JP6707189B2 - Air conditioner and fan speed control method for air conditioner - Google Patents

Air conditioner and fan speed control method for air conditioner Download PDF

Info

Publication number
JP6707189B2
JP6707189B2 JP2019513129A JP2019513129A JP6707189B2 JP 6707189 B2 JP6707189 B2 JP 6707189B2 JP 2019513129 A JP2019513129 A JP 2019513129A JP 2019513129 A JP2019513129 A JP 2019513129A JP 6707189 B2 JP6707189 B2 JP 6707189B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
outdoor
difference
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019513129A
Other languages
Japanese (ja)
Other versions
JPWO2018193537A1 (en
Inventor
秀輝 月野
秀輝 月野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018193537A1 publication Critical patent/JPWO2018193537A1/en
Application granted granted Critical
Publication of JP6707189B2 publication Critical patent/JP6707189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Description

本発明は、空気調和機及び空気調和機のファン速制御方法に関するものであり、より詳しくは、複数の冷凍サイクル回路を有するマルチタイプの空気調和機及びその空気調和機のファン速制御方法に関するものである。 The present invention relates to an air conditioner and a fan speed control method for an air conditioner, and more particularly to a multi-type air conditioner having a plurality of refrigeration cycle circuits and a fan speed control method for the air conditioner. Is.

従来、1台の室外機に複数台の室内機を接続し、複数台の室内機を個別に運転し、制御することが可能なマルチタイプの空気調和機が存在する。マルチタイプの空気調和機においては、接続可能な室内機の台数が増え、室外機に必要とされる能力帯が大きくなると、接続される室内機の台数が最大となる時の能力を最大能力として室外機に担保しなければならない。そのため、室外機に大型の圧縮機を搭載する必要が出てくる。大型の圧縮機を室外機に搭載した場合、運転する室内機が1台のみで、当該室内機の設置されている部屋の空調負荷が小さいと、圧縮機の許容する最低周波数で運転をすることとなる。しかしながら、大型の圧縮機の場合、空調負荷に対して圧縮機の運転能力が大きくなってしまう可能性がある。その結果、圧縮機の断続運転が行われ、快適性が損なわれることが懸念される。 Conventionally, there is a multi-type air conditioner in which a plurality of indoor units are connected to one outdoor unit and the plurality of indoor units can be individually operated and controlled. In a multi-type air conditioner, when the number of connectable indoor units increases and the capacity band required for outdoor units increases, the maximum capacity is the capacity when the number of connected indoor units becomes maximum. You must secure the outdoor unit. Therefore, it becomes necessary to mount a large compressor on the outdoor unit. When a large compressor is installed in the outdoor unit, if only one indoor unit is operating and the air conditioning load of the room in which the indoor unit is installed is small, operate at the lowest frequency allowed by the compressor. Becomes However, in the case of a large compressor, the operating capacity of the compressor may increase with respect to the air conditioning load. As a result, there is a concern that the compressor may be operated intermittently and comfort may be impaired.

このような問題を解決する手段として、特許文献1には、1台の室外機の中に、2つの圧縮機と、2つの四方弁と、2つの絞り部とを搭載し、室外熱交換器を2系統に分割することにより、2系統の冷媒回路を備えたマルチタイプの空気調和機が記載されている。特許文献1に記載されている、独立した2つの冷凍サイクルを有するマルチタイプの空気調和機では、冷凍サイクルの冷媒が流れるパスを複数有する室外熱交換器において、異なる冷凍サイクルのパスが帯状のフィンの長さ方向に交互に配置されている。また、特許文献2に記載の空気調和機は、複数の室外熱交換器を有するマルチ型の冷暖房兼用空気調和機であり、個々の室外熱交換器は複数の帯状の積層されたフィンを有し、かつフィンはフィンの長さ方向に対して第一熱交管部と第二熱交管部に区切られている。 As means for solving such a problem, Patent Literature 1 discloses an outdoor heat exchanger in which two compressors, two four-way valves, and two throttles are mounted in one outdoor unit. Is divided into two systems to describe a multi-type air conditioner having two systems of refrigerant circuits. In a multi-type air conditioner having two independent refrigeration cycles described in Patent Document 1, in an outdoor heat exchanger having a plurality of paths through which refrigerant of the refrigeration cycle flows, different refrigeration cycle paths have strip-shaped fins. Are arranged alternately in the length direction. Further, the air conditioner described in Patent Document 2 is a multi-type air conditioner for both heating and cooling that has a plurality of outdoor heat exchangers, and each outdoor heat exchanger has a plurality of band-shaped laminated fins. Moreover, the fin is divided into a first heat exchange pipe portion and a second heat exchange pipe portion in the longitudinal direction of the fin.

特開2006−153333号公報JP, 2006-153333, A 特開2000−39223号公報JP, 2000-39223, A

特許文献1及び特許文献2の空気調和機のように、室外熱交換器を2つの系統に分割する構成を採用すると、1系統当たりで発揮すべき能力は半分で済むため、圧縮機の最大能力を確保しつつ、室内機の個別運転時の圧縮機の最小能力を低くすることができる。しかしながら、特許文献1及び特許文献2に示される空気調和機では、2系統を同時に運転する際の、室外熱交換器に空気を供給するファンのファン速制御について考慮がなされていない。従って、それぞれ空調負荷の異なる系統の冷凍サイクルを同時に制御するのが困難となってしまう。 When the configuration in which the outdoor heat exchanger is divided into two systems is adopted like the air conditioners of Patent Document 1 and Patent Document 2, the capacity to be exhibited per system is half, so the maximum capacity of the compressor It is possible to reduce the minimum capacity of the compressor during the individual operation of the indoor unit while ensuring the above. However, in the air conditioners shown in Patent Documents 1 and 2, no consideration is given to the fan speed control of the fan that supplies air to the outdoor heat exchanger when operating the two systems at the same time. Therefore, it becomes difficult to simultaneously control the refrigeration cycles of the systems having different air conditioning loads.

2系統の冷凍サイクル回路では、系統ごとに適切な冷媒の安定状態が存在する。例えば冷房運転では、それぞれの系統における室外熱交換器での必要な過冷却度は空調負荷によって異なる。従って、室外熱交換器において、それぞれの系統において適正な過冷却度を保つためには、系統ごとに個別の室外熱交換器用のファンとファンモーターとを備えてなければならない。すなわち、特許文献1及び特許文献2のような2系統の冷凍サイクルを有するマルチタイプの空気調和機においては、全体としてファンとファンモーターとが2個ずつ必要になる。そのため、制御が複雑となるという問題がある。 In the two-system refrigeration cycle circuit, an appropriate stable state of the refrigerant exists for each system. For example, in the cooling operation, the required degree of subcooling in the outdoor heat exchanger in each system varies depending on the air conditioning load. Therefore, in order to maintain an appropriate degree of subcooling in each system in the outdoor heat exchanger, each system must be provided with a fan for the outdoor heat exchanger and a fan motor. That is, in a multi-type air conditioner having two refrigeration cycles as in Patent Document 1 and Patent Document 2, two fans and two fan motors are required as a whole. Therefore, there is a problem that control becomes complicated.

本発明は、上記のような課題を解決するためになされたものであり、複数系統の冷凍サイクルを有する空気調和機であって、簡易な制御で各系統の冷凍サイクルのバランスをとり、空気調和機全体で安定した運転ができる空気調和機及び空気調和機のファン速制御方法を提供することを目的とする。 The present invention has been made in order to solve the above problems, and is an air conditioner having a plurality of refrigeration cycles, and balances the refrigeration cycles of the respective systems by simple control to perform air conditioning. An object of the present invention is to provide an air conditioner and a fan speed control method for the air conditioner that enable stable operation of the entire machine.

本発明に係る空気調和機は、室外機と複数の室内機とを備え、前記室外機は、複数の圧縮機と、複数の室外熱交換器と、複数の流路切替装置と、複数の膨張弁と、前記複数の室外熱交換器に空気を送る単一の室外ファンと、前記単一の室外ファンを駆動する単一の室外ファンモーターと、前記室外機を制御する室外機制御手段とを有し、前記複数の室内機は、それぞれ室内熱交換器を有し、前記圧縮機と前記室外熱交換器と前記流路切換装置と前記膨張弁と前記複数の室内機のうちの一部の室内機の前記室内熱交換器とが冷媒配管で接続された冷凍サイクル回路が複数系統構成されている空気調和機であって、前記室外機制御手段は、前記複数系統の前記冷凍サイクル回路が同時に運転されているとき、前記複数系統の前記冷凍サイクル回路のそれぞれの前記室外熱交換器における冷媒の目標凝縮温度を取得し、前記複数系統の前記冷凍サイクル回路毎に、前記圧縮機の運転周波数を取得し、前記複数系統の前記冷凍サイクル回路毎に、前記圧縮機の運転周波数の帯域の高低に対応して段階的に規定されている複数の周波数バンドと、前記複数の周波数バンド毎に規定されている前記室外熱交換器の目標凝縮温度の中から、取得した前記圧縮機の運転周波数に基づいて前記目標凝縮温度と、を特定し、運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドと、運転周波数が最も小さい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドとの差分を算出し、前記周波数バンドの差分に対応して段階的に規定されている複数の前記目標凝縮温度の補正値の中から、算出された前記周波数バンドの差分に基づいて、前記補正値を決定し、運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記目標凝縮温度を前記補正値で補正し、前記室外熱交換器の凝縮温度が前記補正値で補正された前記目標凝縮温度となるよう、前記単一の室外ファンモーターの回転数を制御するものである。 An air conditioner according to the present invention includes an outdoor unit and a plurality of indoor units, the outdoor unit, a plurality of compressors, a plurality of outdoor heat exchangers, a plurality of flow path switching device, a plurality of expansion. a valve, and a single outdoor fan for sending air to the plurality of outdoor heat exchanger, a single outdoor fan motor for driving the single outdoor fan, an outdoor unit control unit for controlling the outdoor unit Having the plurality of indoor units, each has an indoor heat exchanger, the compressor, the outdoor heat exchanger, the flow path switching device, the expansion valve and a part of the plurality of indoor units The indoor heat exchanger of the indoor unit is an air conditioner in which a plurality of refrigeration cycle circuits connected by refrigerant piping are configured, the outdoor unit control means, the refrigeration cycle circuit of the plurality of systems simultaneously When operating, obtain the target condensing temperature of the refrigerant in each of the outdoor heat exchangers of the refrigeration cycle circuit of the plurality of systems, for each of the refrigeration cycle circuits of the plurality of systems, the operating frequency of the compressor. Acquired, for each of the plurality of refrigeration cycle circuits, a plurality of frequency bands that are defined in stages corresponding to the height of the operating frequency band of the compressor, and are defined for each of the plurality of frequency bands. From the target condensing temperature of the outdoor heat exchanger, the target condensing temperature based on the acquired operating frequency of the compressor is specified, and the refrigeration cycle circuit having the compressor with the largest operating frequency. And a difference between the frequency band and the frequency band of the refrigeration cycle circuit having the compressor having the smallest operating frequency is calculated, and the plurality of the plurality of stages are defined in stages corresponding to the difference in the frequency band. From the correction value of the target condensing temperature, the correction value is determined based on the calculated difference of the frequency band, and the target condensing temperature of the refrigeration cycle circuit having the compressor with the largest operating frequency is set to the target condensing temperature. The rotation speed of the single outdoor fan motor is controlled so that the condensation temperature of the outdoor heat exchanger is corrected by the correction value to reach the target condensation temperature corrected by the correction value .

また、本発明に係る空気調和機のファン速制御方法は、室外機と複数の室内機とを備え、前記室外機は、複数の圧縮機と、複数の室外熱交換器と、複数の流路切替装置と、複数の膨張弁と、前記複数の室外熱交換器に空気を送る単一の室外ファンと、前記単一の室外ファンを駆動する単一の室外ファンモーターと有し、前記圧縮機と前記室外熱交換器と前記流路切換装置と前記膨張弁と前記複数の室内機のうちの一部の室内機の室内熱交換器とが冷媒配管で接続された冷凍サイクル回路を複数系統有する空気調和機において、前記複数系統の冷凍サイクル回路が同時に運転されているとき、前記空気調和機の冷媒の目標凝縮温度を設定する設定ステップと、前記目標凝縮温度に基づいて前記単一の室外ファンモーターの回転を制御するモーター制御ステップとを含み、前記設定ステップは、前記複数系統の前記冷凍サイクル回路毎に、前記圧縮機の運転周波数を取得し、前記圧縮機の運転周波数の帯域の高低に対応して段階的に規定されている複数の周波数バンドと、前記複数の周波数バンド毎に規定されている、前記室外熱交換器の目標凝縮温度の中から、前記複数系統の前記冷凍サイクル回路毎に、取得した前記圧縮機の運転周波数に基づいて前記目標凝縮温度と、を特定する特定ステップと、運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドと、運転周波数が最も小さい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドとの差分を算出するバンド差分算出ステップと、前記周波数バンドの差分に対応して段階的に規定されている複数の前記目標凝縮温度の補正値の中から、前記バンド差分算出ステップで算出された前記周波数バンドの前記差分に基づいて、前記補正値を決定する補正値決定ステップと、運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記目標凝縮温度を前記補正値で補正する補正ステップとを含んでいる。 Further, a fan speed control method for an air conditioner according to the present invention includes an outdoor unit and a plurality of indoor units, the outdoor unit is a plurality of compressors, a plurality of outdoor heat exchangers, a plurality of flow paths. It has a switching device, a plurality of expansion valves, a single outdoor fan for sending air to the plurality of outdoor heat exchanger, a single outdoor fan motor for driving the single outdoor fan, the compressor And a plurality of refrigeration cycle circuits in which the outdoor heat exchanger, the flow path switching device, the expansion valve, and the indoor heat exchanger of some indoor units of the plurality of indoor units are connected by refrigerant piping In the air conditioner, when the plurality of refrigeration cycle circuits are simultaneously operated, a setting step of setting a target condensing temperature of the refrigerant of the air conditioner, and the single outdoor fan based on the target condensing temperature look including a motor control step of controlling the rotation of the motor, the setting step, for each of the refrigeration cycle circuit of the plurality of systems, acquires the operation frequency of the compressor, high and low band operation frequency of said compressor A plurality of frequency bands that are defined in a stepwise manner corresponding to, and among the target condensing temperatures of the outdoor heat exchanger that are defined for each of the plurality of frequency bands, the refrigeration cycle circuits of the plurality of systems. For each, the target condensing temperature based on the acquired operating frequency of the compressor, a specific step of specifying, the operating frequency is the frequency band of the refrigeration cycle circuit having the compressor having the largest operating frequency, A band difference calculation step of calculating a difference with the frequency band of the refrigeration cycle circuit having the smallest compressor, and a plurality of the target condensing temperatures defined stepwise corresponding to the difference of the frequency band. A correction value determination step of determining the correction value based on the difference of the frequency bands calculated in the band difference calculation step from the correction values, and the refrigeration cycle having the compressor with the largest operating frequency. and a correction step of correcting the target condensing temperature of the circuit with the correction value are Nde free.

本発明に係る空気調和機及び空気調和機のファン速制御方法によれば、複数系統の冷凍サイクル回路のそれぞれの空調負荷が異なる場合であっても、各系統において過冷却度が付きすぎの状態、若しくは過冷却度が不足する状態を招くことがない。その結果、各系統において、能力過多の運転、若しくは能力不足気味の運転が防止され、空気調和機全体でバランスのとれた冷房運転を実行することができる。 According to the air conditioner and the fan speed control method for an air conditioner according to the present invention, even when the air conditioning loads of the refrigeration cycle circuits of the multiple systems are different, the degree of supercooling is excessive in each system. Or, a state in which the degree of supercooling is insufficient will not be caused. As a result, in each system, an operation with excessive capacity or an operation with a shortage of capacity is prevented, and a balanced cooling operation can be executed in the entire air conditioner.

本発明の実施の形態における空気調和機の構成図である。It is a lineblock diagram of an air conditioner in an embodiment of the invention. 現在の凝縮温度、目標凝縮温度、及び室外ファンモーターの安定回転数との関係を示すグラフである。It is a graph which shows the present condensation temperature, a target condensation temperature, and the relationship with the stable rotation speed of an outdoor fan motor. 現在の凝縮温度と目標凝縮温度との差分と、室外ファンモーターの安定回転数との関係を示す図である。It is a figure which shows the difference between the present condensation temperature and target condensation temperature, and the stable rotation speed of an outdoor fan motor. 本発明の実施の形態に係るファン速制御の処理手順を示すフローチャートである。5 is a flowchart showing a processing procedure of fan speed control according to the embodiment of the present invention. 冷房運転の開始処理の手順を示すフローチャートである。It is a flow chart which shows the procedure of the start processing of cooling operation. 運転している室内機の系統を抽出する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which extracts the system of the indoor unit which is operating. 目標凝縮温度の決定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the determination process of target condensing temperature. バンド差を算出する処理の手順を示すフローチャートである。It is a flow chart which shows the procedure of processing which calculates a band difference. 目標凝縮温度を設定する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which sets a target condensing temperature. 室外ファンモーターの回転数決定の処理手順を示すフローチャートである。It is a flow chart which shows the processing procedure of rotation number determination of an outdoor fan motor. 室外ファンモーターの回転数の制御を示す回転数ステップのグラフである。It is a graph of the rotation speed step which shows control of the rotation speed of an outdoor fan motor. 室外ファンモーターの回転数変更の処理手順を示すフローチャートである。It is a flow chart which shows the processing procedure of rotation speed change of an outdoor fan motor.

以下に、本発明における空気調和機の実施の形態を図面に基づいて詳細に説明する。尚、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさは実際の装置とは異なる場合がある。 Embodiments of an air conditioner according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the embodiments described below. Further, in the following drawings, the size of each component may be different from the actual device.

実施の形態.
図1は、本発明の実施の形態における空気調和機の構成図である。本実施の形態の空気調和機は、熱源機としての室外機Xと、室外機Xに並列に接続された利用ユニットとしての室内機Y1、室内機Y2、室内機Y3、及び室内機Y4とを備えている。
Embodiment.
FIG. 1 is a configuration diagram of an air conditioner according to an embodiment of the present invention. The air conditioner of the present embodiment includes an outdoor unit X as a heat source unit, and an indoor unit Y1, an indoor unit Y2, an indoor unit Y3, and an indoor unit Y4, which are utilization units connected in parallel to the outdoor unit X. I have it.

室外機Xは、圧縮機1A及び圧縮機1Bと、四方弁2A及び四方弁2Bと、室外熱交換器3A及び室外熱交換器3Bと、室外ファン4と、室外ファンモーター5と、膨張弁6A1、膨張弁6A2、膨張弁6B1、及び膨張弁6B2と、液側バルブ10A及び液側バルブ10Bと、ガス側バルブ11A及びガス側バルブ11Bとを有している。また、室外機Xは、温度検出手段12A及び温度検出手段12Bと、温度検出手段13A及び温度検出手段13Bと、温度検出手段14と、温度検出手段15A及び温度検出手段15Bと、室外機制御手段19とを有している。 The outdoor unit X includes a compressor 1A and a compressor 1B, a four-way valve 2A and a four-way valve 2B, an outdoor heat exchanger 3A and an outdoor heat exchanger 3B, an outdoor fan 4, an outdoor fan motor 5, and an expansion valve 6A1. , Expansion valve 6A2, expansion valve 6B1, and expansion valve 6B2, liquid side valve 10A and liquid side valve 10B, gas side valve 11A and gas side valve 11B. The outdoor unit X includes a temperature detecting unit 12A and a temperature detecting unit 12B, a temperature detecting unit 13A and a temperature detecting unit 13B, a temperature detecting unit 14, a temperature detecting unit 15A and a temperature detecting unit 15B, and an outdoor unit controlling unit. And 19.

室外機制御手段19は、室外機Xを全体的に制御するコントローラである。圧縮機1A及び圧縮機1Bは、例えば周波数変化可能な圧縮機である。膨張弁6A1及び6A2、並びに膨張弁6B1及び6B2は、開度を可変に制御することができる構造となっている。四方弁2A及び四方弁2Bにより、圧縮機1A及び圧縮機1Bから吐出されたガス冷媒の流通方向が切り替えられる。室外熱交換器3A及び室外熱交換器3Bは、外気と冷媒との間で熱交換を行う熱交換器である。室外ファン4は、室外熱交換器3A及び室外熱交換器3Bに外気を送風する送風機である。室外ファン4は、室外ファンモーター5により回転駆動される。膨張弁6A1、膨張弁6A2、膨張弁6B1、及び膨張弁6B2は、冷媒を減圧する弁である。圧縮機1Aの吐出温度は温度検出手段12Aにより検出され、圧縮機1Bの吐出温度は温度検出手段12Bにより検出される。室外熱交換器3Aの冷媒飽和温度は温度検出手段13Aにより検出され、室外熱交換器3Bの冷媒飽和温度は温度検出手段13Bにより検出される。外気の温度は温度検出手段14により検出される。室外熱交換器3Aの温度は温度検出手段15Aにより検出され、室外熱交換器3Bの温度は温度検出手段15Bにより検出される。尚、以降の説明では、室外機Xの各構成要素の符号の後のアルファベットを省略する場合があるが、その場合は各構成要素を総称して示すものである。 The outdoor unit control means 19 is a controller that controls the outdoor unit X as a whole. The compressors 1A and 1B are, for example, frequency changeable compressors. The expansion valves 6A1 and 6A2 and the expansion valves 6B1 and 6B2 have a structure capable of variably controlling the opening degree. The four-way valve 2A and the four-way valve 2B switch the flow direction of the gas refrigerant discharged from the compressor 1A and the compressor 1B. The outdoor heat exchanger 3A and the outdoor heat exchanger 3B are heat exchangers that exchange heat between the outside air and the refrigerant. The outdoor fan 4 is a blower that blows outside air to the outdoor heat exchanger 3A and the outdoor heat exchanger 3B. The outdoor fan 4 is rotationally driven by the outdoor fan motor 5. The expansion valve 6A1, the expansion valve 6A2, the expansion valve 6B1, and the expansion valve 6B2 are valves that decompress the refrigerant. The discharge temperature of the compressor 1A is detected by the temperature detecting means 12A, and the discharge temperature of the compressor 1B is detected by the temperature detecting means 12B. The refrigerant saturation temperature of the outdoor heat exchanger 3A is detected by the temperature detecting means 13A, and the refrigerant saturation temperature of the outdoor heat exchanger 3B is detected by the temperature detecting means 13B. The temperature of the outside air is detected by the temperature detecting means 14. The temperature of the outdoor heat exchanger 3A is detected by the temperature detecting means 15A, and the temperature of the outdoor heat exchanger 3B is detected by the temperature detecting means 15B. In the following description, the alphabets after the reference numerals of the constituent elements of the outdoor unit X may be omitted, but in that case, the constituent elements are collectively referred to.

室内機Y1、Y2、Y3、及びY4は、室外機Xからの冷熱又は温熱の供給を受けて空調対象域に冷房空気又は暖房空気を供給するものである。尚、以降の説明においては、室内機Yの後の数字を省略する場合があるが、その場合は室内機Y1、Y2、Y3、及びY4を総称して示すものである。また、室内機Y1の各機器の符号の後にY1を付加し、室内機Y2の各機器の符号の後にY2を付加し、室内機Y3の各機器の符号の後にY3を付加し、室内機Y4の各機器の符号の後にY4を付加して図示している。これらの各機器の説明においても、Y符号の後の数字を省略する場合があるが、室内機Y1、Y2、Y3、及びY4のそれぞれの機器を総称して示すものである。 The indoor units Y1, Y2, Y3, and Y4 are supplied with cooling heat or warm heat from the outdoor unit X and supply cooling air or heating air to the air conditioning target area. In the following description, the numbers after the indoor unit Y may be omitted, but in that case, the indoor units Y1, Y2, Y3, and Y4 are collectively referred to. In addition, Y1 is added after the code of each device of the indoor unit Y1, Y2 is added after the code of each device of the indoor unit Y2, Y3 is added after the code of each device of the indoor unit Y3, and indoor unit Y4 In the drawing, Y4 is added after the reference numeral of each device. In the description of each of these devices, the numbers after the Y code may be omitted, but the devices of the indoor units Y1, Y2, Y3, and Y4 are collectively referred to.

室内機Yは、室内熱交換器7Yと、室内ファン8Yと、室内ファンモーター9Yと、温度検出手段16Yと、温度検出手段17Yと、室内機制御手段18Yとを有している。室内機制御手段18Yは、室内機Yを全体的に制御するコントローラである。室内熱交換器7Yの冷媒飽和温度は温度検出手段16Yにより検出される。室内機Yが設置されている室内の空気温度は温度検出手段17Yにより検出される。 The indoor unit Y has an indoor heat exchanger 7Y, an indoor fan 8Y, an indoor fan motor 9Y, a temperature detecting means 16Y, a temperature detecting means 17Y, and an indoor unit controlling means 18Y. The indoor unit control means 18Y is a controller that controls the indoor unit Y as a whole. The refrigerant saturation temperature of the indoor heat exchanger 7Y is detected by the temperature detecting means 16Y. The air temperature in the room where the indoor unit Y is installed is detected by the temperature detecting means 17Y.

本実施の形態において、空気調和機は、冷凍サイクルとして第1系統Aと第2系統Bを有している。冷凍サイクルの第1系統Aは、圧縮機1A、四方弁2A、室外熱交換器3A、膨張弁6A1、膨張弁6A2、液側バルブ10A、ガス側バルブ11A、室内熱交換器7Y1、及び室内熱交換器7Y2で構成されている。室内熱交換器7Y1と室内熱交換器7Y2は、並列に配管接続されている。冷凍サイクルの第2系統Bは、圧縮機1B、四方弁2B、室外熱交換器3B、膨張弁6B1、膨張弁6B2、液側バルブ10B、ガス側バルブ11B、室内熱交換器7Y3、及び室内熱交換器7Y4で構成されている。室内熱交換器7Y3と室内熱交換器7Y4は、並列に配管接続されている。 In the present embodiment, the air conditioner has a first system A and a second system B as refrigeration cycles. The first system A of the refrigeration cycle includes a compressor 1A, a four-way valve 2A, an outdoor heat exchanger 3A, an expansion valve 6A1, an expansion valve 6A2, a liquid side valve 10A, a gas side valve 11A, an indoor heat exchanger 7Y1, and an indoor heat exchanger. It is composed of the exchanger 7Y2. The indoor heat exchanger 7Y1 and the indoor heat exchanger 7Y2 are connected in parallel by piping. The second system B of the refrigeration cycle includes a compressor 1B, a four-way valve 2B, an outdoor heat exchanger 3B, an expansion valve 6B1, an expansion valve 6B2, a liquid side valve 10B, a gas side valve 11B, an indoor heat exchanger 7Y3, and an indoor heat exchanger. It is composed of the exchanger 7Y4. The indoor heat exchanger 7Y3 and the indoor heat exchanger 7Y4 are connected in parallel by piping.

次に、本実施の形態に係る空気調和機により冷房運転を実施する場合の動作を説明する。低温低圧のガス冷媒が圧縮機1によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2へと向かう。冷房運転時の四方弁2の流路は図1において実線で示す方向へ設定されている。高温高圧のガス冷媒は四方弁2を通り、室外熱交換器3へ流入する。このとき、ガス冷媒は、室外ファン4から送風される室外の空気に放熱しながら凝縮液化し、高圧の液冷媒となる。その後、高圧の液冷媒は膨張弁6で減圧され、低圧二相状態となり、室内熱交換器7Yへ流入する。室内熱交換器7Yにおいて、低圧二相状態の冷媒は、室内ファン8Yにより室内熱交換器7Yへ送風された室内空気から吸熱し、低圧のガス冷媒となる。その後、低圧のガス冷媒は四方弁2を介して圧縮機1へ戻る。このような冷房運転により、室内機Yが設置されている室内の空気の温度を下げることができる。 Next, an operation when the cooling operation is performed by the air conditioner according to the present embodiment will be described. The low-temperature low-pressure gas refrigerant is compressed by the compressor 1 and is discharged as a high-temperature high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 goes to the four-way valve 2. The flow path of the four-way valve 2 during the cooling operation is set in the direction shown by the solid line in FIG. The high-temperature and high-pressure gas refrigerant passes through the four-way valve 2 and flows into the outdoor heat exchanger 3. At this time, the gas refrigerant is condensed and liquefied while radiating heat to the outdoor air blown from the outdoor fan 4, and becomes a high-pressure liquid refrigerant. After that, the high-pressure liquid refrigerant is decompressed by the expansion valve 6, becomes a low-pressure two-phase state, and flows into the indoor heat exchanger 7Y. In the indoor heat exchanger 7Y, the low-pressure two-phase refrigerant absorbs heat from the indoor air blown to the indoor heat exchanger 7Y by the indoor fan 8Y and becomes a low-pressure gas refrigerant. Then, the low-pressure gas refrigerant returns to the compressor 1 via the four-way valve 2. By such a cooling operation, the temperature of the air in the room where the indoor unit Y is installed can be lowered.

上述の冷房運転において、1系統の冷凍サイクルが運転しているときの動作の一例を示す。ユーザーがリモコン操作により、第1系統Aの室内機Y1に対して冷房運転の要求を出す。室内機Y1が取り付けられている部屋の室内温度は、温度検出手段17Y1により検出される。そして、室内機制御手段18Y1は、温度検出手段17Y1により検出された室内温度とユーザーにより設定された設定温度との差分を算出し、室外機Xの室外機制御手段19へその差分を送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Aの運転周波数を決定し、圧縮機1Aを運転する。例えば、温度検出手段17Y1により検出された室内温度が27℃、ユーザーにより設定された設定温度が23℃であるとし、圧縮機1Aの運転周波数が60Hzであるとする。 An example of the operation when one refrigeration cycle is operating in the above-described cooling operation will be described. The user issues a request for cooling operation to the indoor unit Y1 of the first system A by operating the remote control. The indoor temperature of the room in which the indoor unit Y1 is attached is detected by the temperature detecting means 17Y1. Then, the indoor unit control means 18Y1 calculates the difference between the indoor temperature detected by the temperature detection means 17Y1 and the set temperature set by the user, and transmits the difference to the outdoor unit control means 19 of the outdoor unit X. The outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1A based on the transmitted difference, and drives the compressor 1A. For example, it is assumed that the indoor temperature detected by the temperature detecting means 17Y1 is 27° C., the set temperature set by the user is 23° C., and the operating frequency of the compressor 1A is 60 Hz.

このとき、室外機制御手段19は、温度検出手段13Aにより検出される室外熱交換器3Aの冷媒飽和温度、すなわち凝縮温度が目標値になるよう、室外ファンモーター5の回転数を制御している。本明細書では、圧縮機1の運転周波数に対応して、室外熱交換器3に要求される凝縮温度を目標凝縮温度とする。例えば、圧縮機1Aの運転周波数が60Hzである場合は、目標凝縮温度は38℃である。圧縮機の運転周波数の帯域幅と目標凝縮温度との関係を、表1に示す。 At this time, the outdoor unit control means 19 controls the rotation speed of the outdoor fan motor 5 so that the refrigerant saturation temperature of the outdoor heat exchanger 3A detected by the temperature detection means 13A, that is, the condensation temperature, reaches a target value. .. In this specification, the condensing temperature required for the outdoor heat exchanger 3 is set as the target condensing temperature corresponding to the operating frequency of the compressor 1. For example, when the operating frequency of the compressor 1A is 60 Hz, the target condensation temperature is 38°C. Table 1 shows the relationship between the operating frequency bandwidth of the compressor and the target condensing temperature.

Figure 0006707189
Figure 0006707189

次に、第1系統Aの冷凍サイクル及び第2系統Bの冷凍サイクルが同時に運転しているときの現象について説明する。ユーザーがリモコン操作により、第1系統Aの室内機Y1に対して冷房運転の要求を出すと、以下の制御が行われる。室内機Y1が取り付けられている部屋の室内温度は、温度検出手段17Y1により検出される。そして、室内機制御手段18Y1は、温度検出手段17Y1により検出された室内温度とユーザーにより設定された設定温度との差分を算出し、室外機Xの室外機制御手段19へその差分を送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Aの運転周波数を決定し、圧縮機1Aを運転する。例えば、温度検出手段17Y1により検出された室内温度が30℃、ユーザーにより設定された設定温度が16℃であるとし、圧縮機1Aの運転周波数が80Hzであるとする。 Next, a phenomenon when the refrigeration cycle of the first system A and the refrigeration cycle of the second system B are simultaneously operating will be described. When the user issues a request for the cooling operation to the indoor unit Y1 of the first system A by the remote control operation, the following control is performed. The indoor temperature of the room in which the indoor unit Y1 is attached is detected by the temperature detecting means 17Y1. Then, the indoor unit control means 18Y1 calculates the difference between the indoor temperature detected by the temperature detection means 17Y1 and the set temperature set by the user, and transmits the difference to the outdoor unit control means 19 of the outdoor unit X. The outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1A based on the transmitted difference, and drives the compressor 1A. For example, it is assumed that the indoor temperature detected by the temperature detecting means 17Y1 is 30° C., the set temperature set by the user is 16° C., and the operating frequency of the compressor 1A is 80 Hz.

ユーザーがリモコン操作により、第2系統Bの室内機Y3に対して冷房運転の要求を出すと、以下の制御が行われる。室内機Y3の室内機制御手段18Y3は、温度検出手段17Y3を介して、室内機Y3が取り付けられている部屋の室内温度を検出する。そして、室内機制御手段18Y3は、温度検出手段17Y3により検出された室内温度とユーザーにより設定された設定温度との差分を算出し、室外機Xの室外機制御手段19へその差分を送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Bの運転周波数を決定し、圧縮機1Bを運転する。例えば、温度検出手段17Y3により検出された室内温度が26℃、ユーザーにより設定された設定温度が24℃であるとし、圧縮機1Bの運転周波数が30Hzであるとする。 When the user issues a request for cooling operation to the indoor unit Y3 of the second system B by operating the remote control, the following control is performed. The indoor unit control means 18Y3 of the indoor unit Y3 detects the indoor temperature of the room to which the indoor unit Y3 is attached via the temperature detection means 17Y3. Then, the indoor unit control means 18Y3 calculates the difference between the indoor temperature detected by the temperature detection means 17Y3 and the set temperature set by the user, and transmits the difference to the outdoor unit control means 19 of the outdoor unit X. The outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1B based on the transmitted difference, and operates the compressor 1B. For example, it is assumed that the indoor temperature detected by the temperature detecting means 17Y3 is 26° C., the set temperature set by the user is 24° C., and the operating frequency of the compressor 1B is 30 Hz.

このように、第1系統Aと第2系統Bとで部屋の空調負荷が大きく異なる場合、圧縮機1Aと圧縮機1Bの周波数が大きく異なり、第1系統A及び第2系統Bにおけるそれぞれの目標凝縮温度は異なることとなる。例えば、圧縮機1Aの運転周波数が80Hzである場合、目標凝縮温度は39℃であり、圧縮機1Bの運転周波数が30Hzである場合、目標凝縮温度は36℃である。 In this way, when the air conditioning load of the room is greatly different between the first system A and the second system B, the frequencies of the compressor 1A and the compressor 1B are significantly different, and the respective targets in the first system A and the second system B are set. The condensation temperature will be different. For example, when the operating frequency of the compressor 1A is 80 Hz, the target condensing temperature is 39°C, and when the operating frequency of the compressor 1B is 30 Hz, the target condensing temperature is 36°C.

このような運転状態の場合、第1系統Aでは、必要な過冷却度は例えば10℃となり、第2系統Bでは、必要な過冷却度は例えば3℃となる。室外機は単一の室外機Xであるため、室外の空気温度は同一である。従って、室外ファンモーター5の回転数を第1系統Aに合わせた回転数にすると、第2系統B側は過冷却度が付きすぎの状態となり、能力過多となり易い。逆に、室外ファン4の回転数を第2系統Bに合わせた回転数にすると、第1系統A側で過冷却度が不足し、能力不足気味の運転となる。 In such an operating state, the required supercooling degree in the first system A is, for example, 10°C, and the required subcooling degree in the second system B is, for example, 3°C. Since the outdoor unit is the single outdoor unit X, the outdoor air temperature is the same. Therefore, when the rotation speed of the outdoor fan motor 5 is set to match the rotation speed of the first system A, the second system B side is over-cooled too much and the capacity is likely to be excessive. On the contrary, when the rotation speed of the outdoor fan 4 is adjusted to match the rotation speed of the second system B, the degree of subcooling is insufficient on the side of the first system A, and the operation tends to be insufficient.

そこで、本実施の形態では、第1系統Aと第2系統Bを同時に運転するときの目標凝縮温度は、高圧圧力保護の観点から、圧縮機の運転周波数が最も高い系統の目標凝縮温度を基準とする。基準の目標凝縮温度と、圧縮機の運転周波数が最も低い系統の目標凝縮温度との差分を算出し、その差分に基づいて、基準の目標凝縮温度の補正値を決定する。そして、圧縮機の運転周波数が最も高い系統の目標凝縮温度を補正値で補正する。さらに、各系統の圧縮機の凝縮温度が補正された目標凝縮温度となるよう、室外ファン4の回転数を制御する。これにより、系統ごとの冷凍サイクルのバランスをとることができ、システム全体で安定した運転ができるようになる。 Therefore, in the present embodiment, the target condensing temperature when operating the first system A and the second system B simultaneously is based on the target condensing temperature of the system in which the operating frequency of the compressor is the highest from the viewpoint of high pressure protection. And The difference between the reference target condensing temperature and the target condensing temperature of the system with the lowest operating frequency of the compressor is calculated, and the correction value of the reference target condensing temperature is determined based on the difference. Then, the target condensing temperature of the system with the highest operating frequency of the compressor is corrected with the correction value. Further, the rotation speed of the outdoor fan 4 is controlled so that the condensation temperature of the compressor of each system becomes the corrected target condensation temperature. As a result, the refrigeration cycle of each system can be balanced, and stable operation can be performed in the entire system.

具体的な制御の一例について説明する。1系統を運転させるときの動作は以下の通りである。ユーザーがリモコン操作により、第1系統Aの室内機Y1に対して冷房運転の要求を出す。上述のように、室内機Y1の室内機制御手段18Y1は、室内機Y1が設置されている部屋の室内温度とユーザーにより設定された設定温度との差分を室外機Xの室外機制御手段19へ送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Aの運転周波数を決定し、圧縮機1Aを運転する。例えば、温度検出手段17Y1により検出される室内温度が27℃、設定温度が23℃であるとし、圧縮機1Aの運転周波数が60Hzであるとする。このときの目標凝縮温度は例えば38℃であり、上述の表1における目標凝縮温度の周波数バンド4に相当する。室外機制御手段19は、温度検出手段13Aにより検出される冷媒の凝縮温度が38℃になるように室外ファンモーター5の回転数を調整する。 An example of specific control will be described. The operation when operating one system is as follows. The user issues a request for cooling operation to the indoor unit Y1 of the first system A by operating the remote control. As described above, the indoor unit control means 18Y1 of the indoor unit Y1 sends the difference between the indoor temperature of the room in which the indoor unit Y1 is installed and the set temperature set by the user to the outdoor unit control means 19 of the outdoor unit X. Send. The outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1A based on the transmitted difference, and drives the compressor 1A. For example, it is assumed that the indoor temperature detected by the temperature detecting means 17Y1 is 27° C., the set temperature is 23° C., and the operating frequency of the compressor 1A is 60 Hz. The target condensation temperature at this time is, for example, 38° C., which corresponds to frequency band 4 of the target condensation temperature in Table 1 above. The outdoor unit control means 19 adjusts the rotation speed of the outdoor fan motor 5 so that the condensation temperature of the refrigerant detected by the temperature detection means 13A becomes 38°C.

次に、2系列を同時に運転させる際の一例を示す。ユーザーがリモコン操作により、第1系統Aの室内機Y1に対して冷房運転の要求を出す。上述のように、室内機Y1の室内機制御手段18Y1は、室内機Y1が設置されている部屋の室内温度とユーザーにより設定された設定温度との差分を室外機Xの室外機制御手段19へ送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Aの運転周波数を決定し、圧縮機1Aを運転する。例えば、温度検出手段17Y1により検出される室内温度が30℃、設定温度が16℃であるとし、圧縮機1Aの運転周波数が80Hzであるとする。このときの目標凝縮温度は例えば38℃であり、上述の表1における目標凝縮温度の周波数バンド4に相当する。 Next, an example of operating two series simultaneously will be shown. The user issues a request for cooling operation to the indoor unit Y1 of the first system A by operating the remote control. As described above, the indoor unit control means 18Y1 of the indoor unit Y1 sends the difference between the indoor temperature of the room in which the indoor unit Y1 is installed and the set temperature set by the user to the outdoor unit control means 19 of the outdoor unit X. Send. The outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1A based on the transmitted difference, and drives the compressor 1A. For example, it is assumed that the indoor temperature detected by the temperature detecting means 17Y1 is 30° C., the set temperature is 16° C., and the operating frequency of the compressor 1A is 80 Hz. The target condensation temperature at this time is, for example, 38° C., which corresponds to frequency band 4 of the target condensation temperature in Table 1 above.

さらに、ユーザーがリモコン操作により、第2系統Bの室内機Y3に対して冷房運転の要求を出す。上述のように、室内機Y3の室内機制御手段18Y3は、室内機Y3が設置されている部屋の室内温度とユーザーにより設定された設定温度との差分を室外機Xの室外機制御手段19へ送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Bの運転周波数を決定し、圧縮機1Bを運転する。例えば、温度検出手段17Y3により検出される室内温度が26℃、設定温度が24℃であるとし、圧縮機1Bの運転周波数が30Hzであるとする。このときの目標凝縮温度は例えば36℃であり、上述の表1における目標凝縮温度の周波数バンド2に相当する。 Further, the user operates the remote controller to issue a request for cooling operation to the indoor unit Y3 of the second system B. As described above, the indoor unit control means 18Y3 of the indoor unit Y3 sends the difference between the indoor temperature of the room in which the indoor unit Y3 is installed and the set temperature set by the user to the outdoor unit control means 19 of the outdoor unit X. Send. The outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1B based on the transmitted difference, and operates the compressor 1B. For example, it is assumed that the indoor temperature detected by the temperature detecting means 17Y3 is 26° C., the set temperature is 24° C., and the operating frequency of the compressor 1B is 30 Hz. The target condensing temperature at this time is, for example, 36° C., which corresponds to frequency band 2 of the target condensing temperature in Table 1 above.

このようなとき、室外機Xの室外機制御手段19は、第1系統Aの目標凝縮温度は38℃で周波数バンド4に属し、第2系統Bの目標凝縮温度は36℃で周波数バンド2に属すると認識する。ここで、第1系統Aの目標凝縮温度は38℃であり、圧縮機1Aの運転周波数80Hzであるのに対し、第2系統Bの目標凝縮温度は36℃であり、圧縮機1Bの運転周波数は30Hzであり、圧縮機1Aの運転周波数の方が圧縮機1Bの運転周波数よりも高い。従って、室外機制御手段19は、第1系統Aの目標凝縮温度、すなわち38℃を基準とする。室外機制御手段19は、第1系統Aと第2系統Bの周波数バンド差を算出し、その差に応じて補正値を決定する。表2は、本実施の形態における、周波数バンド差と目標凝縮温度の補正値との関係を示す表である。 In such a case, the outdoor unit control means 19 of the outdoor unit X belongs to the frequency band 4 with the target condensing temperature of the first system A being 38° C., and the target condensing temperature of the second system B is 36° C. with the frequency band 2. Recognize that it belongs. Here, the target condensation temperature of the first system A is 38° C. and the operating frequency of the compressor 1A is 80 Hz, whereas the target condensation temperature of the second system B is 36° C. and the operating frequency of the compressor 1B. Is 30 Hz, and the operating frequency of the compressor 1A is higher than that of the compressor 1B. Therefore, the outdoor unit control means 19 uses the target condensation temperature of the first system A, that is, 38° C. as a reference. The outdoor unit control means 19 calculates the frequency band difference between the first system A and the second system B, and determines the correction value according to the difference. Table 2 is a table showing the relationship between the frequency band difference and the correction value of the target condensation temperature in the present embodiment.

Figure 0006707189
Figure 0006707189

上述の例では、周波数バンド差は4−2=2となり、目標凝縮温度の補正値は+1.0℃である。従って、室外機制御手段19により、基準値である第1系統Aの目標凝縮温度は38℃から38℃+1.0℃=39℃に補正される。 In the above example, the frequency band difference is 4-2=2, and the correction value for the target condensation temperature is +1.0°C. Therefore, the outdoor unit control means 19 corrects the target condensation temperature of the first system A, which is the reference value, from 38° C. to 38° C.+1.0° C.=39° C.

圧縮機1の運転開始後、温度検出手段13によって凝縮器である室外熱交換器3の冷媒飽和温度、つまり凝縮温度を検出する。温度検出手段13によって検出された室外熱交換器3の凝縮温度が、上述のように補正を加えた目標凝縮温度に到達するように、室外ファン4の回転数を設定する。すなわち、圧縮機1の運転開始後、温度検出手段13Aにより室外熱交換器3Aの冷媒の凝縮温度、及び温度検出手段13Bにより検出される室外熱交換器3Bの冷媒の凝縮温度が、補正された目標凝縮温度39℃になるよう、室外機制御手段19は室外ファン4の回転数を設定する。そして、設定された室外ファン4の回転数に基づいて室外ファンモーター5の回転数を調整する。 After the operation of the compressor 1 is started, the temperature detection means 13 detects the refrigerant saturation temperature of the outdoor heat exchanger 3 which is a condenser, that is, the condensation temperature. The rotation speed of the outdoor fan 4 is set so that the condensation temperature of the outdoor heat exchanger 3 detected by the temperature detection means 13 reaches the target condensation temperature corrected as described above. That is, after the operation of the compressor 1 is started, the condensing temperature of the refrigerant of the outdoor heat exchanger 3A is corrected by the temperature detecting means 13A, and the condensing temperature of the refrigerant of the outdoor heat exchanger 3B detected by the temperature detecting means 13B is corrected. The outdoor unit control means 19 sets the number of rotations of the outdoor fan 4 so that the target condensing temperature becomes 39°C. Then, the rotation speed of the outdoor fan motor 5 is adjusted based on the set rotation speed of the outdoor fan 4.

現在の凝縮温度をTcとし、目標凝縮温度をTcmとすると、Tcが大きければ大きいほど、凝縮温度Tcと目標凝縮温度Tcmとの差が大きくなるため、熱交換に必要な風量は大きくなることとなり、室外ファン4の必要回転数、換言すると安定回転数が大きくなる。図2は、現在の凝縮温度、目標凝縮温度、及び室外ファンモーターの安定回転数との関係を示すグラフである。横軸に現在の凝縮温度Tcをとり、縦軸に室外ファンモーター5の安定回転数Nをとっている。図2中、線L21は目標凝縮温度Tcmが36℃の場合、線L22は目標凝縮温度Tcmが38℃の場合、線L23は目標凝縮温度Tcmが40℃の場合の、凝縮温度Tcと安定回転数Nとの関係を示している。 Assuming that the current condensing temperature is Tc and the target condensing temperature is Tcm, the larger Tc is, the larger the difference between the condensing temperature Tc and the target condensing temperature Tcm is, and the larger the air volume required for heat exchange is. The required rotation speed of the outdoor fan 4, in other words, the stable rotation speed, increases. FIG. 2 is a graph showing the relationship between the current condensing temperature, the target condensing temperature, and the stable rotation speed of the outdoor fan motor. The horizontal axis represents the present condensing temperature Tc, and the vertical axis represents the stable rotation speed N of the outdoor fan motor 5. In FIG. 2, a line L21 indicates a case where the target condensation temperature Tcm is 36° C., a line L22 indicates a case where the target condensation temperature Tcm is 38° C., and a line L23 indicates a case where the target condensation temperature Tcm is 40° C. The relationship with the number N is shown.

本実施の形態では、冷凍サイクルの状態をより安定化させるため、室外ファン4の回転数の制御、すなわち室外ファンモーター5の回転数の制御は段階的に実行される。そして、温度検出手段13によって検出される室外熱交換器3の凝縮温度を室外機制御手段19が受信し、室外ファンモーター5の回転数を決定する制御間隔は、例えば60秒としている。設定される室外ファン4の回転数に応じて室外熱交換器3を通過する風量が変化するため、現在の凝縮温度は変化する。本実施の形態では、現在の凝縮温度の変化に対してハンチングを起こしにくくするために、室外ファンモーター5の回転数変化にはヒステリシスを持たせている。図3は、現在の凝縮温度と目標凝縮温度との差分と、室外ファンモーターの安定回転数との関係を示す図である。図3中、横軸に凝縮温度Tcと目標凝縮温度Tcmとの差分のΔTcをとり、縦軸に室外ファンモーター5の安定回転数Nをとっている。図3中、実線で示すように、差分ΔTcの変化に応じて、室外ファンモーター5の安定回転数Nはステップ状に変化するよう制御される。さらに、図3中、点線矢印で示すように、室外ファンモーター5の安定回転数Nの変化にはヒステリシスを持たせている。 In the present embodiment, in order to further stabilize the state of the refrigeration cycle, control of the rotation speed of the outdoor fan 4, that is, control of the rotation speed of the outdoor fan motor 5 is executed stepwise. The outdoor unit controller 19 receives the condensation temperature of the outdoor heat exchanger 3 detected by the temperature detector 13, and the control interval for determining the rotation speed of the outdoor fan motor 5 is, for example, 60 seconds. Since the amount of air passing through the outdoor heat exchanger 3 changes according to the set rotation speed of the outdoor fan 4, the current condensation temperature changes. In the present embodiment, in order to make it difficult for hunting to occur with respect to the current change in the condensation temperature, the change in the rotation speed of the outdoor fan motor 5 has a hysteresis. FIG. 3 is a diagram showing the relationship between the difference between the current condensation temperature and the target condensation temperature and the stable rotation speed of the outdoor fan motor. In FIG. 3, the horizontal axis represents ΔTc, which is the difference between the condensation temperature Tc and the target condensation temperature Tcm, and the vertical axis represents the stable rotation speed N of the outdoor fan motor 5. As shown by the solid line in FIG. 3, the stable rotation speed N of the outdoor fan motor 5 is controlled to change stepwise in accordance with the change in the difference ΔTc. Further, as shown by a dotted arrow in FIG. 3, there is hysteresis in the change in the stable rotation speed N of the outdoor fan motor 5.

図4は、本発明の実施の形態に係るファン速制御の処理手順を示すフローチャートである。ステップS1で冷房運転の開始処理が実行される。図5は、冷房運転の開始処理の手順を示すフローチャートである。ユーザーがリモコン操作することにより室内機Yに対し冷房運転の要求を出すと、ステップS1−1で、室内機制御手段18Yは運転開始指令を受信する。運転開始指令を受信した室内機制御手段18Yは、ステップS1−2において室内ファンモーター9Yの運転を開始する。次いで、ステップS1−3で、室外機制御手段19は、室内機制御手段18Yから運転開始指令を受信する。その後、処理は図4のステップS2に進む。 FIG. 4 is a flowchart showing a processing procedure of fan speed control according to the embodiment of the present invention. In step S1, a cooling operation start process is executed. FIG. 5 is a flowchart showing the procedure of the start processing of the cooling operation. When the user issues a request for the cooling operation to the indoor unit Y by operating the remote control, the indoor unit control means 18Y receives the operation start command in step S1-1. Upon receiving the operation start command, the indoor unit control means 18Y starts the operation of the indoor fan motor 9Y in step S1-2. Next, in step S1-3, the outdoor unit control means 19 receives an operation start command from the indoor unit control means 18Y. Then, the process proceeds to step S2 in FIG.

ステップS2では運転している室内機の系統を抽出する処理が実行される。図6は、運転している室内機の系統を抽出する処理の手順を示すフローチャートである。ステップS2−1において、室外機制御手段19は、受信した運転開始命令に基づいて運転している冷凍サイクル回路の系統を特定する。運転開始命令が室内機制御手段18Y1若しくは室内制御手段18Y2から受信したものであれば、室外機制御手段19は、運転しているのは第1系統Aが運転であると特定する。また、運転開始命令が室内機制御手段18Y3若しくは室内制御手段18Y4から受信したものであれば、室外機制御手段19は、運転しているのは第2系統Bであると特定する。次いで、ステップS2−2において、室外機制御手段19は、運転開始時の調整処理を実行する。本実施の形態において、運転開始時の調整処理とは、圧縮機1の運転開始周波数の調整、室外ファンモーター5の回転数の調整、四方弁2の流路の調整、膨張弁6の開度の調整である。その後、処理は図4のステップS3へ進む。 In step S2, a process of extracting the system of the indoor unit that is operating is executed. FIG. 6 is a flowchart showing a procedure of processing for extracting a system of an indoor unit that is operating. In step S2-1, the outdoor unit control means 19 identifies the system of the refrigeration cycle circuit that is operating based on the received operation start command. If the operation start command is received from the indoor unit control means 18Y1 or the indoor control means 18Y2, the outdoor unit control means 19 specifies that the first system A is operating. If the operation start command is received from the indoor unit control means 18Y3 or the indoor control means 18Y4, the outdoor unit control means 19 identifies that the second system B is operating. Next, in step S2-2, the outdoor unit control means 19 executes an adjustment process at the start of operation. In the present embodiment, the adjustment processing at the start of operation includes adjustment of the operation start frequency of the compressor 1, adjustment of the rotation speed of the outdoor fan motor 5, adjustment of the flow path of the four-way valve 2, opening of the expansion valve 6. Adjustment. Then, the process proceeds to step S3 in FIG.

ステップS3では、運転中の冷凍サイクルが1系統であるか否かチェックされる。運転中の冷凍サイクルが1系統である場合、処理はステップS4へ進む。運転中の冷凍サイクルが複数系統である場合、処理はステップS6へ進む。 In step S3, it is checked whether the refrigeration cycle in operation is one system. When the refrigerating cycle in operation is one system, a process progresses to step S4. When the refrigerating cycle in operation is multiple systems, a process progresses to step S6.

ステップS4では、室外機制御手段19は、現在の圧縮機1の運転周波数を検出し、検出された運転周波数に基づいて、上述の表1の対応表の中から、目標凝縮温度を決定するための周波数バンドを特定する。次いでステップS5へ進み、目標凝縮温度を決定する。図7は、目標凝縮温度の決定処理の手順を示すフローチャートである。ステップS5−1において、室外機制御手段19は、温度検出手段13により検出された室外熱交換器3の冷媒飽和温度に基づいて、現在の凝縮温度Tcを抽出する。次いでステップS5−2において、室外機制御手段19は、ステップS4で特定した周波数バンドに設定されている目標凝縮温度Tcmを決定する。その後、処理は図4のステップS10へ進む。 In step S4, the outdoor unit control means 19 detects the current operating frequency of the compressor 1 and determines the target condensing temperature from the correspondence table in Table 1 above based on the detected operating frequency. Identify the frequency band of. Next, in step S5, the target condensing temperature is determined. FIG. 7 is a flowchart showing the procedure of the target condensation temperature determination process. In step S5-1, the outdoor unit control means 19 extracts the current condensation temperature Tc based on the refrigerant saturation temperature of the outdoor heat exchanger 3 detected by the temperature detection means 13. Next, in step S5-2, the outdoor unit control means 19 determines the target condensing temperature Tcm set in the frequency band specified in step S4. Then, the process proceeds to step S10 in FIG.

一方、ステップS6では、運転している冷凍サイクルの系統ごとに、現在の圧縮機1の運転周波数を検出し、検出された運転周波数に基づいて、上述の表1の対応表の中から、目標凝縮温度Tcmを決定するための周波数バンドを特定する。ステップS6に進む場合とは、本実施の形態では第1系統A及び第2系統Bが運転中の場合である。従って、ステップS6において、室外機制御手段19は、第1系統Aについては圧縮機1Aの運転周波数に基づいて、表1の対応表の周波数バンドを特定し、第2系統Bについては圧縮機1Bの運転周波数に基づいて、表1の対応表の周波数バンドを特定する。次いでステップS7へ進む。ステップS7では、室外機制御手段19は、バンド差の算出処理を行う。図8は、バンド差を算出する処理の手順を示すフローチャートである。ステップS7−1において、室外機制御手段19は、ステップS6で特定された周波数バンドのうち最も値の大きい周波数バンドを抽出し、基準バンドとする。次いで、ステップ7−2へ進み、ステップS6で特定された周波数バンドのうち最も値の小さい周波数バンドを抽出する。そして、ステップS7−1で決定された基準バンドと、最も値の小さい周波数バンドとの差分、すなわち周波数バンド差を算出する。また、圧縮機1の運転周波数が基準バンドに属する冷凍サイクルの系統を基準系統とする。その後、処理は図4のステップS8へ進む。 On the other hand, in step S6, the current operating frequency of the compressor 1 is detected for each system of the operating refrigeration cycle, and based on the detected operating frequency, the target is selected from the correspondence table in Table 1 above. Identify the frequency band for determining the condensation temperature Tcm. The case of proceeding to step S6 is the case where the first system A and the second system B are in operation in the present embodiment. Therefore, in step S6, the outdoor unit control means 19 specifies the frequency band of the correspondence table of Table 1 based on the operating frequency of the compressor 1A for the first system A, and the compressor 1B for the second system B. The frequency band in the correspondence table of Table 1 is specified based on the operating frequency of. Then, the process proceeds to step S7. In step S7, the outdoor unit control means 19 performs a band difference calculation process. FIG. 8 is a flowchart showing a procedure of processing for calculating the band difference. In step S7-1, the outdoor unit control means 19 extracts the frequency band having the largest value among the frequency bands specified in step S6 and sets it as the reference band. Next, in step 7-2, the frequency band having the smallest value is extracted from the frequency bands specified in step S6. Then, the difference between the reference band determined in step S7-1 and the frequency band having the smallest value, that is, the frequency band difference is calculated. Further, a refrigeration cycle system in which the operating frequency of the compressor 1 belongs to the reference band is used as a reference system. Then, the process proceeds to step S8 in FIG.

ステップS8では、室外機制御手段19は、ステップS7−2で算出した周波数バンド差に対応する目標凝縮温度の補正値Tcmhを上述の表2に基づいて決定する。次いで、ステップS9へ進み、室外機制御手段19は、目標凝縮温度の設定を行う。図9は、目標凝縮温度を設定する処理の手順を示すフローチャートである。ステップS9−1において、室外機制御手段19は、運転している冷凍サイクルの系統毎に、温度検出手段13により検出される室外熱交換器3の冷媒飽和温度に基づいて、現在の凝縮温度Tcを抽出する。ステップS9−1に進む場合とは、上述のように第1系統A及び第2系統Bが運転中である場合である。従って、ステップS9−1では、室外機制御手段19は、第1系統Aについては、温度検出手段13Aにより検出される冷媒飽和温度に基づいて、室外熱交換器3Aの現在の凝縮温度Tcaを抽出し、第2系統Bについては、温度検出手段13Bにより検出される冷媒飽和温度に基づいて、室外熱交換器3Bの現在の凝縮温度Tcbを抽出する。また、圧縮機1の運転周波数のバンドが、ステップS7−1で基準系統に設定された冷凍サイクルの系統の凝縮温度をシステムの凝縮温度Tcとして設定し、以降の処理で使用する。すなわち、システムの凝縮温度Tcは、凝縮温度Tca若しくはTcbである。 In step S8, the outdoor unit control means 19 determines the correction value Tcmh of the target condensation temperature corresponding to the frequency band difference calculated in step S7-2, based on the above-mentioned Table 2. Next, the process proceeds to step S9, and the outdoor unit control means 19 sets the target condensing temperature. FIG. 9 is a flowchart showing a procedure of processing for setting the target condensation temperature. In step S9-1, the outdoor unit control means 19 determines the current condensation temperature Tc based on the refrigerant saturation temperature of the outdoor heat exchanger 3 detected by the temperature detection means 13 for each operating refrigeration cycle system. To extract. The case of proceeding to step S9-1 is the case where the first system A and the second system B are in operation as described above. Therefore, in step S9-1, for the first system A, the outdoor unit control means 19 extracts the current condensation temperature Tca of the outdoor heat exchanger 3A based on the refrigerant saturation temperature detected by the temperature detection means 13A. Then, for the second system B, the current condensation temperature Tcb of the outdoor heat exchanger 3B is extracted based on the refrigerant saturation temperature detected by the temperature detection means 13B. Further, the band of the operating frequency of the compressor 1 sets the condensation temperature of the refrigeration cycle system set in the reference system in step S7-1 as the condensation temperature Tc of the system, and uses it in the subsequent processing. That is, the condensation temperature Tc of the system is the condensation temperature Tca or Tcb.

次いで、ステップS9−2において、室外機制御手段19は、システムの目標凝縮温度ベースTcm_baseを設定する。ステップS7−1において圧縮機1の運転周波数が基準バンドに属すると特定された冷凍サイクルの系統の目標凝縮温度をシステムの目標凝縮温度ベースTcm_baseとして設定する。すなわち、圧縮機1の運転周波数が最も大きいバンドに属する冷凍サイクルの系統の目標凝縮温度が、システムの目標凝縮温度ベースTcm_baseとして設定される。システムの目標凝縮温度ベースTcm_baseは、以降の制御に使用される。 Next, in step S9-2, the outdoor unit control means 19 sets the target condensation temperature base Tcm_base of the system. In step S7-1, the target condensing temperature of the system of the refrigeration cycle that is specified that the operating frequency of the compressor 1 belongs to the reference band is set as the target condensing temperature base Tcm_base of the system. That is, the target condensing temperature of the refrigeration cycle system belonging to the band in which the operating frequency of the compressor 1 is the largest is set as the target condensing temperature base Tcm_base of the system. The system target condensation temperature base Tcm_base is used for subsequent control.

次いで、ステップS9−3において、室外機制御手段19は、システムの目標凝縮温度ベースTcm_baseを、ステップS8で決定された補正値Tcmhで補正し、目標凝縮温度Tcmを設定する。具体的には、目標凝縮温度ベースTcm_baseに補正値Tcmhを加える。その後、処理は図4のステップS10へ進む。 Next, in step S9-3, the outdoor unit control means 19 corrects the target condensation temperature base Tcm_base of the system by the correction value Tcmh determined in step S8, and sets the target condensation temperature Tcm. Specifically, the correction value Tcmh is added to the target condensation temperature base Tcm_base. Then, the process proceeds to step S10 in FIG.

ステップS10では、室外機制御手段19は、現在のシステムの凝縮温度Tcと目標凝縮温度Tcmの差分ΔTcを算出する。運転中の冷凍サイクルが1系統の場合、差分ΔTcの算出にはステップS5で算出された目標凝縮温度Tcmが用いられ、運転中の冷凍サイクルが2系統の場合、差分ΔTcの算出にはステップS9−3で設定された目標凝縮温度Tcmが用いられる。また、運転中の冷凍サイクルが2系統の場合、凝縮温度Tcは、ステップS7−1で基準系統に設定された冷凍サイクルの系統において、温度検出手段13により得られる凝縮温度である。 In step S10, the outdoor unit control means 19 calculates the difference ΔTc between the current system condensing temperature Tc and the target condensing temperature Tcm. When the refrigeration cycle in operation is one system, the target condensation temperature Tcm calculated in step S5 is used to calculate the difference ΔTc, and when the refrigeration cycle in operation is two systems, the difference ΔTc is calculated in step S9. The target condensation temperature Tcm set in -3 is used. When the refrigerating cycle in operation is two systems, the condensing temperature Tc is the condensing temperature obtained by the temperature detecting means 13 in the refrigerating cycle system set as the reference system in step S7-1.

次いでステップS11において、室外ファンモーター5の回転数を決定する。図10は、室外ファンモーターの回転数決定の処理手順を示すフローチャートである。ステップS11−1において、室外機制御手段19は、ステップS10で算出された差分ΔTcに基づいて、凝縮温度差バンドを決定する。凝縮温度差バンドは、凝縮温度Tcと目標凝縮温度Tcmとの差分ΔTcの帯域に対応して段階的に規定されている。表3は、本実施の形態において、凝縮温度差バンドの設定に用いられる温度差の幅の閾値を示す表である。また、表4は、凝縮温度Tcと目標凝縮温度Tcmとの差分の帯域と、凝縮温度差バンドとを対応付ける表である。 Next, in step S11, the rotation speed of the outdoor fan motor 5 is determined. FIG. 10 is a flowchart showing a processing procedure for determining the rotation speed of the outdoor fan motor. In step S11-1, the outdoor unit control means 19 determines the condensation temperature difference band based on the difference ΔTc calculated in step S10. The condensing temperature difference band is defined stepwise corresponding to the band of the difference ΔTc between the condensing temperature Tc and the target condensing temperature Tcm. Table 3 is a table showing thresholds of the temperature difference width used for setting the condensation temperature difference band in the present embodiment. Further, Table 4 is a table in which the difference band between the condensation temperature Tc and the target condensation temperature Tcm and the condensation temperature difference band are associated with each other.

Figure 0006707189
Figure 0006707189

Figure 0006707189
Figure 0006707189

表3の閾値を表4の凝縮温度差バンド1に当てはめると、凝縮温度差バンド1はTc≦Tcm−5という帯域に対応している。すなわち、凝縮温度差バンド1は、現在の凝縮温度Tcが目標凝縮温度Tcmよりも大幅に低い場合の温度差の帯域に対応している。表3の閾値を表4の凝縮温度差バンド7に当てはめると、凝縮温度差バンド7はTcm+5<Tcという帯域に対応している。すなわち、凝縮温度差バンド7は、現在の凝縮温度Tcが目標凝縮温度Tcmよりも大幅に高い温度差の帯域に対応している。表3の閾値を表4の凝縮温度差バンド4に当てはめると、凝縮温度差バンド4は、Tcm−1<Tc≦Tcm+1という帯域に対応している。すなわち、凝縮温度差バンド4は、現在の凝縮温度Tcが目標凝縮温度Tcmに近似している帯域に対応している。凝縮温度差バンド1と凝縮温度差バンド4との間は、現在の凝縮温度Tcが目標凝縮温度Tcmより低い帯域が段階的に規定されている。凝縮温度差バンド4と凝縮温度差バンド7との間は、現在の凝縮温度Tcが目標凝縮温度Tcmより高い帯域が段階的に規定されている。 When the threshold values in Table 3 are applied to the condensation temperature difference band 1 in Table 4, the condensation temperature difference band 1 corresponds to the band Tc≦Tcm−5. That is, the condensation temperature difference band 1 corresponds to the temperature difference band when the current condensation temperature Tc is significantly lower than the target condensation temperature Tcm. When the threshold values in Table 3 are applied to the condensation temperature difference band 7 in Table 4, the condensation temperature difference band 7 corresponds to a band of Tcm+5<Tc. That is, the condensation temperature difference band 7 corresponds to a temperature difference band in which the current condensation temperature Tc is significantly higher than the target condensation temperature Tcm. When the threshold values in Table 3 are applied to the condensation temperature difference band 4 in Table 4, the condensation temperature difference band 4 corresponds to the band of Tcm-1<Tc≤Tcm+1. That is, the condensation temperature difference band 4 corresponds to a band in which the current condensation temperature Tc is close to the target condensation temperature Tcm. Between the condensation temperature difference band 1 and the condensation temperature difference band 4, a band in which the current condensation temperature Tc is lower than the target condensation temperature Tcm is defined in stages. Between the condensation temperature difference band 4 and the condensation temperature difference band 7, a band in which the current condensation temperature Tc is higher than the target condensation temperature Tcm is defined stepwise.

上述の例では、目標凝縮温度Tcmは39℃に補正されている。現在の凝縮温度Tcが41℃だとすると、TcとTcmの差分は41℃−39℃=2℃となる。従って、表4より凝縮温度差バンドは5となる。 In the above example, the target condensation temperature Tcm is corrected to 39°C. If the current condensation temperature Tc is 41° C., the difference between Tc and Tcm is 41° C.-39° C.=2° C. Therefore, from Table 4, the condensation temperature difference band is 5.

次いで、ステップS11−2において、室外機制御手段19は、室外ファンモーター5の回転数ステップを決定する。図11は、室外ファンモーターの回転数の制御を示す回転数ステップのグラフである。図11中、横軸には表4に示す凝縮温度差バンドをとり、縦軸には室外ファンモーター5の回転数をとっている。室外ファンモーター5の回転数は、凝縮温度差バンドの増減に対応して段階的に設定されている。すなわち、凝縮温度差バンドが1から7へ向けて大きくなるにつれ、室外ファンモーター5の回転数は段階的に大きくなり、凝縮温度差バンドが7から1へ向けて小さくなるにつれ、室外ファンモーター5の回転数は段階的に小さくなっている。さらに、室外ファンモーター5の回転数の制御にはヒステリシスをもたせている。すなわち、凝縮温度差バンドのそれぞれに対応する回転数ステップには上段と下段のステップが設定されている。例えば、凝縮温度差バンド4の上段のステップn(上)の回転数と、凝縮温度差バンド5の下段のステップn+1の回転数は同一であり、凝縮温度差バンド4の下段のステップn(下)の回転数と、凝縮温度差バンド4の上段の回転数ステップn−1の回転数は同一である。本実施の形態において、回転数ステップの初期位置は、凝縮温度差バンドに対応する回転数ステップの下段に設定される。 Next, in step S11-2, the outdoor unit control means 19 determines the rotation speed step of the outdoor fan motor 5. FIG. 11 is a graph of rotation speed steps showing control of the rotation speed of the outdoor fan motor. In FIG. 11, the horizontal axis indicates the condensation temperature difference band shown in Table 4, and the vertical axis indicates the rotation speed of the outdoor fan motor 5. The number of rotations of the outdoor fan motor 5 is set stepwise in accordance with the increase and decrease of the condensation temperature difference band. That is, as the condensation temperature difference band increases from 1 to 7, the rotation speed of the outdoor fan motor 5 gradually increases, and as the condensation temperature difference band decreases from 7 to 1, the outdoor fan motor 5 increases. The number of rotations of is gradually decreasing. Further, the control of the rotation speed of the outdoor fan motor 5 is provided with hysteresis. That is, upper and lower steps are set to the rotation speed steps corresponding to the respective condensation temperature difference bands. For example, the rotation speed of the upper step n (upper) of the condensation temperature difference band 4 and the rotation speed of the lower step n+1 of the condensation temperature difference band 5 are the same, and the rotation speed of the lower step n (lower) of the condensation temperature difference band 4 is the same. ) And the rotation speed of the rotation speed step n-1 in the upper stage of the condensation temperature difference band 4 are the same. In the present embodiment, the initial position of the rotation speed step is set to the lower stage of the rotation speed step corresponding to the condensation temperature difference band.

例えば、上述のように凝縮温度Tcが41℃、目標凝縮温度Tcmが39℃であり、ΔTcが2℃、凝縮温度差バンドが5の場合、回転数ステップはn+1の下段であるn+1(下)に設定される。 For example, when the condensation temperature Tc is 41° C., the target condensation temperature Tcm is 39° C., ΔTc is 2° C., and the condensation temperature difference band is 5 as described above, the rotation speed step is n+1 (lower) which is the lower stage of n+1. Is set to.

ステップS11−3では、室外機制御手段19は、ステップS11−2で設定された回転数ステップに対応する回転数で室外ファンモーター5を回転させ、室外ファン4の回転数を決定する。 In step S11-3, the outdoor unit control means 19 rotates the outdoor fan motor 5 at a rotation speed corresponding to the rotation speed step set in step S11-2, and determines the rotation speed of the outdoor fan 4.

次いで、図4のステップS12へ進み、所定時間、例えば60秒が経過したか否かをチェックする。所定時間が経過したらステップS13へ進む。ステップS13では、室外ファン4の回転数を変更する処理が実行される。図12は、室外ファンモーターの回転数変更の処理手順を示すフローチャートである。ステップS13−1において、室外機制御手段19は、室外ファンモーター5の回転数が安定している凝縮温度差バンドとヒステリシスの位置を抽出する。次いで、ステップS13−2において、室外機制御手段19は、現在の凝縮温度Tcと目標凝縮温度Tcmとの差ΔTcを算出する。運転中の冷凍サイクルが2系統の場合、凝縮温度Tcは、ステップS7−1で基準系統に設定された冷凍サイクルの系統において、温度検出手段13により得られる凝縮温度である。そして、室外機制御手段19は、ΔTcに応じて上述の凝縮温度差バンドを変更する。 Next, in step S12 of FIG. 4, it is checked whether or not a predetermined time, for example, 60 seconds has elapsed. When the predetermined time has elapsed, the process proceeds to step S13. In step S13, a process of changing the rotation speed of the outdoor fan 4 is executed. FIG. 12 is a flowchart showing a processing procedure for changing the rotation speed of the outdoor fan motor. In step S13-1, the outdoor unit control means 19 extracts the condensation temperature difference band and the hysteresis position where the rotation speed of the outdoor fan motor 5 is stable. Next, in step S13-2, the outdoor unit control means 19 calculates the difference ΔTc between the current condensation temperature Tc and the target condensation temperature Tcm. When the refrigerating cycle in operation is two systems, the condensing temperature Tc is the condensing temperature obtained by the temperature detecting means 13 in the refrigerating cycle system set as the reference system in step S7-1. Then, the outdoor unit control means 19 changes the above-mentioned condensation temperature difference band according to ΔTc.

次いでステップS13−3へ進み、室外機制御手段19は、ステップS13−1及びステップS13−2の結果に応じて、室外ファンモーター5の回転数を以下の4つの態様で変更する。 Next, the process proceeds to step S13-3, and the outdoor unit control means 19 changes the rotation speed of the outdoor fan motor 5 in the following four modes according to the results of step S13-1 and step S13-2.

ステップS13−1で、現在の室外ファンモーター5の回転数が図11に示す回転数ステップのヒステリシスの上段にあることが確認され、ステップS13−2で、凝縮温度差バンドがより小さい数字のバンド、すなわち下のバンドへ移行したことが確認された場合、室外ファンモーター5の回転数をダウンさせ、回転数ステップのヒステリシスの下段へ移動させる。例えば、ステップS13−1で現在の室外ファンモーター5の回転数がn+1(上)に存在していることが確認され、ステップS13−2で算出されたΔTcが凝縮温度差バンド5から凝縮温度差バンド4へ移行していることが確認されたら、室外ファンモーター5の回転数をダウンさせ、n+1(下)へ移動させる。 In step S13-1, it is confirmed that the current rotation speed of the outdoor fan motor 5 is in the upper stage of the hysteresis of the rotation speed step shown in FIG. 11, and in step S13-2, the condensation temperature difference band has a smaller band. That is, when it is confirmed that the band has moved to the lower band, the rotation speed of the outdoor fan motor 5 is decreased and moved to the lower stage of the hysteresis of the rotation speed step. For example, it is confirmed in step S13-1 that the current rotation speed of the outdoor fan motor 5 is n+1 (upper), and ΔTc calculated in step S13-2 is calculated from the condensation temperature difference band 5 to the condensation temperature difference band 5. When it is confirmed that the band 4 has been transferred, the rotation speed of the outdoor fan motor 5 is reduced and moved to n+1 (down).

また、ステップS13−2で凝縮温度差バンドがより小さい数字のバンド、すなわち下のバンドへ移行したことが確認された場合、室外ファンモーター5の回転数をアップさせ、回転数ステップのヒステリシスの上段へ移動させる。 In addition, when it is confirmed in step S13-2 that the condensation temperature difference band has moved to a smaller number band, that is, the lower band, the rotation speed of the outdoor fan motor 5 is increased, and the upper stage of hysteresis of the rotation speed step. Move to.

また、ステップS13−2で算出された差ΔTcが、回転数ステップn−1からn−3のいずれかに対応する凝縮温度差バンドにあり、かつ凝縮温度差バンドに変更がない状態が60秒間経過した場合、室外ファンモーター5の回転数をダウンさせる。 Further, the difference ΔTc calculated in step S13-2 is in the condensation temperature difference band corresponding to any of the rotation speed steps n-1 to n-3, and there is no change in the condensation temperature difference band for 60 seconds. When the time has elapsed, the rotation speed of the outdoor fan motor 5 is reduced.

また、ステップS13−2で算出された差ΔTcが、回転数ステップn+1からn+3のいずれかに対応する凝縮温度差バンドにあり、かつ凝縮温度差バンドに変更がない状態が60秒間経過した場合、室外ファンモーター5の回転数をアップさせる。 Further, when the difference ΔTc calculated in step S13-2 is in the condensation temperature difference band corresponding to any of the rotation speed steps n+1 to n+3 and the state in which there is no change in the condensation temperature difference band has passed for 60 seconds, Increase the rotation speed of the outdoor fan motor 5.

ステップS13−3で上述の4つの制御のいずれかが実行されたら、図4のステップS14へ進む。ステップS14では、室内機Yの運転台数若しくは冷凍サイクルの運転系統数に変化があったか否かがチェックされる。室内機Yの運転台数若しくは冷凍サイクルの運転系統数に変化があったことが確認されると、処理は図4のステップS2へ移行する。室内機Yの運転台数若しくは冷凍サイクルの運転系統数に変化がないことが確認されると処理はステップS12へ移行する。 When any of the above four controls is executed in step S13-3, the process proceeds to step S14 in FIG. In step S14, it is checked whether or not the number of operating indoor units Y or the number of operating systems of the refrigeration cycle has changed. When it is confirmed that the number of operating indoor units Y or the number of operating systems of the refrigeration cycle has changed, the process proceeds to step S2 in FIG. If it is confirmed that there is no change in the number of operating indoor units Y or the number of operating systems of the refrigeration cycle, the process proceeds to step S12.

以上のように、本実施の形態によれば、第1系統A及び第2系統Bのそれぞれの空調負荷が異なる場合であっても、室外ファンモーター5の回転数を上述のように制御することで、各系統において過冷却度が付きすぎの状態、若しくは過冷却度が不足する状態を招くことがない。その結果、各系統において、能力過多の運転、若しくは能力不足気味の運転が防止され、空気調和機全体でバランスのとれた冷房運転を実行することができる。 As described above, according to the present embodiment, even when the air conditioning loads of the first system A and the second system B are different, the rotation speed of the outdoor fan motor 5 is controlled as described above. Therefore, there is no possibility of causing a state in which the degree of supercooling is excessive in each system or a state in which the degree of supercooling is insufficient. As a result, in each system, an operation with excessive capacity or an operation with a shortage of capacity is prevented, and a balanced cooling operation can be executed in the entire air conditioner.

本実施の形態によれば、単一の室外ファン4及び単一の室外ファンモーター5により、第1系統A及び第2系統Bの冷房運転を良好なものとすることができる。従って、第1系統A及び第2系統Bのそれぞれに室外ファン及び室外ファンモーターを備える必要がなく、複雑な制御を必要としない。 According to the present embodiment, the single outdoor fan 4 and the single outdoor fan motor 5 can improve the cooling operation of the first system A and the second system B. Therefore, it is not necessary to provide an outdoor fan and an outdoor fan motor in each of the first system A and the second system B, and complicated control is not required.

本実施の形態では、運転開始後、60秒が経過するたびに室外熱交換器3の現在の凝縮温度と目標凝縮温度との差分に基づいて室外ファンモーター5の回転数を変化させるとき、ヒステリシスを持たせて制御している。従って、室外ファンモーター5の駆動においてハンチングを防止することができる。 In the present embodiment, when the number of rotations of the outdoor fan motor 5 is changed based on the difference between the current condensation temperature of the outdoor heat exchanger 3 and the target condensation temperature every 60 seconds after the start of operation, the hysteresis is set. Is controlled. Therefore, hunting can be prevented when driving the outdoor fan motor 5.

本実施の形態は、単一の室外機Xが2系統の冷凍サイクルを有する構成を有しているがこれに限るものではない。単一の室外機Xが3系統以上の冷凍サイクルを有する構成においても、室外機制御手段19により上述と同様の処理が実行され、同様の効果を発揮する。 In the present embodiment, the single outdoor unit X has a configuration having two refrigeration cycles, but the present invention is not limited to this. Even in a configuration in which a single outdoor unit X has three or more refrigeration cycles, the outdoor unit control means 19 executes the same processing as described above, and exhibits the same effect.

本実施の形態は、冷凍サイクルの各系統において室内機Yが2台接続されている構成を有しているがこれに限るものではない。冷凍サイクルの各系統に接続される室内機Yの台数は1台でもよく、3台以上でもよい。尚、1つの系統に複数の室内機Yが接続される構成において、上述の室外機制御手段19による制御はより効果的である。 Although the present embodiment has a configuration in which two indoor units Y are connected in each system of the refrigeration cycle, the present invention is not limited to this. The number of indoor units Y connected to each system of the refrigeration cycle may be one or three or more. In the configuration in which a plurality of indoor units Y are connected to one system, the control by the outdoor unit control means 19 described above is more effective.

1 圧縮機、1A 圧縮機、1B 圧縮機、2 四方弁、2A 四方弁、2B 四方弁、3 室外熱交換器、3A 室外熱交換器、3B 室外熱交換器、4 室外ファン、5 室外ファンモーター、6 膨張弁、6A1 膨張弁、6A2 膨張弁、6B1 膨張弁、6B2 膨張弁、7 凝縮温度差バンド、7Y 室内熱交換器、7Y1 室内熱交換器、7Y2 室内熱交換器、7Y3 室内熱交換器、7Y4 室内熱交換器、8Y 室内ファン、9Y 室内ファンモーター、10A 液側バルブ、10B 液側バルブ、11A ガス側バルブ、11B ガス側バルブ、12A 温度検出手段、12B 温度検出手段、13 温度検出手段、13A 温度検出手段、13B 温度検出手段、14 温度検出手段、15A 温度検出手段、15B 温度検出手段、16Y 温度検出手段、17Y 温度検出手段、17Y1 温度検出手段、17Y3 温度検出手段、18Y 室内機制御手段、18Y1 室内機制御手段、18Y2 室内制御手段、18Y3 室内機制御手段、18Y4 室内制御手段、19 室外機制御手段、A 第1系統、B 第2系統、N 安定回転数、Tc 凝縮温度、Tca 凝縮温度、Tcb 凝縮温度、Tcm 目標凝縮温度、Tcm_base 目標凝縮温度ベース、Tcmh 補正値、X 室外機、Y 室内機、Y1 室内機、Y2 室内機、Y3 室内機、Y4 室内機、ΔTc 差分。 1 compressor, 1A compressor, 1B compressor, 2 4-way valve, 2A 4-way valve, 2B 4-way valve, 3 outdoor heat exchanger, 3A outdoor heat exchanger, 3B outdoor heat exchanger, 4 outdoor fan, 5 outdoor fan motor , 6 expansion valve, 6A1 expansion valve, 6A2 expansion valve, 6B1 expansion valve, 6B2 expansion valve, 7 condensation temperature difference band, 7Y indoor heat exchanger, 7Y1 indoor heat exchanger, 7Y2 indoor heat exchanger, 7Y3 indoor heat exchanger , 7Y4 indoor heat exchanger, 8Y indoor fan, 9Y indoor fan motor, 10A liquid side valve, 10B liquid side valve, 11A gas side valve, 11B gas side valve, 12A temperature detecting means, 12B temperature detecting means, 13 temperature detecting means , 13A temperature detecting means, 13B temperature detecting means, 14 temperature detecting means, 15A temperature detecting means, 15B temperature detecting means, 16Y temperature detecting means, 17Y temperature detecting means, 17Y1 temperature detecting means, 17Y3 temperature detecting means, 18Y indoor unit control Means, 18Y1 indoor unit control means, 18Y2 indoor control means, 18Y3 indoor unit control means, 18Y4 indoor control means, 19 outdoor unit control means, A first system, B second system, N stable rotation speed, Tc condensing temperature, Tca Condensation temperature, Tcb condensation temperature, Tcm target condensation temperature, Tcm_base target condensation temperature base, Tcmh correction value, X outdoor unit, Y indoor unit, Y1 indoor unit, Y2 indoor unit, Y3 indoor unit, Y4 indoor unit, ΔTc difference.

Claims (6)

室外機と複数の室内機とを備え、
前記室外機は、複数の圧縮機と、複数の室外熱交換器と、複数の流路切替装置と、複数の膨張弁と、前記複数の室外熱交換器に空気を送る単一の室外ファンと、前記単一の室外ファンを駆動する単一の室外ファンモーターと、前記室外機を制御する室外機制御手段とを有し、
前記複数の室内機は、それぞれ室内熱交換器を有し、
前記圧縮機と前記室外熱交換器と前記流路切換装置と前記膨張弁と前記複数の室内機のうちの一部の室内機の前記室内熱交換器とが冷媒配管で接続された冷凍サイクル回路が複数系統構成されている空気調和機であって、
前記室外機制御手段は、
前記複数系統の前記冷凍サイクル回路が同時に運転されているとき、
前記複数系統の前記冷凍サイクル回路のそれぞれの前記室外熱交換器における冷媒の目標凝縮温度を取得し、
前記複数系統の前記冷凍サイクル回路毎に、前記圧縮機の運転周波数を取得し、
前記複数系統の前記冷凍サイクル回路毎に、前記圧縮機の運転周波数の帯域の高低に対応して段階的に規定されている複数の周波数バンドと、前記複数の周波数バンド毎に規定されている前記室外熱交換器の目標凝縮温度の中から、取得した前記圧縮機の運転周波数に基づいて前記目標凝縮温度と、を特定し、
運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドと、運転周波数が最も小さい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドとの差分を算出し、
前記周波数バンドの差分に対応して段階的に規定されている複数の前記目標凝縮温度の補正値の中から、算出された前記周波数バンドの差分に基づいて、前記補正値を決定し、
運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記目標凝縮温度を前記補正値で補正し、
前記室外熱交換器の凝縮温度が前記補正値で補正された前記目標凝縮温度となるよう、前記単一の室外ファンモーターの回転数を制御する空気調和機。
With an outdoor unit and multiple indoor units,
The outdoor unit includes a plurality of compressors, a plurality of outdoor heat exchangers, a plurality of flow path switching devices, a plurality of expansion valves, and a single outdoor fan that sends air to the plurality of outdoor heat exchangers. has a single outdoor fan motor for driving the single outdoor fan, an outdoor unit control means for controlling said outdoor unit,
Each of the plurality of indoor units has an indoor heat exchanger,
A refrigeration cycle circuit in which the compressor, the outdoor heat exchanger, the flow path switching device, the expansion valve, and the indoor heat exchanger of some indoor units of the plurality of indoor units are connected by a refrigerant pipe. Is an air conditioner having a plurality of systems,
The outdoor unit control means,
When the refrigeration cycle circuits of the plurality of systems are operated simultaneously,
Obtaining the target condensation temperature of the refrigerant in each of the outdoor heat exchangers of the refrigeration cycle circuit of the plurality of systems,
For each of the plurality of refrigeration cycle circuits, obtain the operating frequency of the compressor,
For each of the plurality of refrigeration cycle circuits, a plurality of frequency bands that are defined in stages corresponding to the height of the operating frequency band of the compressor, and the plurality of frequency bands that are defined for each of the plurality of frequency bands. From the target condensing temperature of the outdoor heat exchanger, the target condensing temperature based on the acquired operating frequency of the compressor, and specify,
The frequency band of the refrigeration cycle circuit having the compressor having the largest operating frequency, and the difference between the frequency band of the refrigeration cycle circuit having the compressor having the smallest operating frequency is calculated,
From among the correction values of the plurality of target condensation temperatures that are defined in stages corresponding to the difference of the frequency band, based on the difference of the calculated frequency band, determine the correction value,
Correct the target condensation temperature of the refrigeration cycle circuit having the compressor with the largest operating frequency with the correction value,
An air conditioner that controls the rotation speed of the single outdoor fan motor so that the condensation temperature of the outdoor heat exchanger becomes the target condensation temperature corrected by the correction value .
前記補正値は、前記周波数バンドの差分が大きくなるにつれ、より大きくなるよう規定されている請求項に記載の空気調和機。 The air conditioner according to claim 1 , wherein the correction value is defined to increase as the difference between the frequency bands increases. 前記室外機制御手段は、
前記室外熱交換器の現在の凝縮温度と、補正された前記目標凝縮温度との差分に基づいて前記単一の室外ファンモーターの回転数を制御するとき、ヒステリシスを持たせて前記単一の外ファンモーターの回転数を制御する請求項又はに記載の空気調和機。
The outdoor unit control means,
When controlling the rotation speed of the single outdoor fan motor based on the difference between the current condensation temperature of the outdoor heat exchanger and the corrected target condensation temperature, the single chamber is provided with hysteresis. the air conditioner according to claim 1 or 2 for controlling the rotational speed of the outer off Anmota.
室外機と複数の室内機とを備え、
前記室外機は、複数の圧縮機と、複数の室外熱交換器と、複数の流路切替装置と、複数の膨張弁と、前記複数の室外熱交換器に空気を送る単一の室外ファンと、前記単一の室外ファンを駆動する単一の室外ファンモーターと有し、
前記圧縮機と前記室外熱交換器と前記流路切換装置と前記膨張弁と前記複数の室内機のうちの一部の室内機の室内熱交換器とが冷媒配管で接続された冷凍サイクル回路を複数系統有する空気調和機において、
前記複数系統の冷凍サイクル回路が同時に運転されているとき、
前記空気調和機の冷媒の目標凝縮温度を設定する設定ステップと、
前記目標凝縮温度に基づいて前記単一の室外ファンモーターの回転を制御するモーター制御ステップとを含み、
前記設定ステップは、
前記複数系統の前記冷凍サイクル回路毎に、前記圧縮機の運転周波数を取得し、
前記圧縮機の運転周波数の帯域の高低に対応して段階的に規定されている複数の周波数バンドと、前記複数の周波数バンド毎に規定されている、前記室外熱交換器の目標凝縮温度の中から、前記複数系統の前記冷凍サイクル回路毎に、取得した前記圧縮機の運転周波数に基づいて前記目標凝縮温度と、を特定する特定ステップと、
運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドと、運転周波数が最も小さい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドとの差分を算出するバンド差分算出ステップと、
前記周波数バンドの差分に対応して段階的に規定されている複数の前記目標凝縮温度の補正値の中から、前記バンド差分算出ステップで算出された前記周波数バンドの前記差分に基づいて、前記補正値を決定する補正値決定ステップと、
運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記目標凝縮温度を前記補正値で補正する補正ステップとを含んでいる空気調和機のファン速制御方法。
With an outdoor unit and multiple indoor units,
The outdoor unit includes a plurality of compressors, a plurality of outdoor heat exchangers, a plurality of flow path switching devices, a plurality of expansion valves, and a single outdoor fan that sends air to the plurality of outdoor heat exchangers. has a single outdoor fan motor for driving the single outdoor fan,
A refrigeration cycle circuit in which the compressor, the outdoor heat exchanger, the flow path switching device, the expansion valve, and the indoor heat exchanger of some indoor units of the plurality of indoor units are connected by a refrigerant pipe. In an air conditioner with multiple systems,
When the plurality of refrigeration cycle circuits are operated at the same time,
A setting step of setting a target condensing temperature of the refrigerant of the air conditioner,
Look including a motor control step of controlling the rotation of said single outdoor fan motor based on the target condensing temperature,
The setting step is
For each of the plurality of refrigeration cycle circuits, obtain the operating frequency of the compressor,
A plurality of frequency bands that are defined stepwise corresponding to the height of the operating frequency band of the compressor, and a target condensing temperature of the outdoor heat exchanger that is defined for each of the plurality of frequency bands. From each of the plurality of refrigeration cycle circuits, a specific step of specifying the target condensing temperature based on the acquired operating frequency of the compressor,
The frequency band of the refrigeration cycle circuit having the compressor having the largest operating frequency, and a band difference calculation step of calculating a difference between the frequency band of the refrigeration cycle circuit having the compressor having the smallest operating frequency,
Based on the difference between the frequency bands calculated in the band difference calculation step, from among the plurality of correction values of the target condensation temperature that are defined stepwise corresponding to the difference between the frequency bands, the correction is performed. A correction value determination step for determining the value,
A step of correcting the target condensing temperature of the refrigeration cycle circuit having the compressor having the highest operating frequency with the correction value .
前記モーター制御ステップは、
前記室外熱交換器の現在の凝縮温度と、前記補正ステップで補正された前記目標凝縮温度との差分を検出する温度差分検出ステップと、
前記温度差分検出ステップで検出された前記差分に基づいて、前記室外熱交換器の凝縮温度が前記補正ステップで補正された前記目標凝縮温度となるよう前記単一の室外ファンモーターの回転数を制御する回転数制御ステップとを含んでいる請求項に記載の空気調和機のファン速制御方法。
The motor control step is
A current condensation temperature of the outdoor heat exchanger, a temperature difference detection step of detecting a difference between the target condensation temperature corrected in the correction step,
Based on the difference detected in the temperature difference detection step, the rotation speed of the single outdoor fan motor is controlled so that the condensation temperature of the outdoor heat exchanger becomes the target condensation temperature corrected in the correction step. 5. The fan speed control method for an air conditioner according to claim 4 , further comprising:
前記回転数制御ステップにおいて、前記単一の室外ファンモーターの回転数はヒステリシスを持たせて制御される請求項に記載の空気調和機のファン速制御方法。 The fan speed control method for an air conditioner according to claim 5 , wherein in the rotation speed control step, the rotation speed of the single outdoor fan motor is controlled with a hysteresis.
JP2019513129A 2017-04-19 2017-04-19 Air conditioner and fan speed control method for air conditioner Active JP6707189B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015676 WO2018193537A1 (en) 2017-04-19 2017-04-19 Air conditioner and control method for fan speed of air conditioner

Publications (2)

Publication Number Publication Date
JPWO2018193537A1 JPWO2018193537A1 (en) 2019-11-14
JP6707189B2 true JP6707189B2 (en) 2020-06-10

Family

ID=63855779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019513129A Active JP6707189B2 (en) 2017-04-19 2017-04-19 Air conditioner and fan speed control method for air conditioner

Country Status (2)

Country Link
JP (1) JP6707189B2 (en)
WO (1) WO2018193537A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7399448B2 (en) 2019-08-02 2023-12-18 ヒューグル開発株式会社 device
CN110454934B (en) * 2019-08-05 2021-03-19 广东美的制冷设备有限公司 Air conditioner and control method and control device thereof
CN111578482B (en) * 2020-05-28 2022-02-25 广东美的制冷设备有限公司 Multi-split air conditioner and control method, device, equipment and storage medium thereof
CN112393453B (en) * 2020-11-30 2023-11-07 珠海格力电器股份有限公司 Multisystem air conditioning unit and condensation prevention control method
CN115111791B (en) * 2022-06-24 2024-02-09 深圳市酷凌时代科技有限公司 Water chiller, method and device for detecting dust deposit of condenser and readable storage medium
CN117433194B (en) * 2023-12-20 2024-04-05 珠海格力电器股份有限公司 Control method and device of refrigeration system, refrigeration system and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543868Y2 (en) * 1991-10-17 1997-08-13 株式会社富士通ゼネラル Air conditioner
JPH06193983A (en) * 1992-12-25 1994-07-15 Zexel Corp Condenser fan controller for refrigerator with deep freezer
JP5318057B2 (en) * 2010-09-27 2013-10-16 三菱電機株式会社 Refrigerator, refrigeration equipment and air conditioner
EP2940395B1 (en) * 2012-12-28 2021-01-20 Mitsubishi Electric Corporation Air conditioner

Also Published As

Publication number Publication date
JPWO2018193537A1 (en) 2019-11-14
WO2018193537A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6707189B2 (en) Air conditioner and fan speed control method for air conditioner
JP5598353B2 (en) Air conditioner
EP2261578A1 (en) Refrigeration device
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
AU2012392673B2 (en) Air conditioning apparatus
JP6091615B2 (en) Air conditioning system
AU2014387521B2 (en) Heat source side unit and air-conditioning apparatus
US11262108B2 (en) Refrigeration cycle apparatus
JP5846226B2 (en) Air conditioner
KR102408579B1 (en) Capacity control for refrigeration units with screw compressors
JP6045440B2 (en) Air conditioner control device
US10359209B2 (en) Air conditioning apparatus
JP5506433B2 (en) Multi-type air conditioner
AU2015364970B2 (en) Air conditioning apparatus
JP2012202581A (en) Refrigeration cycle device and control method thereof
WO2019021464A1 (en) Air conditioning device
WO2020003490A1 (en) Air conditioning device
US20200064033A1 (en) System for control of superheat setpoint for hvac system
JPH1114125A (en) Multichamber type air conditioner
JP6584127B2 (en) Air conditioner
JP2015124958A (en) Air conditioner
JP2010210222A (en) Air conditioner and its control method
JP2004293870A (en) Refrigerating cycle device
JPWO2019043941A1 (en) Air conditioner
JP2003042505A (en) Air conditioner and method of controlling its operation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200519

R150 Certificate of patent or registration of utility model

Ref document number: 6707189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250