduced-pressure fermentation drying apparatus of the shell processing apparatus of FIG. 図1の貝殻処理装置の磁選機を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the magnetic separator of the shell processing apparatus of FIG. 図1の貝殻処理装置の運転手順の一例を示すフローチャートである。It is a flowchart which shows an example of the driving | running procedure of the shell processing apparatus of FIG.
 以下、本発明の実施形態について図面を参照しながら説明する。図1は、本発明の実施形態に係る貝殻処理装置1の概略構成を示す平面図、図2は、貝殻処理装置1の正面図、図3は、貝殻処理装置1の側面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing a schematic configuration of a shell processing apparatus 1 according to an embodiment of the present invention, FIG. 2 is a front view of the shell processing apparatus 1, and FIG. 3 is a side view of the shell processing apparatus 1.
 図1~図3に示すように、貝殻処理装置1は、貝殻投入装置2と、減圧発酵乾燥装置3と、排出コンベア4と、振動ふるい機5とを備えている。貝殻処理装置1は、貝殻を含む処理対象物(原材料)を貝殻投入装置2によって減圧発酵乾燥装置3に投入し、投入された貝殻に対して減圧発酵乾燥装置3によって減圧発酵乾燥処理を実行し、減圧発酵乾燥装置3の減圧発酵乾燥処理により得られた乾燥物を振動ふるい機5によって分別し、分別された細粒物を貯留容器に貯留するとともに、分別された大粒物に対して減圧発酵乾燥装置3の減圧発酵乾燥処理を繰り返し行うように構成されている。 As shown in FIGS. 1 to 3, the shell processing apparatus 1 includes a shell input device 2, a reduced pressure fermentation drying device 3, a discharge conveyor 4 and a vibrating sieving machine 5. The shell processing apparatus 1 inputs an object to be treated (raw material) including shells into the reduced pressure fermentation drying apparatus 3 by the shell feeding apparatus 2 and executes reduced pressure fermentation drying processing by the reduced pressure fermentation drying apparatus 3 to the input shells. The dried material obtained by the reduced pressure fermentation and drying process of the reduced pressure fermentation and drying apparatus 3 is separated by the vibrating sieving machine 5, and the separated fine particles are stored in a storage container, and the low pressure fermentation of the separated large particles is performed. The reduced pressure fermentation and drying process of the drying device 3 is repeated.
 図1、図3では、例えば建屋100内に設置された状態の貝殻処理装置1を示しており、建屋100内の所定位置に、貝殻投入装置2と、減圧発酵乾燥装置3と、排出コンベア4と、振動ふるい機5とが設置されている。なお、図1、図3では、建屋100の壁、屋根、シャッター等を2点鎖線で示している。また、図1では、振動ふるい機5によって分別された細粒物が、内部に貯留された貯留容器61を2点鎖線で示しており、複数の貯留容器61が、建屋100内の空きスペースに整列した状態で保管されている。以下、貝殻処理装置1に備えられる各機器について説明する。 1 and 3 show, for example, a shell processing apparatus 1 in a state of being installed in a building 100, and a shell feeding apparatus 2, a reduced pressure fermentation drying apparatus 3, and a discharge conveyor 4 at a predetermined position in the building 100. And a vibrating sieving machine 5 are provided. In FIGS. 1 and 3, the wall, roof, shutter, etc. of the building 100 are indicated by a two-dot chain line. Further, in FIG. 1, the storage container 61 in which fine particles separated by the vibrating sieving machine 5 are stored is indicated by a two-dot chain line, and a plurality of storage containers 61 are used as empty spaces in the building 100. It is stored in an aligned state. Hereinafter, each apparatus with which the shell processing apparatus 1 is equipped is demonstrated.
 貝殻投入装置2は、投入用箱21に収容された貝殻(処理対象物)を減圧発酵乾燥装置3の投入口30aに供給するものである。貝殻投入装置2は、例えば反転式の投入装置として構成されている。投入用箱21は、例えば保管倉庫などから、フォークリフトF等によって貝殻投入装置2の所定位置まで搬送される。貝殻投入装置2の所定位置にセットされた投入用箱21は、図示しない電動モーター等の駆動によって、上下方向に延びる1対のレール22,22に沿って上方へ持ち上げられる。投入用箱21は、1対のレール22,22の上端部まで上昇すると、1対のレール22,22間に設けられた水平軸23まわりに回転し、投入用箱21が上下反転する。この投入用箱21の反転動作に伴って、投入用箱21内に収容された貝殻(処理対象物)が、減圧発酵乾燥装置3の投入口30aに投入されるようになっている。 The shell feeding device 2 supplies the shells (processing object) accommodated in the feeding box 21 to the feeding port 30 a of the reduced pressure fermentation drying device 3. The shell feeding device 2 is configured, for example, as a reversing type feeding device. The input box 21 is transported, for example, from a storage warehouse to a predetermined position of the shell input device 2 by a forklift F or the like. The loading box 21 set at the predetermined position of the shell loading device 2 is lifted upward along a pair of rails 22 and 22 extending in the vertical direction by driving of an electric motor or the like (not shown). When the loading box 21 ascends to the upper end of the pair of rails 22, 22, the loading box 21 rotates around a horizontal axis 23 provided between the pair of rails 22, 22, and the loading box 21 is vertically inverted. With the reversing operation of the input box 21, shells (processing objects) accommodated in the input box 21 are input to the input port 30 a of the reduced pressure fermentation drying apparatus 3.
 減圧発酵乾燥装置3は、例えば特許文献2などに記載されているように公知のものであり、処理対象の貝殻を減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して貝殻の有機成分を分解させ、減容した乾燥物を得るものである。この減圧発酵乾燥装置3によって処理された乾燥物は、後述する振動ふるい機5(ふるい分け装置)によって、細粒物とそれよりも大きい粒径の大粒物とにふるい分け(分別)されるようになっている。 The reduced-pressure fermentation / drying apparatus 3 is a known apparatus as described in, for example, Patent Document 2 and the like, and the shell to be treated is stirred while heating to a predetermined temperature range under reduced pressure and using microorganisms. The organic components of the shell are decomposed to obtain a reduced-volume dried product. The dried material processed by the reduced-pressure fermentation drying apparatus 3 is sieved (fractionated) into fine particles and large particles having a larger particle diameter by a vibrating sieving machine 5 (sieving device) described later. ing.
 減圧発酵乾燥装置3は、図4に模式的に示すように、貝殻投入装置2によって供給される貝殻を収容する密閉容器として、内部を大気圧以下に保持するように気密に形成された略円筒状のタンク(耐圧タンク)30を備えている。このタンク30の周壁部には、加熱ジャケット31が設けられ、蒸気発生ボイラー7から加熱用蒸気が加熱ジャケット31に供給されるようになっている。なお、蒸気発生ボイラー7から供給される蒸気の温度は、例えば140℃程度が好ましい。 The vacuum fermentation and drying apparatus 3 is a substantially cylindrical container airtightly formed so as to keep the inside at an atmospheric pressure or less, as a sealed container for containing shells supplied by the shell charging apparatus 2 as schematically shown in FIG. 4. Tank (pressure-resistant tank) 30 is provided. A heating jacket 31 is provided on a peripheral wall portion of the tank 30, and heating steam is supplied from the steam generation boiler 7 to the heating jacket 31. The temperature of the steam supplied from the steam generation boiler 7 is preferably, for example, about 140.degree.
 また、加熱ジャケット31に取り囲まれるようにして、タンク30の内部にはその長手方向(図4の左右方向)に延びる撹拌シャフト32が設けられている。撹拌シャフト32は、電動モーター32aによって所定の回転速度で回転される。撹拌シャフト32には、その軸方向に離間して複数の撹拌板32bが設けられており、これら撹拌板32bによって、貝殻が撹拌されるとともに、発酵乾燥終了後には貝殻がタンク30の長手方向に送られるようになっている。 Further, a stirring shaft 32 extending in the longitudinal direction (left and right direction in FIG. 4) is provided inside the tank 30 so as to be surrounded by the heating jacket 31. The stirring shaft 32 is rotated at a predetermined rotational speed by the electric motor 32a. The stirring shaft 32 is provided with a plurality of stirring plates 32b spaced apart in the axial direction, and the shells are stirred by these stirring plates 32b, and after completion of the fermentation and drying, the shells are in the longitudinal direction of the tank 30. It is supposed to be sent.
 タンク30の長手方向中央の上部には、貝殻投入装置2から供給される貝殻の投入口30aが設けられており、この投入口30aから投入された貝殻が、加熱ジャケット31によって加熱されながら、撹拌シャフト32の回転によって撹拌される。そして、所定時間経過した後、処理後の貝殻(乾燥物)がタンク30の下部に設けられた排出部30bから排出される。なお、電動モーター32aの代わりに、油圧モーターを用いてもよい。 At the upper center of the tank 30 in the longitudinal direction, a shell feeding port 30a supplied from the shell feeding device 2 is provided, and the shell loaded from the charging port 30a is stirred while being heated by the heating jacket 31. It is agitated by the rotation of the shaft 32. Then, after a predetermined time has elapsed, the treated shells (dried matter) are discharged from the discharge unit 30 b provided at the lower part of the tank 30. A hydraulic motor may be used instead of the electric motor 32a.
 タンク30の上部には、加熱された貝殻から発生する蒸気を凝縮部33へ案内する案内部30cが突設されている。本実施形態では、案内部30cが2つ設けられており、各案内部30cは、投入口30aを挟んでタンク30の長手方向の両側に1つずつ配置されている。凝縮部33は、1対のヘッド33aによって支持された複数の冷却管33bを備えており、これら複数の冷却管33bと、クーリングタワー8との間には、冷却水経路80が設けられている。本実施形態では、凝縮部33は、タンク30の長手方向に沿って平行に延びており、投入口30aおよび案内部30cの後方側に凝縮部33が配置されている。 In the upper part of the tank 30, a guide portion 30c for projecting steam generated from the heated shell to the condensation portion 33 is provided in a protruding manner. In the present embodiment, two guides 30c are provided, and each guide 30c is disposed on each side of the tank 30 in the longitudinal direction with the inlet 30a interposed therebetween. The condenser unit 33 includes a plurality of cooling pipes 33 b supported by a pair of heads 33 a, and a cooling water passage 80 is provided between the plurality of cooling pipes 33 b and the cooling tower 8. In the present embodiment, the condensing portion 33 extends in parallel along the longitudinal direction of the tank 30, and the condensing portion 33 is disposed on the rear side of the inlet 30a and the guiding portion 30c.
 そして、凝縮部33において冷却管33b内を流通し、高温の蒸気との熱交換によって温度が上昇した冷却水は、図4に模式的に矢印で示すように冷却水経路80を流通してクーリングタワー8の受水槽81に流入する。クーリングタワー8には、その受水槽81から冷却水を汲み上げる汲み上げポンプ82と、汲み上げた冷却水を噴射するノズル83とが設けられている。このノズル83から噴射された冷却水は、流下部84を流下する間にファン85からの送風を受けて温度が低下し、再び受水槽81に流入するようになっている。 Then, the cooling water which flows in the cooling pipe 33b in the condenser section 33 and whose temperature has risen by heat exchange with high temperature steam flows in the cooling water passage 80 as schematically shown by the arrows in FIG. It flows into the 8 water receiving tank 81. The cooling tower 8 is provided with a pumping pump 82 for pumping the cooling water from the water receiving tank 81 and a nozzle 83 for injecting the pumped cooling water. The cooling water jetted from the nozzle 83 receives air from the fan 85 while flowing down the flow lower portion 84, and its temperature is lowered, and then flows into the water receiving tank 81 again.
 クーリングタワー8で冷却された冷却水は、冷却水ポンプ86によって送水され、冷却水経路80によって凝縮部33に送られて、再び複数の冷却管33b内を流通する。そして、上述のようにタンク30の内部で発生した蒸気との熱交換によって温度が上昇した後に、再び冷却水経路80を流通して、クーリングタワー8の受水槽81に流入する。つまり、冷却水は凝縮部33とクーリングタワー8との間の冷却水経路80を循環する。 The cooling water cooled by the cooling tower 8 is supplied by the cooling water pump 86, sent to the condenser 33 by the cooling water passage 80, and circulated again through the plurality of cooling pipes 33b. Then, after the temperature rises due to heat exchange with the steam generated inside the tank 30 as described above, it flows again through the cooling water passage 80 and flows into the water receiving tank 81 of the cooling tower 8. That is, the cooling water circulates through the cooling water path 80 between the condenser 33 and the cooling tower 8.
 上述のように循環する冷却水の他に、クーリングタワー8では、加熱された貝殻から発生する蒸気が凝縮部33において凝縮した凝縮水も注水される。なお、図示しないが凝縮部33の下方に、高温の蒸気と熱交換することによって生成した凝縮水が集められるようになっている。また、凝縮部33には連通路35を介して真空ポンプ36が接続され、タンク30内を減圧するようになっている。 In addition to the cooling water circulating as described above, in the cooling tower 8, the condensed water, in which the steam generated from the heated shell is condensed in the condensing part 33, is also injected. Although not shown, condensed water generated by heat exchange with high-temperature steam is collected below the condensation unit 33. Further, a vacuum pump 36 is connected to the condensing section 33 via a communication passage 35 so that the pressure in the tank 30 is reduced.
 すなわち、真空ポンプ36の作動によって、連通路35を介して凝縮部33から空気および凝縮水が吸い出され、さらに連通路34および案内部30cを介してタンク30内の空気および蒸気が吸い出される。こうして、凝縮部33からは凝縮水が真空ポンプ36に吸い出され、この真空ポンプ36から導水管によって、クーリングタワー8の受水槽81に導かれる。 That is, by the operation of the vacuum pump 36, air and condensed water are sucked out of the condensation section 33 through the communication passage 35, and further, the air and steam in the tank 30 are sucked out through the communication passage 34 and the guide portion 30c. . Thus, the condensed water is sucked from the condensation section 33 to the vacuum pump 36, and is led to the water receiving tank 81 of the cooling tower 8 from the vacuum pump 36 by the water conduit.
 こうしてクーリングタワー8の受水槽81に導かれた凝縮水は、冷却水と混ざり合って上述のように汲み上げポンプ82に汲み上げられ、ノズル83から噴射された後に、流下部84を流下しながら冷却される。なお、凝縮水には、タンク30内の貝殻に添加されたものと同じ微生物が含まれており、この凝縮水に含まれる臭気成分等が分解されているので、臭気はタンク外部へ発散しないようになっている。 Thus, the condensed water led to the water receiving tank 81 of the cooling tower 8 mixes with the cooling water and is pumped up by the pumping pump 82 as described above, and after being jetted from the nozzle 83, it is cooled while flowing down the downstream portion 84. . The condensed water contains the same microorganisms as those added to the shell in the tank 30, and the odor component etc. contained in this condensed water is decomposed, so that the odor does not escape to the outside of the tank It has become.
 上記構成の減圧発酵乾燥装置3の作動について説明すると、タンク30内に収容された貝殻は、加熱ジャケット31に供給される加熱用蒸気によって加熱されながら、撹拌シャフト32の回転に伴い撹拌される。そして、タンク30内を取り囲む加熱ジャケット31による外側からの加熱と、撹拌シャフト32などによる内側からの加熱とを受けて、タンク30内に収容された貝殻が効果的に昇温されるとともに、撹拌シャフト32によって貝殻が撹拌される。加えて、真空ポンプ36の作動によって減圧されているため、タンク30内では沸点が低下し、水分の蒸発が早まり、微生物によって貝殻の有機成分の分解が促進される。 The shells contained in the tank 30 are stirred as the stirring shaft 32 rotates while being heated by the heating steam supplied to the heating jacket 31. Then, heating from the outside by the heating jacket 31 surrounding the inside of the tank 30 and heating from the inside by the stirring shaft 32 and the like effectively heats the shells contained in the tank 30, and also stirs. The shell 32 is agitated by the shaft 32. In addition, since the pressure is reduced by the operation of the vacuum pump 36, the boiling point is lowered in the tank 30, the evaporation of water is accelerated, and the decomposition of the organic component of the shell is promoted by the microorganism.
 なお、減圧発酵乾燥装置3による減圧発酵乾燥工程では1工程(1サイクル)が、例えば2時間であることが好ましく、まず30分かけて貝殻の有機成分を分解させることとなる。タンク30内を-0.06~-0.07MPa(ゲージ圧;以下、ゲージ圧は省略する)に減圧すると、タンク30内の水分温度は76~69℃(飽和蒸気温度)に維持される。その結果、貝殻は、後述する微生物によって、発酵、分解が促進される。 In the reduced pressure fermentation and drying step by the reduced pressure fermentation and drying apparatus 3, one step (one cycle) is preferably, for example, 2 hours, and the organic components of the shell are first decomposed over 30 minutes. When the pressure in the tank 30 is reduced to −0.06 to −0.07 MPa (gauge pressure; hereinafter, the gauge pressure is omitted), the water temperature in the tank 30 is maintained at 76 to 69 ° C. (saturated vapor temperature). As a result, the shell is promoted to be fermented and decomposed by the microorganisms described later.
 次に、1.5時間かけて発酵中の貝殻を乾燥させることになる。そのために、タンク30内を-0.09~-0.10MPaにさらに減圧すると、タンク内の水分温度は46~42℃(飽和蒸気温度)に維持され、貝殻の乾燥は十分に促進される。そして、そのような乾燥処理を行う際に、タンク30内の貝殻に添加する微生物としては、例えば特許文献2に記載されているように、複数種類の土着菌をベースとし、これを予め培養した複合有効微生物群が好ましく、通称、SHIMOSE 1/2/3群がコロニーの中心になる。 Next, it takes 1.5 hours to dry the shell during fermentation. Therefore, when the pressure in the tank 30 is further reduced to −0.09 to −0.10 MPa, the water temperature in the tank is maintained at 46 to 42 ° C. (saturated vapor temperature), and drying of the shell is sufficiently promoted. And when performing such a drying process, as microorganisms which are added to the shell in the tank 30, as described, for example in patent document 2, it was based on several types of indigenous bacteria, and this was precultured. A complex effective microorganism group is preferred, commonly known as the SHIMOSE 1/2/3 group at the center of the colony.
 なお、SHIMOSE 1は、FERM BP-7504(経済産業省産業技術総合研究所生命工学工業技術研究所特許微生物寄託センター(日本国茨城県つくば市東1丁目1-3)に、2003年3月14日に国際寄託されたもの)である。また、SHIMOSE 2は、FERM BP-7505(SHIMOSE 1と同様に国際寄託されたもの)、塩に耐性を有するピチアファリノサ(Pichiafarinosa)に属する微生物であり、SHIMOSE 3は、FERM BP-7506(SHIMOSE 1と同様に国際寄託されたもの)、スタフィロコッカス(Staphylococcus)に属する微生物である。 In addition, SHIMOSE 1 is March 14, 2003 to FERM BP-7504 (Patent Microorganisms Depositary Center, Institute of Technology for Industrial Science and Technology, Institute of Industrial Technology, Research Institute for Biotechnological Research, Institute of Technology and Technology, Ibaraki Prefecture, Japan). (The one deposited internationally). In addition, SHIMOSE 2 is a microorganism belonging to FERM BP-7505 (as deposited internationally as in SHIMOSE 1), Pichiafarinosa resistant to a salt, and SHIMOSE 3 is a microorganism belonging to FERM BP-7506 (SHIFOSE 1 and Similarly, those deposited internationally) are microorganisms that belong to Staphylococcus (Staphylococcus).
 排出コンベア4は、減圧発酵乾燥装置3によって減圧発酵乾燥処理された処理後の乾燥物を、振動ふるい機5へ向けて搬送するものである。つまり、排出コンベア4によって、減圧発酵乾燥装置3のタンク30下部の排出部30bから排出される乾燥物を、排出部30bよりも高い位置に設けられた振動ふるい機5まで搬送する。排出コンベア4の途中には、磁選機41が設けられており、この磁選機41によって、乾燥物に含まれている金具や、鉄片等の金属が除去される。 The discharge conveyor 4 conveys the dried product after the treatment under reduced pressure fermentation and drying by the reduced pressure fermentation and drying device 3 toward the vibrating sieving machine 5. That is, the dried material discharged from the discharge part 30b of the tank 30 lower part of the decompression fermentation dryer 3 by the discharge conveyor 4 is conveyed to the vibrating sieve 5 provided at a position higher than the discharge part 30b. A magnetic separator 41 is provided in the middle of the discharge conveyor 4 and the magnetic separator 41 removes metal fittings such as metal pieces and iron pieces contained in the dried material.
 磁選機41は、図5に概略を示すように、例えば吊り下げ式のもので、排出コンベア4上に吊り下げられている。磁選機41は、排出コンベア4によって搬送される乾燥物の中から金具や、鉄片等の磁性物(黒丸で示す)を磁石によって吸着し、プーリ41a間を移動するベルト41bによって連続的に排出容器41cへ排出するように構成されている。 The magnetic separator 41 is, for example, a hanging type, and is suspended on the discharge conveyor 4 as schematically shown in FIG. The magnetic separator 41 adsorbs metal members (shown by black circles) such as metal pieces from the dried material conveyed by the discharge conveyor 4 by magnets, and continuously discharges the discharge container by the belt 41b moving between the pulleys 41a. It is configured to discharge to 41c.
 振動ふるい機5は、減圧発酵乾燥装置3から排出され、排出コンベア4によって搬送された乾燥物を、細粒物とそれよりも大きい粒径の大粒物とにふるい分けるものである。振動ふるい機5には、所定の大きさの網目を有する金網51と、金網51を振動させる振動モーター52とを備えている。振動ふるい機5は、複数(例えば4つ)のコイルばね53によって下台54に支持されている。また、金網51が斜め下方に向けて傾斜した状態で設けられており、金網51の一端側(図3の左端側)が、他端側(図3の右端側)よりも低い位置に設けられている。本実施形態では、細粒物が、例えば5mm以下の粒径の乾燥物となっており、細粒物の粒径の上限値(5mm)に対応するように、金網51の網目が、5mm×5mmの大きさに設定されている。なお、細粒物の粒径(5mm以下)は一例であって、細粒物の粒径の上限値が2~5mmであれば他の値であってもよい。言い換えれば、細粒物の粒径は、例えば5mm以下であることが好ましく、さらには、粒径が、例えば2mm以下であることがより好ましい。 The vibrating sieving machine 5 is for sieving the dried matter discharged from the reduced-pressure fermentation drying apparatus 3 and conveyed by the discharge conveyor 4 into fine grains and large grains having a larger particle size. The vibrating screen 5 is provided with a wire mesh 51 having a mesh of a predetermined size and a vibration motor 52 for vibrating the wire mesh 51. The vibrating sieve 5 is supported on the lower base 54 by a plurality of (for example, four) coil springs 53. In addition, the wire mesh 51 is provided obliquely downward, and one end side (left end side in FIG. 3) of the wire net 51 is provided at a position lower than the other end side (right end side in FIG. 3) ing. In the present embodiment, the fine particles are a dried product having a particle diameter of, for example, 5 mm or less, and the mesh of the wire mesh 51 is 5 mm × so as to correspond to the upper limit (5 mm) of the particle diameter of the fine particles. The size is set to 5 mm. The particle size (5 mm or less) of the fine particles is an example, and any other value may be used as long as the upper limit of the particle diameter of the fine particles is 2 to 5 mm. In other words, the particle size of the fine particles is preferably 5 mm or less, for example, and more preferably 2 mm or less.
 このように、振動ふるい機5は、コイルばね53によって下台54に対しフローティング支持されているので、振動モーター52の駆動により、排出コンベア4から金網51に供給された乾燥物が、細粒物とそれよりも大きい粒径の大粒物とにふるい分けられる。具体的には、細粒物は、金網51の網目を通過して、下方に落下し、振動ふるい機5の下方に配置された貯留容器61に一時的に貯留される。所定量の細粒物が貯留容器61に蓄積されると、貯留容器61が交換され、新たな貯留容器61に細粒物が蓄積される。所定量の細粒物が蓄積された貯留容器61は、建屋100内の空きスペースに保管される。 As described above, since the vibrating screen 5 is floatingly supported by the coil spring 53 with respect to the lower base 54, the dried matter supplied from the discharge conveyor 4 to the wire mesh 51 by the drive of the vibrating motor 52 becomes fine particles. It is sieved to larger particles having a larger particle size. Specifically, the fine particles pass through the mesh of the wire mesh 51 and fall downward, and are temporarily stored in the storage container 61 disposed below the vibrating sieving machine 5. When a predetermined amount of fine particles is accumulated in the storage container 61, the storage container 61 is replaced, and the fine particles are accumulated in a new storage container 61. The storage container 61 in which a predetermined amount of fine particles are accumulated is stored in an empty space in the building 100.
 一方、大粒物は、金網51の網目を通過できないため、金網51の傾斜面に沿って転がりながら一端側(前方側)へ移動し、振動ふるい機5の前方下方に配置された貯留容器62に一時的に貯留される。貯留容器62に蓄積された大粒物は、フォークリフトF等により貝殻投入装置2に搬送され、再度貝殻投入装置2により投入口30aから減圧発酵乾燥装置3に投入され、減圧発酵乾燥装置3による大粒物に対する再度の減圧発酵乾燥処理が行われる。つまり、大粒物は、細粒物に比べて微生物による分解が進んでいないことから、大粒物を再度、減圧発酵乾燥装置3に投入して、再度発酵乾燥させることにより、細粒物として得られるようにしている。減圧発酵乾燥装置3への大粒物の再投入は、1ロットの処理対象物に対する減圧発酵乾燥処理の終了後に行われる。本実施形態では、このような大粒物に対する再度の減圧発酵乾燥処理が複数回繰り返し行われる。 On the other hand, since large particles can not pass through the mesh of the wire mesh 51, they move to one end side (forward side) while rolling along the inclined surface of the wire mesh 51, and are stored in the storage container 62 arranged in the lower front of the vibrating sieving machine 5. It is temporarily stored. The large particles accumulated in the storage container 62 are conveyed to the shell feeding device 2 by a forklift F or the like, and again introduced into the reduced pressure fermentation drying device 3 from the inlet 30a by the shell insertion device 2, and large particles by the reduced pressure fermentation drying device 3. Another reduced pressure fermentation and drying process is performed. That is, large particles are not decomposed by microorganisms as compared with fine particles, so they can be obtained as fine particles by again charging the large particles into the reduced pressure fermentation drying apparatus 3 and fermenting and drying again. It is like that. The re-injection of the large-grained material into the reduced-pressure fermentation drying apparatus 3 is performed after the completion of the reduced-pressure fermentation drying process for one lot of objects to be treated. In the present embodiment, such a large-scaled product is repeatedly subjected to the reduced-pressure fermentation / drying treatment a plurality of times.
 次に、貝殻処理装置1の運転手順(貝殻処理方法の手順)について、図6のフローチャートを参照して説明する。図6に示すように、本発明の実施形態に係る貝殻処理方法は、減圧発酵乾燥工程と、ふるい分け工程と、再処理工程とを少なくとも含んでいる。なお、本実施形態では、貝殻と異物との事前選別等の前処理や、破砕装置による貝殻の破砕処理が不要になっている。 Next, the operation procedure of the shell processing apparatus 1 (the procedure of the shell processing method) will be described with reference to the flowchart of FIG. As shown in FIG. 6, the shell processing method according to the embodiment of the present invention at least includes a reduced pressure fermentation and drying step, a screening step, and a reprocessing step. In the present embodiment, pretreatment such as prior sorting of shells and foreign matter, and crushing of shells by a crushing apparatus are not necessary.
 まず、ステップS1において、貝殻を含む処理対象物を減圧発酵乾燥装置3に投入する。この際、減圧発酵乾燥装置3のタンク30の投入口30aの蓋を開いて、貝殻投入装置2によって投入用箱21に収容された貝殻を投入口30aから投入する。そして、投入口30aの蓋を閉じて、タンク30内を大気圧状態で密閉する。 First, in step S1, a processing object including shells is introduced into the reduced pressure fermentation drying apparatus 3. At this time, the lid of the inlet 30a of the tank 30 of the reduced pressure fermentation and drying apparatus 3 is opened, and the shell housed in the box 21 by the shell loader 2 is inserted from the inlet 30a. Then, the lid of the inlet 30a is closed, and the inside of the tank 30 is sealed at atmospheric pressure.
 次に、蒸気発生ボイラー7から加熱用蒸気をタンク30(加熱ジャケット31など)に供給する。そして、真空ポンプ36を作動させて、凝縮部33から空気および凝縮水を吸い出す。これにより、連通路34、案内部30cを介してタンク30内が減圧され、水の沸点が降下することにより、蒸発が促進され、その潜熱によってタンク30内の温度が低下する。 Next, the heating steam is supplied from the steam generation boiler 7 to the tank 30 (heating jacket 31 or the like). Then, the vacuum pump 36 is operated to suck the air and the condensed water from the condensing unit 33. As a result, the inside of the tank 30 is depressurized through the communication passage 34 and the guide portion 30c, and the boiling point of water is lowered to promote evaporation, and the latent heat thereof lowers the temperature in the tank 30.
 これにより、自然放熱に比べてタンク30内の温度をいち早く低下させることができ、処理時間の短縮が図られる。そうしてタンク30内の温度がある程度低下すると、ステップS2に進んで、真空ポンプ36の作動を停止するとともに、この真空ポンプ36と凝縮部33との間の連通路35の大気開放バルブ(図示省略)を開く。 As a result, the temperature in the tank 30 can be reduced earlier than natural heat radiation, and the processing time can be shortened. Then, when the temperature in the tank 30 decreases to some extent, the process proceeds to step S2, and the operation of the vacuum pump 36 is stopped, and the atmosphere release valve (shown in FIG. Omission).
 こうすると、大気開放バルブから連通路35に外気が流入し、凝縮部33、連通路34、案内部30cおよびタンク30内が速やかに大気圧になる。また、その際の気体の流れによって、凝縮部33やクーリングタワー8に残存している微生物の一部がタンク30内に持ち込まれることになる。また、タンク30内が大気圧になっているため、投入口30aを開いて所定の微生物を投入することも考えられる。 Then, the outside air flows into the communication passage 35 from the atmosphere release valve, and the pressure in the condensation portion 33, the communication passage 34, the guide portion 30c, and the tank 30 quickly becomes atmospheric pressure. Further, due to the flow of the gas at that time, a part of the microorganisms remaining in the condensation section 33 and the cooling tower 8 will be brought into the tank 30. In addition, since the inside of the tank 30 is at the atmospheric pressure, it is also conceivable to open the inlet 30a and input a predetermined microorganism.
 このようにしてステップS2において、タンク30内の貝殻に所定の微生物を添加した後に、大気開放バルブを閉じてタンク30内を密閉する。そして、ステップS3において、タンク30内を減圧下で加熱して、その内部に収容した貝殻の有機成分の発酵、乾燥を促進する(減圧発酵乾燥工程)。すなわち、蒸気発生ボイラー7から加熱用蒸気を供給し、タンク30内を加熱する。 Thus, in step S 2, after a predetermined microorganism is added to the shell in the tank 30, the air release valve is closed to seal the inside of the tank 30. Then, in step S3, the inside of the tank 30 is heated under reduced pressure to promote fermentation and drying of the organic components of the shell contained therein (reduced pressure fermentation and drying step). That is, the heating steam is supplied from the steam generation boiler 7 to heat the inside of the tank 30.
 そうして加熱用蒸気によってタンク30内を加熱するとともに、撹拌シャフト32を所定の回転速度(例えば、8rpm程度)で回転させ、さらに、真空ポンプ36の作動によってタンク30内を減圧し、これにより、タンク30内の温度が微生物の活動至適環境となり、微生物による貝殻の有機成分の分解が好適に促進される。なお、撹拌シャフト32の回転速度(8rpm)は一例であって、貝殻の有機成分の分解が可能であれば他の値であってもよい。 Thus, the inside of the tank 30 is heated by the heating steam, the stirring shaft 32 is rotated at a predetermined rotation speed (for example, about 8 rpm), and the inside of the tank 30 is decompressed by the operation of the vacuum pump 36. The temperature in the tank 30 becomes the optimum activity environment of the microorganism, and the decomposition of the organic component of the shell by the microorganism is suitably promoted. In addition, the rotational speed (8 rpm) of the stirring shaft 32 is an example, Comprising: As long as decomposition | disassembly of the organic component of a shell is possible, it may be another value.
 このようにしてタンク30内の温度および圧力を維持しつつ、所定の時間(例えば2時間くらい)が経過した場合、真空ポンプ36および蒸気発生ボイラー7の運転を停止する一方、撹拌シャフト32を逆回転させ、タンク30の排出部30bの蓋を開いて、タンク30から乾燥物を排出する。このとき、タンク30から排出される乾燥物は減容されている。 Thus, while maintaining the temperature and pressure in the tank 30, when a predetermined time (for example, about 2 hours) elapses, the operation of the vacuum pump 36 and the steam generation boiler 7 is stopped while the stirring shaft 32 is reversed. The lid 30 is rotated, the lid of the discharge part 30 b of the tank 30 is opened, and the dried matter is discharged from the tank 30. At this time, the dry matter discharged from the tank 30 is reduced in volume.
 次に、ステップS4において、排出コンベア4によって、タンク30から排出される乾燥物を振動ふるい機5へ搬送し、振動ふるい機5の作動によって、乾燥物を細粒物とそれよりも大きい粒径の大粒物とにふるい分ける(ふるい分け工程)。つまり、上述したように、発酵乾燥させ、減容したことによって乾燥物は、ふるい分けに適したものになっており、これを排出コンベア4によって搬送し、振動ふるい機5に投入する。なお、排出コンベア4による搬送途中において、磁選機41によって金属の除去が行われる。 Next, in step S4, the dried matter discharged from the tank 30 is conveyed to the vibrating sieving machine 5 by the discharge conveyor 4, and the dried sifting machine 5 operates to dry the dried matter into fine particles and larger particle sizes. Sieve into large particles (sieving process). That is, as described above, the dried product is suitable for sieving by being fermented and dried and reduced in volume, and the dried product is conveyed by the discharge conveyor 4 and introduced into the vibrating sieving machine 5. In the middle of the conveyance by the discharge conveyor 4, the magnetic separator 41 removes the metal.
 ふるい分け工程によってふるい分けられた細粒物(貝殻粉)は、貯留容器61に一時的に貯留される(ステップS5)。一方、細粒物以外の大粒物は、貯留容器62に一時的に貯留されるが、減圧発酵乾燥工程を予め設定した設定回数(例えば5回)、繰り返したか否かをステップS6で判定し、否定判定(NO)の場合には、ステップS3に戻る。つまり、細粒物以外の大粒物を減圧発酵乾燥装置3に再投入し、大粒物に対する減圧発酵乾燥工程を設定回数、繰り返し行う(再処理工程)。減圧発酵乾燥装置3への大粒物の再投入は、1ロットの処理対象物に対する減圧発酵乾燥工程およびふるい分け工程が終了した後に行われる。そして、ステップS6で肯定判定(YES)の場合には、貯留容器62に貯留された大粒物は主にプラスチック等であるので、減圧発酵乾燥装置3に再投入せず、外部へ排出する(ステップS7)。なお、減圧発酵乾燥工程を繰り返す設定回数(5回)は一例であって、貝殻の種類や、1ロット当たりの貝殻の量に応じて適宜変更することが可能である。 The fine particles (shell powder) screened by the screening step are temporarily stored in the storage container 61 (step S5). On the other hand, although large particles other than fine particles are temporarily stored in the storage container 62, it is determined in step S6 whether or not the reduced-pressure fermentation drying process has been repeated a preset number of times (for example, 5 times). In the case of a negative determination (NO), the process returns to step S3. That is, large particles other than the fine particles are re-introduced into the reduced-pressure fermentation drying apparatus 3, and the reduced-pressure fermentation drying process for the large particles is repeated a set number of times (re-processing step). The recharging of the large-grained material to the reduced-pressure fermentation drying apparatus 3 is performed after the low-pressure fermentation drying step and the sieving step for one lot of objects to be processed are completed. Then, in the case of affirmation determination (YES) in step S6, the large granular material stored in the storage container 62 is mainly plastic etc., so it is discharged to the outside without being reinjected into the reduced pressure fermentation dryer 3 (step S7). In addition, the setting frequency | count (5 times) which repeats a decompression fermentation drying process is an example, Comprising: It is possible to change suitably according to the kind of shell, and the quantity of shell per lot.
 以上説明したように、本実施形態では、減圧発酵乾燥装置3により得られた乾燥物を振動ふるい機5によって分別し、分別された大粒物に対して減圧発酵乾燥装置3による再処理を行うので、例えばホタテ、カキ等の貝殻を大量に処理することができ、しかも、処理後の細粒物(貝殻粉)を肥料や、家畜の飼料、凍結防止剤(融雪剤)、土壌改良剤等の添加物として有効に再利用することができる。この点について以下に説明する。 As described above, in the present embodiment, the dried product obtained by the reduced-pressure fermentation drying apparatus 3 is separated by the vibrating sieving machine 5, and the separated large particles are reprocessed by the reduced-pressure fermentation drying apparatus 3. For example, a large amount of shells such as scallops and oysters can be treated, and further, fine particles (shell powder) after the treatment can be treated as fertilizers, animal feed, antifreeze agents (snowmelt agents), soil conditioners, etc. It can be effectively reused as an additive. This point will be described below.
 すなわち、減圧発酵乾燥装置3により、貝殻を効率良く乾燥させるとともに、微生物を利用して貝殻の有機成分の分解を促進することができ、悪臭成分も分解することができる。また、こうして得られた乾燥物を、振動ふるい機5によって、粒径の小さい細粒物と、それよりも大きい大粒物とにふるい分けることによって、この細粒物(貝殻粉)の粒度、粒形、含水率などが均一になり、悪臭の発生も抑制されることから、肥料や、家畜の飼料、凍結防止剤、土壌改良剤等の添加物に適したものとなる。さらに、得られた細粒物(貝殻粉)には、微生物が含まれているため、野積みされた貝殻に、細粒物を散布することも効果的である。つまり、細粒物に含まれる微生物によって悪臭成分が分解され、未処理の貝殻が野積みされている場合であっても周囲環境を悪化させないといったメリットがある。 That is, the shell can be efficiently dried by the reduced-pressure fermentation / drying apparatus 3, and the decomposition of the organic component of the shell can be promoted by using the microorganism, and the malodorous component can also be decomposed. In addition, the particle size of this fine particle (shell powder), the particles, is determined by sieving the dried product thus obtained into fine particles with a smaller particle size and larger particles with a larger particle size by a vibrating sieving machine 5. Since the shape, moisture content, etc. become uniform, and the generation of malodor is also suppressed, it is suitable for additives such as fertilizers, livestock feed, antifreeze agents, soil conditioners and the like. Furthermore, since the obtained fine particles (shell powder) contain microorganisms, it is also effective to spray the fine particles on shells stacked in the field. That is, there is an advantage that the malodorous components are decomposed by the microbes contained in the fine granules, and the surrounding environment is not deteriorated even if untreated shells are piled up in the field.
 これに加え、減圧発酵乾燥装置3において減圧発酵乾燥された貝殻(乾燥物)は、主に細粒物として分別されることになり、発酵乾燥によって均質化が促進され、肥料や、家畜の飼料、凍結防止剤、土壌改良剤等の添加物として有効に再利用することができる。ここで、処理対象物には、事前選別等の前処理を行わない場合、貝殻以外に、例えばプラスチックや金属などの異物が混入しているが、プラスチックや金属は、減圧発酵乾燥装置3による減圧発酵乾燥処理では微生物によって分解されないため、大粒物に分別される。したがって、事前選別等の前処理を行わなくても、処理対象物に混入しているプラスチック等の異物を細粒物(貝殻粉)から確実かつ容易に除去することができる。 In addition to this, shells (dry matter) subjected to reduced pressure fermentation and drying in the reduced pressure fermentation and drying apparatus 3 are mainly separated as fine particles, and homogenization is promoted by the fermentation and drying, and fertilizers and livestock feed It can be effectively reused as an additive such as antifreeze and soil conditioner. Here, when the pretreatment object is not subjected to pretreatment such as pre-sorting, foreign substances such as plastic and metal are mixed in addition to the shell, but the plastic and metal are reduced in pressure by the reduced pressure fermentation dryer 3 As it is not degraded by microorganisms in the fermentation and drying process, it is separated into large particles. Therefore, foreign substances such as plastics mixed in the object to be treated can be reliably and easily removed from the fine particles (shell powder) without performing pretreatment such as pre-sorting.
 また、細粒物および大粒物に分けるに際して、減圧発酵乾燥装置3によって処理した乾燥物は、処理前に比べると水分が少ないことから、ふるい分けがしやすいというメリットがある。より好ましくは、大粒物に対する再度の減圧発酵乾燥処理を複数回繰り返し行うことである。こうすると、微生物による分解が不十分な乾燥物は、比較的大きな塊になりやすいことから、大粒物として分別されるようになる。そのような大粒物は、減圧発酵乾燥装置3において再処理されることで、さらに微生物による分解が促進され、細粒物となる。よって、この細粒物のみを肥料や、家畜の飼料、凍結防止剤、土壌改良剤等の添加物として再利用すればよい。 In addition, when dividing into fine particles and large particles, the dried product processed by the reduced-pressure fermentation drying apparatus 3 has an advantage that sieving is easy because the water content is smaller than before the processing. It is more preferable to repeat the reduced-pressure fermentation drying process to the large-grained material several times more preferably. In this case, the dried matter which is not sufficiently decomposed by the microorganism is likely to be relatively large lumps, and is separated as large grains. By reprocessing such large particles in the reduced pressure fermentation drying apparatus 3, the decomposition by microorganisms is further promoted to become fine particles. Therefore, it is only necessary to reuse this fine-grained material as an additive such as fertilizer, feed for livestock, antifreeze, soil conditioner and the like.
 また、本実施形態では、振動ふるい機5の上流側に、減圧発酵乾燥装置3によって得られた乾燥物の中から金属を除去する磁選機41が設けられているので、磁選機41によって、処理対象物に混入している金属を細粒物(貝殻粉)から確実かつ容易に除去することができる。 Further, in the present embodiment, the magnetic separator 41 for removing metal from the dried material obtained by the reduced-pressure fermentation dryer 3 is provided on the upstream side of the vibrating sieving machine 5. The metal mixed in the object can be reliably and easily removed from the fine particles (shell powder).
 今回、開示した実施形態は全ての点で例示であって、限定的な解釈の根拠となるものではない。本発明の技術的範囲は、前記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。 The presently disclosed embodiments are illustrative in all respects and not restrictive of interpretation. The technical scope of the present invention is not interpreted only by the embodiments described above, but is defined based on the description of the claims. Further, the technical scope of the present invention includes all modifications within the meaning and scope equivalent to the claims.
 上述した貝殻投入装置2は一例であって、その他の構成の貝殻投入装置によって、貝殻を減圧発酵乾燥装置3に投入してもよい。例えば搬送コンベア等を用いて、貝殻を減圧発酵乾燥装置3に投入してもよい。また、上述した磁選機41は一例であって、吊り下げ式以外の磁選機を用いてもよい。例えばプーリ式、ドラム式などの磁選機を用いてもよく、あるいは、アルミなどの非鉄金属も取り除くことが可能な渦電流型の磁選機を用いてもよい。また、上述した振動ふるい機5は一例であって、その他の構成のふるい分け装置によって、乾燥物のふるい分け処理を行ってもよい。 The shell loading device 2 described above is an example, and shells may be loaded into the reduced pressure fermentation drying device 3 by a shell loading device having another configuration. For example, the shells may be introduced into the reduced pressure fermentation drying apparatus 3 using a conveyer or the like. Moreover, the magnetic separator 41 mentioned above is an example, Comprising: You may use magnetic separators other than a suspension type. For example, a magnetic separator such as a pulley type or a drum type may be used, or an eddy current magnetic separator capable of removing non-ferrous metals such as aluminum may also be used. Moreover, the vibrating sieving machine 5 mentioned above is an example, Comprising: The sieving process of a dried material may be performed by the sieving apparatus of another structure.
 図6に示す貝殻処理装置1の運転手順は一例であって、他の手順によって貝殻処理装置1を運転してもよい。 The operation procedure of the shell processing apparatus 1 shown in FIG. 6 is an example, and the shell processing apparatus 1 may be operated by another procedure.
 この出願は、2017年10月30日に日本で出願された特願2017-209163号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。 This application claims the priority based on Japanese Patent Application No. 2017-209163 filed in Japan on October 30, 2017. By reference to this, the entire content of which is incorporated into the present application.
 本発明は、減圧発酵乾燥による貝殻処理装置および貝殻処理方法に利用することができる。 The present invention can be used for a shell processing apparatus and shell processing method by reduced pressure fermentation and drying.
 1  貝殻処理装置
 3  減圧発酵乾燥装置
 30  タンク(密閉容器)
 41  磁選機(除去装置)
 5  振動ふるい機(ふるい分け装置)
 61  貯留容器
1 Shell processing apparatus 3 Reduced pressure fermentation drying apparatus 30 tank (sealed container)
41 Magnetic separator (removal device)
5 Vibrating sieve machine (sieving device)
61 Reservoir containers

Claims (6)

  1.  貝殻を含む処理対象物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して貝殻の有機成分を分解させ、減容した乾燥物を得る減圧発酵乾燥装置と、
     前記減圧発酵乾燥装置によって得られた乾燥物を、細粒物とそれよりも大きい大粒物とにふるい分けるふるい分け装置と、を備えた貝殻処理装置であって、
     前記細粒物が貯留容器に貯留されるとともに、前記大粒物が前記密閉容器に投入されることで、前記減圧発酵乾燥装置による大粒物に対する再度の減圧発酵乾燥処理が行われるように構成されていることを特徴とする貝殻処理装置。
    An object to be treated including shells is housed in a closed vessel, and stirred while heating to a predetermined temperature range under reduced pressure, and microorganisms are used to decompose organic components of shells to obtain a reduced-volume dried product A drying device,
    A shell processing apparatus comprising a sieving device for sieving a dried material obtained by the reduced-pressure fermentation drying device into fine particles and large particles larger than the small particles.
    The fine-grained material is stored in a storage container, and the large-grained material is charged into the closed container, whereby the reduced-pressure fermentation drying process is performed again on the large-grained material by the reduced-pressure fermentation dryer. Shell processing device characterized by
  2.  請求項1に記載の貝殻処理装置において、
     前記細粒物は、粒径の上限値が2~5mmであることを特徴とする貝殻処理装置。
    In the shell processing apparatus according to claim 1,
    The above-mentioned fine-grained material has an upper limit value of particle diameter of 2 to 5 mm.
  3.  請求項1または2に記載の貝殻処理装置において、
     前記大粒物に対する再度の減圧発酵乾燥処理が複数回繰り返し行われることを特徴とする貝殻処理装置。
    In the shell processing apparatus according to claim 1 or 2,
    A shell processing apparatus characterized in that the reduced-pressure fermentation / drying treatment for the large particles is repeated several times.
  4.  請求項1~3のいずれか1つに記載の貝殻処理装置において、
     前記ふるい分け装置の上流側には、前記減圧発酵乾燥装置によって得られた乾燥物の中から金属を除去する除去装置が設けられていることを特徴とする貝殻処理装置。
    The shell processing apparatus according to any one of claims 1 to 3.
    A shell processing apparatus characterized in that a removing device for removing metal from the dried material obtained by the reduced-pressure fermentation drying device is provided on the upstream side of the sieving device.
  5.  貝殻を含む処理対象物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して貝殻の有機成分を分解させ、減容した乾燥物を得る減圧発酵乾燥工程と、
     前記減圧発酵乾燥工程によって得られた乾燥物を、細粒物とそれよりも大きい大粒物とにふるい分けるふるい分け工程と、
     前記大粒物を前記密閉容器に投入することで、前記大粒物に対する再度の減圧発酵乾燥処理を行う再処理工程とを含むことを特徴とする貝殻処理方法。
    An object to be treated including shells is housed in a closed vessel, and stirred while heating to a predetermined temperature range under reduced pressure, and microorganisms are used to decompose organic components of shells to obtain a reduced-volume dried product A drying process,
    A sieving step of sifting the dried product obtained by the reduced pressure fermentation and drying step into fine particles and larger particles;
    And c. Re-processing step of carrying out the reduced-pressure fermentation drying process again on the large-grained matter by charging the large-grained matter into the closed container.
  6.  請求項5に記載の貝殻処理方法において、
     前記再処理工程を複数回繰り返し行うことを特徴とする貝殻処理方法。
    In the shell processing method according to claim 5,
    A shell processing method characterized in that the reprocessing step is repeated a plurality of times.
PCT/JP2018/039714 2017-10-30 2018-10-25 Shell treatment device and shell treatment method WO2019087931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017209163A JP7015044B2 (en) 2017-10-30 2017-10-30 Seashell processing equipment and shell processing method
JP2017-209163 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019087931A1 true WO2019087931A1 (en) 2019-05-09

Family

ID=66333128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039714 WO2019087931A1 (en) 2017-10-30 2018-10-25 Shell treatment device and shell treatment method

Country Status (2)

Country Link
JP (1) JP7015044B2 (en)
WO (1) WO2019087931A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157969A (en) * 1997-11-25 1999-06-15 Shinno:Kk Production of fertilizers
JP2001039787A (en) * 1997-09-30 2001-02-13 Chuo Kiko Kk Composting device and method for composting organic waste
JP2001122684A (en) * 1999-10-20 2001-05-08 Bankei Recycle Center:Kk Method for resource recovery treatment of shell to agricultural soil calcium makeup material
WO2001068563A1 (en) * 2000-03-15 2001-09-20 Japan Noble Systems Inc. Method and apparatus for producing organic fertilizer
JP2003080209A (en) * 2001-09-17 2003-03-18 Taiheiyo Cement Corp Fermentation treatment apparatus
JP2004210595A (en) * 2002-12-27 2004-07-29 Bankei Recycle Center:Kk Compost sterilization treatment
JP2008064345A (en) * 2006-09-05 2008-03-21 Miike Iron Works Co Ltd Drying device
JP2013199584A (en) * 2012-03-26 2013-10-03 Taiheiyo Cement Corp Apparatus and method for converting treated municipal waste into fuel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319738A (en) 2006-05-30 2007-12-13 Kazuo Yamagishi System for reducing volume of organic waste and incinerating organic waste

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039787A (en) * 1997-09-30 2001-02-13 Chuo Kiko Kk Composting device and method for composting organic waste
JPH11157969A (en) * 1997-11-25 1999-06-15 Shinno:Kk Production of fertilizers
JP2001122684A (en) * 1999-10-20 2001-05-08 Bankei Recycle Center:Kk Method for resource recovery treatment of shell to agricultural soil calcium makeup material
WO2001068563A1 (en) * 2000-03-15 2001-09-20 Japan Noble Systems Inc. Method and apparatus for producing organic fertilizer
JP2003080209A (en) * 2001-09-17 2003-03-18 Taiheiyo Cement Corp Fermentation treatment apparatus
JP2004210595A (en) * 2002-12-27 2004-07-29 Bankei Recycle Center:Kk Compost sterilization treatment
JP2008064345A (en) * 2006-09-05 2008-03-21 Miike Iron Works Co Ltd Drying device
JP2013199584A (en) * 2012-03-26 2013-10-03 Taiheiyo Cement Corp Apparatus and method for converting treated municipal waste into fuel

Also Published As

Publication number Publication date
JP7015044B2 (en) 2022-02-02
JP2019081129A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
CN105642645B (en) Cities and towns composting dry type Automated fine method for separating and its equipment
US20100160709A1 (en) Process and appratus for waste treatment
US10273559B2 (en) Metal recovery system and method
JP2006231125A (en) Manufacturing system of shell powder
WO2019058928A1 (en) Fuel production device for biomass burner and manufacturing method for same
WO2019187879A1 (en) Device and method for manufacturing de-oiled dry product
KR100646165B1 (en) Apparatus for manufacturing fertilizer and feed with food-waste
KR101232058B1 (en) Organic waste recycling system using twice drying method
CN111051478B (en) Fuel processing device and fuel processing method based on fermentation drying of processing object
EP2163319A2 (en) Process for waste treatment
BR112016027407A2 (en) METHOD AND INSTALLATION OF TREATMENT OF A WASTE MIXTURE INCLUDING A SEPARATION AND A COMPOSTING OF SUCH MIXTURE
WO2019087931A1 (en) Shell treatment device and shell treatment method
CN204220604U (en) Cities and towns composting dry type Automated fine screening installation
EP1946829A1 (en) Process and apparatus for waste treatment
JP7178697B2 (en) Livestock excrement treatment device and treatment method
KR100970586B1 (en) Method for making resources using organic waste
JP7175005B2 (en) Oil sludge treatment device and its treatment method
KR100883538B1 (en) Glassware clushing system
WO2020066044A1 (en) Burner fuel production apparatus and production method
WO2020137986A1 (en) Deodorization device in treatment apparatus for organic matter-containing substance to be treated, and deodorization method for deodorization device
KR101779845B1 (en) Magnetic magnetic particle separation and processing system
WO2020027132A1 (en) Device and method for treating digested liquid from methane fermentation of organic material
KR101507895B1 (en) Apparatus for producing feed for animals with food waste
JP7114064B2 (en) Apparatus and method for treating plastic-packaged food waste
JP7246707B2 (en) Combustion furnace fuel manufacturing device and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/07/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18872595

Country of ref document: EP

Kind code of ref document: A1