WO2019086273A1 - Composition - Google Patents

Composition Download PDF

Info

Publication number
WO2019086273A1
WO2019086273A1 PCT/EP2018/078740 EP2018078740W WO2019086273A1 WO 2019086273 A1 WO2019086273 A1 WO 2019086273A1 EP 2018078740 W EP2018078740 W EP 2018078740W WO 2019086273 A1 WO2019086273 A1 WO 2019086273A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural units
linear saturated
alkyl group
settling
thickening polymer
Prior art date
Application number
PCT/EP2018/078740
Other languages
French (fr)
Inventor
Nicholas John Ainger
Wei Gao
Adam Peter Jarvis
Kinjalbahen JOSHI
Curtis Schwartz
Neil Scott Shaw
Inna Shulman
Pierre Starck
Sally Elizabeth WOOD
Fanwen Zeng
Original Assignee
Unilever Plc
Unilever N.V.
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Conopco, Inc., D/B/A Unilever filed Critical Unilever Plc
Publication of WO2019086273A1 publication Critical patent/WO2019086273A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/378(Co)polymerised monomers containing sulfur, e.g. sulfonate

Definitions

  • the present invention relates to fabric treatment compositions.
  • Aqueous compositions having insoluble ingredients suspended therein have desirability for a variety of conventional uses, such as in the home care and personal care areas.
  • such aqueous compositions desirably exhibit both an appealing look and feel, both in the pack and during use, for example product dispensing. This, however, in complex aqueous formulations containing suspended insoluble ingredients, presents significant challenges.
  • insoluble materials In systems containing insoluble materials with a density less than that of the continuous phase, the insoluble materials tend to float to the top surface of the continuous phase (i.e., creaming). In systems containing insoluble materials with a density greater than that of the continuous phase, the insoluble materials tend to sink to the bottom of the continuous phase (i.e., settling).
  • Suspended insoluble particles have a tendency to aggregate in aqueous products thus decreasing its available surface area with a consequential loss of activity. Further, effective deposition of suspended agents can be problematic, especially from rinse off cleaning compositions, which are designed to remove substances such as dirt and oils from surfaces and wash them away. Thus, getting enough agent onto the surface, in order to give a big enough beneficial effect, is difficult to achieve. Despite the prior art there remains a need for improved suspension and delivery of insoluble actives from cleaning formulations.
  • a first aspect of the invention provides a fabric treatment composition which comprises: (I) a cleaning surfactant selected from the group consisting of anionic surfactant, zwitterionic or amphoteric surfactant and nonionic surfactant;
  • anti-settling, thickening polymer comprises:
  • R 1 wherein R 1 is a linear saturated C10-24 alkyl group; wherein R 2 is a hydrogen or a methyl group (preferably, wherein R 2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R 1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R 1 is,
  • the aqueous composition of the present invention contains an anti-settling thickening polymer, for use in the treatment of fabric.
  • the aqueous composition is preferably a fabric cleaning composition.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises: (a) 40 to 74.5 wt% (preferably, 45 to 69.5 wt%; more preferably, 50 to 65 wt%; most preferably, 52 to 60 wt%) of structural units of C1-4 alkyl acrylate (preferably, C2-4 alkyl acrylate; more preferably, C2-3 alkyl acrylate; most preferably, ethyl acrylate); (b) 20 to 50 wt% (preferably, 25 to 45 wt%; more preferably, 25 to 40 wt%; most preferably, 30 to 35 wt%) of structural units of methacrylic acid; (c) 0.2 to ⁇ 5 wt% (preferably, 0.5 to 3 wt%; more preferably, 0.75 to 2.0 wt%; most preferably, 0.75 to 1 .5 wt%) of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS);
  • R 1 is a linear saturated C10-24 alkyl group; wherein R 2 is a hydrogen or a methyl group (preferably, wherein R 2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated Cis alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R 1 is, respectively, a linear saturated C12 and a linear saturated Cis alkyl group; or (iii) two specialized associated monomers, wherein R 1 is, respectively, a
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises: (a) 50 to 65 wt% of structural units of ethyl acrylate; (b) 25 to 40 wt% of structural units of methacrylic acid; (c) 0.75 to 2.0 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS); (d) 10 to 20 wt% of structural units of the specialized associated monomer; (e) 0 to 0.1 wt% of structural units of acrylic acid; and (f) 0 to 0.1 wt% (preferably, 0 to 0.001 wt%; more preferably, 0 wt%) of structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent; wherein the sum of the weight percentages of structural units (a)-(f) is equal to 100 wt% anti-settling, thickening polymer.
  • AMPS 2-acrylamido-2
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention has a weight average molecular weight of 5,000,000 to 400,000,000 Daltons. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention has a weight average molecular weight of 25,000,000 to 300,000,000 Daltons. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention has a weight average molecular weight of 175,000,000 to 275,000,000 Daltons.
  • the weight average molecular weight refers to the weight average molecular weight as measured using asymmetric flow field flow fractionation (AF4) with inline Multi-Angle Light Scattering (MALS) and differential Refractive Index (Rl) detections.
  • AF4 instrument used consisted of an EclipseTM DualTecTM separation system (from Wyatt Technology Corp.) that was coupled in series to an 18 angle multi-angle light scattering (MALS) detector (DAWN HELOS II; from Wyatt Technology Corp.) and a differential refractometer (Rl) (Optilab rEX; from Wyatt Technology Corp.).
  • Flows through the AF4 instrument were provided using an Agilent Technologies 1200 series isocratic pump equipped with a micro-vacuum degasser. All injections were performed with an auto sampler (Agilent Technologies 1200 series). Data from the AF4 instrument were collected and processed using Astra software version 7.0.1 .23 (from Wyatt Technology Corp.). Samples were prepared at a concentration of 1 mg/mL in 20 mM ammonium acetate solution at pH 10 (filtered with a 1.2 m pore nylon membrane).
  • Samples (25 ⁇ _) were injected into the standard separation channel system (25 cm long and a width dimension starting at 2.15 cm and reducing to 0.3 cm over the length) with a channel thickness of 350 ⁇ and equipped with a 10 kDA cutof regenerated cellulose ultrafiltration membrane (Wyatt Technology).
  • the mobile phase used for the AF4 analysis was 20 mM ammonium acetate solution at pH 10. Separation was performed with an applied channel flow of 1 mL/min. The sample was introduced to the channel with a focus flow at 1.7 mL/min for 3 minutes.
  • the elution flow as then started at 0.5 mL/min for 3 minutes and then followed by a linearly decreasing cross flow gradient (from 0.5 mL/min to 0.05 mL/min over 12 minutes), then a hold at 0.05 mL/min for another 5 minutes.
  • the average molecular weight was calculated using Astra software version 7.0.1 .23 after subtracting a blank injection with a refractive index increment (dn/dc) of 0.190 mL/g for all calculation with Berry model 2 nd order fit. Molecular weights are reported herein in units of Daltons.
  • the structural units of C1-4 alkyl acrylate in the anti-settling, thickening polymer for use in the aqueous compositions of the invention are structural units of C2-4 alkyl acrylate. More preferably, the structural units of C1-4 alkyl acrylate in the anti-settling, thickening polymer for use in the aqueous compositions of the invention are structural units of C2-3 alkyl acrylate. Most preferably, the structural units of C1-4 alkyl acrylate in the anti-settling, thickening polymer for use in the aqueous compositions of the invention are structural units of ethyl acrylate.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 40 to 74.5 wt% of structural units of C1-4 alkyl acrylate (preferably, C2- 4 alkyl acrylate; more preferably, C2-3 alkyl acrylate; most preferably, ethyl acrylate). More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 45 to 69.5 wt% of structural units of C1-4 alkyl acrylate (preferably, C2- 4 alkyl acrylate; more preferably, C2-3 alkyl acrylate; most preferably, ethyl acrylate).
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 50 to 65 wt% of structural units of C1-4 alkyl acrylate (preferably, C2-4 alkyl acrylate; more preferably, C2-3 alkyl acrylate; most preferably, ethyl acrylate).
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 52 to 60 wt% of structural units of C1-4 alkyl acrylate (preferably, C2-4 alkyl acrylate; more preferably, C2-3 alkyl acrylate; most preferably, ethyl acrylate).
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 20 to 50 wt% of structural units of methacrylic acid. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 25 to 45 wt% of structural units of methacrylic acid. Still more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 25 to 40 wt% of structural units of methacrylic acid. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 30 to 35 wt% of structural units of methacrylic acid.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0.2 to ⁇ 5 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS). More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0.5 to 3 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS). Even more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0.5 to 1.5 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS). Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0.5 to 1 .0, of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS).
  • AMPS 2-acrylamido-2
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 5 to 25 wt% of structural units of a specialized associated monomer having the following structure:
  • R 1 is a linear saturated C10-24 alkyl group; wherein R 2 is a hydrogen or a methyl group (preferably, wherein R 2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R 1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R 1 is, respectively, a
  • R 1 is a linear saturated C10-24 alkyl group; wherein R 2 is a hydrogen or a methyl group (preferably, wherein R 2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R 1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R 1 is, respectively, a
  • R 1 is a linear saturated C10-24 alkyl group; wherein R 2 is a hydrogen or a methyl group (preferably, wherein R 2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R 1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R 1 is, respectively, a
  • R 1 is a linear saturated C10-24 alkyl group; wherein R 2 is a hydrogen or a methyl group (preferably, wherein R 2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R 1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R 1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R 1 is, respectively, a
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes 0 to 1 wt% of structural units of acrylic acid. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes 0 to 0.1 wt% of structural units of acrylic acid. Still more preferably, anti-settling, thickening polymer for use in the aqueous compositions of the invention contains 0 to 0.01 wt% of structural units of acrylic acid. Yet still more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than the detectable limit of structural units of acrylic acid.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention contains 0 wt% structural units of acrylic acid.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0 to 2 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0 to 0.1 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0 to 0.001 wt% of structural units of multi- ethylenically unsaturated crosslinking monomer and chain transfer agent. Yet still more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than the detectable limit of structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention contains 0 wt% structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.001 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.0001 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer. Still more preferably, anti-settling, thickening polymer for use in the aqueous compositions of the invention contains less than the detectable limit of structural units of multi-ethylenically unsaturated crosslinking monomer. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes 0 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.1 wt% of structural units of chain transfer agent. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.001 wt% of structural units of chain transfer agent. Still more preferably, anti-settling, thickening polymer for use in the aqueous compositions of the invention contains less than the detectable limit of structural units of chain transfer agent. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes 0 wt% of structural units of chain transfer agent.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.001 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer and less than 0.1 wt% of structural units of chain transfer agent. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.0001 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer and less than 0.01 wt% of structural units of chain transfer agent.
  • anti-settling, thickening polymerfor use in the aqueous compositions of the invention contains less than the detectable limit of structural units of multi-ethylenically unsaturated crosslinking monomer and less than the detectable limit of structural units of chain transfer agent.
  • the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes 0 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer and includes 0 wt% of structural units of chain transfer agents.
  • Structural units of multi-ethylenically unsaturated crosslinking monomer may include for example those derived from polyunsaturated monomer components including, polyunsaturated aromatic monomers (e.g., divinyl benzene, divinyl naphthalene, trivinyl benzene); polyunsaturated alicyclic monomers (e.g., 1 ,2,4-trivinylcyclohexane); difunctional esters of phthalic acid (e.g., diallyl phthalate); polyunsaturated aliphatic monomers (e.g., isoprene, butadiene, 1 ,5-hexadiene, 1 ,5,9- decatriene, 1 ,9-decadiene, 1 ,5-heptadiene); polyalkenyl ethers (e.g., trially pentaerythritol, diallyl pentaerythritol, diallyl sucrose, o
  • Structural units of chain transfer agents may monomer include those derived from a variety of thio and disulfide containing compounds (e.g., CMS alkyl mercaptans, mercaptocarboxylic acids, mercaptocarboxylic esters, thioesters, CMS alkyl disulfides, aryldisulfides, polyfunctional thiols); phosphites and hypophosphites; haloalkyl compounds (e.g., carbon tetrachloride, bromotrichloromethane) and unsaturated chain transfer agents (e.g., alpha-methylstyrene).
  • the Cleaning Surfactant e.g., CMS alkyl mercaptans, mercaptocarboxylic acids, mercaptocarboxylic esters, thioesters, CMS alkyl disulfides, aryldisulfides, polyfunctional thiols
  • phosphites and hypophosphites
  • composition of the present invention comprises a surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, zwitterionic surfactants and mixtures thereof.
  • the cleaning surfactant is selected from the group consisting of sodium lauryl sulphate, sodium lauryl ether sulphate, sodium lauryl ether sulphosuccinate, ammonium lauryl sulphate, ammonium lauryl ether sulphate, sodium cocoyi isethionate and lauryl ether carboxylic acid, coco betaine, cocamidopropyl betaine, sodium cocoamphoacetate and mixtures thereof.
  • mixtures of any of the anionic, non-ionic and amphoteric cleaning surfactants has a ratio of primary to secondary surfactant of between 1 :1 - 10:1 , more preferably 2:1 - 9:1 and most preferably 3:1 - 8:1 , based on the inclusion weight of the cleaning surfactant in the composition.
  • the composition of the present invention comprises from 1 to 50%, preferably from 2 to 40%, more preferably from 4 to 25% of total surfactant, based on the total weight of the composition.
  • Cosmetic Ingredient preferably from 1 to 50%, preferably from 2 to 40%, more preferably from 4 to 25% of total surfactant, based on the total weight of the composition.
  • the composition of the present invention preferably comprises a cosmetic ingredient.
  • the cosmetic ingredient selected from the group consisting of a silicone, an antibacterial agent, a foam booster, a perfume, encapsulates (for example encapsulated fragrance) a dye, a colouring agent, a pigment, a preservative, a thickener, a protein, a phosphate ester, a buffering agent, a pH adjusting agent, a pearlescer (for example; mica, titanium dioxide, titanium dioxide coated mica, ethylene glycol distearate (INCI glycol distearate)) and/or opacifier, a viscosity modifier, an emollient, a sunscreen, an emulsifier, a sensate active (for example menthol and menthol derivatives), vitamins, mineral oils, essential oils, lipids, natural actives, glycerine, natural materials such as botanicals, fruit extracts, sugar derivatives and amino acids, microcrystalline cellulose and mixtures thereof.
  • encapsulates for
  • the aqueous composition of the present invention includes from 0.01 to 20 wt% of the at least one cosmetic ingredient, more preferably from 0.05 to 10 wt%, still more preferably from 0.075 to 7.5 wt% and most preferably, from 0.1 to 5 wt% of the at least one cosmetic ingredient, by weight of the total composition. pH of Compositions
  • composition of the present invention preferably has a pH of from 3 to 7, preferably 4 to 7, more preferably 4 to 6.5, most preferably from 4.2 to 6.5.
  • compositions have a shear thinning rheology that makes it suitable for suspending particles.
  • preferred compositions comprise suspended particles. These particles are preferably solid; that is to say they are neither liquid nor gas. However, within the term solid we include particles with either rigid or deformable solid shells which may then contain fluids.
  • the solid particles may be microcapsules such as perfume encapsulates, or care additives or other benefit agents in encapsulated form.
  • the particles may be enzymes or other cleaning actives that are insoluble or are encapsulated to prevent or reduce interaction with other composition ingredients.
  • the particles may take the form of insoluble ingredients such as silicones, quaternary ammonium materials, insoluble polymers, insoluble optical brighteners and other known benefit agents as described, for example, in EP1328616.
  • the amount of suspended particles may be from 0.001 to up to 10 or even 20 wt%.
  • One type of solid particle to be suspended is a visual cue, for example the type of flat film cue described in EP131 19706.
  • the cue may itself contain a segregated component of the detergent composition. Because the cue must be water-soluble, yet insoluble in the composition, it is conveniently made from a modified polyvinyl alcohol that is insoluble in the presence of the mixed surfactant system. In that case, the detergent composition preferably comprises at least 5 wt% anionic surfactant.
  • the suspended particles can be any type. This includes perfume encapsulates, care encapsulates and/ or visual cues or suspended solid opacifier such as mica or other suspended pearlescent materials and mixtures of these materials. The closer the match of the density of the suspended particles to that of the liquid. Typically, up to 5 wt% of suspended particles may be suspended stably; however, amounts up to 20 wt% are possible.
  • the benefit agents that may be delivered via suspended particles include any compatible benefit agent which can provide a benefit to a substrate which is treated with a preferably surfactant-containing composition can be used.
  • Advantages of the particles of the invention in the presence of surfactant are a good retention of the benefit agent on storage of a formulation and controllable release of the benefit agent during and after product usage.
  • Preferred benefit agents are fragrances, profragrance, clays, enzymes, antifoams, fluorescers, bleaching agents and precursors thereof (including photo-bleach), dyes and/or pigments, conditioning agents (for example cationic surfactants including water-insoluble quaternary ammonium materials, fatty alcohols and/or silicones), lubricants (e.g. sugar polyesters), colour and photo-protective agents (including sunscreens), antioxidants, ceramides, reducing agents, sequestrants, colour care additives (including dye fixing agents), unsaturated oil, emollients, moisturisers, insect repellents and/or pheromones, drape modifiers (e.g. polymer latex particles such as PVAc) and anti-microbial and microbe control agents. Mixtures of two or more of these may be employed. Particular benefit agents are described in further detail below.
  • Benefits include, for laundry applications, benefits of softening, conditioning, lubricating, crease reducing, ease of ironing, moisturising, colour preserving and/or anti-pilling, quick drying, UV protecting, shape retaining, soil releasing, texturising, insect repelling, fungicidal, dyeing and/or fluorescent benefit to the fabric.
  • a highly preferred benefit is the delivery of fragrance (whether free and/or encapsulated), or pro-fragrance or other volatile benefit agent.
  • Preferred sunscreens are vitamin B3 compounds.
  • Suitable vitamin B3 compounds are selected from niacin, niacinamide, nicotinyl alcohol, or derivatives or salts thereof.
  • Preferred anti-oxidants include vitamin E, retinol, antioxidants based on hydroxytoluene such as IrganoxTM or commercially available antioxidants such as the TrolloxTM series.
  • Perfume is one example of a volatile benefit agent.
  • Typical volatile benefit agents have a molecular weight of from 50 to 500. Where pro-fragrances are used the molecular weight will generally be higher.
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavour Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavour Chemicals by S. Arctander 1969, Montclair, N.J. (USA).
  • perfume in this context is not only meant a fully formulated product fragrance, but also selected components of that fragrance, particularly those which are prone to loss, such as the so-called 'top notes'.
  • the perfume component could also be in the form of a pro- fragrance.
  • WO 2002/038120 P&G
  • Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Examples of well known top-notes include citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. Top notes typically comprise 15 to 25 wt% of a perfume composition and in those embodiments of the invention which contain an increased level of top-notes it is envisaged at that least 20 wt% would be present within the encapsulate. Typical perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100 to 250 Celsius.
  • perfumes with which the present invention can be applied are the so- called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian. By means of the present invention these materials can be transferred to textile articles that will be worn or otherwise come into contact with the human body (such as handkerchiefs and bed-linen).
  • the volatile benefit agents also include insect repellent materials (where insect should be read broadly to include other pests which are arthropods but not strictly hexapods - for example ticks).
  • DEET N,N-diethyl-m-toluamide
  • essential oil of the lemon eucalyptus (Corymbia citriodora) and its active compound p-menthane-3,8-diol (PMD)
  • PMD p-menthane-3,8-diol
  • lcaridin also known as Picaridin
  • D-Limonene Bayrepel
  • KBR 3023 Nepetalactone
  • Catnip oil Citronella oil, Permethrin, Neem oil and Bog Myrtle.
  • Known insect repellents derived from natural sources include: Achillea alpina, alpha-terpinene, Basil oil (Ocimum basilicum), Callicarpa americana (Beautyberry), Camphor, Carvacrol, Castor oil (Ricinus communis), Catnip oil (Nepeta species), Cedar oil (Cedrus atlantica), Celery extract (Apium graveolens), Cinnamon (Cinnamomum Zeylanicum, leaf oil), Citronella oil (Cymbopogon fleusus), Clove oil (Eugenic caryophyllata), Eucalyptus oil (70%+ eucalyptol, also known as cineol), Fennel oil (Foeniculum vulgare), Garlic Oil (Allium sativum), Geranium oil (also known as Pelargonium graveolens), Lavender oil (Lavandula officinalis), Lemon eucalyptus (Corymbia citri
  • cinerariifolium and C. coccineum Rosemary oil (Rosmarinus officinalis), Spanish Flag Lantana camara (Helopeltis theivora), Solanum villosum berry juice, Tea tree oil (Melaleuca alternifolia) and Thyme (Thymus species) and mixtures thereof.
  • the benefit agent may be encapsulated alone or co-encapsulated with carrier materials, further deposition aids and/or fixatives.
  • Preferred materials to be co-encapsulated in carrier particles with the benefit agent include waxes, paraffins, stabilizers and fixatives.
  • the formulation may comprise, by way of example: clays; enzymes, particularly: lipase, cellulase, protease, mannanase, amylase and pectate lyase; cleaning polymers, including ethoxylated polyethylene imines (EPEI) and polyester soil release polymers; chelating agents or sequestrants, including HEDP (1 -Hydroxyethylidene -1 ,1 ,-diphosphonic acid) which is available, for example, as Dequest® 2010 from Thermphos; detergency builders; hydrotropes; neutralising and pH adjusting agents; optical brighteners; antioxidants and other preservatives, including Proxel®; other active ingredients, processing aids, dyes or pigments, carriers, fragrances, suds suppressors or suds boosters, chelating agents, clay soil removal/ anti-redeposition agents, fabric softeners, dye transfer inhibition agents, and transition metal catalyst in a composition substantially devoid of peroxy
  • compositions may be packaged in any form of container. Their shear thinning properties means that they may be dispensed from a squez bottle, from a pump dispenser, from a trigger spray dispenser or by being simply poured from a bottle.
  • the most advantageous form of packing is the type where the product is poured from a bottle, possibly into a measuring cup.
  • the controlled high pour viscosity of the compositions as claimed makes the compositions ideally suited to this mode of dispensing.
  • the bottle may be rigid or deformable.
  • a deformable bottle allows the bottle to be squeezed to aid dispensing.
  • If clear bottles are used they may be formed from PET. Polyethylene or clarified polypropylene may be used.
  • the container is clear enough that the liquid, with any visual cues therein, is visible from the outside.
  • the bottle may be provided with one or more labels, or with a shrink wrap sleeve which is desirably at least partially transparent, for example 50% of the area of the sleeve is transparent.
  • the adhesive used for any transparent label should not adversely affect the transparency.
  • the invention also provides a composition as described herein which is a laundry composition.
  • the invention also provides a method for treating fabrics by applying a composition according to any preceding claim in a wash liquor to fabric.
  • An anti-settling thickening polymer for use in the invention can be prepared as follows:
  • a 3 liter, 4 necked round bottom flask equipped with a mechanical stirrer, thermocouple, condenser and nitrogen sparge is charged with 430 g of deionized water and 4.7 g of sodium lauryl sulfate.
  • the flask is then purged with nitrogen and its contents are warmed to 90 °C.
  • a first initiator solution containing 0.33 g of ammonium persulfate dissolved in 10 g of deionized water is added to the flask.
  • a monomer solution is gradually charged to the flask over a period of 107 minutes, wherein the monomer solution contains 633 g deionized water, 18 g of sodium lauryl sulfate and the desired amounts of each of ethyl acrylate (EA), methacrylic acid (MAA), 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and a lipophilically modified monomer (LIPO) having the following structure:
  • R 1 is a linear saturated C12-14 alkyl group
  • R 2 is selected from hydrogen or methyl
  • R 2 is selected from hydrogen or methyl, preferably methyl
  • n is an average of 20 to 28.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

An aqueous fabric cleaning composition which comprises: (I) a cleaning surfactant selected from the group consisting of anionic surfactant, zwitterionic or amphoteric surfactant and nonionic surfactant; (II) optionally, suspended particles of a benefit agent, (III) an anti-settling, thickening polymer, wherein the anti-settling, thickening polymer, comprises: (a) 40 to 74.5 wt% of structural units of C1-4 alkyl acrylate; (b) 20 to 50 wt% of structural units of methacrylic acid; (c) 0.2 to < 5 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS); (d) 5 to 25 wt% of structural units of a specialized associated monomer having the following structure wherein R1 is a linear saturated C10-24 alkyl group; wherein R2 is a hydrogen or a methyl group (preferably, wherein R2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R 1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; (e) 0 to 1 wt% of structural units of acrylic acid; and (f) 0 to 2 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer or chain transfer agent; and wherein the sum of the weight percentages of structural units (a)-(f) is equal to 100 wt% of the anti-settling, thickening polymer.

Description

COMPOSITION
The present invention relates to fabric treatment compositions. Aqueous compositions having insoluble ingredients suspended therein have desirability for a variety of conventional uses, such as in the home care and personal care areas.
To be acceptable to consumers, such aqueous compositions desirably exhibit both an appealing look and feel, both in the pack and during use, for example product dispensing. This, however, in complex aqueous formulations containing suspended insoluble ingredients, presents significant challenges.
In systems containing insoluble materials with a density less than that of the continuous phase, the insoluble materials tend to float to the top surface of the continuous phase (i.e., creaming). In systems containing insoluble materials with a density greater than that of the continuous phase, the insoluble materials tend to sink to the bottom of the continuous phase (i.e., settling).
Suspended insoluble particles have a tendency to aggregate in aqueous products thus decreasing its available surface area with a consequential loss of activity. Further, effective deposition of suspended agents can be problematic, especially from rinse off cleaning compositions, which are designed to remove substances such as dirt and oils from surfaces and wash them away. Thus, getting enough agent onto the surface, in order to give a big enough beneficial effect, is difficult to achieve. Despite the prior art there remains a need for improved suspension and delivery of insoluble actives from cleaning formulations.
Definition of the Invention
A first aspect of the invention provides a fabric treatment composition which comprises: (I) a cleaning surfactant selected from the group consisting of anionic surfactant, zwitterionic or amphoteric surfactant and nonionic surfactant;
(II) suspended particles of a benefit agent, (III) an anti-settling, thickening polymer,
wherein the anti-settling, thickening polymer, comprises:
(a) 40 to 74.5 wt% of structural units of C1-4 alkyl acrylate;
(b) 20 to 50 wt% of structural units of methacrylic acid;
(c) 0.2 to < 5 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS);
(d) 5 to 25 wt% of structural units of a specialized associated monomer having the following structure:
R1
Figure imgf000004_0001
wherein R1 is a linear saturated C10-24 alkyl group; wherein R2 is a hydrogen or a methyl group (preferably, wherein R2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group;
(e) 0 to 1 wt% of structural units of acrylic acid; and
(f) 0 to 2 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer or chain transfer agent; and
wherein the sum of the weight percentages of structural units (a)-(f) is equal to 100 wt% of the anti-settling, thickening polymer. General Description of the invention
The aqueous composition of the present invention contains an anti-settling thickening polymer, for use in the treatment of fabric.
The aqueous composition is preferably a fabric cleaning composition. The Anti-Settling Thickening Polymer
The anti-settling, thickening polymer for use in the aqueous compositions of the invention, comprises: (a) 40 to 74.5 wt% (preferably, 45 to 69.5 wt%; more preferably, 50 to 65 wt%; most preferably, 52 to 60 wt%) of structural units of C1-4 alkyl acrylate (preferably, C2-4 alkyl acrylate; more preferably, C2-3 alkyl acrylate; most preferably, ethyl acrylate); (b) 20 to 50 wt% (preferably, 25 to 45 wt%; more preferably, 25 to 40 wt%; most preferably, 30 to 35 wt%) of structural units of methacrylic acid; (c) 0.2 to < 5 wt% (preferably, 0.5 to 3 wt%; more preferably, 0.75 to 2.0 wt%; most preferably, 0.75 to 1 .5 wt%) of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS); (d) 5 to 25 wt% (preferably, 7.5 to 22.5 wt%; more preferably, 10 to 20 wt%; most preferably, 12.5 to 18 wt%) of structural units of a specialized associated monomer having the following structure (formula 1 ):-
Figure imgf000005_0001
wherein R1 is a linear saturated C10-24 alkyl group; wherein R2 is a hydrogen or a methyl group (preferably, wherein R2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated Cis alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C12 and a linear saturated Cis alkyl group; or (iii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; (e) 0 to 1 wt% (preferably, 0 to 0.1 wt%; more preferably, 0 to 0.01 wt%; most preferably, 0) of structural units of acrylic acid; and (f) 0 to 2 wt% (preferably, 0 to 0.1 wt%; more preferably, 0 to 0.001 wt%; most preferably, 0 wt%) of structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent; wherein the sum of the weight percentages of structural units (a)-(f) is equal to 100 wt% of the anti-settling, thickening polymer.
Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention, comprises: (a) 50 to 65 wt% of structural units of ethyl acrylate; (b) 25 to 40 wt% of structural units of methacrylic acid; (c) 0.75 to 2.0 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS); (d) 10 to 20 wt% of structural units of the specialized associated monomer; (e) 0 to 0.1 wt% of structural units of acrylic acid; and (f) 0 to 0.1 wt% (preferably, 0 to 0.001 wt%; more preferably, 0 wt%) of structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent; wherein the sum of the weight percentages of structural units (a)-(f) is equal to 100 wt% anti-settling, thickening polymer.
Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention has a weight average molecular weight of 5,000,000 to 400,000,000 Daltons. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention has a weight average molecular weight of 25,000,000 to 300,000,000 Daltons. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention has a weight average molecular weight of 175,000,000 to 275,000,000 Daltons. In reference to the anti-settling thickening polymer the weight average molecular weight refers to the weight average molecular weight as measured using asymmetric flow field flow fractionation (AF4) with inline Multi-Angle Light Scattering (MALS) and differential Refractive Index (Rl) detections. The AF4 instrument used consisted of an Eclipse™ DualTec™ separation system (from Wyatt Technology Corp.) that was coupled in series to an 18 angle multi-angle light scattering (MALS) detector (DAWN HELOS II; from Wyatt Technology Corp.) and a differential refractometer (Rl) (Optilab rEX; from Wyatt Technology Corp.). Flows through the AF4 instrument were provided using an Agilent Technologies 1200 series isocratic pump equipped with a micro-vacuum degasser. All injections were performed with an auto sampler (Agilent Technologies 1200 series). Data from the AF4 instrument were collected and processed using Astra software version 7.0.1 .23 (from Wyatt Technology Corp.). Samples were prepared at a concentration of 1 mg/mL in 20 mM ammonium acetate solution at pH 10 (filtered with a 1.2 m pore nylon membrane). Samples (25 μΙ_) were injected into the standard separation channel system (25 cm long and a width dimension starting at 2.15 cm and reducing to 0.3 cm over the length) with a channel thickness of 350 μηη and equipped with a 10 kDA cutof regenerated cellulose ultrafiltration membrane (Wyatt Technology). The mobile phase used for the AF4 analysis was 20 mM ammonium acetate solution at pH 10. Separation was performed with an applied channel flow of 1 mL/min. The sample was introduced to the channel with a focus flow at 1.7 mL/min for 3 minutes. The elution flow as then started at 0.5 mL/min for 3 minutes and then followed by a linearly decreasing cross flow gradient (from 0.5 mL/min to 0.05 mL/min over 12 minutes), then a hold at 0.05 mL/min for another 5 minutes. The average molecular weight was calculated using Astra software version 7.0.1 .23 after subtracting a blank injection with a refractive index increment (dn/dc) of 0.190 mL/g for all calculation with Berry model 2nd order fit. Molecular weights are reported herein in units of Daltons.
Preferably, the structural units of C1-4 alkyl acrylate in the anti-settling, thickening polymer for use in the aqueous compositions of the invention are structural units of C2-4 alkyl acrylate. More preferably, the structural units of C1-4 alkyl acrylate in the anti-settling, thickening polymer for use in the aqueous compositions of the invention are structural units of C2-3 alkyl acrylate. Most preferably, the structural units of C1-4 alkyl acrylate in the anti-settling, thickening polymer for use in the aqueous compositions of the invention are structural units of ethyl acrylate. Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 40 to 74.5 wt% of structural units of C1-4 alkyl acrylate (preferably, C2- 4 alkyl acrylate; more preferably, C2-3 alkyl acrylate; most preferably, ethyl acrylate). More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 45 to 69.5 wt% of structural units of C1-4 alkyl acrylate (preferably, C2- 4 alkyl acrylate; more preferably, C2-3 alkyl acrylate; most preferably, ethyl acrylate). Still more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 50 to 65 wt% of structural units of C1-4 alkyl acrylate (preferably, C2-4 alkyl acrylate; more preferably, C2-3 alkyl acrylate; most preferably, ethyl acrylate). Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 52 to 60 wt% of structural units of C1-4 alkyl acrylate (preferably, C2-4 alkyl acrylate; more preferably, C2-3 alkyl acrylate; most preferably, ethyl acrylate).
Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 20 to 50 wt% of structural units of methacrylic acid. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 25 to 45 wt% of structural units of methacrylic acid. Still more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 25 to 40 wt% of structural units of methacrylic acid. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 30 to 35 wt% of structural units of methacrylic acid.
Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0.2 to < 5 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS). More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0.5 to 3 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS). Even more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0.5 to 1.5 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS). Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0.5 to 1 .0, of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS).
Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 5 to 25 wt% of structural units of a specialized associated monomer having the following structure:
Figure imgf000008_0001
wherein R1 is a linear saturated C10-24 alkyl group; wherein R2 is a hydrogen or a methyl group (preferably, wherein R2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 7.5 to 22.5 wt% of structural units of a specialized associated monomer having the following structure:
Figure imgf000009_0001
wherein R1 is a linear saturated C10-24 alkyl group; wherein R2 is a hydrogen or a methyl group (preferably, wherein R2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group. Still more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 10 to 20 wt% of structural units of a specialized associated monomer having the following structure:
Figure imgf000010_0001
wherein R1 is a linear saturated C10-24 alkyl group; wherein R2 is a hydrogen or a methyl group (preferably, wherein R2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 12.5 to 18 wt% of structural units of a specialized associated monomer having the following structure
Figure imgf000010_0002
wherein R1 is a linear saturated C10-24 alkyl group; wherein R2 is a hydrogen or a methyl group (preferably, wherein R2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated Cie alkyl group and a linear saturated C22 alkyl group.
Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes 0 to 1 wt% of structural units of acrylic acid. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes 0 to 0.1 wt% of structural units of acrylic acid. Still more preferably, anti-settling, thickening polymer for use in the aqueous compositions of the invention contains 0 to 0.01 wt% of structural units of acrylic acid. Yet still more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than the detectable limit of structural units of acrylic acid. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention contains 0 wt% structural units of acrylic acid. Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0 to 2 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0 to 0.1 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent. Still more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention comprises 0 to 0.001 wt% of structural units of multi- ethylenically unsaturated crosslinking monomer and chain transfer agent. Yet still more preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than the detectable limit of structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention contains 0 wt% structural units of multi-ethylenically unsaturated crosslinking monomer and chain transfer agent. Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.001 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.0001 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer. Still more preferably, anti-settling, thickening polymer for use in the aqueous compositions of the invention contains less than the detectable limit of structural units of multi-ethylenically unsaturated crosslinking monomer. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes 0 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer.
Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.1 wt% of structural units of chain transfer agent. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.001 wt% of structural units of chain transfer agent. Still more preferably, anti-settling, thickening polymer for use in the aqueous compositions of the invention contains less than the detectable limit of structural units of chain transfer agent. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes 0 wt% of structural units of chain transfer agent. Preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.001 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer and less than 0.1 wt% of structural units of chain transfer agent. More preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes less than 0.0001 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer and less than 0.01 wt% of structural units of chain transfer agent. Still more preferably, anti-settling, thickening polymerfor use in the aqueous compositions of the invention contains less than the detectable limit of structural units of multi-ethylenically unsaturated crosslinking monomer and less than the detectable limit of structural units of chain transfer agent. Most preferably, the anti-settling, thickening polymer for use in the aqueous compositions of the invention includes 0 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer and includes 0 wt% of structural units of chain transfer agents.
One of ordinary skill in the art will know to select appropriate multi-ethylenically unsaturated crosslinking monomers to provide any structural units of multi-ethylenically unsaturated crosslinking monomer in the anti-settling, thickening polymer for use in the aqueous compositions of the invention. Structural units of multi-ethylenically unsaturated crosslinking monomer may include for example those derived from polyunsaturated monomer components including, polyunsaturated aromatic monomers (e.g., divinyl benzene, divinyl naphthalene, trivinyl benzene); polyunsaturated alicyclic monomers (e.g., 1 ,2,4-trivinylcyclohexane); difunctional esters of phthalic acid (e.g., diallyl phthalate); polyunsaturated aliphatic monomers (e.g., isoprene, butadiene, 1 ,5-hexadiene, 1 ,5,9- decatriene, 1 ,9-decadiene, 1 ,5-heptadiene); polyalkenyl ethers (e.g., trially pentaerythritol, diallyl pentaerythritol, diallyl sucrose, octaally sucrose, trimethylolpropane dially ether); polyunsaturated esters of polyalcohols or polyacids (e.g., 1 ,6-hexanediol di(meth)acrylate, tetramethylene tri(meth)acrylate, allyl acrylate, diallyl itaconate, diallyl fumarate, diallyl maleate, trimethylolpropane tri(meth)acrylate, trimethylolpropane di(meth)acrylate, polyethylene glycol di(meth)acrylate); alkylene bisacrylamides (e.g., methylene bisacrylamide, propylene bisacrylamide); hydroxy and carboxy derivatives of methylene bis-acrylamide (e.g., Ν,Ν'-bismethylol methylene bisacrylamide); polyethyleneglycol di(meth)acrylates (e.g., ethyleneglycol di(meth)acrylate, diethyleneglycol di(meth)acrylate, triethyleneglycol di(meth)acrylate); polyunsaturated silanes (e.g., dimethyldivinylsilane, methyltrivinylsilane, allyldimethylvinylsilane, diallydimethylsilane, tetravinylsilane); polyunsaturated stannanes (e.g., tetraallyl tin, diallyldimethyl tin) and the like.
One of ordinary skill in the art will know to select appropriate chain transfer agents to provide any structural units of chain transfer agents in the anti-settling, thickening polymer for use in the aqueous compositions of the invention. Structural units of chain transfer agents may monomer include those derived from a variety of thio and disulfide containing compounds (e.g., CMS alkyl mercaptans, mercaptocarboxylic acids, mercaptocarboxylic esters, thioesters, CMS alkyl disulfides, aryldisulfides, polyfunctional thiols); phosphites and hypophosphites; haloalkyl compounds (e.g., carbon tetrachloride, bromotrichloromethane) and unsaturated chain transfer agents (e.g., alpha-methylstyrene). The Cleaning Surfactant
The composition of the present invention comprises a surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, zwitterionic surfactants and mixtures thereof.
Preferably, the cleaning surfactant is selected from the group consisting of sodium lauryl sulphate, sodium lauryl ether sulphate, sodium lauryl ether sulphosuccinate, ammonium lauryl sulphate, ammonium lauryl ether sulphate, sodium cocoyi isethionate and lauryl ether carboxylic acid, coco betaine, cocamidopropyl betaine, sodium cocoamphoacetate and mixtures thereof. Preferably, mixtures of any of the anionic, non-ionic and amphoteric cleaning surfactants has a ratio of primary to secondary surfactant of between 1 :1 - 10:1 , more preferably 2:1 - 9:1 and most preferably 3:1 - 8:1 , based on the inclusion weight of the cleaning surfactant in the composition.
Preferably, the composition of the present invention comprises from 1 to 50%, preferably from 2 to 40%, more preferably from 4 to 25% of total surfactant, based on the total weight of the composition. Cosmetic Ingredient
The composition of the present invention preferably comprises a cosmetic ingredient. Preferably the cosmetic ingredient selected from the group consisting of a silicone, an antibacterial agent, a foam booster, a perfume, encapsulates (for example encapsulated fragrance) a dye, a colouring agent, a pigment, a preservative, a thickener, a protein, a phosphate ester, a buffering agent, a pH adjusting agent, a pearlescer (for example; mica, titanium dioxide, titanium dioxide coated mica, ethylene glycol distearate (INCI glycol distearate)) and/or opacifier, a viscosity modifier, an emollient, a sunscreen, an emulsifier, a sensate active (for example menthol and menthol derivatives), vitamins, mineral oils, essential oils, lipids, natural actives, glycerine, natural materials such as botanicals, fruit extracts, sugar derivatives and amino acids, microcrystalline cellulose and mixtures thereof.
Preferably, the aqueous composition of the present invention includes from 0.01 to 20 wt% of the at least one cosmetic ingredient, more preferably from 0.05 to 10 wt%, still more preferably from 0.075 to 7.5 wt% and most preferably, from 0.1 to 5 wt% of the at least one cosmetic ingredient, by weight of the total composition. pH of Compositions
The composition of the present invention preferably has a pH of from 3 to 7, preferably 4 to 7, more preferably 4 to 6.5, most preferably from 4.2 to 6.5.
Suspended insoluble particles The composition has a shear thinning rheology that makes it suitable for suspending particles. Thus preferred compositions comprise suspended particles. These particles are preferably solid; that is to say they are neither liquid nor gas. However, within the term solid we include particles with either rigid or deformable solid shells which may then contain fluids. For example the solid particles may be microcapsules such as perfume encapsulates, or care additives or other benefit agents in encapsulated form. The particles may be enzymes or other cleaning actives that are insoluble or are encapsulated to prevent or reduce interaction with other composition ingredients. The particles may take the form of insoluble ingredients such as silicones, quaternary ammonium materials, insoluble polymers, insoluble optical brighteners and other known benefit agents as described, for example, in EP1328616. The amount of suspended particles may be from 0.001 to up to 10 or even 20 wt%. One type of solid particle to be suspended is a visual cue, for example the type of flat film cue described in EP131 19706. The cue may itself contain a segregated component of the detergent composition. Because the cue must be water-soluble, yet insoluble in the composition, it is conveniently made from a modified polyvinyl alcohol that is insoluble in the presence of the mixed surfactant system. In that case, the detergent composition preferably comprises at least 5 wt% anionic surfactant.
The suspended particles can be any type. This includes perfume encapsulates, care encapsulates and/ or visual cues or suspended solid opacifier such as mica or other suspended pearlescent materials and mixtures of these materials. The closer the match of the density of the suspended particles to that of the liquid. Typically, up to 5 wt% of suspended particles may be suspended stably; however, amounts up to 20 wt% are possible.
The benefit agents that may be delivered via suspended particles include any compatible benefit agent which can provide a benefit to a substrate which is treated with a preferably surfactant-containing composition can be used. Advantages of the particles of the invention in the presence of surfactant are a good retention of the benefit agent on storage of a formulation and controllable release of the benefit agent during and after product usage.
Preferred benefit agents are fragrances, profragrance, clays, enzymes, antifoams, fluorescers, bleaching agents and precursors thereof (including photo-bleach), dyes and/or pigments, conditioning agents (for example cationic surfactants including water-insoluble quaternary ammonium materials, fatty alcohols and/or silicones), lubricants (e.g. sugar polyesters), colour and photo-protective agents (including sunscreens), antioxidants, ceramides, reducing agents, sequestrants, colour care additives (including dye fixing agents), unsaturated oil, emollients, moisturisers, insect repellents and/or pheromones, drape modifiers (e.g. polymer latex particles such as PVAc) and anti-microbial and microbe control agents. Mixtures of two or more of these may be employed. Particular benefit agents are described in further detail below.
Benefits include, for laundry applications, benefits of softening, conditioning, lubricating, crease reducing, ease of ironing, moisturising, colour preserving and/or anti-pilling, quick drying, UV protecting, shape retaining, soil releasing, texturising, insect repelling, fungicidal, dyeing and/or fluorescent benefit to the fabric. A highly preferred benefit is the delivery of fragrance (whether free and/or encapsulated), or pro-fragrance or other volatile benefit agent.
Preferred sunscreens are vitamin B3 compounds. Suitable vitamin B3 compounds are selected from niacin, niacinamide, nicotinyl alcohol, or derivatives or salts thereof.
Preferred anti-oxidants include vitamin E, retinol, antioxidants based on hydroxytoluene such as Irganox™ or commercially available antioxidants such as the Trollox™ series.
Perfume is one example of a volatile benefit agent. Typical volatile benefit agents have a molecular weight of from 50 to 500. Where pro-fragrances are used the molecular weight will generally be higher.
Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavour Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavour Chemicals by S. Arctander 1969, Montclair, N.J. (USA). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products, i.e., of imparting an odour and/or a flavour or taste to a consumer product traditionally perfumed or flavoured, or of modifying the odour and/or taste of said consumer product. By perfume in this context is not only meant a fully formulated product fragrance, but also selected components of that fragrance, particularly those which are prone to loss, such as the so-called 'top notes'. The perfume component could also be in the form of a pro- fragrance. WO 2002/038120 (P&G), for example, relates to photo-labile pro-fragrance conjugates which upon exposure to electromagnetic radiation are capable of releasing a fragrant species.
Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Examples of well known top-notes include citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. Top notes typically comprise 15 to 25 wt% of a perfume composition and in those embodiments of the invention which contain an increased level of top-notes it is envisaged at that least 20 wt% would be present within the encapsulate. Typical perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100 to 250 Celsius.
It is also advantageous to encapsulate perfume components which have a low LogP (i.e. those which will be partitioned into water), preferably with a LogP of less than 3.0.
Another group of perfumes with which the present invention can be applied are the so- called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian. By means of the present invention these materials can be transferred to textile articles that will be worn or otherwise come into contact with the human body (such as handkerchiefs and bed-linen). The volatile benefit agents also include insect repellent materials (where insect should be read broadly to include other pests which are arthropods but not strictly hexapods - for example ticks). Many of these materials overlap with the class of perfume components and some are odourless to humans or have a non-perfume odour. Commonly used repellents include: DEET (N,N-diethyl-m-toluamide), essential oil of the lemon eucalyptus (Corymbia citriodora) and its active compound p-menthane-3,8-diol (PMD), lcaridin, also known as Picaridin, D-Limonene, Bayrepel, and KBR 3023, Nepetalactone, also known as "catnip oil", Citronella oil, Permethrin, Neem oil and Bog Myrtle. Known insect repellents derived from natural sources include: Achillea alpina, alpha-terpinene, Basil oil (Ocimum basilicum), Callicarpa americana (Beautyberry), Camphor, Carvacrol, Castor oil (Ricinus communis), Catnip oil (Nepeta species), Cedar oil (Cedrus atlantica), Celery extract (Apium graveolens), Cinnamon (Cinnamomum Zeylanicum, leaf oil), Citronella oil (Cymbopogon fleusus), Clove oil (Eugenic caryophyllata), Eucalyptus oil (70%+ eucalyptol, also known as cineol), Fennel oil (Foeniculum vulgare), Garlic Oil (Allium sativum), Geranium oil (also known as Pelargonium graveolens), Lavender oil (Lavandula officinalis), Lemon eucalyptus (Corymbia citriodora) essential oil and its active ingredient p-menthane-3,8-diol (PMD), Lemongrass oil (Cymbopogon flexuosus), Marigolds (Tagetes species), Marjoram (Tetranychus urticae and Eutetranychus orientalis), Neem oil (Azadirachta indica), Oleic acid, Peppermint (Mentha x piperita), Pennyroyal (Mentha pulegium), Pyrethrum (from Chrysanthemum species, particularly C. cinerariifolium and C. coccineum), Rosemary oil (Rosmarinus officinalis), Spanish Flag Lantana camara (Helopeltis theivora), Solanum villosum berry juice, Tea tree oil (Melaleuca alternifolia) and Thyme (Thymus species) and mixtures thereof.
The benefit agent may be encapsulated alone or co-encapsulated with carrier materials, further deposition aids and/or fixatives. Preferred materials to be co-encapsulated in carrier particles with the benefit agent include waxes, paraffins, stabilizers and fixatives.
Optional ingredients The formulation may comprise, by way of example: clays; enzymes, particularly: lipase, cellulase, protease, mannanase, amylase and pectate lyase; cleaning polymers, including ethoxylated polyethylene imines (EPEI) and polyester soil release polymers; chelating agents or sequestrants, including HEDP (1 -Hydroxyethylidene -1 ,1 ,-diphosphonic acid) which is available, for example, as Dequest® 2010 from Thermphos; detergency builders; hydrotropes; neutralising and pH adjusting agents; optical brighteners; antioxidants and other preservatives, including Proxel®; other active ingredients, processing aids, dyes or pigments, carriers, fragrances, suds suppressors or suds boosters, chelating agents, clay soil removal/ anti-redeposition agents, fabric softeners, dye transfer inhibition agents, and transition metal catalyst in a composition substantially devoid of peroxygen species. These and further possible ingredients for inclusion are further described in WO2009/153184.
Packaging
The compositions may be packaged in any form of container. Their shear thinning properties means that they may be dispensed from a squeezy bottle, from a pump dispenser, from a trigger spray dispenser or by being simply poured from a bottle. The most advantageous form of packing is the type where the product is poured from a bottle, possibly into a measuring cup. The controlled high pour viscosity of the compositions as claimed makes the compositions ideally suited to this mode of dispensing. Typically a plastic bottle with a detachable closure/pouring spout. The bottle may be rigid or deformable. A deformable bottle allows the bottle to be squeezed to aid dispensing. If clear bottles are used they may be formed from PET. Polyethylene or clarified polypropylene may be used. Preferably the container is clear enough that the liquid, with any visual cues therein, is visible from the outside. The bottle may be provided with one or more labels, or with a shrink wrap sleeve which is desirably at least partially transparent, for example 50% of the area of the sleeve is transparent. The adhesive used for any transparent label should not adversely affect the transparency.
The invention also provides a composition as described herein which is a laundry composition.
The invention also provides a method for treating fabrics by applying a composition according to any preceding claim in a wash liquor to fabric.
Unless otherwise indicated, ratios, percentages, parts, and the like, referred to herein, are by weight. EXAMPLE
An anti-settling thickening polymer for use in the invention can be prepared as follows:
A 3 liter, 4 necked round bottom flask equipped with a mechanical stirrer, thermocouple, condenser and nitrogen sparge is charged with 430 g of deionized water and 4.7 g of sodium lauryl sulfate. The flask is then purged with nitrogen and its contents are warmed to 90 °C. Then a first initiator solution containing 0.33 g of ammonium persulfate dissolved in 10 g of deionized water is added to the flask. Then a monomer solution is gradually charged to the flask over a period of 107 minutes, wherein the monomer solution contains 633 g deionized water, 18 g of sodium lauryl sulfate and the desired amounts of each of ethyl acrylate (EA), methacrylic acid (MAA), 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and a lipophilically modified monomer (LIPO) having the following structure:
R- OCH CH V-0
Figure imgf000020_0001
wherein R1 is a linear saturated C12-14 alkyl group; R2 is selected from hydrogen or methyl; R2 is selected from hydrogen or methyl, preferably methyl; and n is an average of 20 to 28. Starting simultaneously with the monomer solution charge, a second initiator solution containing 0.33 g of ammonium sulfate in 49 g of deionized water is gradually charged to the flask over a period of 1 12 minutes. Following the monomer charge and the second initiator solution charge, the transfer lines are rinsed with deionized waterfollowed by a free radical catalyst and activator chase solution. The resulting latex product "Polymer" is then recovered.
Formulation composition:
Figure imgf000020_0002
pH: 6.2

Claims

1 . An aqueous fabric cleaning composition which comprises:
(I) a cleaning surfactant selected from the group consisting of anionic surfactant, zwitterionic or amphoteric surfactant and nonionic surfactant;
(II) optionally, suspended insoluble particles,
(III) an anti-settling, thickening polymer,
wherein the anti-settling, thickening polymer, comprises:
(a) 40 to 74.5 wt% of structural units of C1-4 alkyl acrylate;
(b) 20 to 50 wt% of structural units of methacrylic acid;
(c) 0.2 to < 5 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS);
(d) 5 to 25 wt% of structural units of a specialized associated monomer having the following structure:
Figure imgf000021_0001
wherein R1 is a linear saturated C10-24 alkyl group; wherein R2 is a hydrogen or a methyl group (preferably, wherein R2 is a methyl group); and wherein n is an average of 20 to 28; with the proviso that the structural units of the specialized associated monomer (d) are derived from one of (i) a single specialized associated monomer (preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group; more preferably, a single specialized associated monomer wherein R1 is selected from the group consisting of a linear saturated C12 alkyl group and a linear saturated C18 alkyl group); (ii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C12 and a linear saturated C18 alkyl group; or (iii) two specialized associated monomers, wherein R1 is, respectively, a linear saturated C18 alkyl group and a linear saturated C22 alkyl group;
(e) 0 to 1 wt% of structural units of acrylic acid; and
(f) 0 to 2 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer or chain transfer agent; and wherein the sum of the weight percentages of structural units (a)-(f) is equal to 100 wt% of the anti-settling, thickening polymer.
2. The aqueous composition according to claim 1 , wherein the anti-settling, thickening polymer includes less than 0.001 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer; wherein the anti-settling, thickening polymer includes less than 0.1 wt% of structural units of chain transfer agent.
3. The aqueous composition according to claim 1 or claim 2, wherein the
anti-settling, thickening polymer has a weight average molecular weight of 25,000,000 to 300,000,000 Daltons.
4. The aqueous composition according to any preceding claim, wherein the anti-settling, thickening polymer includes:
(a) 50 to 65 wt% of structural units of C1-4 alkyl acrylate, wherein the C1-4 alkyl acrylate is ethyl acrylate;
(b) 25 to 40 wt% of structural units of methacrylic acid;
(c) 0.75 to 2.0 wt% of structural units of 2-acrylamido-2-methylpropane sulfonic acid (AMPS);
(d) 10 to 20 wt% of structural units of the specialized associated monomer;
(e) 0 to 0.1 wt% of structural units of acrylic acid; and
(f) 0 to 0.001 wt% of structural units of multi-ethylenically unsaturated crosslinking monomer or chain transfer agent.
5. The aqueous composition according to any preceding claim, which has a pH of 3 to 7.
6. The aqueous composition according to any preceding claim, wherein the cleaning surfactant is selected from the group consisting of sodium lauryl sulphate, sodium lauryl ether sulphate, sodium lauryl ether sulphosuccinate, ammonium lauryl sulphate, ammonium lauryl ether sulphate, sodium cocoyl isethionate and lauryl ether carboxylic acid, coco betaine, cocamidopropyl betaine, sodium cocoamphoacetate and mixtures thereof.
7. The aqueous composition according to any preceding claim, wherein the cleaning surfactant is present in an amount of from 2 to 40 wt %.
8. The aqueous composition according to any preceding claim, which further comprises a fragrance.
9. A method of treating a fabric comprising the step of applying to the fabric, a composition as defined by any of claims 1 to 8.
10. A method as claimed in claim 9, which comprises the additional step of rinsing the fabric with water.
PCT/EP2018/078740 2017-11-03 2018-10-19 Composition WO2019086273A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762581127P 2017-11-03 2017-11-03
US62/581127 2017-11-03
EP18155491.6 2018-02-07
EP18155491 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019086273A1 true WO2019086273A1 (en) 2019-05-09

Family

ID=63915304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/078740 WO2019086273A1 (en) 2017-11-03 2018-10-19 Composition

Country Status (1)

Country Link
WO (1) WO2019086273A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013145A1 (en) * 1990-02-28 1991-09-05 The Dow Chemical Company Ionizable polymer cleaning compositions and methods for cleaning stains
EP0995791A1 (en) * 1998-10-22 2000-04-26 Rohm And Haas Company Polymer compositions and a method of promoting soil release from fabrics using said polymer compositions
WO2002038120A1 (en) 2000-11-08 2002-05-16 The Procter & Gamble Company Photo-labile pro-fragrance conjugates
EP1319706A1 (en) 2001-12-14 2003-06-18 Unilever N.V. Unit dose products
EP1328616A2 (en) 2000-10-27 2003-07-23 The Procter & Gamble Company Stabilized liquid compositions
WO2009153184A1 (en) 2008-06-16 2009-12-23 Unilever Plc Improvements relating to fabric cleaning
EP2933280A1 (en) * 2014-04-18 2015-10-21 Rhodia Opérations Rheology modifier polymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013145A1 (en) * 1990-02-28 1991-09-05 The Dow Chemical Company Ionizable polymer cleaning compositions and methods for cleaning stains
EP0995791A1 (en) * 1998-10-22 2000-04-26 Rohm And Haas Company Polymer compositions and a method of promoting soil release from fabrics using said polymer compositions
EP1328616A2 (en) 2000-10-27 2003-07-23 The Procter & Gamble Company Stabilized liquid compositions
WO2002038120A1 (en) 2000-11-08 2002-05-16 The Procter & Gamble Company Photo-labile pro-fragrance conjugates
EP1319706A1 (en) 2001-12-14 2003-06-18 Unilever N.V. Unit dose products
WO2009153184A1 (en) 2008-06-16 2009-12-23 Unilever Plc Improvements relating to fabric cleaning
EP2933280A1 (en) * 2014-04-18 2015-10-21 Rhodia Opérations Rheology modifier polymer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Fenaroli's Handbook of Flavour Ingredients", 1975, CRC PRESS
M. B. JACOBS: "Synthetic Food Adjuncts", 1947
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80
S. ARCTANDER, PERFUME AND FLAVOUR CHEMICALS, 1969

Similar Documents

Publication Publication Date Title
US9556405B2 (en) Polymer structured aqueous detergent compositions
US6096701A (en) Antimicrobial multi purpose containing a cationic surfactant
EP3325598A1 (en) Consumer products having an asepsis connotation
AU2006214427B2 (en) Fragrance compositions that reduce or eliminate malodor, related methods and related cleaning compositions
CN107406804A (en) Dulcet fluid cleaning fluid
US20110118163A1 (en) Fragrance delivery system
WO2008145446A1 (en) Detergent or cleaning agent having an anti-bacterial effect
US6875732B2 (en) Fragrance delivery system
CN103987830B (en) Improvement about fabric treatment composition
WO2019086273A1 (en) Composition
WO2018210524A1 (en) Composition
CZ169999A3 (en) Spray liquid disinfecting preparation, packaging process thereof and disinfection of surfaces
CN209467444U (en) Consumer package and fabric treating fluid
CN104870320B (en) Accommodate the marketing packing of fabric treating fluid
DE10153183A1 (en) Agents containing betaine ester
WO2018210522A1 (en) Composition
WO2018210700A1 (en) Composition
WO2018210523A1 (en) Composition
DE102004019752A1 (en) Aroma agents comprises at least metallically smelling aroma substance and/or contents that liberate aroma substances at least during application and/or after application, where the content, after release, spreads a metallic smell
WO2023068082A1 (en) Aromatic particle dispersion and aqueous ink composition for writing instrument containing same
JP2023063225A (en) Aromatic particle dispersion and aqueous ink composition for writing instrument containing the same
CZ170099A3 (en) Spraying liquid disinfecting preparation, packaging method thereof and disinfecting of surfaces
DE10259200A1 (en) Inhibition of adhesion of keratinophilic fungi
MXPA98009178A (en) Limpi compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18789652

Country of ref document: EP

Kind code of ref document: A1