WO2019087407A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2019087407A1
WO2019087407A1 PCT/JP2017/040000 JP2017040000W WO2019087407A1 WO 2019087407 A1 WO2019087407 A1 WO 2019087407A1 JP 2017040000 W JP2017040000 W JP 2017040000W WO 2019087407 A1 WO2019087407 A1 WO 2019087407A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating capacity
heat exchanger
indoor
high pressure
controller
Prior art date
Application number
PCT/JP2017/040000
Other languages
French (fr)
Japanese (ja)
Inventor
松岡 慎也
鈴木 秀一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2019549805A priority Critical patent/JP6860082B2/en
Priority to SG11202003551QA priority patent/SG11202003551QA/en
Priority to PCT/JP2017/040000 priority patent/WO2019087407A1/en
Publication of WO2019087407A1 publication Critical patent/WO2019087407A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present invention relates to an air conditioner.
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-124958 describes an air conditioner that reduces the fan rotational speed of the indoor unit when the low pressure exceeds the upper limit during cooling operation under high outside air. ing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-124958
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-124958
  • An object of the present disclosure is to release the refrigerant liquid, which rapidly accumulates in the condenser, from the condenser.
  • An air conditioner includes a plurality of indoor units, a compressor, and a plurality of indoor units each having an expansion valve and an evaporator, and the ON and OFF of the operation are individually operated. And an outdoor unit to which a plurality of indoor units are connected, and a control device for controlling the degree of opening of the expansion valve, the control device having a total operating capacity of the plurality of indoor units for a predetermined time When the operating capacity decreases by a predetermined rate, the opening degree of the expansion valve of the operating indoor unit is increased.
  • the refrigerant liquid that rapidly accumulates in the condenser can be released from the condenser.
  • An air conditioner includes a plurality of indoor units, a compressor, and a plurality of indoor units each having an expansion valve and an evaporator, and are individually operated ON or OFF. And an outdoor unit to which a plurality of indoor units are connected, and a controller for controlling the degree of opening of the expansion valve, the controller having a total operating capacity of the plurality of indoor units within a predetermined time When the operating capacity decreases by a predetermined rate and the high pressure is equal to or higher than the first predetermined value, the opening degree of the expansion valve of the operating indoor unit is increased.
  • control device increases the opening degree of the expansion valve according to the differential pressure between the high pressure and the low pressure when the operating capacity decreases.
  • control device increases the opening degree of the expansion valve according to the degree of subcooling of the outlet of the condenser when the operating capacity decreases.
  • control device sets the opening degree of the expansion valve such that the degree of superheat at the outlet of the evaporator becomes the target degree of superheat during normal operation different from when increasing or decreasing the operating capacity. Control.
  • control device sets the opening degree of the expansion valve to full opening when the operating capacity decreases.
  • control device reduces the operating capacity of the compressor if the high pressure of the air conditioner is equal to or higher than the second pressure.
  • control device stops the compressor if the high pressure is equal to or higher than the third pressure.
  • An air conditioner according to a ninth aspect of the present disclosure is a cooling-dedicated device, and does not have a container for adjusting the amount of refrigerant.
  • coolant system diagram of an air conditioning apparatus It is a flowchart of motor-operated valve control at the time of normal operation. It is a flowchart of compressor capacity control at the time of normal operation. It is a flowchart of high pressure protection control at the time of normal operation. It is a flowchart of motor-operated valve control at the time of refrigerant retention. It is the same time chart. It is a flowchart of motor-operated valve control at the time of high pressure rise. It is the same time chart. It is a flowchart of motor-operated valve control at the time of operation capacity reduction. It is the same time chart. It is a flowchart of compressor capacity control at the time of operating capacity increase. It is the same time chart.
  • Air conditioner> (1) Overall Configuration The overall configuration of the air conditioning apparatus 100 will be described using FIG.
  • the broken lines in FIG. 1 represent electrical signal lines.
  • the upstream side or the downstream side is defined according to the flow direction of the refrigerant.
  • the air conditioning apparatus 100 is an apparatus for cooling a room such as a building using a vapor compression refrigeration cycle.
  • the air conditioner 100 is a cooling dedicated device.
  • the air conditioning apparatus 100 includes an outdoor unit 10, four indoor units 20a, 20b, 20c, and 20d, connection pipes 41 and 42, and a controller 50 as a control device.
  • the outdoor unit 10 is provided outside the building.
  • the outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12 as a condenser, and an outdoor fan 13.
  • the compressor 11, the outdoor heat exchanger 12, and the outdoor fan 13 are accommodated in an outdoor casing (not shown).
  • the compressor 11 feeds refrigerant gas from low pressure to high pressure.
  • a suction pipe 31 is connected to the low pressure side of the compressor 11.
  • a low pressure sensor 61 is provided in the vicinity of the compressor 11 of the suction pipe 31.
  • a discharge pipe 32 is connected to the high pressure side of the compressor 11.
  • a high pressure sensor 62 and a high pressure shutoff pressure switch 82 are provided in the vicinity of the compressor 11 of the discharge pipe 32.
  • the outdoor heat exchanger 12 exchanges heat between the air and the refrigerant, and condenses the refrigerant gas into the refrigerant liquid.
  • the upstream side of the outdoor heat exchanger 12 is connected to the discharge pipe 32.
  • the downstream side of the outdoor heat exchanger 12 is connected to the liquid pipe 33.
  • An outdoor heat exchanger outlet temperature sensor 71 is provided in the vicinity of the outdoor heat exchanger 12 of the liquid pipe 33. That is, the outdoor heat exchanger outlet temperature sensor 71 is provided at the outlet of the outdoor heat exchanger 12.
  • the outdoor fan 13 is driven by an electric motor (not shown) and blows air toward the outdoor heat exchanger 12.
  • An outdoor suction air temperature sensor 74 is provided on the suction side of the outdoor fan 13. Specifically, the outdoor suction air temperature sensor 74 is provided at the air suction port of the outdoor casing.
  • the low pressure sensor 61 detects the refrigerant gas sucked by the compressor 11, that is, the low pressure LP of the air conditioner 100.
  • the high pressure sensor 62 detects the refrigerant gas compressed by the compressor 11, that is, the high pressure HP of the air conditioner 100.
  • the outdoor heat exchanger outlet temperature sensor 71 detects the temperature of the refrigerant liquid at the outlet of the outdoor heat exchanger 12 (outdoor heat exchanger outlet temperature Tco).
  • the outdoor suction air temperature sensor 74 detects the indoor suction air temperature Tb of the outdoor unit 10.
  • the high pressure shutoff pressure switch 82 stops the air conditioner 100 if the high pressure HP of the air conditioner 100 is equal to or higher than a predetermined value HPm.
  • the indoor unit 20a is provided in a room of a building.
  • the indoor unit 20a is connected to the outdoor unit 10 by a communication pipe (liquid pipe 33 and suction pipe 31).
  • the indoor unit 20a includes an electric valve 21a as an expansion valve, an indoor heat exchanger 22a as an evaporator, an indoor fan 23a, and a remote controller (not shown).
  • the motor operated valve 21a, the indoor heat exchanger 22a and the indoor fan 23a are accommodated in an indoor casing (not shown).
  • the motor operated valve 21 a is for expanding the refrigerant liquid into a gas-liquid mixed refrigerant.
  • the motor operated valve 21a is electrically driven to perform an operation of increasing or decreasing the degree of opening.
  • the upstream side of the motor operated valve 21 a is connected to the communication pipe 41.
  • the indoor heat exchanger 22a exchanges heat between the air and the refrigerant to evaporate the gas-liquid mixed refrigerant into the refrigerant gas.
  • the downstream side of the indoor heat exchanger 22 a is connected to the communication pipe 42.
  • the indoor heat exchanger outlet temperature sensor 72a is provided at the outlet of the indoor heat exchanger 22a.
  • the indoor fan 23a is driven by an electric motor (not shown) and blows air toward the indoor heat exchanger 22a.
  • An indoor suction air temperature sensor 73a is provided on the suction side of the indoor fan 23a. Specifically, the indoor suction air temperature sensor 73a is provided at the air suction port of the indoor casing.
  • the remote control is for the user to input ON / OFF of the indoor unit 20a or the set temperature Ts in the room.
  • the indoor heat exchanger outlet temperature sensor 72a detects the temperature of the refrigerant gas at the outlet of the indoor heat exchanger 22a (the indoor heat exchanger outlet temperature Teo).
  • the indoor suction air temperature sensor 73a detects the indoor suction air temperature Ta of the indoor unit 20a.
  • the indoor units 20b, 20c, and 20d are the same as the configuration of the indoor unit 20a, and thus the description thereof is omitted. In addition, below, when showing any of indoor unit 20a, 20b, 20c, 20d, it is only set as the indoor unit 20. FIG. The same applies to the motor operated valve 21, the indoor heat exchanger 22, the indoor heat exchanger outlet temperature sensor 72 or the indoor suction air temperature sensor 73.
  • the controller 50 includes a control board (not shown) provided on the outdoor unit 10 communicably connected to each other by wire or wirelessly and a control board (not shown) provided on the indoor units 20a, 20b, 20c, 20d. Is configured. Further, the controller 50 includes one or more CPUs, a ROM, a RAM, and the like.
  • the controller 50 includes a low pressure sensor 61, a high pressure sensor 62, a high pressure cutoff pressure switch 82, an outdoor heat exchanger outlet temperature sensor 71, a motor operated valve 21, an indoor heat exchanger outlet temperature sensor 72, and indoor suction.
  • the air temperature sensor 73 and the remote controller of the indoor unit 20 are connected.
  • the controller 50 has a function of changing the rotational frequency of the compressor 11 to control the operating capacity Cap of the compressor 11.
  • the controller 50 has a function of controlling the opening degree of the motor-operated valve 21.
  • the controller 50 has a function of detecting the operating capacity TON of the indoor unit 20.
  • the indoor unit 20 has a capacity.
  • the operating capacity TON represents the capacity of the indoor unit 20 being operated (thermo-ON). Note that, with the operating capacity TON, the capacity of the indoor unit 20 that is thermo-OFF is excluded.
  • the air conditioner 100 is not provided with a container for adjusting the amount of refrigerant, such as a receiver and an accumulator.
  • the communication pipes 41, 42 are for connecting the outdoor unit 10 and the plurality of indoor units 20a, 20b, 20c, 20d.
  • the high temperature and high pressure refrigerant gas compressed by the compressor 11 flows toward the outdoor heat exchanger 12.
  • the high-temperature and high-pressure refrigerant gas is deprived of heat by the air and condensed into the refrigerant liquid.
  • the condensed refrigerant liquid flows toward the motor-operated valve 21a.
  • the refrigerant liquid is expanded into a gas-liquid mixed refrigerant by the motor-operated valve 21a.
  • the gas-liquid mixed refrigerant flows toward the indoor heat exchanger 22a.
  • the indoor heat exchanger 22a the gas-liquid mixed refrigerant is given heat by the air and evaporated to a refrigerant gas.
  • the evaporated refrigerant gas is drawn into the compressor 11.
  • the motored valve control S100 in normal operation will be described with reference to FIG.
  • the normal operation is a cooling operation, and is different from the control at the time of refrigerant retention, the time of high pressure rise, and the time of reduction of the operating capacity, which will be described later.
  • the indoor units 20b, 20c and 20d are turned off, and only the normal operation of the indoor unit 20a will be described.
  • step S101 the controller 50 detects the indoor heat exchanger outlet temperature Teo by the indoor heat exchanger outlet temperature sensor 72a.
  • the controller 50 detects the low pressure LP by the low pressure sensor 61.
  • step S103 the controller 50 calculates the evaporation temperature Te from the low pressure LP.
  • step S104 the controller 50 calculates the degree of superheat SH at the outlet of the indoor heat exchanger 22a from the indoor heat exchanger outlet temperature Teo and the evaporation temperature Te.
  • step S105 the controller 50 decreases the degree of opening of the motor operated valve 21a when the degree of superheat SH is smaller than the target degree of superheat SHm set in advance.
  • the controller 50 increases the opening degree of the motor-operated valve 21a.
  • the air conditioning apparatus 100 is operated such that the degree of superheat SH of the indoor heat exchanger 22a becomes equal to the target degree of superheat SHm during normal operation.
  • the wet operation or the overheat operation of the compressor 11 can be avoided.
  • step S201 the controller 50 detects the indoor suction air temperature Ta by the indoor suction air temperature sensor 73a.
  • step S202 the controller 50 detects the set temperature Ts set by the remote control.
  • step S203 the controller 50 controls the operating capacity Cap of the compressor 11 based on the difference (heat load) between the indoor suction air temperature Ta and the set temperature Ts. Specifically, the controller 50 increases the operating capacity Cap when the difference between the indoor suction air temperature Ta and the set temperature Ts is large, and the difference between the indoor suction air temperature Ta and the set temperature Ts is small. Reduces the operating capacity Cap.
  • the operating capacity Cap of the compressor 11 is controlled such that the indoor suction air temperature Ta approaches the set temperature Ts.
  • capacity control of the compressor 11 suitable for the heat load is executed, and the indoor suction air temperature Ta can be promptly set to the set temperature Ts.
  • the operating capacity Cap of the compressor 11 may be controlled such that the evaporation temperature Te becomes constant at the target evaporation temperature Tem. Specifically, when the evaporation temperature Te is higher than the target evaporation temperature Tem, the operating capacity Cap of the compressor 11 is controlled to be large. On the other hand, when the evaporation temperature Te is lower than the target evaporation temperature Tem, the operating capacity Cap of the compressor 11 is controlled to be small.
  • the target evaporation temperature Tem is set to decrease as the operating capacity TON of the indoor unit 20 increases, and to increase as the operating capacity TON of the indoor unit 20 decreases.
  • step S301 the controller 50 detects the high pressure HP by the high pressure sensor 62.
  • step S302 the controller 50 determines whether the high pressure HP is larger than a predetermined value HPn.
  • the predetermined value HPn is smaller than the predetermined value HPm set by the high-pressure shutoff pressure switch 82.
  • step S302 when the high pressure HP is larger than the predetermined value HPn, the process proceeds to step S303. If the high pressure HP is less than or equal to the predetermined value HPn, the process returns to S301. In step S303, the controller 50 reduces the operating capacity Cap of the compressor 11.
  • the motored valve control S110 at the time of refrigerant retention will be described with reference to FIG. 5 and FIG.
  • the motor-operated valve control S110 is control for securing the cooling capacity during the cooling operation under high outside air.
  • step S111 the controller 50 detects the outdoor heat exchanger outlet temperature Tco with the outdoor heat exchanger outlet temperature sensor 71.
  • the controller 50 detects the high pressure HP by the high pressure sensor 62.
  • step S113 the controller 50 calculates the condensation temperature Tc from the high pressure HP.
  • step S114 the controller 50 calculates the degree of subcooling SC at the outlet of the outdoor heat exchanger 12 from the outdoor heat exchanger outlet temperature Tco and the condensation temperature Tc.
  • step S115 the controller 50 proceeds to step S116 when the condensation temperature Tc is equal to or higher than the predetermined temperature Tc1 set in advance. If the condensation temperature Tc is less than the predetermined temperature Tc1, the process returns to S111.
  • step S116 the controller 50 proceeds to step S117 when the degree of subcooling SC is greater than or equal to a predetermined value SC1 set in advance. If the degree of subcooling SC is less than the predetermined value SC1, the process returns to S111. In step S117 (during refrigerant retention), the controller 50 determines that the refrigerant liquid is staying in the outdoor heat exchanger 12, and sets the target degree of superheat SHm in the motor-operated valve control S100 low.
  • the refrigerant liquid stagnates in the outdoor heat exchanger 12, the high pressure HP (condensing temperature Tc) rises, the high pressure protection control S300 operates, and the operating capacity Cap of the compressor 11 decreases.
  • step S115 the condensation temperature Tc is detected to be equal to or higher than a predetermined temperature Tc1.
  • step S116 the degree of subcooling SC is detected to be equal to or greater than a predetermined value SC1. Then, in step S116, it is determined that the refrigerant liquid is staying in the outdoor heat exchanger 12, and the target degree of superheat SHm is set to be lower than the current degree.
  • the opening degree of the motor operated valve 21a increases (6a in FIG. 6). Since the opening degree of the motor operated valve 21 a is increased, the refrigerant liquid accumulated in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12.
  • the condensation temperature Tc decreases (6b in FIG. 6).
  • the high pressure protection control S300 is released. By releasing the high pressure protection control S300, the operating capacity Cap of the compressor 11 is increased (6c in FIG. 6).
  • the motored valve control S120 at the time of high pressure rising will be described with reference to FIG. 7 and FIG.
  • the motor-operated valve control S120 is control for preventing the high-pressure shutoff pressure switch 82 from stopping the air conditioning apparatus 100 when the high-pressure pressure HP sharply rises in the cooling operation under high outside air.
  • step S121 the controller 50 detects the high pressure HP from the high pressure sensor 62.
  • step S122 the controller 50 proceeds to step S123 when the high pressure HP is equal to or greater than a predetermined value HP2 set in advance. If the high pressure HP is less than the predetermined value HP2, the process returns to S121.
  • step S123 when the operating capacity Cap of the compressor 11 is equal to or less than a predetermined value Cap2 set in advance, the controller 50 proceeds to step S124. If the operating capacity Cap is larger than the predetermined value Cap2, the process proceeds to step S125.
  • step S124 the controller 50 determines that the refrigerant is rapidly staying in the outdoor heat exchanger 12, and increases the opening degree of the motor operated valve 21a by a predetermined amount.
  • step S125 the controller 50 decreases the operating capacity Cap of the compressor 11 by a predetermined amount.
  • step S122 it is detected that the high pressure HP is equal to or greater than a predetermined value HP2.
  • step S123 it is detected that the operating capacity Cap of the compressor 11 is equal to or less than a predetermined value Cap2.
  • step S124 it is determined that the refrigerant is rapidly staying in the outdoor heat exchanger 12, and the opening degree of the motor-operated valve 21a is increased by a predetermined amount.
  • the opening degree of the motor-operated valve 21a is increased by a predetermined amount, the refrigerant liquid which rapidly stays in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12.
  • the refrigerant liquid staying in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12, whereby the high pressure HP decreases (8a in FIG. 8).
  • the motor-operated valve control S130 is control for avoiding the stop of the air conditioner 100 when the operating capacity TON of the indoor unit 20 sharply decreases and the high pressure HP increases rapidly.
  • step S131 the controller 50 detects the operating capacity TON as the operating capacity TON1 (the indoor units 20a, 20b, 20c, 20d are ON).
  • step S132 the controller 50 proceeds to step S133 after the predetermined time t3 has elapsed.
  • step S133 the controller 50 detects the operating capacity TON as the operating capacity TON2 (the indoor unit 20 is ON).
  • step S134 if the operating capacity TON2 is smaller than the operating capacity TON1, the controller 50 proceeds to step S135. If the operating capacity TON2 is equal to or larger than the operating capacity TON1, the process returns to S131.
  • step S135 the controller 50 sets the ratio of the operating capacity TON2 to the operating capacity TON1, that is, when the operating capacity change rate R as the changing rate of the operating capacity TON of the indoor unit 20 in the predetermined time t3 is the predetermined rate R3 or less. It transfers to step S136. If the operating capacity change rate R is larger than the predetermined rate R3, the process returns to S131.
  • step S136 the controller 50 detects the high pressure HP by the high pressure sensor 62.
  • step S137 the controller 50 determines that the refrigerant is rapidly staying in the outdoor heat exchanger 12 when the high pressure HP is equal to or greater than the predetermined value HP3 set in advance, and proceeds to step S138. If the high pressure HP is less than the predetermined value HP3, the process returns to S131.
  • step S138 the controller 50 detects the low pressure LP by the low pressure sensor 61.
  • step S139 the controller 50 calculates a differential pressure dP between the high pressure HP and the low pressure LP.
  • step S140 the controller 50 calculates the condensation temperature Tc from the high pressure HP.
  • step S141 the controller 50 detects the outdoor heat exchanger outlet temperature Tco with the outdoor heat exchanger outlet temperature sensor 71.
  • step S142 the controller 50 calculates the degree of subcooling SC at the outlet of the outdoor heat exchanger 12 from the outdoor heat exchanger outlet temperature Tco and the condensation temperature Tc.
  • step S143 the controller 50 increases the opening degree of the motor operated valve 21a by a predetermined amount ⁇ Ev according to the differential pressure dP and the subcooling degree SC. Specifically, when the differential pressure dP and the degree of subcooling SC are large, the predetermined amount ⁇ Ev to be increased is increased, and when the differential pressure dP and the degree of subcooling SC are small, the predetermined amount ⁇ Ev to be increased is decreased. .
  • step S131 the operating capacity TON is detected as the operating capacity TON1 (the indoor units 20a, 20b, 20c, 20d are ON).
  • step S133 the operating capacity TON is detected as the operating capacity TON2 (the indoor unit 20a is ON).
  • step S134 it is detected that the operating capacity TON2 is smaller than the operating capacity TON1.
  • step S1335 it is detected that the operating capacity change rate R is equal to or less than a predetermined rate R3. At this time, in the air conditioning apparatus 100, it is determined that the operating capacity TON of the indoor unit 20 has rapidly decreased.
  • step S137 it is detected that the high pressure Hp is greater than or equal to the predetermined value HP3, and it is determined that the refrigerant is rapidly staying in the outdoor heat exchanger 12.
  • step S143 the opening degree of the motor operated valve 21a is increased based on the differential pressure dP and the degree of subcooling SC.
  • the opening degree of the motor-operated valve 21a is increased, so that the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12.
  • the refrigerant liquid staying in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12, whereby the high pressure HP decreases (10a in FIG. 10).
  • the compressor operating capacity control S210 at the time of operating capacity increase will be described using FIG. 11 and FIG.
  • the compressor operating capacity control S210 is control for suppressing the rise of the evaporation temperature Te when the operating capacity TON of the indoor unit 20 sharply increases and the evaporation temperature Te rises rapidly.
  • step S211 the controller 50 detects the operating capacity TON of the indoor unit 20 as the operating capacity TON3 (the indoor unit 20a is ON).
  • step S212 the controller 50 proceeds to step S213 after the predetermined time t4 has elapsed.
  • step S213 the controller 50 detects the operating capacity TON as the operating capacity TON 4 (the indoor units 20a, 20b, 20c, 20d are ON).
  • step S214 when the operating capacity TON4 is larger than the operating capacity TON3, the controller 50 proceeds to step S215. If the operating capacity TON4 is less than or equal to the operating capacity TON3, the process returns to S211.
  • step S215 the controller 50 sets the ratio of the operating capacity TON4 to the operating capacity TON3, that is, when the operating capacity change rate R as the changing rate of the operating capacity TON of the indoor unit 20 in the predetermined time t4 is the predetermined rate R4 or more. It is determined that the operating capacity TON of the indoor unit 20 has rapidly increased, and the process proceeds to step S216. If the operating capacity change rate R is smaller than the predetermined rate R4, the process returns to S211.
  • step S216 the controller 50 detects the indoor suction air temperatures Taa, Tab, Tac, Tad by the indoor suction air temperature sensors 73a, 73b, 73c, 73d.
  • the average value of the indoor suction air temperatures Taa, Tab, Tac, Tad of the indoor units 20a, 20b, 20c, 20d being operated is taken as the indoor suction air temperature average Ta-ave.
  • step S217 the controller 50 increases the operating capacity Cap of the compressor 11 by a predetermined amount ⁇ Cap according to the increased operating capacity TON and the indoor suction air temperature average Ta-ave.
  • the increased operating capacity TON is the operating capacity TON 4 detected in step S213.
  • the predetermined amount ⁇ Cap to be increased is large, and when the operating capacity TON and the indoor suction air temperature average Ta-ave are small, the increase is The predetermined amount ⁇ Cap to be reduced is small.
  • the compressor operating capacity control S200 during normal operation the compressor operating capacity control S200 during normal operation (the operating capacity Cap of the compressor 11 based on the evaporation temperature Te In addition to the control), the feed-forward control increases the operating capacity Cap of the compressor 11 according to the operating capacity TON and the indoor suction air temperature average Ta-ave.
  • step 211 the operating capacity TON is detected as an operating capacity TON3 (the indoor unit 20a is ON).
  • the operating capacity TON is detected as the operating capacity TON4 (the indoor units 20a, 20b, 20c, 20d are ON).
  • the air conditioning apparatus 100 it is determined that the operating capacity TON of the indoor unit 20 has rapidly increased.
  • step 216 the indoor suction air temperature Ta is detected.
  • step S217 the operating capacity Cap of the compressor 11 is increased by a predetermined amount ⁇ Cap based on the operating capacity TON and the indoor suction air temperature Ta.
  • the operating pressure Cap of the compressor 11 is increased by the predetermined amount ⁇ Cap, so that the low pressure LP decreases and the increase of the evaporation temperature Te is suppressed (12a in FIG. 12).
  • the rise of the evaporation temperature Te By suppressing the rise of the evaporation temperature Te, a decrease in the heat exchange efficiency of the indoor heat exchanger 22 is avoided.
  • the high pressure HP of the air conditioner 100 rapidly rises.
  • the operation of the high pressure protection control S300 may not catch up and the high pressure cutoff pressure switch 82 may operate.
  • the high pressure shutoff pressure switch 82 is operated, the air conditioner 100 is stopped.
  • the air conditioning apparatus 100 includes the plurality of indoor units 20, the compressor 11, and the outdoor heat, each of which includes the motor-operated valve 21 and the indoor heat exchanger 22, and the ON / OFF of the operation is individually operated.
  • the controller 50 includes an outdoor unit 10 having an exchanger 12 and to which a plurality of indoor units 20 are connected, and a controller 50 for controlling the opening degree of the motor-operated valve 21.
  • the operating capacity TON decreases by a predetermined rate R3 for a predetermined time t3, the opening degree of the motor-operated valve 21 of the operating indoor unit 20 is increased.
  • the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12.
  • the air conditioning apparatus 100 includes the plurality of indoor units 20, the compressor 11, and the outdoor heat, each of which includes the motor-operated valve 21 and the indoor heat exchanger 22, and the ON / OFF of the operation is individually operated.
  • the controller 50 includes an outdoor unit 10 having an exchanger 12 and to which a plurality of indoor units 20 are connected, and a controller 50 for controlling the opening degree of the motor-operated valve 21.
  • the air conditioning apparatus 100 when the operating capacity TON of the indoor unit 20 decreases by the predetermined rate R3 in the predetermined time t3, and the high pressure HP is the predetermined value HP3 or more, the electric motor The opening degree of the valve 21 is increased. At this time, the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 flows from the outdoor heat exchanger 12 toward the indoor heat exchanger 22.
  • the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12.
  • the controller 50 increases the opening degree of the motor-operated valve 21 according to the differential pressure dP between the high pressure HP and the low pressure LP when the operating capacity decreases.
  • the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12.
  • the controller 50 increases the opening degree of the motor-operated valve 21 according to the degree SC of subcooling at the outlet of the outdoor heat exchanger 12 when the operating capacity decreases.
  • the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12.
  • the controller 50 controls the opening degree of the motor-operated valve 21 so that the degree of superheat SH at the outlet of the indoor heat exchanger 22 becomes the target degree of superheat SHm during normal operation different from when the operating capacity decreases. Do.
  • the air conditioning apparatus 100 is operated in the normal operation such that the degree of superheat SH of the indoor heat exchanger 22 becomes the target degree of superheat SHm.
  • the wet operation or the overheat operation of the compressor 11 can be prevented.
  • the controller 50 sets the opening degree of the motor-operated valve 21 to fully open when the operating capacity decreases.
  • the opening degree of the motor-operated valve 21 is set to be fully open.
  • the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12.
  • the controller 50 reduces the operating capacity Cap of the compressor 11 if the high pressure HP of the air conditioning apparatus 100 is equal to or higher than the predetermined value HPn as the second predetermined value.
  • the high pressure HP is reduced before the high pressure shutoff pressure switch 82 operates.
  • the high pressure shutoff pressure switch 82 can be prevented from being operated and stopped.
  • the air conditioning apparatus 100 stops the compressor 11 if the high pressure pressure HP is equal to or higher than the predetermined value HPm as the third predetermined value.
  • the air conditioner 100 can prevent the piping or the container from being damaged.
  • the air conditioning apparatus 100 is a cooling dedicated apparatus and does not have a container for adjusting the amount of refrigerant.
  • step S135 of the motor-operated valve control S130 when the controller 50 determines that the operating capacity change rate R is less than or equal to the predetermined rate R3, the refrigerant liquid rapidly stagnates in the condenser 12 and the high pressure HP rapidly The opening degree of the motor operated valve 21a may be increased in anticipation of rising.
  • step S143 of the motor-operated valve control S130 the controller 50 increases the opening degree of the motor-operated valve 21a based on the differential pressure dP and the degree of subcooling SC.
  • the opening degree of the valve 21a may be increased.
  • step S143 of the motor-operated valve control S130 the controller 50 increases the opening degree of the motor-operated valve 21a based on the differential pressure dP and the degree of subcooling SC, but based on only the differential pressure dP, The degree of opening may be increased. Further, the opening degree of the motor operated valve 21a may be increased based on only the degree of supercooling SC.
  • step S143 of the motor-operated valve control S130 the controller 50 increases the opening degree of the motor-operated valve 21a by a predetermined amount, but the opening degree of the motor-operated valve 21a may be fully opened.
  • the motor-operated valve control S130 is applied at the time of the cooling operation of the cooling-dedicated device, but may be applied at the heating operation of the air conditioning device capable of cooling and heating.
  • the present invention can be used for an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning device whereby refrigerant suddenly pooling in a condenser can escape from the condenser. The air conditioning device (100) comprises: a plurality of indoor units (20) each having an electrically operated valve (21) and an indoor heat exchanger (22) and each having the operation thereof turned ON and OFF independently; an outdoor unit (10) having a compressor (11) and an outdoor heat exchanger (12) and having the plurality of indoor units (20) connected thereto; and a control device (50) that controls the degree of opening of the expansion valves (21). The control device (50) increases the degree of opening of the expansion valves (21) in the operating indoor units (20) during operation capacity reductions whereby the total operation capacity of the plurality of indoor units (20) has been reduced at a prescribed time at a prescribed rate.

Description

空気調和装置Air conditioner
 本発明は、空気調和装置に関する。 The present invention relates to an air conditioner.
 従来、圧縮機と、凝縮器と、電動弁と、蒸発器と、が接続された冷媒回路を備える空気調和装置は公知である。特許文献1(特開2015-124958号公報)には、高外気下での冷房運転時において、低圧圧力が上限値を超えたときには、室内ユニットのファン回転数を低下させる空気調和装置が記載されている。 An air conditioner is conventionally known that includes a refrigerant circuit in which a compressor, a condenser, a motor-operated valve, and an evaporator are connected. Patent Document 1 (Japanese Patent Laid-Open No. 2015-124958) describes an air conditioner that reduces the fan rotational speed of the indoor unit when the low pressure exceeds the upper limit during cooling operation under high outside air. ing.
 しかし、特許文献1(特開2015-124958号公報)には、高外気下での冷房運転時において、高圧圧力が急激に上昇していくとき、凝縮器に急激に滞留していく冷媒液を凝縮器から逃がすことについての記載がない。本開示の課題は、凝縮器に急激に滞留していく冷媒液を凝縮器から逃がすことである。 However, according to Patent Document 1 (Japanese Patent Laid-Open No. 2015-124958), when the high-pressure pressure rises rapidly during the cooling operation under high outside air, the refrigerant liquid which is rapidly accumulated in the condenser is There is no mention of getting it out of the condenser. An object of the present disclosure is to release the refrigerant liquid, which rapidly accumulates in the condenser, from the condenser.
 本開示の第1観点に係る空気調和機は、それぞれ、膨張弁と、蒸発器と、を有し、個別に運転のON又はOFFが操作される、複数の室内機と、圧縮機と、凝縮器と、を有し、複数の室内機が接続される室外機と、膨張弁の開度を制御する制御装置と、を備え、制御装置は、複数の室内機の全体の運転容量が所定時間に所定率だけ減少した運転容量減少時には、運転中の室内機の膨張弁の開度を増加させる。 An air conditioner according to a first aspect of the present disclosure includes a plurality of indoor units, a compressor, and a plurality of indoor units each having an expansion valve and an evaporator, and the ON and OFF of the operation are individually operated. And an outdoor unit to which a plurality of indoor units are connected, and a control device for controlling the degree of opening of the expansion valve, the control device having a total operating capacity of the plurality of indoor units for a predetermined time When the operating capacity decreases by a predetermined rate, the opening degree of the expansion valve of the operating indoor unit is increased.
 したがって、本開示によれば、凝縮器に急激に滞留していく冷媒液を凝縮器から逃がすことができる。 Therefore, according to the present disclosure, the refrigerant liquid that rapidly accumulates in the condenser can be released from the condenser.
 本開示の第2観点に係る空気調和機は、それぞれ、膨張弁と、蒸発器と、を有し、個別に運転のON又はOFFが操作される、複数の室内機と、圧縮機と、凝縮器と、を有し、複数の室内機が接続される室外機と、膨張弁の開度を制御する制御装置と、を備え、制御装置は、複数の室内機の全体運転容量が所定時間に所定率だけ減少した運転容量減少時であって、高圧圧力が第一所定値以上のときには、運転中の室内機の膨張弁の開度を増加させる。 An air conditioner according to a second aspect of the present disclosure includes a plurality of indoor units, a compressor, and a plurality of indoor units each having an expansion valve and an evaporator, and are individually operated ON or OFF. And an outdoor unit to which a plurality of indoor units are connected, and a controller for controlling the degree of opening of the expansion valve, the controller having a total operating capacity of the plurality of indoor units within a predetermined time When the operating capacity decreases by a predetermined rate and the high pressure is equal to or higher than the first predetermined value, the opening degree of the expansion valve of the operating indoor unit is increased.
 本開示の第3観点に係る空気調和機は、制御装置は、運転容量減少時には、高圧圧力と低圧圧力との差圧に応じて、膨張弁の開度を増加させる。 In the air conditioner according to the third aspect of the present disclosure, the control device increases the opening degree of the expansion valve according to the differential pressure between the high pressure and the low pressure when the operating capacity decreases.
 本開示の第4観点に係る空気調和機は、制御装置は、運転容量減少時には、凝縮器の出口の過冷却度に応じて、膨張弁の開度を増加させる。 In the air conditioner according to the fourth aspect of the present disclosure, the control device increases the opening degree of the expansion valve according to the degree of subcooling of the outlet of the condenser when the operating capacity decreases.
 本開示の第5観点に係る空気調和機は、制御装置は、運転容量増減時とは異なる通常運転時には、蒸発器の出口の過熱度が目標過熱度になるように、膨張弁の開度を制御する。 In the air conditioner according to the fifth aspect of the present disclosure, the control device sets the opening degree of the expansion valve such that the degree of superheat at the outlet of the evaporator becomes the target degree of superheat during normal operation different from when increasing or decreasing the operating capacity. Control.
 本開示の第6観点に係る空気調和機は、制御装置は、運転容量減少時には、膨張弁の開度を全開に設定する。 In the air conditioner according to the sixth aspect of the present disclosure, the control device sets the opening degree of the expansion valve to full opening when the operating capacity decreases.
 本開示の第7観点に係る空気調和機は、制御装置は、空気調和装置の高圧圧力が第二圧力以上であれば、圧縮機の運転容量を低下させる。 In the air conditioner according to the seventh aspect of the present disclosure, the control device reduces the operating capacity of the compressor if the high pressure of the air conditioner is equal to or higher than the second pressure.
 本開示の第8観点に係る空気調和機は、制御装置は、高圧圧力が第三圧力以上であれば、圧縮機を停止する。 In the air conditioner according to the eighth aspect of the present disclosure, the control device stops the compressor if the high pressure is equal to or higher than the third pressure.
 本開示の第9観点に係る空気調和機は、冷房専用装置であって、冷媒量を調整する容器を有さない。 An air conditioner according to a ninth aspect of the present disclosure is a cooling-dedicated device, and does not have a container for adjusting the amount of refrigerant.
空気調和装置の冷媒系統図である。It is a refrigerant | coolant system diagram of an air conditioning apparatus. 通常運転時の電動弁制御のフローチャートである。It is a flowchart of motor-operated valve control at the time of normal operation. 通常運転時の圧縮機容量制御のフローチャートである。It is a flowchart of compressor capacity control at the time of normal operation. 通常運転時の高圧保護制御のフローチャートである。It is a flowchart of high pressure protection control at the time of normal operation. 冷媒滞留時の電動弁制御のフローチャートである。It is a flowchart of motor-operated valve control at the time of refrigerant retention. 同じくタイムチャートである。It is the same time chart. 高圧上昇時の電動弁制御のフローチャートである。It is a flowchart of motor-operated valve control at the time of high pressure rise. 同じくタイムチャートである。It is the same time chart. 運転容量減少時の電動弁制御のフローチャートである。It is a flowchart of motor-operated valve control at the time of operation capacity reduction. 同じくタイムチャートである。It is the same time chart. 運転容量増加時の圧縮機容量制御のフローチャートである。It is a flowchart of compressor capacity control at the time of operating capacity increase. 同じくタイムチャートである。It is the same time chart.
 以下、本開示に係る空気調和装置100の実施形態について、図面に基づいて説明する。なお、本開示に係る空気調和装置100の具体的な構成は、下記の実施形態に限られるものではなく、開示の要旨を逸脱しない範囲で変更可能である。 Hereinafter, an embodiment of an air conditioning apparatus 100 according to the present disclosure will be described based on the drawings. In addition, the specific structure of the air conditioning apparatus 100 which concerns on this indication is not restricted to following embodiment, It can change in the range which does not deviate from the summary of indication.
 <空気調和装置>
 (1)全体構成
 図1を用いて、空気調和装置100の全体構成について説明する。図1の破線は、電気信号線を表している。なお、以下では、冷媒の流れ方向にしたがって上流側又は下流側を定義している。
<Air conditioner>
(1) Overall Configuration The overall configuration of the air conditioning apparatus 100 will be described using FIG. The broken lines in FIG. 1 represent electrical signal lines. In the following, the upstream side or the downstream side is defined according to the flow direction of the refrigerant.
 空気調和装置100は、蒸気圧縮式冷凍サイクルを用いて、建物等の室内の冷房を行う装置である。空気調和装置100は、冷房専用装置とされている。空気調和装置100は、室外機10と、4台の室内機20a、20b、20c、20dと、連絡配管41、42と、制御装置としてのコントローラ50と、を備えている。 The air conditioning apparatus 100 is an apparatus for cooling a room such as a building using a vapor compression refrigeration cycle. The air conditioner 100 is a cooling dedicated device. The air conditioning apparatus 100 includes an outdoor unit 10, four indoor units 20a, 20b, 20c, and 20d, connection pipes 41 and 42, and a controller 50 as a control device.
 (1-1)室外機
 室外機10は、建物の室外に設けられている。室外機10は、圧縮機11と、凝縮器としての室外熱交換器12と、室外ファン13と、を備えている。圧縮機11、室外熱交換器12、及び室外ファン13は、室外ケーシング(図示略)に収納されている。
(1-1) Outdoor Unit The outdoor unit 10 is provided outside the building. The outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12 as a condenser, and an outdoor fan 13. The compressor 11, the outdoor heat exchanger 12, and the outdoor fan 13 are accommodated in an outdoor casing (not shown).
 圧縮機11は、冷媒ガスを低圧から高圧にして送り出すものである。圧縮機11の低圧側には、吸入配管31が接続されている。吸入配管31の圧縮機11の近傍には、低圧圧力センサ61が設けられている。圧縮機11の高圧側には、吐出配管32が接続されている。吐出配管32の圧縮機11の近傍には、高圧圧力センサ62と、高圧遮断圧力スイッチ82と、が設けられている。 The compressor 11 feeds refrigerant gas from low pressure to high pressure. A suction pipe 31 is connected to the low pressure side of the compressor 11. A low pressure sensor 61 is provided in the vicinity of the compressor 11 of the suction pipe 31. A discharge pipe 32 is connected to the high pressure side of the compressor 11. A high pressure sensor 62 and a high pressure shutoff pressure switch 82 are provided in the vicinity of the compressor 11 of the discharge pipe 32.
 室外熱交換器12は、空気と冷媒とを熱交換させ、冷媒ガスを冷媒液に凝縮させるものである。室外熱交換器12の上流側は、吐出配管32に接続されている。室外熱交換器12の下流側は、液配管33に接続されている。液配管33の室外熱交換器12の近傍には、室外熱交換器出口温度センサ71が設けられている。つまり、室外熱交換器出口温度センサ71は、室外熱交換器12の出口に設けられている。 The outdoor heat exchanger 12 exchanges heat between the air and the refrigerant, and condenses the refrigerant gas into the refrigerant liquid. The upstream side of the outdoor heat exchanger 12 is connected to the discharge pipe 32. The downstream side of the outdoor heat exchanger 12 is connected to the liquid pipe 33. An outdoor heat exchanger outlet temperature sensor 71 is provided in the vicinity of the outdoor heat exchanger 12 of the liquid pipe 33. That is, the outdoor heat exchanger outlet temperature sensor 71 is provided at the outlet of the outdoor heat exchanger 12.
 室外ファン13は、電動機(図示略)によって駆動され、室外熱交換器12に向けて空気を送風するものである。室外ファン13の吸い込み側には、室外吸い込み空気温度センサ74が設けられている。具体的には、室外吸い込み空気温度センサ74は、室外ケーシングの空気吸い込み口に設けられている。 The outdoor fan 13 is driven by an electric motor (not shown) and blows air toward the outdoor heat exchanger 12. An outdoor suction air temperature sensor 74 is provided on the suction side of the outdoor fan 13. Specifically, the outdoor suction air temperature sensor 74 is provided at the air suction port of the outdoor casing.
 低圧圧力センサ61は、圧縮機11によって吸入される冷媒ガス、すなわち空気調和装置100の低圧圧力LPを検出するものである。高圧圧力センサ62は、圧縮機11によって圧縮された冷媒ガス、すなわち空気調和装置100の高圧圧力HPを検出するものである。室外熱交換器出口温度センサ71は、室外熱交換器12の出口の冷媒液の温度(室外熱交換器出口温度Tco)を検出するものである。室外吸い込み空気温度センサ74は、室外機10の室内吸い込み空気温度Tbを検出するものである。 The low pressure sensor 61 detects the refrigerant gas sucked by the compressor 11, that is, the low pressure LP of the air conditioner 100. The high pressure sensor 62 detects the refrigerant gas compressed by the compressor 11, that is, the high pressure HP of the air conditioner 100. The outdoor heat exchanger outlet temperature sensor 71 detects the temperature of the refrigerant liquid at the outlet of the outdoor heat exchanger 12 (outdoor heat exchanger outlet temperature Tco). The outdoor suction air temperature sensor 74 detects the indoor suction air temperature Tb of the outdoor unit 10.
 高圧遮断圧力スイッチ82は、空気調和装置100の高圧圧力HPが所定値HPm以上であれば、空気調和装置100を停止するものである。 The high pressure shutoff pressure switch 82 stops the air conditioner 100 if the high pressure HP of the air conditioner 100 is equal to or higher than a predetermined value HPm.
 (1-2)室内機
 室内機20aは、建物の室内に設けられている。室内機20aは、連絡配管(液配管33及び吸入配管31)によって室外機10と接続されている。室内機20aは、膨張弁としての電動弁21aと、蒸発器としての室内熱交換器22aと、室内ファン23aと、リモコン(図示略)と、を備えている。電動弁21a、室内熱交換器22a及び室内ファン23aは、室内ケーシング(図示略)に収納されている。
(1-2) Indoor Unit The indoor unit 20a is provided in a room of a building. The indoor unit 20a is connected to the outdoor unit 10 by a communication pipe (liquid pipe 33 and suction pipe 31). The indoor unit 20a includes an electric valve 21a as an expansion valve, an indoor heat exchanger 22a as an evaporator, an indoor fan 23a, and a remote controller (not shown). The motor operated valve 21a, the indoor heat exchanger 22a and the indoor fan 23a are accommodated in an indoor casing (not shown).
 電動弁21aは、冷媒液を気液混合冷媒に膨張するものである。電動弁21aは、電気的に駆動され、開度の増加又は減少の操作が行われる。電動弁21aの上流側は、連絡配管41に接続されている。 The motor operated valve 21 a is for expanding the refrigerant liquid into a gas-liquid mixed refrigerant. The motor operated valve 21a is electrically driven to perform an operation of increasing or decreasing the degree of opening. The upstream side of the motor operated valve 21 a is connected to the communication pipe 41.
 室内熱交換器22aは、空気と冷媒とを熱交換させ、気液混合冷媒を冷媒ガスに蒸発させるものである。室内熱交換器22aの下流側は、連絡配管42に接続されている。室内熱交換器出口温度センサ72aは、室内熱交換器22aの出口に設けられている。 The indoor heat exchanger 22a exchanges heat between the air and the refrigerant to evaporate the gas-liquid mixed refrigerant into the refrigerant gas. The downstream side of the indoor heat exchanger 22 a is connected to the communication pipe 42. The indoor heat exchanger outlet temperature sensor 72a is provided at the outlet of the indoor heat exchanger 22a.
 室内ファン23aは、電動機(図示略)によって駆動され、室内熱交換器22aに向けて空気を送風するものである。室内ファン23aの吸い込み側には、室内吸い込み空気温度センサ73aが設けられている。具体的には、室内吸い込み空気温度センサ73aは、室内ケーシングの空気吸い込み口に設けられている。 The indoor fan 23a is driven by an electric motor (not shown) and blows air toward the indoor heat exchanger 22a. An indoor suction air temperature sensor 73a is provided on the suction side of the indoor fan 23a. Specifically, the indoor suction air temperature sensor 73a is provided at the air suction port of the indoor casing.
 リモコンは、ユーザーが室内機20aのON/OFF又は室内の設定温度Tsを入力するものである。 The remote control is for the user to input ON / OFF of the indoor unit 20a or the set temperature Ts in the room.
 室内熱交換器出口温度センサ72aは、室内熱交換器22aの出口の冷媒ガスの温度(室内熱交換器出口温度Teo)を検出するものである。室内吸い込み空気温度センサ73aは、室内機20aの室内吸い込み空気温度Taを検出するものである。 The indoor heat exchanger outlet temperature sensor 72a detects the temperature of the refrigerant gas at the outlet of the indoor heat exchanger 22a (the indoor heat exchanger outlet temperature Teo). The indoor suction air temperature sensor 73a detects the indoor suction air temperature Ta of the indoor unit 20a.
 室内機20b、20c、20dは、それぞれ室内機20aの構成と同様であるため、説明を省略する。なお、以下では、室内機20a、20b、20c、20dの任意を表す場合は単に室内機20とする。電動弁21、室内熱交換器22、室内熱交換器出口温度センサ72又は室内吸い込み空気温度センサ73についても同様とする。 The indoor units 20b, 20c, and 20d are the same as the configuration of the indoor unit 20a, and thus the description thereof is omitted. In addition, below, when showing any of indoor unit 20a, 20b, 20c, 20d, it is only set as the indoor unit 20. FIG. The same applies to the motor operated valve 21, the indoor heat exchanger 22, the indoor heat exchanger outlet temperature sensor 72 or the indoor suction air temperature sensor 73.
 コントローラ50は、有線又は無線によって互いに通信可能に接続された室外機10に設けられた制御基板(図示せず)と室内機20a、20b、20c、20dに設けられた制御基板(図示せず)を有して構成されている。また、コントローラ50は、1つ又は複数のCPU、ROM、RAM等を備えている。 The controller 50 includes a control board (not shown) provided on the outdoor unit 10 communicably connected to each other by wire or wirelessly and a control board (not shown) provided on the indoor units 20a, 20b, 20c, 20d. Is configured. Further, the controller 50 includes one or more CPUs, a ROM, a RAM, and the like.
 コントローラ50は、低圧圧力センサ61と、高圧圧力センサ62と、高圧遮断圧力スイッチ82と、室外熱交換器出口温度センサ71と、電動弁21と、室内熱交換器出口温度センサ72と、室内吸い込み空気温度センサ73と、室内機20のリモコンと、に接続されている。 The controller 50 includes a low pressure sensor 61, a high pressure sensor 62, a high pressure cutoff pressure switch 82, an outdoor heat exchanger outlet temperature sensor 71, a motor operated valve 21, an indoor heat exchanger outlet temperature sensor 72, and indoor suction. The air temperature sensor 73 and the remote controller of the indoor unit 20 are connected.
 コントローラ50は、圧縮機11の回転周波数を変更して、圧縮機11の運転容量Capを制御する機能を有している。コントローラ50は、電動弁21の開度を制御する機能を有している。 The controller 50 has a function of changing the rotational frequency of the compressor 11 to control the operating capacity Cap of the compressor 11. The controller 50 has a function of controlling the opening degree of the motor-operated valve 21.
 コントローラ50は、室内機20の運転容量TONを検出する機能を有している。ここで、室内機20は、容量を有している。運転容量TONとは、運転(サーモON)されている室内機20の容量を表している。なお、運転容量TONでは、サーモOFFされている室内機20の容量は除かれる。 The controller 50 has a function of detecting the operating capacity TON of the indoor unit 20. Here, the indoor unit 20 has a capacity. The operating capacity TON represents the capacity of the indoor unit 20 being operated (thermo-ON). Note that, with the operating capacity TON, the capacity of the indoor unit 20 that is thermo-OFF is excluded.
 ここで、特記すべき事項として、空気調和装置100には、レシーバ、アキュムレータ等の冷媒量調整用の容器が設けられていない。 Here, it should be noted that the air conditioner 100 is not provided with a container for adjusting the amount of refrigerant, such as a receiver and an accumulator.
 (1-3)連絡配管
 連絡配管41、42は、室外機10と複数の室内機20a、20b、20c、20dとを接続するものである。
(1-3) Communication Piping The communication pipes 41, 42 are for connecting the outdoor unit 10 and the plurality of indoor units 20a, 20b, 20c, 20d.
 (2)冷房運転
 図1を用いて、空気調和装置100の冷房運転について説明する。なお、説明をわかりやすくするため、室内機20b、20c、20dはOFFとされているとして、室内機20aの冷房運転についてのみ説明する。
(2) Cooling Operation The cooling operation of the air conditioner 100 will be described with reference to FIG. In order to make the explanation easy to understand, it is assumed that the indoor units 20b, 20c and 20d are turned off, and only the cooling operation of the indoor unit 20a will be described.
 圧縮機11によって圧縮された高温かつ高圧の冷媒ガスは、室外熱交換器12に向かって流れる。室外熱交換器12において、高温かつ高圧の冷媒ガスは、空気によって熱を奪われ、冷媒液に凝縮される。凝縮した冷媒液は、電動弁21aに向かって流れる。 The high temperature and high pressure refrigerant gas compressed by the compressor 11 flows toward the outdoor heat exchanger 12. In the outdoor heat exchanger 12, the high-temperature and high-pressure refrigerant gas is deprived of heat by the air and condensed into the refrigerant liquid. The condensed refrigerant liquid flows toward the motor-operated valve 21a.
 冷媒液は、電動弁21aによって、気液混合冷媒に膨張される。気液混合冷媒は、室内熱交換器22aに向かって流れる。室内熱交換器22aにおいて、気液混合冷媒は、空気によって熱が与えられ、冷媒ガスに蒸発される。蒸発された冷媒ガスは、圧縮機11に吸入される。 The refrigerant liquid is expanded into a gas-liquid mixed refrigerant by the motor-operated valve 21a. The gas-liquid mixed refrigerant flows toward the indoor heat exchanger 22a. In the indoor heat exchanger 22a, the gas-liquid mixed refrigerant is given heat by the air and evaporated to a refrigerant gas. The evaporated refrigerant gas is drawn into the compressor 11.
 (3-1)通常運転時の電動弁制御
 図2を用いて、通常運転時の電動弁制御S100について説明する。通常運転とは、冷房運転であって、後に説明する冷媒滞留時、高圧上昇時、運転容量減少時とは異なる制御である。なお、説明をわかりやすくするため、室内機20b、20c、20dはOFFとされているとして、室内機20aの通常運転時についてのみ説明する。
(3-1) Motorized Valve Control in Normal Operation The motored valve control S100 in normal operation will be described with reference to FIG. The normal operation is a cooling operation, and is different from the control at the time of refrigerant retention, the time of high pressure rise, and the time of reduction of the operating capacity, which will be described later. In order to make the explanation easy to understand, it is assumed that the indoor units 20b, 20c and 20d are turned off, and only the normal operation of the indoor unit 20a will be described.
 ステップS101において、コントローラ50は、室内熱交換器出口温度センサ72aによって室内熱交換器出口温度Teoを検出する。ステップS102において、コントローラ50は、低圧圧力センサ61によって低圧圧力LPを検出する。ステップS103において、コントローラ50は、低圧圧力LPから蒸発温度Teを算出する。 In step S101, the controller 50 detects the indoor heat exchanger outlet temperature Teo by the indoor heat exchanger outlet temperature sensor 72a. In step S102, the controller 50 detects the low pressure LP by the low pressure sensor 61. In step S103, the controller 50 calculates the evaporation temperature Te from the low pressure LP.
 ステップS104において、コントローラ50は、室内熱交換器出口温度Teoと蒸発温度Teとから室内熱交換器22aの出口の過熱度SHを算出する。ステップS105において、コントローラ50は、過熱度SHが予め設定された目標過熱度SHmよりも小さい場合には、電動弁21aの開度を減少させる。一方、コントローラ50は、過熱度SHが目標過熱度SHmよりも大きい場合には、電動弁21aの開度を増加させる。 In step S104, the controller 50 calculates the degree of superheat SH at the outlet of the indoor heat exchanger 22a from the indoor heat exchanger outlet temperature Teo and the evaporation temperature Te. In step S105, the controller 50 decreases the degree of opening of the motor operated valve 21a when the degree of superheat SH is smaller than the target degree of superheat SHm set in advance. On the other hand, when the degree of superheat SH is larger than the target degree of superheat SHm, the controller 50 increases the opening degree of the motor-operated valve 21a.
 このような構成とすることで、空気調和装置100では、通常運転時には、室内熱交換器22aの過熱度SHが目標過熱度SHmになるように運転される。このようにして、空気調和装置100では、圧縮機11の湿り運転又は過熱運転を回避することができる。 With such a configuration, the air conditioning apparatus 100 is operated such that the degree of superheat SH of the indoor heat exchanger 22a becomes equal to the target degree of superheat SHm during normal operation. Thus, in the air conditioning apparatus 100, the wet operation or the overheat operation of the compressor 11 can be avoided.
 (3-2)通常運転時の圧縮機運転容量制御
 図3を用いて、通常運転時の圧縮機運転容量制御S200について説明する。なお、説明をわかりやすくするため、室内機20b、20c、20dはOFFとされているとして、室内機20aの通常運転時についてのみ説明する。
(3-2) Compressor Operating Capacity Control During Normal Operation The compressor operating capacity control S200 during normal operation will be described with reference to FIG. In order to make the explanation easy to understand, it is assumed that the indoor units 20b, 20c and 20d are turned off, and only the normal operation of the indoor unit 20a will be described.
 ステップS201において、コントローラ50は、室内吸い込み空気温度センサ73aによって室内吸い込み空気温度Taを検出する。ステップS202において、コントローラ50は、リモコンによって設定された設定温度Tsを検出する。 In step S201, the controller 50 detects the indoor suction air temperature Ta by the indoor suction air temperature sensor 73a. In step S202, the controller 50 detects the set temperature Ts set by the remote control.
 ステップS203において、コントローラ50は、室内吸い込み空気温度Taと設定温度Tsとの差(熱負荷)に基づいて圧縮機11の運転容量Capを制御する。具体的には、コントローラ50は、室内吸い込み空気温度Taと設定温度Tsとの差が大きい場合には、運転容量Capを増加させ、室内吸い込み空気温度Taと設定温度Tsとの差が小さい場合には、運転容量Capを減少させる。 In step S203, the controller 50 controls the operating capacity Cap of the compressor 11 based on the difference (heat load) between the indoor suction air temperature Ta and the set temperature Ts. Specifically, the controller 50 increases the operating capacity Cap when the difference between the indoor suction air temperature Ta and the set temperature Ts is large, and the difference between the indoor suction air temperature Ta and the set temperature Ts is small. Reduces the operating capacity Cap.
 このような構成とすることで、空気調和装置100では、通常運転時には、室内吸い込み空気温度Taが設定温度Tsに近づくように圧縮機11の運転容量Capが制御される。このようにして、空気調和装置100では、熱負荷に適した圧縮機11の容量制御が実行され、早急に室内吸い込み空気温度Taを設定温度Tsにすることができる。 With such a configuration, in the air conditioning apparatus 100, at the time of normal operation, the operating capacity Cap of the compressor 11 is controlled such that the indoor suction air temperature Ta approaches the set temperature Ts. Thus, in the air conditioning apparatus 100, capacity control of the compressor 11 suitable for the heat load is executed, and the indoor suction air temperature Ta can be promptly set to the set temperature Ts.
 通常運転時の圧縮機運転容量制御S200の変形例として、蒸発温度Teが目標蒸発温度Temで一定になるように、圧縮機11の運転容量Capを制御しても良い。具体的には、蒸発温度Teが目標蒸発温度Temよりも高い場合には、圧縮機11の運転容量Capが大きくなるように制御される。一方、蒸発温度Teが目標蒸発温度Temよりも低い場合には、圧縮機11の運転容量Capが小さくなるように制御される。ここで、目標蒸発温度Temは、室内機20の運転容量TONが大きくなると、低くなるように設定され、室内機20の運転容量TONが小さくなると、高くなるように設定される。 As a modified example of the compressor operating capacity control S200 during normal operation, the operating capacity Cap of the compressor 11 may be controlled such that the evaporation temperature Te becomes constant at the target evaporation temperature Tem. Specifically, when the evaporation temperature Te is higher than the target evaporation temperature Tem, the operating capacity Cap of the compressor 11 is controlled to be large. On the other hand, when the evaporation temperature Te is lower than the target evaporation temperature Tem, the operating capacity Cap of the compressor 11 is controlled to be small. Here, the target evaporation temperature Tem is set to decrease as the operating capacity TON of the indoor unit 20 increases, and to increase as the operating capacity TON of the indoor unit 20 decreases.
 (3-3)高圧保護制御
 図4を用いて、高圧保護制御S300について説明する。
(3-3) High Pressure Protection Control The high pressure protection control S300 will be described with reference to FIG.
 ステップS301において、コントローラ50は、高圧圧力センサ62によって高圧圧力HPを検出する。ステップS302において、コントローラ50は、高圧圧力HPが所定値HPnより大きいか否かを判断する。なお、所定値HPnは、高圧遮断圧力スイッチ82にて設定された所定値HPmよりも小さいものとする。 In step S301, the controller 50 detects the high pressure HP by the high pressure sensor 62. In step S302, the controller 50 determines whether the high pressure HP is larger than a predetermined value HPn. The predetermined value HPn is smaller than the predetermined value HPm set by the high-pressure shutoff pressure switch 82.
 ステップS302において、高圧圧力HPが所定値HPnより大きい場合には、ステップS303に移行する。高圧圧力HPが所定値HPn以下の場合には、S301に戻る。ステップS303において、コントローラ50は、圧縮機11の運転容量Capを低減させる。 In step S302, when the high pressure HP is larger than the predetermined value HPn, the process proceeds to step S303. If the high pressure HP is less than or equal to the predetermined value HPn, the process returns to S301. In step S303, the controller 50 reduces the operating capacity Cap of the compressor 11.
 このような構成とすることで、空気調和装置100では、高圧圧力HPが上昇したときであっても、高圧遮断圧力スイッチ82が作動する前に、高圧圧力HPが低下される。このようにして、空気調和装置100では、高圧遮断圧力スイッチ82が作動して停止されることを回避することができる。 With such a configuration, in the air conditioning apparatus 100, even when the high pressure HP is increased, the high pressure HP is reduced before the high pressure shutoff pressure switch 82 is operated. Thus, in the air conditioning apparatus 100, it is possible to prevent the high pressure shutoff pressure switch 82 from being operated and stopped.
 (3-4)冷媒滞留時の電動弁制御
 図5及び図6を用いて、冷媒滞留時の電動弁制御S110について説明する。電動弁制御S110は、高外気下での冷房運転時において、冷房能力を確保するための制御である。
(3-4) Motorized Valve Control at the Time of Remaining Refrigerant The motored valve control S110 at the time of refrigerant retention will be described with reference to FIG. 5 and FIG. The motor-operated valve control S110 is control for securing the cooling capacity during the cooling operation under high outside air.
 (3-4-1)フロー
 図5を用いて、電動弁制御S110のフローについて説明する。なお、説明をわかりやすくするため、室内機20b、20c、20dはOFFとされているとして説明する。
(3-4-1) Flow The flow of the motor-operated valve control S110 will be described with reference to FIG. In order to make the explanation easy to understand, the indoor units 20b, 20c and 20d are described as being turned off.
 ステップS111において、コントローラ50は、室外熱交換器出口温度センサ71によって室外熱交換器出口温度Tcoを検出する。ステップS112において、コントローラ50は、高圧圧力センサ62によって高圧圧力HPを検出する。ステップS113において、コントローラ50は、高圧圧力HPから凝縮温度Tcを算出する。 In step S111, the controller 50 detects the outdoor heat exchanger outlet temperature Tco with the outdoor heat exchanger outlet temperature sensor 71. In step S112, the controller 50 detects the high pressure HP by the high pressure sensor 62. In step S113, the controller 50 calculates the condensation temperature Tc from the high pressure HP.
 ステップS114において、コントローラ50は、室外熱交換器出口温度Tcoと凝縮温度Tcとから室外熱交換器12の出口の過冷却度SCを算出する。ステップS115において、コントローラ50は、凝縮温度Tcが予め設定された所定温度Tc1以上の場合には、ステップS116に移行する。凝縮温度Tcが所定温度Tc1未満の場合には、S111に戻る。 In step S114, the controller 50 calculates the degree of subcooling SC at the outlet of the outdoor heat exchanger 12 from the outdoor heat exchanger outlet temperature Tco and the condensation temperature Tc. In step S115, the controller 50 proceeds to step S116 when the condensation temperature Tc is equal to or higher than the predetermined temperature Tc1 set in advance. If the condensation temperature Tc is less than the predetermined temperature Tc1, the process returns to S111.
 ステップS116において、コントローラ50は、過冷却度SCが予め設定された所定値SC1以上の場合には、ステップS117に移行する。過冷却度SCが所定値SC1未満の場合には、S111に戻る。ステップS117(冷媒滞留時)において、コントローラ50は、室外熱交換器12に冷媒液が滞留していると判断し、電動弁制御S100における目標過熱度SHmを低く設定する。 In step S116, the controller 50 proceeds to step S117 when the degree of subcooling SC is greater than or equal to a predetermined value SC1 set in advance. If the degree of subcooling SC is less than the predetermined value SC1, the process returns to S111. In step S117 (during refrigerant retention), the controller 50 determines that the refrigerant liquid is staying in the outdoor heat exchanger 12, and sets the target degree of superheat SHm in the motor-operated valve control S100 low.
 (3-4-2)作用
 図6を用いて、電動弁制御S110の作用について説明する。なお、図6では、電動弁制御S110の作用について、凝縮温度Tc、室外熱交換器12の出口の過冷却度SC、室内熱交換器22aの目標過熱度SHm、電動弁21aの開度及び圧縮機11の運転容量Capの時系列変化を用いて表している。
(3-4-2) Operation The operation of the motor-operated valve control S110 will be described with reference to FIG. In FIG. 6, with regard to the operation of the motor-operated valve control S110, the condensation temperature Tc, the degree SC of subcooling of the outlet of the outdoor heat exchanger 12, the target degree of superheat SHm of the indoor heat exchanger 22a, the opening degree of the motored valve 21a It represents using the time-sequential change of the working capacity Cap of the machine 11. FIG.
 ここで、空気調和装置100では、室外熱交換器12に冷媒液が滞留し、高圧圧力HP(凝縮温度Tc)が上昇し、高圧保護制御S300が作動し、圧縮機11の運転容量Capが低下していると仮定する。 Here, in the air conditioner 100, the refrigerant liquid stagnates in the outdoor heat exchanger 12, the high pressure HP (condensing temperature Tc) rises, the high pressure protection control S300 operates, and the operating capacity Cap of the compressor 11 decreases. Suppose that you
 ステップS115では、凝縮温度Tcが所定温度Tc1以上と検知される。ステップS116では、過冷却度SCが所定値SC1以上と検知される。そして、ステップS116では、室外熱交換器12に冷媒液が滞留していると判断され、目標過熱度SHmが現在より低く設定される。 In step S115, the condensation temperature Tc is detected to be equal to or higher than a predetermined temperature Tc1. In step S116, the degree of subcooling SC is detected to be equal to or greater than a predetermined value SC1. Then, in step S116, it is determined that the refrigerant liquid is staying in the outdoor heat exchanger 12, and the target degree of superheat SHm is set to be lower than the current degree.
 このとき、空気調和装置100では、目標過熱度SHmが現在より低く設定されたため、電動弁21aの開度が増加する(図6中の6a)。電動弁21aの開度が増加したため、室外熱交換器12に滞留している冷媒液が室外熱交換器12から逃げる。 At this time, in the air conditioning apparatus 100, since the target degree of superheat SHm is set lower than the present time, the opening degree of the motor operated valve 21a increases (6a in FIG. 6). Since the opening degree of the motor operated valve 21 a is increased, the refrigerant liquid accumulated in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12.
 室外熱交換器12に滞留している冷媒液が室外熱交換器12から逃げることによって、凝縮温度Tcが低下する(図6中の6b)。凝縮温度Tcが低下することによって、高圧保護制御S300が解除される。高圧保護制御S300が解除されることによって、圧縮機11の運転容量Capが増加される(図6中の6c)。 When the refrigerant liquid staying in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12, the condensation temperature Tc decreases (6b in FIG. 6). As the condensation temperature Tc decreases, the high pressure protection control S300 is released. By releasing the high pressure protection control S300, the operating capacity Cap of the compressor 11 is increased (6c in FIG. 6).
 (3-4-3)効果
 このようにして、空気調和装置100では、室外熱交換器12に滞留している冷媒液を室外熱交換器12から逃がすことができる。同時に、空気調和装置100では、高圧保護制御S300が回避され、冷房能力の低下を回避することができる。
(3-4-3) Effects In this manner, in the air conditioning apparatus 100, the refrigerant liquid accumulated in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12. At the same time, in the air conditioning apparatus 100, the high pressure protection control S300 is avoided, and a decrease in cooling capacity can be avoided.
 (3-5)高圧上昇時の電動弁制御
 図7及び図8を用いて、高圧上昇時の電動弁制御S120について説明する。電動弁制御S120は、高外気下での冷房運転において高圧圧力HPが急激に上昇した場合に、高圧遮断圧力スイッチ82によって空気調和装置100が停止されることを回避する制御である。
(3-5) Motorized Valve Control at the Time of High Pressure Rising The motored valve control S120 at the time of high pressure rising will be described with reference to FIG. 7 and FIG. The motor-operated valve control S120 is control for preventing the high-pressure shutoff pressure switch 82 from stopping the air conditioning apparatus 100 when the high-pressure pressure HP sharply rises in the cooling operation under high outside air.
 (3-5-1)フロー
 図7を用いて、電動弁制御S120のフローについて説明する。なお、説明をわかりやすくするため、室内機20b、20c、20dはOFFとされているとして説明する。
(3-5-1) Flow The flow of the motor-operated valve control S120 will be described with reference to FIG. In order to make the explanation easy to understand, the indoor units 20b, 20c and 20d are described as being turned off.
 ステップS121において、コントローラ50は、高圧圧力センサ62より高圧圧力HPを検出する。ステップS122において、コントローラ50は、高圧圧力HPが予め設定された所定値HP2以上の場合には、ステップS123に移行する。高圧圧力HPが所定値HP2未満の場合には、S121に戻る。 In step S121, the controller 50 detects the high pressure HP from the high pressure sensor 62. In step S122, the controller 50 proceeds to step S123 when the high pressure HP is equal to or greater than a predetermined value HP2 set in advance. If the high pressure HP is less than the predetermined value HP2, the process returns to S121.
 ステップS123において、コントローラ50は、圧縮機11の運転容量Capが予め設定された所定値Cap2以下の場合には、ステップS124に移行する。運転容量Capが所定値Cap2より大きい場合には、ステップS125に移行する。 In step S123, when the operating capacity Cap of the compressor 11 is equal to or less than a predetermined value Cap2 set in advance, the controller 50 proceeds to step S124. If the operating capacity Cap is larger than the predetermined value Cap2, the process proceeds to step S125.
 ステップS124(高圧上昇時)において、コントローラ50は、室外熱交換器12に急激に冷媒が滞留していると判断して、電動弁21aの開度を所定量だけ増加させる。ステップS125において、コントローラ50は、圧縮機11の運転容量Capを所定量だけ減少させる。 In step S124 (at the time of high pressure rise), the controller 50 determines that the refrigerant is rapidly staying in the outdoor heat exchanger 12, and increases the opening degree of the motor operated valve 21a by a predetermined amount. In step S125, the controller 50 decreases the operating capacity Cap of the compressor 11 by a predetermined amount.
 (3-5-2)作用
 図8を用いて、電動弁制御S120の作用について説明する。なお、図8では、電動弁制御S120の作用について、高圧圧力HP、圧縮機11の運転容量Cap及び電動弁21aの開度の時系列変化を用いて表している。ここで、空気調和装置100では、高外気下での起動直後に、室外熱交換器12に冷媒液が急激に滞留していると仮定する。
(3-5-2) Operation The operation of the motor-operated valve control S120 will be described with reference to FIG. In FIG. 8, the function of the motor-operated valve control S120 is expressed using time series changes of the high pressure HP, the operating capacity Cap of the compressor 11, and the opening degree of the motor-operated valve 21a. Here, in the air conditioning apparatus 100, it is assumed that the refrigerant liquid is rapidly staying in the outdoor heat exchanger 12 immediately after startup under high outside air.
 ステップS122では、高圧圧力HPが所定値HP2以上であると検知される。ステップS123では、圧縮機11の運転容量Capが所定値Cap2以下と検知される。ステップS124では、室外熱交換器12に急激に冷媒が滞留していると判断され、電動弁21aの開度が所定量だけ増加される。 In step S122, it is detected that the high pressure HP is equal to or greater than a predetermined value HP2. In step S123, it is detected that the operating capacity Cap of the compressor 11 is equal to or less than a predetermined value Cap2. In step S124, it is determined that the refrigerant is rapidly staying in the outdoor heat exchanger 12, and the opening degree of the motor-operated valve 21a is increased by a predetermined amount.
 このとき、空気調和装置100では、電動弁21aの開度が所定量だけ増加されたため、室外熱交換器12に急激に滞留していく冷媒液が室外熱交換器12から逃げる。室外熱交換器12に滞留している冷媒液が室外熱交換器12から逃げることによって、高圧圧力HPが低下する(図8中の8a)。 At this time, in the air conditioning apparatus 100, since the opening degree of the motor-operated valve 21a is increased by a predetermined amount, the refrigerant liquid which rapidly stays in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12. The refrigerant liquid staying in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12, whereby the high pressure HP decreases (8a in FIG. 8).
 (3-5-3)効果
 このようにして、空気調和装置100では、室外熱交換器12に急激に滞留していく冷媒液を室外熱交換器12から逃がすことができる。同時に、空気調和装置100では、高圧遮断圧力スイッチ82の作動を回避して、空気調和装置100が停止することを回避することができる。
(3-5-3) Effects In this manner, in the air conditioning apparatus 100, the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12. At the same time, in the air conditioning apparatus 100, the operation of the high pressure shutoff pressure switch 82 can be avoided to prevent the air conditioning apparatus 100 from stopping.
 (3-6)運転容量減少時の電動弁制御>
 図9及び図10を用いて、運転容量減少時の電動弁制御S130について説明する。電動弁制御S130は、室内機20の運転容量TONが急激に減少し、高圧圧力HPが急激に上昇した場合に、空気調和装置100の停止を回避する制御である。
(3-6) Motorized valve control when operating capacity decreases>
Motor-operated valve control S130 at the time of operation capacity reduction is demonstrated using FIG.9 and FIG.10. The motor-operated valve control S130 is control for avoiding the stop of the air conditioner 100 when the operating capacity TON of the indoor unit 20 sharply decreases and the high pressure HP increases rapidly.
 (3-6-1)フロー
 図9を用いて、電動弁制御S130のフローについて説明する。なお、説明をわかりやすくするため、室内機20a、20b、20c、20dがONとされている状態から室内機20b、20c、20dがOFFとされるとして説明する。
(3-6-1) Flow The flow of the motor-operated valve control S130 will be described with reference to FIG. In order to make the description easy to understand, it is assumed that the indoor units 20b, 20c, 20d are turned off from the state in which the indoor units 20a, 20b, 20c, 20d are turned on.
 ステップS131において、コントローラ50は、運転容量TONを運転容量TON1(室内機20a、20b、20c、20dがON)として検出する。ステップS132において、コントローラ50は、所定時間t3が経過してからステップS133に移行する。ステップS133において、コントローラ50は、運転容量TONを運転容量TON2(室内機20がON)として検出する。 In step S131, the controller 50 detects the operating capacity TON as the operating capacity TON1 (the indoor units 20a, 20b, 20c, 20d are ON). In step S132, the controller 50 proceeds to step S133 after the predetermined time t3 has elapsed. In step S133, the controller 50 detects the operating capacity TON as the operating capacity TON2 (the indoor unit 20 is ON).
 ステップS134において、コントローラ50は、運転容量TON2が運転容量TON1より小さい場合には、ステップS135に移行する。運転容量TON2が運転容量TON1以上の場合には、S131に戻る。 In step S134, if the operating capacity TON2 is smaller than the operating capacity TON1, the controller 50 proceeds to step S135. If the operating capacity TON2 is equal to or larger than the operating capacity TON1, the process returns to S131.
 ステップS135において、コントローラ50は、運転容量TON2の運転容量TON1に対する割合、すなわち所定時間t3における室内機20の運転容量TONの変化率としての運転容量変化率Rが所定率R3以下の場合には、ステップS136に移行する。運転容量変化率Rが所定率R3より大きい場合には、S131に戻る。 In step S135, the controller 50 sets the ratio of the operating capacity TON2 to the operating capacity TON1, that is, when the operating capacity change rate R as the changing rate of the operating capacity TON of the indoor unit 20 in the predetermined time t3 is the predetermined rate R3 or less. It transfers to step S136. If the operating capacity change rate R is larger than the predetermined rate R3, the process returns to S131.
 ステップS136において、コントローラ50は、高圧圧力センサ62によって高圧圧力HPを検出する。ステップS137において、コントローラ50は、高圧圧力HPが予め設定された所定値HP3以上の場合には、室外熱交換器12に急激に冷媒が滞留していると判断して、ステップS138に移行する。高圧圧力HPが所定値HP3未満の場合には、S131に戻る。 In step S136, the controller 50 detects the high pressure HP by the high pressure sensor 62. In step S137, the controller 50 determines that the refrigerant is rapidly staying in the outdoor heat exchanger 12 when the high pressure HP is equal to or greater than the predetermined value HP3 set in advance, and proceeds to step S138. If the high pressure HP is less than the predetermined value HP3, the process returns to S131.
 ステップS138において、コントローラ50は、低圧圧力センサ61によって低圧圧力LPを検出する。ステップS139において、コントローラ50は、高圧圧力HPと低圧圧力LPとの差圧dPを算出する。 In step S138, the controller 50 detects the low pressure LP by the low pressure sensor 61. In step S139, the controller 50 calculates a differential pressure dP between the high pressure HP and the low pressure LP.
 ステップS140において、コントローラ50は、高圧圧力HPから凝縮温度Tcを算出する。ステップS141において、コントローラ50は、室外熱交換器出口温度センサ71によって室外熱交換器出口温度Tcoを検出する。ステップS142において、コントローラ50は、室外熱交換器出口温度Tcoと凝縮温度Tcとから室外熱交換器12の出口の過冷却度SCを算出する。 In step S140, the controller 50 calculates the condensation temperature Tc from the high pressure HP. In step S141, the controller 50 detects the outdoor heat exchanger outlet temperature Tco with the outdoor heat exchanger outlet temperature sensor 71. In step S142, the controller 50 calculates the degree of subcooling SC at the outlet of the outdoor heat exchanger 12 from the outdoor heat exchanger outlet temperature Tco and the condensation temperature Tc.
 ステップS143において、コントローラ50は、差圧dPと過冷却度SCとに応じて、電動弁21aの開度を所定量ΔEvだけ増加させる。具体的には、差圧dP及び過冷却度SCが大きい場合には、増加する所定量ΔEvを大きくし、差圧dP及び過冷却度SCが小さい場合には、増加する所定量ΔEvを小さくする。 In step S143, the controller 50 increases the opening degree of the motor operated valve 21a by a predetermined amount ΔEv according to the differential pressure dP and the subcooling degree SC. Specifically, when the differential pressure dP and the degree of subcooling SC are large, the predetermined amount ΔEv to be increased is increased, and when the differential pressure dP and the degree of subcooling SC are small, the predetermined amount ΔEv to be increased is decreased. .
 (3-6-2)作用
 図10を用いて、電動弁制御S130の作用について説明する。なお、図10では、電動弁制御S130の作用について、室内機20の運転容量TON、高圧圧力HP、差圧dP、室外熱交換器12の過冷却度SC及び電動弁21aの開度の時系列変化を用いて表している。
(3-6-2) Operation The operation of the motor-operated valve control S130 will be described with reference to FIG. In FIG. 10, regarding the operation of the motor-operated valve control S130, a time series of the operating capacity TON of the indoor unit 20, the high pressure HP, the differential pressure dP, the degree of subcooling SC of the outdoor heat exchanger 12, and the opening degree of the motored valve 21a It is expressed using change.
 ステップS131では、運転容量TONが運転容量TON1(室内機20a、20b、20c、20dがON)として検知される。t3が経過し、ステップS133では、運転容量TONが運転容量TON2(室内機20aがON)として検知される。 In step S131, the operating capacity TON is detected as the operating capacity TON1 (the indoor units 20a, 20b, 20c, 20d are ON). After t3 has elapsed, at step S133, the operating capacity TON is detected as the operating capacity TON2 (the indoor unit 20a is ON).
 ステップS134では、運転容量TON2が運転容量TON1より小さいと検知される。ステップS135では、運転容量変化率Rが所定率R3以下と検知される。このとき、空気調和装置100では、室内機20の運転容量TONが急激に減少したと判断される。 In step S134, it is detected that the operating capacity TON2 is smaller than the operating capacity TON1. In step S135, it is detected that the operating capacity change rate R is equal to or less than a predetermined rate R3. At this time, in the air conditioning apparatus 100, it is determined that the operating capacity TON of the indoor unit 20 has rapidly decreased.
 ステップS137では、高圧圧力HPが所定値HP3以上であると検知され、室外熱交換器12に急激に冷媒が滞留していると判断される。ステップS143では、差圧dPと過冷却度SCとに基づいて、電動弁21aの開度が増加される。 In step S137, it is detected that the high pressure Hp is greater than or equal to the predetermined value HP3, and it is determined that the refrigerant is rapidly staying in the outdoor heat exchanger 12. In step S143, the opening degree of the motor operated valve 21a is increased based on the differential pressure dP and the degree of subcooling SC.
 このとき、空気調和装置100では、電動弁21aの開度が増加されることによって、室外熱交換器12に急激に滞留していく冷媒液が室外熱交換器12から逃げる。室外熱交換器12に滞留している冷媒液が室外熱交換器12から逃げることによって、高圧圧力HPが低下する(図10中の10a)。 At this time, in the air conditioning apparatus 100, the opening degree of the motor-operated valve 21a is increased, so that the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12. The refrigerant liquid staying in the outdoor heat exchanger 12 escapes from the outdoor heat exchanger 12, whereby the high pressure HP decreases (10a in FIG. 10).
 (3-6-3)効果
 このようにして、空気調和装置100では、室外熱交換器12に急激に滞留していく冷媒液を室外熱交換器12から逃がすことができる。同時に、高圧遮断圧力スイッチ82の作動を回避して、空気調和装置100が停止することを回避することができる。
(3-6-3) Effects In this manner, in the air conditioning apparatus 100, the refrigerant liquid that rapidly accumulates in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12. At the same time, the operation of the high pressure shutoff pressure switch 82 can be avoided to prevent the air conditioner 100 from stopping.
 (3-7)運転容量増加時の圧縮機運転容量制御
 図11及び図12を用いて、運転容量増加時の圧縮機運転容量制御S210について説明する。圧縮機運転容量制御S210は、室内機20の運転容量TONが急激に増加し、蒸発温度Teが急激に上昇した場合に、蒸発温度Teの上昇を抑制する制御である。
(3-7) Compressor Operating Capacity Control at the Time of Increasing Operating Capacity The compressor operating capacity control S210 at the time of operating capacity increase will be described using FIG. 11 and FIG. The compressor operating capacity control S210 is control for suppressing the rise of the evaporation temperature Te when the operating capacity TON of the indoor unit 20 sharply increases and the evaporation temperature Te rises rapidly.
 (3-7-1)フロー
 図11を用いて、圧縮機運転容量制御S210のフローについて説明する。なお、説明をわかりやすくするため、室内機20aのみがONとされている状態から室内機20b、20c、20dがONとされたものとして説明する。
(3-7-1) Flow The flow of the compressor operating capacity control S210 will be described with reference to FIG. In order to make the explanation easy to understand, it is assumed that the indoor units 20b, 20c and 20d are turned on from the state in which only the indoor unit 20a is turned on.
 ステップS211において、コントローラ50は、室内機20の運転容量TONを運転容量TON3(室内機20aがON)として検出する。ステップS212において、コントローラ50は、所定時間t4が経過してからステップS213に移行する。ステップS213において、コントローラ50は、運転容量TONを運転容量TON4(室内機20a、20b、20c、20dがON)として検出する。 In step S211, the controller 50 detects the operating capacity TON of the indoor unit 20 as the operating capacity TON3 (the indoor unit 20a is ON). In step S212, the controller 50 proceeds to step S213 after the predetermined time t4 has elapsed. In step S213, the controller 50 detects the operating capacity TON as the operating capacity TON 4 (the indoor units 20a, 20b, 20c, 20d are ON).
 ステップS214において、コントローラ50は、運転容量TON4が運転容量TON3より大きい場合には、ステップS215に移行する。運転容量TON4が運転容量TON3以下の場合には、S211に戻る。 In step S214, when the operating capacity TON4 is larger than the operating capacity TON3, the controller 50 proceeds to step S215. If the operating capacity TON4 is less than or equal to the operating capacity TON3, the process returns to S211.
 ステップS215において、コントローラ50は、運転容量TON4の運転容量TON3に対する割合、すなわち所定時間t4における室内機20の運転容量TONの変化率としての運転容量変化率Rが所定率R4以上の場合には、室内機20の運転容量TONが急激に増加したと判断し、ステップS216に移行する。運転容量変化率Rが所定率R4より小さい場合には、S211に戻る。 In step S215, the controller 50 sets the ratio of the operating capacity TON4 to the operating capacity TON3, that is, when the operating capacity change rate R as the changing rate of the operating capacity TON of the indoor unit 20 in the predetermined time t4 is the predetermined rate R4 or more. It is determined that the operating capacity TON of the indoor unit 20 has rapidly increased, and the process proceeds to step S216. If the operating capacity change rate R is smaller than the predetermined rate R4, the process returns to S211.
 ステップS216において、コントローラ50は、室内吸い込み空気温度センサ73a、73b、73c、73dによって室内吸い込み空気温度Taa、Tab、Tac、Tadを検出する。ここで、運転されている室内機20a、20b、20c、20dの室内吸い込み空気温度Taa、Tab、Tac、Tadの平均値を室内吸い込み空気温度平均Ta-aveとする。 In step S216, the controller 50 detects the indoor suction air temperatures Taa, Tab, Tac, Tad by the indoor suction air temperature sensors 73a, 73b, 73c, 73d. Here, the average value of the indoor suction air temperatures Taa, Tab, Tac, Tad of the indoor units 20a, 20b, 20c, 20d being operated is taken as the indoor suction air temperature average Ta-ave.
 ステップS217において、コントローラ50は、増加後の運転容量TONと、室内吸い込み空気温度平均Ta-aveとに応じて、圧縮機11の運転容量Capを所定量ΔCapだけ増加させる。 In step S217, the controller 50 increases the operating capacity Cap of the compressor 11 by a predetermined amount ΔCap according to the increased operating capacity TON and the indoor suction air temperature average Ta-ave.
 ここで、増加後の運転容量TONとは、ステップS213において検出された運転容量TON4である。 Here, the increased operating capacity TON is the operating capacity TON 4 detected in step S213.
 具体的には、運転容量TON及び室内吸い込み空気温度平均Ta-aveが大きい場合には、増加させる所定量ΔCapが大きく、運転容量TON及び室内吸い込み空気温度平均Ta-aveが小さい場合には、増加させる所定量ΔCapが小さい。 Specifically, when the operating capacity TON and the indoor suction air temperature average Ta-ave are large, the predetermined amount ΔCap to be increased is large, and when the operating capacity TON and the indoor suction air temperature average Ta-ave are small, the increase is The predetermined amount ΔCap to be reduced is small.
 すなわち、コントローラ50は、室内機20の運転容量TONが急激に増加したと判断した場合には、通常運転時の圧縮機運転容量制御S200(蒸発温度Teに基づいて圧縮機11の運転容量Capを制御することも含む)を外れて、フィードフォワード制御により、運転容量TONと室内吸い込み空気温度平均Ta-aveとに応じて、圧縮機11の運転容量Capを増加させる。 That is, when the controller 50 determines that the operating capacity TON of the indoor unit 20 has rapidly increased, the compressor operating capacity control S200 during normal operation (the operating capacity Cap of the compressor 11 based on the evaporation temperature Te In addition to the control), the feed-forward control increases the operating capacity Cap of the compressor 11 according to the operating capacity TON and the indoor suction air temperature average Ta-ave.
 (3-7-2)作用
 図12を用いて、圧縮機運転容量制御S210の作用について説明する。なお、図12では、圧縮機運転容量制御S210の作用について、室内機20の運転容量TON、室内吸い込み空気温度Ta、圧縮機11の運転容量Cap及び蒸発温度Teの時系列変化を用いて表している。
(3-7-2) Operation The operation of the compressor operating capacity control S210 will be described with reference to FIG. In FIG. 12, the operation of the compressor operating capacity control S210 is expressed using time series changes of the operating capacity TON of the indoor unit 20, the indoor suction air temperature Ta, the operating capacity Cap of the compressor 11, and the evaporation temperature Te. There is.
 ステップ211では、運転容量TONが運転容量TON3(室内機20aがON)として検知される。t4が経過し、ステップS213では、運転容量TONが運転容量TON4(室内機20a、20b、20c、20dがON)として検知される。このとき、空気調和装置100では、室内機20の運転容量TONが急激に増加したと判断される。 In step 211, the operating capacity TON is detected as an operating capacity TON3 (the indoor unit 20a is ON). After t4 has elapsed, at step S213, the operating capacity TON is detected as the operating capacity TON4 (the indoor units 20a, 20b, 20c, 20d are ON). At this time, in the air conditioning apparatus 100, it is determined that the operating capacity TON of the indoor unit 20 has rapidly increased.
 ステップ216では、室内吸い込み空気温度Taが検出される。ステップS217では、の運転容量TONと室内吸い込み空気温度Taとに基づいて、圧縮機11の運転容量Capが所定量ΔCapだけ増加される。 In step 216, the indoor suction air temperature Ta is detected. In step S217, the operating capacity Cap of the compressor 11 is increased by a predetermined amount ΔCap based on the operating capacity TON and the indoor suction air temperature Ta.
 このとき、空気調和装置100では、圧縮機11の運転容量Capが所定量ΔCapだけ増加されたことによって、低圧圧力LPが低下し、蒸発温度Teの上昇が抑制される(図12の12a)。蒸発温度Teの上昇が抑制されることによって、室内熱交換器22の熱交換効率の低下が回避される。 At this time, in the air conditioning apparatus 100, the operating pressure Cap of the compressor 11 is increased by the predetermined amount ΔCap, so that the low pressure LP decreases and the increase of the evaporation temperature Te is suppressed (12a in FIG. 12). By suppressing the rise of the evaporation temperature Te, a decrease in the heat exchange efficiency of the indoor heat exchanger 22 is avoided.
 (3-7-3)効果
 このようにして、空気調和装置100では、室内熱交換器22の熱交換効率の低下を回避することができる。
(3-7-3) Effects In this manner, in the air conditioning apparatus 100, it is possible to avoid a decrease in the heat exchange efficiency of the indoor heat exchanger 22.
 <特徴>
 (1)
 空気調和装置100では、室内機20の運転容量TONが小さいときには、余剰冷媒が発生する。発生した余剰冷媒は、室外熱交換器12に滞留する。例えば、高外気下において圧縮機11の運転容量Capが急激に減少するとき(室内機20の運転台数が減少する等)には、室外熱交換器12に冷媒液が急激に滞留していく。
<Features>
(1)
In the air conditioning apparatus 100, excess refrigerant is generated when the operating capacity TON of the indoor unit 20 is small. The generated surplus refrigerant stagnates in the outdoor heat exchanger 12. For example, when the operating capacity Cap of the compressor 11 rapidly decreases (such as the number of operating indoor units 20 decreases) under high outside air, the refrigerant liquid rapidly stagnates in the outdoor heat exchanger 12.
 室外熱交換器12に急激に冷媒液が滞留していくときには、空気調和装置100の高圧圧力HPが急激に上昇していく。このとき、空気調和装置100では、高圧保護制御S300の作動が追いつかずに高圧遮断圧力スイッチ82が作動する場合もある。高圧遮断圧力スイッチ82が作動した場合には、空気調和装置100が停止してしまう。 When the refrigerant liquid rapidly stagnates in the outdoor heat exchanger 12, the high pressure HP of the air conditioner 100 rapidly rises. At this time, in the air conditioning apparatus 100, the operation of the high pressure protection control S300 may not catch up and the high pressure cutoff pressure switch 82 may operate. When the high pressure shutoff pressure switch 82 is operated, the air conditioner 100 is stopped.
 空気調和装置100では、それぞれ、電動弁21と、室内熱交換器22と、を有し、個別に運転のON又はOFFが操作される、複数の室内機20と、圧縮機11と、室外熱交換器12と、を有し、複数の室内機20が接続される室外機10と、電動弁21の開度を制御するコントローラ50と、を備え、コントローラ50は、複数の室内機20の全体の運転容量TONが所定時間t3に所定率R3だけ減少した運転容量減少時には、運転中の室内機20の電動弁21の開度を増加させる。 The air conditioning apparatus 100 includes the plurality of indoor units 20, the compressor 11, and the outdoor heat, each of which includes the motor-operated valve 21 and the indoor heat exchanger 22, and the ON / OFF of the operation is individually operated. The controller 50 includes an outdoor unit 10 having an exchanger 12 and to which a plurality of indoor units 20 are connected, and a controller 50 for controlling the opening degree of the motor-operated valve 21. When the operating capacity TON decreases by a predetermined rate R3 for a predetermined time t3, the opening degree of the motor-operated valve 21 of the operating indoor unit 20 is increased.
 このような構成とすることで、空気調和装置100では、室内機20の運転容量TONが所定時間t3に所定率R3だけ減少したときには、電動弁21の開度が増加される。このとき、室外熱交換器12に急激に滞留していく冷媒液は、室外熱交換器12から室内熱交換器22に向かって流れる。 With such a configuration, in the air conditioning apparatus 100, when the operating capacity TON of the indoor unit 20 decreases by the predetermined ratio R3 to the predetermined time t3, the opening degree of the motor-operated valve 21 is increased. At this time, the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 flows from the outdoor heat exchanger 12 toward the indoor heat exchanger 22.
 このようにして、空気調和装置100では、室外熱交換器12に急激に滞留していく冷媒液を室外熱交換器12から逃がすことができる。 In this manner, in the air conditioning apparatus 100, the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12.
 (2)
 空気調和装置100では、それぞれ、電動弁21と、室内熱交換器22と、を有し、個別に運転のON又はOFFが操作される、複数の室内機20と、圧縮機11と、室外熱交換器12と、を有し、複数の室内機20が接続される室外機10と、電動弁21の開度を制御するコントローラ50と、を備え、コントローラ50は、複数の室内機20の全体運転容量TONが所定時間に所定率だけ減少した運転容量減少時であって、高圧圧力HPが第一所定値としての所定値HP3以上のときには、運転中の室内機20電動弁21の開度を増加させる。
(2)
The air conditioning apparatus 100 includes the plurality of indoor units 20, the compressor 11, and the outdoor heat, each of which includes the motor-operated valve 21 and the indoor heat exchanger 22, and the ON / OFF of the operation is individually operated. The controller 50 includes an outdoor unit 10 having an exchanger 12 and to which a plurality of indoor units 20 are connected, and a controller 50 for controlling the opening degree of the motor-operated valve 21. When the operating capacity TON decreases by a predetermined rate during a predetermined time and the high pressure HP is equal to or higher than a predetermined value HP3 as a first predetermined value, the opening degree of the indoor unit 20 motor operated valve 21 is increase.
 このような構成とすることで、空気調和装置100では、所定時間t3に室内機20の運転容量TONが所定率R3だけ減少したときであって、高圧圧力HPが所定値HP3以上のときには、電動弁21の開度が増加される。このとき、室外熱交換器12に急激に滞留していく冷媒液は、室外熱交換器12から室内熱交換器22に向かって流れる。 With such a configuration, in the air conditioning apparatus 100, when the operating capacity TON of the indoor unit 20 decreases by the predetermined rate R3 in the predetermined time t3, and the high pressure HP is the predetermined value HP3 or more, the electric motor The opening degree of the valve 21 is increased. At this time, the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 flows from the outdoor heat exchanger 12 toward the indoor heat exchanger 22.
 このようにして、空気調和装置100では、室外熱交換器12に急激に滞留していく冷媒液を室外熱交換器12から逃がすことができる。 In this manner, in the air conditioning apparatus 100, the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12.
 (3)
 空気調和装置100では、コントローラ50は、運転容量減少時には、高圧圧力HPと低圧圧力LPとの差圧dPに応じて、電動弁21の開度を増加させる。
(3)
In the air conditioning apparatus 100, the controller 50 increases the opening degree of the motor-operated valve 21 according to the differential pressure dP between the high pressure HP and the low pressure LP when the operating capacity decreases.
 このような構成とすることで、空気調和装置100では、電動弁21の開度が増加されるときには、高圧圧力HPと低圧圧力LPとの差圧dPに応じて、増加される。 With such a configuration, in the air conditioning apparatus 100, when the opening degree of the motor operated valve 21 is increased, it is increased according to the differential pressure dP between the high pressure H and the low pressure Lp.
 このようにして、空気調和装置100では、室外熱交換器12に急激に滞留していく冷媒液を室外熱交換器12から逃がすことができる。 In this manner, in the air conditioning apparatus 100, the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12.
 (4)
 空気調和装置100では、コントローラ50は、運転容量減少時には、室外熱交換器12の出口の過冷却度SCに応じて、電動弁21の開度を増加させる。
(4)
In the air conditioning apparatus 100, the controller 50 increases the opening degree of the motor-operated valve 21 according to the degree SC of subcooling at the outlet of the outdoor heat exchanger 12 when the operating capacity decreases.
 このような構成とすることで、空気調和装置100では、電動弁21の開度が増加されるときには、室外熱交換器12の出口の過冷却度SCに応じて、増加される。 With such a configuration, in the air conditioning apparatus 100, when the opening degree of the motor operated valve 21 is increased, it is increased according to the subcooling degree SC of the outlet of the outdoor heat exchanger 12.
 このようにして、空気調和装置100では、室外熱交換器12に急激に滞留していく冷媒液を室外熱交換器12から逃がすことができる。 In this manner, in the air conditioning apparatus 100, the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12.
 (5)
 空気調和装置100では、コントローラ50は、運転容量減少時とは異なる通常運転時には、室内熱交換器22の出口の過熱度SHが目標過熱度SHmになるように、電動弁21の開度を制御する。
(5)
In the air conditioner 100, the controller 50 controls the opening degree of the motor-operated valve 21 so that the degree of superheat SH at the outlet of the indoor heat exchanger 22 becomes the target degree of superheat SHm during normal operation different from when the operating capacity decreases. Do.
 このような構成とすることで、空気調和装置100では、通常運転時には、室内熱交換器22の過熱度SHが目標過熱度SHmになるように運転される。 With such a configuration, the air conditioning apparatus 100 is operated in the normal operation such that the degree of superheat SH of the indoor heat exchanger 22 becomes the target degree of superheat SHm.
 このようにして、空気調和装置100では、圧縮機11の湿り運転又は過熱運転を防止できる。 Thus, in the air conditioning apparatus 100, the wet operation or the overheat operation of the compressor 11 can be prevented.
 (6)
 空気調和装置100では、コントローラ50は、運転容量減少時には、電動弁21の開度を全開に設定する。
(6)
In the air conditioning apparatus 100, the controller 50 sets the opening degree of the motor-operated valve 21 to fully open when the operating capacity decreases.
 このような構成とすることで、空気調和装置100では、電動弁21の開度を増加させるときには、電動弁21の開度が全開に設定される。 With such a configuration, in the air conditioning apparatus 100, when the opening degree of the motor-operated valve 21 is increased, the opening degree of the motor-operated valve 21 is set to be fully open.
 このようにして、空気調和装置100では、室外熱交換器12に急激に滞留していく冷媒液を室外熱交換器12から逃がすことができる。 In this manner, in the air conditioning apparatus 100, the refrigerant liquid rapidly staying in the outdoor heat exchanger 12 can be released from the outdoor heat exchanger 12.
 (7)
 空気調和装置100では、コントローラ50は、空気調和装置100の高圧圧力HPが第二所定値としての所定値HPn以上であれば、圧縮機11の運転容量Capを低下させる。
(7)
In the air conditioning apparatus 100, the controller 50 reduces the operating capacity Cap of the compressor 11 if the high pressure HP of the air conditioning apparatus 100 is equal to or higher than the predetermined value HPn as the second predetermined value.
 このような構成とすることで、空気調和装置100では、高圧遮断圧力スイッチ82が作動する前に、高圧圧力HPが低下される。 With such a configuration, in the air conditioning apparatus 100, the high pressure HP is reduced before the high pressure shutoff pressure switch 82 operates.
 このようにして、空気調和装置100では、高圧遮断圧力スイッチ82が作動して停止されることを防止できる。 Thus, in the air conditioning apparatus 100, the high pressure shutoff pressure switch 82 can be prevented from being operated and stopped.
 (8)
 空気調和装置100は、コントローラ50は、高圧圧力HPが第三所定値としての所定値HPm以上であれば、圧縮機11を停止する。
(8)
The air conditioning apparatus 100 stops the compressor 11 if the high pressure pressure HP is equal to or higher than the predetermined value HPm as the third predetermined value.
 このようにして、空気調和装置100では、配管又は容器が破損することを防止できる。 Thus, the air conditioner 100 can prevent the piping or the container from being damaged.
 (9)
 空気調和装置100は、冷房専用装置であって、冷媒量を調整する容器を有さない。
(9)
The air conditioning apparatus 100 is a cooling dedicated apparatus and does not have a container for adjusting the amount of refrigerant.
 <変形例>
 (1)
 電動弁制御S130のステップS135において、コントローラ50が、運転容量変化率Rが所定率R3以下と判断した場合には、凝縮器12に急激に冷媒液が滞留していき、高圧圧力HPが急激に上昇すると予想して、電動弁21aの開度を増加させても良い。
<Modification>
(1)
In step S135 of the motor-operated valve control S130, when the controller 50 determines that the operating capacity change rate R is less than or equal to the predetermined rate R3, the refrigerant liquid rapidly stagnates in the condenser 12 and the high pressure HP rapidly The opening degree of the motor operated valve 21a may be increased in anticipation of rising.
 (2)
 電動弁制御S130のステップs135及びステップS136において、コントローラ50が、運転容量変化率Rが所定率R3以下と判断した場合には、凝縮器12に急激に冷媒液が滞留していき、高圧圧力HPが急激に上昇すると予想して、電動弁21aの開度を増加させても良い。
(2)
When the controller 50 determines that the operating capacity change rate R is less than or equal to the predetermined rate R3 in steps s135 and S136 of the motor-operated valve control S130, the refrigerant liquid rapidly stagnates in the condenser 12 and the high pressure HP It is also possible to increase the degree of opening of the motor operated valve 21a in anticipation of a sudden rise.
 (3)
 電動弁制御S130のステップS143において、コントローラ50が差圧dPと過冷却度SCとに基づいて、電動弁21aの開度を増加させているが、例えば、運転容量変化率Rに応じて、電動弁21aの開度を増加させても良い。
(3)
In step S143 of the motor-operated valve control S130, the controller 50 increases the opening degree of the motor-operated valve 21a based on the differential pressure dP and the degree of subcooling SC. The opening degree of the valve 21a may be increased.
 (4)
 電動弁制御S130のステップS143において、コントローラ50が差圧dPと過冷却度SCとに基づいて、電動弁21aの開度を増加させているが、差圧dPのみに基づいて、電動弁21aの開度を増加させても良い。また、過冷却度SCのみに基づいて、電動弁21aの開度を増加させても良い。
(4)
In step S143 of the motor-operated valve control S130, the controller 50 increases the opening degree of the motor-operated valve 21a based on the differential pressure dP and the degree of subcooling SC, but based on only the differential pressure dP, The degree of opening may be increased. Further, the opening degree of the motor operated valve 21a may be increased based on only the degree of supercooling SC.
 電動弁制御S130のステップS143では、コントローラ50が電動弁21aの開度を所定量だけ増加させているが、電動弁21aの開度を全開としても良い。 In step S143 of the motor-operated valve control S130, the controller 50 increases the opening degree of the motor-operated valve 21a by a predetermined amount, but the opening degree of the motor-operated valve 21a may be fully opened.
 電動弁制御S130は、冷房専用装置の冷房運転時に適用されているが、冷暖房可能な空気調和装置の暖房運転時に適用しても良い。 The motor-operated valve control S130 is applied at the time of the cooling operation of the cooling-dedicated device, but may be applied at the heating operation of the air conditioning device capable of cooling and heating.
 本発明は、空気調和装置に利用することができる。 The present invention can be used for an air conditioner.
10   :室外機
11   :圧縮機
12   :室外熱交換器(凝縮器)
13   :室外ファン
20   :室内機
21   :電動弁(膨張弁)
22   :室内熱交換器(蒸発器)
31   :吸入配管
32   :吐出配管
33   :液配管
50   :コントローラ(制御装置)
61   :低圧圧力センサ
62   :高圧圧力センサ
71   :室外熱交換器出口温度センサ
72   :室内熱交換器出口温度センサ
73   :室内吸い込み空気温度センサ
74   :室外吸い込み空気温度センサ
82   :高圧遮断圧力スイッチ
100  :空気調和装置
10: outdoor unit 11: compressor 12: outdoor heat exchanger (condenser)
13: Outdoor fan 20: Indoor unit 21: Motor-operated valve (expansion valve)
22: Indoor heat exchanger (evaporator)
31: Suction piping 32: Discharge piping 33: Liquid piping 50: Controller (control device)
61: low pressure sensor 62: high pressure sensor 71: outdoor heat exchanger outlet temperature sensor 72: indoor heat exchanger outlet temperature sensor 73: indoor suction air temperature sensor 74: outdoor suction air temperature sensor 82: high pressure shutoff pressure switch 100: Air conditioner
特開2015-124958号公報JP, 2015-124958, A

Claims (9)

  1.  それぞれ、膨張弁(21)と、蒸発器(22)と、を有し、個別に運転のON又はOFFが操作される、複数の室内機(20)と、
     圧縮機(11)と、凝縮器(12)と、を有し、複数の前記室内機(20)が接続される室外機(10)と、
     前記膨張弁(21)の開度を制御する制御装置(50)と、
     を備え、
     前記制御装置(50)は、複数の前記室内機(20)の全体の運転容量が所定時間に所定率だけ減少した運転容量減少時には、運転中の前記室内機(20)の前記膨張弁(21)の開度を増加させる、空気調和装置(100)。
    A plurality of indoor units (20), each having an expansion valve (21) and an evaporator (22), and the ON / OFF of the operation is individually operated.
    An outdoor unit (10) having a compressor (11) and a condenser (12), to which a plurality of the indoor units (20) are connected;
    A control device (50) for controlling an opening degree of the expansion valve (21);
    Equipped with
    The controller (50) is configured to control the expansion valve (21) of the indoor unit (20) during operation when the total operating capacity of the plurality of indoor units (20) decreases by a predetermined rate within a predetermined time. Air conditioner (100), which increases the opening degree of).
  2.  それぞれ、膨張弁(21)と、蒸発器(22)と、を有し、個別に運転のON又はOFFが操作される、複数の室内機(20)と、
     圧縮機(11)と、凝縮器(12)と、を有し、複数の前記室内機(20)が接続される室外機(10)と、
     前記膨張弁(21)の開度を制御する制御装置(50)と、
     を備え、
     前記制御装置(50)は、複数の前記室内機(20)の全体運転容量が所定時間に所定率だけ減少した運転容量減少時であって、高圧圧力が第一所定値以上のときには、運転中の前記室内機(20)の前記膨張弁(21)の開度を増加させる、空気調和装置(100)。
    A plurality of indoor units (20), each having an expansion valve (21) and an evaporator (22), and the ON / OFF of the operation is individually operated.
    An outdoor unit (10) having a compressor (11) and a condenser (12), to which a plurality of the indoor units (20) are connected;
    A control device (50) for controlling an opening degree of the expansion valve (21);
    Equipped with
    The control device (50) is in operation when the operating capacity decreases when the total operating capacity of the plurality of indoor units (20) decreases by a predetermined rate in a predetermined time, and the high pressure is equal to or higher than a first predetermined value An air conditioner (100) for increasing the opening degree of the expansion valve (21) of the indoor unit (20).
  3.  前記制御装置(50)は、前記運転容量減少時には、高圧圧力と低圧圧力との差圧に応じて、前記膨張弁(21)の開度を増加させる、請求項1又は2に記載の空気調和装置(100)。 The air conditioning according to claim 1 or 2, wherein the controller (50) increases the opening degree of the expansion valve (21) according to a differential pressure between a high pressure and a low pressure when the operating capacity decreases. Device (100).
  4.  前記制御装置(50)は、前記運転容量減少時には、前記凝縮器(12)の出口の過冷却度に応じて、前記膨張弁(21)の開度を増加させる、請求項1から3のいずれか1項に記載の空気調和装置(100)。 The control device (50) increases the opening degree of the expansion valve (21) according to the degree of subcooling of the outlet of the condenser (12) when the operating capacity decreases. The air conditioner (100) according to any one of the preceding claims.
  5.  前記制御装置(50)は、前記運転容量減少時とは異なる通常運転時には、前記蒸発器(22)の出口の過熱度が目標過熱度になるように、前記膨張弁(21)の開度を制御する、請求項1から4のいずれか1項に記載の空気調和装置(100)。 The controller (50) sets the degree of opening of the expansion valve (21) such that the degree of superheat at the outlet of the evaporator (22) becomes the target degree of superheat during normal operation different from when the operating capacity decreases. The air conditioner (100) according to any one of the preceding claims, wherein it is controlled.
  6.  前記制御装置(50)は、前記運転容量減少時には、前記膨張弁(21)の開度を全開に設定する、請求項1から5のいずれか1項に記載の空気調和装置(100)。 The air conditioning apparatus (100) according to any one of claims 1 to 5, wherein the control device (50) sets the opening degree of the expansion valve (21) to fully open when the operating capacity decreases.
  7.  前記制御装置(50)は、高圧圧力が第二所定値以上であれば、前記圧縮機(11)の運転容量を低下させる、請求項1から6のいずれか1項に記載の空気調和装置(100)。 The air conditioner according to any one of claims 1 to 6, wherein the control device (50) reduces the operating capacity of the compressor (11) if the high pressure is equal to or higher than a second predetermined value. 100).
  8.  前記制御装置(50)は、高圧圧力が第三所定値以上であれば前記圧縮機(11)を停止する、請求項1から7のいずれか1項に記載の空気調和装置(100)。 The air conditioner (100) according to any one of claims 1 to 7, wherein the control device (50) stops the compressor (11) if the high pressure is equal to or higher than a third predetermined value.
  9.  冷房専用装置であって、冷媒量を調整する容器を有さない、請求項1から8のいずれか1項に記載の空気調和装置(100)。 The air conditioning apparatus (100) according to any one of claims 1 to 8, which is a cooling-dedicated apparatus and does not have a container for adjusting the amount of refrigerant.
PCT/JP2017/040000 2017-11-06 2017-11-06 Air conditioning device WO2019087407A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019549805A JP6860082B2 (en) 2017-11-06 2017-11-06 Air conditioner
SG11202003551QA SG11202003551QA (en) 2017-11-06 2017-11-06 Air conditioner
PCT/JP2017/040000 WO2019087407A1 (en) 2017-11-06 2017-11-06 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040000 WO2019087407A1 (en) 2017-11-06 2017-11-06 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2019087407A1 true WO2019087407A1 (en) 2019-05-09

Family

ID=66331395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040000 WO2019087407A1 (en) 2017-11-06 2017-11-06 Air conditioning device

Country Status (3)

Country Link
JP (1) JP6860082B2 (en)
SG (1) SG11202003551QA (en)
WO (1) WO2019087407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112797507A (en) * 2020-12-30 2021-05-14 宁波奥克斯电气股份有限公司 Multi-split air conditioner starting control method and device and multi-split air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309755A (en) * 1991-04-04 1992-11-02 Mitsubishi Electric Corp Multiple chamber air conditioner
JPH06323673A (en) * 1993-05-19 1994-11-25 Hitachi Ltd Multi-room type air-conditioner
JPH09145191A (en) * 1995-11-24 1997-06-06 Sanyo Electric Co Ltd Air conditioner
JP2007278665A (en) * 2006-04-11 2007-10-25 Mitsubishi Heavy Ind Ltd Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309755A (en) * 1991-04-04 1992-11-02 Mitsubishi Electric Corp Multiple chamber air conditioner
JPH06323673A (en) * 1993-05-19 1994-11-25 Hitachi Ltd Multi-room type air-conditioner
JPH09145191A (en) * 1995-11-24 1997-06-06 Sanyo Electric Co Ltd Air conditioner
JP2007278665A (en) * 2006-04-11 2007-10-25 Mitsubishi Heavy Ind Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112797507A (en) * 2020-12-30 2021-05-14 宁波奥克斯电气股份有限公司 Multi-split air conditioner starting control method and device and multi-split air conditioner

Also Published As

Publication number Publication date
SG11202003551QA (en) 2020-05-28
JP6860082B2 (en) 2021-04-14
JPWO2019087407A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
EP2320151B1 (en) Air-conditioning device
JP6693312B2 (en) Air conditioner
CN110291339B (en) Air conditioning apparatus
US9121631B2 (en) Air conditioner and method of operating an air conditioner
JP5447499B2 (en) Refrigeration equipment
JP2007218532A (en) Air conditioner
WO2014061129A1 (en) Air conditioner
JPH037853A (en) Air conditioner
US20180003419A1 (en) Air conditioning device
WO2008047968A2 (en) Simultaneous cooling-heating multiple type air conditioner
KR20090029515A (en) Air-conditioner of the control method
JP6834561B2 (en) Air conditioner
KR20180017536A (en) Multi-type heat pump system with constant temperature and humidity
WO2019087407A1 (en) Air conditioning device
CN110529993B (en) Operation control device and method, air conditioner, and computer-readable storage medium
WO2019087406A1 (en) Air conditioning device
WO2019087408A1 (en) Air conditioning device
WO2019087405A1 (en) Air conditioning device
JP5313774B2 (en) Air conditioner
JP6428221B2 (en) Air conditioner
JP7053988B2 (en) Air conditioner
JP6930127B2 (en) Air conditioner
JP6115594B2 (en) Air conditioning indoor unit
JP2002147819A (en) Refrigeration unit
WO2019043941A1 (en) Air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930814

Country of ref document: EP

Kind code of ref document: A1