WO2019087657A1 - 太陽熱発電システム - Google Patents

太陽熱発電システム Download PDF

Info

Publication number
WO2019087657A1
WO2019087657A1 PCT/JP2018/036937 JP2018036937W WO2019087657A1 WO 2019087657 A1 WO2019087657 A1 WO 2019087657A1 JP 2018036937 W JP2018036937 W JP 2018036937W WO 2019087657 A1 WO2019087657 A1 WO 2019087657A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
steam
storage device
water
temperature heat
Prior art date
Application number
PCT/JP2018/036937
Other languages
English (en)
French (fr)
Inventor
康平 篠崎
丸本 隆弘
聡 多田隈
哲夫 四方
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to US16/638,529 priority Critical patent/US20200370543A1/en
Priority to JP2019550914A priority patent/JP6923667B2/ja
Priority to EP18873240.8A priority patent/EP3705720A4/en
Priority to AU2018358974A priority patent/AU2018358974B2/en
Publication of WO2019087657A1 publication Critical patent/WO2019087657A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/003Feed-water heater systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/02Arrangements of feed-water pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a solar thermal power generation system that generates electricity using solar heat.
  • the heat of the vapor from the second heat collector (also referred to as a superheater or high-temperature heat collector) 1108 is stored in a heat storage system 912 and phase-changed to water, and then the pump 1112 and the pump 1110 are used.
  • the configuration of a thermal storage solar thermal power generation system is described (see FIG. 12) that is boosted and returned to a circulation line that includes a first heat collector (also referred to as an evaporator, a low temperature collector) 1102.
  • the vapor from the second heat collector 1108 flows through the high-temperature heat storage device 1116 and the low-temperature heat storage device 1120 sequentially, and before the phase change to water, become.
  • FIG. 12 is a block diagram of a solar thermal power generation system according to the prior art described in Patent Document 1
  • FIG. 13 is a view showing a fluid temperature in the heat storage system shown in FIG. 12,
  • A is a predetermined position on the inlet side of the heat storage system 912
  • a ' is a predetermined position on the outlet side of the heat storage system 912
  • B is an inlet of the high temperature heat storage device 1116
  • B' is an outlet of the high temperature heat storage device 1116
  • C is The inlet of the low-temperature heat storage device 1120
  • C ′ is the outlet of the low-temperature heat storage device 1120.
  • FIG. 13 correspond to the positions of A, B, C, etc. in FIG. 12, the dotted line in FIG. 13 shows the saturation temperature, and the solid line shows the fluid temperature in the pipe. .
  • the pressure loss of the piping which connects an apparatus is disregarded.
  • the fluid temperature in the pipe is higher than the saturation temperature between position A and position C, and it can be seen that the fluid in the pipe is a vapor.
  • the fluid temperature in the pipe is equal to the saturation temperature at a position slightly closer to the position A 'from the position C, and the fluid temperature in the pipe and the saturation temperature are generally equal between the position C and the position C'.
  • the inside of the low-temperature heat storage device 1120 is in a state of gas-liquid two-phase flow (water-vapor two-phase fluid) in which water and steam are mixed.
  • the fluid flowing in the pipe is water after the outlet of the low-temperature heat storage device 1120 because the fluid temperature in the pipe is lower than the saturation temperature.
  • Patent Document 1 since the fluid flowing through the heat storage system 912 is in a state of gas-liquid two-phase flow in the process of phase change, the gas-liquid two-phase flow must be considered when designing the heat storage system 912. You must.
  • gas-liquid two-phase flow is known to be complicated in heat transfer flow characteristics compared to single-phase flow, and even when designing a heat storage device (heat storage system), the behavior of gas-liquid two-phase flow There is a problem that design becomes difficult because it is necessary to predict.
  • the present invention provides a solar thermal power generation system capable of preventing the fluid flowing through the high temperature heat storage device and the low temperature heat storage device from becoming a gas-liquid two-phase flow and individually adjusting the heat storage amount of the high temperature heat storage device and the low temperature heat storage device. To be a task.
  • one mode of a solar thermal power generation system concerning the present invention heats water with heat of the sun light, and generates a water-steam two phase fluid, and the above-mentioned low temperature heat collector
  • a steam separation device for separating the water-steam two-phase fluid generated in the above into water and steam, the steam separation device and the low temperature heat collector, and the water separated by the steam separation device being the low temperature
  • a low-temperature storage device for storing heat obtained by heat exchange with water separated from the first hot water line, the first hot water line supplying the heat collector, and the first hot water line;
  • a high temperature heat collector for heating the steam separated by the separator with the heat of solar light to generate superheated steam, a steam turbine, the high temperature heat collector and the steam turbine are connected, and the high temperature heat collector Supplying the superheated steam generated by A main steam line, a second main steam line branching from the first main steam line and joining the first main steam line, and the second main steam line, which are generated by the high-temperatur
  • the solar thermal power generation system it is possible to prevent the fluid flowing through the high temperature heat storage device and the low temperature heat storage device from becoming a gas-liquid two phase flow, and to adjust the heat storage amount of the high temperature heat storage device and the low temperature heat storage device individually.
  • the subject except having mentioned above, a structure, and an effect are clarified by description of the following embodiment.
  • the low temperature heat collector corresponds to an evaporator in a boiler, and heats water with the heat of sunlight to generate a water-steam two-phase fluid.
  • the high-temperature heat collector corresponds to a superheater in a boiler, and heats the steam separated by the later-described steam separator 2 with the heat of sunlight to generate superheated steam.
  • FIG. 1 is a block diagram of a solar thermal power generation system according to a first embodiment of the present invention.
  • the solar thermal power generation system according to the first embodiment includes a low temperature heat collector 1 for heating water with the heat of sunlight to generate a water-vapor two-phase fluid;
  • the heat obtained by heat exchange between the water separated by the steam separation device 2 and the steam separation device 2 configured of a steam drum or the like that separates the generated water-vapor two-phase fluid into water and steam is stored.
  • a low temperature heat storage device 4 a high temperature heat collecting device 3 for heating the steam separated by the brackish water separation device 2 with the heat of sunlight to generate a superheated steam, a steam turbine 6 driven by the supplied superheated steam, a high temperature
  • a high temperature heat storage device 5 is mainly provided which stores heat obtained by heat exchange with the superheated steam generated by the heat collection device 3.
  • the solar thermal power generation system shown in FIG. 1 is provided on the upstream side of the feed water pump 17 that supplies water to the brackish water separation device 2 via the feed water line L1, and the feed water pump 17, and heats the water supplied to the feed water pump 17.
  • a condenser 7 is provided on a feed water heater 8 and a condensate line L10 connecting the steam turbine 6 and the feed water heater 8 and the steam discharged from the steam turbine 6 is returned to water and separated by the steam water separation device 2
  • the circulation pump 15 for boosting the pressured water and supplying it to the low temperature heat collecting device 1 and the low temperature heat storage device 4; ing.
  • Reference numerals 21 to 30 denote three-way valves.
  • the water outlet of the brackish water separator 2 and the inlet of the low temperature heat collector 1 are connected by a first hot water line L2, and a circulation pump 15, a low temperature storage device 4, and a pump 16 are provided in the first hot water line L2. It is done. Further, the steam inlet of the brackish water separator 2 and the outlet of the low temperature heat collector 1 are connected by a water-steam line L4.
  • the three-way valve 21 located at a position between the outlet of the circulation pump 15 and the inlet of the low temperature storage device 4 in the first hot water line L2, and the water separated by the steam separation device 2 is stored in the low temperature storage device 4
  • the second hot water line L3 directly supplied to the low temperature heat collector 1 via the three way valve 23, the three way valve 22 on the outlet side of the low temperature heat storage device 4 and the water-steam two phase of the brackish water separation device 2
  • a three-way valve 24 on the fluid inlet side is connected with a low temperature bypass line L5 that bypasses the low temperature heat collector 1.
  • the steam outlet of the brackish water separator 2 and the inlet of the high temperature collector 3 are connected by a saturated steam line L6, and the outlet of the high temperature collector 3 and the steam turbine 6 are connected by a first main steam line L7. Further, the three-way valve 26 provided in the first main steam line L7 branches from the first main steam line L7, and the three-way valve 29 provided in the first main steam line L7 causes the first main steam line L7 again.
  • the high-temperature heat storage device 5 is provided in the second main steam line L8 which merges.
  • a high temperature bypass line L9 is provided which connects the three-way valve 25 on the steam outlet side of the brackish water separator 2 and the three-way valve 27 on the inlet side of the high-temperature storage device 5 by bypassing the high-temperature collector 3 There is.
  • a bleed line L11 connecting the bleed side of the steam turbine 6 to the feed water heater 8, a three-way valve 28 on the outlet side of the high-temperature heat storage device 5, and a three-way valve 30 provided on the bleed line L11 are connected 1 steam return line L12 is provided.
  • the three-way valves 21 to 30 are connected to the controller 50 by electrical wiring (not shown), and operations from the heat storage operation mode and the heat radiation operation mode described later are executed according to a command from the controller 50.
  • the switching between the heat storage operation mode and the heat radiation operation mode can be performed by manual operation of the switch 51 provided in the controller 50.
  • the operation mode may be automatically switched based on an output signal from a temperature sensor, a pressure sensor or the like (not shown).
  • the low temperature heat collecting device 1 is a heat transfer tube above the inner peripheral curved surface of the light collecting mirror extended in a bowl shape.
  • a trough-type heat exchanger that generates water-steam two-phase fluid by heating water flowing in the heat transfer tube by condensing sunlight into a heat transfer tube with a light collecting mirror, or a substantially flat heat exchanger
  • a large number of collector mirrors are arranged side by side, a heat transfer tube is disposed above the collection mirror group, and sunlight is condensed on the heat transfer tube by the collection mirror group to heat the water flowing in the heat transfer tube. It consists of a Fresnel type heat exchanger that produces a water-vapor two-phase fluid.
  • a heat transfer tube panel is installed on a tower having a predetermined height, and a large number of collecting mirrors are installed on the ground, and sunlight is collected on the tower by collecting mirrors. It is comprised by the tower type heat exchanger which heats the vapor
  • nitrate based molten salts such as potassium nitrate and sodium nitrate are preferable, but solids such as concrete may be used.
  • the type is not limited as long as it conforms to.
  • the heat storage operation mode and the heat release operation mode are provided.
  • FIG. 2 is operation
  • a line through which the fluid flows is indicated by a thick line, and an arrow on the line indicates the flow direction of the fluid.
  • the water supplied from the water supply pump 17 to the brackish water separation device 2 or the water separated by the brackish water separation device 2 is pressurized by the circulation pump 15 and flows through the first hot water line L2 for low temperature storage. It is sent to the device 4.
  • the water (hot water) supplied to the low temperature heat storage device 4 exchanges heat with the heat storage medium in the low temperature heat storage device 4 and dissipates heat to the heat storage medium, and then the pump 16 compensates for the pressure loss in the low temperature heat storage device 4 And sent to the low temperature heat collector 1. Further, part of the water flowing through the first hot water line L2 is branched before the low temperature heat storage device 4 and is sent to the low temperature heat collecting device 1 via the second hot water line L3.
  • the low temperature heat collector 1 heats the water by solar heat to generate a water-vapor two-phase fluid.
  • the generated water-steam two-phase fluid flows through the water-steam line L4 and is introduced into the steam separator 2, and the water-steam two-phase fluid is separated into water and saturated steam in the steam separator 2.
  • the saturated steam separated by the brackish water separation device 2 is introduced into the high temperature heat collecting device 3 via the saturated steam line L6.
  • the water separated by the brackish water separation device 2 raises the water temperature in the brackish water separation device 2.
  • the heat corresponding to the rise in water temperature is stored in the low temperature heat storage device 4. That is, water circulates through the brackish water separation device 2 ⁇ low temperature heat storage device 4 ⁇ low temperature heat collector 1 ⁇ brackish water separation device 2 so that the heat of water heated by the low temperature heat collector 1 It is stored.
  • the saturated steam sent from the brackish water separator 2 to the high temperature heat collector 3 is further heated by solar heat and becomes superheated steam.
  • the superheated steam generated by the high temperature heat collecting device 3 flows through the first main steam line L7 and is supplied to the steam turbine 6, and the steam turbine 6 is driven.
  • a generator (not shown) generates power by driving the steam turbine 6.
  • part of the superheated steam generated by the high temperature heat collecting device 3 is sent to the high temperature heat storage device 5 and heat is exchanged with the heat storage medium in the high temperature heat storage device 5, whereby heat is stored in the high temperature heat storage device 5 .
  • Superheated steam after heat exchange in the high-temperature heat storage device 5 is introduced into the feed water heater 8 after joining the extraction line 11 from the second main steam line L8 through the first steam return line L12.
  • the water supplied to the feed water pump 17 is heated by heat exchange between the water flowing through the condensate line L 10 and the extraction steam flowing through the extraction line L 11.
  • FIG. 3 is operation
  • a line through which the fluid flows is indicated by a thick line, and an arrow on the line indicates the flow direction of the fluid.
  • the water supplied from the water supply pump 17 to the brackish water separation device 2 or the water separated by the brackish water separation device 2 is pressurized by the circulation pump 15 and flows through the first hot water line L2 for low temperature storage. It is sent to the device 4.
  • the water supplied to the low temperature heat storage device 4 is heated by the heat storage medium in the low temperature heat storage device 4 to become a water-vapor two-phase fluid, and is introduced into the steam water separation device 2 via the low temperature bypass line L5.
  • the saturated steam separated by the brackish water separation device 2 is sent to the high temperature heat storage device 5 via the high temperature bypass line L9.
  • the saturated steam supplied to the high temperature heat storage device 5 is heated by the heat storage medium in the high temperature heat storage device 5 to become superheated steam, and is supplied to the steam turbine 6 via the second main steam line L8.
  • the flow on the downstream side of the steam turbine 6 is the same as that in the heat storage operation mode, and hence the description thereof is omitted.
  • FIG. 4A is a diagram showing the in-pipe fluid temperature of the high-temperature heat storage device 5
  • FIG. 4B is a diagram showing the in-pipe fluid temperature of the circulation pump 15 and the low-temperature heat storage device 4.
  • A1, B1, C2, etc. shown on the horizontal axis in FIGS. 4A, 4B correspond to the positions of A1, B1, C2, etc. in FIG. 2, and the dotted line in FIGS. 4A, 4B is the saturation temperature, solid line Indicates the fluid temperature in the tube.
  • the pressure loss of the piping which connects an apparatus is disregarded.
  • the fluid temperature of the superheated steam flowing in the pipe of the high-temperature heat storage device 5 drops due to the heat storage medium of the high-temperature heat storage device 5 taking heat between the positions B1 to B1 ′.
  • the in-pipe fluid temperature remains higher than the saturation temperature. Therefore, from the position A1 on the inlet side of the high temperature heat storage device 5 to the position A1 'on the outlet side, the fluid in the pipe remains as steam. That is, the fluid in the high temperature heat storage device 5 is a single phase flow.
  • the water from the water separator 2 is pressurized by the circulation pump 15 at positions B2 to B2 ', and the saturation temperature also rises accordingly.
  • the pressurized water is supplied to the inlet of the low temperature heat storage device 4, and the heat is transferred to the heat storage medium of the low temperature heat storage device 4 between the position C2 and the position C2 '. Therefore, the in-pipe fluid temperature decreases at position C2 to position C2 '.
  • the saturation temperature is also lowered due to the pressure loss of the low temperature heat storage device 4, the fluid temperature in the pipe is always kept lower than the saturation temperature, so the fluid in the pipe remains in the water state. That is, the fluid in the low temperature heat storage device 4 is a single phase flow.
  • the heat of the superheated steam generated by the high temperature heat collecting device 3 is stored only by the high temperature heat storage device 5, and the hot water separated by the steam water separating device 2 Since the heat is stored only in the low-temperature heat storage device 4, the fluid flowing through the high-temperature heat storage device 5 and the low-temperature heat storage device 4 can be prevented from becoming a gas-liquid two-phase flow. Therefore, when designing the high temperature storage device 5 and the low temperature storage device 4, it is not necessary to consider the water-vapor two-phase fluid, and the design is simplified. Further, according to the present embodiment, since the high temperature storage device 5 and the low temperature storage device 4 are not provided in series, the heat storage amount of the high temperature storage device 5 and the heat storage amount of the low temperature storage device 4 are individually It can be adjusted.
  • the low temperature heat storage device 1120 can not condense The vapor can be supplied to the pump 1112 and the pump 1112 can be damaged by erosion.
  • high-temperature steam is supplied from the high-temperature heat storage device 1116 to the low-temperature heat storage device 1120, which may damage the piping or the like of the low-temperature heat storage device 1120.
  • the heat storage amount of the high temperature heat storage device 5 and the heat storage amount of the low temperature heat storage device 4 can be adjusted individually, there is no risk of such breakage.
  • FIG. 5 is a block diagram of a solar thermal power generation plant according to a second embodiment of the present invention.
  • the first heat for heating the water flowing through the low-temperature heat storage device 4 between the outlet of the low-temperature heat storage device 4 of the first hot water line L2 and the inlet of the low-temperature heat collector 1 A second steam return line L13 is provided which includes the exchanger 40 and connects the first heat exchanger 40 and the outlet side of the high temperature heat storage device 5 via the three-way valve 32, and a second steam return line L13 from the high temperature heat storage device 5.
  • the water recovered by heat exchange with the water flowing through the low-temperature heat storage device 4 in the first heat exchanger 40 is pressurized by the pressure pump 18, and the low-temperature heat collecting device 1 is
  • the point which was equipped with the 1st condensed water supply line L14 to supply differs from a 1st embodiment.
  • the second vapor return line L13 is provided, the first vapor return line L12 shown in the first embodiment is not provided.
  • FIG. 6 is an operation explanatory view of a heat storage operation mode of the solar thermal power generation plant according to the second embodiment.
  • the lines through which the fluid flows are indicated by thick lines, and the arrows on the lines indicate the directions in which the fluids flow.
  • the water supplied from the water supply pump 17 to the brackish water separation device 2 or the water separated by the brackish water separation device 2 is pressurized by the circulation pump 15 and flows through the first hot water line L2 for low temperature storage. It is sent to the device 4.
  • the water (hot water) supplied to the low temperature heat storage device 4 exchanges heat with the heat storage medium in the low temperature heat storage device 4 and dissipates heat to the heat storage medium, and then the pump 16 compensates for the pressure loss in the low temperature heat storage device 4 Then, the pressure is further pressurized and sent to the low temperature heat collector 1 through the first heat exchanger 40. Further, part of the water flowing through the first hot water line L2 is branched before the low temperature heat storage device 4 and is sent to the low temperature heat collecting device 1 via the second hot water line L3.
  • the low temperature heat collector 1 heats the water by solar heat to generate a water-vapor two-phase fluid.
  • the generated water-steam two-phase fluid flows through the water-steam line L4 and is introduced into the steam separator 2, and the water-steam two-phase fluid is separated into water and saturated steam in the steam separator 2.
  • the saturated steam separated by the brackish water separation device 2 is introduced into the high temperature heat collecting device 3 via the saturated steam line L6.
  • the water separated by the brackish water separation device 2 raises the water temperature in the brackish water separation device 2.
  • the heat corresponding to the rise in water temperature is stored in the low temperature heat storage device 4.
  • the saturated steam sent from the brackish water separator 2 to the high temperature heat collector 3 is further heated by solar heat and becomes superheated steam.
  • the superheated steam generated by the high temperature heat collecting device 3 flows through the first main steam line L7 and is supplied to the steam turbine 6, and the steam turbine 6 is driven.
  • a generator (not shown) generates power by driving the steam turbine 6.
  • part of the superheated steam generated by the high temperature heat collecting device 3 is sent to the high temperature heat storage device 5 and heat is exchanged with the heat storage medium in the high temperature heat storage device 5, whereby heat is stored in the high temperature heat storage device 5 .
  • the superheated steam after heat exchange in the high temperature heat storage device 5 flows through the second steam return line L13 and is introduced into the first heat exchanger 40, and heats the water flowing through the low temperature heat storage device 4 in the first heat exchanger 40 Do. At this time, the superheated steam is returned to water by the first heat exchanger 40, and after being pressurized by the pressure pump 18, is supplied to the low temperature heat collector 1.
  • the changes in the in-pipe fluid temperature of the low temperature heat storage device 4 and the high temperature heat storage device 5 in the second embodiment are the same as in the first embodiment, and any heat storage device is a single phase flow. Therefore, in the second embodiment, the same function and effect as the first embodiment can be obtained.
  • FIG. 7 is a block diagram of a solar thermal power generation plant according to a third embodiment of the present invention.
  • the second embodiment is different from the second embodiment in that the second condensed water supply line L15 is supplied to the inlet side of the circulation pump 15 through the three-way valve 33 by boosting the pressure with the boost pump 18.
  • FIG. 8 is an operation explanatory view of a heat storage operation mode of the solar thermal power generation plant according to the third embodiment.
  • a line through which the fluid flows is indicated by a thick line, and an arrow on the line indicates the flow direction of the fluid.
  • the superheated steam after heat exchange in the high temperature heat storage device 5 flows through the second steam return line L13 and is introduced into the first heat exchanger 40, and the low temperature heat storage device in the first heat exchanger 40 Heat the water that has flowed through 4.
  • the superheated steam is returned to water by the first heat exchanger 40, and after being boosted by the pressure pump 18, flows through the second condensed water supply line L15 and is supplied to the inlet side of the circulation pump 15. .
  • the changes in the in-pipe fluid temperature of the low-temperature heat storage device 4 and the high-temperature heat storage device 5 in the third embodiment are the same as those in the first embodiment, and any heat storage device is a single-phase flow. Therefore, also in the third embodiment, the same function and effect as the first embodiment can be obtained.
  • FIG. 9 is a block diagram of a solar thermal power generation plant according to a fourth embodiment of the present invention.
  • the second heat exchanger 41 is provided between the low temperature storage device 4 and the circulation pump 15 of the first hot water line L2, and the superheated steam from the high temperature storage device 5 is used as the third steam.
  • the point which is first introduced into the 2nd heat exchanger 41 via return line L16 differs from a 2nd embodiment.
  • FIG. 10 is an operation explanatory view of the heat storage operation mode of the solar thermal power generation plant according to the fourth embodiment.
  • a line through which the fluid flows is indicated by a thick line, and an arrow on the line indicates the flow direction of the fluid.
  • the superheated steam after heat exchange in the high temperature heat storage device 5 flows through the third steam return line L16 and is first introduced into the second heat exchanger 41, and is circulated in the second heat exchanger 41.
  • the water flowing from the pump 15 toward the low temperature heat storage device 4 is heated.
  • the steam after heat exchange in the second heat exchanger 41 is introduced into the first heat exchanger 40 via the fourth steam return line L17, and the water that has flowed through the low temperature heat storage device 4 in the first heat exchanger 40 Heat up.
  • the superheated steam from the high temperature heat storage device 5 flows through the second heat exchanger 41 and the first heat exchanger 40 in order and is condensed, and after being boosted by the pressure pump 18, the third condensed water supply line L18 It flows and is supplied to the low temperature heat collecting device 1.
  • FIG. 11A is a diagram showing the in-pipe fluid temperature of the high-temperature heat storage device 5
  • FIG. 11B is a diagram showing the in-pipe fluid temperature of the circulation pump 15, the second heat exchanger 41 and the low-temperature heat storage device 4.
  • A1, B1, C2, etc. shown on the horizontal axes of FIGS. 11A, 11B correspond to the positions of A1, B1, C2, etc. in FIG. 10, and dotted lines in FIGS. 11A, 11B represent saturation temperatures, solid lines. Indicates the fluid temperature in the tube.
  • FIG. 11A and FIG. 11B the pressure loss of the piping connecting the devices is neglected.
  • the fluid temperature of the superheated steam flowing in the pipe of the high temperature heat storage device 5 drops due to the heat storage medium of the high temperature heat storage device 5 being deprived of heat between the positions B1 to B1 ′.
  • the in-pipe fluid temperature remains higher than the saturation temperature. Therefore, from the position A1 on the inlet side of the high temperature heat storage device 5 to the position A1 'on the outlet side, the fluid in the pipe remains as steam. That is, the fluid in the high temperature heat storage device 5 is a single phase flow.
  • the water from the water separator 2 is pressurized by the circulation pump 15 at position B2 to position B2 ', and the saturation temperature also rises accordingly.
  • positions C2 to C2 ' which are the inlets and outlets of the second heat exchanger 41, the water flowing in the pipe is heated and the temperature rises, but is maintained at a temperature lower than the saturation temperature.
  • the water heated by the second heat exchanger 41 is supplied to the inlet of the low temperature heat storage device 4 and heat is taken away by the heat storage medium of the low temperature heat storage device 4 between the position D2 and the position D2 '. Therefore, the in-pipe fluid temperature decreases at position D2 to position D2 '.
  • the fluid temperature in the pipe is always kept lower than the saturation temperature, so the fluid in the pipe remains in the water state. That is, the fluid in the low temperature heat storage device 4 is a single phase flow.
  • the fluid flowing in the tubes of the low temperature heat storage device 4 and the high temperature heat storage device 5 can be prevented from becoming a gas-liquid two-phase flow, the same function and effect as the first embodiment can be obtained.
  • high-temperature heat can be stored in the low-temperature heat storage device 4 as much as the water is heated by the second heat exchanger 41, as compared to the first to third embodiments. That is, there is an advantage that the temperature range in which the low temperature heat storage device 4 can store heat can be expanded.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

高温蓄熱装置及び低温蓄熱装置を流れる流体が気液二相流になることを防止する。低温集熱装置1と、汽水分離装置2と、汽水分離装置で分離された水を低温集熱装置に供給する第1熱水ラインL2と、第1熱水ラインに設けられる低温蓄熱装置4と、高温集熱装置3と、蒸気タービン6と、過熱蒸気を蒸気タービンに供給する第1主蒸気ラインL7と、第1主蒸気ラインから分岐して第1主蒸気ラインと合流する第2主蒸気ラインL8と、第2主蒸気ラインに設けられる高温蓄熱装置5と、低温蓄熱装置の出口側と汽水分離装置の水-蒸気二相流体入口側とを低温集熱装置をバイパスして接続する低温バイパスラインL5と、汽水分離装置の蒸気出口側と高温蓄熱装置の入口側とを高温集熱装置をバイパスして接続する高温バイパスラインL9と、を備えた太陽熱発電システム。

Description

太陽熱発電システム
 本発明は、太陽熱を利用して発電する太陽熱発電システムに関する。
 従来より、日中に太陽光を利用して蒸気を発生させ、その蒸気の一部の熱を蓄熱装置で蓄えておき、夜間または曇天時に蓄熱装置に蓄えられた熱を放熱して水から蒸気を生成し、その蒸気で蒸気タービンを回して発電する蓄熱式の太陽熱発電プラントが公知である。
 例えば特許文献1には、第2の集熱器(過熱器、高温集熱装置とも呼ばれる)1108からの蒸気の熱を蓄熱システム912に溜め、水に相変化させてからポンプ1112、ポンプ1110で昇圧し、第1の集熱器(蒸発器、低温集熱装置とも呼ばれる)1102を含む循環ラインに戻す蓄熱式の太陽熱発電システムの構成が記載されている(図12参照)。特許文献1に記載の太陽熱発電システムでは、第2の集熱器1108からの蒸気が高温蓄熱装置1116、低温蓄熱装置1120を順次流れる過程で、水に相変化する前に気液二相流となる。
 これについて、図を用いてより詳細に説明する。図12は、特許文献1に記載された従来技術に係る太陽熱発電システムの構成図、図13は、図12に示す蓄熱システムの管内流体温度を示す図である。図12において、Aは蓄熱システム912の入口側の所定位置、A’は蓄熱システム912の出口側の所定位置、Bは高温蓄熱装置1116の入口、B’は高温蓄熱装置1116の出口、Cは低温蓄熱装置1120の入口、C’は低温蓄熱装置1120の出口である。図13の横軸に示すA,B,C等は、図12のA,B,C等の位置と対応しており、図13中の点線は飽和温度、実線は管内流体温度を示している。なお、図13において、機器を繋ぐ配管の圧力損失は無視している。
 図13に示すように、位置A~位置Cまでの間は、管内流体温度が飽和温度を上回っており、管内流体が蒸気であることが分かる。位置Cからやや位置A’側の位置では、管内流体温度が飽和温度に等しくなり、概ね位置C~位置C’間では管内流体温度と飽和温度とが等しい状態である。これは、低温蓄熱装置1120の内部では水と蒸気が混在した気液二相流(水-蒸気二相流体)の状態となることを示している。位置C’~位置A’では、管内流体温度が飽和温度より下回っているため、低温蓄熱装置1120の出口以降では管内を流れる流体は水である。このように、特許文献1では、蓄熱システム912を流れる流体が相変化する過程で気液二相流の状態となるため、蓄熱システム912を設計する際に、気液二相流を考慮しなければならない。
米国特許出願公開第2013/0307273号明細書
 しかしながら、気液二相流は単相流に比べて伝熱流動特性が複雑であることが知られており、蓄熱装置(蓄熱システム)を設計する際においても、気液二相流の挙動を予測する必要があるために設計が難しくなるという課題がある。
 さらに、特許文献1に記載の太陽熱発電システムでは、高温蓄熱装置及び低温蓄熱装置が直列に接続されていることから、蓄熱量は第2の集熱器(過熱器)からの蒸気の流量に依存してしまい、高温蓄熱装置及び低温蓄熱装置の蓄熱量を個別に調整できないという課題がある。
 そこで、本発明は、高温蓄熱装置及び低温蓄熱装置を流れる流体が気液二相流になることを防止すると共に、高温蓄熱装置及び低温蓄熱装置の蓄熱量を個別に調整できる太陽熱発電システムを提供することを課題とする。
 上記課題を解決するために、本発明に係る太陽熱発電システムの一態様は、水を太陽光の熱で加熱して水-蒸気二相流体を生成する低温集熱装置と、前記低温集熱装置で生成された水-蒸気二相流体を水と蒸気とに分離する汽水分離装置と、前記汽水分離装置と前記低温集熱装置とを接続し、前記汽水分離装置で分離された水を前記低温集熱装置に供給する第1熱水ラインと、前記第1熱水ラインに設けられ、前記汽水分離装置で分離された水との熱交換により得られた熱を蓄える低温蓄熱装置と、前記汽水分離装置で分離された蒸気を太陽光の熱で加熱して過熱蒸気を生成する高温集熱装置と、蒸気タービンと、前記高温集熱装置と前記蒸気タービンとを接続し、前記高温集熱装置で生成された過熱蒸気を前記蒸気タービンに供給する第1主蒸気ラインと、前記第1主蒸気ラインから分岐して前記第1主蒸気ラインと合流する第2主蒸気ラインと、前記第2主蒸気ラインに設けられ、前記高温集熱装置で生成された過熱蒸気との熱交換により得られた熱を蓄える高温蓄熱装置と、前記低温蓄熱装置の出口側と前記汽水分離装置の水-蒸気二相流体入口側とを前記低温集熱装置をバイパスして接続する低温バイパスラインと、前記汽水分離装置の蒸気出口側と前記高温蓄熱装置の入口側とを前記高温集熱装置をバイパスして接続する高温バイパスラインと、を備える。
 本発明に係る太陽熱発電システムよれば、高温蓄熱装置及び低温蓄熱装置を流れる流体が気液二相流になることを防止でき、かつ、高温蓄熱装置及び低温蓄熱装置の蓄熱量を個別に調整できる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第1実施形態に係る太陽熱発電システムの構成図である。 第1実施形態に係る太陽熱発電プラントの蓄熱運転モードの動作説明図である。 第1実施形態に係る太陽熱発電プラントの放熱運転モードの動作説明図である。 高温蓄熱装置の管内流体温度を示す図である。 循環ポンプ及び低温蓄熱装置の管内流体温度を示す図である。 第2実施形態に係る太陽熱発電プラントの構成図である。 第2実施形態に係る太陽熱発電プラントの蓄熱運転モードの動作説明図である。 第3実施形態に係る太陽熱発電プラントの構成図である。 第3実施形態に係る太陽熱発電プラントの蓄熱運転モードの動作説明図である。 第4実施形態に係る太陽熱発電プラントの構成図である。 第4実施形態に係る太陽熱発電プラントの蓄熱運転モードの動作説明図である。 高温蓄熱装置の管内流体温度を示す図である。 循環ポンプ、第2熱交換器及び低温蓄熱装置の管内流体温度を示す図である。 従来技術に係る太陽熱発電システムの構成図である。 図12に示す蓄熱システムの管内流体温度を示す図である。
 以下、本発明の実施形態について、図を参照して説明する。
「第1実施形態」
 以下、内部流体を太陽光の熱で加熱する集熱装置(加熱装置)として、低温集熱装置、高温集熱装置の2つを備えるシステム構成について述べる。なお、低温集熱装置は、ボイラにおける蒸発器に相当し、水を太陽光の熱で加熱して水-蒸気二相流体を生成するものである。高温集熱装置は、ボイラにおける過熱器に相当し、後述の汽水分離装置2で分離された蒸気を太陽光の熱で加熱して過熱蒸気を生成するものである。
 図1は本発明の第1実施形態に係る太陽熱発電システムの構成図である。図1に示すように、第1実施形態に係る太陽熱発電システムは、水を太陽光の熱で加熱して水-蒸気二相流体を生成する低温集熱装置1と、低温集熱装置1で生成された水-蒸気二相流体を水と蒸気とに分離する蒸気ドラム等で構成される汽水分離装置2と、汽水分離装置2で分離された水との熱交換により得られた熱を蓄える低温蓄熱装置4と、汽水分離装置2で分離された蒸気を太陽光の熱で加熱して過熱蒸気を生成する高温集熱装置3と、供給される過熱蒸気で駆動する蒸気タービン6と、高温集熱装置3で生成された過熱蒸気との熱交換により得られた熱を蓄える高温蓄熱装置5と、を主に備えている。
 さらに図1に示す太陽熱発電システムは、汽水分離装置2に給水ラインL1を介して水を供給する給水ポンプ17と、給水ポンプ17の上流側に設けられ、給水ポンプ17に供給する水を加熱する給水加熱器8と、蒸気タービン6と給水加熱器8とを接続する復水ラインL10に設けられ、蒸気タービン6から排出された蒸気を水に戻す復水器7と、汽水分離装置2で分離された水を昇圧して低温集熱装置1及び低温蓄熱装置4に供給する循環ポンプ15と、低温蓄熱装置4を流れた水を低温集熱装置1に昇圧して送り出すポンプ16と、を備えている。なお、符号21~30は三方弁である。
 汽水分離装置2の水出口と低温集熱装置1の入口とは第1熱水ラインL2により接続され、この第1熱水ラインL2に、循環ポンプ15、低温蓄熱装置4、及びポンプ16が設けられている。また、汽水分離装置2の蒸気入口と低温集熱装置1の出口とは水-蒸気ラインL4により接続されている。さらに、第1熱水ラインL2のうち循環ポンプ15の出口と低温蓄熱装置4の入口との間の位置にある三方弁21から分岐し、汽水分離装置2で分離された水を低温蓄熱装置4をバイパスして低温集熱装置1に三方弁23を介して直接供給する第2熱水ラインL3と、低温蓄熱装置4の出口側にある三方弁22と汽水分離装置2の水-蒸気二相流体入口側にある三方弁24とを、低温集熱装置1をバイパスして接続する低温バイパスラインL5とが設けられている。
 汽水分離装置2の蒸気出口と高温集熱装置3の入口とは飽和蒸気ラインL6により接続され、高温集熱装置3の出口と蒸気タービン6とは第1主蒸気ラインL7により接続されている。また、第1主蒸気ラインL7に設けられた三方弁26にて第1主蒸気ラインL7から分岐し、第1主蒸気ラインL7に設けられた三方弁29にて再び第1主蒸気ラインL7に合流する第2主蒸気ラインL8に、高温蓄熱装置5が設けられている。さらに、汽水分離装置2の蒸気出口側にある三方弁25と高温蓄熱装置5の入口側にある三方弁27とを、高温集熱装置3をバイパスして接続する高温バイパスラインL9が設けられている。
 また、蒸気タービン6の抽気側と給水加熱器8とを接続する抽気ラインL11と、高温蓄熱装置5の出口側にある三方弁28と抽気ラインL11に設けられた三方弁30とを接続する第1蒸気戻りラインL12と、が設けられている。
 なお、三方弁21~30は、コントローラ50と図示しない電気配線により接続されており、コントローラ50からの指令により後述する蓄熱運転モードと放熱運転モードとによる運転が実行される。蓄熱運転モードと放熱運転モードとの切り換えは、コントローラ50に設けられた切換スイッチ51の手動操作により行われる構成とすることができる。勿論、図示しない温度センサ、圧力センサ等からの出力信号に基づいて自動的に運転モードが切り換わる構成としても良い。
 ここで、本実施形態において、低温集熱装置1及び高温集熱装置3の一例を挙げるならば、低温集熱装置1は、樋状に延びた集光ミラーの内周曲面の上方に伝熱管を配置し、太陽光を集光ミラーで伝熱管に集光することにより、伝熱管内を流通する水を加熱して水-蒸気二相流体を生成するトラフ式の熱交換器、または略平面状の集光ミラーを多数並べて、その集光ミラー群の上方に伝熱管を配置し、太陽光を集光ミラー群で伝熱管に集光することにより、伝熱管内を流通する水を加熱して水-蒸気二相流体を生成するフレネル式の熱交換器で構成される。
 高温集熱装置3は、例えば、所定の高さを有するタワーの上に伝熱管パネルを設置して、多数の集光ミラーを地上に設置して、太陽光を集光ミラー群でタワー上の伝熱管パネルに集光することにより、伝熱管内を流通する蒸気を加熱して過熱蒸気を生成するタワー式の熱交換器で構成される。
 また、本実施形態において、低温蓄熱装置4及び高温蓄熱装置5に用いられる蓄熱媒体としては、例えば硝酸カリウムや硝酸ナトリウムなどの硝酸塩系の溶融塩が好ましいが、コンクリート等の固体でもよく、それぞれ使用温度に適合するものであれば種類を問わない。
 次に、本実施形態に係る太陽熱発電システムの運転モードについて説明する。本実施形態では、蓄熱運転モードと放熱運転モードとを備えている。
(蓄熱運転モード)
 図2は、第1実施形態に係る太陽熱発電プラントの蓄熱運転モードの動作説明図である。なお、図2において流体が流れるラインを太線で示し、ライン上の矢印は流体の流れる向きを示している。
 図2に示すように、給水ポンプ17から汽水分離装置2に供給された水あるいは汽水分離装置2で分離された水は、循環ポンプ15により昇圧され、第1熱水ラインL2を流れて低温蓄熱装置4に送られる。低温蓄熱装置4に供給された水(熱水)は、低温蓄熱装置4内の蓄熱媒体と熱交換して蓄熱媒体に放熱した後、ポンプ16にて低温蓄熱装置4での圧力損失分を補ったうえで、低温集熱装置1に送られる。また、第1熱水ラインL2を流れる水の一部は、低温蓄熱装置4の手前で分流して第2熱水ラインL3を介して低温集熱装置1に送られる。
 低温集熱装置1では太陽熱によって水を加熱し、水-蒸気二相流体を生成する。生成された水-蒸気二相流体は、水-蒸気ラインL4を流れて汽水分離装置2に導入され、汽水分離装置2にて水-蒸気二相流体は水と飽和蒸気に分離される。汽水分離装置2にて分離された飽和蒸気は、飽和蒸気ラインL6を介して高温集熱装置3に導入される。一方、汽水分離装置2にて分離された水は、汽水分離装置2中の水温を上昇させる。この水温上昇分の熱が低温蓄熱装置4に蓄えられる。すなわち、汽水分離装置2→低温蓄熱装置4→低温集熱装置1→汽水分離装置2を水が循環することで、低温集熱装置1にて加熱された水の熱が低温蓄熱装置4にて蓄えられる。
 汽水分離装置2から高温集熱装置3に送られた飽和蒸気は、太陽熱でさらに加熱され、過熱蒸気となる。高温集熱装置3で生成された過熱蒸気は第1主蒸気ラインL7を流れて蒸気タービン6に供給され、蒸気タービン6が駆動される。蒸気タービン6が駆動されることで図示しない発電機が発電する。
 また、高温集熱装置3で生成された過熱蒸気の一部は高温蓄熱装置5に送られ、高温蓄熱装置5内の蓄熱媒体と熱交換されることで、高温蓄熱装置5に熱が蓄えられる。高温蓄熱装置5にて熱交換後の過熱蒸気は、第2主蒸気ラインL8から第1蒸気戻りラインL12を経て、抽気ライン11に合流した後、給水加熱器8に導入される。給水加熱器8では、復水ラインL10を流れてきた水と抽気ラインL11を流れてきた抽気蒸気との間で熱交換して、給水ポンプ17に供給する水を加熱する。
(放熱運転モード)
 図3は、第1実施形態に係る太陽熱発電プラントの放熱運転モードの動作説明図である。なお、図3において流体が流れるラインを太線で示し、ライン上の矢印は流体の流れる向きを示している。
 図3に示すように、給水ポンプ17から汽水分離装置2に供給された水あるいは汽水分離装置2で分離された水は、循環ポンプ15により昇圧され、第1熱水ラインL2を流れて低温蓄熱装置4に送られる。低温蓄熱装置4に供給された水は、低温蓄熱装置4内の蓄熱媒体により加熱されて水-蒸気二相流体となり、低温バイパスラインL5を経由して汽水分離装置2に導入される。
 汽水分離装置2にて分離された飽和蒸気は、高温バイパスラインL9を経由して高温蓄熱装置5に送られる。高温蓄熱装置5に供給された飽和蒸気は、高温蓄熱装置5内の蓄熱媒体により加熱されて、過熱蒸気となり、第2主蒸気ラインL8を経由して蒸気タービン6に供給される。なお、蒸気タービン6の下流側の流れは蓄熱運転モードと同一であるため説明を省略する。
 次に、蓄熱運転モードにおける低温蓄熱装置4と高温蓄熱装置5の管内流体温度について説明する。図4Aは、高温蓄熱装置5の管内流体温度を示す図、図4Bは循環ポンプ15及び低温蓄熱装置4の管内流体温度を示す図である。なお、図4A、図4Bの横軸に示すA1,B1,C2等は、図2のA1,B1,C2等の位置と対応しており、図4A、図4B中の点線は飽和温度、実線は管内流体温度を示している。なお、図4A、図4Bにおいて、機器を繋ぐ配管の圧力損失は無視している。
 図4Aに示すように、高温蓄熱装置5の管内を流れる過熱蒸気の流体温度は、位置B1~B1’の間で高温蓄熱装置5の蓄熱媒体に熱を奪われて低下するが、飽和温度も同時に低下して、管内流体温度が飽和温度より高い状態を維持する。そのため、高温蓄熱装置5の入口側の位置A1から出口側の位置A1’に至るまで、管内流体は蒸気のままである。すなわち、高温蓄熱装置5内の流体は単相流である。
 一方、図4Bに示すように、低温蓄熱装置4側では、位置B2~位置B2’において循環ポンプ15により汽水分離装置2からの水が昇圧され、飽和温度もこれに伴い上昇する。昇圧された水は低温蓄熱装置4の入口へ供給され、位置C2と位置C2’との間で低温蓄熱装置4の蓄熱媒体に熱を奪われる。そのため、位置C2~位置C2’において管内流体温度は低下する。低温蓄熱装置4の圧力損失により飽和温度も低下するが、管内流体温度は常に飽和温度よりも低く維持されるため、管内流体は水の状態を保つ。すなわち、低温蓄熱装置4内の流体は単相流である。
 以上のように、本実施形態に係る太陽熱発電システムによれば、高温集熱装置3で生成された過熱蒸気の熱を高温蓄熱装置5のみで蓄え、汽水分離装置2で分離された熱水の熱を低温蓄熱装置4のみで蓄える構成としたので、高温蓄熱装置5及び低温蓄熱装置4をそれぞれ流れる流体が気液二相流になるのを防止できる。そのため、高温蓄熱装置5及び低温蓄熱装置4を設計する際に、水-蒸気二相流体を考慮する必要がなくなり、設計が簡単となる。また、本実施形態によれば、高温蓄熱装置5と低温蓄熱装置4とを直列に設けない構成となっているため、高温蓄熱装置5の蓄熱量と低温蓄熱装置4の蓄熱量とを個別に調整できる。
 ここで、上述したように、図12に示す従来技術では、高温蓄熱装置1116の蓄熱量と低温蓄熱装置1120の蓄熱量とを個別に調整できないため、例えば、低温蓄熱装置1120で凝縮しきれなかった蒸気がポンプ1112に供給されてポンプ1112がエロージョンにより損傷する可能性がある。また、高温蓄熱装置1116から高温の蒸気が低温蓄熱装置1120に供給されて、低温蓄熱装置1120の配管等が損傷する可能性もある。これに対して、本実施形態では、高温蓄熱装置5の蓄熱量と低温蓄熱装置4の蓄熱量とを個別に調整できるため、このような破損のリスクはない。
「第2実施形態」
 図5は本発明の第2実施形態に係る太陽熱発電プラントの構成図である。図5に示す第2実施形態では、第1熱水ラインL2の低温蓄熱装置4の出口と低温集熱装置1の入口との間に、低温蓄熱装置4を流れた水を加熱する第1熱交換器40を設け、この第1熱交換器40と高温蓄熱装置5の出口側とを三方弁32を介して接続する第2蒸気戻りラインL13と、高温蓄熱装置5から第2蒸気戻りラインL13を流れて第1熱交換器40にて低温蓄熱装置4を流れた水との熱交換により復水された水を昇圧ポンプ18で昇圧して、三方弁31を介して低温集熱装置1に供給する第1復水供給ラインL14と、を備えた点が第1実施形態と相違する。なお、第2実施形態では第2蒸気戻りラインL13を設けたので、第1実施形態で示した第1蒸気戻りラインL12は備えられていない。
 次に、第2実施形態に係る太陽熱発電プラントの運転モードについて説明するが、放熱運転モードは第1実施形態と同様であるため、ここでは蓄熱運転モードについてのみ説明する。図6は、第2実施形態に係る太陽熱発電プラントの蓄熱運転モードの動作説明図である。なお、図6において流体が流れるラインを太線で示し、ライン上の矢印は流体の流れる向きを示している。
 図6に示すように、給水ポンプ17から汽水分離装置2に供給された水あるいは汽水分離装置2で分離された水は、循環ポンプ15により昇圧され、第1熱水ラインL2を流れて低温蓄熱装置4に送られる。低温蓄熱装置4に供給された水(熱水)は、低温蓄熱装置4内の蓄熱媒体と熱交換して蓄熱媒体に放熱した後、ポンプ16にて低温蓄熱装置4での圧力損失分を補ったうえで、さらに加圧され、第1熱交換器40を介して低温集熱装置1に送られる。また、第1熱水ラインL2を流れる水の一部は、低温蓄熱装置4の手前で分流して第2熱水ラインL3を介して低温集熱装置1に送られる。
 低温集熱装置1では太陽熱によって水を加熱し、水-蒸気二相流体を生成する。生成された水-蒸気二相流体は、水-蒸気ラインL4を流れて汽水分離装置2に導入され、汽水分離装置2にて水-蒸気二相流体は水と飽和蒸気に分離される。汽水分離装置2にて分離された飽和蒸気は、飽和蒸気ラインL6を介して高温集熱装置3に導入される。一方、汽水分離装置2にて分離された水は、汽水分離装置2中の水温を上昇させる。この水温上昇分の熱が低温蓄熱装置4に蓄えられる。すなわち、汽水分離装置2→低温蓄熱装置4→第1熱交換器40→低温集熱装置1→汽水分離装置2を水が循環することで、低温集熱装置1にて加熱された水の熱が低温蓄熱装置4にて蓄えられる。
 汽水分離装置2から高温集熱装置3に送られた飽和蒸気は、太陽熱でさらに加熱され、過熱蒸気となる。高温集熱装置3で生成された過熱蒸気は第1主蒸気ラインL7を流れて蒸気タービン6に供給され、蒸気タービン6が駆動される。蒸気タービン6が駆動されることで図示しない発電機が発電する。
 また、高温集熱装置3で生成された過熱蒸気の一部は高温蓄熱装置5に送られ、高温蓄熱装置5内の蓄熱媒体と熱交換されることで、高温蓄熱装置5に熱が蓄えられる。高温蓄熱装置5にて熱交換後の過熱蒸気は、第2蒸気戻りラインL13を流れて第1熱交換器40に導入され、第1熱交換器40において低温蓄熱装置4を流れた水を加熱する。この際、過熱蒸気は第1熱交換器40にて水に戻され、昇圧ポンプ18にて昇圧された後、低温集熱装置1に供給される。
 第2実施形態における低温蓄熱装置4と高温蓄熱装置5の管内流体温度の変化は、第1実施形態と同様であり、何れの蓄熱装置でも単相流である。よって、第2実施形態においても第1実施形態と同様の作用効果を奏する。
「第3実施形態」
 図7は本発明の第3実施形態に係る太陽熱発電プラントの構成図である。図7に示す第3実施形態では、高温蓄熱装置5から第2蒸気戻りラインL13を流れて第1熱交換器40にて低温蓄熱装置4を流れた水との熱交換により復水された水を昇圧ポンプ18で昇圧して、三方弁33を介して循環ポンプ15の入口側に供給する第2復水供給ラインL15を備えた点が第2実施形態と相違する。
 次に、第3実施形態に係る太陽熱発電プラントの運転モードについて説明するが、第2実施形態と概ね同様であるため、ここでは蓄熱運転モードにおいて第2実施形態と異なる動作についてのみ説明する。図8は、第3実施形態に係る太陽熱発電プラントの蓄熱運転モードの動作説明図である。なお、図8において流体が流れるラインを太線で示し、ライン上の矢印は流体の流れる向きを示している。
 図8に示すように、高温蓄熱装置5にて熱交換後の過熱蒸気は、第2蒸気戻りラインL13を流れて第1熱交換器40に導入され、第1熱交換器40において低温蓄熱装置4を流れた水を加熱する。この際、過熱蒸気は第1熱交換器40にて水に戻され、昇圧ポンプ18にて昇圧された後、第2復水供給ラインL15を流れて、循環ポンプ15の入口側に供給される。
 第3実施形態における低温蓄熱装置4と高温蓄熱装置5の管内流体温度の変化は、第1実施形態と同様であり、何れの蓄熱装置でも単相流である。よって、第3実施形態においても第1実施形態と同様の作用効果を奏する。
「第4実施形態」
 図9は本発明の第4実施形態に係る太陽熱発電プラントの構成図である。図9に示す第4実施形態では、第1熱水ラインL2の循環ポンプ15と低温蓄熱装置4との間に第2熱交換器41を設け、高温蓄熱装置5からの過熱蒸気を第3蒸気戻りラインL16を経由して、まず第2熱交換器41に導入している点が第2実施形態と相違する。
 次に、第4実施形態に係る太陽熱発電プラントの運転モードについて説明するが、第2実施形態と概ね同様であるため、ここでは蓄熱運転モードにおいて第2実施形態と異なる動作についてのみ説明する。図10は、第4実施形態に係る太陽熱発電プラントの蓄熱運転モードの動作説明図である。なお、図10において流体が流れるラインを太線で示し、ライン上の矢印は流体の流れる向きを示している。
 図10に示すように、高温蓄熱装置5にて熱交換後の過熱蒸気は、第3蒸気戻りラインL16を流れて、まず第2熱交換器41に導入され、第2熱交換器41において循環ポンプ15から低温蓄熱装置4に向けて流れる水を加熱する。さらに、第2熱交換器41にて熱交換後の蒸気は第4蒸気戻りラインL17を介して第1熱交換器40に導入され、第1熱交換器40において低温蓄熱装置4を流れた水を加熱する。こうして高温蓄熱装置5からの過熱蒸気は、第2熱交換器41、第1熱交換器40を順に流れて復水し、昇圧ポンプ18にて昇圧された後、第3復水供給ラインL18を流れて、低温集熱装置1に供給される。
 次に、蓄熱運転モードにおける低温蓄熱装置4と高温蓄熱装置5の管内流体温度について説明する。図11Aは、高温蓄熱装置5の管内流体温度を示す図、図11Bは循環ポンプ15、第2熱交換器41及び低温蓄熱装置4の管内流体温度を示す図である。なお、図11A、図11Bの横軸に示すA1,B1,C2等は、図10のA1,B1,C2等の位置と対応しており、図11A、図11B中の点線は飽和温度、実線は管内流体温度を示している。なお、図11A、図11Bにおいて、機器を繋ぐ配管の圧力損失は無視している。
 図11Aに示すように、高温蓄熱装置5の管内を流れる過熱蒸気の流体温度は、位置B1~B1’の間で高温蓄熱装置5の蓄熱媒体に熱を奪われて低下するが、飽和温度も同時に低下して、管内流体温度が飽和温度より高い状態を維持する。そのため、高温蓄熱装置5の入口側の位置A1から出口側の位置A1’に至るまで、管内流体は蒸気のままである。すなわち、高温蓄熱装置5内の流体は単相流である。
 一方、図11Bに示すように、低温蓄熱装置4側では、位置B2~位置B2’において循環ポンプ15により汽水分離装置2からの水が昇圧され、飽和温度もこれに伴い上昇する。第2熱交換器41の出入口である位置C2~位置C2’において、管内を流れる水は加熱されるため温度が上昇するが、飽和温度より低い温度に維持されている。そして、第2熱交換器41で加熱された水は低温蓄熱装置4の入口へ供給され、位置D2と位置D2’との間で低温蓄熱装置4の蓄熱媒体に熱を奪われる。そのため、位置D2~位置D2’において管内流体温度は低下する。低温蓄熱装置4の圧力損失により飽和温度も低下するが、管内流体温度は常に飽和温度よりも低く維持されるため、管内流体は水の状態を保つ。すなわち、低温蓄熱装置4内の流体は単相流である。
 よって、第4実施形態においても、低温蓄熱装置4と高温蓄熱装置5の管内を流れる流体が気液二相流になるのを防止できるため、第1実施形態と同様の作用効果を奏する。また、第4実施形態では、第2熱交換器41にて水が加熱される分だけ、第1~第3実施形態と比べて低温蓄熱装置4に高温の熱を蓄えることができる。すなわち、低温蓄熱装置4に蓄熱できる温度域を拡大できる利点がある。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 1 低温集熱装置
 2 汽水分離装置
 3 高温集熱装置
 4 低温蓄熱装置
 5 高温蓄熱装置
 6 蒸気タービン
 7 復水器
 8 給水加熱器
 15 循環ポンプ
 16 ポンプ
 17 給水ポンプ
 18 昇圧ポンプ
 21~33 三方弁
 40 第1熱交換器
 41 第2熱交換器
 50 コントローラ
 L1 給水ライン
 L2 第1熱水ライン
 L3 第2熱水ライン
 L4 水-蒸気ライン
 L5 低温バイパスライン
 L6 飽和蒸気ライン
 L7 第1主蒸気ライン
 L8 第2主蒸気ライン
 L9 高温バイパスライン
 L10 復水ライン
 L11 抽気ライン
 L12 第1蒸気戻りライン
 L13 第2蒸気戻りライン
 L14 第1復水供給ライン
 L15 第2復水供給ライン
 L16 第3蒸気戻りライン
 L17 第4蒸気戻りライン
 L18 第3復水供給ライン

Claims (6)

  1.  水を太陽光の熱で加熱して水-蒸気二相流体を生成する低温集熱装置と、
     前記低温集熱装置で生成された水-蒸気二相流体を水と蒸気とに分離する汽水分離装置と、
     前記汽水分離装置と前記低温集熱装置とを接続し、前記汽水分離装置で分離された水を前記低温集熱装置に供給する第1熱水ラインと、
     前記第1熱水ラインに設けられ、前記汽水分離装置で分離された水との熱交換により得られた熱を蓄える低温蓄熱装置と、
     前記汽水分離装置で分離された蒸気を太陽光の熱で加熱して過熱蒸気を生成する高温集熱装置と、
     蒸気タービンと、
     前記高温集熱装置と前記蒸気タービンとを接続し、前記高温集熱装置で生成された過熱蒸気を前記蒸気タービンに供給する第1主蒸気ラインと、
     前記第1主蒸気ラインから分岐して前記第1主蒸気ラインと合流する第2主蒸気ラインと、
     前記第2主蒸気ラインに設けられ、前記高温集熱装置で生成された過熱蒸気との熱交換により得られた熱を蓄える高温蓄熱装置と、
     前記低温蓄熱装置の出口側と前記汽水分離装置の水-蒸気二相流体入口側とを前記低温集熱装置をバイパスして接続する低温バイパスラインと、
     前記汽水分離装置の蒸気出口側と前記高温蓄熱装置の入口側とを前記高温集熱装置をバイパスして接続する高温バイパスラインと、を備えた太陽熱発電システム。
  2.  請求項1に記載の太陽熱発電システムにおいて、
     前記汽水分離装置に水を供給する給水ポンプと、
     前記給水ポンプの上流側に設けられ、前記給水ポンプに供給する水を加熱する給水加熱器と、
     前記第1熱水ラインから分岐して設けられ、前記汽水分離装置で分離された水を前記低温蓄熱装置をバイパスして前記低温集熱装置に供給する第2熱水ラインと、
     前記第1熱水ラインに設けられ、前記汽水分離装置で分離された水を前記低温集熱装置及び前記低温蓄熱装置に供給する循環ポンプと、
     前記蒸気タービンの抽気側と前記給水加熱器とを接続する抽気ラインと、
     前記第2主蒸気ラインの前記高温蓄熱装置の出口側にて分岐し、前記抽気ラインに合流する第1蒸気戻りラインと、をさらに備えた太陽熱発電システム。
  3.  請求項2に記載の太陽熱発電システムにおいて、
     複数の運転モードにより運転の制御を行うコントローラをさらに備え、
     前記複数の運転モードは、
     前記第1熱水ライン及び前記第2熱水ラインを開け、前記低温バイパスラインを閉じることで、前記汽水分離装置で分離された水の熱を前記低温蓄熱装置で蓄えつつ、前記低温集熱装置にて水-蒸気二相流体を生成して前記汽水分離装置に供給すると共に、前記第1主蒸気ラインを開け、前記第2主蒸気ラインの前記高温蓄熱装置の出口側を閉じ、前記第1蒸気戻りラインを開け、前記高温バイパスラインを閉じることで、前記高温集熱装置にて生成された過熱蒸気の熱を前記高温蓄熱装置にて蓄えつつ、前記高温集熱装置にて生成された過熱蒸気を前記蒸気タービンに供給する蓄熱運転モードと、
     前記第1熱水ラインを開け、前記第2熱水ラインを閉じ、前記低温バイパスラインを開けることで、前記汽水分離装置で分離された水を前記低温蓄熱装置にて加熱して水-蒸気二相流体を生成し、生成された水-蒸気二相流体を前記低温バイパスラインを介して前記汽水分離装置に供給すると共に、前記第1主蒸気ラインを閉じ、前記第2主蒸気ラインを開け、前記高温バイパスラインを開け、前記第1蒸気戻りラインを閉じることで、前記汽水分離装置から前記高温バイパスラインを介して前記高温蓄熱装置に供給された蒸気を前記高温蓄熱装置にて加熱して過熱蒸気を生成し、生成された過熱蒸気を前記第2主蒸気ラインを介して前記蒸気タービンに供給する放熱運転モードと、を含む太陽熱発電システム。
  4.  請求項1に記載の太陽熱発電システムにおいて、
     前記汽水分離装置に水を供給する給水ポンプと、
     前記第1熱水ラインの前記低温蓄熱装置の出口と前記低温集熱装置の入口との間に設けられる第1熱交換器と、
     前記第1熱水ラインから分岐して設けられ、前記汽水分離装置で分離された水を前記低温蓄熱装置をバイパスして前記低温集熱装置に供給する第2熱水ラインと、
     前記第1熱水ラインに設けられ、前記汽水分離装置で分離された水を前記低温集熱装置及び前記低温蓄熱装置に供給する循環ポンプと、
     前記第2主蒸気ラインの前記高温蓄熱装置の出口側にて分岐し、前記第1熱交換器に戻る第2蒸気戻りラインと、
     前記高温蓄熱装置から前記第2蒸気戻りラインを介して前記第1熱交換器に戻された過熱蒸気を、前記第1熱交換器にて復水して、前記低温集熱装置に供給する第1復水供給ラインと、をさらに備えた太陽熱発電システム。
  5.  請求項1に記載の太陽熱発電システムにおいて、
     前記汽水分離装置に水を供給する給水ポンプと、
     前記第1熱水ラインの前記低温蓄熱装置の出口と前記低温集熱装置の入口との間に設けられる第1熱交換器と、
     前記第1熱水ラインから分岐して設けられ、前記汽水分離装置で分離された水を前記低温蓄熱装置をバイパスして前記低温集熱装置に供給する第2熱水ラインと、
     前記第1熱水ラインに設けられ、前記汽水分離装置で分離された水を前記低温集熱装置及び前記低温蓄熱装置に供給する循環ポンプと、
     前記第2主蒸気ラインの前記高温蓄熱装置の出口側にて分岐し、前記第1熱交換器に戻る第2蒸気戻りラインと、
     前記高温蓄熱装置から前記第2蒸気戻りラインを介して前記第1熱交換器に戻された過熱蒸気を、前記第1熱交換器にて復水して、前記循環ポンプの入口側に供給する第2復水供給ラインと、をさらに備えた太陽熱発電システム。
  6.  請求項1に記載の太陽熱発電システムにおいて、
     前記汽水分離装置に水を供給する給水ポンプと、
     前記第1熱水ラインの前記低温蓄熱装置の出口と前記低温集熱装置の入口との間に設けられる第1熱交換器と、
     前記第1熱水ラインから分岐して設けられ、前記汽水分離装置で分離された水を前記低温蓄熱装置をバイパスして前記低温集熱装置に供給する第2熱水ラインと、
     前記第1熱水ラインに設けられ、前記汽水分離装置で分離された水を前記低温集熱装置及び前記低温蓄熱装置に供給する循環ポンプと、
     前記第1熱水ラインの前記循環ポンプと前記低温蓄熱装置の入口との間に設けられる第2熱交換器と、
     前記第2主蒸気ラインの前記高温蓄熱装置の出口側にて分岐し、前記第2熱交換器に戻る第3蒸気戻りラインと、
     前記高温蓄熱装置から前記第3蒸気戻りラインを介して前記第2熱交換器に戻された過熱蒸気を、前記第2熱交換器にて熱交換して前記第1熱交換器に供給する第4蒸気戻りラインと、
     前記第4蒸気戻りラインから供給された蒸気を、前記第1熱交換器にて復水して、前記低温集熱装置に供給する第3復水供給ラインと、をさらに備えた太陽熱発電システム。
PCT/JP2018/036937 2017-10-31 2018-10-02 太陽熱発電システム WO2019087657A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/638,529 US20200370543A1 (en) 2017-10-31 2018-10-02 Solar thermal power generation system
JP2019550914A JP6923667B2 (ja) 2017-10-31 2018-10-02 太陽熱発電システム
EP18873240.8A EP3705720A4 (en) 2017-10-31 2018-10-02 SOLAR THERMAL ENERGY GENERATION PLANT
AU2018358974A AU2018358974B2 (en) 2017-10-31 2018-10-02 Solar thermal power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-211240 2017-10-31
JP2017211240 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019087657A1 true WO2019087657A1 (ja) 2019-05-09

Family

ID=66332527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036937 WO2019087657A1 (ja) 2017-10-31 2018-10-02 太陽熱発電システム

Country Status (5)

Country Link
US (1) US20200370543A1 (ja)
EP (1) EP3705720A4 (ja)
JP (1) JP6923667B2 (ja)
AU (1) AU2018358974B2 (ja)
WO (1) WO2019087657A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145106A1 (ja) * 2019-01-07 2020-07-16 株式会社Ihi 蒸気供給装置及び乾燥システム
CN113669715A (zh) * 2021-10-22 2021-11-19 杭州锅炉集团股份有限公司 一种适用于再热机组蒸汽加热熔盐的储能调峰系统
CN117028960A (zh) * 2023-09-27 2023-11-10 国网江苏省电力有限公司常州供电分公司 一种带储热的闭式循环蒸汽发生装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114542408A (zh) * 2020-11-25 2022-05-27 杭州明晟新能源科技有限公司 一种塔式太阳能高低温混合吸热发电系统
CN112539145A (zh) * 2021-01-12 2021-03-23 中国科学技术大学 基于显热和相变潜热复合储能的太阳能热发电系统
EP4086534A1 (en) * 2021-05-07 2022-11-09 Siemens Gamesa Renewable Energy GmbH & Co. KG System for storing thermal energy and method for operating the system
TWI834172B (zh) * 2021-07-19 2024-03-01 營嘉科技股份有限公司 蓄熱儲壓循環發電系統及其控制方法
CN113700622B (zh) * 2021-08-26 2022-08-05 西安交通大学 配置蒸汽储热罐的光热电站旁路蒸汽回收系统及运行方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125642A (ja) * 1974-08-28 1976-03-02 Hitachi Ltd Taiyonetsuhatsudensochi
JPS57146067A (en) * 1981-03-06 1982-09-09 Agency Of Ind Science & Technol Solar heat-utilizing power plant
JP2013242070A (ja) * 2012-05-18 2013-12-05 Toshiba Corp 蒸気発生システム
WO2014014027A1 (ja) * 2012-07-17 2014-01-23 バブコック日立株式会社 太陽熱発電システム
JP2016070202A (ja) * 2014-09-30 2016-05-09 三菱日立パワーシステムズ株式会社 蓄熱式発電プラントおよびその運転方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093354A2 (en) * 2011-01-03 2012-07-12 Brightsource Industries (Israel) Ltd. Thermal storage system and methods
WO2012107811A2 (en) * 2011-02-08 2012-08-16 Brightsource Industries (Israel) Ltd. Solar energy storage system including three or more reservoirs
CN107218185A (zh) * 2017-06-28 2017-09-29 西安交通大学 一种基于分级蓄热的碟式太阳能直接蒸汽热发电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125642A (ja) * 1974-08-28 1976-03-02 Hitachi Ltd Taiyonetsuhatsudensochi
JPS57146067A (en) * 1981-03-06 1982-09-09 Agency Of Ind Science & Technol Solar heat-utilizing power plant
JP2013242070A (ja) * 2012-05-18 2013-12-05 Toshiba Corp 蒸気発生システム
WO2014014027A1 (ja) * 2012-07-17 2014-01-23 バブコック日立株式会社 太陽熱発電システム
JP2016070202A (ja) * 2014-09-30 2016-05-09 三菱日立パワーシステムズ株式会社 蓄熱式発電プラントおよびその運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705720A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145106A1 (ja) * 2019-01-07 2020-07-16 株式会社Ihi 蒸気供給装置及び乾燥システム
CN113669715A (zh) * 2021-10-22 2021-11-19 杭州锅炉集团股份有限公司 一种适用于再热机组蒸汽加热熔盐的储能调峰系统
CN113669715B (zh) * 2021-10-22 2022-01-07 杭州锅炉集团股份有限公司 一种适用于再热机组蒸汽加热熔盐的储能调峰系统
CN117028960A (zh) * 2023-09-27 2023-11-10 国网江苏省电力有限公司常州供电分公司 一种带储热的闭式循环蒸汽发生装置
CN117028960B (zh) * 2023-09-27 2024-01-02 国网江苏省电力有限公司常州供电分公司 一种带储热的闭式循环蒸汽发生装置

Also Published As

Publication number Publication date
AU2018358974A9 (en) 2021-05-20
EP3705720A1 (en) 2020-09-09
US20200370543A1 (en) 2020-11-26
JP6923667B2 (ja) 2021-08-25
AU2018358974B2 (en) 2021-05-20
EP3705720A4 (en) 2021-06-30
JPWO2019087657A1 (ja) 2020-12-03
AU2018358974A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2019087657A1 (ja) 太陽熱発電システム
US9745964B2 (en) Steam power plant having solar collectors
US8701411B2 (en) Heating medium supply system, integrated solar combined cycle electric power generation system and method of controlling these systems
US10247174B2 (en) Solar thermal power generation system and solar thermal power generation method
CN101821502B (zh) 太阳能热发电设备
JP7308042B2 (ja) 蓄熱装置、発電プラントおよびファストカットバック時の運転制御方法
AU2008228211B2 (en) Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant
US20080034757A1 (en) Method and system integrating solar heat into a regenerative rankine cycle
EP2000669A2 (en) Solar cencentration plant for the production of superheated steam
EP0290220A1 (en) Reheat type waste heat recovery boiler and power generation plant using the same
JP6302481B2 (ja) 集光型太陽熱発電プラント及び方法
JP2014092086A (ja) 太陽熱発電プラント及び太陽熱蓄熱放熱装置
US20130111902A1 (en) Solar power system and method of operating a solar power system
CN102859190A (zh) 太阳能热力发电设备
EP2871359B1 (en) Auxiliary steam supply system in solar power plants
CN105518384B (zh) 用于防止塔型聚焦太阳能电站的锅炉中蒸干的方法和装置
TW202113285A (zh) 發電廠及發電廠的剩餘能量蓄熱方法
JP2013245685A (ja) 蒸気ランキンサイクルソーラープラントおよび当該プラントの操作方法
JP6600605B2 (ja) 太陽熱発電システム及び太陽熱発電方法
JP6419512B2 (ja) 蓄熱式発電プラントおよびその運転方法
WO2017078134A1 (ja) 太陽熱集熱システムおよびその運転方法
ITFI20130238A1 (it) "power plants with an integrally geared steam compressor"
JP6640609B2 (ja) 太陽熱発電システム及び太陽熱発電方法
JPS6160242B2 (ja)
WO2013013682A1 (en) Arrangement and method for load change compensation at a saturated steam turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018358974

Country of ref document: AU

Date of ref document: 20181002

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018873240

Country of ref document: EP

Effective date: 20200602