WO2019043941A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2019043941A1
WO2019043941A1 PCT/JP2017/031751 JP2017031751W WO2019043941A1 WO 2019043941 A1 WO2019043941 A1 WO 2019043941A1 JP 2017031751 W JP2017031751 W JP 2017031751W WO 2019043941 A1 WO2019043941 A1 WO 2019043941A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
indoor
compressor
refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2017/031751
Other languages
French (fr)
Japanese (ja)
Inventor
真乃介 木幡
淳平 工藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/031751 priority Critical patent/WO2019043941A1/en
Priority to JP2019538906A priority patent/JPWO2019043941A1/en
Publication of WO2019043941A1 publication Critical patent/WO2019043941A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to an air conditioner that controls the temperature of a refrigerant flowing to an indoor heat exchanger.
  • an air conditioner that controls the temperature of a refrigerant flowing to an indoor heat exchanger.
  • the indoor heat exchanger acts as an evaporator.
  • the lower the evaporation temperature of the refrigerant flowing into the indoor heat exchanger the larger the difference from the indoor set temperature, and the indoor is further cooled. Further, as the evaporation temperature is higher, the difference with the set temperature in the room becomes smaller, and the room becomes more difficult to be cooled.
  • the indoor heat exchanger acts as a condenser.
  • the air conditioning load is calculated based on the temperature difference between the indoor set temperature and the outdoor temperature, and the evaporation temperature during the cooling operation and the condensation temperature during the heating operation are calculated according to the calculated air conditioning load.
  • the present invention has been made to solve the problems as described above, and provides an air conditioning apparatus that performs just enough cooling operation or heating operation.
  • the compressor, the outdoor heat exchanger, the expansion unit, and the indoor heat exchanger are connected by piping, and a refrigerant circuit through which the refrigerant flows and a chamber that detects the temperature of the refrigerant flowing through the indoor heat exchanger
  • a control unit configured to control an inner temperature detection unit and a compressor, the control unit setting the range of a target temperature of the refrigerant flowing to the indoor heat exchanger based on the set temperature in the room; Compression control means for controlling the compressor such that the temperature of the refrigerant detected by the inner temperature detection unit falls within the target temperature range set by the setting means.
  • the range of the target temperature is set based on the set temperature in the room, and the compressor is controlled so as to fall within the set target temperature range. For this reason, regardless of the temperature outside the room, the cooling operation or the heating operation that is just enough for the user is performed according to the set temperature inside the room.
  • FIG. 1 is a circuit diagram showing an air conditioner 1 according to Embodiment 1 of the present invention.
  • the air conditioning apparatus 1 is an apparatus for adjusting the air in the indoor space, and includes an outdoor unit 2 and an indoor unit 3.
  • the outdoor unit 2 is provided with a compressor 5, a flow path switching device 6, an outdoor heat exchanger 7, an expansion unit 8 and an outdoor control device 11.
  • the indoor unit 3 is provided with an indoor heat exchanger 9, an indoor temperature detection unit 13, a human detection unit 14, and an indoor control device 12. Further, a remote control 4 is connected to the indoor unit 3.
  • the remote controller 4 is operated by the user of the air conditioner 1, and the set temperature Tset or the like of the input room is set.
  • the control unit 10 is configured by the outdoor control device 11 and the indoor control device 12 in the first embodiment, the control unit 10 may be provided only in the outdoor unit 2 or the indoor unit 3. It may be provided only as a separate unit.
  • the compressor 5, the flow path switching device 6, the outdoor heat exchanger 7, the expansion unit 8 and the indoor heat exchanger 9 are connected by piping to constitute a refrigerant circuit.
  • the compressor 5 sucks in the low temperature and low pressure refrigerant, compresses the sucked refrigerant, and discharges it as a high temperature and high pressure refrigerant.
  • the flow path switching device 6 switches the flow direction of the refrigerant in the refrigerant circuit, and is, for example, a four-way valve.
  • the outdoor heat exchanger 7 exchanges heat, for example, between outdoor air and a refrigerant.
  • the outdoor heat exchanger 7 acts as a condenser during the cooling operation and acts as an evaporator during the heating operation.
  • the expansion unit 8 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant.
  • the expansion portion 8 is, for example, an electronic expansion valve whose opening degree is adjusted.
  • the indoor heat exchanger 9 exchanges heat, for example, between indoor air and a refrigerant.
  • the indoor heat exchanger 9 acts as an evaporator during the cooling operation and acts as a condenser during the heating operation.
  • the indoor temperature detection unit 13 is provided in a pipe to which the indoor heat exchanger 9 is connected, and detects the temperature of the refrigerant flowing to the indoor heat exchanger 9.
  • the temperature of the refrigerant flowing to the indoor heat exchanger 9 acting as the evaporator during the cooling operation is referred to as the evaporation temperature Te
  • the temperature of the refrigerant flowing to the indoor heat exchanger 9 acting as the condenser during the heating operation is the condensation temperature It is called Tc.
  • the human detection unit 14 includes, for example, a human sensor, and detects the presence or absence of a person in the room.
  • the outdoor control device 11 controls the operation of each device provided in the outdoor unit 2 and is connected to the indoor control device 12.
  • the indoor control device 12 controls the operation of each device provided in the indoor unit 3, and is connected to the remote control 4 and the outdoor control device 11.
  • the cooling operation will be described.
  • the refrigerant drawn into the compressor 5 is compressed by the compressor 5 and discharged in a high temperature and high pressure gas state.
  • the refrigerant in the high temperature and high pressure gaseous state discharged from the compressor 5 passes through the flow path switching device 6 and flows into the outdoor heat exchanger 7 acting as a condenser, and in the outdoor heat exchanger 7, the outdoor air Heat exchange, condense and liquefy.
  • the condensed liquid refrigerant flows into the expansion unit 8 and is expanded and decompressed in the expansion unit 8 to become a low temperature, low pressure, gas-liquid two-phase refrigerant.
  • the refrigerant in the gas-liquid two-phase state flows into the indoor heat exchanger 9 acting as an evaporator, and in the indoor heat exchanger 9, it exchanges heat with indoor air and evaporates to gasify. At this time, the indoor air is cooled and cooling is performed indoors.
  • the evaporated low-temperature low-pressure gas state refrigerant passes through the flow path switching device 6 and is drawn into the compressor 5.
  • the heating operation In the heating operation, the refrigerant drawn into the compressor 5 is compressed by the compressor 5 and discharged in a high temperature and high pressure gas state.
  • the high temperature and high pressure gaseous refrigerant discharged from the compressor 5 passes through the flow path switching device 6 and flows into the indoor heat exchanger 9 acting as a condenser, and in the indoor heat exchanger 9, the indoor air Heat exchange, condense and liquefy.
  • indoor air is warmed and heating is performed indoors.
  • the condensed liquid refrigerant flows into the expansion unit 8 and is expanded and decompressed in the expansion unit 8 to become a low temperature, low pressure, gas-liquid two-phase refrigerant.
  • the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 7 acting as an evaporator, and in the outdoor heat exchanger 7, it exchanges heat with outdoor air and evaporates to gasify.
  • the evaporated low-temperature low-pressure gas state refrigerant passes through the flow path switching device 6 and is drawn into the compressor 5.
  • FIG. 2 is a block diagram showing the control unit 10 of the air-conditioning apparatus 1 according to Embodiment 1 of the present invention.
  • the control unit 10 includes setting means 21 and compression control means 24.
  • the setting means 21 sets the range of the target temperature of the refrigerant flowing to the indoor heat exchanger 9 based on the set temperature Tset of the room set by the remote controller 4.
  • the setting unit 21 includes an upper limit setting unit 22 and a lower limit setting unit 23.
  • the upper limit setting means 22 raises the upper limit value of the target temperature as the set temperature Tset in the room is higher.
  • the lower limit setting means 23 lowers the lower limit value of the target temperature as the set temperature Tset in the room is lower.
  • FIG. 3 is a graph showing the target temperature range of the evaporation temperature Te in the first embodiment of the present invention.
  • the range of the target temperature of the evaporation temperature Te of the refrigerant flowing to the indoor heat exchanger 9 acting as the evaporator during the cooling operation will be described.
  • the room set temperature Tset When there is a demand for cooling, as shown in FIG. 3, for example, when the temperature outside the room is high, there is a tendency for the room set temperature Tset to be set low.
  • the indoor set temperature Tset tends to be set high in order to suppress excessive cooling.
  • the upper limit setting means 22 raises the upper limit value Temax of the target temperature when the set temperature Tset in the room is higher than when the set temperature Tset is low.
  • the lower limit setting means 23 raises the lower limit value Temin of the target temperature when the set temperature Tset in the room is higher than when the set temperature Tset is low. Thereby, it can suppress that evaporation temperature Te falls too much. Therefore, excessive cooling can be suppressed.
  • A is a predetermined temperature.
  • B is a predetermined temperature.
  • FIG. 4 is a graph showing a target temperature range of the condensation temperature Tc in the first embodiment of the present invention.
  • the range of the target temperature of the condensation temperature Tc of the refrigerant flowing to the indoor heat exchanger 9 acting as a condenser during the heating operation will be described.
  • the indoor set temperature Tset When there is a demand for heating, as shown in FIG. 4, for example, when the outdoor temperature is low, there is a tendency for the indoor set temperature Tset to be set high. On the other hand, when the outdoor temperature is high, there is a tendency for the indoor set temperature Tset to be set low in order to suppress excessive heating.
  • the lower limit setting means 23 lowers the lower limit value Tcmin of the target temperature when the set temperature Tset in the room is lower than when the set temperature Tset is high. As a result, it is possible to suppress that the condensation temperature Tc approaches the set temperature Tset too much. Therefore, it can suppress that heating capacity runs short. Further, the upper limit setting means 22 lowers the upper limit value Tcmax of the target temperature when the set temperature Tset in the room is lower than when the set temperature Tset is high. Thereby, it can suppress that condensation temperature Tc rises too much. Therefore, excessive heating can be suppressed.
  • A is a predetermined temperature.
  • B is a predetermined temperature.
  • the compression control unit 24 controls the compressor 5 so that the temperature of the refrigerant detected by the indoor temperature detection unit 13 falls within the range of the target temperature set by the setting unit 21.
  • the compression control means 24 increases the frequency of the compressor 5 when the temperature of the detected refrigerant exceeds the upper limit value of the target temperature during the cooling operation. As a result, the pressure difference between the suction side and the discharge side of the compressor 5 becomes large, so the evaporation temperature Te falls. Further, the compression control means 24 reduces the frequency of the compressor 5 when the temperature of the detected refrigerant falls below the lower limit value of the target temperature during the cooling operation. As a result, the pressure difference between the suction side and the discharge side of the compressor 5 becomes smaller, so the evaporation temperature Te rises.
  • the compression control means 24 increases the frequency of the compressor 5 when the temperature of the detected refrigerant falls below the lower limit value of the target temperature during the heating operation. As a result, the pressure difference between the suction side and the discharge side of the compressor 5 becomes large, and the condensation temperature Tc rises. In addition, the compression control means 24 reduces the frequency of the compressor 5 when the temperature of the detected refrigerant exceeds the upper limit value of the target temperature during the heating operation. As a result, the pressure difference between the suction side and the discharge side of the compressor 5 becomes smaller, so the condensation temperature Tc falls.
  • FIG. 5 is a flowchart showing the operation of the air conditioning apparatus 1 according to Embodiment 1 of the present invention.
  • the operation of the air conditioner 1 will be described.
  • the room set temperature Tset is set by the remote controller 4 (step ST1).
  • the upper limit setting means 22 sets an upper limit value of the target temperature (step ST2).
  • the lower limit setting means 23 sets the lower limit value of the target temperature (step ST3).
  • the frequency of the compressor 5 is changed (step ST4). At this time, it is determined whether the temperature detected by the room temperature detection unit falls within the target temperature range (step ST5).
  • step ST5 If the detected temperature is not within the target temperature range (No in step ST5), the process returns to step ST4, and the change of the frequency of the compressor 5 is continued. On the other hand, when the detected temperature is within the range of the target temperature (Yes in step ST5), the control ends.
  • the range of the target temperature is set based on the set temperature Tset in the room, and the compressor 5 is controlled so as to fall within the set target temperature range. Therefore, regardless of the temperature outside the room, the difference between the temperature of the refrigerant flowing through the indoor heat exchanger 9 and the set temperature Tset in the room can be made constant. Therefore, the cooling operation or the heating operation which is just enough for the user is performed. Thereby, comfortable air conditioning in line with the user's request can be realized.
  • FIG. 6 is a block diagram showing a control unit 110 of the air conditioning apparatus 100 according to Embodiment 2 of the present invention.
  • the second embodiment is different from the first embodiment in that the control unit 110 includes the release means 125.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The differences from the first embodiment will be mainly described.
  • the control unit 110 has a releasing means 125.
  • the canceling means 125 cancels the setting of the range of the target temperature by the setting means 21 when the person is not detected by the person detecting unit 14.
  • control for setting the range of the target temperature based on the set temperature Tset by the setting means 21 is referred to as a range setting mode.
  • control for realizing energy saving and improvement of the heating and cooling capacity in consideration of the temperature outside the room is referred to as a normal mode.
  • the release means 125 continues the range setting mode when a person is detected, and when the person is not detected, the range setting mode is released and shifts to the normal mode.
  • the range setting mode is executed in order to give priority to the person to spend comfortably.
  • the normal mode in which the temperature outside the room is taken into consideration is executed in order to give priority to energy saving and improvement of the heating and cooling capacity.
  • FIG. 7 is a flowchart showing the operation of the air-conditioning apparatus 100 according to Embodiment 2 of the present invention. Next, the operation of the air conditioner 100 will be described.
  • the person detection unit 14 operates (step ST11), and it is determined whether a person is detected (step ST12). When a person is detected (Yes in step ST12), the range setting mode is continued (step ST13). On the other hand, when the person is not detected (No in step ST12), the range setting mode is canceled and the mode is shifted to the normal mode (step ST14).
  • the second embodiment when there is a person in the room, priority can be given to the comfort of the person, and when there is no person in the room, priority can be given to the energy saving and the heating and cooling capability. Therefore, in addition to the effects of the first embodiment, it is possible to achieve both comfort, energy saving, and improvement of the heating and heating capacity.

Abstract

This air conditioning device is provided with: a refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion part, and an indoor heat exchanger are connected through pipes and through which a refrigerant flows; an indoor-side temperature detection unit which detects the temperature of the refrigerant flowing through the indoor heat exchanger; and a control unit which controls the compressor. The control unit has: a setting means which sets the range of the target temperature of the refrigerant flowing through the indoor heat exchanger on the basis of a set indoor temperature; and a compression control means which controls the compressor so that the refrigerant temperature detected by the indoor-side temperature detection unit falls within the range of the target temperature set by the setting means.

Description

空気調和装置Air conditioner
 本発明は、室内熱交換器に流れる冷媒の温度を制御する空気調和装置に関する。 The present invention relates to an air conditioner that controls the temperature of a refrigerant flowing to an indoor heat exchanger.
 従来、室内熱交換器に流れる冷媒の温度を制御する空気調和装置が知られている。冷房運転が行われているとき、室内熱交換器は蒸発器として作用する。室内熱交換器に流れる冷媒の蒸発温度が低いほど、室内の設定温度との差が大きくなって、室内はより冷却される。また、蒸発温度が高いほど、室内の設定温度との差が小さくなって、室内は冷却され難くなる。一方、暖房運転が行われているとき、室内熱交換器は凝縮器として作用する。室内熱交換器に流れる冷媒の凝縮温度が高いほど、室内の設定温度との差が大きくなって、室内はより加熱される。また、凝縮温度が低いほど、室内の設定温度との差が小さくなって、室内は加熱され難くなる。特許文献1には、室内の設定温度と室外の温度との温度差に基づいて空調負荷を算出し、算出された空調負荷に応じて、冷房運転時に蒸発温度、及び暖房運転時に凝縮温度を、圧縮機の容量を変更することにより制御する空気調和装置が開示されている。 BACKGROUND Conventionally, an air conditioner that controls the temperature of a refrigerant flowing to an indoor heat exchanger is known. When the cooling operation is performed, the indoor heat exchanger acts as an evaporator. The lower the evaporation temperature of the refrigerant flowing into the indoor heat exchanger, the larger the difference from the indoor set temperature, and the indoor is further cooled. Further, as the evaporation temperature is higher, the difference with the set temperature in the room becomes smaller, and the room becomes more difficult to be cooled. On the other hand, when the heating operation is being performed, the indoor heat exchanger acts as a condenser. As the condensation temperature of the refrigerant flowing into the indoor heat exchanger is higher, the difference from the set temperature in the room is larger, and the room is more heated. In addition, the lower the condensation temperature, the smaller the difference from the set temperature in the room, and the more difficult it is to heat the room. In Patent Document 1, the air conditioning load is calculated based on the temperature difference between the indoor set temperature and the outdoor temperature, and the evaporation temperature during the cooling operation and the condensation temperature during the heating operation are calculated according to the calculated air conditioning load. An air conditioner controlled by changing the capacity of a compressor is disclosed.
特開2002-147823号公報JP 2002-147823 A
 特許文献1に開示された空気調和装置は、室外の温度が低く、冷房時に室内の設定温度が高く設定されているとき、設定温度と室外の温度との差が小さくなる。このため、空気調和装置は、圧縮機の容量を減少させる。これにより、空調能力が不足するおそれがある。また、従来、室内の設定温度によらず室外の温度のみに基づいて、冷房時に蒸発温度を制御する技術も知られている。室外の温度が低い場合、過剰な冷房を抑えるために蒸発温度の下限値が引き上げられる。しかし、蒸発温度の上限値は変わらないため、設定温度が高く設定されても、蒸発温度と設定温度との差が縮まらず、過剰な冷房が行われるおそれがある。 In the air conditioner disclosed in Patent Document 1, when the outdoor temperature is low and the indoor setting temperature is set high during cooling, the difference between the setting temperature and the outdoor temperature decreases. Thus, the air conditioner reduces the capacity of the compressor. As a result, the air conditioning capacity may be insufficient. Also, conventionally, there is also known a technique of controlling the evaporation temperature at the time of cooling based on only the temperature outside the room regardless of the set temperature inside the room. When the temperature outside the room is low, the lower limit value of the evaporation temperature is raised to suppress excessive cooling. However, since the upper limit value of the evaporation temperature does not change, even if the set temperature is set high, the difference between the evaporation temperature and the set temperature is not reduced, which may result in excessive cooling.
 本発明は、上記のような課題を解決するためになされたもので、過不足のない冷房運転又は暖房運転を行う空気調和装置を提供するものである。 The present invention has been made to solve the problems as described above, and provides an air conditioning apparatus that performs just enough cooling operation or heating operation.
 本発明に係る空気調和装置は、圧縮機、室外熱交換器、膨張部及び室内熱交換器が配管により接続され、冷媒が流れる冷媒回路と、室内熱交換器に流れる冷媒の温度を検出する室内側温度検出部と、圧縮機を制御する制御部と、を備え、制御部は、室内の設定温度に基づいて、室内熱交換器に流れる冷媒の目標温度の範囲を設定する設定手段と、室内側温度検出部によって検出された冷媒の温度が、設定手段によって設定された目標温度の範囲に入るように、圧縮機を制御する圧縮制御手段と、を有する。 In the air conditioner according to the present invention, the compressor, the outdoor heat exchanger, the expansion unit, and the indoor heat exchanger are connected by piping, and a refrigerant circuit through which the refrigerant flows and a chamber that detects the temperature of the refrigerant flowing through the indoor heat exchanger A control unit configured to control an inner temperature detection unit and a compressor, the control unit setting the range of a target temperature of the refrigerant flowing to the indoor heat exchanger based on the set temperature in the room; Compression control means for controlling the compressor such that the temperature of the refrigerant detected by the inner temperature detection unit falls within the target temperature range set by the setting means.
 本発明によれば、室内の設定温度に基づいて目標温度の範囲を設定し、設定された目標温度の範囲に入るように圧縮機を制御している。このため、室外の温度に関わらず、室内の設定温度に応じて、ユーザにとって過不足のない冷房運転又は暖房運転が行われる。 According to the present invention, the range of the target temperature is set based on the set temperature in the room, and the compressor is controlled so as to fall within the set target temperature range. For this reason, regardless of the temperature outside the room, the cooling operation or the heating operation that is just enough for the user is performed according to the set temperature inside the room.
本発明の実施の形態1に係る空気調和装置1を示す回路図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a circuit diagram which shows the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置1の制御部10を示すブロック図である。It is a block diagram showing control part 10 of air harmony device 1 concerning Embodiment 1 of the present invention. 本発明の実施の形態1における蒸発温度Teの目標温度の範囲を示すグラフである。It is a graph which shows the range of the target temperature of evaporation temperature Te in Embodiment 1 of the present invention. 本発明の実施の形態1における凝縮温度Tcの目標温度の範囲を示すグラフである。It is a graph which shows the range of the target temperature of condensation temperature Tc in Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置1の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置100の制御部110を示すブロック図である。It is a block diagram which shows the control part 110 of the air conditioning apparatus 100 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置100の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus 100 which concerns on Embodiment 2 of this invention.
実施の形態1.
 以下、本発明に係る空気調和装置の実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る空気調和装置1を示す回路図である。図1に示すように、空気調和装置1は、室内空間の空気を調整する装置であり、室外機2と、室内機3とを備えている。室外機2には、圧縮機5、流路切替装置6、室外熱交換器7、膨張部8及び室外制御装置11が設けられている。室内機3には、室内熱交換器9、室内側温度検出部13、人検出部14及び室内制御装置12が設けられている。また、室内機3には、リモコン4が接続されている。リモコン4は、空気調和装置1のユーザが操作するものであり、入力された室内の設定温度Tset等が設定される。なお、本実施の形態1では、室外制御装置11及び室内制御装置12によって、制御部10が構成されているが、制御部10は、室外機2のみに設けられてもよいし、室内機3のみに設けられてもよいし、別ユニットとしてもよい。
Embodiment 1
Hereinafter, embodiments of an air conditioner according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an air conditioner 1 according to Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioning apparatus 1 is an apparatus for adjusting the air in the indoor space, and includes an outdoor unit 2 and an indoor unit 3. The outdoor unit 2 is provided with a compressor 5, a flow path switching device 6, an outdoor heat exchanger 7, an expansion unit 8 and an outdoor control device 11. The indoor unit 3 is provided with an indoor heat exchanger 9, an indoor temperature detection unit 13, a human detection unit 14, and an indoor control device 12. Further, a remote control 4 is connected to the indoor unit 3. The remote controller 4 is operated by the user of the air conditioner 1, and the set temperature Tset or the like of the input room is set. Although the control unit 10 is configured by the outdoor control device 11 and the indoor control device 12 in the first embodiment, the control unit 10 may be provided only in the outdoor unit 2 or the indoor unit 3. It may be provided only as a separate unit.
 圧縮機5、流路切替装置6、室外熱交換器7、膨張部8及び室内熱交換器9が配管により接続されて冷媒回路が構成されている。圧縮機5は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置6は、冷媒回路において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。室外熱交換器7は、例えば室外空気と冷媒との間で熱交換するものである。室外熱交換器7は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。 The compressor 5, the flow path switching device 6, the outdoor heat exchanger 7, the expansion unit 8 and the indoor heat exchanger 9 are connected by piping to constitute a refrigerant circuit. The compressor 5 sucks in the low temperature and low pressure refrigerant, compresses the sucked refrigerant, and discharges it as a high temperature and high pressure refrigerant. The flow path switching device 6 switches the flow direction of the refrigerant in the refrigerant circuit, and is, for example, a four-way valve. The outdoor heat exchanger 7 exchanges heat, for example, between outdoor air and a refrigerant. The outdoor heat exchanger 7 acts as a condenser during the cooling operation and acts as an evaporator during the heating operation.
 膨張部8は、冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部8は、例えば開度が調整される電子式膨張弁である。室内熱交換器9は、例えば室内空気と冷媒との間で熱交換するものである。室内熱交換器9は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。 The expansion unit 8 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant. The expansion portion 8 is, for example, an electronic expansion valve whose opening degree is adjusted. The indoor heat exchanger 9 exchanges heat, for example, between indoor air and a refrigerant. The indoor heat exchanger 9 acts as an evaporator during the cooling operation and acts as a condenser during the heating operation.
 室内側温度検出部13は、室内熱交換器9が接続される配管に設けられ、室内熱交換器9に流れる冷媒の温度を検出する。ここで、冷房運転時に蒸発器として作用する室内熱交換器9に流れる冷媒の温度を蒸発温度Teと呼称し、暖房運転時に凝縮器として作用する室内熱交換器9に流れる冷媒の温度を凝縮温度Tcと呼称する。人検出部14は、例えば人感センサからなり、室内の人の有無を検出する。室外制御装置11は、室外機2に設けられた各装置の動作を制御するものであり、室内制御装置12と接続されている。室内制御装置12は、室内機3に設けられた各装置の動作を制御するものであり、リモコン4及び室外制御装置11と接続されている。 The indoor temperature detection unit 13 is provided in a pipe to which the indoor heat exchanger 9 is connected, and detects the temperature of the refrigerant flowing to the indoor heat exchanger 9. Here, the temperature of the refrigerant flowing to the indoor heat exchanger 9 acting as the evaporator during the cooling operation is referred to as the evaporation temperature Te, and the temperature of the refrigerant flowing to the indoor heat exchanger 9 acting as the condenser during the heating operation is the condensation temperature It is called Tc. The human detection unit 14 includes, for example, a human sensor, and detects the presence or absence of a person in the room. The outdoor control device 11 controls the operation of each device provided in the outdoor unit 2 and is connected to the indoor control device 12. The indoor control device 12 controls the operation of each device provided in the indoor unit 3, and is connected to the remote control 4 and the outdoor control device 11.
 (運転モード、冷房運転)
 次に、空気調和装置1の運転モードについて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機5に吸入された冷媒は、圧縮機5によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機5から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置6を通過して、凝縮器として作用する室外熱交換器7に流入し、室外熱交換器7において、室外空気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、膨張部8に流入し、膨張部8において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室内熱交換器9に流入し、室内熱交換器9において、室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置6を通過して、圧縮機5に吸入される。
(Operation mode, cooling operation)
Next, the operation mode of the air conditioning apparatus 1 will be described. First, the cooling operation will be described. In the cooling operation, the refrigerant drawn into the compressor 5 is compressed by the compressor 5 and discharged in a high temperature and high pressure gas state. The refrigerant in the high temperature and high pressure gaseous state discharged from the compressor 5 passes through the flow path switching device 6 and flows into the outdoor heat exchanger 7 acting as a condenser, and in the outdoor heat exchanger 7, the outdoor air Heat exchange, condense and liquefy. The condensed liquid refrigerant flows into the expansion unit 8 and is expanded and decompressed in the expansion unit 8 to become a low temperature, low pressure, gas-liquid two-phase refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the indoor heat exchanger 9 acting as an evaporator, and in the indoor heat exchanger 9, it exchanges heat with indoor air and evaporates to gasify. At this time, the indoor air is cooled and cooling is performed indoors. The evaporated low-temperature low-pressure gas state refrigerant passes through the flow path switching device 6 and is drawn into the compressor 5.
 (運転モード、暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機5に吸入された冷媒は、圧縮機5によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機5から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置6を通過して、凝縮器として作用する室内熱交換器9に流入し、室内熱交換器9において、室内空気と熱交換されて凝縮して液化する。このとき、室内空気が暖められ、室内において暖房が実施される。凝縮された液状態の冷媒は、膨張部8に流入し、膨張部8において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器7に流入し、室外熱交換器7において、室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置6を通過して、圧縮機5に吸入される。
(Operation mode, heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant drawn into the compressor 5 is compressed by the compressor 5 and discharged in a high temperature and high pressure gas state. The high temperature and high pressure gaseous refrigerant discharged from the compressor 5 passes through the flow path switching device 6 and flows into the indoor heat exchanger 9 acting as a condenser, and in the indoor heat exchanger 9, the indoor air Heat exchange, condense and liquefy. At this time, indoor air is warmed and heating is performed indoors. The condensed liquid refrigerant flows into the expansion unit 8 and is expanded and decompressed in the expansion unit 8 to become a low temperature, low pressure, gas-liquid two-phase refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 7 acting as an evaporator, and in the outdoor heat exchanger 7, it exchanges heat with outdoor air and evaporates to gasify. The evaporated low-temperature low-pressure gas state refrigerant passes through the flow path switching device 6 and is drawn into the compressor 5.
 図2は、本発明の実施の形態1に係る空気調和装置1の制御部10を示すブロック図である。次に、制御部10について詳細に説明する。図2に示すように、制御部10は、設定手段21と、圧縮制御手段24とを有している。設定手段21は、リモコン4により設定された室内の設定温度Tsetに基づいて、室内熱交換器9に流れる冷媒の目標温度の範囲を設定するものである。設定手段21は、上限設定手段22と下限設定手段23とを有している。上限設定手段22は、室内の設定温度Tsetが高いほど、目標温度の上限値を高くする。下限設定手段23は、室内の設定温度Tsetが低いほど、目標温度の下限値を低くする。 FIG. 2 is a block diagram showing the control unit 10 of the air-conditioning apparatus 1 according to Embodiment 1 of the present invention. Next, the control unit 10 will be described in detail. As shown in FIG. 2, the control unit 10 includes setting means 21 and compression control means 24. The setting means 21 sets the range of the target temperature of the refrigerant flowing to the indoor heat exchanger 9 based on the set temperature Tset of the room set by the remote controller 4. The setting unit 21 includes an upper limit setting unit 22 and a lower limit setting unit 23. The upper limit setting means 22 raises the upper limit value of the target temperature as the set temperature Tset in the room is higher. The lower limit setting means 23 lowers the lower limit value of the target temperature as the set temperature Tset in the room is lower.
 図3は、本発明の実施の形態1における蒸発温度Teの目標温度の範囲を示すグラフである。ここで、冷房運転時に蒸発器として作用する室内熱交換器9に流れる冷媒の蒸発温度Teの目標温度の範囲について説明する。冷房の需要があるとき、図3に示すように、例えば室外の温度が高い場合、室内の設定温度Tsetが低く設定される傾向がある。一方、室外の温度が低い場合、過剰な冷房を抑えるために、室内の設定温度Tsetが高く設定される傾向がある。このとき、上限設定手段22は、室内の設定温度Tsetが低いときよりも高いときの方が、目標温度の上限値Temaxを高くする。これにより、蒸発温度Teが設定温度Tsetに近づき過ぎることを抑制することができる。従って、冷房能力が不足することを抑制することができる。また、下限設定手段23は、室内の設定温度Tsetが低いときよりも高いときの方が、目標温度の下限値Teminを高くする。これにより、蒸発温度Teが下がり過ぎることを抑制することができる。従って、過剰な冷房を抑制することができる。 FIG. 3 is a graph showing the target temperature range of the evaporation temperature Te in the first embodiment of the present invention. Here, the range of the target temperature of the evaporation temperature Te of the refrigerant flowing to the indoor heat exchanger 9 acting as the evaporator during the cooling operation will be described. When there is a demand for cooling, as shown in FIG. 3, for example, when the temperature outside the room is high, there is a tendency for the room set temperature Tset to be set low. On the other hand, when the outdoor temperature is low, the indoor set temperature Tset tends to be set high in order to suppress excessive cooling. At this time, the upper limit setting means 22 raises the upper limit value Temax of the target temperature when the set temperature Tset in the room is higher than when the set temperature Tset is low. As a result, it is possible to suppress the evaporation temperature Te from becoming too close to the set temperature Tset. Therefore, the shortage of the cooling capacity can be suppressed. Further, the lower limit setting means 23 raises the lower limit value Temin of the target temperature when the set temperature Tset in the room is higher than when the set temperature Tset is low. Thereby, it can suppress that evaporation temperature Te falls too much. Therefore, excessive cooling can be suppressed.
 設定温度Tsetが22°の場合について例示する。上限設定手段22は、目標温度の上限値Temaxを、Temax=22-A℃に設定する。ここで、Aは所定の温度である。下限設定手段23は、目標温度の下限値Teminを、Temin=22-A-B℃に設定する。ここで、Bは所定の温度である。 It illustrates about the case where preset temperature Tset is 22 degrees. The upper limit setting means 22 sets the upper limit value Temax of the target temperature to Temax = 22-A ° C. Here, A is a predetermined temperature. The lower limit setting means 23 sets the lower limit value Temin of the target temperature to Temin = 22-AB ° C. Here, B is a predetermined temperature.
 図4は、本発明の実施の形態1における凝縮温度Tcの目標温度の範囲を示すグラフである。ここで、暖房運転時に凝縮器として作用する室内熱交換器9に流れる冷媒の凝縮温度Tcの目標温度の範囲について説明する。暖房の需要があるとき、図4に示すように、例えば室外の温度が低い場合、室内の設定温度Tsetが高く設定される傾向がある。一方、室外の温度が高い場合、過剰な暖房を抑えるために、室内の設定温度Tsetが低く設定される傾向がある。このとき、下限設定手段23は、室内の設定温度Tsetが高いときよりも低いときの方が、目標温度の下限値Tcminを低くする。これにより、凝縮温度Tcが設定温度Tsetに近づき過ぎることを抑制することができる。従って、暖房能力が不足することを抑制することができる。また、上限設定手段22は、室内の設定温度Tsetが高いときよりも低いときの方が、目標温度の上限値Tcmaxを低くする。これにより、凝縮温度Tcが上がり過ぎることを抑制することができる。従って、過剰な暖房を抑制することができる。 FIG. 4 is a graph showing a target temperature range of the condensation temperature Tc in the first embodiment of the present invention. Here, the range of the target temperature of the condensation temperature Tc of the refrigerant flowing to the indoor heat exchanger 9 acting as a condenser during the heating operation will be described. When there is a demand for heating, as shown in FIG. 4, for example, when the outdoor temperature is low, there is a tendency for the indoor set temperature Tset to be set high. On the other hand, when the outdoor temperature is high, there is a tendency for the indoor set temperature Tset to be set low in order to suppress excessive heating. At this time, the lower limit setting means 23 lowers the lower limit value Tcmin of the target temperature when the set temperature Tset in the room is lower than when the set temperature Tset is high. As a result, it is possible to suppress that the condensation temperature Tc approaches the set temperature Tset too much. Therefore, it can suppress that heating capacity runs short. Further, the upper limit setting means 22 lowers the upper limit value Tcmax of the target temperature when the set temperature Tset in the room is lower than when the set temperature Tset is high. Thereby, it can suppress that condensation temperature Tc rises too much. Therefore, excessive heating can be suppressed.
 設定温度Tsetが22°の場合について例示する。下限設定手段23は、目標温度の下限値Tcminを、Tcmin=22+A℃に設定する。ここで、Aは所定の温度である。上限設定手段22は、目標温度の上限値Tcmaxを、Tcmax=22+A+B℃に設定する。ここで、Bは所定の温度である。 It illustrates about the case where preset temperature Tset is 22 degrees. The lower limit setting means 23 sets the lower limit value Tcmin of the target temperature to Tcmin = 22 + A ° C. Here, A is a predetermined temperature. The upper limit setting means 22 sets the upper limit value Tcmax of the target temperature to Tcmax = 22 + A + B ° C. Here, B is a predetermined temperature.
 圧縮制御手段24は、室内側温度検出部13によって検出された冷媒の温度が、設定手段21によって設定された目標温度の範囲に入るように、圧縮機5を制御するものである。圧縮制御手段24は、冷房運転時に、検出された冷媒の温度が目標温度の上限値を超えた場合、圧縮機5の周波数を増加させる。これにより、圧縮機5の吸入側と吐出側との圧力差が大きくなるため、蒸発温度Teは下降する。また、圧縮制御手段24は、冷房運転時に、検出された冷媒の温度が目標温度の下限値を下回った場合、圧縮機5の周波数を減少させる。これにより、圧縮機5の吸入側と吐出側との圧力差が小さくなるため、蒸発温度Teは上昇する。 The compression control unit 24 controls the compressor 5 so that the temperature of the refrigerant detected by the indoor temperature detection unit 13 falls within the range of the target temperature set by the setting unit 21. The compression control means 24 increases the frequency of the compressor 5 when the temperature of the detected refrigerant exceeds the upper limit value of the target temperature during the cooling operation. As a result, the pressure difference between the suction side and the discharge side of the compressor 5 becomes large, so the evaporation temperature Te falls. Further, the compression control means 24 reduces the frequency of the compressor 5 when the temperature of the detected refrigerant falls below the lower limit value of the target temperature during the cooling operation. As a result, the pressure difference between the suction side and the discharge side of the compressor 5 becomes smaller, so the evaporation temperature Te rises.
 圧縮制御手段24は、暖房運転時に、検出された冷媒の温度が目標温度の下限値を下回った場合、圧縮機5の周波数を増加させる。これにより、圧縮機5の吸入側と吐出側との圧力差が大きくなるため、凝縮温度Tcは上昇する。また、圧縮制御手段24は、暖房運転時に、検出された冷媒の温度が目標温度の上限値を超えた場合、圧縮機5の周波数を減少させる。これにより、圧縮機5の吸入側と吐出側との圧力差が小さくなるため、凝縮温度Tcは下降する。 The compression control means 24 increases the frequency of the compressor 5 when the temperature of the detected refrigerant falls below the lower limit value of the target temperature during the heating operation. As a result, the pressure difference between the suction side and the discharge side of the compressor 5 becomes large, and the condensation temperature Tc rises. In addition, the compression control means 24 reduces the frequency of the compressor 5 when the temperature of the detected refrigerant exceeds the upper limit value of the target temperature during the heating operation. As a result, the pressure difference between the suction side and the discharge side of the compressor 5 becomes smaller, so the condensation temperature Tc falls.
 図5は、本発明の実施の形態1に係る空気調和装置1の動作を示すフローチャートである。次に、空気調和装置1の動作について説明する。図5に示すように、先ず、リモコン4によって室内の設定温度Tsetが設定される(ステップST1)。次に、上限設定手段22によって、目標温度の上限値が設定される(ステップST2)。また、下限設定手段23によって、目標温度の下限値が設定される(ステップST3)。そして、圧縮機5の周波数が変更される(ステップST4)。このとき、室内温度検出部によって検出された温度が目標温度の範囲に入っているかが判定される(ステップST5)。検出された温度が目標温度の範囲に入っていない場合(ステップST5のNo)、ステップST4に戻り、圧縮機5の周波数の変更が継続される。一方、検出された温度が目標温度の範囲に入っている場合(ステップST5のYes)、制御が終了する。 FIG. 5 is a flowchart showing the operation of the air conditioning apparatus 1 according to Embodiment 1 of the present invention. Next, the operation of the air conditioner 1 will be described. As shown in FIG. 5, first, the room set temperature Tset is set by the remote controller 4 (step ST1). Next, the upper limit setting means 22 sets an upper limit value of the target temperature (step ST2). Further, the lower limit setting means 23 sets the lower limit value of the target temperature (step ST3). Then, the frequency of the compressor 5 is changed (step ST4). At this time, it is determined whether the temperature detected by the room temperature detection unit falls within the target temperature range (step ST5). If the detected temperature is not within the target temperature range (No in step ST5), the process returns to step ST4, and the change of the frequency of the compressor 5 is continued. On the other hand, when the detected temperature is within the range of the target temperature (Yes in step ST5), the control ends.
 本実施の形態1によれば、室内の設定温度Tsetに基づいて目標温度の範囲を設定し、設定された目標温度の範囲に入るように圧縮機5を制御している。このため、室外の温度に関わらず、室内熱交換器9に流れる冷媒の温度と室内の設定温度Tsetとの差を一定にすることができる。従って、ユーザにとって過不足のない冷房運転又は暖房運転が行われる。これにより、ユーザの要求に沿った快適な空調を実現することができる。 According to the first embodiment, the range of the target temperature is set based on the set temperature Tset in the room, and the compressor 5 is controlled so as to fall within the set target temperature range. Therefore, regardless of the temperature outside the room, the difference between the temperature of the refrigerant flowing through the indoor heat exchanger 9 and the set temperature Tset in the room can be made constant. Therefore, the cooling operation or the heating operation which is just enough for the user is performed. Thereby, comfortable air conditioning in line with the user's request can be realized.
実施の形態2.
 図6は、本発明の実施の形態2に係る空気調和装置100の制御部110を示すブロック図である。本実施の形態2は、制御部110が解除手段125を有している点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Second Embodiment
FIG. 6 is a block diagram showing a control unit 110 of the air conditioning apparatus 100 according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in that the control unit 110 includes the release means 125. In the second embodiment, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The differences from the first embodiment will be mainly described.
 図6に示すように、制御部110は解除手段125を有している。解除手段125は、人検出部14によって人が未検出である場合、設定手段21による目標温度の範囲の設定を解除するものである。ここで、設定手段21によって設定温度Tsetに基づく目標温度の範囲を設定する制御を、範囲設定モードと呼称する。また、範囲設定モードとは異なり、室外の温度を考慮してより省エネルギ且つ冷暖房能力向上を実現する制御を、通常モードと呼称する。範囲設定モードが実行されている場合、解除手段125は、人が検出されると、範囲設定モードを継続し、人が非検出であると、範囲設定モードを解除して通常モードに移行する。室内に人がいる場合、人が快適に過ごすことを優先するために、範囲設定モードが実行される。一方、室内に人がいない場合、省エネルギ且つ冷暖房能力向上を優先するために室外の温度を考慮した通常モードが実行される。 As shown in FIG. 6, the control unit 110 has a releasing means 125. The canceling means 125 cancels the setting of the range of the target temperature by the setting means 21 when the person is not detected by the person detecting unit 14. Here, control for setting the range of the target temperature based on the set temperature Tset by the setting means 21 is referred to as a range setting mode. Also, unlike the range setting mode, control for realizing energy saving and improvement of the heating and cooling capacity in consideration of the temperature outside the room is referred to as a normal mode. When the range setting mode is being executed, the release means 125 continues the range setting mode when a person is detected, and when the person is not detected, the range setting mode is released and shifts to the normal mode. When there is a person in the room, the range setting mode is executed in order to give priority to the person to spend comfortably. On the other hand, when there is no person in the room, the normal mode in which the temperature outside the room is taken into consideration is executed in order to give priority to energy saving and improvement of the heating and cooling capacity.
 図7は、本発明の実施の形態2に係る空気調和装置100の動作を示すフローチャートである。次に、空気調和装置100の動作について説明する。図7に示すように、範囲設定モードが実行されている場合、人検出部14が動作し(ステップST11)、人が検出されたかが判定される(ステップST12)。人が検出された場合(ステップST12のYes)、範囲設定モードが継続される(ステップST13)。一方、人が未検出の場合(ステップST12のNo)、範囲設定モードが解除され、通常モードに移行される(ステップST14)。 FIG. 7 is a flowchart showing the operation of the air-conditioning apparatus 100 according to Embodiment 2 of the present invention. Next, the operation of the air conditioner 100 will be described. As shown in FIG. 7, when the range setting mode is being executed, the person detection unit 14 operates (step ST11), and it is determined whether a person is detected (step ST12). When a person is detected (Yes in step ST12), the range setting mode is continued (step ST13). On the other hand, when the person is not detected (No in step ST12), the range setting mode is canceled and the mode is shifted to the normal mode (step ST14).
 本実施の形態2によれば、室内に人がいるときは人の快適性を優先し、室内に人がいないときは省エネルギ且つ冷暖房能力を優先することができる。従って、実施の形態1の効果に加え、快適性と省エネルギ性且つ冷暖房能力向上とを両立することができる。 According to the second embodiment, when there is a person in the room, priority can be given to the comfort of the person, and when there is no person in the room, priority can be given to the energy saving and the heating and cooling capability. Therefore, in addition to the effects of the first embodiment, it is possible to achieve both comfort, energy saving, and improvement of the heating and heating capacity.
 1 空気調和装置、2 室外機、3 室内機、4 リモコン、5 圧縮機、6 流路切替装置、7 室外熱交換器、8 膨張部、9 室内熱交換器、10 制御部、11 室外制御装置、12 室内制御装置、13 室内側温度検出部、14 人検出部、21 設定手段、22 上限設定手段、23 下限設定手段、24 圧縮制御手段、100 空気調和装置、110 制御部、125 解除手段。 Reference Signs List 1 air conditioner, 2 outdoor unit, 3 indoor unit, 4 remote control, 5 compressor, 6 flow path switching device, 7 outdoor heat exchanger, 8 expansion unit, 9 indoor heat exchanger, 10 control unit, 11 outdoor control device , 12 indoor control unit, 13 indoor temperature detection unit, 14 person detection unit, 21 setting unit, 22 upper limit setting unit, 23 lower limit setting unit, 24 compression control unit, 100 air conditioner, 110 control unit, 125 release unit.

Claims (8)

  1.  圧縮機、室外熱交換器、膨張部及び室内熱交換器が配管により接続され、冷媒が流れる冷媒回路と、
     前記室内熱交換器に流れる冷媒の温度を検出する室内側温度検出部と、
     前記圧縮機を制御する制御部と、を備え、
     前記制御部は、
     室内の設定温度に基づいて、前記室内熱交換器に流れる冷媒の目標温度の範囲を設定する設定手段と、
     前記室内側温度検出部によって検出された冷媒の温度が、前記設定手段によって設定された前記目標温度の範囲に入るように、前記圧縮機を制御する圧縮制御手段と、を有する
     空気調和装置。
    A refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion unit, and an indoor heat exchanger are connected by piping and a refrigerant flows;
    An indoor temperature detection unit that detects the temperature of the refrigerant flowing to the indoor heat exchanger;
    A control unit that controls the compressor;
    The control unit
    Setting means for setting a target temperature range of the refrigerant flowing in the indoor heat exchanger based on a set temperature in the room;
    An air conditioner, comprising: a compression control unit configured to control the compressor such that the temperature of the refrigerant detected by the indoor temperature detection unit falls within the range of the target temperature set by the setting unit.
  2.  前記設定手段は、
     室内の設定温度が低いほど、前記目標温度の上限値を低くする上限設定手段を有する
     請求項1記載の空気調和装置。
    The setting means is
    The air conditioning apparatus according to claim 1, further comprising an upper limit setting unit configured to lower the upper limit value of the target temperature as the set temperature in the room is lower.
  3.  冷房運転が行われている場合、
     前記圧縮制御手段は、
     前記室内側温度検出部によって検出された冷媒の温度が、前記上限設定手段によって設定された上限値を超えた場合、前記圧縮機の周波数を増加させるものである
     請求項2記載の空気調和装置。
    If cooling operation is being performed,
    The compression control means
    The air conditioner according to claim 2, wherein the frequency of the compressor is increased when the temperature of the refrigerant detected by the indoor temperature detection unit exceeds the upper limit set by the upper limit setting unit.
  4.  暖房運転が行われている場合、
     前記圧縮制御手段は、
     前記室内側温度検出部によって検出された冷媒の温度が、前記上限設定手段によって設定された上限値を超えた場合、前記圧縮機の周波数を減少させるものである
     請求項2又は3記載の空気調和装置。
    If heating operation is being performed,
    The compression control means
    The air conditioning according to claim 2 or 3, wherein the frequency of the compressor is decreased when the temperature of the refrigerant detected by the indoor temperature detection unit exceeds the upper limit value set by the upper limit setting unit. apparatus.
  5.  前記設定手段は、
     室内の設定温度が高いほど、前記目標温度の下限値を高くする下限設定手段を有する
     請求項1~4のいずれか1項に記載の空気調和装置。
    The setting means is
    The air conditioner according to any one of claims 1 to 4, further comprising lower limit setting means for raising the lower limit value of the target temperature as the set temperature in the room is higher.
  6.  冷房運転が行われている場合、
     前記圧縮制御手段は、
     前記室内側温度検出部によって検出された冷媒の温度が、前記下限設定手段によって設定された下限値を下回った場合、前記圧縮機の周波数を減少させるものである
     請求項5記載の空気調和装置。
    If cooling operation is being performed,
    The compression control means
    The air conditioner according to claim 5, wherein the frequency of the compressor is decreased when the temperature of the refrigerant detected by the indoor temperature detection unit falls below the lower limit value set by the lower limit setting means.
  7.  暖房運転が行われている場合、
     前記圧縮制御手段は、
     前記室内側温度検出部によって検出された冷媒の温度が、前記下限設定手段によって設定された下限値を下回った場合、前記圧縮機の周波数を増加させるものである
     請求項5又は6記載の空気調和装置。
    If heating operation is being performed,
    The compression control means
    The air conditioning according to claim 5 or 6, wherein the frequency of the compressor is increased when the temperature of the refrigerant detected by the indoor temperature detection unit falls below the lower limit value set by the lower limit setting means. apparatus.
  8.  室内の人の有無を検出する人検出部を更に備え、
     前記制御部は、
     前記人検出部によって人が未検出である場合、前記設定手段による前記目標温度の範囲の設定を解除する解除手段を更に有する
     請求項1~7のいずれか1項に記載の空気調和装置。
    It further comprises a person detection unit that detects the presence or absence of a person in the room,
    The control unit
    The air conditioning apparatus according to any one of claims 1 to 7, further comprising release means for releasing the setting of the range of the target temperature by the setting means when no person is detected by the person detection unit.
PCT/JP2017/031751 2017-09-04 2017-09-04 Air conditioning device WO2019043941A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/031751 WO2019043941A1 (en) 2017-09-04 2017-09-04 Air conditioning device
JP2019538906A JPWO2019043941A1 (en) 2017-09-04 2017-09-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031751 WO2019043941A1 (en) 2017-09-04 2017-09-04 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2019043941A1 true WO2019043941A1 (en) 2019-03-07

Family

ID=65527329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031751 WO2019043941A1 (en) 2017-09-04 2017-09-04 Air conditioning device

Country Status (2)

Country Link
JP (1) JPWO2019043941A1 (en)
WO (1) WO2019043941A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113834175A (en) * 2020-06-23 2021-12-24 青岛海尔空调电子有限公司 Compressor frequency control method for multi-split air conditioning unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039220A (en) * 1998-05-19 2000-02-08 Mitsubishi Electric Corp Apparatus and method for controlling refrigerating cycle
JP2008241069A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Air conditioning device
JP2016038159A (en) * 2014-08-07 2016-03-22 三菱電機株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039220A (en) * 1998-05-19 2000-02-08 Mitsubishi Electric Corp Apparatus and method for controlling refrigerating cycle
JP2008241069A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Air conditioning device
JP2016038159A (en) * 2014-08-07 2016-03-22 三菱電機株式会社 Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113834175A (en) * 2020-06-23 2021-12-24 青岛海尔空调电子有限公司 Compressor frequency control method for multi-split air conditioning unit
CN113834175B (en) * 2020-06-23 2022-10-28 青岛海尔空调电子有限公司 Compressor frequency control method for multi-split air conditioning unit

Also Published As

Publication number Publication date
JPWO2019043941A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
CN108027179B (en) Air conditioner
JP4975187B2 (en) User side unit and air conditioner
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
US9719708B2 (en) Air-conditioning apparatus with simultaneous heating and cooling operation
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
WO2006013938A1 (en) Freezing apparatus
US20080092572A1 (en) Simultaneous cooling-heating multiple type air conditioner
US11262108B2 (en) Refrigeration cycle apparatus
JP2013015299A (en) Air-conditioning apparatus
US11022354B2 (en) Air conditioner
AU2012392673B2 (en) Air conditioning apparatus
US11920841B2 (en) Air-conditioning apparatus
JP5673738B2 (en) Air conditioner
WO2021085529A1 (en) Refrigerant system
JP2008190759A (en) Air conditioner
JP2014238179A (en) Air conditioner controller
CN110709648B (en) Air conditioner
WO2019043941A1 (en) Air conditioning device
KR102390900B1 (en) Multi-type air conditioner and control method for the same
JP2002286273A (en) Air conditioner
JP2001248919A (en) Air conditioner
WO2023090024A1 (en) Air conditioner
JPWO2018122943A1 (en) Air conditioner
JP3945523B2 (en) Refrigeration equipment
JP2000220891A (en) Air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019538906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922996

Country of ref document: EP

Kind code of ref document: A1