WO2019087518A1 - Regenerative medical system using breathing method to change oxygen concentration in stages - Google Patents
Regenerative medical system using breathing method to change oxygen concentration in stages Download PDFInfo
- Publication number
- WO2019087518A1 WO2019087518A1 PCT/JP2018/030286 JP2018030286W WO2019087518A1 WO 2019087518 A1 WO2019087518 A1 WO 2019087518A1 JP 2018030286 W JP2018030286 W JP 2018030286W WO 2019087518 A1 WO2019087518 A1 WO 2019087518A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- oxygen
- supplied
- concentration
- oxygen concentration
- Prior art date
Links
- 239000001301 oxygen Substances 0.000 title claims abstract description 300
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 300
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 295
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000029058 respiratory gaseous exchange Effects 0.000 title abstract description 78
- 230000001172 regenerating effect Effects 0.000 title abstract description 41
- 230000008859 change Effects 0.000 title abstract description 26
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 139
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 138
- 238000011282 treatment Methods 0.000 claims abstract description 92
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 79
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 66
- 210000004556 brain Anatomy 0.000 claims abstract description 65
- 210000002569 neuron Anatomy 0.000 claims abstract description 53
- 239000007789 gas Substances 0.000 claims description 142
- 239000001257 hydrogen Substances 0.000 claims description 41
- 229910052739 hydrogen Inorganic materials 0.000 claims description 41
- 239000003570 air Substances 0.000 claims description 40
- 230000000241 respiratory effect Effects 0.000 claims description 38
- 241001465754 Metazoa Species 0.000 claims description 28
- 229910052757 nitrogen Inorganic materials 0.000 claims description 26
- 208000012902 Nervous system disease Diseases 0.000 claims description 18
- 208000025966 Neurological disease Diseases 0.000 claims description 18
- 239000008280 blood Substances 0.000 claims description 14
- 210000004369 blood Anatomy 0.000 claims description 14
- 230000000638 stimulation Effects 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 239000012080 ambient air Substances 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 238000004880 explosion Methods 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 238000010790 dilution Methods 0.000 claims 1
- 239000012895 dilution Substances 0.000 claims 1
- 239000003814 drug Substances 0.000 abstract description 45
- 210000004027 cell Anatomy 0.000 abstract description 27
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 abstract description 21
- 206010012289 Dementia Diseases 0.000 abstract description 18
- 230000002438 mitochondrial effect Effects 0.000 abstract description 16
- 239000003642 reactive oxygen metabolite Substances 0.000 abstract description 16
- 229910001873 dinitrogen Inorganic materials 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 15
- 229940079593 drug Drugs 0.000 abstract description 14
- 230000006870 function Effects 0.000 abstract description 14
- 230000004898 mitochondrial function Effects 0.000 abstract description 11
- 238000002474 experimental method Methods 0.000 abstract description 9
- 230000008929 regeneration Effects 0.000 abstract description 9
- 238000011069 regeneration method Methods 0.000 abstract description 9
- 230000022131 cell cycle Effects 0.000 abstract description 8
- 210000003470 mitochondria Anatomy 0.000 abstract description 7
- 230000003203 everyday effect Effects 0.000 abstract description 3
- 238000003745 diagnosis Methods 0.000 abstract description 2
- 238000001727 in vivo Methods 0.000 abstract description 2
- 206010060860 Neurological symptom Diseases 0.000 abstract 1
- 230000001413 cellular effect Effects 0.000 abstract 1
- 206010021143 Hypoxia Diseases 0.000 description 46
- 239000000463 material Substances 0.000 description 29
- 230000001146 hypoxic effect Effects 0.000 description 25
- 230000007954 hypoxia Effects 0.000 description 19
- 230000007246 mechanism Effects 0.000 description 19
- 230000001225 therapeutic effect Effects 0.000 description 13
- 230000009471 action Effects 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000003963 antioxidant agent Substances 0.000 description 9
- 235000006708 antioxidants Nutrition 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 230000002265 prevention Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000011160 research Methods 0.000 description 9
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 8
- 238000009207 exercise therapy Methods 0.000 description 8
- 230000001976 improved effect Effects 0.000 description 8
- 230000033001 locomotion Effects 0.000 description 8
- 238000009423 ventilation Methods 0.000 description 8
- 201000010099 disease Diseases 0.000 description 7
- 230000036541 health Effects 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 210000004958 brain cell Anatomy 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000002639 hyperbaric oxygen therapy Methods 0.000 description 6
- 230000000222 hyperoxic effect Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 238000007726 management method Methods 0.000 description 6
- 230000036542 oxidative stress Effects 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 210000001168 carotid artery common Anatomy 0.000 description 5
- 208000026106 cerebrovascular disease Diseases 0.000 description 5
- 230000003930 cognitive ability Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 230000004065 mitochondrial dysfunction Effects 0.000 description 5
- 230000003449 preventive effect Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 4
- 102000004889 Interleukin-6 Human genes 0.000 description 4
- 108090001005 Interleukin-6 Proteins 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 229930003268 Vitamin C Natural products 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 4
- 206010008118 cerebral infarction Diseases 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000004064 dysfunction Effects 0.000 description 4
- 230000004438 eyesight Effects 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- 230000003434 inspiratory effect Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 208000002815 pulmonary hypertension Diseases 0.000 description 4
- 230000006403 short-term memory Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 235000019154 vitamin C Nutrition 0.000 description 4
- 239000011718 vitamin C Substances 0.000 description 4
- 206010019280 Heart failures Diseases 0.000 description 3
- 206010058490 Hyperoxia Diseases 0.000 description 3
- 108020005196 Mitochondrial DNA Proteins 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000005474 detonation Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000009213 extracorporeal shockwave therapy Methods 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 230000007787 long-term memory Effects 0.000 description 3
- 230000007087 memory ability Effects 0.000 description 3
- 230000009456 molecular mechanism Effects 0.000 description 3
- 229940028444 muse Drugs 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 230000008672 reprogramming Effects 0.000 description 3
- 238000012827 research and development Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 102000013498 tau Proteins Human genes 0.000 description 3
- 108010026424 tau Proteins Proteins 0.000 description 3
- 238000012384 transportation and delivery Methods 0.000 description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- 230000002407 ATP formation Effects 0.000 description 2
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 2
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 2
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 230000004543 DNA replication Effects 0.000 description 2
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 2
- 102000015271 Intercellular Adhesion Molecule-1 Human genes 0.000 description 2
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 102000003814 Interleukin-10 Human genes 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- 102000013462 Interleukin-12 Human genes 0.000 description 2
- 108010065805 Interleukin-12 Proteins 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000003925 brain function Effects 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 230000003920 cognitive function Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 230000004153 glucose metabolism Effects 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 210000001320 hippocampus Anatomy 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 230000002107 myocardial effect Effects 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 210000003061 neural cell Anatomy 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000003936 working memory Effects 0.000 description 2
- GMVPRGQOIOIIMI-UHFFFAOYSA-N (8R,11R,12R,13E,15S)-11,15-Dihydroxy-9-oxo-13-prostenoic acid Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CCCCCCC(O)=O GMVPRGQOIOIIMI-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 101100284769 Drosophila melanogaster hemo gene Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 208000010496 Heart Arrest Diseases 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 108010020056 Hydrogenase Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010021079 Hypopnoea Diseases 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 101100366137 Mesembryanthemum crystallinum SODCC.1 gene Proteins 0.000 description 1
- 206010052641 Mitochondrial DNA mutation Diseases 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 101100096142 Panax ginseng SODCC gene Proteins 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 206010038669 Respiratory arrest Diseases 0.000 description 1
- 229910003798 SPO2 Inorganic materials 0.000 description 1
- 101100478210 Schizosaccharomyces pombe (strain 972 / ATCC 24843) spo2 gene Proteins 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 229960000711 alprostadil Drugs 0.000 description 1
- -1 and taken out Substances 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000007177 brain activity Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000006706 cellular oxygen consumption Effects 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- 229960002986 dinoprostone Drugs 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008717 functional decline Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940100601 interleukin-6 Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000004199 lung function Effects 0.000 description 1
- 238000013123 lung function test Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000005787 mitochondrial ATP synthesis coupled electron transport Effects 0.000 description 1
- 208000012268 mitochondrial disease Diseases 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000004784 molecular pathogenesis Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000004007 neuromodulation Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000002640 oxygen therapy Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- GMVPRGQOIOIIMI-DWKJAMRDSA-N prostaglandin E1 Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(O)=O GMVPRGQOIOIIMI-DWKJAMRDSA-N 0.000 description 1
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 101150017120 sod gene Proteins 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 108091035539 telomere Proteins 0.000 description 1
- 102000055501 telomere Human genes 0.000 description 1
- 210000003411 telomere Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000015 thermotherapy Methods 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 230000009529 traumatic brain injury Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/12—Preparation of respiratory gases or vapours by mixing different gases
Definitions
- the present invention relates to a medical device, a medical system, and a medical facility that realize treatment by a respiratory method in which oxygen concentration is gradually changed.
- Patent No. 5777081 Unexamined-Japanese-Patent No. 2006-325722 Patent No. 6029044
- the problem to be solved by the present invention is the establishment of a therapeutic means and a preventive means having a therapeutic or preventive effect on neurological diseases, particularly dementia and the like. Furthermore, use of expensive medicines and cell regeneration medicines such as transplants, not existing medical technologies such as respiratory devices, but developing new therapeutic systems with excellent economic efficiency and safety (research and development) It is.
- the present inventors diligently investigated various medical related information in order to find out the reason why hydrogen gas is less likely to recover and cure various neurological diseases. As a result, it is pointed out that phenomena such as functional decline and dysfunction of neurons in intracerebral neurons are always accompanied when symptoms such as neurological diseases, especially dementia appear, and causes of these diseases It was speculated that in part of the brain, mitochondrial dysfunction and dysfunction of intracerebral neurons were involved. Based on this point of view, the present inventor has been inspired by the possibility that the symptoms may be recovered by improving the mitochondrial function of the brain neuron in a neurological disease.
- Non-Patent Document 1 Non-Patent Document 2
- Non-Patent Document 3 Non-Patent Document 4
- the present inventors have made intensive research efforts to time-series oxygen concentration of human respiration by an appropriate method. We found that regulation could improve mitochondrial function of brain neurons.
- the present invention for solving the above problems is a gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more to a human or animal supply target; And a control unit configured to control the oxygen concentration of the gas supplied from the gas supply unit to the supply target.
- the treatment method and prevention method which have a treatment and prevention effect with respect to a neurological disease, especially dementia etc. can be provided.
- control means controls a time during which a gas having a predetermined oxygen concentration is supplied from the gas supply means to the object to be supplied.
- control means supplies the low oxygen gas to the supply target for 1 to 60 minutes and then supplies the high oxygen gas to the supply target for 10 to 120 minutes.
- a gas supply unit is controlled.
- the gas supply unit can supply a gas containing oxygen and nitrogen to the supply target
- the control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of nitrogen in the gas supplied. By controlling the nitrogen content rate, the oxygen concentration of the supplied gas can be adjusted more easily.
- an oxygen / nitrogen concentrator capable of separating air into oxygen and nitrogen is provided as a source of oxygen and nitrogen supplied from the gas supply unit.
- the gas supply unit can supply a gas containing oxygen and hydrogen to the supply target
- the control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of hydrogen in the gas supplied.
- a breathing mask for supplying gas to the object to be supplied a safety exhaust mask arranged to cover the outside of the respiratory mask, and suction for suctioning exhaust from the safety exhaust mask Equipped with
- the safety exhaust mask is configured to create a gap with the face to be supplied when the respiratory mask is worn on the face to be supplied.
- the respiratory mask is worn on the face to be supplied and gas is supplied to the object to be supplied, the hydrogen mixed gas leaking from the respiratory mask is aspirated along with the ambient air from the gap between the safety exhaust mask and the face to obtain air.
- the concentration of hydrogen in the hydrogen mixed gas is lowered by stirring and mixing with the mixture to dilute the concentration of the combustible explosion or less, and the gas is safely exhausted indoors or outdoors.
- safety can be improved by reducing the hydrogen concentration of the hydrogen mixed gas by stirring and mixing with air and exhausting the mixture.
- a pulse oximeter for sensing the percutaneous arterial blood oxygen saturation to be delivered
- the control means is connected to the pulse oximeter, When the control means determines that the transcutaneous arterial blood oxygen saturation of arterial blood toward the brain to be supplied which is sensed by the pulse oximeter is lower than a predetermined value during supply of the hypoxic gas to the supply object.
- the gas supply unit is controlled to start supply of the high oxygen gas to the supply target.
- the high pressure chamber capable of containing the object to be supplied is provided, wherein the gas supply unit is a pressurized air supply device, and the pressurized gas from the pressurized air supply device is supplied. It is characterized by Such a configuration also enables combined use with hyperbaric oxygen therapy.
- the present invention provides a medical device as described above, A transcranial current stimulator having an electrical stimulation unit for applying transcranial electrical stimulation to a head surface of the subject to be supplied, or a low frequency treatment device having an electrode for applying a low frequency current to the subject to be supplied It also relates to medical systems.
- the medical system of the present invention enables combined therapy with transcranial direct current stimulation or low frequency treatment.
- the present invention provides a medical facility comprising a low oxygen chamber filled with low oxygen gas having an oxygen concentration of 18% or less and a high oxygen chamber filled with high oxygen gas having an oxygen concentration of 21% or more. Also related. According to the medical equipment of the present invention, an effective method of treating and preventing a neurological disease can be realized.
- a moving body for carrying and moving a human or animal supply target
- the moving body is controlled to move automatically in the low oxygen chamber, the high oxygen chamber, and the outside in response to an instruction from the control unit,
- the control unit moves the movable body to the high oxygen chamber after a predetermined time has elapsed in the low oxygen chamber, and the predetermined time has elapsed in the high oxygen chamber.
- the mobile object is controlled to move to the outside later.
- Such a form can provide a more accurate method of treating and preventing neurological diseases for more patients.
- the medical device According to the medical device, the medical system, and the medical equipment of the present invention, effective treatment or prevention of neurological diseases, in particular, dementia and the like can be realized.
- Outline diagram of regenerative medicine system using respiratory method to change oxygen concentration in steps Outline diagram to control generation concentration of reactive oxygen ROS by manual control or program control of inspiratory oxygen concentration
- a device to safely process exhaled breath mixed with high concentration hydrogen gas Illustration of the air concentration separation type oxygen & nitrogen gas feeder as a means of oxygen gas and nitrogen gas supply Improve the existing oxygen concentrator etc. and achieve the purpose
- Type using high capacity cannula or venturi mask Example of a regenerative medicine system using a breathing method in which oxygen concentration is gradually changed.
- a breathing mask is used.
- the system has been enhanced with a system that is equipped with an exhalation and inspiratory flow meter for detecting the user's breathing volume, and at the same time an exhalation recirculation function can be added.
- Example 2 It is an example figure of the regenerative medicine system using the breathing method which changes oxygen concentration in steps using hyperbaric treatment apparatus (example 3).
- FIG. 1 is a diagram of the molecular mechanism of HIF (hypoxia inducible factor) activation by hypoxia.
- HIF hypooxia inducible factor
- the medical device, medical system, treatment or prevention by medical equipment of the present invention may be referred to as a regenerative medical system.
- the mitochondrial electron transport system generally accounts for over 90% of cellular oxygen consumption, of which 1 to 5% is said to be converted to reactive oxygen species, and mitochondrial oxygen concentration is 3 to 10 depending on the supply and consumption of oxygen. It is said to fluctuate in the range of 30 ⁇ M. It is said that the amount of active oxygen generation in this nerve cell is different for each individual cell.
- the amount of generation of active oxygen is fluctuated due to the change of the oxygen concentration of the respiration, that is, converted to the concentration of H 2 O 2 (hydrogen peroxide)
- the concentration of reactive oxygen species in brain neurons here hydrogen peroxide, is 2.4 times the initial concentration. It is possible to make concentration.
- FIG. 1 shows a user (patient) carries out gas breathing with controlled distribution of oxygen, hydrogen and nitrogen by wearing a high flow type cannula or breathing mask as a breathing tool.
- This system is a device that separates oxygen and nitrogen in the air and outputs oxygen and nitrogen at an arbitrary ratio, a device that electrolyzes water and takes out hydrogen and oxygen respectively, and controls the amount in time series, manual operation It is configured by a switch or program control device.
- FIG. 11 shows experimental data using a rat, and shows how the concentration of reactive oxygen species generated in cells changes by switching the respiratory gas of a target animal from hypoxia to reoxygen (hypoxia) according to a program.
- Fig. 12 shows the same experimental data using rats, and it is called demand hypoxia and release time when exercise is enhanced and paused, but also when exercise and the like are canceled by a program. It shows how the concentration of reactive oxygen species generated in cells changes, as well as during breathing. In both cases, a portion where the rise of active oxygen reaches 2.4 times appears before and after the change.
- FIGS. 13 and 14 illustrate the respective states in an easily understandable manner.
- FIG. 15 shows how superoxide generated from oxygen in cells is changed to other reactive oxygen species.
- the conversion to hydrogen peroxide which is usually relatively stable, is considered to be the majority.
- antioxidants as shown in Table 1 are present. There are various antioxidants such as thioredoxin, glutathione, SOD, vitamin C, etc., and they work to lower the concentration of reactive oxygen species.
- Table 2 shows reactive oxygen species and antioxidants that remove them.
- Table 3 is an example showing the concentration in antioxidant metabolites and human serum and the concentration in liver tissue.
- the concentration of reactive oxygen species in the body and tissue changes depending on the amount of reactive oxygen species generated and the balance between the time series of the action of eliminating antioxidants in the body and the location (portion) in the body.
- FIG. 17 is a lifesaving curve of a curler showing the effect of cardiac arrest and respiratory arrest on life support as a function of time.
- Table 5 shows the oxygen concentration and the influence on the human body. The oxygen concentration and action time of the low oxygen region referring to these data, and the oxygen concentration of the high oxygen region referring to Table 1, Table 2, Table 3, FIG. 11, FIG. 12, FIG. 13, FIG. And determine the action time in a safe range. Also, before and after treatment, it is necessary to avoid intake of vitamin C and the like, which have an antioxidant effect on hydrogen peroxide.
- the user is not an absolute condition when using a regenerative medicine system that uses this respiratory method to gradually change the oxygen concentration, but first of all, pulmonary function examination and pathological examination using a spirometer by a respiratory specialist It is desirable to have an examination. Because of the use of a respiratory device, the user's breathing and the ventilation characteristics of the alveoli become a problem. Table 6 shows the respiratory volume and alveolar ventilation for each time. Shallow breathing reduces alveolar ventilation in minutes, and it takes longer to achieve effective hypoxic and hyperoxic areas in the body. In such a case, it is difficult to obtain an effective biological response to the setting in the same time series, and for example, there is a possibility that the regeneration area of the brain cell may be narrowed.
- the initial setting of the regenerative medicine system using the breathing method that changes the oxygen concentration stepwise is sequence control, the hypoxic region can be set every 20 seconds from the first 1 minute to 10 minutes, and can be set from 10 minutes to 60 minutes It can be set every minute of labor.
- the oxygen concentration is 18% or less and 0% is theoretically possible, but since there are many risks and no merit can be found, the minimum oxygen concentration is assumed to be around 5%.
- the effect of hydrogen gas it was originally aimed at eliminating hydroxy radicals of reactive oxygen species, but in the present application the main purpose is to suppress the awakening of inflammatory cytokines, and the H 2 and hydrogen gas concentrations in the suction gas are 4 It is possible to operate with a hydrogen concentration of 95% to 90% and an oxygen concentration of 5% to 10% at this time in a short time by adding a special disaster prevention device, with a standard of about%.
- An oxygen concentration of 21% or more is set in the use of the high oxygen region in the latter part of the sequence, but the upper limit is assumed to be about 60% in consideration of convenience at normal pressure.
- Hemoglobin is responsible for the transport of oxygen in the bloodstream, and even if the oxygen concentration is increased, the ability to transport oxygen to living tissue is only an increase in dissolved oxygen based on the partial pressure of oxygen in the alveoli, but from regenerative medicine The situation is different. This is the reason for setting the oxygen concentration to 21% or more.
- FIG. 7 is an explanatory view of a presumed action mechanism of a regenerative medicine system using a program-controlled breathing system.
- the purpose of making the latter part of the sequence a high oxygen area is to further expand the regeneration area of brain cells.
- the antioxidant power of the living body acts to eliminate or reduce hydrogen peroxide generated in the area of brain cells, and the mitochondrial function is different for each cell and cell by cell, this regenerative medicine mechanism
- the concentration of H 2 O 2 hydrogen peroxide generated in the cells must be multiplied by 2.4 for an appropriate period of time during operation of the system, 2.1 or 2. Doubling does not cause mitochondrial genome reprogramming. For this reason, in order to express active oxygen concentration of 2.4 times in a wider area of brain nerve cells, the concentration of oxygen aspirated by the user is increased.
- breathing in the high oxygen region be at least 10 minutes or more, and be performed for 30 minutes to 60 minutes. This is because in the living body, the oxidation phenomenon and the (reduction) antioxidant phenomenon are constantly performed by blood flow and various reactions, and it is thought that the value of the active oxygen concentration fluctuates. After this step, oxygen concentration is around 21%, hydrogen concentration is 5% to 10% in the range of 20 minutes to 60 minutes as stabilization completion breathing to prevent excessive response (side effects, hypersensitivity reaction) of the living body. Inhalation breathing is desirable.
- the brain has selective vulnerability and is susceptible to oxidative stress at the site of selective vulnerability.
- the regenerative medical system appears to act early on this site of selective vulnerability.
- the treatment of the present regenerative medical system including the hypoxic region is considered to develop hypoxia tolerance of the brain, not ischemia tolerance of the brain.
- Fig. 16 is a diagram showing the cell cycle and the mechanism that regulates it in "Reset Mechanism of Mitochondrial Genome" at RIKEN, but according to such cell cycle (division phase M), It is supposed that the initialization of the genome is done.
- Table 4 is a table showing the cell replacement rate and metabolism in the living body. In the brain, the early part of the replacement is 40% in one month, and by continuing the treatment using the present invention at a pace such as every day or twice a day, brain neurons having reduced mitochondria are obtained. At least a part of them can be regenerated into mitochondrial cell neurons having a normal function.
- the cell tissue and cell cycle differ depending on the target part, and the state of arterial blood also differs, so it is necessary to set up and devise each part.
- the regenerative medical system using the respiratory method of gradually changing the oxygen concentration of the present invention can be said to be a hidden homeostasis (bioconstituent system) or cell regeneration system originally provided to the human body. Therefore, it is a system in which a side effect etc. are comparatively hard to occur. In principle, it is useful for treatment and prevention of all diseases caused by mitochondrial dysfunction and dysfunction, and also for the treatment and prevention of diseases caused by generation of reactive oxygen species by mitochondrial dysfunction. It is useful.
- Table 7 is a current comparison of other treatment regimens for neurological disorders such as dementia.
- the treatment of inflammatory substances that accumulate in the brain with dementia substances such as amyloid ⁇ and tau protein is the decisive factor, but even if they are processed (decreased) There is no noticeable improvement in brain function.
- treatment is performed using a regenerative medicine system that uses a breathing method in which oxygen concentration is gradually changed, improvement in brain function is expected (but this is an increase in ATP production function due to improvement in mitochondrial function,
- the amount of amyloid ⁇ , tau protein, etc. already increased and registered inside the brain, can they be reduced by the treatment method of the present application? Is unknown.
- tau protein etc. increase, there is a concern that the immune function may be enhanced or oxidative stress may increase, and this is due to the efforts of pharmaceutical companies and the regenerative medicine system using the respiratory method to change oxygen concentration in stages. It can have a relationship.
- SB 623 (Sanbio) and MA-5 (Tohoku University) say that SB 623 is a surgical procedure to administer regenerative cell drugs into the brain and MA-5 improves the mitochondrial function itself
- both treatments are different in that the therapeutic substance is administered to the living body, they are relatively time-consuming treatments.
- the method of the present application only changes the existing breathing method, and the mechanism is simple and the application is relatively simple.
- Muse cells, iPS artificial pluripotent stem cells, muse cells and the like are also expected technologies for future neurological diseases, but the problem is whether it can be set inexpensively in terms of price.
- the regenerative medical system using the respiratory method in which the oxygen concentration is gradually changed uses the hypoxic respiratory region to cause the vasodilator action of FIG. 20, various actions by activation of HIF (hypoxia inducible factor) shown in FIG. 18, myocardial division promotion, myocardial regeneration, suppression of ROS generation, addition of hydrogen gas, low in FIG. TNF- ⁇ , interleukin IL-1 ⁇ , IL-6, IL-10, IL-12, CCL2, interferon (TNF- ⁇ , IL-6, IL-10, IL-12, CCL2, interferon) by suppressing pulmonary hypertension caused by oxygenemia etc.
- HIF hypoxic respiratory region
- HIF hypoxic respiratory region
- myocardial division promotion myocardial division promotion
- myocardial regeneration suppression of ROS generation
- addition of hydrogen gas low in FIG. TNF- ⁇ , interleukin IL-1 ⁇ , IL-6, IL-10, IL-12, CCL2, interferon (TNF- ⁇ , IL-6
- IFN intercellular adhesion molecule 1
- PGE1 intercellular adhesion molecule 1
- PGE2 a regenerative medicine system using a respiratory method that changes oxygen concentration stepwise utilizes the cell cycle, so its limit, the limit of the heiflick in FIG. It seems that treatment of is possible.
- a regenerative medicine system using a breathing method that changes oxygen concentration stepwise is used in combination with transcranial direct current stimulation therapy of the brain as shown in FIG. 8 or in combination with low-power extracorporeal shock wave therapy of the heart. It can be used in combination with acupuncture, in which demand hypoxia is expressed in a part of the body, or in combination with hydrogen peroxide drip therapy or hyperbaric oxygen therapy.
- therapy etc. which apply a load to a partial area of the living body in an appropriate manner include massage, acupressure, low frequency treatment device, thermotherapy and the like.
- FIG. 10 shows an example of blood flow and blood distribution of each organ at the time of human body rest and oxygen consumption.
- a regenerative medicine system using a breathing method in which oxygen concentration is gradually changed is not limited to prevention and treatment of dementia, and is relatively safe and easy to use for regeneration of mitochondrial function of human cells, and others It contributes to regenerative medicine that is achieved inexpensively compared to
- a mixed gas of nitrogen gas and hydrogen gas is supplied to the supply target in addition to oxygen gas.
- a cannula (high flow rate type) or a respirator such as a respirator or a respirator face mask for suctioning oxygen gas, nitrogen gas and hydrogen gas, nitrogen gas supply means, and oxygen gas supply
- An air-concentrated oxygen and nitrogen feeder is provided as a means.
- an MEA water electrolysis type hydrogen gas generator or a hydrogen gas supply device is provided as a hydrogen gas supply means, and oxygen gas of about 50% of the generation amount of hydrogen gas is simultaneously supplied.
- a variable motorized breath agitating and discharger which combines the ambient air and exhaled air from the mask with a safety exhaust mask in the form of a cannula and collects it, and discharges the hydrogen concentration of the mixed exhalation to 4% or less. If a hose or tube, depending on the situation, reuses exhalation and adds a conditioning gas (oxygen, hydrogen, etc.) to this, the carbon dioxide adsorbing portion (absorber) on the extension of the exhalation line )).
- a conditioning gas oxygen, hydrogen, etc.
- the breathing gas supply part is made in one package.
- a gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more to a human or animal supply target;
- Control means for controlling the oxygen concentration of the gas supplied from the gas supply unit to the supply target;
- the control means controls a time during which a gas having a predetermined oxygen concentration is supplied from the gas supply unit to the supply target; After the control means first supplies the low oxygen gas to the supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the gas supply is terminated.
- a medical system for enhancing the concentration of active oxygen in a brain nerve cell comprising controlling a gas supply unit.
- the control means first supplies the low oxygen gas to the supply target for one minute or more, and then supplies the high oxygen gas to the supply target for ten minutes or more, and then supplies the gas.
- a gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more to a human or animal supply target; Control means for controlling the oxygen concentration of the gas supplied from the gas supply unit to the supply target; After the control means first supplies the low oxygen gas to the supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the low oxygen gas is not supplied. And controlling the gas supply unit in such a manner as to improve the concentration of active oxygen in a brain nerve cell.
- the control means first supplies the low oxygen gas to the supply target for one minute or more, and then supplies the high oxygen gas to the supply target for ten minutes or more, and then the low oxygen gas
- the gas supply unit can supply a gas containing oxygen and nitrogen to the supply target
- the control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of nitrogen in the gas supplied, ⁇ 1> to ⁇ 4.
- the medical system according to any one of>.
- An oxygen / nitrogen concentrator capable of separating air into oxygen and nitrogen is provided as a source of generation of oxygen and nitrogen supplied from the gas supply unit.
- the gas supply unit can supply a gas containing oxygen and hydrogen to the supply target
- the control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of hydrogen in the gas supplied, ⁇ 1> to ⁇ 6.
- the medical system according to any one of>.
- a breathing mask for supplying a gas to the supply target a safety exhaust mask disposed so as to cover the outside of the respiratory mask, and suction means for suctioning exhaust from the safety exhaust mask.
- the safety exhaust mask is configured to create a gap with the face to be supplied when the respiratory mask is worn on the face to be supplied.
- the respiratory mask is worn on the face to be supplied and gas is supplied to the object to be supplied, the hydrogen mixed gas leaking from the respiratory mask is aspirated along with the ambient air from the gap between the safety exhaust mask and the face to obtain air.
- the medical system according to ⁇ 7> wherein the hydrogen concentration of the hydrogen mixed gas is reduced by stirring and mixing with it to dilute it to a concentration below the flammable explosion concentration, and the inside of the room or the outside is safely ventilated.
- ⁇ 9> Equipped with a pulse oximeter that detects percutaneous arterial blood oxygen saturation to be supplied.
- the control means is connected to the pulse oximeter, While the control means is configured to supply the low oxygen gas to the supply target, when the percutaneous arterial blood oxygen saturation level of the supply target sensed by the pulse oximeter is lower than a predetermined value,
- the medical system according to any one of ⁇ 1> to ⁇ 8>, wherein the gas supply unit is controlled to start supply of the high oxygen gas.
- the gas supply unit includes a pressurized air supply device, and includes a high pressure chamber capable of containing the object to be supplied, to which the pressurized gas from the pressurized air supply device is supplied.
- the medical system according to any one of ⁇ 1> to ⁇ 9>.
- a transcranial current stimulator having an electrical stimulation unit for applying transcranial electrical stimulation to the head surface of the delivery target, or a low frequency treatment device having an electrode for applying a low frequency current to the delivery target
- the medical system according to any one of ⁇ 1> to ⁇ 10>, which is characterized by the above.
- An active oxygen concentration improver in a brain nerve cell comprising a low oxygen gas having an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more,
- the low oxygen gas is first supplied to a human or animal supply target, and then the high oxygen gas is supplied to the supply target for 10 minutes or more, and then used so as not to be supplied to the supply target.
- Reactive oxygen concentration improver in brain neurons comprising a low oxygen gas having an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more.
- An active oxygen concentration improver in a brain nerve cell comprising a low oxygen gas having an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more, After the low oxygen gas is first supplied to a human or animal supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the low oxygen gas is not supplied to the supply target.
- An agent for improving the active oxygen concentration in brain neurons characterized in that.
- ⁇ 14> The agent for improving active oxygen concentration in brain neurons according to ⁇ 12> or ⁇ 13>, which is used for the treatment of a neurological disease.
- a medical system comprising a low oxygen chamber filled with low oxygen gas having an oxygen concentration of 18% or less and a high oxygen chamber filled with high oxygen gas having an oxygen concentration of 21% or more.
- a moving body for carrying and moving a supply target of human or animal The moving body is controlled to move automatically in the low oxygen chamber, the high oxygen chamber, and the outside in response to an instruction from the control unit, The control unit moves to the high oxygen chamber after a predetermined time in the low oxygen chamber, and moves to the outdoor after 10 minutes or more in the high oxygen chamber.
- a medical system characterized by controlling a mobile so as to move.
- a low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas of an oxygen concentration of 21% or higher is supplied for at least 10 minutes.
- a method for improving the active oxygen concentration in a brain nerve cell characterized by not supplying oxygen gas and the high oxygen gas.
- a low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas of an oxygen concentration of 21% or higher is supplied for at least 10 minutes.
- a low oxygen gas of at least an oxygen concentration of at least 18% is first inhaled into a human or animal supply target, and then a high oxygen gas having an oxygen concentration higher than that of the atmospheric gas is inhaled for at least 10 minutes.
- a low oxygen gas having at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas having an oxygen concentration of at least 21% is supplied for at least 10 minutes.
- a low oxygen gas having at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas having an oxygen concentration of at least 21% is supplied for at least 10 minutes.
- a low oxygen gas having at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas having an oxygen concentration of at least 21% is supplied for at least 10 minutes.
- a low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas of an oxygen concentration of 21% or higher is supplied for at least 10 minutes.
- FIG. 4 is an explanatory view of a first embodiment of the present invention.
- 1 indicates the head of the user and 2 indicates brain cells.
- Reference numeral 20 denotes an oxygen gas, nitrogen gas and hydrogen gas supply unit, which is an integrated gas generator.
- hydrogen and oxygen are generated from water (distilled water) by electrolysis, a part using an MEA electrolysis cell for water electrolysis, and oxygen and nitrogen are concentrated and separated from air, and taken out, air concentration separation type oxygen and
- the nitrogen supply unit is integrated into one package.
- the user is diagnosed with a respiratory specialist when using it, and it is confirmed that there is no particular disorder in the respiratory system and the use is started.
- the setting remote control controller 22 sets the control contents of 21. 22 is also used when performing a manual operation.
- the setting contents of 21 are nitrogen gas mixed with a small amount (several percent) of oxygen and setting of supply amount (generation amount) of hydrogen gas per minute (operation amount) to create a low oxygen respiration region with an oxygen concentration of 18% or less. Settings are made.
- the concentration of oxygen breathed by the user decreases. Since the user mixes and aspirates the nitrogen-hydrogen mixed gas mixed with the trace amount of oxygen and the air around the mask, the relationship between the gas supply per minute from the device and the minute alveolar ventilation volume by respiration The resulting low oxygen concentration breathing is performed.
- the concentration of oxygen to be inhaled can be made constant only with the supplied gas from 20 without being largely influenced by the alveolar ventilation volume per minute, but it can be mixed beforehand with the required oxygen concentration. It is possible to supply such a gas in a sufficient amount so that the air around the mask does not mix, but the burden on the operation of the apparatus is increased.
- the safety exhaust mask for exhalation is used when the concentration of hydrogen in the gas drawn by the user exceeds 10%, and within that the flow of the room air of the user is created (air flow) (small fan etc.) I am securing my safety.
- air flow small fan etc.
- the hydrogen gas concentration mixes with the surrounding air when it is released from the mask, and the stirring drops rapidly, If the hydrogen concentration of the aspirated gas exceeds 10%, the hydrogen gas concentration is reduced to 4% or less by 17 electric breather and aspirator when the hydrogen concentration exceeds 10% because safety is maintained. Release indoors etc.
- a hydrogen gas sensor is contained in the inside of 17 and when the suction hydrogen gas concentration exceeds 4%, the suction output is automatically increased in multiple steps to keep the hydrogen gas concentration of the released gas at a safe concentration.
- the air used in the 20 devices is taken in from the 26 air intakes and released out of the machine through the 27 gas outlets for oxygen, nitrogen and hydrogen gas waste.
- the interface is built in.
- Reference numeral 24 is used to adjust the temperature and humidity of the gas sucked by the user, and the gas sucked by the user is bubbled in water or hot water to achieve the purpose.
- the temperature of the gas to be sucked in is preferably about body temperature, but depending on the environmental temperature (room temperature), there is no problem even at a slightly lower temperature, but if humidity is possible it is recommended to be slightly lower than saturated steam.
- a cannula using a nostril has an applied gas volume of about 6 liters per minute, but in the present application, an internal cross-sectional area is approximately doubled to enable suction at an acceptable range of about 10 liters per minute Applied.
- the operation of the system is covered by the multistage setting of the timer with the passage of time, the on / off of each element of the 20 and the output control, and the control of the internal switching valve by the instruction of the system.
- the user mounts the cannula in the nostril.
- the medical worker makes 22 settings, but in the actual treatment, the user's health condition is roughly grasped, first make 20 in the standby state, and then air for about 3 minutes every minute Starting from 2L, air is gradually blown into the nostril at 10L per minute, and a preliminary examination of the user's judgment on the suitability of using a cannula is performed. At this point, it is easily determined if the next treatment is possible. If there is no problem, the medical staff performs the first setting, but manually or by program control.
- the initial hypoxic setting is from 18% to 14% oxygen and time starts from 2 minutes.
- the hypoxic region requires up to a total stroke of 60 minutes, the high oxygen region requires a minimum of 30 minutes or more, and the recommendation is 50 minutes.
- FIG. 5 is an explanatory view 2 of the embodiment of the present invention.
- the method of treatment is the same as in Example 1, but the machine and system of the hardware are complicated.
- the respirator used is a closed mask.
- the exhaled breath is recirculated to remove the carbon dioxide in the exhaled breath with 32 adsorbents and adjusted by adding the necessary ingredients in the process at that time, to be used for aspiration or when there is no need for recirculation Is safely released to the outside by the operation of the 37 gas flow direction switching valves.
- the system of the present application can be used as an artificial respiration system
- what is displayed in the present application is the treatment of the user's spontaneous breathing. Therefore, it is necessary to encourage the person to breathe with high alveolar ventilation volume per minute, and the decrease in alveolar arousal efficiency by respiration means slowing of the in vivo reaction rate in this treatment, characteristic of time and active oxygen generation. Changes in the waveform of the curve may be more gradual, leading to a reduction in the therapeutic effect. Therefore, a sensor 36 is provided to know in real time the exhalation amount of the breathing currently performed by the user during treatment.
- the 28 lines include check valves, and the 40 intake flow meters include hydrogen and oxygen concentration sensors.
- the system will judge that the gas leaks from the mask, and give an alarm and shut it down.
- the hydrogen concentration of the suction gas is higher than a certain standard, it is possible to incorporate the detonation arrester into 35. If the user's exhaled volume during treatment falls short of the registered expiratory volume by a certain amount in a short time average, the system displays that the respiratory volume is low. Also, the registration of the standard expiratory volume can be registered in advance by using 36 sensors. The difference from the other example 1 is that the radio technology is applied in terms of hardware.
- the outline of the specifications of this device is, as an example, the maximum generation amount of hydrogen gas per minute, 2.4 L, the maximum generation amount of oxygen gas is 9.0 L, the generation amount of nitrogen gas 30 L (estimate) power within about 2 KW It has become.
- the center of respiration is the onset of hypoxia for about 5 minutes. It took 60 minutes to 90 minutes including the subsequent reoxygenation step (the step of breathing in and breathing normal air). The minimum exhaled oxygen concentration for a very short time was about 5%.
- the second half of hypoxic breathing treatment was not reoxygenation, but was changed to respiration by high oxygenation, that is, high oxygen concentration region (oxygen concentration of 21% or more).
- high oxygen concentration region oxygen concentration of 21% or more.
- the working memory improved remarkably, but the connection from the short-term memory area to the long-term memory area was not functioning well, but in order to improve this part, the wider part of the brain was activated It was necessary to make it a policy, and the policy for that was breathing in the high oxygen area.
- the brain is above the level of a standard human being rather than the condition before the onset of cerebral infarction, and judging from the rate of its change, reprogramming of the mitochondrial genome of brain cells is The time response and the presumed effect are virtually in agreement with the theory, assuming that the restoration of neural cell mitochondria during the cell cycle division and the improvement of neural cell function occur.
- Example 3 shows Example 3.
- the oxygen partial pressure in the high oxygen concentration region is further increased, and the user with low generation of active oxygen, the patient with low reactivity, etc.
- After breathing use the hyperbaric treatment device. Since the pressurization time is about 15 minutes, in terms of time, high pressure oxygen therapy for about 60 minutes is performed by combining pressurization time and decompression time. After hyperbaric oxygen treatment is completed, stabilized breathing is carried out for about 30 minutes at normal pressure for preventing side effects including hydrogen gas.
- hyperbaric oxygen therapy devices are not filled with oxygen gas in the inner space to be pressurized, but it is also known that some patients use air for pressurization and use oxygen for breathing for patients. In that case, breathing of the hypoxic region can also be performed using this mask.
- FIG. 22 is a combination of the regenerative medicine system using the breathing method of gradually changing the oxygen concentration according to the present invention after exercise therapy for preventing dementia, and it is possible to remarkably enhance the preventive effect of dementia by exercise therapy. It is possible.
- FIG. 22 there are two closed rooms in the facility for exercise therapy, two walkways connecting the two rooms, a door and an access door which can seal each other, a door at the entrance to each indoor playground from each room, and not shown. Is composed of an indoor environment control device that manages the temperature and humidity internal gas components of each sealed room.
- the user who finished the preventive exercise and exercise therapy immediately opens and closes the sealing door of the entrance from the outside and enters the inside of the low oxygen concentration treatment room.
- the contact door is opened and closed to enter the next high oxygen concentration treatment room, and breathing in the high oxygen region is performed for about 40 to 60 minutes. Do. After finishing, open the door of the exit and go out to the original indoor playground. The treatment in the present application is now over.
- the hydrogen concentration in the room is normally set to 4% unless there is a special requirement.
- carbon dioxide generated by breathing in the room is removed by the carbon dioxide adsorbent inside the indoor environment control device.
- the high oxygen concentration treatment room is depicted here in a standing position, but it takes a long time to sit in a chair for treatment. Since users can use this treatment room from time to time, if the user group is divided into groups and the exercise therapy is performed group by group, many users can receive the treatment of the present application efficiently. Is possible.
- Example 5 Fig. 23 shows an example of a large-scale treatment system using a fully automatic electric wheelchair, which connects a closed hypoxic region treatment room and a closed low oxygen region treatment room through a closed passage, and the example of the embodiment is It is.
- the treatment starts when all the users sit on a motorized wheelchair 42 that is controlled automatically.
- the user who always uses a wheelchair also changes to this 42 and receives treatment.
- healthy people are also. It is easy to understand if you think that this 42 is an evolution of the professional pilot chair developed by Nissan Motor.
- sensors for positional information are embedded on the floor of each of the enclosed passages 45, 46 and 47. Position information sensors are also embedded in the 60 and 61 treatment room floors. Further, an electromagnetic charging device for charging the electric wheelchair is installed on the floor at an appropriate position of the electric wheelchair at a fixed position of the floor 61 and a position for stopping the electric wheelchair (parking). The hatched box in the square represents the electric wheelchair and its number.
- the closed door at the back is closed when the closed door at the entrance can be opened automatically for use by the 42nd user.
- the closed door between 45 and 60 is interlocked to be opened when the inlet door is closed.
- the door between each room or passage is controlled by the system so that both do not necessarily open. When this is all open, it is only emergency or emergency. It is possible to have three members in each communication passage.
- Ten users can be enrolled in the 60 rooms. There are 40 users in the 61 rooms. The difference in this number is that 60 hypoxic therapeutic units estimate a hydrogen concentration of 4% with an oxygen concentration between 18% and 14%, and the maximum occupancy time for users is assumed to be within 15 minutes. In contrast, in the 61 high oxygen area treatment rooms, the maximum enrollment time of the users is assumed to be 60 minutes or less. Therefore, it is balanced by the treatment ability by treatment time. In the 61 treatment rooms, oxygen concentration is assumed to be between 30% and 40%.
- the 53 and 54 low-oxygen area and high-oxygen area treatment rooms have an environmental management system to control the gas balance, temperature, humidity and air flow in each treatment room, but comprehensive management is not shown , There is a comprehensive management system by computer.
- the in-room breathing time of 60 treatment rooms starts from the minimum.
- the in-room breathing time of 61 treatment rooms is also minimized.
- the treatment time for this user is 25 minutes plus the time required for movement, which usually ends in about 5 minutes in 30 minutes. Now consider the treatment results of the user, and if there are no problems, gradually increase the time each time.
- a wireless pulse oximeter is attached to this electric wheelchair for the nuclear user, and necessary signal data can be remotely monitored. If there is an abnormality, only that user will give priority to the emergency and give an outdoor priority. Can be transported to In the case of an emergency, in the case of an individual emergency, each passage is opened and transported to the outside of the treatment room via the closest passage because it takes precedence over other operations. In emergency situations such as earthquakes and fires nearby, all doors and all 44 emergency doors of all treatment rooms and communication paths are released by control of the system, and the electric wheelchair is moved out from the nearest location Or, if the hazard location is near, the system will direct you to move the powered wheelchair to the safest location.
- the battery for the electric wheelchair can be charged as needed because of the relatively long working breathing time.
- Electric induction charging In the case where the electric wheelchair breaks down and can not move, it is also moved out between the other processes by an automatic transport car for moving out of the broken vehicle which moves automatically in the same manner. Before that, an empty electric wheelchair goes for the rescue of the user, carries the user, and carries out the subsequent process of the user.
- the present invention has been completed as an advanced regenerative medical system by combining existing respiratory equipment and the like and adding progressive system settings thereto. It is relatively safe and has excellent treatment efficiency. As it is configured to withstand mass production, it can play a sufficient role as a central entity in future regenerative medicine.
- Closed entrance passage to low oxygen area treatment room 46 Closed area communication path from low oxygen area treatment room to high oxygen area treatment room 47 Sealed outlet passage 48 from high oxygen area treatment room Left side passage 49 of high oxygen area treatment room Central passage 50 of high oxygen area treatment room 50 Right side passage 51 of high oxygen area treatment room 51 treatment room of sealed structure 52 electric motor Automatic delivery vehicle for carrying out a broken vehicle of wheelchair (automatic operation control) 53 Gas supply system for low oxygen area treatment room (environment management system ) 54 Gas supply system for high oxygen area treatment room (environmental management system) 55 Indoor wireless LAN antenna unit 56 Users (sitting) 60 hypoxic area treatment room 61 hyperoxic area treatment room
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Emergency Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Dementia is currently regarded as incurable. For patients who develop dementia, to be given the diagnosis without means of treatment is akin to receiving a death sentence. One attempt to change the current situation is this regenerative medical system using a breathing method to change the oxygen concentration in stages. A key point is to initialize the mitochondrial genome and control the generation of reactive oxygen species (ROS), which is generated in brain neurons every day. According to latest results from cell experiments by RIKEN, by increasing the cellular concentration of a reactive oxygen species (hydrogen peroxide) to exactly 2.4 times that of the normal concentration, the mitochondrial genome is initialized during the cell cycle and a change from heteroplasmy to homoplasmy occurs. As a result, mitochondria with reduced functions regain healthy mitochondrial functions. Accordingly, neurons in the brain become capable of producing sufficient energy, greatly improving neurological symptoms. In order to achieve this in vivo, this system uses a special breathing device assembled by combining devices for supplying oxygen gas, nitrogen gas, and hydrogen gas without using expensive drugs or known regenerative medical means, and effects cell regeneration through sequential breathing in a low oxygen concentration range and breathing in a high oxygen concentration range at an appropriate timing for an appropriate duration by means of manual operation or automated programmed control. The age limit for patients to be treated using the system is approximately 120, making this a relatively safe, highly therapeutically effective, and cost-effective advanced regenerative medical system.
Description
本発明は、酸素濃度を段階的に変化させる呼吸方法による治療を実現する医療装置、医療システム及び医療設備に関する。
The present invention relates to a medical device, a medical system, and a medical facility that realize treatment by a respiratory method in which oxygen concentration is gradually changed.
本願に関連して、2016年10月28日に湿式高濃度水素混合ガス呼吸システムが、特許第6029044号として特許登録がなされた。この技術を用いて、神経障害、特に認知機能に関する臨床研究(試験)を約20か月間以上行った。その結果、水素ガスの各種精神疾患に対する治療効果は、症状の進行を遅らせる事は幾らか期待できるが、回復治癒させる効果は現状として可能性が少ないことも判明した。一方この方面の治療薬に目を向けると、製薬各社が治療薬の研究開発を行っているが、未だに目途が立たず、そもそも、従来の仮説に基づいて研究開発を行っており、臨床試験の結果でも、満足な成果が得られておらず、原因と治療法の解明に関して,さらなる努力が必要とみられている。
In the context of the present application, on October 28, 2016, a wet high concentration hydrogen mixed gas breathing system was patented as patent 6029044. Using this technology, clinical studies (tests) on neurological disorders, in particular cognitive function, have been conducted for about 20 months or more. As a result, it was found that the therapeutic effect of hydrogen gas on various psychiatric disorders can be expected to delay the progression of symptoms to some extent, but the recovery and cure effect is currently unlikely. On the other hand, in terms of therapeutic agents in this area, pharmaceutical companies are doing research and development of therapeutic agents, but have not yet come to an eye, and in the first place they are conducting research and development based on conventional hypotheses. Even as a result, satisfactory results have not been obtained, and further efforts are needed to clarify the causes and treatments.
本発明が解決しようとする課題は、神経疾患、特に認知症等に対する治療や予防効果を有する治療手段及び予防手段の確立である。更に、高価な薬剤の利用や、移植等の細胞再生医療ではなく、呼吸機器等の既存の技術を発展させ、経済性と安全性に優れた、新しい治療の仕組みを(研究開発)創造する事である。
The problem to be solved by the present invention is the establishment of a therapeutic means and a preventive means having a therapeutic or preventive effect on neurological diseases, particularly dementia and the like. Furthermore, use of expensive medicines and cell regeneration medicines such as transplants, not existing medical technologies such as respiratory devices, but developing new therapeutic systems with excellent economic efficiency and safety (research and development) It is.
背景技術の欄に記載したとおり、水素ガスの各種神経疾患に対する治療効果は、症状の進行を遅らせる事は幾らか期待できるが、回復治癒させる効果は現状として可能性が少ないことが判明した。
As described in the background art section, although the therapeutic effect of hydrogen gas on various neurological diseases can be somewhat expected to delay the progression of symptoms, it has been found that the effect of recovering and curing is currently unlikely.
本発明者は、水素ガスにより各種神経疾患を回復治癒できる可能性が低い原因を探るべく、各種の医学関連情報を鋭意調査した。その結果、神経疾患、特に認知症等の症状出現時には脳内神経細胞のミトコンドリアの機能低下、機能不全と言った現象が必ず伴っていることが指摘されていることに着目し、これら疾患の原因の一部に、脳内神経細胞のミトコンドリアの機能低下、機能不全が関わっているものと推測した。
この着眼点に基づき、本発明者は神経疾患の脳神経細胞のミトコンドリア機能を向上させれば、症状が回復する可能性があるとの着想を得た。 The present inventors diligently investigated various medical related information in order to find out the reason why hydrogen gas is less likely to recover and cure various neurological diseases. As a result, it is pointed out that it is pointed out that phenomena such as functional decline and dysfunction of neurons in intracerebral neurons are always accompanied when symptoms such as neurological diseases, especially dementia appear, and causes of these diseases It was speculated that in part of the brain, mitochondrial dysfunction and dysfunction of intracerebral neurons were involved.
Based on this point of view, the present inventor has been inspired by the possibility that the symptoms may be recovered by improving the mitochondrial function of the brain neuron in a neurological disease.
この着眼点に基づき、本発明者は神経疾患の脳神経細胞のミトコンドリア機能を向上させれば、症状が回復する可能性があるとの着想を得た。 The present inventors diligently investigated various medical related information in order to find out the reason why hydrogen gas is less likely to recover and cure various neurological diseases. As a result, it is pointed out that it is pointed out that phenomena such as functional decline and dysfunction of neurons in intracerebral neurons are always accompanied when symptoms such as neurological diseases, especially dementia appear, and causes of these diseases It was speculated that in part of the brain, mitochondrial dysfunction and dysfunction of intracerebral neurons were involved.
Based on this point of view, the present inventor has been inspired by the possibility that the symptoms may be recovered by improving the mitochondrial function of the brain neuron in a neurological disease.
そこで、非特許文献1、非特許文献2、非特許文献3及び非特許文献4に基づき、本発明者は、鋭意研究努力により、人間の呼吸を適宜な方法で、その酸素濃度を時系列に制御すれば、脳神経細胞のミトコンドリア機能を向上できることを見出した。
Therefore, based on Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3 and Non-Patent Document 4, the present inventors have made intensive research efforts to time-series oxygen concentration of human respiration by an appropriate method. We found that regulation could improve mitochondrial function of brain neurons.
上記課題を解決する本発明は、人又は動物の供給対象に、少なくとも酸素濃度18%以下の低酸素ガス及び酸素濃度21%以上の高酸素ガスを供給可能なガス供給部と、
ガス供給部から供給対象に供給されるガスの酸素濃度を制御する制御手段と、を備えることを特徴とする医療装置である。 The present invention for solving the above problems is a gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more to a human or animal supply target;
And a control unit configured to control the oxygen concentration of the gas supplied from the gas supply unit to the supply target.
ガス供給部から供給対象に供給されるガスの酸素濃度を制御する制御手段と、を備えることを特徴とする医療装置である。 The present invention for solving the above problems is a gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more to a human or animal supply target;
And a control unit configured to control the oxygen concentration of the gas supplied from the gas supply unit to the supply target.
本発明の医療装置によれば、神経疾患、特に認知症等に対する治療や予防効果を有する治療方法及び予防方法を提供することができる。
ADVANTAGE OF THE INVENTION According to the medical device of this invention, the treatment method and prevention method which have a treatment and prevention effect with respect to a neurological disease, especially dementia etc. can be provided.
本発明の好ましい形態では、前記制御手段が、前記ガス供給手段から前記供給対象に所定の酸素濃度のガスが供給される時間を制御することを特徴とする。
ガスが供給される時間の制御を人の手ではなく制御手段によって行うことによって、精度の高い神経疾患の治療方法又は予防方法を実現することができる。 In a preferred embodiment of the present invention, the control means controls a time during which a gas having a predetermined oxygen concentration is supplied from the gas supply means to the object to be supplied.
By controlling the time during which the gas is supplied not by human hands but by control means, highly accurate methods for treating or preventing neurological diseases can be realized.
ガスが供給される時間の制御を人の手ではなく制御手段によって行うことによって、精度の高い神経疾患の治療方法又は予防方法を実現することができる。 In a preferred embodiment of the present invention, the control means controls a time during which a gas having a predetermined oxygen concentration is supplied from the gas supply means to the object to be supplied.
By controlling the time during which the gas is supplied not by human hands but by control means, highly accurate methods for treating or preventing neurological diseases can be realized.
本発明の好ましい形態では、前記制御手段が、前記供給対象に前記低酸素ガスの供給を1~60分間行った後に、前記供給対象に前記高酸素ガスの供給を10~120分間行うように前記ガス供給部を制御することを特徴とする。
低酸素ガスと高酸素ガスの供給順序及び供給時間を上記のように制御することによって、効果の高い神経疾患の治療方法又は予防方法を提供することができる。 In a preferred embodiment of the present invention, the control means supplies the low oxygen gas to the supply target for 1 to 60 minutes and then supplies the high oxygen gas to the supply target for 10 to 120 minutes. A gas supply unit is controlled.
By controlling the supply order and supply time of the low oxygen gas and the high oxygen gas as described above, a highly effective method for treating or preventing a neurological disease can be provided.
低酸素ガスと高酸素ガスの供給順序及び供給時間を上記のように制御することによって、効果の高い神経疾患の治療方法又は予防方法を提供することができる。 In a preferred embodiment of the present invention, the control means supplies the low oxygen gas to the supply target for 1 to 60 minutes and then supplies the high oxygen gas to the supply target for 10 to 120 minutes. A gas supply unit is controlled.
By controlling the supply order and supply time of the low oxygen gas and the high oxygen gas as described above, a highly effective method for treating or preventing a neurological disease can be provided.
本発明の好ましい形態では、前記ガス供給部が前記供給対象に酸素及び窒素を含むガスを供給可能であり、
前記制御手段が、供給されるガスにおける窒素の割合を制御することにより、前記ガス供給部から前記供給対象に供給されるガスにおける酸素濃度を制御することを特徴とする。
窒素の含有割合を制御する形態とすることによって、より簡便に供給するガスの酸素濃度を調整することができる。 In a preferred embodiment of the present invention, the gas supply unit can supply a gas containing oxygen and nitrogen to the supply target,
The control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of nitrogen in the gas supplied.
By controlling the nitrogen content rate, the oxygen concentration of the supplied gas can be adjusted more easily.
前記制御手段が、供給されるガスにおける窒素の割合を制御することにより、前記ガス供給部から前記供給対象に供給されるガスにおける酸素濃度を制御することを特徴とする。
窒素の含有割合を制御する形態とすることによって、より簡便に供給するガスの酸素濃度を調整することができる。 In a preferred embodiment of the present invention, the gas supply unit can supply a gas containing oxygen and nitrogen to the supply target,
The control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of nitrogen in the gas supplied.
By controlling the nitrogen content rate, the oxygen concentration of the supplied gas can be adjusted more easily.
本発明の好ましい形態では、前記ガス供給部より供給される酸素及び窒素の発生源として、空気を酸素と窒素に分離する分離能を有する酸素・窒素濃縮器を備えていることを特徴とする。
酸素・窒素濃縮器を用いる形態とすることによって、ガスに含有させる酸素と窒素を容易に生成することができる。 In a preferred embodiment of the present invention, an oxygen / nitrogen concentrator capable of separating air into oxygen and nitrogen is provided as a source of oxygen and nitrogen supplied from the gas supply unit.
By using an oxygen / nitrogen concentrator, it is possible to easily generate oxygen and nitrogen contained in the gas.
酸素・窒素濃縮器を用いる形態とすることによって、ガスに含有させる酸素と窒素を容易に生成することができる。 In a preferred embodiment of the present invention, an oxygen / nitrogen concentrator capable of separating air into oxygen and nitrogen is provided as a source of oxygen and nitrogen supplied from the gas supply unit.
By using an oxygen / nitrogen concentrator, it is possible to easily generate oxygen and nitrogen contained in the gas.
本発明の好ましい形態では、前記ガス供給部が前記供給対象に酸素及び水素を含むガスを供給可能であり、
前記制御手段が、供給されるガスにおける水素の割合を制御することにより、前記ガス供給部から前記供給対象に供給されるガスにおける酸素濃度を制御することを特徴とする。
この形態とすることにより、低酸素呼吸に於ける副作用の発生を減じ、水素吸入による健康増進効果も望むことができる。 In a preferred embodiment of the present invention, the gas supply unit can supply a gas containing oxygen and hydrogen to the supply target,
The control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of hydrogen in the gas supplied.
By adopting this form, it is possible to reduce the occurrence of side effects in hypoxic respiration and also to desire a health promotion effect by hydrogen inhalation.
前記制御手段が、供給されるガスにおける水素の割合を制御することにより、前記ガス供給部から前記供給対象に供給されるガスにおける酸素濃度を制御することを特徴とする。
この形態とすることにより、低酸素呼吸に於ける副作用の発生を減じ、水素吸入による健康増進効果も望むことができる。 In a preferred embodiment of the present invention, the gas supply unit can supply a gas containing oxygen and hydrogen to the supply target,
The control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of hydrogen in the gas supplied.
By adopting this form, it is possible to reduce the occurrence of side effects in hypoxic respiration and also to desire a health promotion effect by hydrogen inhalation.
本発明の好ましい形態では、前記供給対象にガスを供給するための呼吸マスクと、該呼吸マスクの外側を覆うように配置された安全排気マスクと、該安全排気マスクより排気を吸引するための吸引手段を備え、
前記安全排気マスクは、前記呼吸マスクを供給対象の顔面に装着したとき、該供給対象の顔面との間に隙間を生じるように構成されており、
前記呼吸マスクを供給対象の顔面に装着し該供給対象にガスを供給したときに、該呼吸マスクより漏れる水素混合ガスを、該安全排気マスクと顔面の隙間から周囲の空気と共に吸引して、空気との撹拌混合により前記水素混合ガスの水素濃度を下げて可燃爆発濃度以下に希釈させて、安全に室内又は室外に排気することを特徴とする。 In a preferred embodiment of the present invention, a breathing mask for supplying gas to the object to be supplied, a safety exhaust mask arranged to cover the outside of the respiratory mask, and suction for suctioning exhaust from the safety exhaust mask Equipped with
The safety exhaust mask is configured to create a gap with the face to be supplied when the respiratory mask is worn on the face to be supplied.
When the respiratory mask is worn on the face to be supplied and gas is supplied to the object to be supplied, the hydrogen mixed gas leaking from the respiratory mask is aspirated along with the ambient air from the gap between the safety exhaust mask and the face to obtain air. The concentration of hydrogen in the hydrogen mixed gas is lowered by stirring and mixing with the mixture to dilute the concentration of the combustible explosion or less, and the gas is safely exhausted indoors or outdoors.
前記安全排気マスクは、前記呼吸マスクを供給対象の顔面に装着したとき、該供給対象の顔面との間に隙間を生じるように構成されており、
前記呼吸マスクを供給対象の顔面に装着し該供給対象にガスを供給したときに、該呼吸マスクより漏れる水素混合ガスを、該安全排気マスクと顔面の隙間から周囲の空気と共に吸引して、空気との撹拌混合により前記水素混合ガスの水素濃度を下げて可燃爆発濃度以下に希釈させて、安全に室内又は室外に排気することを特徴とする。 In a preferred embodiment of the present invention, a breathing mask for supplying gas to the object to be supplied, a safety exhaust mask arranged to cover the outside of the respiratory mask, and suction for suctioning exhaust from the safety exhaust mask Equipped with
The safety exhaust mask is configured to create a gap with the face to be supplied when the respiratory mask is worn on the face to be supplied.
When the respiratory mask is worn on the face to be supplied and gas is supplied to the object to be supplied, the hydrogen mixed gas leaking from the respiratory mask is aspirated along with the ambient air from the gap between the safety exhaust mask and the face to obtain air. The concentration of hydrogen in the hydrogen mixed gas is lowered by stirring and mixing with the mixture to dilute the concentration of the combustible explosion or less, and the gas is safely exhausted indoors or outdoors.
このように空気との撹拌混合により前記水素混合ガスの水素濃度を下げて排気する形態とすることにより、安全性を向上させることができる。
Thus, safety can be improved by reducing the hydrogen concentration of the hydrogen mixed gas by stirring and mixing with air and exhausting the mixture.
本発明の好ましい形態では、供給対象の経皮的動脈血酸素飽和度を感知するパルスオキシメーターを備え、
前記制御手段は該パルスオキシメーターと接続されており、
前記制御手段が、前記供給対象への前記低酸素ガスの供給中に、パルスオキシメーターの感知した該供給対象の脳に向かう動脈血の経皮的動脈血酸素飽和度が所定の値よりも低いときに、該供給対象へ前記高酸素ガスの供給を開始するように、前記ガス供給部を制御することを特徴とする。 In a preferred form of the invention, there is provided a pulse oximeter for sensing the percutaneous arterial blood oxygen saturation to be delivered,
The control means is connected to the pulse oximeter,
When the control means determines that the transcutaneous arterial blood oxygen saturation of arterial blood toward the brain to be supplied which is sensed by the pulse oximeter is lower than a predetermined value during supply of the hypoxic gas to the supply object. The gas supply unit is controlled to start supply of the high oxygen gas to the supply target.
前記制御手段は該パルスオキシメーターと接続されており、
前記制御手段が、前記供給対象への前記低酸素ガスの供給中に、パルスオキシメーターの感知した該供給対象の脳に向かう動脈血の経皮的動脈血酸素飽和度が所定の値よりも低いときに、該供給対象へ前記高酸素ガスの供給を開始するように、前記ガス供給部を制御することを特徴とする。 In a preferred form of the invention, there is provided a pulse oximeter for sensing the percutaneous arterial blood oxygen saturation to be delivered,
The control means is connected to the pulse oximeter,
When the control means determines that the transcutaneous arterial blood oxygen saturation of arterial blood toward the brain to be supplied which is sensed by the pulse oximeter is lower than a predetermined value during supply of the hypoxic gas to the supply object. The gas supply unit is controlled to start supply of the high oxygen gas to the supply target.
このようにパルスオキシメーターと連動した形態とすることによって、より効果的で安全性の確保された神経疾患の治療又は予防を実現することができる。
In this manner, in combination with the pulse oximeter, it is possible to realize more effective and safer treatment or prevention of a neurological disease.
本発明の好ましい形態では、前記ガス供給部が加圧給気装置であり、前記加圧給気装置からの加圧されたガスが給気される、前記供給対象を収容できる高気圧チャンバを備えることを特徴とする。
このような構成とすることにより、高気圧酸素療法との併用も可能となる。 In a preferred embodiment of the present invention, the high pressure chamber capable of containing the object to be supplied is provided, wherein the gas supply unit is a pressurized air supply device, and the pressurized gas from the pressurized air supply device is supplied. It is characterized by
Such a configuration also enables combined use with hyperbaric oxygen therapy.
このような構成とすることにより、高気圧酸素療法との併用も可能となる。 In a preferred embodiment of the present invention, the high pressure chamber capable of containing the object to be supplied is provided, wherein the gas supply unit is a pressurized air supply device, and the pressurized gas from the pressurized air supply device is supplied. It is characterized by
Such a configuration also enables combined use with hyperbaric oxygen therapy.
また、本発明は、上述した医療装置と、
経頭蓋電気刺激を前記供給対象の頭表に印加する電気刺激部を有する経頭蓋電流刺激装置、又は低周波電流を前記供給対象に印加する電極を有する低周波治療装置を備えることを特徴とする医療システムにも関する。
本発明の医療システムによれば、経頭蓋直流電気刺激法又は低周波治療法との併用治療が可能となる。 Further, the present invention provides a medical device as described above,
A transcranial current stimulator having an electrical stimulation unit for applying transcranial electrical stimulation to a head surface of the subject to be supplied, or a low frequency treatment device having an electrode for applying a low frequency current to the subject to be supplied It also relates to medical systems.
The medical system of the present invention enables combined therapy with transcranial direct current stimulation or low frequency treatment.
経頭蓋電気刺激を前記供給対象の頭表に印加する電気刺激部を有する経頭蓋電流刺激装置、又は低周波電流を前記供給対象に印加する電極を有する低周波治療装置を備えることを特徴とする医療システムにも関する。
本発明の医療システムによれば、経頭蓋直流電気刺激法又は低周波治療法との併用治療が可能となる。 Further, the present invention provides a medical device as described above,
A transcranial current stimulator having an electrical stimulation unit for applying transcranial electrical stimulation to a head surface of the subject to be supplied, or a low frequency treatment device having an electrode for applying a low frequency current to the subject to be supplied It also relates to medical systems.
The medical system of the present invention enables combined therapy with transcranial direct current stimulation or low frequency treatment.
本発明は、酸素濃度18%以下の低酸素ガスで満たされた低酸素室と、酸素濃度21%以上の高酸素ガスで満たされた高酸素室と、を備えることを特徴とする医療設備にも関する。
本発明の医療設備によれば、効果的な神経疾患の治療方法及び予防方法を実現することができる。 The present invention provides a medical facility comprising a low oxygen chamber filled with low oxygen gas having an oxygen concentration of 18% or less and a high oxygen chamber filled with high oxygen gas having an oxygen concentration of 21% or more. Also related.
According to the medical equipment of the present invention, an effective method of treating and preventing a neurological disease can be realized.
本発明の医療設備によれば、効果的な神経疾患の治療方法及び予防方法を実現することができる。 The present invention provides a medical facility comprising a low oxygen chamber filled with low oxygen gas having an oxygen concentration of 18% or less and a high oxygen chamber filled with high oxygen gas having an oxygen concentration of 21% or more. Also related.
According to the medical equipment of the present invention, an effective method of treating and preventing a neurological disease can be realized.
本発明の好ましい形態では、人又は動物の供給対象を載せて移動するための移動体を備え、
前記移動体は、制御部の指示を受けて自動で、前記低酸素室、前記高酸素室及び室外を移動するように制御されており、
前記制御部は、前記移動体が、前記低酸素室の内部で予め設定された時間を経過した後に、前記高酸素室に移動し、前記高酸素室の内部で予め設定された時間を経過した後に、室外へ移動するように、移動体を制御することを特徴とする。 In a preferred embodiment of the present invention, there is provided a moving body for carrying and moving a human or animal supply target,
The moving body is controlled to move automatically in the low oxygen chamber, the high oxygen chamber, and the outside in response to an instruction from the control unit,
The control unit moves the movable body to the high oxygen chamber after a predetermined time has elapsed in the low oxygen chamber, and the predetermined time has elapsed in the high oxygen chamber. The mobile object is controlled to move to the outside later.
前記移動体は、制御部の指示を受けて自動で、前記低酸素室、前記高酸素室及び室外を移動するように制御されており、
前記制御部は、前記移動体が、前記低酸素室の内部で予め設定された時間を経過した後に、前記高酸素室に移動し、前記高酸素室の内部で予め設定された時間を経過した後に、室外へ移動するように、移動体を制御することを特徴とする。 In a preferred embodiment of the present invention, there is provided a moving body for carrying and moving a human or animal supply target,
The moving body is controlled to move automatically in the low oxygen chamber, the high oxygen chamber, and the outside in response to an instruction from the control unit,
The control unit moves the movable body to the high oxygen chamber after a predetermined time has elapsed in the low oxygen chamber, and the predetermined time has elapsed in the high oxygen chamber. The mobile object is controlled to move to the outside later.
このような形態とすることによって、より多くの患者に対して精度の高い神経疾患の治療方法及び予防方法を提供することができる。
Such a form can provide a more accurate method of treating and preventing neurological diseases for more patients.
本発明の医療装置、医療システム及び医療設備によれば、神経疾患、特に認知症等の効果的な治療又は予防を実現することができる。
According to the medical device, the medical system, and the medical equipment of the present invention, effective treatment or prevention of neurological diseases, in particular, dementia and the like can be realized.
以下、本発明の実施の形態について詳述する。なお、本明細書においては、本発明の医療装置、医療システム、医療設備による治療又は予防のことを再生医療システムということがある。
Hereinafter, embodiments of the present invention will be described in detail. In the present specification, the medical device, medical system, treatment or prevention by medical equipment of the present invention may be referred to as a regenerative medical system.
上述したとおり、神経疾患、特に認知症等の症状出現時には脳内神経細胞のミトコンドリアの機能低下、機能不全と言った現象が必ず伴っている。そのため、脳神経細胞のミトコンドリア機能を向上させれば、症状を回復させることができる。
As described above, when a symptom such as a neurological disease, especially dementia, appears, a phenomenon called mitochondrial dysfunction of intracerebral nerve cells is always accompanied by dysfunction. Therefore, if the mitochondrial function of brain neurons is improved, symptoms can be recovered.
ミトコンドリアの電子伝達系は一般に細胞の酸素消費の90%以上を占め、そのうち1~5%が活性酸素種に変換されると言われており、ミトコンドリアの酸素濃度は酸素の供給と消費によって3~30μMの範囲で変動すると言われている。この神経細胞での活性酸素発生量は個々の細胞毎に異なると言われている。
The mitochondrial electron transport system generally accounts for over 90% of cellular oxygen consumption, of which 1 to 5% is said to be converted to reactive oxygen species, and mitochondrial oxygen concentration is 3 to 10 depending on the supply and consumption of oxygen. It is said to fluctuate in the range of 30 μM. It is said that the amount of active oxygen generation in this nerve cell is different for each individual cell.
生体内、特に脳神経細胞の少なくとも一部の領域に、この呼吸の酸素濃度の変化を原因として、活性酸素の発生量を変動させ、即ち、H2O2(過酸化水素)の濃度に換算して、この呼吸機器の利用により、利用者の呼吸ガスが低酸素時から高酸素時に遷移する過程において、脳神経細胞内の活性酸素種濃度、ここでは過酸化水素濃度を当初の2.4倍の濃度にすることが可能である。
In the living body, in particular at least a part of the brain nerve cells, the amount of generation of active oxygen is fluctuated due to the change of the oxygen concentration of the respiration, that is, converted to the concentration of H 2 O 2 (hydrogen peroxide) In the process of the user's respiratory gas transitioning from hypoxia to hyperoxia by using this respiratory device, the concentration of reactive oxygen species in brain neurons, here hydrogen peroxide, is 2.4 times the initial concentration. It is possible to make concentration.
図1は課題を解決する手段として、呼吸具である高流量型カニューレ又は呼吸マスクを装着をして、利用者(患者)が酸素・水素・窒素の配分を制御したガス呼吸を行うものである。このシステムは空気中の酸素と窒素を分離して任意の割合で酸素と窒素を出力させる装置、水を電気分解して水素と酸素をそれぞれ取り出す装置とその分量を時系列に制御する、手動操作スイッチ又はプログラム制御装置によって構成されている。
As a means for solving the problem, FIG. 1 shows a user (patient) carries out gas breathing with controlled distribution of oxygen, hydrogen and nitrogen by wearing a high flow type cannula or breathing mask as a breathing tool. . This system is a device that separates oxygen and nitrogen in the air and outputs oxygen and nitrogen at an arbitrary ratio, a device that electrolyzes water and takes out hydrogen and oxygen respectively, and controls the amount in time series, manual operation It is configured by a switch or program control device.
図11はラットを使った実験データで、対象動物の呼吸ガスを低酸素から再酸素(高酸素)にプログラムに従って切り替えることにより、細胞に生じる活性酸素種の濃度が変化する様子を示している。図12は同様にラットを使った実験データで、運動を亢進させた時と休止させた時、これを需要性低酸素と解除時と言うが、プログラムにより運動等を解除したときにも、先程の呼吸時と同様に、細胞に生じる活性酸素種の濃度が変化する様子を示している。どちらも変化の前後において活性酸素の上昇が2.4倍に達する部分が現れる。図13と図14にそれぞれの様子を分かり易く図示している。
FIG. 11 shows experimental data using a rat, and shows how the concentration of reactive oxygen species generated in cells changes by switching the respiratory gas of a target animal from hypoxia to reoxygen (hypoxia) according to a program. Fig. 12 shows the same experimental data using rats, and it is called demand hypoxia and release time when exercise is enhanced and paused, but also when exercise and the like are canceled by a program. It shows how the concentration of reactive oxygen species generated in cells changes, as well as during breathing. In both cases, a portion where the rise of active oxygen reaches 2.4 times appears before and after the change. FIGS. 13 and 14 illustrate the respective states in an easily understandable manner.
図15には細胞内で酸素から生じたスーパーオキシドから他の活性酸素種に変化する様子を示している。通常は比較的安定している過酸化水素への変換が大多数と考えられる。人間の体内には、表1に示される様な抗酸化物質が存在する。チオレドキシン、グルタチオン、SOD、ビタミンC等、様々な抗酸化物質が存在し、活性酸素種の発生濃度を下げる働をしている。表2は活性酸素種とそれを除去する抗酸化物質を表している。表3は抗酸化代謝物と人間の血清中の濃度と肝組織での濃度を表した例である。こうして、活性酸素種の体内・組織内濃度は活性酸素種の発生量と体内の抗酸化物質の消去作用の時系列と体内の場所(部分)におけるバランスによって変化してゆく。
FIG. 15 shows how superoxide generated from oxygen in cells is changed to other reactive oxygen species. The conversion to hydrogen peroxide, which is usually relatively stable, is considered to be the majority. In the human body, antioxidants as shown in Table 1 are present. There are various antioxidants such as thioredoxin, glutathione, SOD, vitamin C, etc., and they work to lower the concentration of reactive oxygen species. Table 2 shows reactive oxygen species and antioxidants that remove them. Table 3 is an example showing the concentration in antioxidant metabolites and human serum and the concentration in liver tissue. Thus, the concentration of reactive oxygen species in the body and tissue changes depending on the amount of reactive oxygen species generated and the balance between the time series of the action of eliminating antioxidants in the body and the location (portion) in the body.
図1の装置を用いて利用者にプログラム設定に従って、最初に低酸素呼吸を行わせ、時系列の設定に従って、設定時間経過後に通常酸素又は高酸素呼吸を設定時間行わせる。この時注意することがある。図17はカーラーの救命曲線で心臓停止や呼吸停止が生命維持に与える影響を時間の関数として示されている。表5は酸素濃度と人体への影響を表している。これらのデータを参考に低酸素領域の酸素濃度と作用時間、そして、表1、表2、表3、図11、図12、図13、図14、図17を参考に高酸素領域の酸素濃度と作用時間を安全な範囲で決定する。又、治療前後には過酸化水素に対する抗酸化効果を有するビタミンC等の摂取は避けなければならない。
The apparatus of FIG. 1 is used to cause the user to first perform hypoxic breathing according to the program setting, and according to the time-series setting, normal oxygen or hyperoxia breathing is performed for the set time after the set time has elapsed. I have to be careful at this time. FIG. 17 is a lifesaving curve of a curler showing the effect of cardiac arrest and respiratory arrest on life support as a function of time. Table 5 shows the oxygen concentration and the influence on the human body. The oxygen concentration and action time of the low oxygen region referring to these data, and the oxygen concentration of the high oxygen region referring to Table 1, Table 2, Table 3, FIG. 11, FIG. 12, FIG. 13, FIG. And determine the action time in a safe range. Also, before and after treatment, it is necessary to avoid intake of vitamin C and the like, which have an antioxidant effect on hydrogen peroxide.
利用者はこの酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムの利用に際して、絶対条件ではないが、先ず呼吸器科の専門医にてスパイロメータを使用して肺機能検査及び病的検査を受けることが望ましい。呼吸機器を利用するため、使用者の呼吸の仕方、肺胞の換気特性が問題となる。表6は毎回の呼吸量と肺胞換気量を示している。浅い呼吸では分時肺胞換気量が少なくなり、生体に効果的な低酸素領域や高酸素領域を達成する為には、より長い時間を要する。この様な場合は同じ時系列での設定に対して効果的な生体反応が得られにくくなり、例えば、脳細胞の再生作用領域が狭くなる可能性が起きる。肺機能の例としては、全排気量=肺活量+残気量で成人男性で5,000L~6500L、成人女性で3500L~5000Lとなっており、この数値は加齢により低下する。従って、この酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムでは深く遅い呼吸を推奨する。
The user is not an absolute condition when using a regenerative medicine system that uses this respiratory method to gradually change the oxygen concentration, but first of all, pulmonary function examination and pathological examination using a spirometer by a respiratory specialist It is desirable to have an examination. Because of the use of a respiratory device, the user's breathing and the ventilation characteristics of the alveoli become a problem. Table 6 shows the respiratory volume and alveolar ventilation for each time. Shallow breathing reduces alveolar ventilation in minutes, and it takes longer to achieve effective hypoxic and hyperoxic areas in the body. In such a case, it is difficult to obtain an effective biological response to the setting in the same time series, and for example, there is a possibility that the regeneration area of the brain cell may be narrowed. As an example of lung function, 5,000 L to 6500 L for adult males and 3500 L to 5000 L for adult females in total displacement = respiratory capacity + respiratory capacity, and this value decreases with age. Therefore, deep and slow breathing is recommended in regenerative medicine systems that use breathing methods that gradually change this oxygen concentration.
酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムの初期設定は、シーケンス制御では、低酸素領域は、最初の1分から10分まで、20秒毎に時間設定が可能で10分から60分迄1分ごとに設定が可能である。酸素濃度は18%以下で0%も理論的には可能であるが、リスクが多くメリットが見いだせないので、最低酸素濃度は5%前後を想定している。
The initial setting of the regenerative medicine system using the breathing method that changes the oxygen concentration stepwise is sequence control, the hypoxic region can be set every 20 seconds from the first 1 minute to 10 minutes, and can be set from 10 minutes to 60 minutes It can be set every minute of labor. The oxygen concentration is 18% or less and 0% is theoretically possible, but since there are many risks and no merit can be found, the minimum oxygen concentration is assumed to be around 5%.
水素ガスの効果に関しては、旧来は活性酸素種のヒドロキシラジカルの消去を目的としたが、本願では炎症性のサイトカインの喚起の抑制を主目的とし、吸引ガス中のH2、水素ガス濃度は4%程度を標準とし、必要性に応じて水素濃度95%から90%、この時の酸素濃度は5%から10%での運用も特別な防災装置を付加することにより短時間可能である。シーケンスの後段の高酸素領域の利用では酸素濃度21%以上を設定するが、上限は常圧では利便性も考慮して60%程度を想定している。
As for the effect of hydrogen gas, it was originally aimed at eliminating hydroxy radicals of reactive oxygen species, but in the present application the main purpose is to suppress the awakening of inflammatory cytokines, and the H 2 and hydrogen gas concentrations in the suction gas are 4 It is possible to operate with a hydrogen concentration of 95% to 90% and an oxygen concentration of 5% to 10% at this time in a short time by adding a special disaster prevention device, with a standard of about%. An oxygen concentration of 21% or more is set in the use of the high oxygen region in the latter part of the sequence, but the upper limit is assumed to be about 60% in consideration of convenience at normal pressure.
血流での酸素の運搬はヘモグロビンが担っており、酸素濃度を上げても、生体組織への酸素運搬能力は肺胞における酸素分圧に基づく溶存酸素分の上昇だけであるが、再生医療からみると状況は異なる。これが酸素濃度を21%以上に設定する理由である。
Hemoglobin is responsible for the transport of oxygen in the bloodstream, and even if the oxygen concentration is increased, the ability to transport oxygen to living tissue is only an increase in dissolved oxygen based on the partial pressure of oxygen in the alveoli, but from regenerative medicine The situation is different. This is the reason for setting the oxygen concentration to 21% or more.
図7はプログラム制御による呼吸方式を用いた再生医療システムの推定作用機序の説明図である。シーケンスの後段を高酸素領域とするのは、脳細胞の再生領域をより拡大させる目的である。脳細胞の領域で発生する過酸化水素に対し、生体の持つ抗酸化力は、これを消去又は低減させるように働くので、又ミトコンドリア機能は細胞一個一個、細胞毎に異なる、この再生医療の仕組みは、本システムの作用において、細胞に発生するH2O2過酸化水素の濃度を、システムの稼働中に適宜な時間、2.4倍にしなくてはならず、2.1倍や2。2倍ではミトコンドリアのゲノム初期化が起こらない。この為2.4倍の活性酸素濃度を脳神経細胞のより広い領域に発現させるために利用者の吸引する酸素濃度を高めている。
FIG. 7 is an explanatory view of a presumed action mechanism of a regenerative medicine system using a program-controlled breathing system. The purpose of making the latter part of the sequence a high oxygen area is to further expand the regeneration area of brain cells. The antioxidant power of the living body acts to eliminate or reduce hydrogen peroxide generated in the area of brain cells, and the mitochondrial function is different for each cell and cell by cell, this regenerative medicine mechanism In the operation of this system, the concentration of H 2 O 2 hydrogen peroxide generated in the cells must be multiplied by 2.4 for an appropriate period of time during operation of the system, 2.1 or 2. Doubling does not cause mitochondrial genome reprogramming. For this reason, in order to express active oxygen concentration of 2.4 times in a wider area of brain nerve cells, the concentration of oxygen aspirated by the user is increased.
高酸素領域での呼吸は、少なくとも10分間以上必要で、30分間から60分間行われることが望ましい。何故ならば、生体の中では血流や各種の反応により絶えず酸化現象と(還元)抗酸化現象が行われており、その活性酸素濃度の数値が揺らいでいると思われる。又、本工程の後に生体の過度の応答(副作用、過敏反応)を防ぐための、安定化終了呼吸として20分間から60分間の範囲で、酸素濃度21%前後、水素濃度5%から10%での吸引呼吸が望ましい。
It is desirable that breathing in the high oxygen region be at least 10 minutes or more, and be performed for 30 minutes to 60 minutes. This is because in the living body, the oxidation phenomenon and the (reduction) antioxidant phenomenon are constantly performed by blood flow and various reactions, and it is thought that the value of the active oxygen concentration fluctuates. After this step, oxygen concentration is around 21%, hydrogen concentration is 5% to 10% in the range of 20 minutes to 60 minutes as stabilization completion breathing to prevent excessive response (side effects, hypersensitivity reaction) of the living body. Inhalation breathing is desirable.
図7で脳は選択的脆弱性を持っており、選択的脆弱性の部位では酸化ストレスを受けやすいことも判明している。本再生医療システムは、この選択的脆弱性の部位に、早期に作用すると思われる。又、低酸素領域を含む本再生医療システムの治療は、脳の虚血耐性ならぬ、脳の低酸素耐性も発現すると思われる。
In FIG. 7, it is also found that the brain has selective vulnerability and is susceptible to oxidative stress at the site of selective vulnerability. The regenerative medical system appears to act early on this site of selective vulnerability. Moreover, the treatment of the present regenerative medical system including the hypoxic region is considered to develop hypoxia tolerance of the brain, not ischemia tolerance of the brain.
一方、理化学研究所の「ミトコンドリアゲノムの初期化機構」では、図16は細胞周期とそれを調整するしくみを表した図であるが、この様な細胞周期(分裂期M)に合わせて、ミトコンドリアゲノムの初期化がなされるとされている。表4は生体の細胞の入れ替わる速度、新陳代謝を表した表である。脳では入れ替わりの早い部分は1か月で40%となっており、毎日或いは日に2回と言ったペースで本発明を利用した治療を継続することにより、機能低下したミトコンドリアを持つ脳神経細胞を、少なくとも一部は正常な機能を有するミトコンドリアの細胞神経細胞に再生させることが可能となる。生体のその他の部位では、目的とする部位によって細胞組織や細胞周期が異なり又動脈血の状態も異なるので、各々の部位に即した設定や工夫を要する。
On the other hand, Fig. 16 is a diagram showing the cell cycle and the mechanism that regulates it in "Reset Mechanism of Mitochondrial Genome" at RIKEN, but according to such cell cycle (division phase M), It is supposed that the initialization of the genome is done. Table 4 is a table showing the cell replacement rate and metabolism in the living body. In the brain, the early part of the replacement is 40% in one month, and by continuing the treatment using the present invention at a pace such as every day or twice a day, brain neurons having reduced mitochondria are obtained. At least a part of them can be regenerated into mitochondrial cell neurons having a normal function. At other parts of the living body, the cell tissue and cell cycle differ depending on the target part, and the state of arterial blood also differs, so it is necessary to set up and devise each part.
本発明の酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムは、元来、人体に備わっている隠れたホメオスタシス(生体恒常系)又は細胞再生システムと言うことができる。従って比較的副作用等が発生しにくいシステムである。原則的には、ミトコンドリアの機能低下や機能不全が原因として生じる全ての疾病の治療と予防に有益であり、又同様に、ミトコンドリアの機能低下による活性酸素種発生が原因の疾患の治療と予防に対して有益である。
The regenerative medical system using the respiratory method of gradually changing the oxygen concentration of the present invention can be said to be a hidden homeostasis (bioconstituent system) or cell regeneration system originally provided to the human body. Therefore, it is a system in which a side effect etc. are comparatively hard to occur. In principle, it is useful for treatment and prevention of all diseases caused by mitochondrial dysfunction and dysfunction, and also for the treatment and prevention of diseases caused by generation of reactive oxygen species by mitochondrial dysfunction. It is useful.
表7は認知症等の神経疾患に対する、他の治療方法との、現時点での比較である。製薬各社の治療薬の取り組みでは、認知症に伴って脳内に蓄積する炎症性の物質、アミロイドβやタウタンパク質と言った物質の対処が決め手であるが、これらを処理(減少)しても脳機能の際立った向上は見受けられない。一方、酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムを用いた治療を行えば、脳機能の向上が期待されるが、(これはミトコンドリア機能向上によるATP産生機能の増大で、神経活動において利用できるエネルギー量が増える)但し、既に脳の内部にアミロイドβやタウタンパク質等が増加在籍している状態で、本願の治療方法で、それらを減らせるかどうか?は不明である。タウタンパク質等が増えると、免疫機能が亢進したり、酸化ストレスが増加するとの心配があり、その点は製薬各社の取組と酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムは共益関係を持ちうる。
Table 7 is a current comparison of other treatment regimens for neurological disorders such as dementia. In the pharmaceutical agent's treatment efforts, the treatment of inflammatory substances that accumulate in the brain with dementia, substances such as amyloid β and tau protein is the decisive factor, but even if they are processed (decreased) There is no noticeable improvement in brain function. On the other hand, if treatment is performed using a regenerative medicine system that uses a breathing method in which oxygen concentration is gradually changed, improvement in brain function is expected (but this is an increase in ATP production function due to improvement in mitochondrial function, However, if the amount of amyloid β, tau protein, etc. already increased and registered inside the brain, can they be reduced by the treatment method of the present application? Is unknown. If tau protein etc. increase, there is a concern that the immune function may be enhanced or oxidative stress may increase, and this is due to the efforts of pharmaceutical companies and the regenerative medicine system using the respiratory method to change oxygen concentration in stages. It can have a relationship.
その他の再生医療として、SB623(サンバイオ)とMA-5(東北大学)では、SB623は外科施術で脳内に再生細胞薬を投与するもので、MA-5はミトコンドリアの機能そのものを改善するというものであるが、どちらの治療法も治療物質を生体に投与する点が異なり、それなりの手間のかかる治療法である。本願の方法は、既存の呼吸方法を変化させるだけであり、仕組みがシンプルで適用も比較的簡単である。
As other regenerative medicines, SB 623 (Sanbio) and MA-5 (Tohoku University) say that SB 623 is a surgical procedure to administer regenerative cell drugs into the brain and MA-5 improves the mitochondrial function itself Although both treatments are different in that the therapeutic substance is administered to the living body, they are relatively time-consuming treatments. The method of the present application only changes the existing breathing method, and the mechanism is simple and the application is relatively simple.
又、ミューズ細胞、iPS人工多能性幹細胞、ミューズ細胞等も今後の神経疾患に対して期待される技術であるが、問題は価格面で安価に設定できるかどうかである。
Muse cells, iPS artificial pluripotent stem cells, muse cells and the like are also expected technologies for future neurological diseases, but the problem is whether it can be set inexpensively in terms of price.
認知症予防の各種運動療法は、本願の作用機序と通じる面があり、運動を通じて脳神経細胞にも活性酸素が生じて、ミトコンドリアゲノムの初期化が、極めて一部の神経細胞で起こり、その結果、細胞のミトコンドリア機能が改善するものと思われる。
その証拠に、運動前にビタミンCを摂取すると、運動による身体機能の改善効果が無くなると伝文が複数で存在する。運動療法の作用機序の曖昧な部分を本願の理論で補完することにより、運動療法の効率は格段に高まるものと思われる。 Various types of exercise therapy for preventing dementia have an aspect that leads to the action mechanism of the present application, and active oxygen is also produced in brain neurons through exercise, and initialization of mitochondrial genome occurs in very few neurons, and the result , It is thought that the mitochondrial function of cells is improved.
The evidence is that if you take vitamin C before exercise, there are multiple messages if the improvement effect of physical function by exercise disappears. By complementing the ambiguous part of the action mechanism of exercise therapy with the theory of the present application, the efficiency of exercise therapy seems to be significantly enhanced.
その証拠に、運動前にビタミンCを摂取すると、運動による身体機能の改善効果が無くなると伝文が複数で存在する。運動療法の作用機序の曖昧な部分を本願の理論で補完することにより、運動療法の効率は格段に高まるものと思われる。 Various types of exercise therapy for preventing dementia have an aspect that leads to the action mechanism of the present application, and active oxygen is also produced in brain neurons through exercise, and initialization of mitochondrial genome occurs in very few neurons, and the result , It is thought that the mitochondrial function of cells is improved.
The evidence is that if you take vitamin C before exercise, there are multiple messages if the improvement effect of physical function by exercise disappears. By complementing the ambiguous part of the action mechanism of exercise therapy with the theory of the present application, the efficiency of exercise therapy seems to be significantly enhanced.
更に、酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムは表7及び表8に示す様に、低酸素呼吸領域を使用することにより、図19の血管拡張作用、毛細血管の新生を喚起する作用、図18に示すHIF(低酸素誘導性因子)の活性化による種々の作用、心筋の分裂促進、心筋の再生、ROS発生の抑制、さらに水素ガスの添加により、図20の低酸素血症等による肺高血圧症を抑制、炎症性サイトカインとホルモンの遺伝子発現の抑制作用で、TNF-α、インターロイキンIL-1β、IL-6,IL-10,IL-12,CCL2,インターフェロン(INF)-γ,細胞間接着分子1(ICAM-1),PGE1,PGE2,等、の発現低下作用がある。 又治療の対象年齢としては酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムは、細胞周期を利用しているので、その限界、図21のヘイフリックの限界迄、およそ120歳位迄の治療が可能と思われる。
Furthermore, as shown in Table 7 and Table 8, the regenerative medical system using the respiratory method in which the oxygen concentration is gradually changed uses the hypoxic respiratory region to cause the vasodilator action of FIG. 20, various actions by activation of HIF (hypoxia inducible factor) shown in FIG. 18, myocardial division promotion, myocardial regeneration, suppression of ROS generation, addition of hydrogen gas, low in FIG. TNF-α, interleukin IL-1β, IL-6, IL-10, IL-12, CCL2, interferon (TNF-α, IL-6, IL-10, IL-12, CCL2, interferon) by suppressing pulmonary hypertension caused by oxygenemia etc. and suppressing the gene expression of inflammatory cytokines and hormones There is an action to reduce the expression of IFN) -γ, intercellular adhesion molecule 1 (ICAM-1), PGE1, PGE2, etc. Also, as the target age for treatment, a regenerative medicine system using a respiratory method that changes oxygen concentration stepwise utilizes the cell cycle, so its limit, the limit of the heiflick in FIG. It seems that treatment of is possible.
更に、酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムは、図8様な脳の経頭蓋直流刺激療法との併用や、心臓の低出力体外衝撃波治療法との併用、手足の駆血療法との併用と言った、体の一部分に需要生低酸素状態を発現させたものや、過酸化水素点滴療法等や高気圧酸素治療との併用も可能である。その他、生体の部分領域に適宜な方法で負荷を掛ける療法等はマッサージや指圧、低周波治療器、温熱療法、等も含まれる。図10は人体の安静時に於ける各臓器の血流と血液分布、酸素の消費の例である。脳以外の部分に対する、細胞のミトコンドリアゲノムの初期化については、各臓器又は領域毎に個別に、呼吸を通じた肺胞の酸素濃度の変動が、各血管の血流を通じて各細胞組織の活性酸素の変動に与える状態を予測計算して行えば、脳以外の部分に対しても適用が可能である。よって、酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムは、認知症の予防と治療に限定されずに、人体の細胞のミトコンドリア機能再生に、比較的安全で使い易く、しかも他の療法に比し安価に達成される再生医療に貢献するものである。
Furthermore, a regenerative medicine system using a breathing method that changes oxygen concentration stepwise is used in combination with transcranial direct current stimulation therapy of the brain as shown in FIG. 8 or in combination with low-power extracorporeal shock wave therapy of the heart. It can be used in combination with acupuncture, in which demand hypoxia is expressed in a part of the body, or in combination with hydrogen peroxide drip therapy or hyperbaric oxygen therapy. In addition, therapy etc. which apply a load to a partial area of the living body in an appropriate manner include massage, acupressure, low frequency treatment device, thermotherapy and the like. FIG. 10 shows an example of blood flow and blood distribution of each organ at the time of human body rest and oxygen consumption. With regard to the initialization of the mitochondrial genome of cells relative to parts other than the brain, fluctuations in the oxygen concentration of alveoli throughout the respiration, individually for each organ or region, are the changes in active oxygen of each cell tissue through the bloodstream of each blood vessel. It is possible to apply to parts other than the brain if the state given to the fluctuation is predicted and calculated. Therefore, a regenerative medicine system using a breathing method in which oxygen concentration is gradually changed is not limited to prevention and treatment of dementia, and is relatively safe and easy to use for regeneration of mitochondrial function of human cells, and others It contributes to regenerative medicine that is achieved inexpensively compared to
本再生医療システムによる治療を一定期間行った場合に、脳内の神経細胞のミトコンドリアの機能が高まり、脳神経細胞では以前より多くのエネルギーの利用が可能となる。この変化は認知能力の向上や記憶力の向上として神経活動に現れる。図9では、神経細胞のエネルギー発現が少ない場合をAとし、標準的なエネルギー状態の場合をBとし、より高い状態をCとした。臨床実験による推測では、脳が低エネルギー状態の場合Aでは、単位時間あたりに、脳神経細胞が意識・認識活動として利用できるエネルギーが少ない為、認知可能なレベル又は回数が少なく、周囲の変化について行けず、周囲の事象の認識の正確さと認知回数が低下する。また標準的な認識レベルはBであるので、周囲の変化の速度について行けずに何が何だか分からなくなる。何かを表現するにも、考えるのにも神経細胞を活動させる為のエネルギーが不足しているため困難である。一方、十分な期間、本システムで治療を行い、脳神経細胞のエネルギー発現レベルを高められればCの様な状態になり、神経活動として、単位時間に利用できるエネルギー量が増加する。この状態になると、周囲の事象の認識の正確さと認知回数が格段に向上する事により周囲の事象の変化は手に取るように把握が可能となる。Cの状態では、脳の神経細胞は、神経活動におけるマルチタスクも可能となり、A状態の人間がCの様になると単位時間当たりの自覚・認識回数が増えるので、周囲に神経を集中させると、物事の動きがスローに感じられることがある。例えて言えば、これは毎秒10コマの映像を見るのと、毎秒30コマの映像を見るのとの違いである。これは、臨床実験における推測ではあるが、個人差があるとは思われるが、認知症患者等による本システムの利用は認知機能と記憶力等の格段な改善が期待できる。
When treatment with this regenerative medical system is performed for a certain period, the function of mitochondria of neurons in the brain is enhanced, and brain neurons can use more energy than before. This change appears in neural activity as an improvement in cognitive ability and memory. In FIG. 9, the case where the energy expression of the nerve cell is low is A, the case of a standard energy state is B, and the higher state is C. In clinical experiments, when the brain is in a low energy state, the amount of energy that brain neurons can use as awareness / cognitive activity per unit time is small in A, so there are few recognizable levels or frequencies, and changes in the surrounding area should be made. It reduces the accuracy and frequency of recognition of surrounding events. Also, since the standard recognition level is B, it is impossible to know what it is without knowing about the speed of surrounding change. It is difficult to express something or think about it because there is not enough energy to activate neurons. On the other hand, if the energy expression level of brain neurons is increased by treating with this system for a sufficient period of time, it will be in a state like C, and the amount of energy available for unit time will increase as neural activity. In this state, the change in surrounding events can be grasped as if the accuracy and frequency of recognition of surrounding events are significantly improved. In the C state, nerve cells in the brain can also perform multitasking in neural activity, and when the human being in the A state becomes like C, the number of awareness and recognition per unit time increases, so when the nerve is concentrated in the surroundings, Sometimes the movement of things is felt slow. For example, this is the difference between viewing 10 frames per second and viewing 30 frames per second. Although this is speculation in clinical experiments, although individual differences may be considered, utilization of the present system by patients with dementia etc. can be expected to significantly improve cognitive function and memory ability.
酸素ガスに加え、窒素ガスと水素ガスを混合したガスを供給対象に供給する形態について説明を加える。
本実施形態においては、酸素ガス及び窒素ガス及び水素ガスを吸引する為のカニューレ(高流量型)又は呼吸マスク又は呼吸用フェイスマスク等の呼吸マスク等と、窒素ガスの供給手段と酸素ガスの供給手段として空気濃縮型酸素及び窒素供給器を備える。さらに水素ガスの供給手段としてMEA水電解式水素ガス発生器又は水素ガス供給器を備え、水素ガスの発生量の約50%の酸素ガスも同時に供給する。 A description will be given of an embodiment in which a mixed gas of nitrogen gas and hydrogen gas is supplied to the supply target in addition to oxygen gas.
In this embodiment, a cannula (high flow rate type) or a respirator such as a respirator or a respirator face mask for suctioning oxygen gas, nitrogen gas and hydrogen gas, nitrogen gas supply means, and oxygen gas supply An air-concentrated oxygen and nitrogen feeder is provided as a means. Furthermore, an MEA water electrolysis type hydrogen gas generator or a hydrogen gas supply device is provided as a hydrogen gas supply means, and oxygen gas of about 50% of the generation amount of hydrogen gas is simultaneously supplied.
本実施形態においては、酸素ガス及び窒素ガス及び水素ガスを吸引する為のカニューレ(高流量型)又は呼吸マスク又は呼吸用フェイスマスク等の呼吸マスク等と、窒素ガスの供給手段と酸素ガスの供給手段として空気濃縮型酸素及び窒素供給器を備える。さらに水素ガスの供給手段としてMEA水電解式水素ガス発生器又は水素ガス供給器を備え、水素ガスの発生量の約50%の酸素ガスも同時に供給する。 A description will be given of an embodiment in which a mixed gas of nitrogen gas and hydrogen gas is supplied to the supply target in addition to oxygen gas.
In this embodiment, a cannula (high flow rate type) or a respirator such as a respirator or a respirator face mask for suctioning oxygen gas, nitrogen gas and hydrogen gas, nitrogen gas supply means, and oxygen gas supply An air-concentrated oxygen and nitrogen feeder is provided as a means. Furthermore, an MEA water electrolysis type hydrogen gas generator or a hydrogen gas supply device is provided as a hydrogen gas supply means, and oxygen gas of about 50% of the generation amount of hydrogen gas is simultaneously supplied.
これらをチューブ又はホースで利用者の口腔のマスク等に搬送する。そして酸素ガスと窒素ガスと水素ガスの供給量とタイミングを制御するプログラム制御装置と同コントローラ、更には呼吸用にカニューレを使用し、尚且つ、供給する水素ガス濃度が10%を超える場合は、カニューレの覆う形の安全排気マスクと同マスクから周囲の空気と呼気を混ぜて回収して混合呼気の水素濃度を4%以下で周囲に排出する、可変電動式の呼気撹拌放出器とこれに綱なるホース又はチューブ、状況に応じて、呼気を再利用して、これに調整ガス(酸素・水素等)を添加してする場合には、呼気のラインの延長線上に二酸化炭素吸着部(吸収部)を設ける。
These are transported to a mask or the like of the user's mouth by a tube or hose. If the program controller and controller that control the supply amount and timing of oxygen gas, nitrogen gas and hydrogen gas, and a cannula are used for breathing, and if the concentration of hydrogen gas to be supplied exceeds 10%, A variable motorized breath agitating and discharger, which combines the ambient air and exhaled air from the mask with a safety exhaust mask in the form of a cannula and collects it, and discharges the hydrogen concentration of the mixed exhalation to 4% or less. If a hose or tube, depending on the situation, reuses exhalation and adds a conditioning gas (oxygen, hydrogen, etc.) to this, the carbon dioxide adsorbing portion (absorber) on the extension of the exhalation line )).
さらに必要に応じて吸気量計、呼気流量計をそれぞれのラインに設置、必要な部分に呼気ガスの流出方向切換え弁を設置する。それと安全の為に、室内水素ガス濃度が4%を超えないように監視するための水素ガス濃度センサーで構成される。通常、呼吸ガスの供給部分は一つのパッケージで作られる。
If necessary, install an inspiratory volume meter and an expiratory flow meter on each line, and install an expiratory gas flow direction switching valve in the necessary part. And for the sake of safety, it consists of a hydrogen gas concentration sensor for monitoring that the indoor hydrogen gas concentration does not exceed 4%. Usually, the breathing gas supply part is made in one package.
大切なことはプログラムの内容で、利用者は、呼吸具を装着して治療を受ける際は、必ず酸素濃度18%以下の低酸素領域から初め、患者が適応可能な条件で初め、続いて患者毎の適宜な時間が経過後に手動操作又は自動で酸素濃度21%以上の高酸素領域の呼吸に変化させる。この後、適宜な時間高酸素域で活性酸素種の過酸化水素の細胞内濃度が最初の2.4倍近傍に留まる様に、作用安定化呼吸をし、さらに酸素濃度を徐々に21%まで落とし、細胞内の活性酸素種の濃度を初期値近くまで低下させる、終了の為の安定化呼吸で終了となる。これら一連の動作は、手動操作か又はプログラム制御装置により自動制御される。利用者ごとの設定内容は設定リモコンにより事前にプログラム制御装置に入力ができる。
What is important is the content of the program, and when the user wears a breathing apparatus and receives treatment, he must always start with a hypoxic area with an oxygen concentration of 18% or less, under conditions that the patient can adapt, and then After each appropriate time has elapsed, the operation is changed to breathing in an oxygen concentration region of 21% or more of oxygen concentration manually or automatically. After this, take an action stabilization respiration so that the intracellular concentration of reactive oxygen species hydrogen peroxide stays around 2.4 times in the high oxygen region for an appropriate period of time, and further increase the oxygen concentration to 21% gradually It ends with the stabilized respiration for the end, which drops the concentration of reactive oxygen species in the cell to near the initial value. The series of operations are manually controlled or automatically controlled by a program control device. The setting contents for each user can be input to the program control device in advance by the setting remote controller.
尚、総頸動脈に反射式パルスオキシメーターを取り付けて(貼り付ける)この経皮的動脈血酸素飽和度の数値でプロセスの一部を制御したい場合は、(脳動脈血の過度の低酸素状態を防ぐため)このSpO2の信号をプログラム制御装置に入れて割り込み処理を行えるようになっている。(事前のリモコン設定が必要)この様に既存の呼吸機器を大きく改造して、さらに特殊な呼吸方法を採用することにより細胞のミトコンドリアの再生ともいえる、機能の健全化が達成され、非常に効果の高い安全な、酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムを実現した。
If you want to control part of the process with the value of this percutaneous arterial blood oxygen saturation by attaching (pasting) a reflection type pulse oximeter to the common carotid artery (preventing excessive hypoxia in cerebral arterial blood Because this SpO2 signal is input to the program control device, interrupt processing can be performed. (Requires prior remote control settings) In this way, the existing respiratory equipment is largely remodeled, and by adopting a special breathing method, the restoration of function of the mitochondria, which can be called regeneration of the cells, is achieved, which is very effective. We have realized a highly safe, regenerative medical system using a breathing method that changes oxygen concentration gradually.
以上説明した発明の特に好ましい実施形態は以下の通りである。
<1> 人又は動物の供給対象に、少なくとも酸素濃度18%以下の低酸素ガス及び酸素濃度21%以上の高酸素ガスを供給可能なガス供給部と、
ガス供給部から供給対象に供給されるガスの酸素濃度を制御する制御手段と、を備え、
前記制御手段が、前記ガス供給部から前記供給対象に所定の酸素濃度のガスが供給される時間を制御し、
前記制御手段が、初めに前記供給対象に前記低酸素ガスの供給を行った後に、前記供給対象に前記高酸素ガスの供給を10分間以上行い、その後、ガスの給気を終了するように前記ガス供給部を制御することを特徴とする、脳神経細胞内における活性酸素濃度向上用の医療システム。 Particularly preferred embodiments of the invention described above are as follows.
<1> A gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more to a human or animal supply target;
Control means for controlling the oxygen concentration of the gas supplied from the gas supply unit to the supply target;
The control means controls a time during which a gas having a predetermined oxygen concentration is supplied from the gas supply unit to the supply target;
After the control means first supplies the low oxygen gas to the supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the gas supply is terminated. What is claimed is: 1. A medical system for enhancing the concentration of active oxygen in a brain nerve cell, comprising controlling a gas supply unit.
<1> 人又は動物の供給対象に、少なくとも酸素濃度18%以下の低酸素ガス及び酸素濃度21%以上の高酸素ガスを供給可能なガス供給部と、
ガス供給部から供給対象に供給されるガスの酸素濃度を制御する制御手段と、を備え、
前記制御手段が、前記ガス供給部から前記供給対象に所定の酸素濃度のガスが供給される時間を制御し、
前記制御手段が、初めに前記供給対象に前記低酸素ガスの供給を行った後に、前記供給対象に前記高酸素ガスの供給を10分間以上行い、その後、ガスの給気を終了するように前記ガス供給部を制御することを特徴とする、脳神経細胞内における活性酸素濃度向上用の医療システム。 Particularly preferred embodiments of the invention described above are as follows.
<1> A gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more to a human or animal supply target;
Control means for controlling the oxygen concentration of the gas supplied from the gas supply unit to the supply target;
The control means controls a time during which a gas having a predetermined oxygen concentration is supplied from the gas supply unit to the supply target;
After the control means first supplies the low oxygen gas to the supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the gas supply is terminated. What is claimed is: 1. A medical system for enhancing the concentration of active oxygen in a brain nerve cell, comprising controlling a gas supply unit.
<2> 前記制御手段が、初めに前記供給対象に前記低酸素ガスの供給を1分間以上行った後に、前記供給対象に前記高酸素ガスの供給を10分間以上行い、その後、ガスの給気を終了するように前記ガス供給部を制御することを特徴とする、<1>に記載の医療システム。
<2> The control means first supplies the low oxygen gas to the supply target for one minute or more, and then supplies the high oxygen gas to the supply target for ten minutes or more, and then supplies the gas. The medical system according to <1>, wherein the gas supply unit is controlled to end.
<3> 人又は動物の供給対象に、少なくとも酸素濃度18%以下の低酸素ガス及び酸素濃度21%以上の高酸素ガスを供給可能なガス供給部と、
ガス供給部から供給対象に供給されるガスの酸素濃度を制御する制御手段と、を備え、
前記制御手段が、初めに前記供給対象に前記低酸素ガスの供給を行った後に、前記供給対象に前記高酸素ガスの供給を10分間以上行い、その後、前記低酸素ガスの給気を行わないように前記ガス供給部を制御することを特徴とする、脳神経細胞内における活性酸素濃度向上用の医療システム。 <3> A gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more to a human or animal supply target;
Control means for controlling the oxygen concentration of the gas supplied from the gas supply unit to the supply target;
After the control means first supplies the low oxygen gas to the supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the low oxygen gas is not supplied. And controlling the gas supply unit in such a manner as to improve the concentration of active oxygen in a brain nerve cell.
ガス供給部から供給対象に供給されるガスの酸素濃度を制御する制御手段と、を備え、
前記制御手段が、初めに前記供給対象に前記低酸素ガスの供給を行った後に、前記供給対象に前記高酸素ガスの供給を10分間以上行い、その後、前記低酸素ガスの給気を行わないように前記ガス供給部を制御することを特徴とする、脳神経細胞内における活性酸素濃度向上用の医療システム。 <3> A gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more to a human or animal supply target;
Control means for controlling the oxygen concentration of the gas supplied from the gas supply unit to the supply target;
After the control means first supplies the low oxygen gas to the supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the low oxygen gas is not supplied. And controlling the gas supply unit in such a manner as to improve the concentration of active oxygen in a brain nerve cell.
<4> 前記制御手段が、初めに前記供給対象に前記低酸素ガスの供給を1分間以上行った後に、前記供給対象に前記高酸素ガスの供給を10分間以上行い、その後、前記低酸素ガスの給気を行わないよう、前記ガス供給部を制御することを特徴とする、<3>に記載の医療システム。
<4> The control means first supplies the low oxygen gas to the supply target for one minute or more, and then supplies the high oxygen gas to the supply target for ten minutes or more, and then the low oxygen gas The medical system according to <3>, wherein the gas supply unit is controlled so as not to supply air.
<5> 前記ガス供給部が前記供給対象に酸素及び窒素を含むガスを供給可能であり、
前記制御手段が、供給されるガスにおける窒素の割合を制御することにより、前記ガス供給部から前記供給対象に供給されるガスにおける酸素濃度を制御することを特徴とする、<1>~<4>の何れか一項に記載の医療システム。 <5> The gas supply unit can supply a gas containing oxygen and nitrogen to the supply target,
The control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of nitrogen in the gas supplied, <1> to <4. The medical system according to any one of>.
前記制御手段が、供給されるガスにおける窒素の割合を制御することにより、前記ガス供給部から前記供給対象に供給されるガスにおける酸素濃度を制御することを特徴とする、<1>~<4>の何れか一項に記載の医療システム。 <5> The gas supply unit can supply a gas containing oxygen and nitrogen to the supply target,
The control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of nitrogen in the gas supplied, <1> to <4. The medical system according to any one of>.
<6> 前記ガス供給部より供給される酸素及び窒素の発生源として、空気を酸素と窒素に分離する分離能を有する酸素・窒素濃縮器を備えていることを特徴とする、<1>~<5>の何れか一項に記載の医療システム。
<6> An oxygen / nitrogen concentrator capable of separating air into oxygen and nitrogen is provided as a source of generation of oxygen and nitrogen supplied from the gas supply unit. <1> The medical system as described in any one of <5>.
<7> 前記ガス供給部が前記供給対象に酸素及び水素を含むガスを供給可能であり、
前記制御手段が、供給されるガスにおける水素の割合を制御することにより、前記ガス供給部から前記供給対象に供給されるガスにおける酸素濃度を制御することを特徴とする、<1>~<6>の何れか一項に記載の医療システム。 <7> The gas supply unit can supply a gas containing oxygen and hydrogen to the supply target,
The control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of hydrogen in the gas supplied, <1> to <6. The medical system according to any one of>.
前記制御手段が、供給されるガスにおける水素の割合を制御することにより、前記ガス供給部から前記供給対象に供給されるガスにおける酸素濃度を制御することを特徴とする、<1>~<6>の何れか一項に記載の医療システム。 <7> The gas supply unit can supply a gas containing oxygen and hydrogen to the supply target,
The control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of hydrogen in the gas supplied, <1> to <6. The medical system according to any one of>.
<8> 前記供給対象にガスを供給するための呼吸マスクと、該呼吸マスクの外側を覆うように配置された安全排気マスクと、該安全排気マスクより排気を吸引するための吸引手段を備え、
前記安全排気マスクは、前記呼吸マスクを供給対象の顔面に装着したとき、該供給対象の顔面との間に隙間を生じるように構成されており、
前記呼吸マスクを供給対象の顔面に装着し該供給対象にガスを供給したときに、該呼吸マスクより漏れる水素混合ガスを、該安全排気マスクと顔面の隙間から周囲の空気と共に吸引して、空気との撹拌混合により前記水素混合ガスの水素濃度を下げて可燃爆発濃度以下に希釈させて、安全に室内又は室外に排気することを特徴とする、<7>に記載の医療システム。 <8> A breathing mask for supplying a gas to the supply target, a safety exhaust mask disposed so as to cover the outside of the respiratory mask, and suction means for suctioning exhaust from the safety exhaust mask.
The safety exhaust mask is configured to create a gap with the face to be supplied when the respiratory mask is worn on the face to be supplied.
When the respiratory mask is worn on the face to be supplied and gas is supplied to the object to be supplied, the hydrogen mixed gas leaking from the respiratory mask is aspirated along with the ambient air from the gap between the safety exhaust mask and the face to obtain air. The medical system according to <7>, wherein the hydrogen concentration of the hydrogen mixed gas is reduced by stirring and mixing with it to dilute it to a concentration below the flammable explosion concentration, and the inside of the room or the outside is safely ventilated.
前記安全排気マスクは、前記呼吸マスクを供給対象の顔面に装着したとき、該供給対象の顔面との間に隙間を生じるように構成されており、
前記呼吸マスクを供給対象の顔面に装着し該供給対象にガスを供給したときに、該呼吸マスクより漏れる水素混合ガスを、該安全排気マスクと顔面の隙間から周囲の空気と共に吸引して、空気との撹拌混合により前記水素混合ガスの水素濃度を下げて可燃爆発濃度以下に希釈させて、安全に室内又は室外に排気することを特徴とする、<7>に記載の医療システム。 <8> A breathing mask for supplying a gas to the supply target, a safety exhaust mask disposed so as to cover the outside of the respiratory mask, and suction means for suctioning exhaust from the safety exhaust mask.
The safety exhaust mask is configured to create a gap with the face to be supplied when the respiratory mask is worn on the face to be supplied.
When the respiratory mask is worn on the face to be supplied and gas is supplied to the object to be supplied, the hydrogen mixed gas leaking from the respiratory mask is aspirated along with the ambient air from the gap between the safety exhaust mask and the face to obtain air. The medical system according to <7>, wherein the hydrogen concentration of the hydrogen mixed gas is reduced by stirring and mixing with it to dilute it to a concentration below the flammable explosion concentration, and the inside of the room or the outside is safely ventilated.
<9> 供給対象の経皮的動脈血酸素飽和度を感知するパルスオキシメーターを備え、
前記制御手段は該パルスオキシメーターと接続されており、
前記制御手段が、前記供給対象への前記低酸素ガスの供給中に、パルスオキシメーターの感知した該供給対象の経皮的動脈血酸素飽和度が所定の値よりも低いときに、該供給対象へ前記高酸素ガスの供給を開始するように、前記ガス供給部を制御することを特徴とする、<1>~<8>の何れか一項に記載の医療システム。 <9> Equipped with a pulse oximeter that detects percutaneous arterial blood oxygen saturation to be supplied.
The control means is connected to the pulse oximeter,
While the control means is configured to supply the low oxygen gas to the supply target, when the percutaneous arterial blood oxygen saturation level of the supply target sensed by the pulse oximeter is lower than a predetermined value, The medical system according to any one of <1> to <8>, wherein the gas supply unit is controlled to start supply of the high oxygen gas.
前記制御手段は該パルスオキシメーターと接続されており、
前記制御手段が、前記供給対象への前記低酸素ガスの供給中に、パルスオキシメーターの感知した該供給対象の経皮的動脈血酸素飽和度が所定の値よりも低いときに、該供給対象へ前記高酸素ガスの供給を開始するように、前記ガス供給部を制御することを特徴とする、<1>~<8>の何れか一項に記載の医療システム。 <9> Equipped with a pulse oximeter that detects percutaneous arterial blood oxygen saturation to be supplied.
The control means is connected to the pulse oximeter,
While the control means is configured to supply the low oxygen gas to the supply target, when the percutaneous arterial blood oxygen saturation level of the supply target sensed by the pulse oximeter is lower than a predetermined value, The medical system according to any one of <1> to <8>, wherein the gas supply unit is controlled to start supply of the high oxygen gas.
<10> 前記ガス供給部が加圧給気装置を備え、前記加圧給気装置からの加圧されたガスが給気される、前記供給対象を収容できる高気圧チャンバを備えることを特徴とする、<1>~<9>の何れか一項に記載の医療システム。
<10> The gas supply unit includes a pressurized air supply device, and includes a high pressure chamber capable of containing the object to be supplied, to which the pressurized gas from the pressurized air supply device is supplied. The medical system according to any one of <1> to <9>.
<11> 経頭蓋電気刺激を前記供給対象の頭表に印加する電気刺激部を有する経頭蓋電流刺激装置、又は低周波電流を前記供給対象に印加する電極を有する低周波治療装置を備えることを特徴とする<1>~<10>の何れか一項に記載の医療システム。
<11> A transcranial current stimulator having an electrical stimulation unit for applying transcranial electrical stimulation to the head surface of the delivery target, or a low frequency treatment device having an electrode for applying a low frequency current to the delivery target The medical system according to any one of <1> to <10>, which is characterized by the above.
<12> 酸素濃度18%以下の低酸素ガス及び酸素濃度21%以上の高酸素ガスからなる脳神経細胞内における活性酸素濃度向上剤であって、
初めに前記低酸素ガスが人又は動物の供給対象に供給された後に、前記高酸素ガスが前記供給対象に10分間以上供給され、その後、供給対象に供給されないように用いられることを特徴とする、脳神経細胞内における活性酸素濃度向上剤。 <12> An active oxygen concentration improver in a brain nerve cell, comprising a low oxygen gas having an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more,
The low oxygen gas is first supplied to a human or animal supply target, and then the high oxygen gas is supplied to the supply target for 10 minutes or more, and then used so as not to be supplied to the supply target. , Reactive oxygen concentration improver in brain neurons.
初めに前記低酸素ガスが人又は動物の供給対象に供給された後に、前記高酸素ガスが前記供給対象に10分間以上供給され、その後、供給対象に供給されないように用いられることを特徴とする、脳神経細胞内における活性酸素濃度向上剤。 <12> An active oxygen concentration improver in a brain nerve cell, comprising a low oxygen gas having an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more,
The low oxygen gas is first supplied to a human or animal supply target, and then the high oxygen gas is supplied to the supply target for 10 minutes or more, and then used so as not to be supplied to the supply target. , Reactive oxygen concentration improver in brain neurons.
<13> 酸素濃度18%以下の低酸素ガス及び酸素濃度21%以上の高酸素ガスからなる脳神経細胞内における活性酸素濃度向上剤であって、
初めに前記低酸素ガスが人又は動物の供給対象に供給された後に、前記高酸素ガスが前記供給対象に10分間以上供給され、その後、供給対象に前記低酸素ガスが供給されないように用いられることを特徴とする、脳神経細胞内における活性酸素濃度向上剤。 <13> An active oxygen concentration improver in a brain nerve cell, comprising a low oxygen gas having an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more,
After the low oxygen gas is first supplied to a human or animal supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the low oxygen gas is not supplied to the supply target. An agent for improving the active oxygen concentration in brain neurons, characterized in that.
初めに前記低酸素ガスが人又は動物の供給対象に供給された後に、前記高酸素ガスが前記供給対象に10分間以上供給され、その後、供給対象に前記低酸素ガスが供給されないように用いられることを特徴とする、脳神経細胞内における活性酸素濃度向上剤。 <13> An active oxygen concentration improver in a brain nerve cell, comprising a low oxygen gas having an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more,
After the low oxygen gas is first supplied to a human or animal supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the low oxygen gas is not supplied to the supply target. An agent for improving the active oxygen concentration in brain neurons, characterized in that.
<14> 神経疾患の治療のために用いられることを特徴とする、<12>又は<13>に記載の脳神経細胞内における活性酸素濃度向上剤。
<14> The agent for improving active oxygen concentration in brain neurons according to <12> or <13>, which is used for the treatment of a neurological disease.
<15> 酸素濃度18%以下の低酸素ガスで満たされた低酸素室と、酸素濃度21%以上の高酸素ガスで満たされた高酸素室と、を備えることを特徴とする医療システムであって、
人又は動物の供給対象を載せて移動するための移動体を備え、
前記移動体は、制御部の指示を受けて自動で、前記低酸素室、前記高酸素室及び室外を移動するように制御されており、
前記制御部は、前記移動体が、前記低酸素室の内部で予め設定された時間経過した後に、前記高酸素室に移動し、前記高酸素室の内部で10分間以上経過した後に、室外へ移動するように、移動体を制御することを特徴とする医療システム。 <15> A medical system comprising a low oxygen chamber filled with low oxygen gas having an oxygen concentration of 18% or less and a high oxygen chamber filled with high oxygen gas having an oxygen concentration of 21% or more. ,
A moving body for carrying and moving a supply target of human or animal,
The moving body is controlled to move automatically in the low oxygen chamber, the high oxygen chamber, and the outside in response to an instruction from the control unit,
The control unit moves to the high oxygen chamber after a predetermined time in the low oxygen chamber, and moves to the outdoor after 10 minutes or more in the high oxygen chamber. A medical system characterized by controlling a mobile so as to move.
人又は動物の供給対象を載せて移動するための移動体を備え、
前記移動体は、制御部の指示を受けて自動で、前記低酸素室、前記高酸素室及び室外を移動するように制御されており、
前記制御部は、前記移動体が、前記低酸素室の内部で予め設定された時間経過した後に、前記高酸素室に移動し、前記高酸素室の内部で10分間以上経過した後に、室外へ移動するように、移動体を制御することを特徴とする医療システム。 <15> A medical system comprising a low oxygen chamber filled with low oxygen gas having an oxygen concentration of 18% or less and a high oxygen chamber filled with high oxygen gas having an oxygen concentration of 21% or more. ,
A moving body for carrying and moving a supply target of human or animal,
The moving body is controlled to move automatically in the low oxygen chamber, the high oxygen chamber, and the outside in response to an instruction from the control unit,
The control unit moves to the high oxygen chamber after a predetermined time in the low oxygen chamber, and moves to the outdoor after 10 minutes or more in the high oxygen chamber. A medical system characterized by controlling a mobile so as to move.
<16> 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガス及び前記高酸素ガスの供給を行わないことを特徴とする、脳神経細胞内における活性酸素濃度を向上する方法。
<16> A low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas of an oxygen concentration of 21% or higher is supplied for at least 10 minutes. A method for improving the active oxygen concentration in a brain nerve cell, characterized by not supplying oxygen gas and the high oxygen gas.
<17> 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガスの供給を行わないことを特徴とする、脳神経細胞内における活性酸素濃度を向上する方法。
<17> A low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas of an oxygen concentration of 21% or higher is supplied for at least 10 minutes. A method for improving the concentration of active oxygen in brain neurons, characterized by not supplying oxygen gas.
<18> 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを吸気させ、次いで、大気ガスよりも酸素濃度の高い高酸素ガスを10分間以上吸気させ、その後は、前記低酸素ガス及び前記高酸素ガスを吸気させないことを特徴とする、脳神経細胞内における活性酸素濃度を向上する方法。
<18> A low oxygen gas of at least an oxygen concentration of at least 18% is first inhaled into a human or animal supply target, and then a high oxygen gas having an oxygen concentration higher than that of the atmospheric gas is inhaled for at least 10 minutes. A method for improving the active oxygen concentration in brain neurons, characterized in that the low oxygen gas and the high oxygen gas are not inhaled.
<19> 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガス及び前記高酸素ガスの供給を行わないことを特徴とする脳神経細胞内における活性酸素濃度向上剤としての前記低酸素ガス及び前記高酸素ガスの使用。
<19> A low oxygen gas having at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas having an oxygen concentration of at least 21% is supplied for at least 10 minutes. Use of the low oxygen gas and the high oxygen gas as an active oxygen concentration improver in a brain nerve cell characterized by not supplying the oxygen gas and the high oxygen gas.
<21> 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガスの供給を行わないことを特徴とする脳神経細胞内における活性酸素濃度向上剤としての前記低酸素ガス及び前記高酸素ガスの使用。
<21> A low oxygen gas having at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas having an oxygen concentration of at least 21% is supplied for at least 10 minutes. Use of the low oxygen gas and the high oxygen gas as an active oxygen concentration improver in a brain nerve cell characterized by not supplying oxygen gas.
<22> 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガス及び前記高酸素ガスの供給を行わないことを特徴とする脳神経細胞内における活性酸素濃度向上剤の製造のための前記低酸素ガス及び前記高酸素ガスの使用。
<22> A low oxygen gas having at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas having an oxygen concentration of at least 21% is supplied for at least 10 minutes. Use of the low oxygen gas and the high oxygen gas for the production of a reactive oxygen concentration improver in a brain nerve cell characterized by not supplying the oxygen gas and the high oxygen gas.
<23> 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガスの供給を行わないことを特徴とする脳神経細胞内における活性酸素濃度向上剤の製造のための前記低酸素ガス及び前記高酸素ガスの使用。
<23> A low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then a high oxygen gas of an oxygen concentration of 21% or higher is supplied for at least 10 minutes. Use of the low oxygen gas and the high oxygen gas for the production of a reactive oxygen concentration improver in a brain nerve cell characterized by not supplying oxygen gas.
<実施例1>
図4は、本発明の実施例1の説明図である。1は利用者の頭部、2は脳細胞を示す。20は酸素ガスと窒素ガスと水素ガスの供給部で、一体型ガス発生装置である。中には水(蒸留水)から電気分解にて水素と酸素を発生させる、水電解用MEA電解セルを用いた部分と、空気より酸素と窒素を濃縮分離させて取り出す、空気濃縮分離式酸素及び窒素供給部を一つのパッケージにして統合運転させるものである。 Example 1
FIG. 4 is an explanatory view of a first embodiment of the present invention. 1 indicates the head of the user and 2 indicates brain cells.Reference numeral 20 denotes an oxygen gas, nitrogen gas and hydrogen gas supply unit, which is an integrated gas generator. In the air, hydrogen and oxygen are generated from water (distilled water) by electrolysis, a part using an MEA electrolysis cell for water electrolysis, and oxygen and nitrogen are concentrated and separated from air, and taken out, air concentration separation type oxygen and The nitrogen supply unit is integrated into one package.
図4は、本発明の実施例1の説明図である。1は利用者の頭部、2は脳細胞を示す。20は酸素ガスと窒素ガスと水素ガスの供給部で、一体型ガス発生装置である。中には水(蒸留水)から電気分解にて水素と酸素を発生させる、水電解用MEA電解セルを用いた部分と、空気より酸素と窒素を濃縮分離させて取り出す、空気濃縮分離式酸素及び窒素供給部を一つのパッケージにして統合運転させるものである。 Example 1
FIG. 4 is an explanatory view of a first embodiment of the present invention. 1 indicates the head of the user and 2 indicates brain cells.
先ず、利用者は利用に際して、呼吸器科の専門医の診断を受け、呼吸器に特別の障害が無いことを確認して利用が始められる。20の内部の電解式水素酸素生成部分と空気濃縮分離式酸素窒素供給部分の動作を制御する為に、21のプログラム制御装置があり、機械のオンオフと発生出力を制御している。この21の制御内容を設定するのが22の設定用リモコンコントローラである。22は手動運転操作をする時にも用いられる。21の設定内容は酸素濃度18%以下の低酸素呼吸領域を作り出す為に酸素が少量(数%)混ざった窒素ガスと、水素ガスの毎分の供給量(発生量)の設定と運転時間の設定が行われる。窒素水素混合ガスの発生量が増えるに従って、利用者の呼吸する酸素濃度が低下する。利用者はこの微量の酸素が混入した窒素水素混合ガスとマスク周辺の空気とを混合して吸引するので、装置からの毎分のガス供給量と呼吸による分時肺胞換気量との関係によってもたらされる低酸素濃度の呼吸が行われる。
First of all, the user is diagnosed with a respiratory specialist when using it, and it is confirmed that there is no particular disorder in the respiratory system and the use is started. In order to control the operation of the electrolytic hydrogen / oxygen generating portion and the air concentration separation type oxygen / nitrogen supplying portion inside the 20, there are 21 program control devices to control the on / off of the machine and the generated output. It is the setting remote control controller 22 that sets the control contents of 21. 22 is also used when performing a manual operation. The setting contents of 21 are nitrogen gas mixed with a small amount (several percent) of oxygen and setting of supply amount (generation amount) of hydrogen gas per minute (operation amount) to create a low oxygen respiration region with an oxygen concentration of 18% or less. Settings are made. As the amount of nitrogen-hydrogen mixed gas generation increases, the concentration of oxygen breathed by the user decreases. Since the user mixes and aspirates the nitrogen-hydrogen mixed gas mixed with the trace amount of oxygen and the air around the mask, the relationship between the gas supply per minute from the device and the minute alveolar ventilation volume by respiration The resulting low oxygen concentration breathing is performed.
分時肺胞換気量が多くなれば、それだけマスクの周囲からの空気の混入量が増え、酸素濃度はより空気の持つ酸素濃度に近づき、分時肺胞換気量が少なくなれば、供給ガスの酸素濃度に近づく。よってこの点に注意して、利用者に呼吸量の確保を促す。
As the minute alveolar ventilation increases, so does the amount of air entrained from around the mask, the oxygen concentration gets closer to the oxygen concentration of the air, and if the minute alveolar ventilation decreases, the supply of gas Close to oxygen concentration. Therefore, paying attention to this point, the user is urged to secure the respiratory rate.
又、この方法の他に、分時肺胞換気量には余り左右されずに、20からの供給ガスのみで、吸引する酸素濃度を一定にすることができるが、予め、要求酸素濃度に混合したガスを、マスクの周囲の空気が混入しないように、十分な量を供給すれば可能であるが、但し、装置動作時の負担が増大する。
In addition to this method, the concentration of oxygen to be inhaled can be made constant only with the supplied gas from 20 without being largely influenced by the alveolar ventilation volume per minute, but it can be mixed beforehand with the required oxygen concentration. It is possible to supply such a gas in a sufficient amount so that the air around the mask does not mix, but the burden on the operation of the apparatus is increased.
呼気に対する安全排気マスクは、利用者が吸引するガス中の水素濃度が10%を超える場合に使用し、それ以内では利用者の室内空気の流れを(気流)(小型の送風機等)作ることで安全を確保している。(これは一般的な水素ガスの安全観念としては4%を超える場合とするが、実際の実験において、水素ガス濃度はマスクから放出されると、周囲の空気と混ざり、急速に撹拌低下し、安全性が保たれるので水素濃度10%を超える場合とした)吸引ガスの水素濃度が10%を超えた場合は、17の電動式の呼気撹拌放出器により水素ガス濃度を4%以下にして屋内等に放出する。17には内部に水素ガスセンサーが含まれており、吸引水素ガス濃度が4%を超えると自動的に吸引出力を多段階に増加させ、放出ガスの水素ガス濃度を安全な濃度に保つ。20の装置で使用する空気は26の空気取り入れ口から取り入れ、酸素と窒素と水素ガスの不用なものに関しては27のガスの排出口から機外に放出される。尚、作業空間の室内の水素ガス濃度の検知に25の水素ガス濃度センサーがあり、機外の水素濃度が4%を超えると、警報を出力して、システムの運転を自動で停止させる様にインターフェイスが組み込まれている。24は利用者が吸引するガスの温度と湿度の調整用で利用者が吸引するガスを水又は湯中にバブリングさせて目的を達成させている。吸引するガスの温度は体温程度が望ましいが、環境温度(室内温度)によっては、若干低温でも問題は無いが、湿度は出来れば飽和水蒸気より若干低い程度を推奨する。
The safety exhaust mask for exhalation is used when the concentration of hydrogen in the gas drawn by the user exceeds 10%, and within that the flow of the room air of the user is created (air flow) (small fan etc.) I am securing my safety. (This is considered to be more than 4% as a general safety idea of hydrogen gas, but in actual experiments, the hydrogen gas concentration mixes with the surrounding air when it is released from the mask, and the stirring drops rapidly, If the hydrogen concentration of the aspirated gas exceeds 10%, the hydrogen gas concentration is reduced to 4% or less by 17 electric breather and aspirator when the hydrogen concentration exceeds 10% because safety is maintained. Release indoors etc. A hydrogen gas sensor is contained in the inside of 17 and when the suction hydrogen gas concentration exceeds 4%, the suction output is automatically increased in multiple steps to keep the hydrogen gas concentration of the released gas at a safe concentration. The air used in the 20 devices is taken in from the 26 air intakes and released out of the machine through the 27 gas outlets for oxygen, nitrogen and hydrogen gas waste. In addition, there are 25 hydrogen gas concentration sensors in the detection of hydrogen gas concentration in the room of the work space, and if the hydrogen concentration outside the machine exceeds 4%, an alarm is output to automatically stop the system operation. The interface is built in. Reference numeral 24 is used to adjust the temperature and humidity of the gas sucked by the user, and the gas sucked by the user is bubbled in water or hot water to achieve the purpose. The temperature of the gas to be sucked in is preferably about body temperature, but depending on the environmental temperature (room temperature), there is no problem even at a slightly lower temperature, but if humidity is possible it is recommended to be slightly lower than saturated steam.
一般的な、鼻孔を利用したカニューレは適用ガス量が毎分6L程度であるが、本願では、内部断面積を約2倍にして、許容範囲を毎分10L程度の吸引を可能としたものを適用した。システムの動作は、時間の経過によるタイマーの多段階の設定と20の各要素のオンオフと出力制御、システムの指示による内部の切替弁の制御で賄われるが、4の反射式のパルスオキシメーターを総頸動脈に装着して、利用者の経皮的動脈血酸素飽和度の数値で割り込み制御を行ない、時間設定か、経皮的動脈血酸素飽和度の数値かどちらか早いほうの信号で次の行程に進ますことが出来る。これは、利用者の安全確保が目的で、動脈血の酸素飽和度が想定に反して低下し過ぎない様にする安全処置である。パルスオキシメーターの総頸動脈に装着(貼り付け)は利用者本人では行えないので、医療従事者によって行われる。指先等で計測するパルスオキシメーターは、安静時にしか使えず、本願のように時々刻々変化する様な内容では不向きであるが、総頸動脈を測定することで、脳に行く血流の経皮的動脈血酸素飽和度の変化をモニターすることが可能となる。この手法は、利用の毎回に必要なものでは無く、最初の数回程度に傾向を把握するために有益である。
Generally, a cannula using a nostril has an applied gas volume of about 6 liters per minute, but in the present application, an internal cross-sectional area is approximately doubled to enable suction at an acceptable range of about 10 liters per minute Applied. The operation of the system is covered by the multistage setting of the timer with the passage of time, the on / off of each element of the 20 and the output control, and the control of the internal switching valve by the instruction of the system. Attached to the common carotid artery and perform interrupt control with the user's value of percutaneous arterial blood oxygen saturation, and set the time or the value of percutaneous arterial blood oxygen saturation, whichever is earlier, and then the next stroke You can go to This is a safety measure to prevent the oxygen saturation of arterial blood from being excessively lowered for the purpose of securing the safety of the user. Since the user can not attach (paste) the pulse oximeter to the common carotid artery, it is performed by a medical worker. Although the pulse oximeter which measures with a fingertip etc. can be used only at rest and is not suitable for contents which change from moment to moment as in this application, it measures the common carotid artery, and It is possible to monitor changes in the arterial arterial oxygen saturation. This method is not necessary for every use, and is useful for grasping the trend in the first few times.
実際の利用の状況を説明すると、利用者はカニューレを鼻孔に装着をする。次に医療従事者が22の設定をするが、実際の治療では、利用者の健康状態は大凡把握されている程度で、先ず20をスタンバイの状態にして次に空気を3分程度、毎分2L位から初めて徐々に毎分10L位迄鼻孔に 送風して、利用者のカニューレ使用での適応性判断の予備検査を行う。この時点で次の治療が可能か簡易判定する。問題が無ければ、医療従事者は初めての設定を行うが、手動操作で行うか、プログラム制御にて行う。最初の低酸素領域の設定では酸素濃度を18%から14%に、時間は2分間から始める。(酸素濃度14%以下に設定する場合は1分間を選択する)この選定は、利用者本人の耐性を考慮して求められる。次に高酸素領域として毎分3Lから5Lの酸素ガスと水素ガス毎分800cc位の混合ガスをカニューラで利用者に10分程度吸引させる。この程度を初回として考える。このレベルは未だ治療効果はない。
To explain the actual situation of use, the user mounts the cannula in the nostril. Next, the medical worker makes 22 settings, but in the actual treatment, the user's health condition is roughly grasped, first make 20 in the standby state, and then air for about 3 minutes every minute Starting from 2L, air is gradually blown into the nostril at 10L per minute, and a preliminary examination of the user's judgment on the suitability of using a cannula is performed. At this point, it is easily determined if the next treatment is possible. If there is no problem, the medical staff performs the first setting, but manually or by program control. The initial hypoxic setting is from 18% to 14% oxygen and time starts from 2 minutes. (If you set oxygen concentration 14% or less, select 1 minute) This selection is determined in consideration of the user's tolerance. Next, as a high oxygen region, a mixed gas of about 3 to 5 liters of oxygen gas per minute and a hydrogen gas of about 800 cc per minute are caused to be sucked by the user for about 10 minutes with a cannula. Consider this degree as the first time. This level is not yet curative.
一日1回から3回(朝・昼・夕)が行えるが、負荷か多い治療をした場合は一日1回行うことが好ましい。毎回毎回、低酸素領域の時間を長く、又酸素濃度を徐々に低下させる。低酸素領域の酸素濃度は最低5%位から(1分間から3分間:本人の低酸素耐性により求める)SPO2=80から85で5秒から15秒間経過で低酸素呼吸終了、直ちに再酸素か高酸素領域に変更する。
It can be done once to three times a day (morning, noon, evening), but if it is treated heavily, it is preferable to take it once a day. Each time, the time of the low oxygen region is lengthened, and the oxygen concentration is gradually reduced. The oxygen concentration in the hypoxic region starts from at least 5% (1 to 3 minutes: determined by your own hypoxia tolerance) SPO2 = 80 to 85, and after 5 to 15 seconds, the end of hypoxic breathing, immediately reoxygenation or high Change to the oxygen region.
低酸素領域は最大で全行程60分、高酸素領域は最低30分間以上が必要で、推奨は50分間である。高酸素領域は短いほど治療効果が少なく、長いほど治療効果が高まるが120分を超えると,あまり差が出なくなる。
The hypoxic region requires up to a total stroke of 60 minutes, the high oxygen region requires a minimum of 30 minutes or more, and the recommendation is 50 minutes. The shorter the hyperoxic region, the less the therapeutic effect, and the longer the therapeutic effect is, the more the therapeutic effect increases.
<実施例2>
図5は、本発明の実施例の2の説明図である。治療の方法に関しては実施例1と変わらないが、ハードの機械とシステムが複雑となっている。主な相違は利用者の吸引する治療用のガスは全て、31の呼気再循環機能を付与した一体型ガス発生装置からの供給に頼っている。従って使用する呼吸マスクは密閉型のマスクとなる。呼気は再循環させて、呼気中の二酸化酸素を32の吸着剤で除去し、その時の工程における必要な成分を添加して調整して、吸引に用いるか,又は再循環の必要性がない場合は、37のガス流出方向切換え弁の操作で外部に安全に放出される。 Example 2
FIG. 5 is anexplanatory view 2 of the embodiment of the present invention. The method of treatment is the same as in Example 1, but the machine and system of the hardware are complicated. The main difference is that the user's aspirating therapeutic gases all rely on the supply from the integrated gas generator with 31 breath recirculation functions. Thus, the respirator used is a closed mask. The exhaled breath is recirculated to remove the carbon dioxide in the exhaled breath with 32 adsorbents and adjusted by adding the necessary ingredients in the process at that time, to be used for aspiration or when there is no need for recirculation Is safely released to the outside by the operation of the 37 gas flow direction switching valves.
図5は、本発明の実施例の2の説明図である。治療の方法に関しては実施例1と変わらないが、ハードの機械とシステムが複雑となっている。主な相違は利用者の吸引する治療用のガスは全て、31の呼気再循環機能を付与した一体型ガス発生装置からの供給に頼っている。従って使用する呼吸マスクは密閉型のマスクとなる。呼気は再循環させて、呼気中の二酸化酸素を32の吸着剤で除去し、その時の工程における必要な成分を添加して調整して、吸引に用いるか,又は再循環の必要性がない場合は、37のガス流出方向切換え弁の操作で外部に安全に放出される。 Example 2
FIG. 5 is an
本願のシステムは人工呼吸システムでも利用が可能であるが、本願で表示しているのは、あくまで利用者の自発呼吸において治療が成立する。従って本人に分時肺胞換気量の高い呼吸を促さなければならず、呼吸による肺胞喚起効率の低下は、本治療における生体内の反応速度の緩慢を意味し、時間と活性酸素生成の特性曲線の波形の変化がより緩やかものとなり、治療効果の低下を招き得る。そこで、利用者が治療中に現在行っている呼吸の呼気量をリアルタイムで知る為のセンサー36が設備されている。28のラインは逆止弁が含まれており、40の吸気流量計は水素及び酸素の濃度センサーが含まれる。
Although the system of the present application can be used as an artificial respiration system, what is displayed in the present application is the treatment of the user's spontaneous breathing. Therefore, it is necessary to encourage the person to breathe with high alveolar ventilation volume per minute, and the decrease in alveolar arousal efficiency by respiration means slowing of the in vivo reaction rate in this treatment, characteristic of time and active oxygen generation. Changes in the waveform of the curve may be more gradual, leading to a reduction in the therapeutic effect. Therefore, a sensor 36 is provided to know in real time the exhalation amount of the breathing currently performed by the user during treatment. The 28 lines include check valves, and the 40 intake flow meters include hydrogen and oxygen concentration sensors.
システムが作動中に40と36の流量に数秒間、流量差が続くと、システムはマスクからのガス漏れと判断して、警報を出し、停止する。又、吸引ガスの水素濃度が一定基準より高い場合は、35にデトネーションアレスターを組込む事が可能である。利用者は治療中の呼気量が短時間平均にて、登録した呼気量より一定量下回った場合には、システムは呼吸量が少ない旨の表示をする。又、標準呼気量の登録も36のセンサーを用いて、事前テストにて登録が可能である。その他の実施例1との差異はハードの面で無線技術を適応していることである。尚、この装置のスペックの概要は、一例として水素ガスの最大発生量毎分、2.4L、酸素ガスの最大発生量は9.0L、窒素ガスの発生量30L(推定)電力約2KW以内となっている。
If the flow rate difference between 40 and 36 continues for a few seconds while the system is operating, the system will judge that the gas leaks from the mask, and give an alarm and shut it down. In addition, when the hydrogen concentration of the suction gas is higher than a certain standard, it is possible to incorporate the detonation arrester into 35. If the user's exhaled volume during treatment falls short of the registered expiratory volume by a certain amount in a short time average, the system displays that the respiratory volume is low. Also, the registration of the standard expiratory volume can be registered in advance by using 36 sensors. The difference from the other example 1 is that the radio technology is applied in terms of hardware. In addition, the outline of the specifications of this device is, as an example, the maximum generation amount of hydrogen gas per minute, 2.4 L, the maximum generation amount of oxygen gas is 9.0 L, the generation amount of nitrogen gas 30 L (estimate) power within about 2 KW It has become.
それでは、本実施例の治療の効果に関して、臨床実験結果の1例を簡単に記述する。
脳梗塞患者の場合で、発症後6か月を経過、右手側に軽い麻痺があったが、それよりも記憶力と認知能力にやや問題が出ていた。そこで、低酸素状態を創出する為に、フィリップス社製の密閉型鼻マスクを使い、水素ガスを多用して低酸素ガスを吸気し呼吸を行った。 Then, regarding the effect of the treatment of this example, one example of the clinical experiment result is briefly described.
In the case of a cerebral infarction patient, six months after the onset, there was a slight paralysis on the right hand side, but more problems with memory and cognitive ability appeared. Therefore, in order to create a hypoxic condition, using a Phillips-type sealed nasal mask, a large amount of hydrogen gas was used to inhale low-oxygen gas and breathe.
脳梗塞患者の場合で、発症後6か月を経過、右手側に軽い麻痺があったが、それよりも記憶力と認知能力にやや問題が出ていた。そこで、低酸素状態を創出する為に、フィリップス社製の密閉型鼻マスクを使い、水素ガスを多用して低酸素ガスを吸気し呼吸を行った。 Then, regarding the effect of the treatment of this example, one example of the clinical experiment result is briefly described.
In the case of a cerebral infarction patient, six months after the onset, there was a slight paralysis on the right hand side, but more problems with memory and cognitive ability appeared. Therefore, in order to create a hypoxic condition, using a Phillips-type sealed nasal mask, a large amount of hydrogen gas was used to inhale low-oxygen gas and breathe.
呼吸の中心は5分間程度の低酸素状態の発現である。その後の再酸素化工程(通常の空気を吸気して呼吸する工程)を含めて60分から90分間行った。ごく短時間の最低呼気酸素濃度は5%程度であった。
The center of respiration is the onset of hypoxia for about 5 minutes. It took 60 minutes to 90 minutes including the subsequent reoxygenation step (the step of breathing in and breathing normal air). The minimum exhaled oxygen concentration for a very short time was about 5%.
変化は、開始して5分から10分位で室内の実験であったので目に変化を感じた。蛍光灯の明かりが、幾分赤色に変異しているのに気づく。この作業を約40日間続けた。
The change felt in the eye as it was a room experiment in about 5 to 10 minutes starting. I notice that the light of the fluorescent light has muted to some extent red. This work continued for about 40 days.
すると、途中から、神経に変化を感じるようになった。先ず、目、視覚が高揚したように感じた。視力が良くはなっていないが、見ているものが変わり、非常に細かく、視覚の映像が繊細に変化した。まるで、昔のテレビから4Kの液晶テレビに変わったような感じがした。しかし、視力が良くなったわけではない。更に実験は別の装置を用いて続いた。記憶力は、ワーキングメモリと言われる短期の記憶が格段に向上する。
Then, from the middle, I came to feel the change in the nerve. First, I felt my eyes and eyes were uplifting. Although my eyesight has not improved, what I am watching has changed, and the image of my vision has changed very finely. It felt like it had changed from an old TV to a 4K LCD TV. However, my vision has not improved. Further experiments were continued using another apparatus. Memory ability is greatly improved in short-term memory called working memory.
日常生活に於いての物の置忘れ等がほとんどなくなる。さらに臨床試験開始から40日前後に確認した認知能力の変化は驚くべき信じられない様な変化が起こった。
確認の方法は、公共交通機関の路線バスの最前列に座り、バスの進行に合わせて変化して行く外の風景を観察することによって行った。実験前は、周囲の交通の推移には、事象に推移・変化には視覚がついて行けなかったが、臨床試験後経過40日では、ちょうどバスが交差点付近で停車した時だったが、周囲の雑踏、自転車に歩行者に他の車の動き等、任意の3点に(3か所)に注意を分散集中すると、まるで手に取る様にそれぞれの動きが把握可能に変化が起きた。 There is almost no forgetting to put things in everyday life. Furthermore, the change in cognitive ability identified 40 days before the start of the clinical trial resulted in a surprising and incredible change.
The method of confirmation was done by sitting in the front row of the public transport route bus and observing the outside landscape changing as the bus progresses. Before the experiment, the transition of the surrounding traffic was not able to follow the transition or change of the event, but in the 40 days after the clinical trial, it was just when the bus stopped near the intersection, but the surrounding crowded When focusing attention on any three points (three places), such as the movement of other vehicles to the pedestrians, on bicycles, each movement changes in a comprehensible manner as if it were picked up by hand.
確認の方法は、公共交通機関の路線バスの最前列に座り、バスの進行に合わせて変化して行く外の風景を観察することによって行った。実験前は、周囲の交通の推移には、事象に推移・変化には視覚がついて行けなかったが、臨床試験後経過40日では、ちょうどバスが交差点付近で停車した時だったが、周囲の雑踏、自転車に歩行者に他の車の動き等、任意の3点に(3か所)に注意を分散集中すると、まるで手に取る様にそれぞれの動きが把握可能に変化が起きた。 There is almost no forgetting to put things in everyday life. Furthermore, the change in cognitive ability identified 40 days before the start of the clinical trial resulted in a surprising and incredible change.
The method of confirmation was done by sitting in the front row of the public transport route bus and observing the outside landscape changing as the bus progresses. Before the experiment, the transition of the surrounding traffic was not able to follow the transition or change of the event, but in the 40 days after the clinical trial, it was just when the bus stopped near the intersection, but the surrounding crowded When focusing attention on any three points (three places), such as the movement of other vehicles to the pedestrians, on bicycles, each movement changes in a comprehensible manner as if it were picked up by hand.
そして、歩行者や自転車の動きと言うと、一点に意識を集中し視覚を集中させると、それらの動きが、まるでスローモーションでも見るが如きに、ゆっくり変化して行くように感じられた。そこで低酸素呼吸から再酸素の呼吸をする、酸素濃度を段階的に変化させる呼吸方法によって、脳内部の特に海馬周辺の脳神経細胞が活性化された、再生されたと言う感じがした。
海馬周辺は脳の中でも特に脆弱性を有する部分であり、酸欠即ち、低酸素状態に早期に反応したと言える。 And, speaking of movements of pedestrians and bicycles, when I concentrated my awareness at one point and concentrated my vision, I felt that those movements would change slowly as if I saw them in slow motion. Therefore, I felt that the nerve cells inside the brain, especially around the hippocampus, were activated and regenerated by the breathing method that reoxygenates from hypoxic respiration and the oxygen concentration is gradually changed.
The hippocampus area is a particularly vulnerable part of the brain, and it can be said that it responded early to oxygen deficiency or hypoxia.
海馬周辺は脳の中でも特に脆弱性を有する部分であり、酸欠即ち、低酸素状態に早期に反応したと言える。 And, speaking of movements of pedestrians and bicycles, when I concentrated my awareness at one point and concentrated my vision, I felt that those movements would change slowly as if I saw them in slow motion. Therefore, I felt that the nerve cells inside the brain, especially around the hippocampus, were activated and regenerated by the breathing method that reoxygenates from hypoxic respiration and the oxygen concentration is gradually changed.
The hippocampus area is a particularly vulnerable part of the brain, and it can be said that it responded early to oxygen deficiency or hypoxia.
その後、低酸素呼吸治療の後半を再酸素化ではなく、高酸素化、即ち高酸素濃度領域(酸素濃度21%以上)による呼吸に変えた。それまでの実験でワーキングメモリは素晴らしく改善したが、短期の記憶領域から長期の記憶領域への繋がりが上手く機能していなかったが、この部分が改善する為には、脳のより広い部分を活性化させる必要があり、そのための方策が高酸素領域に於ける呼吸であった。
After that, the second half of hypoxic breathing treatment was not reoxygenation, but was changed to respiration by high oxygenation, that is, high oxygen concentration region (oxygen concentration of 21% or more). In the previous experiments, the working memory improved remarkably, but the connection from the short-term memory area to the long-term memory area was not functioning well, but in order to improve this part, the wider part of the brain was activated It was necessary to make it a policy, and the policy for that was breathing in the high oxygen area.
初め高酸素だけの呼吸を60分間程度を2週間程度試みて、結果を考察すると、確かに短期記憶から長期記憶への移行が比較的円滑に可能となった。そこで低酸素領域の呼吸から連続的に高酸素領域の呼吸を60分間程度行ってさらに30日後の評価を行うと、短期記憶と長期記憶、そして認知能力それぞれがさらに進化していた。
At first, after trying about 60 minutes of breathing only for hyperoxia for about 2 weeks, and considering the results, it is indeed possible to shift from short-term memory to long-term memory relatively smoothly. Therefore, short-term memory, long-term memory, and cognitive ability were each further evolved when breathing in the high-oxygen area was continuously performed for about 60 minutes from breathing in the low-oxygen area, and evaluation was performed after 30 days.
脳の機能的及び能力的には、脳梗塞発症前の状態と言うよりも、標準的な一般人のレベルを超えており、その変化の速度から判断して、脳細胞のミトコンドリアゲノムの初期化が起きて、それによって細胞周期の分裂期に神経細胞のミトコンドリアの健全化が起こり、神経細胞の機能が改善されたとした、時間応答性と推定効果が理論と実際がほぼ一致するものである。
Functionally and functionally, the brain is above the level of a standard human being rather than the condition before the onset of cerebral infarction, and judging from the rate of its change, reprogramming of the mitochondrial genome of brain cells is The time response and the presumed effect are virtually in agreement with the theory, assuming that the restoration of neural cell mitochondria during the cell cycle division and the improvement of neural cell function occur.
今回は、脳細胞の部分にスポットライトを照らしたが、その他の臓器等においても、この関係は成立するので、別の機会に臨床試験のチャンスを企画したい。
This time, I used a spotlight on the brain cells, but this relationship also holds true for other organs, so I would like to plan clinical trials on different occasions.
<実施例3>
図6は実施例3を示す。実施例3は高酸素濃度領域の酸素分圧をさらに高めて、活性酸素の発生が低い利用者、反応性が少ない患者等の為で、通常、加圧カプセルに入る前に低酸素濃度領域の呼吸を終えてから高気圧治療装置を利用する。加圧時間は約15分間程度とされるので時間的には、加圧時間と減圧時間を合わせて60分間程度の高気圧酸素治療を行う。高気圧酸素治療が終了後に常圧において、水素ガスを含む、副作用防止の為の、安定化呼吸を30分間程度行われる。 Example 3
FIG. 6 shows Example 3. In Example 3, the oxygen partial pressure in the high oxygen concentration region is further increased, and the user with low generation of active oxygen, the patient with low reactivity, etc. After breathing, use the hyperbaric treatment device. Since the pressurization time is about 15 minutes, in terms of time, high pressure oxygen therapy for about 60 minutes is performed by combining pressurization time and decompression time. After hyperbaric oxygen treatment is completed, stabilized breathing is carried out for about 30 minutes at normal pressure for preventing side effects including hydrogen gas.
図6は実施例3を示す。実施例3は高酸素濃度領域の酸素分圧をさらに高めて、活性酸素の発生が低い利用者、反応性が少ない患者等の為で、通常、加圧カプセルに入る前に低酸素濃度領域の呼吸を終えてから高気圧治療装置を利用する。加圧時間は約15分間程度とされるので時間的には、加圧時間と減圧時間を合わせて60分間程度の高気圧酸素治療を行う。高気圧酸素治療が終了後に常圧において、水素ガスを含む、副作用防止の為の、安定化呼吸を30分間程度行われる。 Example 3
FIG. 6 shows Example 3. In Example 3, the oxygen partial pressure in the high oxygen concentration region is further increased, and the user with low generation of active oxygen, the patient with low reactivity, etc. After breathing, use the hyperbaric treatment device. Since the pressurization time is about 15 minutes, in terms of time, high pressure oxygen therapy for about 60 minutes is performed by combining pressurization time and decompression time. After hyperbaric oxygen treatment is completed, stabilized breathing is carried out for about 30 minutes at normal pressure for preventing side effects including hydrogen gas.
尚最近の高気圧酸素治療装置は内部空間に酸素ガスを満たし加圧するのではなく、内部の加圧に空気を用い、患者に対しては呼吸マスクを使って酸素呼吸を行うものもあると聞く。その場合には、このマスクを用いての低酸素領域の呼吸も行うことができる。
Furthermore, recent hyperbaric oxygen therapy devices are not filled with oxygen gas in the inner space to be pressurized, but it is also known that some patients use air for pressurization and use oxygen for breathing for patients. In that case, breathing of the hypoxic region can also be performed using this mask.
<実施例4>
図22は、認知症予防の運動療法後に、本願の酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムを合わせたもので、運動療法による認知症の予防効果を格段に高めることが可能である。図22では、運動療法を行う施設内に二つの密閉した部屋と、二つの部屋を繋ぎ、お互いを密閉可能な通路と連絡扉、各部屋から屋内運動場への出入口の扉、そして図示されていないが各密閉質の室内の温度・湿度内部ガス成分を管理する室内環境制御装置から構成されている。 Example 4
FIG. 22 is a combination of the regenerative medicine system using the breathing method of gradually changing the oxygen concentration according to the present invention after exercise therapy for preventing dementia, and it is possible to remarkably enhance the preventive effect of dementia by exercise therapy. It is possible. In FIG. 22, there are two closed rooms in the facility for exercise therapy, two walkways connecting the two rooms, a door and an access door which can seal each other, a door at the entrance to each indoor playground from each room, and not shown. Is composed of an indoor environment control device that manages the temperature and humidity internal gas components of each sealed room.
図22は、認知症予防の運動療法後に、本願の酸素濃度を段階的に変化させる呼吸方法を用いた再生医療システムを合わせたもので、運動療法による認知症の予防効果を格段に高めることが可能である。図22では、運動療法を行う施設内に二つの密閉した部屋と、二つの部屋を繋ぎ、お互いを密閉可能な通路と連絡扉、各部屋から屋内運動場への出入口の扉、そして図示されていないが各密閉質の室内の温度・湿度内部ガス成分を管理する室内環境制御装置から構成されている。 Example 4
FIG. 22 is a combination of the regenerative medicine system using the breathing method of gradually changing the oxygen concentration according to the present invention after exercise therapy for preventing dementia, and it is possible to remarkably enhance the preventive effect of dementia by exercise therapy. It is possible. In FIG. 22, there are two closed rooms in the facility for exercise therapy, two walkways connecting the two rooms, a door and an access door which can seal each other, a door at the entrance to each indoor playground from each room, and not shown. Is composed of an indoor environment control device that manages the temperature and humidity internal gas components of each sealed room.
図22に於いて、予防体操、運動療法が終了した利用者(複数可能)は直ちに、外部からの入口の密閉扉を開閉して低酸素濃度治療室の内部に入る。ここで、低酸素領域の呼吸を、それぞれ個人ごとに決めた時間が経過後に連絡扉を開閉して隣の高酸素濃度治療室に入り、約40分から60分程度、高酸素領域での呼吸を行う。終了後に出口の扉を開閉して外の、元の屋内運動場に出る。これで本願に於ける治療は終わりである。
In FIG. 22, the user (several persons) who finished the preventive exercise and exercise therapy immediately opens and closes the sealing door of the entrance from the outside and enters the inside of the low oxygen concentration treatment room. Here, after the time determined for each individual in the hypoxic region, the contact door is opened and closed to enter the next high oxygen concentration treatment room, and breathing in the high oxygen region is performed for about 40 to 60 minutes. Do. After finishing, open the door of the exit and go out to the original indoor playground. The treatment in the present application is now over.
利用者は運動前には、ビタミンC等の抗酸化剤の摂取は避ける事が望まれる。低酸素濃度治療室の酸素濃度の設定は、利用者は既に需要性低酸素の状態であるので、この部屋で供給性の低酸素状態を加えるので、通常の設定より、酸素濃度を高めてもよい。部屋の水素濃度は、特別な要求が無い限り、通常4%に設定される又、室内で呼吸により生じる二酸化炭素は、室内環境制御装置内部の二酸化炭素吸着剤で除去される。高酸素濃度治療室では、ここでは立ち姿勢で描かれているが、時間が長いので椅子に座って治療を受ける。利用者は、随時この治療室を利用できるので、、利用者グループを班に分けて、時間をずらして運動療法をグループ毎に行えば、多くの利用者が効率的に本願の治療を受けることが可能となる。
Users should avoid taking vitamin C and other antioxidants before exercise. Setting the oxygen concentration in the low oxygen treatment room, because the user is already in the condition of low demand for demand, will add supplyable low oxygen condition in this room, so even if the oxygen concentration is higher than the normal setting Good. The hydrogen concentration in the room is normally set to 4% unless there is a special requirement. Also, carbon dioxide generated by breathing in the room is removed by the carbon dioxide adsorbent inside the indoor environment control device. The high oxygen concentration treatment room is depicted here in a standing position, but it takes a long time to sit in a chair for treatment. Since users can use this treatment room from time to time, if the user group is divided into groups and the exercise therapy is performed group by group, many users can receive the treatment of the present application efficiently. Is possible.
<実施例5>
図23は、密閉式低酸素領域治療室と密閉式低酸素領域治療室を密閉型通路で連絡し、完全自動の電動式車椅子を用いた大規模な治療用システムの例で、実施例の5である。利用者は全て自動運転制御される電動車椅子42に座ることによって治療が始まる。常時車椅子を用いる利用者もここで、この42に乗り換えて治療を受ける。勿論、健康人もである。この42は日産自動車が開発したプロパイロットチェアの進化型と考えれば理解しやすい。 Example 5
Fig. 23 shows an example of a large-scale treatment system using a fully automatic electric wheelchair, which connects a closed hypoxic region treatment room and a closed low oxygen region treatment room through a closed passage, and the example of the embodiment is It is. The treatment starts when all the users sit on amotorized wheelchair 42 that is controlled automatically. The user who always uses a wheelchair also changes to this 42 and receives treatment. Of course, healthy people are also. It is easy to understand if you think that this 42 is an evolution of the professional pilot chair developed by Nissan Motor.
図23は、密閉式低酸素領域治療室と密閉式低酸素領域治療室を密閉型通路で連絡し、完全自動の電動式車椅子を用いた大規模な治療用システムの例で、実施例の5である。利用者は全て自動運転制御される電動車椅子42に座ることによって治療が始まる。常時車椅子を用いる利用者もここで、この42に乗り換えて治療を受ける。勿論、健康人もである。この42は日産自動車が開発したプロパイロットチェアの進化型と考えれば理解しやすい。 Example 5
Fig. 23 shows an example of a large-scale treatment system using a fully automatic electric wheelchair, which connects a closed hypoxic region treatment room and a closed low oxygen region treatment room through a closed passage, and the example of the embodiment is It is. The treatment starts when all the users sit on a
45、と46、47の密閉式各通路の床には位置情報の為のセンサーが埋め込まれている。60、61の治療室の床にも位置情報のセンサーが埋め込まれている。更に61の床の電動車椅子の定位置、電動車椅子を停止(駐車)させる位置の適宜な場所に電動車椅子の充電の為の電磁充電装置が床面に設置されている。四角に斜線/は電動車椅子とその番号を表している。
On the floor of each of the enclosed passages 45, 46 and 47, sensors for positional information are embedded. Position information sensors are also embedded in the 60 and 61 treatment room floors. Further, an electromagnetic charging device for charging the electric wheelchair is installed on the floor at an appropriate position of the electric wheelchair at a fixed position of the floor 61 and a position for stopping the electric wheelchair (parking). The hatched box in the square represents the electric wheelchair and its number.
42番の利用者が利用する為に入口の密閉扉を自動で開けられるこの時、奥の密閉扉は閉まっている。45と60の間の密閉扉は入口の扉が閉められた時に、開かれるようにインターロックが組まれている。通常は各部屋又は通路の間の扉は、必ず両方が開く事が無い様に、システムによって制御されている。これが、全て開く場合は、非常時、緊急時だけである。各連絡通路には3人在籍する事が可能である。
At this time, the closed door at the back is closed when the closed door at the entrance can be opened automatically for use by the 42nd user. The closed door between 45 and 60 is interlocked to be opened when the inlet door is closed. Normally, the door between each room or passage is controlled by the system so that both do not necessarily open. When this is all open, it is only emergency or emergency. It is possible to have three members in each communication passage.
60の部屋には10人の利用者が在籍可能である。61の部屋には40人の利用者が在籍可能である。この数の違いは、60の低酸素領域治療室は酸素濃度が18%から14%の間で、水素濃度4%の設定を推定しており、利用者の最大在籍時間は15分以内を想定しているのに対し、61の高酸素領域治療室では、利用者の最大在籍時間は60分以内を想定している。従って治療時間による処置能力でバランスをとっている。61の治療室では酸素濃度を30%から40%の間を想定している。各治療室のガスバランスと温度湿度及び室内気流を管理する為に53と54の低酸素領域治療室及び高酸素領域治療室の環境管理システムが制御を行うが、総合的な管理は図示されないが、コンピュータによる総合管理システムがある。
Ten users can be enrolled in the 60 rooms. There are 40 users in the 61 rooms. The difference in this number is that 60 hypoxic therapeutic units estimate a hydrogen concentration of 4% with an oxygen concentration between 18% and 14%, and the maximum occupancy time for users is assumed to be within 15 minutes. In contrast, in the 61 high oxygen area treatment rooms, the maximum enrollment time of the users is assumed to be 60 minutes or less. Therefore, it is balanced by the treatment ability by treatment time. In the 61 treatment rooms, oxygen concentration is assumed to be between 30% and 40%. The 53 and 54 low-oxygen area and high-oxygen area treatment rooms have an environmental management system to control the gas balance, temperature, humidity and air flow in each treatment room, but comprehensive management is not shown , There is a comprehensive management system by computer.
ここで、56番の利用者が初めてこのシステムを利用する場合、60の治療室の在室呼吸時間を最小から始める。同様に61の治療室の在室呼吸時間も最小とする。今、ここでそれぞれ60の治療室を5分間、61の治療室を20分間とすると、この利用者の治療時間は25分プラス移動に要する時間で通常5分程度で30分間で終了する。これで利用者の治療結果を検討して、問題が無ければ、毎回、徐々に時間を増やして行く。
Here, when the 56th user uses this system for the first time, the in-room breathing time of 60 treatment rooms starts from the minimum. Similarly, the in-room breathing time of 61 treatment rooms is also minimized. Now, assuming 60 treatment rooms for 5 minutes each and 61 treatment rooms for 20 minutes, the treatment time for this user is 25 minutes plus the time required for movement, which usually ends in about 5 minutes in 30 minutes. Now consider the treatment results of the user, and if there are no problems, gradually increase the time each time.
平面図を見ると、電動車椅子の在籍位置の周囲には電動車椅子の通路が設けられており、各々の電動車椅子は他の電動車椅子にその進路を妨げられずに通路側に出る事ができる。入口通路と出口通路を管理していれば、スムーズな運航が可能である。個人毎に各在籍時間が異なる場合でも、コンピュータによる総合管理システムが、移動の順番やタイミングを制御しているので、無駄のない工程が組まれる。
Looking at the plan view, there is a passage of the electric wheelchair around the registered position of the electric wheelchair, and each electric wheelchair can exit the passage without being blocked by the other electric wheelchairs. If the entrance passage and the exit passage are managed, smooth operation is possible. Even if the individual attendance time is different for each individual, since the integrated management system by computer controls the order and timing of movement, a process without waste can be implemented.
但し、アクシデントは必ずあり得る。この電動車椅子には無線式のパルスオキシメーターが核利用者用に付属しており、必要な信号データは遠隔監視が可能で、異常があれば、その利用者だけ、緊急に優先して、室外に移送が可能である。緊急の場合には、個々の緊急の場合は、他の動作に優先するので、各通路を開けさせて、一番近い通路を経由して、治療室外に移送させる。地震や近くでの火災等の非常事態では全ての治療室と連絡通路の全ての扉と44の非常用扉の全てがシステムの制御により解放され、電動車椅子は、最も近い場所から外に移動させるか、危険発生場所が近い場合には、最も安全な場所に電動車椅子を移動させるように、システムが指示を行う。
However, there is always an accident. A wireless pulse oximeter is attached to this electric wheelchair for the nuclear user, and necessary signal data can be remotely monitored. If there is an abnormality, only that user will give priority to the emergency and give an outdoor priority. Can be transported to In the case of an emergency, in the case of an individual emergency, each passage is opened and transported to the outside of the treatment room via the closest passage because it takes precedence over other operations. In emergency situations such as earthquakes and fires nearby, all doors and all 44 emergency doors of all treatment rooms and communication paths are released by control of the system, and the electric wheelchair is moved out from the nearest location Or, if the hazard location is near, the system will direct you to move the powered wheelchair to the safest location.
61の治療室では、比較的に在籍呼吸時間が長い為に、必要に応じて電動車椅子のバッテリの充電を行う事ができる。(電磁誘導式充電)
尚、電動車椅子が故障して動けなくなった場合は、同じ様に自動で動く、故障車両搬出用の自動運搬車によって、他の工程の合間に移動搬出される。それ以前に空の電動車椅子が利用者の救出に向かい、利用者を乗せ換えて、利用者の続きの工程を行う。 In the 61 treatment rooms, the battery for the electric wheelchair can be charged as needed because of the relatively long working breathing time. (Electromagnetic induction charging)
In the case where the electric wheelchair breaks down and can not move, it is also moved out between the other processes by an automatic transport car for moving out of the broken vehicle which moves automatically in the same manner. Before that, an empty electric wheelchair goes for the rescue of the user, carries the user, and carries out the subsequent process of the user.
尚、電動車椅子が故障して動けなくなった場合は、同じ様に自動で動く、故障車両搬出用の自動運搬車によって、他の工程の合間に移動搬出される。それ以前に空の電動車椅子が利用者の救出に向かい、利用者を乗せ換えて、利用者の続きの工程を行う。 In the 61 treatment rooms, the battery for the electric wheelchair can be charged as needed because of the relatively long working breathing time. (Electromagnetic induction charging)
In the case where the electric wheelchair breaks down and can not move, it is also moved out between the other processes by an automatic transport car for moving out of the broken vehicle which moves automatically in the same manner. Before that, an empty electric wheelchair goes for the rescue of the user, carries the user, and carries out the subsequent process of the user.
図23に示される設備に於いて、一時間に40人から70人位の患者、利用者の治療をする事が可能である。一日当たり8時間稼働して320人から560人の治療が可能となる。一日500人の治療をすれば、20日で1万人の認知症の治療や予防が可能となる。本システムは安全性と効率性のバランスの取れた優れたシステムで、認知症だけでなく、ミトコンドリアの機能低下による多くの疾患にとって大変有益である。
In the equipment shown in FIG. 23, it is possible to treat about 40 to 70 patients and users at one time. It operates eight hours a day and can treat 320 to 560 people. If you treat 500 people a day, it will be possible to treat and prevent 10,000 people in 20 days. This system is an excellent system with a balance of safety and efficiency, which is very useful not only for dementia but also for many diseases caused by mitochondrial dysfunction.
酸素ガス、窒素ガス、水素ガスを供給する装置を組み合わせて制作する特殊な呼吸機器を用い、これに各種マスク等を用いて酸素濃度18%以下の低酸素領域による呼吸と、その後に続けて酸素濃度21%以上の高酸素領域による呼吸を適宜な条件でプログラム自動制御により行うことにより、比較的に安全で、効率良く細胞のミトコンドリアのゲノムの初期化の喚起が可能である。この、プログラム制御による呼吸方式を用いた再生医療システムは、ミコンドリアのゲノムの初期化を通じて低下したミトコンドリア機能を細胞周期を経て健全な機能のミトコンドリアに変化させる事が可能で、ミトコンドリアの機能低下やミトコンドリアの機能不全が原因となって発症するすべての疾病の症状を改善することが可能である。とりわけ認知症においても、認知能力や記憶力の改善をさせる能力を秘めている。現在、製薬各社を通して、有効な手段を見いだせておらず、又その他の再生医療においても治療費の高騰の問題を秘めている。その中で本発明は、既存の呼吸機器等を組み合わせ、これに漸進的なシステム設定を加える事により、先進的な再生医療システムとして仕上られた。比較的に安全性も確保でき、治療効率も優れている。量産に耐える構成となっているので、今後の再生医療の中心的な存在として十分な役割を果たすことが可能である。
Using a special respirator manufactured by combining devices that supply oxygen gas, nitrogen gas, and hydrogen gas, using various masks, etc. and breathing with a low oxygen region with an oxygen concentration of 18% or less and subsequent oxygen By performing respiration by a high oxygen region with a concentration of 21% or more under program automatic control under appropriate conditions, it is possible to evoke the initialization of mitochondrial genome of the cell relatively safely and efficiently. This regenerative control system using a program-controlled respiratory system can change the mitochondrial function, which has been reduced through the initialization of the genome of the mitochondrial, into a healthy function through the cell cycle, and the mitochondrial function is reduced or the mitochondria is reduced. It is possible to ameliorate the symptoms of any disease that develops as a result of Especially in dementia, it has the ability to improve cognitive ability and memory. Currently, pharmaceutical companies have not found effective means, and there is also the problem of soaring treatment costs in other regenerative medicine. Among them, the present invention has been completed as an advanced regenerative medical system by combining existing respiratory equipment and the like and adding progressive system settings thereto. It is relatively safe and has excellent treatment efficiency. As it is configured to withstand mass production, it can play a sufficient role as a central entity in future regenerative medicine.
1 人体・頭部(プログラム制御による再生医療呼吸装置の利用者)
2 脳
3 総頚動脈
4 反射式パルスオキシメーター(有線or無線)
5 肺
6 高流量型カニューレ
7 カニューレ用吸気チューブ
8 呼吸マスク(密閉型)
8a 呼気吸気合流部又は呼気吸気切替機構(水素ガス濃度10%以上でデトネーションアレスター組込可能
9 吸入路
10 呼気路、排気路
11 吸気ガス、吸入ガス(水素ガス、窒素ガス、酸素ガス)
12 呼気(水素ガスを含む)
13 呼気撹拌放出器(空気と呼気を撹拌混合で放出)
14 水素ガス供給部(水電解式水素発生装置)
15 酸素ガス及び窒素ガス供給部、(空気濃縮分離式)
16 排気路(チューブ又はホース)高濃度水素混合呼気用
17 室内空気と呼気を混合して放出する呼気撹拌放出器
18 酸素ガス&窒素ガス供給器(空気濃縮分離式)
20 酸素ガス&窒素ガス&水素ガスの一体型ガス発生装置(可変発生容量型)
21 プログラム制御装置
22 プログラム制御装置の設定用リモコンコントローラ
23 リモコンコントローラとプログラム制御装置との信号ケーブル
24 供給ガスの温度調整&加湿器(水orお湯中バブリング式)
25 水素ガス濃度センサー
26 空気取入れ口
27 一体型発生装置内部のガスの排出口
28 高流量型カニューレ用ガス供給ライン
28a ベンチュリーマスク用ガス供給ライン
29 反射式パルスオキシメーターの信号ケーブル
30 プログラム制御装置と一体型ガス発生装置との制御ケーブル
31 呼気再循環機能を付与した一体型ガス発生装置
32 二酸化炭素吸着部(リソライム等)
33 密閉型口鼻マスク
34 密閉型フェイスマスク
35 呼気吸気合流部(高水素濃度にてデトネーションアレスターを内蔵可能)
36 O2濃度計&呼気流量計
37 ガス流出方向切換え弁
38 無線LAN(WiFi)式プログラム制御装置
39 一体型ガス発生装置への制御ケーブル
40 吸気量センサー
42 電動車椅子(自動運転制御式:充電式)進化型プロパイロットチェア
43 自動開閉式密閉扉
44 非常用:自動開閉式密閉扉
45 低酸素領域治療室への密閉式入口通路
46 低酸素領域治療室から高酸素領域治療室への密閉式連絡通路
47 高酸素領域治療室からの密閉式出口通路
48 高酸素領域治療室の左側面通路
49 高酸素領域治療室の中央通路
50 高酸素領域治療室の右側面通路
51 密閉構造の治療室等
52 電動車椅子(自動運転制御)の故障車両搬出用の自動運搬車
53 低酸素領域治療室用のガス供給システム(環境管理システム)
54 高酸素領域治療室用のガス供給システム(環境管理システム)
55 室内の無線LAN用アンテナユニット
56 利用者(座位)
60 低酸素領域治療室
61 高酸素領域治療室
1 Human body, head (user of regenerative medicine breathing apparatus by program control)
2Brain 3 Common carotid artery 4 Reflective pulse oximeter (wired or wireless)
5Lung 6 High flow type cannula 7 Inspiratory tube for cannula 8 Respiratory mask (sealed type)
8a Exhalation-intake junction or exhalation-inspiration switching mechanism (hydrogen gas concentration is 10% or more, detonation arrester can be incorporated 9inhalation passage 10 exhalation passage, exhaust passage 11 inhalation gas, inhalation gas (hydrogen gas, nitrogen gas, oxygen gas)
12 breath (including hydrogen gas)
13 Exhalation Agitation Discharger (Exhale air and exhalation with agitation mixing)
14 Hydrogen gas supply unit (water electrolysis type hydrogen generator)
15 Oxygen gas and nitrogen gas supply section, (Air concentration separation type)
16 exhaust line (tube or hose) high concentration hydrogen mixture forexhalation 17 expiratory agitating and releasing device which mixes and discharges indoor air and exhalation 18 oxygen gas & nitrogen gas supply device (air concentration separation type)
20 Integrated gas generator of oxygen gas & nitrogen gas & hydrogen gas (variable generation capacity type)
21Program controller 22 Program controller setting remote control controller 23 Signal cable between remote controller and program controller 24 Supply gas temperature adjustment & humidifier (water or hot water bubbling type)
25 hydrogengas concentration sensor 26 air intake 27 gas outlet inside the integrated generator 28 gas supply line 28a for high flow type cannula gas supply line for venturi mask 29 signal cable for reflection type pulse oximeter 30 program control device Control cable 31 with integrated gas generator Integrated gas generator 32 with exhalation recirculation function Carbon dioxide adsorption unit (litho lime etc)
33 Sealed-type oral andnasal mask 34 Sealed-type face mask 35 Exhalation-intake junction (can incorporate detonation arrester at high hydrogen concentration)
36 O2 concentration meter &exhalation flow meter 37 Gas outflow direction switching valve 38 Wireless LAN (WiFi) type program control device 39 Control cable to integrated gas generator 40 Intake amount sensor 42 Electric wheelchair (automatic operation control type: rechargeable type) Evolvable Pro-Pilot Chair 43 Self-opening and closing door 44 Emergency: Self-opening and closing door 45. Closed entrance passage to low oxygen area treatment room 46. Closed area communication path from low oxygen area treatment room to high oxygen area treatment room 47 Sealed outlet passage 48 from high oxygen area treatment room Left side passage 49 of high oxygen area treatment room Central passage 50 of high oxygen area treatment room 50 Right side passage 51 of high oxygen area treatment room 51 treatment room of sealed structure 52 electric motor Automatic delivery vehicle for carrying out a broken vehicle of wheelchair (automatic operation control) 53 Gas supply system for low oxygen area treatment room (environment management system )
54 Gas supply system for high oxygen area treatment room (environmental management system)
55 Indoor wirelessLAN antenna unit 56 Users (sitting)
60 hypoxicarea treatment room 61 hyperoxic area treatment room
2 脳
3 総頚動脈
4 反射式パルスオキシメーター(有線or無線)
5 肺
6 高流量型カニューレ
7 カニューレ用吸気チューブ
8 呼吸マスク(密閉型)
8a 呼気吸気合流部又は呼気吸気切替機構(水素ガス濃度10%以上でデトネーションアレスター組込可能
9 吸入路
10 呼気路、排気路
11 吸気ガス、吸入ガス(水素ガス、窒素ガス、酸素ガス)
12 呼気(水素ガスを含む)
13 呼気撹拌放出器(空気と呼気を撹拌混合で放出)
14 水素ガス供給部(水電解式水素発生装置)
15 酸素ガス及び窒素ガス供給部、(空気濃縮分離式)
16 排気路(チューブ又はホース)高濃度水素混合呼気用
17 室内空気と呼気を混合して放出する呼気撹拌放出器
18 酸素ガス&窒素ガス供給器(空気濃縮分離式)
20 酸素ガス&窒素ガス&水素ガスの一体型ガス発生装置(可変発生容量型)
21 プログラム制御装置
22 プログラム制御装置の設定用リモコンコントローラ
23 リモコンコントローラとプログラム制御装置との信号ケーブル
24 供給ガスの温度調整&加湿器(水orお湯中バブリング式)
25 水素ガス濃度センサー
26 空気取入れ口
27 一体型発生装置内部のガスの排出口
28 高流量型カニューレ用ガス供給ライン
28a ベンチュリーマスク用ガス供給ライン
29 反射式パルスオキシメーターの信号ケーブル
30 プログラム制御装置と一体型ガス発生装置との制御ケーブル
31 呼気再循環機能を付与した一体型ガス発生装置
32 二酸化炭素吸着部(リソライム等)
33 密閉型口鼻マスク
34 密閉型フェイスマスク
35 呼気吸気合流部(高水素濃度にてデトネーションアレスターを内蔵可能)
36 O2濃度計&呼気流量計
37 ガス流出方向切換え弁
38 無線LAN(WiFi)式プログラム制御装置
39 一体型ガス発生装置への制御ケーブル
40 吸気量センサー
42 電動車椅子(自動運転制御式:充電式)進化型プロパイロットチェア
43 自動開閉式密閉扉
44 非常用:自動開閉式密閉扉
45 低酸素領域治療室への密閉式入口通路
46 低酸素領域治療室から高酸素領域治療室への密閉式連絡通路
47 高酸素領域治療室からの密閉式出口通路
48 高酸素領域治療室の左側面通路
49 高酸素領域治療室の中央通路
50 高酸素領域治療室の右側面通路
51 密閉構造の治療室等
52 電動車椅子(自動運転制御)の故障車両搬出用の自動運搬車
53 低酸素領域治療室用のガス供給システム(環境管理システム)
54 高酸素領域治療室用のガス供給システム(環境管理システム)
55 室内の無線LAN用アンテナユニット
56 利用者(座位)
60 低酸素領域治療室
61 高酸素領域治療室
1 Human body, head (user of regenerative medicine breathing apparatus by program control)
2
5
8a Exhalation-intake junction or exhalation-inspiration switching mechanism (hydrogen gas concentration is 10% or more, detonation arrester can be incorporated 9
12 breath (including hydrogen gas)
13 Exhalation Agitation Discharger (Exhale air and exhalation with agitation mixing)
14 Hydrogen gas supply unit (water electrolysis type hydrogen generator)
15 Oxygen gas and nitrogen gas supply section, (Air concentration separation type)
16 exhaust line (tube or hose) high concentration hydrogen mixture for
20 Integrated gas generator of oxygen gas & nitrogen gas & hydrogen gas (variable generation capacity type)
21
25 hydrogen
33 Sealed-type oral and
36 O2 concentration meter &
54 Gas supply system for high oxygen area treatment room (environmental management system)
55 Indoor wireless
60 hypoxic
Claims (22)
- 人又は動物の供給対象に、少なくとも酸素濃度18%以下の低酸素ガス及び酸素濃度21%以上の高酸素ガスを供給可能なガス供給部と、
ガス供給部から供給対象に供給されるガスの酸素濃度を制御する制御手段と、を備え、
前記制御手段が、前記ガス供給部から前記供給対象に所定の酸素濃度のガスが供給される時間を制御し、
前記制御手段が、初めに前記供給対象に前記低酸素ガスの供給を行った後に、前記供給対象に前記高酸素ガスの供給を10分間以上行い、その後、ガスの給気を終了するように前記ガス供給部を制御することを特徴とする、脳神経細胞内における活性酸素濃度向上用の医療システム。 A gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% and a high oxygen gas having an oxygen concentration of at least 21% to a human or animal supply target;
Control means for controlling the oxygen concentration of the gas supplied from the gas supply unit to the supply target;
The control means controls a time during which a gas having a predetermined oxygen concentration is supplied from the gas supply unit to the supply target;
After the control means first supplies the low oxygen gas to the supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the gas supply is terminated. What is claimed is: 1. A medical system for enhancing the concentration of active oxygen in a brain nerve cell, comprising controlling a gas supply unit. - 前記制御手段が、初めに前記供給対象に前記低酸素ガスの供給を1分間以上行った後に、前記供給対象に前記高酸素ガスの供給を10分間以上行い、その後、ガスの給気を終了するように前記ガス供給部を制御することを特徴とする、請求項1に記載の医療システム。 The control means first supplies the low oxygen gas to the supply target for one minute or more, and then supplies the high oxygen gas to the supply target for ten minutes or more, and then ends the gas supply. The medical system according to claim 1, wherein the gas supply unit is controlled as follows.
- 人又は動物の供給対象に、少なくとも酸素濃度18%以下の低酸素ガス及び酸素濃度21%以上の高酸素ガスを供給可能なガス供給部と、
ガス供給部から供給対象に供給されるガスの酸素濃度を制御する制御手段と、を備え、
前記制御手段が、初めに前記供給対象に前記低酸素ガスの供給を行った後に、前記供給対象に前記高酸素ガスの供給を10分間以上行い、その後、前記低酸素ガスの給気を行わないように前記ガス供給部を制御することを特徴とする、脳神経細胞内における活性酸素濃度向上用の医療システム。 A gas supply unit capable of supplying a low oxygen gas having at least an oxygen concentration of 18% and a high oxygen gas having an oxygen concentration of at least 21% to a human or animal supply target;
Control means for controlling the oxygen concentration of the gas supplied from the gas supply unit to the supply target;
After the control means first supplies the low oxygen gas to the supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the low oxygen gas is not supplied. And controlling the gas supply unit in such a manner as to improve the concentration of active oxygen in a brain nerve cell. - 前記制御手段が、初めに前記供給対象に前記低酸素ガスの供給を1分間以上行った後に、前記供給対象に前記高酸素ガスの供給を10分間以上行い、その後、前記低酸素ガスの給気を行わないよう、前記ガス供給部を制御することを特徴とする、請求項3に記載の医療システム。 The control means first supplies the low oxygen gas to the supply target for one minute or more, and then supplies the high oxygen gas to the supply target for ten minutes or more, and then supplies the low oxygen gas. The medical system according to claim 3, characterized in that the gas supply unit is controlled not to perform.
- 前記ガス供給部が前記供給対象に酸素及び窒素を含むガスを供給可能であり、
前記制御手段が、供給されるガスにおける窒素の割合を制御することにより、前記ガス供給部から前記供給対象に供給されるガスにおける酸素濃度を制御することを特徴とする、請求項1~4の何れか一項に記載の医療システム。 The gas supply unit can supply a gas containing oxygen and nitrogen to the supply target,
5. The apparatus according to claim 1, wherein the control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of nitrogen in the gas supplied. The medical system according to any one of the preceding claims. - 前記ガス供給部より供給される酸素及び窒素の発生源として、空気を酸素と窒素に分離する分離能を有する酸素・窒素濃縮器を備えていることを特徴とする、請求項1~5の何れか一項に記載の医療システム。 The oxygen / nitrogen concentrator having separation ability to separate air into oxygen and nitrogen is provided as a generation source of oxygen and nitrogen supplied from the gas supply unit. The medical system according to one or more items.
- 前記ガス供給部が前記供給対象に酸素及び水素を含むガスを供給可能であり、
前記制御手段が、供給されるガスにおける水素の割合を制御することにより、前記ガス供給部から前記供給対象に供給されるガスにおける酸素濃度を制御することを特徴とする、請求項1~6の何れか一項に記載の医療システム。 The gas supply unit can supply a gas containing oxygen and hydrogen to the supply target,
7. The apparatus according to claim 1, wherein the control means controls the oxygen concentration in the gas supplied from the gas supply unit to the supply target by controlling the ratio of hydrogen in the gas supplied. The medical system according to any one of the preceding claims. - 前記供給対象にガスを供給するための呼吸マスクと、該呼吸マスクの外側を覆うように配置された安全排気マスクと、該安全排気マスクより排気を吸引するための吸引手段を備え、
前記安全排気マスクは、前記呼吸マスクを供給対象の顔面に装着したとき、該供給対象の顔面との間に隙間を生じるように構成されており、
前記呼吸マスクを供給対象の顔面に装着し該供給対象にガスを供給したときに、該呼吸マスクより漏れる水素混合ガスを、該安全排気マスクと顔面の隙間から周囲の空気と共に吸引して、空気との撹拌混合により前記水素混合ガスの水素濃度を下げて可燃爆発濃度以下に希釈させて、安全に室内又は室外に排気することを特徴とする、請求項7に記載の医療システム。 The respiratory mask for supplying gas to the supply target, a safety exhaust mask disposed to cover the outside of the respiratory mask, and suction means for suctioning exhaust from the safety exhaust mask;
The safety exhaust mask is configured to create a gap with the face to be supplied when the respiratory mask is worn on the face to be supplied.
When the respiratory mask is worn on the face to be supplied and gas is supplied to the object to be supplied, the hydrogen mixed gas leaking from the respiratory mask is aspirated along with the ambient air from the gap between the safety exhaust mask and the face to obtain air. The medical system according to claim 7, characterized in that the hydrogen concentration of the hydrogen mixed gas is lowered by dilution with stirring and diluted to a concentration equal to or less than the combustible explosion concentration, and the inside of the room or the outside is safely ventilated. - 供給対象の経皮的動脈血酸素飽和度を感知するパルスオキシメーターを備え、
前記制御手段は該パルスオキシメーターと接続されており、
前記制御手段が、前記供給対象への前記低酸素ガスの供給中に、パルスオキシメーターの感知した該供給対象の経皮的動脈血酸素飽和度が所定の値よりも低いときに、該供給対象へ前記高酸素ガスの供給を開始するように、前記ガス供給部を制御することを特徴とする、請求項1~8の何れか一項に記載の医療システム。 It has a pulse oximeter that senses the target arterial blood oxygen saturation to be delivered.
The control means is connected to the pulse oximeter,
While the control means is configured to supply the low oxygen gas to the supply target, when the percutaneous arterial blood oxygen saturation level of the supply target sensed by the pulse oximeter is lower than a predetermined value, The medical system according to any one of claims 1 to 8, characterized in that the gas supply unit is controlled to start supply of the high oxygen gas. - 前記ガス供給部が加圧給気装置を備え、前記加圧給気装置からの加圧されたガスが給気される、前記供給対象を収容できる高気圧チャンバを備えることを特徴とする、請求項1~9の何れか一項に記載の医療システム。 The apparatus according to claim 1, wherein the gas supply unit includes a pressurized air supply device, and a high pressure chamber capable of containing the object to be supplied, to which the pressurized gas from the pressurized air supply device is supplied. The medical system according to any one of 1 to 9.
- 経頭蓋電気刺激を前記供給対象の頭表に印加する電気刺激部を有する経頭蓋電流刺激装置、又は低周波電流を前記供給対象に印加する電極を有する低周波治療装置を備えることを特徴とする請求項1~10の何れか一項に記載の医療システム。 A transcranial current stimulator having an electrical stimulation unit for applying transcranial electrical stimulation to a head surface of the subject to be supplied, or a low frequency treatment device having an electrode for applying a low frequency current to the subject to be supplied The medical system according to any one of claims 1 to 10.
- 酸素濃度18%以下の低酸素ガス及び酸素濃度21%以上の高酸素ガスからなる脳神経細胞内における活性酸素濃度向上剤であって、
初めに前記低酸素ガスが人又は動物の供給対象に供給された後に、前記高酸素ガスが前記供給対象に10分間以上供給され、その後、供給対象に供給されないように用いられることを特徴とする、脳神経細胞内における活性酸素濃度向上剤。 It is an active oxygen concentration improver in brain neurons comprising a low oxygen gas having an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more,
The low oxygen gas is first supplied to a human or animal supply target, and then the high oxygen gas is supplied to the supply target for 10 minutes or more, and then used so as not to be supplied to the supply target. , Reactive oxygen concentration improver in brain neurons. - 酸素濃度18%以下の低酸素ガス及び酸素濃度21%以上の高酸素ガスからなる脳神経細胞内における活性酸素濃度向上剤であって、
初めに前記低酸素ガスが人又は動物の供給対象に供給された後に、前記高酸素ガスが前記供給対象に10分間以上供給され、その後、供給対象に前記低酸素ガスが供給されないように用いられることを特徴とする、脳神経細胞内における活性酸素濃度向上剤。 It is an active oxygen concentration improver in brain neurons comprising a low oxygen gas having an oxygen concentration of 18% or less and a high oxygen gas having an oxygen concentration of 21% or more,
After the low oxygen gas is first supplied to a human or animal supply target, the high oxygen gas is supplied to the supply target for 10 minutes or more, and thereafter the low oxygen gas is not supplied to the supply target. An agent for improving the active oxygen concentration in brain neurons, characterized in that. - 神経疾患の治療のために用いられることを特徴とする、請求項12又は13に記載の脳神経細胞内における活性酸素濃度向上剤。 The agent for improving active oxygen concentration in brain neurons according to claim 12 or 13, which is used for the treatment of a neurological disease.
- 酸素濃度18%以下の低酸素ガスで満たされた低酸素室と、酸素濃度21%以上の高酸素ガスで満たされた高酸素室と、を備えることを特徴とする医療システムであって、
人又は動物の供給対象を載せて移動するための移動体を備え、
前記移動体は、制御部の指示を受けて自動で、前記低酸素室、前記高酸素室及び室外を移動するように制御されており、
前記制御部は、前記移動体が、前記低酸素室の内部で予め設定された時間経過した後に、前記高酸素室に移動し、前記高酸素室の内部で10分間以上経過した後に、室外へ移動するように、移動体を制御することを特徴とする医療システム。 A medical system comprising: a low oxygen chamber filled with low oxygen gas having an oxygen concentration of 18% or less; and a high oxygen chamber filled with high oxygen gas having an oxygen concentration of 21% or more,
A moving body for carrying and moving a supply target of human or animal,
The moving body is controlled to move automatically in the low oxygen chamber, the high oxygen chamber, and the outside in response to an instruction from the control unit,
The control unit moves to the high oxygen chamber after a predetermined time in the low oxygen chamber, and moves to the outdoor after 10 minutes or more in the high oxygen chamber. A medical system characterized by controlling a mobile so as to move. - 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガス及び前記高酸素ガスの供給を行わないことを特徴とする、脳神経細胞内における活性酸素濃度を向上する方法。 The low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to the human or animal supply target, and then the high oxygen gas of an oxygen concentration of 21% or higher is supplied for 10 minutes or more. A method for improving the concentration of active oxygen in a brain nerve cell, characterized by not supplying the high oxygen gas.
- 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガスの供給を行わないことを特徴とする、脳神経細胞内における活性酸素濃度を向上する方法。 The low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then the high oxygen gas of an oxygen concentration of 21% or higher is supplied for 10 minutes or more. A method for improving the concentration of active oxygen in brain neurons, characterized in that no supply is performed.
- 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを吸気させ、次いで、大気ガスよりも酸素濃度の高い高酸素ガスを10分間以上吸気させ、その後は、前記低酸素ガス及び前記高酸素ガスを吸気させないことを特徴とする、脳神経細胞内における活性酸素濃度を向上する方法。 The target of human or animal supply is first inhaled low oxygen gas with an oxygen concentration of at least 18%, then high oxygen gas with higher oxygen concentration than atmospheric gas is inhaled for at least 10 minutes, and then the low oxygen A method for improving the concentration of active oxygen in brain neurons, characterized in that the gas and the high oxygen gas are not inhaled.
- 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガス及び前記高酸素ガスの供給を行わないことを特徴とする脳神経細胞内における活性酸素濃度向上剤としての前記低酸素ガス及び前記高酸素ガスの使用。 The low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to the human or animal supply target, and then the high oxygen gas of an oxygen concentration of 21% or higher is supplied for 10 minutes or more. Use of the low oxygen gas and the high oxygen gas as an active oxygen concentration improver in a brain nerve cell characterized by not supplying the high oxygen gas.
- 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガスの供給を行わないことを特徴とする脳神経細胞内における活性酸素濃度向上剤としての前記低酸素ガス及び前記高酸素ガスの使用。 The low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then the high oxygen gas of an oxygen concentration of 21% or higher is supplied for 10 minutes or more. Use of the low oxygen gas and the high oxygen gas as a reactive oxygen concentration improver in a brain nerve cell characterized in that the supply is not performed.
- 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガス及び前記高酸素ガスの供給を行わないことを特徴とする脳神経細胞内における活性酸素濃度向上剤の製造のための前記低酸素ガス及び前記高酸素ガスの使用。 The low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to the human or animal supply target, and then the high oxygen gas of an oxygen concentration of 21% or higher is supplied for 10 minutes or more. Use of the low oxygen gas and the high oxygen gas for the production of an active oxygen concentration improver in brain neurons, wherein the high oxygen gas is not supplied.
- 人又は動物の供給対象に、初めに少なくとも酸素濃度18%以下の低酸素ガスを供給し、次いで、酸素濃度21%以上の高酸素ガスを10分間以上供給し、その後は、前記低酸素ガスの供給を行わないことを特徴とする脳神経細胞内における活性酸素濃度向上剤の製造のための前記低酸素ガス及び前記高酸素ガスの使用。
The low oxygen gas of at least an oxygen concentration of at least 18% is first supplied to a human or animal supply target, and then the high oxygen gas of an oxygen concentration of 21% or higher is supplied for 10 minutes or more. Use of the low oxygen gas and the high oxygen gas for the production of a reactive oxygen concentration improver in a brain nerve cell characterized in that the supply is not performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107139000A TW201922308A (en) | 2017-11-02 | 2018-11-02 | Regenerative medical system using breathing method to change oxygen concentration in stages |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-212975 | 2017-11-02 | ||
JP2017212975A JP6323894B1 (en) | 2017-11-02 | 2017-11-02 | Regenerative medical system using breathing method that changes oxygen concentration stepwise |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019087518A1 true WO2019087518A1 (en) | 2019-05-09 |
Family
ID=62143889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/030286 WO2019087518A1 (en) | 2017-11-02 | 2018-08-14 | Regenerative medical system using breathing method to change oxygen concentration in stages |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6323894B1 (en) |
TW (1) | TW201922308A (en) |
WO (1) | WO2019087518A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114082065B (en) * | 2021-12-16 | 2024-04-26 | 广东优博瑞科技有限公司 | Hydrogen absorption machine with air purification function |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10127705A (en) * | 1996-10-25 | 1998-05-19 | Daido Hoxan Inc | Method for supplying required gas under variable internal pressure environment, and automatic pressure adjusting mechanism |
JPH10216455A (en) * | 1996-12-02 | 1998-08-18 | Tabai Espec Corp | Air feeder of special composition |
JP2003144549A (en) * | 2001-11-16 | 2003-05-20 | Teijin Ltd | Medical oxygen concentrator |
US20090183738A1 (en) * | 2008-01-17 | 2009-07-23 | Vniimi Group Of Companies | Device for Complex Interval Normobaric Hypoxic Hyperoxic Training of a Human |
JP2010284394A (en) * | 2009-06-15 | 2010-12-24 | Oita Univ | Hydrogen administration device |
JP2012519542A (en) * | 2009-03-06 | 2012-08-30 | ケアフュージョン 207、インコーポレーション | Automatic oxygen carrying system |
DE102012010806A1 (en) * | 2012-06-01 | 2013-12-05 | Al MEDIQ S. A. | Performing biological controllable selection of individual courses for interval hypoxia training, by monitoring arterial oxygen saturation (SaO2) level, switching hypoxic to normoxic gas supply, and restoring SaO2 at baseline |
JP5837501B2 (en) * | 2009-10-27 | 2015-12-24 | ベルント−ミヒャエル レフラー | Therapeutic gas for treating mitochondrial abnormalities |
JP2017528245A (en) * | 2014-09-17 | 2017-09-28 | ネウロリーフ リミテッド | Headset for nerve stimulation and body parameter sensing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002126012A (en) * | 2000-10-26 | 2002-05-08 | Fujitec Co Ltd | Device for guiding and carrying care instrument at care facility or home care family |
-
2017
- 2017-11-02 JP JP2017212975A patent/JP6323894B1/en active Active
-
2018
- 2018-08-14 WO PCT/JP2018/030286 patent/WO2019087518A1/en active Application Filing
- 2018-11-02 TW TW107139000A patent/TW201922308A/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10127705A (en) * | 1996-10-25 | 1998-05-19 | Daido Hoxan Inc | Method for supplying required gas under variable internal pressure environment, and automatic pressure adjusting mechanism |
JPH10216455A (en) * | 1996-12-02 | 1998-08-18 | Tabai Espec Corp | Air feeder of special composition |
JP2003144549A (en) * | 2001-11-16 | 2003-05-20 | Teijin Ltd | Medical oxygen concentrator |
US20090183738A1 (en) * | 2008-01-17 | 2009-07-23 | Vniimi Group Of Companies | Device for Complex Interval Normobaric Hypoxic Hyperoxic Training of a Human |
JP2012519542A (en) * | 2009-03-06 | 2012-08-30 | ケアフュージョン 207、インコーポレーション | Automatic oxygen carrying system |
JP2010284394A (en) * | 2009-06-15 | 2010-12-24 | Oita Univ | Hydrogen administration device |
JP5837501B2 (en) * | 2009-10-27 | 2015-12-24 | ベルント−ミヒャエル レフラー | Therapeutic gas for treating mitochondrial abnormalities |
DE102012010806A1 (en) * | 2012-06-01 | 2013-12-05 | Al MEDIQ S. A. | Performing biological controllable selection of individual courses for interval hypoxia training, by monitoring arterial oxygen saturation (SaO2) level, switching hypoxic to normoxic gas supply, and restoring SaO2 at baseline |
JP2017528245A (en) * | 2014-09-17 | 2017-09-28 | ネウロリーフ リミテッド | Headset for nerve stimulation and body parameter sensing |
Non-Patent Citations (1)
Title |
---|
SASAKI ET AL.: "Age-related increase of superoxide generation in the brains of mammals and birds", AGING CELL, vol. 7, no. 4, 10 July 2008 (2008-07-10), pages 459 - 469, XP055614749, ISSN: 1474-9726 * |
Also Published As
Publication number | Publication date |
---|---|
JP2019083888A (en) | 2019-06-06 |
TW201922308A (en) | 2019-06-16 |
JP6323894B1 (en) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2719992C1 (en) | Systems and methods of producing nitrogen oxide in outpatient conditions | |
US10307099B2 (en) | System for controlled defibrillation and ventilation | |
Parry et al. | Functional electrical stimulation with cycling in the critically ill: a pilot case-matched control study | |
US20210196916A1 (en) | Systems and methods for improving patient health | |
CN102917746B (en) | Wireless ventilator reporting | |
CN105534491B (en) | Pre-adaptation training system based on high-low oxygen combination | |
Spengler et al. | Chemoreceptive mechanisms elucidated by studies of congenital central hypoventilation syndrome | |
RU2317112C1 (en) | Method and device for inhalation | |
KR20190098400A (en) | Hyperbaric oxygen therapy system for rehabilitation and method of operating thereof | |
US20190015446A1 (en) | Medicinal composition for improving prognosis after restart of patient's own heartbeat | |
WO2019087518A1 (en) | Regenerative medical system using breathing method to change oxygen concentration in stages | |
CN113425535A (en) | Mobile emergency oxygen therapy rehabilitation cabin | |
RU59415U1 (en) | DEVICE FOR INHALATION | |
CN116077789A (en) | Comprehensive brain disease intervention system with hydrogen or oxygen absorption and nasal and brain route administration functions | |
US20190134326A1 (en) | Device and method for improving cognitive and functional abilities using hypoxic and hyperoxic gas mixtures | |
US20240108843A1 (en) | Systems and methods for improving patient health | |
RU2461396C2 (en) | Method for psychoemotional state correction in individual | |
AU2010311448B2 (en) | Therapeutic gas for the treatment of mitochondrial disorders | |
RU2800247C2 (en) | Method of supporting viability and nursing of premature and term newborn children, medicinal product and device for its implementation | |
CN100404084C (en) | Bioelectric therapeutic instrument | |
Dudi | Deep Breath: An Indigenous Healing for Schizophrenia | |
Goldberg et al. | Combined Nasal Intermittent Positive-Pressure Ventilation and Rocking Bed in Chronic Respiratory Insufficiency*: Nocturnal Ventilatory Support of a Disabled Person at Home | |
CN112604115A (en) | Anesthesia respirator for inebriation department | |
Shadangi | Significance of Various Ᾱsanas in Yoga philosophy: Positive Influence on Health | |
RU2098867C1 (en) | Method for improving human organism stability characteristics to reduce influence of flight stress factors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18874103 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18874103 Country of ref document: EP Kind code of ref document: A1 |