JP2014238179A - Air conditioner controller - Google Patents

Air conditioner controller Download PDF

Info

Publication number
JP2014238179A
JP2014238179A JP2013119439A JP2013119439A JP2014238179A JP 2014238179 A JP2014238179 A JP 2014238179A JP 2013119439 A JP2013119439 A JP 2013119439A JP 2013119439 A JP2013119439 A JP 2013119439A JP 2014238179 A JP2014238179 A JP 2014238179A
Authority
JP
Japan
Prior art keywords
temperature
indoor
target
case
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013119439A
Other languages
Japanese (ja)
Other versions
JP2014238179A5 (en
JP6045440B2 (en
Inventor
浦田 和幹
Kazumiki Urata
和幹 浦田
康孝 吉田
Yasutaka Yoshida
康孝 吉田
内藤 宏治
Koji Naito
宏治 内藤
和彦 谷
Kazuhiko Tani
和彦 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013119439A priority Critical patent/JP6045440B2/en
Publication of JP2014238179A publication Critical patent/JP2014238179A/en
Publication of JP2014238179A5 publication Critical patent/JP2014238179A5/ja
Application granted granted Critical
Publication of JP6045440B2 publication Critical patent/JP6045440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner controller capable of keeping comfortability in all air-conditioned locations with minimum required power consumption.SOLUTION: The air conditioner controller calculates a target condensation temperature of refrigerant in an indoor heat exchanger in a case of a heating operation and a target evaporation temperature of the refrigerant in the indoor heat exchanger in a case of a cooling operation on the basis of a set temperature and an intake air temperature of an indoor unit for each of a plurality of indoor units; sets a maximum value of the target condensation temperatures of the plurality of indoor units calculated by arithmetic means in the case of the heating operation and a minimum value of the target evaporation temperatures of the plurality of indoor units calculated by the arithmetic means in the case of the cooling operation as a control target value for controlling a compressor; and controls a frequency of the compressor so that a condensation temperature of the refrigerant in the indoor heat exchanger is equal to the control target value in the case of the heating operation, and controls the frequency of the compressor so that an evaporation temperature of the refrigerant in the indoor heat exchanger is equal to the control target value in the case of the cooling operation.

Description

本発明は、室外機と、複数台の室内機とを備える空気調和機の運転制御を行う制御装置に関する。   The present invention relates to a control device that performs operation control of an air conditioner including an outdoor unit and a plurality of indoor units.

従来、室外機と、冷媒回路を介して室外機に接続された複数台の室内機とを備える空気調和機において、空調負荷に合わせて空調能力を制御する制御手段を備えた空気調和機が提案されている(例えば特許文献1参照)。   Conventionally, in an air conditioner including an outdoor unit and a plurality of indoor units connected to the outdoor unit via a refrigerant circuit, an air conditioner including a control unit that controls the air conditioning capacity in accordance with the air conditioning load has been proposed. (For example, refer to Patent Document 1).

当該空気調和機は、冷房運転の場合に吸入圧力センサの圧力値から求めた蒸発温度が目標蒸発温度と一致するように、暖房運転の場合に吐出圧力センサの圧力値から求めた凝縮温度が目標凝縮温度と一致するように、圧縮機周波数を制御している。   In the air conditioner, the condensation temperature obtained from the pressure value of the discharge pressure sensor in the heating operation is set so that the evaporation temperature obtained from the pressure value of the suction pressure sensor in the cooling operation matches the target evaporation temperature. The compressor frequency is controlled to match the condensation temperature.

また、空気調和機は、複数の室内機のうち、設定温度と室内温度との温度差が最大となる室内機を、熱負荷最大の室内機である親機と設定し、新たに温度差が最大となる室内機を親機候補と設定し、親機として設定された室内機がサーモオフになった場合、もしくは親機候補の温度差が所定値以上となった場合に当該親機候補を新たな親機として設定し、親機における温度差に応じて圧縮機の最大周波数を制御している。   In addition, the air conditioner sets the indoor unit in which the temperature difference between the set temperature and the room temperature is the largest among the plurality of indoor units as the parent unit that is the indoor unit with the largest heat load, and newly creates a temperature difference. The largest indoor unit is set as a master unit candidate, and when the indoor unit set as the master unit is thermo-off, or when the temperature difference of the master unit candidate exceeds a predetermined value, a new master unit candidate is added. The maximum frequency of the compressor is controlled according to the temperature difference in the master unit.

特開2012−233689号公報JP 2012-233689 A

ところが、特許文献1の空気調和機では、熱負荷が最大となる室内機を常に検出してはいるが、熱負荷の大きさについては検出しておらず、且つ圧縮機周波数を制御する目標凝縮温度(暖房運転の場合)及び目標蒸発温度(冷房運転の場合)が、実際の空調負荷によらず一定で制御されている。このため、快適性を損なわないようにするためには、空調負荷よりも発生能力を大きくする必要があるため、消費電力量を十分に削減できない。   However, in the air conditioner of Patent Document 1, the indoor unit having the maximum thermal load is always detected, but the magnitude of the thermal load is not detected, and the target condensation for controlling the compressor frequency is detected. The temperature (in the case of heating operation) and the target evaporation temperature (in the case of cooling operation) are controlled to be constant regardless of the actual air conditioning load. For this reason, in order not to impair the comfort, it is necessary to make the generation capacity larger than the air conditioning load, and thus the power consumption cannot be reduced sufficiently.

本発明の目的は、上記課題を解決し、必要最小限の消費電力量で全ての空調場の快適性を維持可能な空気調和機の制御装置を提供することである。   An object of the present invention is to provide a control device for an air conditioner that solves the above-described problems and can maintain the comfort of all air-conditioning stations with a minimum amount of power consumption.

上記課題を解決すべく、本発明の一態様である空気調和機の制御装置は、圧縮機を有する室外機と、前記室外機に冷媒回路を介して接続され室内熱交換器を有する複数台の室内機とを備えた空気調和機の制御装置であって、前記複数台の室内機毎に、前記室内機の設定温度及び吸込空気温度に基づいて、暖房運転の場合は、前記室内熱交換器における冷媒の目標凝縮温度を、冷房運転の場合は、前記室内熱交換器における冷媒の目標蒸発温度を、演算し、暖房運転の場合は、前記演算手段により演算された前記複数台の室内機の前記目標凝縮温度の最大値を、冷房運転の場合は、前記演算手段により演算された前記複数台の室内機の前記目標蒸発温度の最小値を、前記圧縮機を制御するための制御目標値として設定し、暖房運転の場合は、前記室内熱交換器における冷媒の凝縮温度が前記制御目標値となるように、前記圧縮機の周波数を制御し、冷房運転の場合は、前記室内熱交換器における冷媒の蒸発温度が前記制御目標値となるように、前記圧縮機の周波数を制御する。   In order to solve the above problems, an air conditioner control device according to an aspect of the present invention includes an outdoor unit having a compressor, and a plurality of units having an indoor heat exchanger connected to the outdoor unit via a refrigerant circuit. An air conditioner control apparatus comprising an indoor unit, wherein the indoor heat exchanger is provided for each of the plurality of indoor units in a heating operation based on a set temperature and an intake air temperature of the indoor unit. In the case of cooling operation, the target evaporation temperature of the refrigerant in the indoor heat exchanger is calculated. In the case of heating operation, the target condensation temperature of the plurality of indoor units is calculated. In the case of cooling operation, the maximum value of the target condensation temperature is set as the control target value for controlling the compressor, using the minimum value of the target evaporation temperature of the plurality of indoor units calculated by the calculation means. If set and heating operation, The frequency of the compressor is controlled so that the condensing temperature of the refrigerant in the indoor heat exchanger becomes the control target value. In the cooling operation, the evaporation temperature of the refrigerant in the indoor heat exchanger becomes the control target value. Thus, the frequency of the compressor is controlled.

本発明によれば、必要最小限の消費電力量で全ての空調場の快適性を維持することができる空気調和機の制御装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the control apparatus of the air conditioner which can maintain the comfort of all the air-conditioning stations with required minimum electric power consumption can be provided.

本発明の実施の形態における空気調和機の構成を表す冷媒回路図である。It is a refrigerant circuit figure showing the structure of the air conditioner in embodiment of this invention. 本発明の実施の形態における空気調和機の冷房運転時の圧縮機制御用蒸発温度Tecompの演算処理を表したフローチャートである。It is a flowchart showing the calculation process of the evaporation temperature Tecomp for compressor control at the time of air_conditioning | cooling operation of the air conditioner in embodiment of this invention. 本発明の実施の形態における空気調和機の冷房運転時の目標蒸発温度Te、圧縮機制御用蒸発温度Tecomp及び目標冷媒過熱度SHの演算結果を表したテーブルである。It is a table showing the calculation result of the target evaporation temperature Te, the compressor control evaporation temperature Tecomp, and the target refrigerant superheat degree SH during the cooling operation of the air conditioner in the embodiment of the present invention. 本発明の実施の形態における空気調和機の暖房運転時の圧縮機制御用凝縮温度Tccompの演算処理を表したフローチャートである。It is a flowchart showing the calculation process of the condensation temperature Tccomp for compressor control at the time of the heating operation of the air conditioner in embodiment of this invention. 本発明の実施の形態における空気調和機の暖房運転時の目標凝縮温度Tc、圧縮機制御用凝縮温度Tccomp及び室内膨張弁開度比plsiの演算結果を表したテーブルである。It is the table showing the calculation result of target condensation temperature Tc at the time of heating operation of the air conditioner in the embodiment of the present invention, condensation temperature Tccomp for compressor control, and indoor expansion valve opening ratio plsi.

以下、本発明の実施の形態における空気調和機の制御装置について、図1〜図5を参照して説明する。図1は、本発明の実施の形態における空気調和機1の構成を表す冷媒回路図である。   Hereinafter, the control apparatus of the air conditioner in embodiment of this invention is demonstrated with reference to FIGS. FIG. 1 is a refrigerant circuit diagram showing a configuration of an air conditioner 1 according to an embodiment of the present invention.

図1に示すように空気調和機1は、1台の室外機2と、複数台(本実施の形態では7台)の室内機10A〜10Gとを備える。室外機2と室内機10A〜10Gは、ガス接続配管及び液接続配管により互いに接続され、冷凍サイクルを形成している。室外機2は、圧縮機3と、四方弁4と、室外熱交換器5と、室外膨張弁6と、アキュムレータ7と、ガス阻止弁8と、液阻止弁9とを備え、それらは互いに配管により接続されている。また、室外機2は、更に制御装置20を備えている。   As shown in FIG. 1, the air conditioner 1 includes one outdoor unit 2 and a plurality of (seven in the present embodiment) indoor units 10A to 10G. The outdoor unit 2 and the indoor units 10A to 10G are connected to each other by a gas connection pipe and a liquid connection pipe to form a refrigeration cycle. The outdoor unit 2 includes a compressor 3, a four-way valve 4, an outdoor heat exchanger 5, an outdoor expansion valve 6, an accumulator 7, a gas blocking valve 8, and a liquid blocking valve 9, which are connected to each other. Connected by. The outdoor unit 2 further includes a control device 20.

圧縮機3は、冷媒を圧縮してガス状の冷媒を配管に吐出する。四方弁4を切り替えることで、冷媒の流れが変化し、冷房運転と暖房運転が切り替わる。室外熱交換器5は、冷媒と外気の間で熱交換させる。冷房運転時には、室外熱交換器5は凝縮器となり、暖房運転時には、室外熱交換器5は蒸発器となる。室外膨張弁6は、冷媒を減圧して低温にする。アキュムレータ7は、気液混合状態の冷媒から液状の冷媒を貯留し、ガス状の冷媒を圧縮機3に送り出す。ガス阻止弁8は、室外機2とガス分配管21Aとの間の流路を開閉する。液阻止弁9は、室外機2と液分配管22Aとの間の流路を開閉する。制御装置20は、圧縮機3の運転周波数、四方弁4、室外熱交換器5、及び室外膨張弁6を制御する。   The compressor 3 compresses the refrigerant and discharges the gaseous refrigerant to the pipe. By switching the four-way valve 4, the refrigerant flow changes, and the cooling operation and the heating operation are switched. The outdoor heat exchanger 5 exchanges heat between the refrigerant and the outside air. During the cooling operation, the outdoor heat exchanger 5 serves as a condenser, and during the heating operation, the outdoor heat exchanger 5 serves as an evaporator. The outdoor expansion valve 6 reduces the temperature of the refrigerant to a low temperature. The accumulator 7 stores liquid refrigerant from the gas-liquid mixed state refrigerant and sends the gaseous refrigerant to the compressor 3. The gas blocking valve 8 opens and closes the flow path between the outdoor unit 2 and the gas distribution pipe 21A. The liquid blocking valve 9 opens and closes the flow path between the outdoor unit 2 and the liquid distribution pipe 22A. The control device 20 controls the operating frequency of the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, and the outdoor expansion valve 6.

各室内機10A〜10Gは、室内熱交換器11A〜11Gと、室内膨張弁12A〜12Gとを備え、それらは互いに配管により接続されている。また、各室内機10A〜10Gは、さらに吸込空気温度センサ13A〜13Gと、熱交換器温度センサ14A〜14Gとを備えている。各室内機10A〜10Gは、ガス分配管21A〜21Fを介して、室外機2のガス阻止弁8に接続されると共に、液分配管22A〜22Fを介して、室外機2の液阻止弁9に接続されている。   Each of the indoor units 10A to 10G includes indoor heat exchangers 11A to 11G and indoor expansion valves 12A to 12G, which are connected to each other by piping. Each of the indoor units 10A to 10G is further provided with intake air temperature sensors 13A to 13G and heat exchanger temperature sensors 14A to 14G. Each of the indoor units 10A to 10G is connected to the gas blocking valve 8 of the outdoor unit 2 through the gas distribution pipes 21A to 21F, and the liquid blocking valve 9 of the outdoor unit 2 through the liquid distribution pipes 22A to 22F. It is connected to the.

室内熱交換器11A〜11Gは、冷媒と内気の間で熱交換させる。冷房運転時には、室内熱交換器11A〜11Gは蒸発器となり、暖房運転時には、室内熱交換器11A〜11Gは凝縮器となる。室内膨張弁12A〜12Gは、その絞り量(開度)を変化させることにより室内熱交換器11A〜11Gを流れる冷媒の流量を変化させることが可能である。   The indoor heat exchangers 11A to 11G exchange heat between the refrigerant and the inside air. During the cooling operation, the indoor heat exchangers 11A to 11G serve as evaporators, and during the heating operation, the indoor heat exchangers 11A to 11G serve as condensers. The indoor expansion valves 12A to 12G can change the flow rate of the refrigerant flowing through the indoor heat exchangers 11A to 11G by changing the throttle amount (opening degree).

各吸込空気温度センサ13A〜13Gは、各室内熱交換器11A〜11Gに流入する空気の温度を検出し、検出した温度を信号線23A〜23Gを介して制御装置20に出力する。各熱交換器温度センサ14A〜14Gは、冷房運転時には冷媒の蒸発温度を検出し、暖房運転時には冷媒の凝縮温度を検出し、検出した温度を信号線24A〜24Gを介して制御装置20に出力する。   Each suction air temperature sensor 13A-13G detects the temperature of the air which flows into each indoor heat exchanger 11A-11G, and outputs the detected temperature to the control apparatus 20 via signal line 23A-23G. Each heat exchanger temperature sensor 14A-14G detects the evaporating temperature of the refrigerant during the cooling operation, detects the condensing temperature of the refrigerant during the heating operation, and outputs the detected temperature to the control device 20 via the signal lines 24A-24G. To do.

次に、空気調和機1における冷房モードでの運転について説明する。図1に示す実線矢印は、冷房モードにおける冷媒の流れる方向を示している。なお、以下の説明では、室内機10A〜10G及びその他の構成の符号において数字の後に続くアルファベットにより各要素を区別する必要がない場合、そのアルファベットは省略することがある。   Next, the operation in the cooling mode in the air conditioner 1 will be described. A solid line arrow shown in FIG. 1 indicates a direction in which the refrigerant flows in the cooling mode. In addition, in the following description, when it is not necessary to distinguish each element by the alphabet following a number in the symbols of the indoor units 10A to 10G and other configurations, the alphabet may be omitted.

まず、空気調和機1の冷房作用について説明する。室外機2の圧縮機3から吐出された高温、高圧のガス冷媒は、四方弁4を通り室外熱交換器5に流入する。室外熱交換器5に流入したガス冷媒は、室外熱交換器5に導入される空気と熱交換して空気に放熱することで高圧の液冷媒となる。その後、高圧の液冷媒は、室外熱交換器5から流出し、室外膨張弁6、液阻止弁9を通り室外機2から流出する。   First, the cooling action of the air conditioner 1 will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 3 of the outdoor unit 2 passes through the four-way valve 4 and flows into the outdoor heat exchanger 5. The gas refrigerant that has flowed into the outdoor heat exchanger 5 exchanges heat with the air introduced into the outdoor heat exchanger 5 and dissipates heat to the air, thereby becoming a high-pressure liquid refrigerant. Thereafter, the high-pressure liquid refrigerant flows out of the outdoor heat exchanger 5, flows out of the outdoor unit 2 through the outdoor expansion valve 6 and the liquid blocking valve 9.

室外機2から流出した高圧の液冷媒は、液接続配管、各液分配器22を介して各室内機10に分流される。各室内機10に流入した高圧の液冷媒は、各室内膨張弁12で減圧されて低温、低圧となり、各室内熱交換器11に流入し、室内熱交換器11に導入される空気と熱交換することにより空気を冷却すると共に自らは室内空気から吸熱して蒸発し、低圧のガス冷媒となる。各室内熱交換器11から流出した低圧のガス冷媒は、ガス分配器13、ガス接続配管を通り室外機2に流入する。その後、ガス阻止弁8、四方弁4を通ってアキュムレータ7に流入し、アキュムレータ7で所定の冷媒かわき度に調整され、圧縮機3に吸入され、再度圧縮機3で圧縮されることにより冷凍サイクルが形成される。   The high-pressure liquid refrigerant that has flowed out of the outdoor unit 2 is diverted to each indoor unit 10 via the liquid connection pipe and each liquid distributor 22. The high-pressure liquid refrigerant flowing into each indoor unit 10 is decompressed by each indoor expansion valve 12 to become low temperature and low pressure, flows into each indoor heat exchanger 11, and exchanges heat with air introduced into the indoor heat exchanger 11. As a result, the air cools and absorbs heat from the room air and evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out from each indoor heat exchanger 11 flows into the outdoor unit 2 through the gas distributor 13 and the gas connection pipe. Thereafter, the refrigerant flows into the accumulator 7 through the gas blocking valve 8 and the four-way valve 4, adjusted to a predetermined refrigerant clearance by the accumulator 7, sucked into the compressor 3, and compressed again by the compressor 3, thereby refrigeration cycle. Is formed.

次に、各室内機10における運転時の冷房能力の制御について説明する。各室内機10における冷房能力は、各室内熱交換器11に流入される空気の温度と風量、及び各室内熱交換器11で発生する冷媒の蒸発温度によって決定される。すなわち、各室内熱交換器11に流入される空気の温度と風量が一定の場合、冷房能力は蒸発温度によって制御が可能であり、蒸発温度を低くすれば冷房能力が増加し、蒸発温度を高くすれば冷房能力が低下する。このため、各室内機10の空調負荷に応じて、各室内熱交換器11における冷媒の蒸発温度を制御できれば、各室内機10において最適な冷房能力に制御することができる。   Next, control of the cooling capacity during operation in each indoor unit 10 will be described. The cooling capacity in each indoor unit 10 is determined by the temperature and air volume of air flowing into each indoor heat exchanger 11 and the evaporation temperature of the refrigerant generated in each indoor heat exchanger 11. That is, when the temperature and the air volume of the air flowing into each indoor heat exchanger 11 are constant, the cooling capacity can be controlled by the evaporation temperature. If the evaporation temperature is lowered, the cooling capacity is increased and the evaporation temperature is increased. If it does, cooling capacity will fall. For this reason, if the refrigerant | coolant evaporation temperature in each indoor heat exchanger 11 can be controlled according to the air-conditioning load of each indoor unit 10, it can control to the optimal cooling capacity in each indoor unit 10.

しかし、各室内機10は配管により互いに接続されているため、室外機2から各室内熱交換器11での冷媒の蒸発温度を個別に自由に制御することができず、全ての室内機10で蒸発温度がほぼ一定となる。このため、全ての室内機10における空調場の快適性を満たすためには、全ての室内機10の中で空調負荷が一番大きい室内機10の蒸発温度となるように空気調和機1を制御すれば良い。また、蒸発温度は、圧縮機3から吐出される冷媒の循環量に応じて制御が可能であり、圧縮機3からの冷媒循環量が増加すると蒸発温度が低下し、冷媒循環量が低下すると蒸発温度が高くなる。   However, since the indoor units 10 are connected to each other by piping, the evaporating temperature of the refrigerant in the indoor heat exchanger 11 from the outdoor unit 2 cannot be freely controlled individually. The evaporation temperature becomes almost constant. For this reason, in order to satisfy the comfort of the air conditioning field in all the indoor units 10, the air conditioner 1 is controlled so that the evaporating temperature of the indoor unit 10 having the largest air conditioning load among all the indoor units 10 is obtained. Just do it. Further, the evaporation temperature can be controlled in accordance with the circulation amount of the refrigerant discharged from the compressor 3, and when the refrigerant circulation amount from the compressor 3 increases, the evaporation temperature decreases, and when the refrigerant circulation amount decreases, the evaporation temperature evaporates. The temperature rises.

次に、室内機10が設置されている全ての空調場の快適性を維持するために必要な空気調和機1の制御方法について説明する。図2は、本実施の形態の空気調和機1における冷房運転時の圧縮機制御用蒸発温度Tecompの演算処理を表したフローチャートを示す。   Next, the control method of the air conditioner 1 required in order to maintain the comfort of all the air-conditioning places in which the indoor unit 10 is installed is demonstrated. FIG. 2 is a flowchart showing a calculation process of the compressor control evaporating temperature Tecomp during the cooling operation in the air conditioner 1 of the present embodiment.

本演算処理は、室外機2の制御装置20で行われ、空気調和機1が運転を行っている間、所定の時間間隔もしくは常時処理を行っている。まず、制御装置20は、最低蒸発温度Teminを初期化する(S10)。例えば、室内機10が設置されている全ての空調場の室内温度のうち、最も高い温度を最低蒸発温度Teminとして設定する。   This calculation process is performed by the control device 20 of the outdoor unit 2, and a predetermined time interval or constant process is performed while the air conditioner 1 is operating. First, the control device 20 initializes the minimum evaporation temperature Temin (S10). For example, the highest temperature is set as the lowest evaporation temperature Temin among the indoor temperatures of all air-conditioning stations where the indoor units 10 are installed.

次に、制御装置20は、全室内機10のうちの一つの室内機I(Iは1〜接続台数)から、吸込空気温度センサ13により検出された吸込空気温度Ti(I)及び室内機Iの設定温度Ts(I)を受信する(S11)。制御装置20は、受信した吸込空気温度Ti(I)及び設定温度Ts(I)に基づき、室内機Iで必要な目標蒸発温度Te(I)を数式1により演算する(S12)。ここで目標蒸発温度とは、室内熱交換器11における液冷媒の蒸発温度の目標値である。
(数式1)
Te=Ti−(−0.09×(Ti−Ts)^2+1.6×(Ti−Ts)+9)
Next, the control device 20 detects the intake air temperature Ti (I) detected by the intake air temperature sensor 13 and the indoor unit I from one indoor unit I (I is 1 to the number of connected units) of all the indoor units 10. The set temperature Ts (I) is received (S11). Based on the received intake air temperature Ti (I) and the set temperature Ts (I), the control device 20 calculates the target evaporation temperature Te (I) necessary for the indoor unit I using Equation 1 (S12). Here, the target evaporation temperature is a target value of the evaporation temperature of the liquid refrigerant in the indoor heat exchanger 11.
(Formula 1)
Te = Ti − (− 0.09 × (Ti−Ts) ^ 2 + 1.6 × (Ti−Ts) +9)

次に、制御装置20は、演算した目標蒸発温度Te(I)と最低蒸発温度Teminを比較する(S13)。最低蒸発温度Teminよりも目標蒸発温度Te(I)の方が低い場合(S13:YES)、制御装置20は、目標蒸発温度Te(I)の値を最低蒸発温度Teminとして代入する(S14)。一方、目標蒸発温度Te(I)が、最低蒸発温度Teminよりも高い、もしくは等しい場合(S13:NO)、制御装置20は、ステップS15に進む。   Next, the control device 20 compares the calculated target evaporation temperature Te (I) with the lowest evaporation temperature Temin (S13). When the target evaporation temperature Te (I) is lower than the minimum evaporation temperature Temin (S13: YES), the control device 20 substitutes the value of the target evaporation temperature Te (I) as the minimum evaporation temperature Temin (S14). On the other hand, when the target evaporation temperature Te (I) is higher than or equal to the minimum evaporation temperature Temin (S13: NO), the control device 20 proceeds to step S15.

次に、制御装置20は、全室内機10に対してS11〜S13の処理が行われたか判断する(S15)。全室内機10に対して処理が行われたと判断した場合(S15:YES)、制御装置20は、最低蒸発温度Teminの値を圧縮機制御用蒸発温度Tecompに代入し(S16)、圧縮機制御用蒸発温度Tecompの演算処理を終了する。一方、全室内機10に対して処理が行われていないと判断した場合(S15:NO)、制御装置20は、選定されていない室内機10についてS11〜S14の処理を行う。   Next, the control device 20 determines whether or not the processing of S11 to S13 has been performed on all the indoor units 10 (S15). When it is determined that the processing has been performed on all the indoor units 10 (S15: YES), the control device 20 substitutes the value of the minimum evaporation temperature Temin into the compressor control evaporation temperature Tecomp (S16), and the compressor control evaporation. The calculation process of the temperature Tecomp ends. On the other hand, when it is determined that the processing is not performed on all the indoor units 10 (S15: NO), the control device 20 performs the processing of S11 to S14 on the indoor units 10 that are not selected.

図3は、本実施の形態の空気調和機1における冷房運転時の目標蒸発温度Te、圧縮機制御用蒸発温度Tecompの演算結果を表したテーブルの一例を示す。テーブル中の室内機No.10A〜10Gは、図1の冷媒回路図に示した室内機10A〜10Gに対応している。   FIG. 3 shows an example of a table representing calculation results of the target evaporation temperature Te and the compressor control evaporation temperature Tecomp during the cooling operation in the air conditioner 1 of the present embodiment. Indoor unit No. in table 10A to 10G correspond to the indoor units 10A to 10G shown in the refrigerant circuit diagram of FIG.

図3のテーブルに示すように、室内機10Aの吸込空気温度Tiは24℃であり、室内機10Aから室内機10Dまで順に吸込空気温度Tiが2℃ずつ高くなっており、室内機10D〜10Gの吸込空気温度Tiは30℃である。また、室内機10Aの設定温度Tsは18℃であり、室内機10Aから室内機10Fまで順に設定温度Tsが2℃ずつ高く設定されている。また、室内機10Gの設定温度Tsは29℃に設定されている。   As shown in the table of FIG. 3, the intake air temperature Ti of the indoor unit 10A is 24 ° C., and the intake air temperature Ti is increased by 2 ° C. in order from the indoor unit 10A to the indoor unit 10D, and the indoor units 10D to 10G. The intake air temperature Ti is 30 ° C. Further, the set temperature Ts of the indoor unit 10A is 18 ° C., and the set temperature Ts is set higher by 2 ° C. in order from the indoor unit 10A to the indoor unit 10F. The set temperature Ts of the indoor unit 10G is set to 29 ° C.

よって、吸込空気温度Tiと設定温度Tsの温度差は、室内機10A〜10Dで6℃、室内機10Eで4℃、室内機10Fで2℃、室内機10Gで1℃であり、吸込空気温度Tiと設定温度Tsの差は、室内機10Dから室内機10Gにかけて減少している。   Therefore, the temperature difference between the intake air temperature Ti and the set temperature Ts is 6 ° C. for the indoor units 10A to 10D, 4 ° C. for the indoor unit 10E, 2 ° C. for the indoor unit 10F, and 1 ° C. for the indoor unit 10G. The difference between Ti and the set temperature Ts decreases from the indoor unit 10D to the indoor unit 10G.

このような室内機10A〜10Gについて、上記数式1を用いて目標蒸発温度Teを演算する。その結果、図3に示すように、室内機10Aの目標蒸発温度Teが、最も低く、8.6℃と演算される。なお、室内機10Aは、その吸込空気温度Tiが最も低く、かつ吸込空気温度Tiと設定温度Tsとの温度差が最も大きい室内機である。   With respect to such indoor units 10A to 10G, the target evaporation temperature Te is calculated using Equation 1 above. As a result, as shown in FIG. 3, the target evaporation temperature Te of the indoor unit 10 </ b> A is the lowest and is calculated as 8.6 ° C. The indoor unit 10A is an indoor unit having the lowest suction air temperature Ti and the largest temperature difference between the suction air temperature Ti and the set temperature Ts.

室内機10Aの目標蒸発温度Teが最も低くなったことは、吸込空気温度Tiと設定温度Tsとの温度差が大きいほど空調負荷が大きいことを表しており、更に、吸込空気温度Tiが低いほど、目標蒸発温度Teが低く設定されることを表している。   The fact that the target evaporation temperature Te of the indoor unit 10A is the lowest indicates that the larger the temperature difference between the intake air temperature Ti and the set temperature Ts, the greater the air conditioning load, and the lower the intake air temperature Ti is. This represents that the target evaporation temperature Te is set low.

そして、図2に示した圧縮機制御用蒸発温度Tecompの演算処理により、圧縮機制御用蒸発温度Tecompは8.6℃となる。制御装置20は、室内熱交換器11における冷媒の蒸発温度が、圧縮機制御用蒸発温度Tecompとなるように、圧縮機2の運転周波数が制御される。その結果、全ての室内機10の室内熱交換器11における冷媒の蒸発温度は、各室内機10で必要とする目標蒸発温度以下となる。よって、全ての室内機10が設置されている空調場の空調負荷に対して必要十分の能力を発生させることが可能となり、全ての室内機10の快適性が維持される。また、圧縮機制御用蒸発温度Tecompの設定値を、目標蒸発温度Teが最も低い室内機10Aに合わせて演算しているため、必要最小限の消費電力で空気調和機の運転が可能となる。   Then, the compressor control evaporating temperature Tecomp becomes 8.6 ° C. by the calculation process of the compressor control evaporating temperature Tecomp shown in FIG. The control device 20 controls the operating frequency of the compressor 2 so that the evaporation temperature of the refrigerant in the indoor heat exchanger 11 becomes the compressor control evaporation temperature Tecomp. As a result, the evaporation temperature of the refrigerant in the indoor heat exchanger 11 of all the indoor units 10 is equal to or lower than the target evaporation temperature required for each indoor unit 10. Therefore, it becomes possible to generate necessary and sufficient capacity for the air conditioning load of the air conditioning field where all the indoor units 10 are installed, and the comfort of all the indoor units 10 is maintained. Further, since the set value of the compressor control evaporating temperature Tecomp is calculated in accordance with the indoor unit 10A having the lowest target evaporating temperature Te, the air conditioner can be operated with the minimum necessary power consumption.

ここで、室内機10A以外の室内機である室内機10B〜10Gについては、必要蒸発温度よりも低い蒸発温度で運転しているため、このままでは空調負荷に対して発生能力が大きくなりすぎる。そのため、本実施の形態では、室内機10B〜10Gで発生する冷房能力を抑制する容量制御を行う。室内機10B〜10Gで発生する冷房能力の容量制御は、冷房運転時の室内熱交換器11B〜11Gにおける冷媒過熱度を変更させることで行われる。この結果、室内熱交換器11B〜11Gの有効伝熱面積を変更され、室内機10B〜10Gでの発生能力が抑制される。   Here, since the indoor units 10B to 10G that are indoor units other than the indoor unit 10A are operated at an evaporation temperature lower than the required evaporation temperature, the generation capability is too large for the air conditioning load as it is. Therefore, in this embodiment, capacity control is performed to suppress the cooling capacity generated in the indoor units 10B to 10G. The capacity control of the cooling capacity generated in the indoor units 10B to 10G is performed by changing the refrigerant superheat degree in the indoor heat exchangers 11B to 11G during the cooling operation. As a result, the effective heat transfer areas of the indoor heat exchangers 11B to 11G are changed, and the generation capacity of the indoor units 10B to 10G is suppressed.

本実施の形態では、室内機10の運転容量を制御するために、室内熱交換器11の冷媒過熱度の設定方法として、各室内機10の目標蒸発温度Te、圧縮機制御用蒸発温度Tecomp、吸込空気温度Ti及び設定温度Tsから、数式2を用いて各室内機10の室内熱交換器11における目標冷媒過熱度SHを制御装置20により演算する。
(数式2)
SH=1+(Te−Tecomp)/((Ti−Ts)/1.2)
In the present embodiment, in order to control the operating capacity of the indoor unit 10, as a method for setting the refrigerant superheat degree of the indoor heat exchanger 11, the target evaporation temperature Te of each indoor unit 10, the evaporation temperature Tecomp for compressor control, the suction From the air temperature Ti and the set temperature Ts, the control device 20 calculates the target refrigerant superheat degree SH in the indoor heat exchanger 11 of each indoor unit 10 using Equation 2.
(Formula 2)
SH = 1 + (Te−Tecomp) / ((Ti−Ts) /1.2)

図3に目標冷媒過熱度SHの演算結果を示している。圧縮機制御用蒸発温度Tecompと同等温度の目標蒸発温度である室内機10Aは、室内熱交換器の性能を最大限に発揮できるように目標冷媒過熱度SHが1に設定され、それ以外の室内機10B〜10Gについては、吸込空気温度Tiが高いほど、吸込空気温度Tiと設定温度Tsとの温度差が小さいほど、目標冷媒過熱度SHが大きくなるように設定される。   FIG. 3 shows the calculation result of the target refrigerant superheat degree SH. In the indoor unit 10A having a target evaporation temperature equivalent to the compressor control evaporation temperature Tecomp, the target refrigerant superheat degree SH is set to 1 so that the performance of the indoor heat exchanger can be maximized. Other indoor units About 10B-10G, it sets so that target refrigerant superheat degree SH may become large, so that the temperature difference of suction air temperature Ti and preset temperature Ts is so small that suction air temperature Ti is high.

この目標冷媒過熱度SHが大きく設定されることにより、制御装置20により、室内熱交換器11において有効に作用する伝熱面積が減少される共に、室内膨張弁12の開度が絞られる。この結果、室内熱交換器11を通過する冷媒循環量が低減されるため、室内機10での発生能力を抑制することができ、ひいては各室内機10の空調負荷と発生能力とがバランス(一致)するように制御される。よって、無駄なサーモON−OFFを繰り返す運転を低減することができ、各室内機10の冷房運転を連続運転とすることができるので、空調場の快適性が更に良好に維持できる。   By setting the target refrigerant superheat degree SH to be large, the control device 20 reduces the heat transfer area that effectively acts in the indoor heat exchanger 11 and reduces the opening of the indoor expansion valve 12. As a result, since the amount of refrigerant circulating through the indoor heat exchanger 11 is reduced, the generation capacity of the indoor unit 10 can be suppressed, and the air conditioning load and generation capacity of each indoor unit 10 are balanced (matched). ) To be controlled. Therefore, the operation | movement which repeats useless thermo ON-OFF can be reduced, and since the cooling operation of each indoor unit 10 can be made into a continuous operation, the comfort of an air-conditioning field can be maintained further favorably.

次に、空気調和機1における暖房モードでの運転について説明する。図1に示す点線矢印は、暖房モードにおける冷媒の流れる方向を示している。   Next, the operation in the heating mode in the air conditioner 1 will be described. The dotted line arrows shown in FIG. 1 indicate the direction in which the refrigerant flows in the heating mode.

まず、空気調和機1の暖房作用について説明する。室外機2の圧縮機3から吐出された高温、高圧のガス冷媒は、四方弁4、ガス阻止弁8を通り室外機2から流出し、ガス接続配管、各ガス分配器21を介して各室内機10に分流される。   First, the heating effect | action of the air conditioner 1 is demonstrated. The high-temperature and high-pressure gas refrigerant discharged from the compressor 3 of the outdoor unit 2 flows out of the outdoor unit 2 through the four-way valve 4 and the gas blocking valve 8, and passes through the gas connection pipe and each gas distributor 21 to each room. It is diverted to the machine 10.

各室内機10に流入した高圧のガス冷媒は、各室内熱交換器11に流入し、各室内熱交換器11に導入される空気と熱交換することにより空気を加熱すると共に自らは室内空気に放熱して液化し、高圧の液冷媒となる。各室内熱交換器11から流出した高圧の液冷媒は、各室内膨張弁12を通り、各室内機10を出て、各液分配器22、液接続配管を通り室外機2に流入する。   The high-pressure gas refrigerant that has flowed into each indoor unit 10 flows into each indoor heat exchanger 11 and heats the air by exchanging heat with the air introduced into each indoor heat exchanger 11, and itself becomes indoor air. Dissipates heat and liquefies to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out from each indoor heat exchanger 11 passes through each indoor expansion valve 12, exits each indoor unit 10, and flows into each outdoor unit 2 through each liquid distributor 22 and the liquid connection pipe.

その後、液阻止弁9を通り、室外膨張弁6に流入し、室外膨張弁6で減圧されて低温、低圧となり、室外熱交換器5に流入し、室外熱交換器5に導入される空気と熱交換して空気から吸熱することで低圧のガス冷媒となる。室外熱交換器5から流出した低圧のガス冷媒は、四方弁4を通ってアキュムレータ7に流入し、アキュムレータ7で所定の冷媒かわき度に調整され、圧縮機3に吸入され、再度圧縮機3で圧縮されることにより冷凍サイクルが形成される。   Thereafter, it passes through the liquid blocking valve 9 and flows into the outdoor expansion valve 6, and is decompressed by the outdoor expansion valve 6 to become low temperature and low pressure, flows into the outdoor heat exchanger 5, and air introduced into the outdoor heat exchanger 5 It becomes a low-pressure gas refrigerant by exchanging heat and absorbing heat from the air. The low-pressure gas refrigerant flowing out of the outdoor heat exchanger 5 flows into the accumulator 7 through the four-way valve 4, adjusted to a predetermined refrigerant clearance by the accumulator 7, sucked into the compressor 3, and again in the compressor 3. A refrigeration cycle is formed by compression.

次に、各室内機10における運転時の暖房能力の制御について説明する。各室内機10における暖房能力は、各室内熱交換器11に流入される空気の温度と風量、及び各室内熱交換器11で発生する冷媒の凝縮温度によって決定される。すなわち、各室内熱交換器11に流入される空気の温度と風量が一定の場合、暖房能力は凝縮温度によって制御が可能であり、凝縮温度を高くすれば暖房能力が増加し、凝縮温度を低くすれば暖房能力が低下する。このため、各室内機10の空調負荷に応じて、各室内熱交換器11で発生する冷媒の凝縮温度を制御できれば、各室内機10において最適な状態で暖房能力を制御することができる。   Next, control of the heating capacity during operation in each indoor unit 10 will be described. The heating capacity in each indoor unit 10 is determined by the temperature and air volume of air flowing into each indoor heat exchanger 11 and the condensation temperature of the refrigerant generated in each indoor heat exchanger 11. That is, when the temperature and air volume of the air flowing into each indoor heat exchanger 11 are constant, the heating capacity can be controlled by the condensation temperature. If the condensation temperature is increased, the heating capacity is increased, and the condensation temperature is decreased. If this is done, the heating capacity will decrease. For this reason, if the condensing temperature of the refrigerant | coolant which generate | occur | produces in each indoor heat exchanger 11 can be controlled according to the air-conditioning load of each indoor unit 10, heating capacity can be controlled in the optimal state in each indoor unit 10.

しかし、各室内機10は配管により接続されているため、室外機2から各室内熱交換器11で発生する冷媒の凝縮温度を個別に自由に制御することができず、全ての室内機10で凝縮温度がほぼ一定となる。このため、全ての室内機10における空調場の快適性を満たすためには、全ての室内機10の中で空調負荷が一番大きい室内機10の凝縮温度となるように空気調和機1を制御すれば良い。また、凝縮温度は、圧縮機3から吐出される冷媒循環量に応じて制御が可能であり、圧縮機3からの冷媒循環量が増加すると凝縮温度が高くなり、冷媒循環量が低下すると凝縮温度が低くなる。   However, since each indoor unit 10 is connected by piping, the condensation temperature of the refrigerant generated in each indoor heat exchanger 11 from the outdoor unit 2 cannot be freely controlled individually. Condensation temperature is almost constant. For this reason, in order to satisfy the comfort of the air conditioning field in all the indoor units 10, the air conditioner 1 is controlled so as to have the condensation temperature of the indoor unit 10 having the largest air conditioning load among all the indoor units 10. Just do it. Further, the condensing temperature can be controlled according to the refrigerant circulation amount discharged from the compressor 3, and when the refrigerant circulation amount from the compressor 3 increases, the condensation temperature increases, and when the refrigerant circulation amount decreases, the condensation temperature. Becomes lower.

次に、室内機10が設置されている全ての空調場の快適性を維持するために必要な空気調和機1の制御方法について説明する。図4は、本実施の形態の空気調和機1における暖房運転時の圧縮機制御用凝縮温度Tccompの演算処理を表したフローチャートを示す。   Next, the control method of the air conditioner 1 required in order to maintain the comfort of all the air-conditioning places in which the indoor unit 10 is installed is demonstrated. FIG. 4 is a flowchart showing a calculation process of the compressor control condensing temperature Tccomp during the heating operation in the air conditioner 1 of the present embodiment.

本演算処理は、室外機2の制御装置20で行われ、空気調和機1が運転を行っている間、所定の時間間隔もしくは常時処理を行っている。まず、制御装置20は、最大凝縮温度Tcmaxを初期化(Tcmax=0)する(S20)。次に、制御装置20は、全室内機10のうちの一つの室内機I(Iは1〜接続台数)から吸込空気温度Ti(I)と設定温度Ts(I)を受信する(S21)。制御装置20は、受信した吸込空気温度Ti(I)及び設定温度Ts(I)に基づき、室内機Iで必要な目標凝縮温度Tc(I)を数式3により演算する(S22)。ここで目標凝縮温度とは、室内熱交換器11におけるガス冷媒の凝縮温度の目標値である。
(数式3)
Tc=Ti+(−0.09×(Ts−Ti)^2+2×(Ts−Ti)+16)
This calculation process is performed by the control device 20 of the outdoor unit 2, and a predetermined time interval or constant process is performed while the air conditioner 1 is operating. First, the control device 20 initializes the maximum condensing temperature Tcmax (Tcmax = 0) (S20). Next, the control device 20 receives the intake air temperature Ti (I) and the set temperature Ts (I) from one indoor unit I (I is 1 to the number of connected units) of all the indoor units 10 (S21). Based on the received intake air temperature Ti (I) and the set temperature Ts (I), the control device 20 calculates the target condensing temperature Tc (I) necessary for the indoor unit I using Equation 3 (S22). Here, the target condensation temperature is a target value of the condensation temperature of the gas refrigerant in the indoor heat exchanger 11.
(Formula 3)
Tc = Ti + (− 0.09 × (Ts−Ti) ^ 2 + 2 × (Ts−Ti) +16)

次に、制御装置20は、演算した目標凝縮温度Tc(i)と最大凝縮温度Tcmaxを比較する(S23)。最大凝縮温度Tcmaxよりも目標凝縮温度Tc(I)の方が高い場合(S23:YES)、制御装置20は、目標凝縮温度Tc(I)の値を最大凝縮温度Tcmaxとして代入する(S24)。一方、目標凝縮温度Tc(I)が、最大凝縮温度Tcmaxよりも低い、もしくは等しい場合(S23:NO)、制御装置20は、ステップS25に進む。   Next, the control device 20 compares the calculated target condensation temperature Tc (i) with the maximum condensation temperature Tcmax (S23). When the target condensation temperature Tc (I) is higher than the maximum condensation temperature Tcmax (S23: YES), the control device 20 substitutes the value of the target condensation temperature Tc (I) as the maximum condensation temperature Tcmax (S24). On the other hand, when the target condensation temperature Tc (I) is lower than or equal to the maximum condensation temperature Tcmax (S23: NO), the control device 20 proceeds to Step S25.

次に、制御装置20は、全室内機10に対してS21〜S23の処理が行われたか判断する(S25)。全室内機10に対して処理が行われたと判断した場合(S25:YES)、制御装置20は、最大凝縮温度Tcmaxの値を圧縮機制御用凝縮温度Tccompに代入し(S26)、圧縮機制御用凝縮温度Tccompの演算処理を終了する。一方、全室内機10に対して処理が行われていないと判断した場合(S25:NO)、制御装置20は、選定されていない室内機10についてS21〜S24の処理を行う。   Next, the control device 20 determines whether or not the processing of S21 to S23 has been performed on all the indoor units 10 (S25). When it is determined that the processing has been performed on all the indoor units 10 (S25: YES), the control device 20 substitutes the value of the maximum condensing temperature Tcmax into the condensing temperature Tccomp for compressor control (S26), and the condensing for compressor control. The calculation process of the temperature Tccomp ends. On the other hand, when it is determined that the processing has not been performed for all the indoor units 10 (S25: NO), the control device 20 performs the processes of S21 to S24 for the indoor units 10 that are not selected.

図5は、本実施の形態の空気調和機1における暖房運転時の目標凝縮温度Tc、圧縮機制御用凝縮温度Tccompの演算結果を表したテーブルの一例を示す。図3と同様にテーブル中の室内機No.10A〜10Gは、図1の冷媒回路図に示した室内機10A〜10Gに対応している。   FIG. 5 shows an example of a table representing calculation results of the target condensation temperature Tc and the compressor control condensation temperature Tccomp during the heating operation in the air conditioner 1 of the present embodiment. The indoor unit No. in the table is the same as in FIG. 10A to 10G correspond to the indoor units 10A to 10G shown in the refrigerant circuit diagram of FIG.

図5のテーブルに示すように、室内機10Aの吸込空気温度Tiは20℃であり、室内機10Aから室内機10Dまで順に吸込空気温度Tiが2℃ずつ高くなっており、室内機10D〜10Gの吸込空気温度Tiは26℃である。また、室内機10Aの設定温度Tsは26℃であり、室内機10Aから室内機10Dまで順に設定温度Tsが2℃ずつ高く設定されている。また、室内機10Eの設定温度Tsは30℃であり、室内機10Eから室内機10Gまで順に設定温度Tsが2℃ずつ低く設定されている。   As shown in the table of FIG. 5, the intake air temperature Ti of the indoor unit 10A is 20 ° C., and the intake air temperature Ti is increased by 2 ° C. in order from the indoor unit 10A to the indoor unit 10D, and the indoor units 10D to 10G. The intake air temperature Ti is 26 ° C. Further, the set temperature Ts of the indoor unit 10A is 26 ° C., and the set temperature Ts is set higher by 2 ° C. in order from the indoor unit 10A to the indoor unit 10D. Further, the set temperature Ts of the indoor unit 10E is 30 ° C., and the set temperature Ts is set lower by 2 ° C. in order from the indoor unit 10E to the indoor unit 10G.

よって、吸込空気温度Tiと設定温度Tsの温度差は、室内機10A〜10Dで6℃、室内機10Eで4℃、室内機10Fで2℃、室内機10Gで0℃であり、吸込空気温度Tiと設定温度Tsの差は、室内機10Dから室内機10Gにかけて減少している。   Therefore, the temperature difference between the intake air temperature Ti and the set temperature Ts is 6 ° C. for the indoor units 10A to 10D, 4 ° C. for the indoor unit 10E, 2 ° C. for the indoor unit 10F, and 0 ° C. for the indoor unit 10G. The difference between Ti and the set temperature Ts decreases from the indoor unit 10D to the indoor unit 10G.

このような室内機10A〜10Gについて、上記数式3を用いて目標凝縮温度Tcを演算する。その結果、図5に示すように、室内機10Dの目標凝縮温度Tcが、最も高く、50.8℃と演算される。なお、室内機10Dは、その吸込空気温度Tiが最も高く、かつ吸込空気温度Tiと設定温度Tsとの温度差が最も大きい室内機である。   For such indoor units 10A to 10G, the target condensing temperature Tc is calculated using Equation 3 above. As a result, as shown in FIG. 5, the target condensation temperature Tc of the indoor unit 10D is the highest and is calculated to be 50.8 ° C. The indoor unit 10D is an indoor unit having the highest suction air temperature Ti and the largest temperature difference between the suction air temperature Ti and the set temperature Ts.

室内機10Dの目標凝縮温度Tcが最も高くなったことは、吸込空気温度Tiと設定温度Tsとの温度差が大きいほど空調負荷が大きいことを表しており、更に、吸込空気温度Tiが高いほど、目標凝縮温度Tcが高く設定されることを表している。   The fact that the target condensing temperature Tc of the indoor unit 10D is highest indicates that the air conditioning load is larger as the temperature difference between the suction air temperature Ti and the set temperature Ts is larger, and further, the higher the suction air temperature Ti is. This indicates that the target condensation temperature Tc is set high.

そして、図4に示した圧縮機制御用凝縮温度Tccompの演算処理により、圧縮機制御用凝縮温度Tccompは50.8℃となる。室内熱交換器11における冷媒の凝縮温度が、圧縮機制御用凝縮温度Tccompとなるように、圧縮機2の運転周波数が制御装置20により制御される。その結果、全ての室内機10の室内交換器11における冷媒の凝縮温度は、各室内機10で必要とする目標凝縮温度以上となる。よって、全ての室内機10が設置されている空調場の空調負荷に対して必要十分の能力を発生させることが可能となり、全ての室内機10が設置されている空調場の快適性が維持される。また、圧縮機制御用凝縮温度Tccompの設定値を、目標凝縮温度Tcが最も高い室内機10Dに合わせて演算しているため、必要最小限の消費電力で空気調和機の運転が可能となる。   Then, the compressor control condensing temperature Tccomp becomes 50.8 ° C. by the calculation process of the compressor control condensing temperature Tccomp shown in FIG. The operation frequency of the compressor 2 is controlled by the control device 20 so that the condensation temperature of the refrigerant in the indoor heat exchanger 11 becomes the compressor control condensation temperature Tccomp. As a result, the condensation temperature of the refrigerant in the indoor exchangers 11 of all the indoor units 10 is equal to or higher than the target condensation temperature required for each indoor unit 10. Therefore, it becomes possible to generate necessary and sufficient capacity for the air conditioning load of the air conditioning field where all the indoor units 10 are installed, and the comfort of the air conditioning field where all the indoor units 10 are installed is maintained. The Further, since the set value of the compressor control condensing temperature Tccomp is calculated according to the indoor unit 10D having the highest target condensing temperature Tc, the air conditioner can be operated with the minimum necessary power consumption.

ここで室内機10D以外の室内機である室内機10A〜10C、10E〜10Fについては、必要凝縮温度よりも高い凝縮温度で運転しているため、空調負荷に対して発生能力が大きくなりすぎる。そのため、本実施の形態では、室内機10A〜10C、10E〜10Fで発生する暖房能力を抑制する容量制御を行う。室内機10A〜10C、10E〜10Fで発生する暖房能力の容量制御は、室内熱交換器に流入する冷媒循環量を制御することで行われる。例えば、各室内機10での室内膨張弁12の開度を演算して、演算した室内膨張弁12の開度となるように、室内膨張弁12を制御することで行われる。   Here, the indoor units 10A to 10C and 10E to 10F, which are indoor units other than the indoor unit 10D, are operated at a condensing temperature higher than the necessary condensing temperature, and thus the generation capability becomes too large for the air conditioning load. Therefore, in this Embodiment, the capacity | capacitance control which suppresses the heating capability which generate | occur | produces with indoor unit 10A-10C, 10E-10F is performed. The capacity control of the heating capacity generated in the indoor units 10A to 10C, 10E to 10F is performed by controlling the refrigerant circulation amount flowing into the indoor heat exchanger. For example, the calculation is performed by calculating the opening of the indoor expansion valve 12 in each indoor unit 10 and controlling the indoor expansion valve 12 so that the calculated opening of the indoor expansion valve 12 is obtained.

本実施の形態では、室内機10の運転容量を制御する室内膨張弁12の開度の設定方法として、各室内機10の目標凝縮温度Tc、及び圧縮機制御用凝縮温度Tccompから、数式4を用いて室内膨張弁開度比plsiを制御装置20により演算する。室内膨張弁開度比plsiとは、室内膨張弁12の全閉時を0と設定し、室内膨張弁12の全開時を100とした場合の比率を表している。なお、数式4において、Tccopm=Tcの場合、plsi=100とする。
(数式4)
plsi=INT(−55×Ln(Tccomp−Tc)+135)
In the present embodiment, as a method for setting the opening degree of the indoor expansion valve 12 that controls the operating capacity of the indoor unit 10, Formula 4 is used from the target condensation temperature Tc of each indoor unit 10 and the compressor control condensation temperature Tccomp. The controller 20 calculates the indoor expansion valve opening ratio plsi. The indoor expansion valve opening ratio plsi represents a ratio when the indoor expansion valve 12 is fully closed and set to 0 and the indoor expansion valve 12 is fully open. In Equation 4, when Tccopm = Tc, plsi = 100.
(Formula 4)
plsi = INT (−55 × Ln (Tccomp−Tc) +135)

図5に室内膨張弁開度比plsiの演算結果を示している。圧縮機制御用凝縮温度Tccompと同等温度の目標凝縮温度である室内機10Dは、室内熱交換器の性能を最大限に発揮できるように室内膨張弁開度比plsiが100に設定されている。室内機10D以外の室内機10A〜10C、10E〜10Fについては、吸込空気温度Tiが低いほど、吸込空気温度Tiと設定温度Tsとの温度差が小さいほど、室内膨張弁開度比plsiが小さくなるように設定される。   FIG. 5 shows the calculation result of the indoor expansion valve opening ratio plsi. The indoor expansion valve opening ratio plsi is set to 100 so that the indoor unit 10D having the target condensation temperature equivalent to the compressor control condensation temperature Tccomp can maximize the performance of the indoor heat exchanger. For the indoor units 10A to 10C, 10E to 10F other than the indoor unit 10D, the lower the intake air temperature Ti is, the smaller the temperature difference between the intake air temperature Ti and the set temperature Ts is, the smaller the indoor expansion valve opening ratio plsi is. Is set to be

この室内膨張弁開度比plsiが小さく設定されることにより、制御装置20により室内膨張弁12の開度が絞られ、室内熱交換器11に流入する冷媒循環量が低減されるため、室内機10での発生能力を抑制することができ、ひいては各室内機10の空調負荷と発生能力がバランス(一致)するように制御される。よって、無駄なサーモON−OFFを繰り返す運転を低減することができ、各室内機10の暖房運転が連続運転となるため、空調場の快適性が更に良好に維持できる。   By setting the indoor expansion valve opening ratio plsi to be small, the opening degree of the indoor expansion valve 12 is reduced by the control device 20 and the amount of refrigerant circulating into the indoor heat exchanger 11 is reduced. Therefore, the air conditioning load and the generation capacity of each indoor unit 10 are controlled so as to be balanced (matched). Therefore, the operation | movement which repeats useless thermo ON-OFF can be reduced, and since the heating operation of each indoor unit 10 becomes a continuous operation, the comfort of an air-conditioning field can be maintained further favorably.

なお、上述した本発明の実施形態および実施例は、本発明の説明のための例示であり、本発明の範囲をそれらの実施形態あるいは実施例のみに限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。   The embodiments and examples of the present invention described above are examples for explaining the present invention, and are not intended to limit the scope of the present invention only to those embodiments or examples. Those skilled in the art can implement the present invention in various other modes without departing from the gist of the present invention.

例えば、圧縮機3の運転周波数を制御する目標値として、冷房運転時には蒸発温度を検出し、暖房運転時には凝縮温度を検出するたに、熱交換器温度センサ14を各室内機10に設けているが、室外機2に付設する吐出圧力センサ(図示せず)や吸入圧力センサ(図示せず)を圧縮機3の運転周波数を制御する目標値としても良い。   For example, as a target value for controlling the operation frequency of the compressor 3, the heat exchanger temperature sensor 14 is provided in each indoor unit 10 in order to detect the evaporation temperature during the cooling operation and the condensation temperature during the heating operation. However, a discharge pressure sensor (not shown) or a suction pressure sensor (not shown) attached to the outdoor unit 2 may be set as a target value for controlling the operating frequency of the compressor 3.

1:空気調和機、2:室外機、3:圧縮機、10A〜10G:室内機、11A〜11G:室内熱交換器、12A〜12G:室内膨張弁、20:制御装置
1: Air conditioner, 2: Outdoor unit, 3: Compressor, 10A-10G: Indoor unit, 11A-11G: Indoor heat exchanger, 12A-12G: Indoor expansion valve, 20: Control device

Claims (4)

圧縮機を有する室外機と、前記室外機に冷媒回路を介して接続され室内熱交換器を有する複数台の室内機とを備えた空気調和機の制御装置であって、
前記複数台の室内機毎に、前記室内機の設定温度及び吸込空気温度に基づいて、暖房運転の場合は、前記室内熱交換器における冷媒の目標凝縮温度を、冷房運転の場合は、前記室内熱交換器における冷媒の目標蒸発温度を、演算し、
暖房運転の場合は、前記演算手段により演算された前記複数台の室内機の前記目標凝縮温度の最大値を、冷房運転の場合は、前記演算手段により演算された前記複数台の室内機の前記目標蒸発温度の最小値を、前記圧縮機を制御するための制御目標値として設定し、
暖房運転の場合は、前記室内熱交換器における冷媒の凝縮温度が前記制御目標値となるように、前記圧縮機の周波数を制御し、冷房運転の場合は、前記室内熱交換器における冷媒の蒸発温度が前記制御目標値となるように、前記圧縮機の周波数を制御する、空気調和機の制御装置。
An air conditioner control apparatus comprising: an outdoor unit having a compressor; and a plurality of indoor units connected to the outdoor unit via a refrigerant circuit and having an indoor heat exchanger,
For each of the plurality of indoor units, based on the set temperature and the intake air temperature of the indoor unit, in the case of heating operation, the target condensation temperature of the refrigerant in the indoor heat exchanger, in the case of cooling operation, the indoor temperature Calculate the target evaporation temperature of the refrigerant in the heat exchanger,
In the case of heating operation, the maximum value of the target condensing temperature of the plurality of indoor units calculated by the calculation means, and in the case of cooling operation, the maximum value of the plurality of indoor units calculated by the calculation means. Set a minimum value of the target evaporation temperature as a control target value for controlling the compressor,
In the case of heating operation, the frequency of the compressor is controlled so that the condensation temperature of the refrigerant in the indoor heat exchanger becomes the control target value. In the case of cooling operation, the evaporation of the refrigerant in the indoor heat exchanger. An air conditioner control device that controls the frequency of the compressor so that the temperature becomes the control target value.
圧縮機を有する室外機と、前記室外機に冷媒回路を介して接続され室内熱交換器及び室内膨張弁を有する複数台の室内機とを備えた空気調和機の制御装置であって、
前記複数台の室内機毎に、前記室内機の設定温度及び吸込空気温度に基づいて、暖房運転の場合は、前記室内熱交換器における冷媒の目標凝縮温度を、冷房運転の場合は、前記室内熱交換器における冷媒の目標蒸発温度を、演算し、
暖房運転の場合は、前記演算手段により演算された前記複数台の室内機の前記目標凝縮温度の最大値を、冷房運転の場合は、前記演算手段により演算された前記複数台の室内機の前記目標蒸発温度の最小値を、前記圧縮機を制御するための制御目標値として設定し、
暖房運転の場合は、前記複数台の室内機毎の前記目標凝縮温度と前記制御目標値との差に基づき、前記複数台の室内機毎の前記室内膨張弁の開度を演算し、冷房運転の場合は、前記複数台の室内機毎の前記目標蒸発温度と前記制御目標値との差に基づき、前記複数台の室内機毎の目標冷媒過熱度を演算し、
暖房運転の場合は、演算した前記室内膨張弁の開度に基づき前記室内膨張弁を制御し、冷房運転の場合は、前記目標冷媒過熱度に基づき前記室内膨張弁を制御する、空気調和機の制御装置。
An air conditioner control device comprising: an outdoor unit having a compressor; and a plurality of indoor units connected to the outdoor unit via a refrigerant circuit and having an indoor heat exchanger and an indoor expansion valve,
For each of the plurality of indoor units, based on the set temperature and the intake air temperature of the indoor unit, in the case of heating operation, the target condensation temperature of the refrigerant in the indoor heat exchanger, in the case of cooling operation, the indoor temperature Calculate the target evaporation temperature of the refrigerant in the heat exchanger,
In the case of heating operation, the maximum value of the target condensing temperature of the plurality of indoor units calculated by the calculation means, and in the case of cooling operation, the maximum value of the plurality of indoor units calculated by the calculation means. Set a minimum value of the target evaporation temperature as a control target value for controlling the compressor,
In the case of heating operation, based on the difference between the target condensation temperature for each of the plurality of indoor units and the control target value, the opening degree of the indoor expansion valve for each of the plurality of indoor units is calculated, and cooling operation is performed. In this case, based on the difference between the target evaporation temperature for each of the plurality of indoor units and the control target value, the target refrigerant superheat degree for each of the plurality of indoor units is calculated,
In the case of heating operation, the indoor expansion valve is controlled based on the calculated opening of the indoor expansion valve, and in the case of cooling operation, the indoor expansion valve is controlled based on the target refrigerant superheat degree. Control device.
暖房運転の場合は、前記吸込空気温度が高いほど、前記設定温度と前記吸込空気温度の差が大きいほど、前記目標凝縮温度が高くなるように演算し、冷房運転の場合は、前記吸込空気温度が低いほど、前記設定温度と前記吸込空気温度の差が小さいほど、前記目標蒸発温度が低くなるように演算する、請求項1又は2に記載の空気調和機の制御装置。   In the case of heating operation, the higher the intake air temperature, the higher the difference between the set temperature and the intake air temperature, the higher the target condensation temperature, and in the case of cooling operation, the intake air temperature. The air conditioner control device according to claim 1, wherein the target evaporation temperature is calculated to be lower as the difference between the set temperature and the intake air temperature is smaller as the difference is lower. 暖房運転の場合は、前記制御目標値と前記目標凝縮温度との差が大きいほど、前記室内膨張弁の開度の値が小さくなるように演算し、冷房運転の場合は、前記制御目標値と前記目標蒸発温度の差が大きいほど、前記目標冷媒過熱度の値が大きくなるように演算する請求項2に記載の空気調和機の制御装置。
In the case of heating operation, the larger the difference between the control target value and the target condensing temperature, the smaller the opening value of the indoor expansion valve, and in the case of cooling operation, the control target value and The control device for an air conditioner according to claim 2, wherein the control is performed so that the value of the target refrigerant superheat degree increases as the difference in the target evaporation temperature increases.
JP2013119439A 2013-06-06 2013-06-06 Air conditioner control device Active JP6045440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013119439A JP6045440B2 (en) 2013-06-06 2013-06-06 Air conditioner control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013119439A JP6045440B2 (en) 2013-06-06 2013-06-06 Air conditioner control device

Publications (3)

Publication Number Publication Date
JP2014238179A true JP2014238179A (en) 2014-12-18
JP2014238179A5 JP2014238179A5 (en) 2015-09-03
JP6045440B2 JP6045440B2 (en) 2016-12-14

Family

ID=52135465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013119439A Active JP6045440B2 (en) 2013-06-06 2013-06-06 Air conditioner control device

Country Status (1)

Country Link
JP (1) JP6045440B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841292A (en) * 2016-03-23 2016-08-10 广东美的暖通设备有限公司 Multi-split air conditioner system and liquid supplement control method thereof
WO2018105250A1 (en) * 2016-12-09 2018-06-14 ダイキン工業株式会社 Air conditioning apparatus
WO2019012600A1 (en) * 2017-07-11 2019-01-17 三菱電機株式会社 Refrigeration cycle device
JP2020046123A (en) * 2018-09-20 2020-03-26 株式会社富士通ゼネラル Air conditioning device
JP2020046124A (en) * 2018-09-20 2020-03-26 株式会社富士通ゼネラル Air conditioning device
CN112902503A (en) * 2021-02-03 2021-06-04 四川长虹空调有限公司 Variable frequency multi-split air conditioning unit heating oil return control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257875A (en) * 1988-08-19 1990-02-27 Daikin Ind Ltd Operation controller for air conditioner
JP2008175409A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Operation control method of air conditioning system, and air conditioning system
JP2012197958A (en) * 2011-03-18 2012-10-18 Fujitsu General Ltd Air conditioning apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257875A (en) * 1988-08-19 1990-02-27 Daikin Ind Ltd Operation controller for air conditioner
JP2008175409A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Operation control method of air conditioning system, and air conditioning system
JP2012197958A (en) * 2011-03-18 2012-10-18 Fujitsu General Ltd Air conditioning apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841292A (en) * 2016-03-23 2016-08-10 广东美的暖通设备有限公司 Multi-split air conditioner system and liquid supplement control method thereof
CN105841292B (en) * 2016-03-23 2018-09-07 广东美的暖通设备有限公司 Multi-line system and its fluid infusion control method
WO2018105250A1 (en) * 2016-12-09 2018-06-14 ダイキン工業株式会社 Air conditioning apparatus
JP2018096583A (en) * 2016-12-09 2018-06-21 ダイキン工業株式会社 Air conditioning apparatus
WO2019012600A1 (en) * 2017-07-11 2019-01-17 三菱電機株式会社 Refrigeration cycle device
JPWO2019012600A1 (en) * 2017-07-11 2020-02-06 三菱電機株式会社 Refrigeration cycle device
JP2020046123A (en) * 2018-09-20 2020-03-26 株式会社富士通ゼネラル Air conditioning device
JP2020046124A (en) * 2018-09-20 2020-03-26 株式会社富士通ゼネラル Air conditioning device
JP7159736B2 (en) 2018-09-20 2022-10-25 株式会社富士通ゼネラル air conditioner
JP7193775B2 (en) 2018-09-20 2022-12-21 株式会社富士通ゼネラル air conditioner
CN112902503A (en) * 2021-02-03 2021-06-04 四川长虹空调有限公司 Variable frequency multi-split air conditioning unit heating oil return control method
CN112902503B (en) * 2021-02-03 2022-11-29 四川长虹空调有限公司 Variable frequency multi-split air conditioner heating oil return control method

Also Published As

Publication number Publication date
JP6045440B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6045440B2 (en) Air conditioner control device
JP5182358B2 (en) Refrigeration equipment
JP6479162B2 (en) Air conditioner
US9528732B2 (en) Heat pump apparatus
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
JP6878612B2 (en) Refrigeration cycle equipment
JP6950191B2 (en) Air conditioner
WO2008032559A1 (en) Air conditioner
JP6707189B2 (en) Air conditioner and fan speed control method for air conditioner
JP5846226B2 (en) Air conditioner
JPWO2014061129A1 (en) Air conditioner
JPWO2014061130A1 (en) Air conditioner
JP2015068614A (en) Refrigeration unit
JP6758506B2 (en) Air conditioner
JP4969271B2 (en) Air conditioner
WO2015132951A1 (en) Refrigeration device
JP6584127B2 (en) Air conditioner
JP7343755B2 (en) refrigerant cycle system
JP6978242B2 (en) Refrigerant circuit equipment
JPWO2019043941A1 (en) Air conditioner
JP7233568B2 (en) Air conditioning system and its control method
KR101965182B1 (en) Air conditioner and method for controlling the same
JP2017155983A (en) Refrigeration device
JP2011127805A (en) Air conditioning device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161115

R150 Certificate of patent or registration of utility model

Ref document number: 6045440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250