WO2017078134A1 - 太陽熱集熱システムおよびその運転方法 - Google Patents

太陽熱集熱システムおよびその運転方法 Download PDF

Info

Publication number
WO2017078134A1
WO2017078134A1 PCT/JP2016/082791 JP2016082791W WO2017078134A1 WO 2017078134 A1 WO2017078134 A1 WO 2017078134A1 JP 2016082791 W JP2016082791 W JP 2016082791W WO 2017078134 A1 WO2017078134 A1 WO 2017078134A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
water
heating device
temperature heating
steam
Prior art date
Application number
PCT/JP2016/082791
Other languages
English (en)
French (fr)
Inventor
康平 篠崎
丸本 隆弘
小山 一仁
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to AU2016349191A priority Critical patent/AU2016349191B2/en
Priority to ES201890026A priority patent/ES2681143B2/es
Priority to US15/770,555 priority patent/US10775079B2/en
Priority to JP2017549120A priority patent/JP6803846B2/ja
Publication of WO2017078134A1 publication Critical patent/WO2017078134A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/06Steam superheating characterised by heating method with heat supply predominantly by radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • F24S20/25Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants using direct solar radiation in combination with concentrated radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a solar heat collection system that collects solar heat to generate steam from water and a method of operating the same.
  • Patent Document 1 is known as a solar heat collecting system used in a solar thermal power plant.
  • a low temperature heating device for heating water supplied from a water supply pump with the heat of sunlight, and a steam water separation device for separating a water-steam two-phase fluid generated by the low temperature heating device into water and steam
  • a high temperature heating device for heating the steam separated by the brackish water separation device with the heat of sunlight
  • a circulation pump for supplying water separated by the brackish water separation device to the low temperature heating device
  • the composition of is described (see summary).
  • Patent Document 1 As a low temperature heating device, a line condensing type such as a trough type or a Fresnel type is used, and as a high temperature heating device, a tower type heat collecting device is used. According to Patent Document 1, the tower-type light collecting and collecting apparatus can be miniaturized, so that the height of the tower can be reduced to reduce the construction cost. Further, since the light collection accuracy required for the heliostat is also proportional to the tower height (distance), it is possible to reduce the cost required to keep the light collection accuracy at a high level, such as angle adjustment during construction and operation.
  • FIG. 6 (a) to 6 (c) are diagrams showing (a) direct solar radiation amount on a fine day, (b) low temperature heating device outlet fluid temperature, and (c) steam water separating device outlet vapor flow rate, respectively.
  • FIG. 6 (a) the amount of direct solar radiation increases with sunrise, and the water supplied into the heat transfer tube of the low temperature heating device is heated, and as shown in FIG. 6 (b) The temperature rises.
  • the low-temperature heating device outlet fluid temperature reaches a saturation temperature, and only when it becomes a water-steam biphasic fluid, steam is supplied from the steam separator to the high-temperature heating device as shown in FIG. 6 (c).
  • the time until feed water reaches the saturated steam temperature between AA 'in FIG.
  • FIG. 7 is a view for explaining the heat collection principle of the low temperature heating device and the high temperature heating device.
  • the low-temperature heating device heats the working medium in the heat transfer tube by condensing the reflected light of the mirror installed horizontally on the horizontal heat transfer tube installed above the mirror Method.
  • the mirror installed horizontally with the sun faces the light reception area, that is, the heat collection efficiency is maximized.
  • sunlight is incident obliquely and the net light receiving area decreases, so the heat collection efficiency decreases.
  • FIG. 7 (b) shows the heat collection principle of the high-temperature heating device.
  • a heliostat in which the sun and the mirror face each other in winter and the heat collection efficiency is improved.
  • the variation of the heat collection efficiency in the year tends to be small when the heat collection efficiency which changes individually of several hundreds to several thousand pieces of all heliostats is viewed in total.
  • FIG. 8 is a diagram for explaining the relationship between the heat collection efficiency and the latitude of the low temperature heating device and the high temperature heating device.
  • the variation of the heat collection efficiency is small in both the low temperature heating device and the high temperature heating device. That is, even if the equipment size of the low-temperature heating device and the high-temperature heating device is determined based on a certain design point, for example, summer solstice, the heat collection efficiency and the correlation are correlated There is no such thing as a significant reduction in heat collection.
  • the solar altitude in winter decreases as the latitude increases, and the heat collection efficiency of the low-temperature heating device decreases as shown in FIG. 7 (a).
  • the equipment size of the low-temperature heating device and the high-temperature heating device is determined on the basis of the summer solstice, the flow rate of saturated steam in winter decreases, and the collection of the high temperature heating devices The amount of heat has to be suppressed and the heliostat has to stand by. Therefore, in the prior art, there is a problem that the facility operation rate decreases.
  • a low-temperature collector such as trough type or fresnel type is originally a reflection and collection member (mirror) installed at a relatively short distance (focal length) from the collector tube.
  • the high temperature heat collection device is installed at a large distance (large focal distance) from the heat transfer tube panel. This is due to the difference in design that the reflected light from the heliostat is designed to be received by the heat collecting surface of the heat transfer tube panel which spreads vertically and horizontally.
  • the present invention has been made in view of the above-described circumstances, and a first object of the present invention is to shorten the time required for steam temperature generated by a low-temperature heating device in a solar heat collecting system to reach saturated steam temperature.
  • the second object of the present invention is to improve the imbalance between the heat collecting balance of the low temperature heating device and the high temperature heating device depending on the season.
  • a solar heat collecting system comprises a low temperature heating device for heating supplied water with the heat of sunlight to generate a vapor, and water produced by the low temperature heating device.
  • a steam separation apparatus for separating a steam two-phase fluid into water and steam, and high temperature heating the steam separated by the steam separation apparatus with heat of sunlight reflected by a plurality of heliostats to generate superheated steam
  • the low-temperature heating device is disposed linearly along a longitudinal direction of a first heat collecting tube disposed linearly and a first heat collecting tube, and A first reflecting member that reflects light from the first heat collecting pipe, condensing light reflected from the first reflecting member onto the first heat collecting pipe, and heating water flowing through the first heat collecting pipe;
  • a plurality of Helios and a plurality of second collectors arranged linearly.
  • the present invention is directed to a low temperature heating device for heating supplied water with the heat of sunlight to generate steam, and a water-vapor two-phase fluid generated by the low temperature heating device.
  • a method of operating a solar heat collecting system, the low temperature heating device being in series with a first heat collector disposed downstream of the flow of water, and the first heat collector upstream; And a second heat collector disposed at a position to allow water to flow to the first heat collector via the second heat collector for a predetermined period of time, and
  • the second sunlight is generated by using at least a part of a plurality of heliostats. So as to reflect the heat sink, after the lapse of the period, characterized in that the water has to flow into the second bypass to the first heat collector the heat collector.
  • the present invention it is possible to shorten the time until the steam temperature generated by the low temperature heating device reaches the saturated steam temperature. Further, according to the present invention, it is possible to improve the imbalance of the heat collection balance between the low temperature heating device and the high temperature heating device depending on the season.
  • the subject except having mentioned above, a structure, and an effect are clarified by description of the following embodiment.
  • FIG. 1 is a schematic configuration diagram of a solar heat collecting system according to an embodiment of the present invention.
  • the solar heat collecting system 1 is used to supply superheated steam to a steam turbine of a solar thermal power plant.
  • the solar thermal power plant is supplied to a steam turbine driven by the superheated steam generated by the high temperature heating device 4 of the solar heat collecting system 1, a generator generating electric power by the power of the steam turbine, and the steam turbine
  • reference numeral 2 denotes a low temperature heating device for heating water by the heat of sunlight
  • reference numeral 3 denotes a brackish water separation device for separating a water-steam two-phase fluid generated by the low temperature heating device 2 into water and steam
  • reference numeral 4 Is a high temperature heating device for heating steam with the heat of sunlight
  • 5 is a heliostat
  • 6 is a sun
  • 7 is a sunlight
  • 10 is a water supply pump
  • 11 is a circulating pump
  • 15 is a temperature detector
  • symbol 20 is a control apparatus (heliostat control apparatus).
  • a pipe connecting each component is described as a line ⁇ - ⁇ .
  • ⁇ ⁇ the symbol is, for example, line 2-3 represents a pipe connecting the low temperature heating device 2 and the brackish water separating device 3.
  • the water supplied from the water supply pump 10 is sent to the low temperature heating device 2 through the line 10-2.
  • the heat of the sunlight 7 heats the water to generate a water-vapor two-phase fluid.
  • the generated water-vapor two-phase fluid is sent to the brackish water separator 3 through the line 2-3.
  • the water-steam two-phase fluid introduced into the brackish water separation device 3 is separated into water and steam by the brackish water separation device 3.
  • the separated saturated vapor is sent to the high temperature heating device 4 through the line 3-4.
  • the saturated vapor introduced into the high-temperature heating device 4 is further heated by the heat of the sunlight 7 reflected by the heliostat 5 in the high-temperature heating device 4 to generate superheated vapor.
  • the water separated by the brackish water separator 3 is sent to the circulation pump 11 through the line 3-11.
  • the water pressurized by the circulation pump 11 is sent to the inlet of the low temperature heating device 2 through the line 11-2.
  • the high temperature heating device 4 is a so-called tower type light collecting and collecting device, and specifically, the heat transfer tube panel 8 is installed on a tower 9 having a predetermined height (about 30 to 100 m) .
  • a large number of heliostats 5 are arranged in various directions on the ground surface, and while tracking the movement of the sun 6, the heliostat 5 group condenses on the high temperature heating device 4 (heat transfer tube panel 8), Superheated steam is produced.
  • the angle of each heliostat 5 is controlled by the control device 20. And although it mentions in detail later, the angle is controlled by control device 20 so that low temperature heating device 2 can be made to reflect sunlight for a part (code 5a) of heliostat 5 group.
  • the low temperature heating device 2 is a so-called Fresnel type light collecting / collecting device, and more specifically, a large number of flat or slightly curved light collecting mirrors 12 are arranged by changing the angle little by little.
  • the heat transfer tubes 13 are arranged horizontally in a planar shape several meters above the light mirrors 12. The sunlight 7 is condensed on the heat transfer tubes 13 by the collection mirror 12 group, and the water flowing in each heat transfer tube 13 is heated, whereby a water-vapor two-phase fluid is generated.
  • a heat transfer tube is disposed above the inner peripheral curved surface of the light collecting mirror extended in a bowl shape, instead of the low temperature heating device 2 consisting of a Fresnel type light collecting / collecting device, It is also possible to use a trough-type condensing / collecting device that generates water vapor by heating water flowing in the heat transfer tube by condensing the heat transfer tube with a condensing mirror.
  • the controller 20 receives data from the temperature detector 15 that detects the temperature at the outlet of the low temperature heating device 2. For example, during a period (predetermined period) in which the solar heat collecting system 1 operates and the temperature of the steam detected by the temperature detector 15 reaches the saturated steam temperature (predetermined period), the control device 20 The angle control is performed so that the heliostat 5a installed on the side closer to the low temperature heating device 2 is directed to the heat transfer tube 13 of the low temperature heating device 2. Thereby, since the sunlight 7 can be reflected by the heliostat 5a and collected in the heat transfer tube 13, the generation time of the saturated vapor by the low temperature heating device 2 can be shortened. Then, when the vapor temperature detected by the temperature detector 15 reaches the saturated vapor temperature, the control device 20 controls the angle so that the heliostat 5a directed to the low temperature heating device 2 is directed to the high temperature heating device 4 Yes (return to original position).
  • controlling the angle of the heliostat 5a installed on the side closer to the low temperature heating device 2 in the heliostat 5 group is lower temperature heating than controlling the angle of the heliostat on the far side. It is because the condensing efficiency to the heat exchanger tube 13 of the apparatus 2 is high.
  • the saturated steam is not supplied to the high temperature heating device 4 until the saturated steam is generated by the low temperature heating device 2, and the high temperature heating device 4 is in the standby state. It is not necessary to condense sunlight 7 on the heat transfer tube panel 8 of the high temperature heating device 4. Therefore, in the present embodiment, the low temperature heating is achieved by condensing the sunlight 7 on the low temperature heating device 2 using a part of the heliostat 5a excluding the heliostat 5 necessary for preheating the high temperature heating device 4. The generation time of saturated vapor by the device 2 is shortened.
  • Data from the temperature detector 16 that detects the steam outlet temperature of the high-temperature heating device 4 is input to the controller 20.
  • a predetermined temperature for example, 550.degree. C.
  • the low temperature heating device 2 If the flow rate of saturated steam does not reach the rated flow rate, it depends on the number of heliostats 5 to be prepared and the conditions of solar radiation, but even if not all heliostats 5 are directed to the high temperature heating device 4, the predetermined temperature Can maintain
  • the angle control is performed so that, for example, the heliostat 5a in the standby state not facing the high temperature heating device 4 among the heliostat 5 group is directed to the heat transfer tube 13 of the low temperature heating device 2.
  • the sunlight 7 can be reflected by the heliostat 5a and collected in the heat transfer tube 13, the steam flow rate of the saturated steam generated by the low temperature heating device 2 can be increased.
  • control device 20 causes the heliostat 5 a directed to the low temperature heating device 2 to the high temperature heating device 4. Control the angle to face.
  • the sunlight 7 is condensed on the low temperature heating device 2 using a part of the heliostat 5a except for the heliostat 5 required to maintain the steam outlet temperature of the high temperature heating device 4 By doing this, the saturated vapor flow rate from the low temperature heating device 2 can be increased.
  • FIG. 2 compares the relationship between (a) direct solar radiation on a fine day, (b) fluid temperature at the low temperature heater outlet, and (c) steam flow at the outlet of the steam water separator according to the present invention and the prior art.
  • FIG. 3 is a figure for demonstrating the heat collection efficiency of the low temperature heating apparatus by this invention.
  • the time taken for the fluid temperature at the outlet of the low-temperature heating device 2 to reach the saturated vapor temperature is reduced from A-A 'to A-B because heat collection by the heliostat 5a is obtained. It can be understood that Although the conditions change depending on the number of heliostats 5a used and the scale of power generation etc., if the time to saturated steam generation is designed to be shortened by 20 to 30 minutes, the utilization rate of heliostat at a daylighting time of 8 hr / day Increases 5 to 8% points.
  • the heat collection efficiency of the low temperature heating apparatus 2 by this invention is shown in FIG.
  • the facility scale of the low-temperature heating device 2 and the high-temperature heating device 4 is determined based on the summer solstice, and the waiting heliostat 5a is heated according to the amount of heating the low-temperature heating device 2 and the flow rate of saturated steam increased by the heating
  • the heat collection efficiency of the low-temperature heating device 2 can be increased by about 1.05-1.10 times in spring, and by about 1.40 times-1.45 times in winter by distributing the heating device 4 in proportions for heating It becomes possible. That is, according to the present invention, by using the heliostat 5a on standby, heat can be efficiently collected even when installed in a high latitude area.
  • FIGS. 4 and 5 are diagrams showing modifications of the low-temperature heat collector applicable to the present invention.
  • the low temperature heating device 2a shown in FIG. 4 (a) has a configuration in which the reflection light of the heliostat 5a is condensed on the heat transfer tube 13 which is the same as the horizontal heat transfer tube. Thus, if the horizontal heat transfer tube can also collect the reflected light of the heliostat 5a, no additional heat transfer tube is necessary.
  • the low temperature heating device 2b shown in FIG. 4 (b) has a configuration in which a heat transfer tube 13 capable of collecting the reflected light of the heliostat 5a is provided downstream of the horizontal heat transfer tube.
  • the low-temperature heating device 2c shown in FIG. 4 (c) has a configuration in which a heat transfer pipe capable of collecting the reflected light of the heliostat 5a is provided on the upstream side of the horizontal heat transfer pipe.
  • the condensing portion by the heliostat 5a may be any position of the low temperature heating device 2 as long as the working medium flows.
  • two or more heat transfer tubes 13 may be a target for collecting the reflected light from the heliostat 5a.
  • the low temperature heating device 2e shown in FIG. 5A has a heat transfer tube panel 25 installed between two horizontal heat transfer tubes, and the heat transfer tube panel 25 condenses the reflected light of the heliostat 5a.
  • the low-temperature heating device 2f shown in FIG. 5B has a configuration in which the heat transfer pipe panel 25 is installed on the downstream side of the horizontal heat transfer pipe, and the reflected light of the heliostat 5a is collected on the heat transfer pipe panel 25.
  • the low temperature heating device 2g shown in FIG. 5 (c) has a configuration in which the heat transfer tube panel 25 is horizontally placed opposite to the low temperature heating device 2f and disposed upstream of the heat transfer tube.
  • the low temperature heating device 2h shown in FIG. 5 (d) arranges the heat transfer tube 13 and the heat transfer tube panel 25 in series, and condenses the reflected light from the heliostat 5a on the heat transfer tube 13 and the heat transfer tube panel 25. It is a structure.
  • FIG. 5 (e) shows a configuration in which the reflected light of the heliostat 5a is condensed on the heat transfer tube panel 25 connected in parallel with the horizontal heat transfer tube.
  • FIG. 9 is a schematic configuration diagram of a solar heat collecting system according to a second embodiment of the present invention.
  • symbol is attached
  • the solar heat collecting system 100 according to the second embodiment receives the sunlight 7 by the collecting mirror 12 and collects the reflected light from the collecting mirror 12 in the heat collecting tube 13.
  • a saturated steam generation system that raises the water temperature in the steam drum (brackish water separator) 3 while circulating water in the heat collection pipe 13 by the circulation pump 11, and a superheater of the tower 9 (saturated steam generated from the steam drum 3)
  • the heat pipe panel 8 is composed of a superheated steam generating system which causes the superheater 8 to irradiate the reflected light of the sunlight 7 received by the heliostat 5 to generate the superheated steam.
  • a first linear condensing collector (first collector) 51 and a second linear condensing collector (second collector) as low-temperature heating devices are used.
  • a heat collector) 52 is provided.
  • the first linear light collecting type collector 51 includes a plurality of vacuum double-tube type heat collecting tubes (first heat collecting tubes) 13 linearly arranged, and each vacuum double-tube type heat collecting tube 13 (hereinafter referred to as And a plurality of collecting mirrors (first reflecting members) 12 linearly arranged along the longitudinal direction of the heat collecting pipe 13 and reflecting sunlight to the heat collecting pipe 13; The reflected light from the above is condensed to each heat collecting pipe 13 to heat the water flowing through each heat collecting pipe 13.
  • the plurality of heat collection tubes 13 are arranged in a plane at a position several meters above the collection mirror 12 group.
  • the number of heat collecting tubes 13 and the number of collecting mirrors 12 can be appropriately determined according to the specification.
  • the second linear light collecting type collector 52 has a plurality of vacuum double-tube type heat collecting pipes (second heat collecting pipes) 30.
  • the plurality of vacuum double-tube type heat collecting tubes 30 (hereinafter referred to as the heat collecting tubes 30) are arranged in the vertical direction and arranged in a plane (panel shape) in a state of being horizontally directed.
  • the heat collecting tubes 30 are connected in series, and the plurality of heat collecting tubes 30 formed in a planar shape receive the reflected light from the heliostat 5a on standby, whereby the water flowing in the heat collecting tube 30 is It is heated.
  • the number of heat collection tubes 30 can be appropriately determined according to the specification.
  • a vacuum double pipe type heat collecting pipe having a tube outer diameter of 70 mm and a glass pipe outer diameter of 125 mm can be applied as the heat collecting pipe 13 and the heat collecting pipe 30, for example.
  • the second linear light collecting collector 52 is installed in a space portion located between the tower 9 and the heliostat 5.
  • the second linear light collector 52 is attached to the support structure of the tower 9 in consideration of the focal length from the heliostat 5, but between the tower 9 and the heliostat 5
  • a second support member may be provided in the space of the second light collecting collector 52 attached to the second support member.
  • the secondary mirror (the opposite side to the heliostat 5) of the heat collection tube 30 is used to increase the light collection efficiency by secondarily reflecting the reflected light leaked from the gap between the heat collection tubes 30.
  • the second reflective member 55 is provided, the auxiliary mirror may not necessarily be provided.
  • the first linear condensing collector 51 and the second linear collecting collector 52 are connected in series via the two three-way valves 31 and 32 as a flow path switching mechanism.
  • the second linear light collecting type collector 52 is disposed on the upstream side of the flow
  • the first linear light collecting type collector 51 is disposed on the downstream side.
  • the inlet of the heat collection tube 30 is connected to the outlet side of the circulation pump 11 via the three-way valve 31.
  • the outlet of the heat collecting pipe 30 is connected to the inlet side of the heat collecting pipe 13 via the three-way valve 32, and one ends of the remaining ports of the three-way valve 31 and the three-way valve 32 are connected by piping.
  • a steam drum water temperature gauge 33 for measuring the water temperature in the steam drum 3 is installed on the steam drum 3, and an open / close signal based on an instruction value of the steam drum water temperature gauge 33 is input to the two three-way valves 31, 32. ing.
  • the operation of the solar heat collecting system according to the second embodiment configured as described above will be described.
  • first start up the saturated steam generation system first start up the saturated steam generation system.
  • the open direction of the three-way valve 31 is from the outlet of the circulation pump 11 toward the inlet of the heat collection tube 30 in the direction of arrow A in the figure until the indicated value of the steam drum water temperature gauge 33 reaches the target temperature (eg 300 ° C.)
  • the opening direction of the three-way valve 32 is set so that the fluid water in the pipe flows from the outlet of the heat collecting pipe 30 to the inlet of the heat collecting pipe 13, the three-way valve 31 and the three-way valve 32. Fluid is not flowing (first flow path).
  • the circulation pump 11 When the circulation pump 11 is driven in this state, the water transferred by the circulation pump 11 returns to the circulation pump 11 sequentially from the three-way valve 31 through the heat collecting pipe 30, the three-way valve 32, the heat collecting pipe 13, and the steam drum 3. At this time, the heat collection tube 30 is irradiated with the reflected light 34 of the heliostat 5a in the standby state, the water temperature in the heat collection tube 30 is increased, and the hot water is guided into the heat collection tube 13 and the sunlight 7 is irradiated. The water temperature in the heat collecting tube 13 is raised by the reflected light from the collecting mirror 12.
  • the saturated steam in the steam drum 3 can be supplied to the superheater 8, and the reflected light of the heliostat 5 is irradiated to the superheater 8 Then, the irradiation of the heliostat 5a in standby mode is switched from the heat collection pipe 30 to the superheater 8 to generate superheated steam. Thereafter, the three-way valves 31 and 32 are switched to separate the heat collecting pipe 13 and the heat collecting pipe 30 from each other in fluid.
  • the hot water sent from the circulation pump 11 is not transferred to the heat collection pipe 30 but is connected to the heat collection pipe 13 via piping connected to the three-way valve 32 after the three-way valve 31 in the direction of arrow B in the figure.
  • Direct flow (second flow path).
  • the heat collection amount of the entire low-temperature heating device (line-condensing heat collector) at the start of the solar heat collecting system is increased, Saturated steam can be generated quickly, and start-up time can be shortened.
  • the reflected light from the heliostat 5a in the waiting state can be efficiently irradiated to the heat collecting pipe 30, and Since the reflected light from the heliostat 5a can be irradiated over the entire heat collecting tube 30, it is easy to create a homogeneous heating condition, and it is also easy to suppress a local temperature rise such as a hot spot.
  • the low temperature is achieved by the reflected light from the condensing mirror 12 of the low temperature heating device 2 and the reflected light from the heliostat 5a on standby. Since the water supplied to the heating device 2 can be heated, the time for generating the saturated vapor in the low temperature heating device 2 is shortened. Thus, the operation efficiency of the solar heat collecting system 1 is improved. Further, even in the high latitude region, by using the heliostat 5a in the standby state, the heat collection balance between the low temperature heating device 2 and the high temperature heating device 4 becomes unbalanced depending on the season, but it is improved It is possible to prevent the efficiency from being reduced.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • the three-way valves 31 and 32 are merely described as an example of the combination of the flow path switching mechanism, and for example, a plurality of flow rate control valves are bypassed on the flow path via the heat collection pipe 30 and the heat collection pipe 30 You may each provide on a flow path.
  • each flow rate control valve by controlling the opening degree of each flow rate control valve, it is possible to adjust the flow rate of the to-be-heated fluid flowing to the heat collection pipe 30 while flowing the to-be-heated fluid (water) at the full flow rate to the heat collection pipe 13. For this reason, immediately after the start of the solar heat collection system 100, while flowing the heated fluid of all flow rates to the heat collecting pipe 13 and the heat collecting pipe 30, the flow rate of the heated fluid flowing to the heat collecting pipe 30 gradually with the lapse of time after the start. It is possible to make adjustments such as reducing the

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

低温加熱装置で生成される蒸気温度が飽和蒸気温度に達するまでの時間を短縮する。供給された水を太陽光の熱で加熱して蒸気を生成する低温加熱装置と、低温加熱装置で生成された水-蒸気二相流体を水と蒸気とに分離する汽水分離装置と、汽水分離装置で分離された蒸気を複数のヘリオスタットで反射させた太陽光の熱で加熱して、過熱蒸気を生成する高温加熱装置と、を備え、低温加熱装置は、線状に配置された第一の集熱管、および前記第一の集熱管の長手方向に沿って線状に配置され、太陽光を第一の集熱管に反射させる第一の反射部材を有し、第一の反射部材からの反射光を第一の集熱管に集光して第一の集熱管を流れる水を加熱する第一の集熱器と、線状に配置された第二の集熱管を有し、複数のヘリオスタットの少なくとも一部からの反射光を受光して、第二の集熱管を流れる水を加熱する第二の集熱器と、を含む。

Description

太陽熱集熱システムおよびその運転方法
 本発明は、太陽熱を集熱して水から蒸気を生成する太陽熱集熱システムおよびその運転方法に関する。
 例えば太陽熱発電プラントに用いられる太陽熱集熱システムとして、特許文献1が公知である。特許文献1には、「給水ポンプから供給される水を太陽光の熱で加熱する低温加熱装置と、低温加熱装置によって生成した水-蒸気二相流体を水と蒸気とに分離する汽水分離装置と、汽水分離装置で分離された蒸気を太陽光の熱で加熱する高温加熱装置と、汽水分離装置で分離した水を低温加熱装置に供給する循環ポンプを備えたことを特徴とする太陽熱ボイラ」の構成が記載されている(要約参照)。
 特許文献1の構成は、低温加熱装置としてトラフ式やフレネル式等の線集光タイプのものが用いられ、高温加熱装置としてタワー式の集熱装置が用いられている。特許文献1によれば、タワー式の集光集熱装置を小型化できるので、タワー高さを低減して建設コストを削減できる。また、ヘリオスタットに要求される集光精度もタワー高さ(距離)に比例するから、建設時および運用時の角度調整等、集光精度を高度に保つために要するコストを低減できる。
国際公開第2013/002054号
 しかしながら、特許文献1に記載された従来技術では、過熱蒸気の生成に十分な飽和蒸気が得られるようになるまで(汽水分離装置により蒸気が分離するまで)高温加熱装置による蒸気の加熱ができない。すなわち、ヘリオスタットが太陽光を集光できる状態にありながら、作動媒体である蒸気が高温加熱装置内に無いため集熱(熱回収)ができない課題がある。これについて図6を用いて説明する。
 図6(a)~(c)はそれぞれ、(a)晴天日の直達日射量、(b)低温加熱装置出口流体温度、(c)汽水分離装置出口蒸気流量、を示した図である。図6(a)に示すように、日の出とともに直達日射量が増加し、低温加熱装置の伝熱管内に供給された水は加熱され、図6(b)に示すように低温加熱装置出口の流体温度が上昇する。この低温加熱装置出口流体温度が飽和温度に達し、水-蒸気二相流体になってはじめて、図6(c)に示すように、蒸気が汽水分離装置から高温加熱装置に供給される。低温加熱装置において給水が飽和蒸気温度に達するまでの時間(図6(b)のA-A´間)、高温加熱装置へ向けて予熱しているヘリオスタットを除く、大多数のヘリオスタットが待機状態となる。よって、このA-A´間は高温加熱装置にて熱回収できない。
 また、上記従来技術は、季節に応じて低温加熱装置と高温加熱装置との集熱量バランスが不釣り合いとなるため、そのバランスを取るためにヘリオスタットを待機させておかなければならない課題がある。これについて図7および図8を用いて説明する。
 図7は低温加熱装置と高温加熱装置の集熱原理を説明するための図である。図7(a)に示すように、低温加熱装置は、水平に設置されたミラーの反射光を、前記ミラーの上方に設置された水平伝熱管に集光させて伝熱管内の作動媒体を加熱する方式である。例えば、夏季の南中など、太陽が天頂に近づくほど、太陽と水平に設置されたミラーは正対し、受光面積が増大、すなわち、集熱効率が最大化する。一方、冬季の南中などは、太陽光が斜めから入射し、正味の太陽光の受光面積が減少するため、集熱効率が低下する。
 図7(b)は、高温加熱装置の集熱原理を示したものである。ヘリオスタットと呼ばれる二軸傾動式の多数のミラーにより太陽光を反射し、タワー上部に設置されたレシーバと呼ばれる伝熱管パネルに集光して、伝熱管パネル内の作動媒体を加熱する方式である。高温加熱装置の場合、図に示すように、冬季になるほど太陽とミラーが正対し、集熱効率が向上するヘリオスタットが存在する。しかし、数百~数千枚設置される全ヘリオスタットの個別に変化する集熱効率をトータルで見ると、年間の集熱効率の変動は小さい傾向にある。
 図8は、低温加熱装置および高温加熱装置の集熱効率と緯度の関係を説明するための図である。図8(a)に示すように、年間を通して日中の太陽軌道が天頂に近い低緯度においては、低温加熱装置および高温加熱装置ともに集熱効率の変動が小さい。すなわち、ある計画点、例えば夏至を基準に低温加熱装置と高温加熱装置の設備規模を決定しても、冬季の低温加熱装置および高温加熱装置の集熱効率の変動が小さいため、集熱効率と相関関係にある集熱量が大幅に低下するようなことはない。
 しかしながら、図8(b)に示すように、高緯度になるほど冬季における太陽高度が低下し、図7(a)で示したように低温加熱装置の集熱効率が低下する。これにより、例えば夏至を基準に低温加熱装置と高温加熱装置の設備規模を決定すると、冬季での飽和蒸気の流量が低下し、本来、夏至と同等に集熱できる状態にある高温加熱装置の集熱量を抑制しなければならず、ヘリオスタットを待機させる必要がある。そのため、従来技術では、設備稼働率が下がるという課題がある。
 この課題に対して、休止状態にある一部のヘリオスタットで集光可能な太陽光を低温集熱装置に重畳させることで、不足する飽和蒸気の生成を補うことが考えられる。しかしながら、既存の低温集熱装置(線集光型集熱器)にヘリオスタットで集光可能な太陽光を集光させても、効率良く集熱して飽和蒸気の生成量を増大させることはできないことが、本件発明者らの研究・開発により明らかとなった。
 これは、元々、トラフ式やフレネル式のような低温集熱装置(線集光型集熱器)は、集熱管から比較的近い距離(焦点距離)に設置された反射・集光部材(ミラー・レンズ類)からの反射光が集熱管に集光され、集熱されるように設計されているのに対し、高温集熱装置は、伝熱管パネルから遠く(焦点距離大)に設置された多数のヘリオスタットからの反射光を縦横に拡がりのある伝熱管パネルの集熱面で受光するよう設計されているという設計上の違いによるものである。
 より具体的には、ヘリオスタットからの集光パターンを線集光型集熱器の受光面の形状に一致させ難いことが、ヘリオスタットで太陽光を線集光型集熱器に集光させても効率良く飽和蒸気を生成できない要因の一つとなっている。
 本発明は、上記した実状に鑑みてなされたものであり、その第1の目的は、太陽熱集熱システムにおいて低温加熱装置で生成される蒸気温度が飽和蒸気温度に達するまでの時間を短縮することにあり、その第2の目的は、季節に応じて低温加熱装置と高温加熱装置との集熱量バランスが不釣り合いとなるのを改善することにある。
 上記目的を達成するために、本発明に係る太陽熱集熱システムは、供給された水を太陽光の熱で加熱して蒸気を生成する低温加熱装置と、前記低温加熱装置で生成された水-蒸気二相流体を水と蒸気とに分離する汽水分離装置と、前記汽水分離装置で分離された蒸気を複数のヘリオスタットで反射させた太陽光の熱で加熱して、過熱蒸気を生成する高温加熱装置と、を備え、前記低温加熱装置は、線状に配置された第一の集熱管、および前記第一の集熱管の長手方向に沿って線状に配置され、太陽光を前記第一の集熱管に反射させる第一の反射部材を有し、前記第一の反射部材からの反射光を前記第一の集熱管に集光して前記第一の集熱管を流れる水を加熱する第一の集熱器と、線状に配置された第二の集熱管を有し、前記複数のヘリオスタットの少なくとも一部からの反射光を受光して、前記第二の集熱管を流れる水を加熱する第二の集熱器と、を含むことを特徴とする。
 また、上記目的を達成するために、本発明は、供給された水を太陽光の熱で加熱して蒸気を生成する低温加熱装置と、前記低温加熱装置で生成された水-蒸気二相流体を水と蒸気とに分離する汽水分離装置と、前記汽水分離装置で分離された蒸気を複数のヘリオスタットで反射させた太陽光の熱で加熱して、過熱蒸気を生成する高温加熱装置と、を備えた太陽熱集熱システムの運転方法であって、前記低温加熱装置は、水の流れの下流側に配置される第一の集熱器と、上流側に前記第一の集熱器と直列で配置される第二の集熱器とを含み、所定の期間に亘って、水が前記第二の集熱器を経由して前記第一の集熱器へと流れるようにすると共に、前記複数のヘリオスタットのうち少なくとも一部のヘスオスタットを用いて太陽光を前記第二の集熱器に反射させるようにし、前記期間の経過後は、水が前記第二の集熱器をバイパスして前記第一の集熱器に流れるようにしたことを特徴とする。
 本発明によれば、低温加熱装置で生成される蒸気温度が飽和蒸気温度に達するまでの時間を短縮することができる。また、本発明によれば、季節に応じて低温加熱装置と高温加熱装置との集熱量バランスが不釣り合いとなるのを改善することができる。なお、上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明の実施形態に係る太陽熱集熱システムの全体構成図である。 晴天日の直達日射量と低温加熱装置出口の流体温度と汽水分離装置出口の蒸気流量との関係を本発明と従来技術とで比較した図である。 本発明による低温加熱装置の集熱効率を説明するための図である。 本発明に適用可能な低温集熱装置の変形例を示す図である。 本発明に適用可能な低温集熱装置の変形例を示す図である。 従来技術における晴天日の直達日射量と低温加熱装置出口の流体温度と汽水分離装置出口の蒸気流量との関係を示す図である。 低温加熱装置と高温加熱装置の集熱原理を説明するための図である。 低温加熱装置と高温加熱装置の集熱効率と緯度の関係を説明するための図である。 本発明の第二の実施形態に係る太陽熱集熱システムの全体構成図である。
 <第一の実施形態>
 以下、本発明の実施形態について図面を用いて説明する。図1は、本発明の実施形態に係る太陽熱集熱システムの概略構成図である。この太陽熱集熱システム1は、太陽熱発電プラントの蒸気タービンに過熱蒸気を供給するために使用される。なお、太陽熱発電プラントは、図示しないが、太陽熱集熱システム1の高温加熱装置4で生成された過熱蒸気で駆動する蒸気タービンと、蒸気タービンの動力で発電する発電機と、蒸気タービンに供給された過熱蒸気を復水する復水器と、復水器で復水された水を太陽熱集熱システム1の低温加熱装置2に供給するラインとを備えて構成される。
 図1において、符号2は水を太陽光の熱で加熱する低温加熱装置、符号3は低温加熱装置2で生成した水-蒸気二相流体を水と蒸気とに分離する汽水分離装置、符号4は蒸気を太陽光の熱で加熱する高温加熱装置、符号5はヘリオスタット、符号6は太陽、符号7は太陽光、符号10は給水ポンプ、符号11は循環ポンプ、符号15は温度検出器、符号20は制御装置(ヘリオスタット制御装置)である。
 また、以降の説明では、各構成要素を結ぶ配管をライン○-○と表記する。前記の○には符号が入り、例えば、ライン2-3は低温加熱装置2と汽水分離装置3を結ぶ配管を表している。
 この太陽熱集熱システム1は、図1に示すように、給水ポンプ10から供給された水はライン10-2を通り低温加熱装置2に送られる。この低温加熱装置2では太陽光7の熱によって水を加熱し、水-蒸気二相流体が生成される。生成された水-蒸気二相流体は、ライン2-3を通り汽水分離装置3に送られる。
 汽水分離装置3に導入された水-蒸気二相流体は、汽水分離装置3にて水と蒸気に分離される。分離された飽和蒸気は、ライン3-4を通り高温加熱装置4へ送られる。その高温加熱装置4に導入された飽和蒸気は、高温加熱装置4においてヘリオスタット5で反射された太陽光7の熱でさらに加熱され、過熱蒸気が生成される。なお、汽水分離装置3で分離された水はライン3-11を通り、循環ポンプ11へ送られる。循環ポンプ11で加圧された水はライン11-2を通り、低温加熱装置2の入口へ送られる。
 次に、高温加熱装置4の詳細について説明する。高温加熱装置4は、いわゆるタワー式の集光・集熱装置であって、具体的には所定の高さ(30~100m程度)を有するタワー9の上に伝熱管パネル8が設置されている。一方、地上面には多数のヘリオスタット5が色々な向きに配置されており、太陽6の動きを追尾しながらヘリオスタット5群で高温加熱装置4(伝熱管パネル8)に集光して、過熱蒸気が生成される。なお、各ヘリオスタット5は、制御装置20によりその角度が制御される。そして、詳しくは後述するが、ヘリオスタット5群の一部(符号5a)は、低温加熱装置2に太陽光を反射させることができるよう、制御装置20によってその角度が制御される。
 次に、低温加熱装置2の詳細について説明する。低温加熱装置2は、いわゆるフレネル式の集光・集熱装置であって、具体的には、平面状あるいは若干曲面状の集光ミラー12を、角度を少しずつ変えて多数枚並べて、その集光ミラー12群の上方数メートルの所に平面状に伝熱管13群を水平に並べて構成される。太陽光7を集光ミラー12群で伝熱管13群に集光し、各伝熱管13内を流通する水を加熱することで、水-蒸気二相流体が生成される。
 なお、本実施形態において、フレネル式の集光・集熱装置からなる低温加熱装置2の代わりに、樋状に延びた集光ミラーの内周曲面の上方に伝熱管を配置し、太陽光を集光ミラーで伝熱管に集光することにより、伝熱管内を流通する水を加熱して蒸気を生成するトラフ式の集光・集熱装置を用いても良い。
 次に、制御装置20によるヘリオスタット5群の制御について説明する。制御装置20には、低温加熱装置2の蒸気出口温度を検出する温度検出器15からのデータが入力される。例えば、太陽熱集熱システム1が稼働し、温度検出器15にて検出された蒸気の温度が飽和蒸気温度に到達するまでの期間(所定期間)、制御装置20は、ヘリオスタット5群のうちの低温加熱装置2に近い側に設置されたヘリオスタット5aを低温加熱装置2の伝熱管13に向けるよう角度の制御を行う。これにより、太陽光7をヘリオスタット5aで反射させて伝熱管13に集めることができるため、低温加熱装置2による飽和蒸気の生成時間を短縮することができる。そして、温度検出器15にて検出された蒸気温度が飽和蒸気温度に達すると、制御装置20は、低温加熱装置2に向けられていたヘリオスタット5aを高温加熱装置4に向くように角度を制御する(元の位置に戻す)。
 なお、ヘリオスタット5群のうち低温加熱装置2に近い側に設置されたヘリオスタット5aの角度を制御するようにしたのは、遠い側のヘリオスタットの角度を制御するのに比べて、低温加熱装置2の伝熱管13への集光効率が高いからである。
 このように、低温加熱装置2で飽和蒸気が生成されるまでの間は高温加熱装置4に飽和蒸気が供給されず、高温加熱装置4は待機状態にあるため、全てのヘリオスタット5群を用いて高温加熱装置4の伝熱管パネル8に太陽光7を集光させる必要はない。そこで、本実施形態では、高温加熱装置4の予熱のために必要なヘリオスタット5を除いた一部のヘリオスタット5aを用いて低温加熱装置2に太陽光7を集光させることにより、低温加熱装置2による飽和蒸気の生成時間を短縮している。
 制御装置20には、高温加熱装置4の蒸気出口温度を検出する温度検出器16からのデータが入力される。例えば、太陽熱集熱システム1が稼働し、温度検出器16にて検出された蒸気の温度が所定の温度(例えば、550℃)に到達し、所定の温度を維持する場合、低温加熱装置2からの飽和蒸気の蒸気流量が定格時の流量に達していなければ、用意するヘリオスタット5の枚数や日射条件にもよるが、必ずしもヘリオスタット5の全てを高温加熱装置4に向けなくても所定温度を維持できる。
 そこで、ヘリオスタット5群のうち、高温加熱装置4を向いていない待機状態にある例えばヘリオスタット5aを低温加熱装置2の伝熱管13に向けるように角度の制御を行う。これにより、太陽光7をヘリオスタット5aで反射させて伝熱管13に集めることができるため、低温加熱装置2で生成される飽和蒸気の蒸気流量を増加させることができる。
 そして、温度検出器16にて検出された蒸気の温度が所定の温度(例えば550℃)を下回ると、制御装置20は、低温加熱装置2に向けられていたヘリオスタット5aを高温加熱装置4に向くように角度を制御する。
 このように、本実施形態では、高温加熱装置4の蒸気出口温度を維持するために必要なヘリオスタット5を除いた一部のヘリオスタット5aを用いて低温加熱装置2に太陽光7を集光させることにより、低温加熱装置2からの飽和蒸気流量を増加させることができる。
 次に、本発明の効果を従来技術と比較して説明する。図2は、(a)晴天日の直達日射量と(b)低温加熱装置出口の流体温度と(c)汽水分離装置出口の蒸気流量との関係を本発明と従来技術とで比較した図、図3は本発明による低温加熱装置の集熱効率を説明するための図である。
 図2(b)に示すように、ヘリオスタット5aによる集熱が得られる分、低温加熱装置2出口の流体温度が飽和蒸気温度に達するまでの時間がA-A´からA-Bに短縮されることが分かる。使用するヘリオスタット5aの数、発電規模等により条件が変わるが、飽和蒸気生成までの時間を20~30分短縮するよう設計すれば、日照時間8hr/dayとした場合でヘリオスタットの設備利用率が5~8%point上昇する。
 また、図3に、本発明による低温加熱装置2の集熱効率を示す。例えば夏至を基準として低温加熱装置2と高温加熱装置4の設備規模を決定し、待機中のヘリオスタット5aを、低温加熱装置2を加熱する分とその加熱により増加する飽和蒸気の流量に応じ高温加熱装置4を加熱する分に分配することで、低温加熱装置2の集熱効率は春分に約1.05~1.10倍、冬季に約1.40倍~1.45倍に増加させることが可能となる。すなわち、本発明によれば、待機中のヘリオスタット5aを利用することで、高緯度地域に設置した場合でも効率的に集熱できるようになる。
 次に、本発明に適用可能な低温加熱装置の各種変形例について、図を用いて説明する。図4,5は、本発明に適用可能な低温集熱装置の変形例を示す図である。図4(a)に示す低温加熱装置2aは水平置き伝熱管と同じ伝熱管13にヘリオスタット5aの反射光を集光する構成である。このように、水平置き伝熱管がヘリオスタット5aの反射光も集光できるものであれば、追加の伝熱管は必要ない。図4(b)に示す低温加熱装置2bは、水平置き伝熱管の下流側にヘリオスタット5aの反射光を集光できる伝熱管13を備えた構成である。図4(c)に示す低温加熱装置2cは、水平置き伝熱管の上流側にヘリオスタット5aの反射光を集光できる伝熱管を備えた構成である。図4(a)~(c)から分かるように、ヘリオスタット5aによる集光部分は作動媒体が流通すれば、低温加熱装置2のどの位置でも良い。さらに、図4(d)に示す低温加熱装置2dのように二つ以上の伝熱管13がヘリオスタット5aからの反射光を集光する対象となる場合もある。
 さらにまた、図5(a)~(e)に示すように、低温加熱装置の伝熱管の構造として、例えば高温加熱装置4用の伝熱管パネルと同様の構造を用いても良い。図5(a)に示す低温加熱装置2eは、2つの水平置き伝熱管の間に伝熱管パネル25を設置し、この伝熱管パネル25にヘリオスタット5aの反射光を集光する構成である。図5(b)に示す低温加熱装置2fは、水平置き伝熱管の下流側に伝熱管パネル25を設置し、この伝熱管パネル25にヘリオスタット5aの反射光を集光する構成である。図5(c)に示す低温加熱装置2gは、伝熱管パネル25を低温加熱装置2fとは逆に水平置き伝熱管の上流側に配置した構成である。
 図5(d)に示す低温加熱装置2hは、伝熱管13と伝熱管パネル25とを直列に配置して、伝熱管13と伝熱管パネル25とにヘリオスタット5aからの反射光を集光させる構成である。図5(e)は、水平置き伝熱管と並列に接続された伝熱管パネル25にヘリオスタット5aの反射光を集光させる構成である。これら各種の低温加熱装置を適宜採用すれば良い。
 <第二の実施形態>
 次に、本発明の第二の実施形態について説明する。図9は、本発明の第二の実施形態に係る太陽熱集熱システムの概略構成図である。なお、第一の実施形態と同一の構成については、同一の符号を付して説明を省略する。図9に示すように、第二の実施形態に係る太陽熱集熱システム100は、太陽光7を集光ミラー12で受け、その集光ミラー12からの反射光を集熱管13に集光して集熱管13内の水を循環ポンプ11で循環しながら蒸気ドラム(汽水分離装置)3内の水温を上昇させる飽和蒸気生成系統と、蒸気ドラム3から発生した飽和蒸気をタワー9の過熱器(伝熱管パネル)8に導いたのちにヘリオスタット5で受けた太陽光7の反射光を過熱器8に照射させて過熱蒸気を生成させる過熱蒸気生成系統とから構成される。
 本実施形態では、この飽和蒸気生成系統において、低温加熱装置として第一の線集光型集熱器(第一の集熱器)51および第二の線集光型集熱器(第二の集熱器)52を備えている。
 第一の線集光型集熱器51は、線状に配置された複数の真空二重管型集熱管(第一の集熱管)13と、各真空二重管型集熱管13(以下、集熱管13という)の長手方向に沿って線状に配置され、太陽光を集熱管13に反射させる複数の集光ミラー(第一の反射部材)12と、を有し、各集光ミラー12からの反射光を各集熱管13に集光して各集熱管13を流れる水を加熱するよう構成されている。複数の集熱管13は、集光ミラー12群の上方数メートルの所に平面状に並べて配置される。なお、集熱管13および集光ミラー12の数は仕様に応じて適宜決定できる。
 第二の線集光型集熱器52は、複数の真空二重管型集熱管(第二の集熱管)30を有している。複数の真空二重管型集熱管30(以下、集熱管30という)は、それぞれ水平に向けた状態で、上下方向に並べて面状(パネル状)に配置される。これらの集熱管30は直列に接続されており、この面状に形成された複数の集熱管30が待機中のヘリオスタット5aからの反射光を受光することにより、集熱管30内を流れる水が加熱される。ここで、集熱管30の数は仕様に応じて適宜決定できる。なお、集熱管13および集熱管30として、例えば、チューブ外径70mm、ガラス管外径125mmのサイズの真空二重管型集熱管を適用できる。
 第二の線集光型集熱器52は、タワー9とヘリオスタット5の間に位置する空間部分に設置される。本実施形態では、ヘリオスタット5からの焦点距離を考慮して、第二の線集光型集熱器52をタワー9の支持構造体に取り付ける構成としているが、タワー9とヘリオスタット5の間の空間に別途支持部材を設けて、その支持部材に第二の線集光型集熱器52を取り付けても良い。
 なお、本実施形態では、集熱管30間の隙間から漏れた反射光を二次反射させて集光効率を高めるために、集熱管30の背面側(ヘリオスタット5と反対側)に補助ミラー(第二の反射部材)55を設ける構成としているが、必ずしも補助ミラーを設けなくて良い。
 第一の線集光型集熱器51と第二の線集光型集熱器52とは、流路切換機構としての2つの三方弁31、32を介して直列に接続されており、水の流れの上流側に第二の線集光型集熱器52が、下流側に第一の線集光型集熱器51が配置されている。具体的には、集熱管30の入口は、循環ポンプ11の出口側と三方弁31を介して接続される。また、集熱管30の出口は、集熱管13の入口側と三方弁32を介して接続され、かつ三方弁31と三方弁32は残りポートの一端同士が配管で接続されている。また、蒸気ドラム3には、蒸気ドラム3内の水温を計測する蒸気ドラム水温計33が設置され、その蒸気ドラム水温計33の指示値に基づく開閉信号を2つの三方弁31、32に入力している。
 以上のように構成された第二の実施形態に係る太陽熱集熱システムの動作について説明する。太陽熱集熱システムを日の出ののちに起動させる場合、まず飽和蒸気生成系統を立ち上げる。蒸気ドラム水温計33の指示値が目標温度(たとえば300℃)に到達するまでは、三方弁31の開方向は循環ポンプ11の出口から集熱管30の入口に向かって図中の矢印Aの方向に管内流体の水が流れるように設定され、かつ三方弁32の開方向は集熱管30の出口から集熱管13の入口へ管内流体の水が流れるように設定され、三方弁31と三方弁32の間は流体が流れない状態にある(第一の流路)。
 この状態で循環ポンプ11を駆動すると、循環ポンプ11で移送された水は、三方弁31から集熱管30、三方弁32、集熱管13、蒸気ドラム3を順次経由して循環ポンプ11へ戻る。このとき、集熱管30には待機中のヘリオスタット5aの反射光34を照射し、集熱管30内の水温を高め、さらにその温水を集熱管13内に導いて、太陽光7が照射された集光ミラー12からの反射光によって集熱管13内の水温が高められる。
 蒸気ドラム水温計33の指示値が目標温度に到達したのちは、蒸気ドラム3内の飽和蒸気を過熱器8に供給できる状態になり、過熱器8にヘリオスタット5の反射光を照射する段階で、待機中のヘリオスタット5aの照射を集熱管30から過熱器8に切り替え、過熱蒸気を発生させる。その後、三方弁31と32をそれぞれ切替えて集熱管13と集熱管30とを流体的に切り離す。すなわち、循環ポンプ11から送られた温水は、集熱管30を経由することなく、図中の矢印Bの方向に三方弁31のあと三方弁32に接続された配管を経由して集熱管13に直接流れる(第二の流路)。
 以上説明したように、第二の実施形態によれば、太陽熱集熱システム起動時の低温加熱装置(線集光型集熱器)全体の集熱量が増加するため、蒸気ドラム3から従来よりも早く飽和蒸気を発生させることができ、起動時間を短縮することができる。
 また、タワー9とヘリオスタット5の間に複数の集熱管30を垂直の平面上に設置したので、待機中のヘリオスタット5aからの反射光を集熱管30に効率良く照射できると共に、待機中のヘリオスタット5aからの反射光を集熱管30全体に亘って照射することができるので均質な加熱状態を作り易く、ホットスポットなどの局所的な温度上昇を抑制し易いという効果もある。
 以上説明したように、本発明の実施形態に係る太陽熱集熱システム1によれば、低温加熱装置2の集光ミラー12からの反射光と、待機中のヘリオスタット5aからの反射光とにより低温加熱装置2に供給される水を加熱することができるため、低温加熱装置2で飽和蒸気を生成する時間が短縮される。よって、太陽熱集熱システム1の稼働効率が改善される。また、高緯度地域であっても、待機中のヘリオスタット5aを利用することにより、季節に応じて低温加熱装置2と高温加熱装置4との集熱量バランスが不釣り合いとなるが改善され、集光効率が低下するのを防止できる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 例えば、三方弁31、32はあくまで流路切換機構の組合せの例として記載したものであり、代替手段として例えば、複数の流量調節弁を集熱管30を経由する流路上と集熱管30をバイパスする流路上とにそれぞれ設けても良い。
 この場合、各流量調節弁の開度を制御することにより、集熱管13に全流量の被加熱流体(水)を流しつつ、集熱管30に流れる被加熱流体の流量を加減することができる。このため、太陽熱集熱システム100の起動直後は、集熱管13と集熱管30に全流量の被加熱流体を流しつつ、起動後の時間の経過とともに集熱管30に流れる被加熱流体の流量を徐々に減少させていくといった調整運転が可能となる。
 1 太陽熱集熱システム
 2 低温加熱装置
 3 汽水分離装置/蒸気ドラム
 4 高温加熱装置
 5 ヘリオスタット
 5a 待機中のヘリオスタット
 6 太陽
 7 太陽光
 8 伝熱管パネル/過熱器
 9 タワー
 10 給水ポンプ
 11 循環ポンプ
 12 集光ミラー
 13 伝熱管/集熱管
 15 温度検出器
 20 制御装置(ヘリオスタット制御装置)
 30 真空二重管型集熱管(第二の集熱管)
 31、32 三方弁(流路切換機構)
 55 補助ミラー(第二の反射部材)
 

Claims (9)

  1.  供給された水を太陽光の熱で加熱して蒸気を生成する低温加熱装置と、
     前記低温加熱装置で生成された水-蒸気二相流体を水と蒸気とに分離する汽水分離装置と、
     前記汽水分離装置で分離された蒸気を複数のヘリオスタットで反射させた太陽光の熱で加熱して、過熱蒸気を生成する高温加熱装置と、を備え、
     前記低温加熱装置は、
     線状に配置された第一の集熱管、および前記第一の集熱管の長手方向に沿って線状に配置され、太陽光を前記第一の集熱管に反射させる第一の反射部材を有し、前記第一の反射部材からの反射光を前記第一の集熱管に集光して前記第一の集熱管を流れる水を加熱する第一の集熱器と、
     線状に配置された第二の集熱管を有し、前記複数のヘリオスタットの少なくとも一部からの反射光を受光して、前記第二の集熱管を流れる水を加熱する第二の集熱器と、を含むことを特徴とする太陽熱集熱システム。
  2.  請求項1において、
     前記第二の集熱器は、前記第二の集熱管を複数備え、
     複数の前記第二の集熱管は、それぞれ水平に向けられ、かつ、上下方向に並べて配置されることにより、面状に形成されることを特徴とする太陽熱集熱システム。
  3.  請求項2において、
     前記第二の集熱器は、前記複数の第二の集熱管の間から漏れた前記複数のヘリオスタットからの反射光を前記複数の第二の集熱管に二次反射させるための第二の反射部材をさらに含むことを特徴とする太陽熱集熱システム。
  4.  請求項2において、
     前記高温加熱装置は、所定の高さを有するタワーの上に伝熱管パネルを設置し、太陽光を前記複数のヘリオスタットで前記伝熱管パネルに集光することにより、前記伝熱管パネル内を流通する水を加熱して蒸気を生成するタワー式の集光・集熱装置からなり、
     前記第二の集熱器は、前記タワーに取り付けられることを特徴とする太陽熱集熱システム。
  5.  請求項1において、
     水の流れの下流側に前記第一の集熱器が配置され、上流側に前記第二の集熱器が配置されると共に、前記第一の集熱器と前記第二の集熱器とは直列に接続され、
     前記低温加熱装置は、前記第一の集熱器と前記第二の集熱器との間に設けられ、水が前記第二の集熱器を経由して前記第一の集熱器へと流れる第一の流路と、水が前記第二の集熱器をバイパスして前記第一の集熱器へと流れる第二の流路とに水の流れる流路を切り換える流路切換機構をさらに含むことを特徴とする太陽熱集熱システム。
  6.  請求項5において、
     前記複数のヘリオスタットの角度を制御するヘリオスタット制御装置をさらに備え、
     前記ヘリオスタット制御装置は、前記複数のヘリオスタットのそれぞれの角度を太陽光が前記高温加熱装置に向かって反射するよう制御すると共に、所定の期間、太陽光が前記第二の集熱器に向かって反射するように制御することを特徴とする太陽熱集熱システム。
  7.  請求項6において、
     前記流路切換機構は、前記所定の期間に亘って水の流路を前記第一の流路に切り換え、前記所定の期間が経過した後に水の流路を前記第一の流路から前記第二の流路に切り換えることを特徴とする太陽熱集熱システム。
  8.  請求項7において、
     前記所定の期間は、前記低温加熱装置に供給された水が飽和蒸気温度に達するまでの期間であることを特徴とする太陽熱集熱システム。
  9.  供給された水を太陽光の熱で加熱して蒸気を生成する低温加熱装置と、
     前記低温加熱装置で生成された水-蒸気二相流体を水と蒸気とに分離する汽水分離装置と、
     前記汽水分離装置で分離された蒸気を複数のヘリオスタットで反射させた太陽光の熱で加熱して、過熱蒸気を生成する高温加熱装置と、を備えた太陽熱集熱システムの運転方法であって、
     前記低温加熱装置は、
     水の流れの下流側に配置される第一の集熱器と、上流側に前記第一の集熱器と直列で配置される第二の集熱器とを含み、
     所定の期間に亘って、水が前記第二の集熱器を経由して前記第一の集熱器へと流れるようにすると共に、前記複数のヘリオスタットのうち少なくとも一部のヘスオスタットを用いて太陽光を前記第二の集熱器に反射させるようにし、前記期間の経過後は、水が前記第二の集熱器をバイパスして前記第一の集熱器に流れるようにしたことを特徴とする太陽熱集熱システムの運転方法。
PCT/JP2016/082791 2015-11-04 2016-11-04 太陽熱集熱システムおよびその運転方法 WO2017078134A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2016349191A AU2016349191B2 (en) 2015-11-04 2016-11-04 Solar heat collection system and operation method thereof
ES201890026A ES2681143B2 (es) 2015-11-04 2016-11-04 Sistema de captacion de calor solar y metodo de funcionamiento del mismo
US15/770,555 US10775079B2 (en) 2015-11-04 2016-11-04 Solar heat collection system and operation method thereof
JP2017549120A JP6803846B2 (ja) 2015-11-04 2016-11-04 太陽熱集熱システムおよびその運転方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015216892 2015-11-04
JP2015-216892 2015-11-04
PCT/JP2016/076048 WO2017077766A1 (ja) 2015-11-04 2016-09-05 太陽熱集熱システムおよびその運転方法
JPPCT/JP2016/076048 2016-09-05

Publications (1)

Publication Number Publication Date
WO2017078134A1 true WO2017078134A1 (ja) 2017-05-11

Family

ID=58661795

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/076048 WO2017077766A1 (ja) 2015-11-04 2016-09-05 太陽熱集熱システムおよびその運転方法
PCT/JP2016/082791 WO2017078134A1 (ja) 2015-11-04 2016-11-04 太陽熱集熱システムおよびその運転方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076048 WO2017077766A1 (ja) 2015-11-04 2016-09-05 太陽熱集熱システムおよびその運転方法

Country Status (5)

Country Link
US (1) US10775079B2 (ja)
JP (1) JP6803846B2 (ja)
AU (1) AU2016349191B2 (ja)
ES (1) ES2681143B2 (ja)
WO (2) WO2017077766A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009263B2 (en) * 2019-02-25 2021-05-18 Karl von Kries Systems and methods for altering rotation of a solar rotational manufacturing system
CN115654753B (zh) * 2022-11-21 2023-05-05 兰州大成科技股份有限公司 一种线聚焦集热系统低热损运行方法及其线聚焦集热系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248064A1 (de) * 2002-10-11 2004-04-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar-Receivervorrichtung und Verfahren zur solarthermischen Erhitzung eines Wärmeaufnahmemediums
DE10248068A1 (de) * 2002-10-11 2004-05-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Anlage zur solarthermischen Dampferzeugung und Verfahren zur solarthermischen Erzeugung von Dampf
US20090217921A1 (en) * 2007-11-12 2009-09-03 Luz Il Ltd. Method and control system for operating a solar power tower system
WO2009129167A2 (en) * 2008-04-16 2009-10-22 Alstom Technology Ltd A solar steam generator
WO2013002054A1 (ja) * 2011-06-30 2013-01-03 バブコック日立株式会社 太陽熱ボイラおよびそれを用いた太陽熱発電プラント
US8627664B2 (en) * 2009-10-15 2014-01-14 Brightsource Industries (Israel), Ltd. Method and system for operating a solar steam system
WO2014114624A1 (fr) * 2013-01-22 2014-07-31 Commissariat à l'énergie atomique et aux énergies alternatives Centrale solaire a concentration de type fresnel a maitrise amelioree de la temperature de la vapeur en sortie

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296410B2 (en) 2003-12-10 2007-11-20 United Technologies Corporation Solar power system and method for power generation
US20070283949A1 (en) * 2005-03-17 2007-12-13 Alexander Levin Solar radiation modular collector
JP2014092086A (ja) * 2012-11-05 2014-05-19 Hitachi Ltd 太陽熱発電プラント及び太陽熱蓄熱放熱装置
CN103115445B (zh) * 2013-02-05 2014-09-24 中盈长江国际新能源投资有限公司 太阳能自动均热聚热管、槽式组件、热发电系统和工艺
US9903613B2 (en) * 2013-03-18 2018-02-27 Mitsubishi Hitachi Power Systems, Ltd. Solar heat collection system
ES2878624T3 (es) * 2014-02-24 2021-11-19 General Electric Technology Gmbh Sistema de energía termosolar

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248064A1 (de) * 2002-10-11 2004-04-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar-Receivervorrichtung und Verfahren zur solarthermischen Erhitzung eines Wärmeaufnahmemediums
DE10248068A1 (de) * 2002-10-11 2004-05-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Anlage zur solarthermischen Dampferzeugung und Verfahren zur solarthermischen Erzeugung von Dampf
US20090217921A1 (en) * 2007-11-12 2009-09-03 Luz Il Ltd. Method and control system for operating a solar power tower system
WO2009129167A2 (en) * 2008-04-16 2009-10-22 Alstom Technology Ltd A solar steam generator
US8627664B2 (en) * 2009-10-15 2014-01-14 Brightsource Industries (Israel), Ltd. Method and system for operating a solar steam system
WO2013002054A1 (ja) * 2011-06-30 2013-01-03 バブコック日立株式会社 太陽熱ボイラおよびそれを用いた太陽熱発電プラント
WO2014114624A1 (fr) * 2013-01-22 2014-07-31 Commissariat à l'énergie atomique et aux énergies alternatives Centrale solaire a concentration de type fresnel a maitrise amelioree de la temperature de la vapeur en sortie

Also Published As

Publication number Publication date
ES2681143A2 (es) 2018-09-11
AU2016349191B2 (en) 2019-08-01
ES2681143B2 (es) 2019-04-04
WO2017077766A1 (ja) 2017-05-11
JP6803846B2 (ja) 2020-12-23
US20190056148A1 (en) 2019-02-21
JPWO2017078134A1 (ja) 2018-08-30
ES2681143R1 (es) 2018-09-21
US10775079B2 (en) 2020-09-15
AU2016349191A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
US9255569B2 (en) Systems, methods, and devices for operating a solar thermal electricity generating system
US8572968B2 (en) Solar thermal power plants
US8544272B2 (en) Solar receiver
AU2009312347B2 (en) Solar thermal power plant and dual-purpose pipe for use therewith
JP4786504B2 (ja) 熱媒体供給設備および太陽熱複合発電設備ならびにこれらの制御方法
US20120240577A1 (en) Thermal generation systems
WO2010032238A2 (en) Solar thermal power plant
JP6033405B2 (ja) 太陽熱集熱システム
AU2013297546B2 (en) Heat collection device for solar heat boiler, and tower-type solar heat boiler equipped with same
WO2019087657A1 (ja) 太陽熱発電システム
US20130111902A1 (en) Solar power system and method of operating a solar power system
US20150167647A1 (en) Concentrating solar power plant with hybrid collector field
WO2013065492A1 (ja) 太陽熱タービン発電装置およびその制御方法
JP5598288B2 (ja) 太陽熱発電装置およびその運転方法
WO2017078134A1 (ja) 太陽熱集熱システムおよびその運転方法
JP5723220B2 (ja) 発電プラント
JP2013245685A (ja) 蒸気ランキンサイクルソーラープラントおよび当該プラントの操作方法
JP2016160775A (ja) 太陽熱と燃料ボイラの複合発電システム及びその制御方法
JPS603488A (ja) 分散型太陽熱発電プラント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549120

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P201890026

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016349191

Country of ref document: AU

Date of ref document: 20161104

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16862193

Country of ref document: EP

Kind code of ref document: A1