WO2019084999A1 - 采用电导率自适应调控复合材料的设备出线套管 - Google Patents

采用电导率自适应调控复合材料的设备出线套管 Download PDF

Info

Publication number
WO2019084999A1
WO2019084999A1 PCT/CN2017/110456 CN2017110456W WO2019084999A1 WO 2019084999 A1 WO2019084999 A1 WO 2019084999A1 CN 2017110456 W CN2017110456 W CN 2017110456W WO 2019084999 A1 WO2019084999 A1 WO 2019084999A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductivity
powder
composite material
inorganic filler
Prior art date
Application number
PCT/CN2017/110456
Other languages
English (en)
French (fr)
Inventor
何金良
胡军
赵孝磊
杨霄
余占清
曾嵘
张波
李琦
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to CH00496/20A priority Critical patent/CH715655B1/de
Publication of WO2019084999A1 publication Critical patent/WO2019084999A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/32Single insulators consisting of two or more dissimilar insulating bodies
    • H01B17/325Single insulators consisting of two or more dissimilar insulating bodies comprising a fibre-reinforced insulating core member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • H01B17/583Grommets; Bushings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/265Fastening of insulators to support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/006Other inhomogeneous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the invention belongs to the technical field of high-voltage transmission connection equipment, in particular to a device outlet sleeve using a nonlinear electric conductivity composite material, which is suitable for an AC and DC power system.
  • the equipment outlet bushing is used for the insulation and fixing of the high voltage equipment lead-out line to the ground.
  • the device outlet bushing is formed by the high-voltage electrode guide rod inserted into the center of the ground electrode intermediate flange. It is a typical electric field with an insulating structure with a vertical medium surface component. The main insulation is prone to breakdown and the flange edge is prone to flashing. Network. To this end, it is necessary to improve the electric field near the flange and the guide rod, improve the dielectric strength of the medium, and design and select suitable insulation structures and materials.
  • the device outlet bushing has many forms, and currently it is mainly based on a capacitive equalizing structure.
  • the inner insulation of the capacitor bushing adopts a capacitor core structure to force the electric field inside the bushing to be equalized.
  • the fabrication of the capacitor core has high requirements on the process level, and various quality problems are prone to occur in the production process, which has a significant impact on the reliability of the capacitor sleeve; the higher required technical level also severely restricts the production cost. Reduced and increased productivity.
  • the high-voltage casing using the capacitor core is a major hidden danger of safe and reliable operation of the casing due to its large size and serious internal heating.
  • the object of the present invention is to solve the above problems, and to design a device outlet bushing suitable for AC and DC power systems using conductivity adaptive control composite materials.
  • the layer and the electrode extension layer are made of a conductivity adaptive control composite material composed of inorganic filler powder particles and a high dielectric strength organic material; both ends of the guide rod are provided with
  • the glass fiber sleeve forms a first flange of the sealed space, and the guiding rod, the pressure equalizing layer, the current limiting layer and the electrode extending layer are all located in the sealed space, and the two ends of the guiding rod penetrate the first method a connecting terminal is disposed in
  • the conductivity adaptive control composite material performance parameter of the grading layer and the electrode extension layer is adaptively matched with the spatial electric field strength, and the threshold field of the conductivity adaptive control composite material of the grading layer is stronger than the The conductivity of the electrode extension layer adaptively regulates the threshold field strength of the composite.
  • the inorganic filler powder particles in the conductivity adaptive control composite material include ZnO varistor ceramic powder, carbon fiber powder, CB powder, SiC powder, TiO 2 powder, SrTiO 3 powder, CCTO powder, SnO 2 powder, ZnO whisker, single powder of Al 2 O 3 powder or a combination of two or more powders;
  • the high dielectric strength organic material in the conductivity adaptive control composite material comprises epoxy resin, polyethylene Any one of polypropylene, EPDM rubber;
  • the threshold field strength of the conductivity adaptive control composite material is selected according to the voltage level and geometric size of the outlet sleeve of the device, and ranges from 100 V/mm to 8000 V/mm.
  • the threshold field strength of the conductivity adaptive control composite material is adjusted by the particle size of the inorganic filler powder particles, and the inorganic filler powder particle size ranges from 30 nm to 300 ⁇ m.
  • the threshold field strength of the conductivity adaptive control composite material is adjusted by the ratio of the fraction between the inorganic filler powder particles and the high dielectric strength organic material, and the fraction of each component in the inorganic filler powder particles It is: 50-200 parts of ZnO varistor ceramic powder, or 10-95 parts of ZnO whisker, carbon fiber, CB, SiC, TiO 2 , SrTiO 3 , CCTO, SnO 2 , Al 2 O 3 .
  • the threshold field strength of the conductivity adaptively modulating composite material is adjusted by multi-component blending by introducing 3-50 parts of conductive powder particles.
  • the current limiting layer is made of a high dielectric strength organic material having a fixed electrical conductivity, including any one of epoxy resin, polyethylene, polypropylene, and ethylene propylene diene monomer.
  • the self-adaptive regulation of the composite material as the voltage equalization layer and the electrode extension layer to uniform the field strength inside the main insulation and near the flange not only solves the problem of breakdown of the main insulation and flashover at the flange.
  • the size of the outlet sleeve of the equipment is reduced, the heat dissipation performance of the casing is obviously improved, the production process is greatly simplified, and the efficiency and economic benefit are improved.
  • FIG. 1 is a schematic structural view of an outlet sleeve of a device using a conductivity adaptive control composite material according to the present invention
  • Figure 2 is a partial enlarged view of Figure 1;
  • FIG. 1 is a schematic structural view of an outlet sleeve of a device for electrically adjusting a composite material according to the present invention, as shown in FIG. 1, including a guide rod 4, and a package wrapped on the outside of the guide rod 4 from the inside to the outside.
  • the electrode extension layer 7 (the electrode The length of the extension layer is determined by the applied voltage level); the pressure equalization layer 5 and the electrode extension layer 7 are made of a conductivity adaptive control composite material composed of inorganic filler powder particles and high dielectric strength organic materials;
  • the first flange 2 is formed at both ends of the guiding rod 4 to form a closed space with the glass fiber sleeve 9.
  • the guiding rod 4, the pressure equalizing layer 5, the current limiting layer 6 and the electrode extension layer 7 are located at both ends.
  • both ends of the guiding rod 4 penetrate the first flange 2 and are connected with the terminal 1; the middle of the fiberglass sleeve 9 is provided with a second flange 8, the second flange 8 is fixed at one end with one end of the silicone rubber umbrella group sheath 3, the inner wall of the second flange 8 and the electrode extension layer 7 In contact with each other, as shown in FIG. 2, the second flange 8 is used for connecting and fixing the sleeve to the outlet port of the device.
  • the conductivity adaptive control composite material performance parameter is adaptively matched with the spatial electric field strength, and the threshold field of the voltage equalization layer 5 conductivity adaptive regulation composite material is stronger than the electrode extension layer 7 conductivity adaptive regulation The threshold field strength of the composite.
  • the guide rod 4 is a rod-like structure which runs through the entire device outlet sleeve; it is a conventional product.
  • the silicone rubber umbrella group sheath 3 is an integral structure formed by one injection molding of an inner ring tubular structure and an outer ring umbrella protrusion.
  • the number of the umbrella protrusions is plural, and a plurality of umbrella protrusions are along the silicon.
  • the axial direction of the inner ring tubular structure of the rubber umbrella group sheath 3 is distributed in a linear array; it is a conventional product.
  • the current limiting layer 6 is made of a high-insulation-strength organic material having a fixed electrical conductivity, and the high-insulation-strength organic material includes any one of epoxy resin, polyethylene, polypropylene, and ethylene propylene diene monomer. Since the pressure equalization layer 5 and the current limiting layer 6 are in a series structure, the high-strength organic material with a fixed conductivity in the current limiting layer 6 can limit the excessive leakage current in the main insulation to avoid the main insulation heating of the outlet bushing of the device.
  • the inorganic filler powder particles include ZnO pressure sensitive ceramic powder, carbon fiber powder, CB powder, SiC powder, TiO 2 powder, SrTiO 3 powder, CCTO powder, SnO 2 powder, ZnO whisker, a single powder of Al 2 O 3 powder or a combination of two or more powders;
  • the high dielectric strength organic material includes any one of epoxy resin, polyethylene, polypropylene, and ethylene propylene diene monomer;
  • the conductivity adaptive control composite is prepared by adding a plurality of inorganic filler powder particles to 100 parts of the high dielectric strength organic material (the specific preparation process is a conventional technique in the art).
  • the threshold field strength of the conductivity adaptive control composite material is selected according to the voltage level and geometric size of the outlet sleeve of the device, and the threshold field strength ranges from 100V/mm to 8000V/mm.
  • the threshold field strength of the conductivity adaptive control composite material is adjusted by the particle size of the inorganic filler powder particles, and the inorganic filler powder particle size ranges from 30 nm to 300 ⁇ m.
  • the threshold field strength of the conductivity adaptive control composite material is adjusted by the ratio of the fraction between the inorganic filler powder particles and the high dielectric strength organic material, so that the number of parts of the high dielectric strength organic material is 100 parts.
  • the fraction of each component in the inorganic filler powder particles is: 50-200 parts of ZnO varistor ceramic powder, or ZnO whisker, carbon fiber, CB, SiC, TiO 2 , SrTiO 3 , CCTO, SnO 2 , Any powder of Al 2 O 3 is 10-95 parts.
  • the threshold field strength of the conductivity adaptive control composite material is adjusted by multi-component blending by introducing a small amount of conductive powder particles, and the number of conductive powder particles introduced is between 3 and 50 parts.
  • the outlet sleeve of the device of the present embodiment is used at a DC voltage level of 110 kV, and the inorganic filler powder particles in the pressure equalization layer 5 and the electrode extension layer 7 are all made of ZnO varistor ceramic powder and high dielectric strength organic materials.
  • Ethylene propylene rubber wherein the ZnO varistor ceramic powder used in the stratified layer 5 has a particle size of 30-50 ⁇ m, the ZnO varistor ceramic powder has a fraction of 80 parts; and the electrode extension layer 7
  • the ZnO varistor ceramic powder used has a particle size of 150-200 ⁇ m, and the ZnO varistor ceramic powder has a fraction of 200 parts.
  • multi-component blending doping adjustment is performed on the threshold field strength of the conductivity adaptive control composite by introducing carbon black in a portion of 20 parts in both the pressure equalization layer 5 and the electrode extension layer 7.
  • the outlet sleeve of the device of the present embodiment is used at a voltage level of 500 kV DC, and the inorganic filler powder particles of the pressure equalization layer 5 and the electrode extension layer 7 are respectively SiC powder and ZnO varistor ceramic powder, and the high dielectric strength organic materials are used.
  • 100 parts of epoxy resin wherein the SiC powder particle size of the pressure equalization layer 5 is 300-500 nm, the SiC powder fraction is 40 parts; and the ZnO pressure-sensitive ceramic powder particle used for the electrode extension layer 7 The size is 150-200 ⁇ m, and the fraction of the ZnO varistor ceramic powder is 200 parts.
  • the outlet sleeve of the device of the embodiment is used for the inorganic filler powder particles of the pressure equalization layer 5 under the 330kV AC voltage level.
  • the ZnO varistor ceramic powder and the SiC powder are used, and the inorganic filler powder particles of the electrode extension layer 7 are ZnO varistor ceramic powder and CB powder, and the high dielectric strength organic material is 100 parts of polypropylene;
  • the particle size of the ZnO varistor ceramic powder and the SiC powder used in the pressure equalization layer 5 are 30-50 ⁇ m and 600-800 nm, respectively, and the fractions of the ZnO varistor ceramic powder and the SiC powder are 50 parts and 20 parts, respectively. ;
  • the particle size of the ZnO varistor ceramic powder and the CB powder used for the electrode extension layer 7 were 100-125 ⁇ m, and 30 nm, and the fractions of the ZnO varistor ceramic powder and the CB powder were 100 parts and 20 parts, respectively.
  • the device outlet bushing adopts a three-layer structure main insulation mainly composed of a conductivity adaptive control composite material
  • the pressure equalization layer 5 adopts a conductivity adaptive control composite material with a large threshold field strength for Limiting and evenly distributing the field strength distribution in the main insulation
  • the electrode extension layer 7 at the second flange 8 is used to achieve the ground electrode extension to reduce the field strength concentration at the first flange 2
  • conductivity adaptive regulation The composite material performance parameters and the spatial field strength can be adaptively matched to intelligently improve the spatial field strength; when the local field strength of the outlet casing of the device is too large, the electrical conductivity adaptively adjusts the conductivity of the composite material to increase Part of the partial pressure is reduced and the local field strength is reduced, thereby reducing the probability of main insulation breakdown and flashover occurring along the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Insulators (AREA)
  • Cable Accessories (AREA)

Abstract

一种采用电导率自适应调控复合材料的设备出线套管,属于高压输电连接设备技术领域,包括导杆(4),以及由内至外依次包裹在该导杆(4)外侧的均压层(5)、限流层(6)和玻璃纤维套筒(9);玻璃纤维套筒(9)上段外侧包裹有硅橡胶伞群护套(3),限流层(6)内镶嵌有电极延伸层(7);均压层(5)、电极延伸层(7)均为由无机填料粉体颗粒和高绝缘强度有机材料复合而成的电导率自适应调控复合材料制成;导杆(4)的两端均设有与玻璃纤维套筒(9)形成密闭空间的第一法兰(2);玻璃纤维套筒(9)的中部设有顶部与硅橡胶伞群护套(3)一端固接、内壁与电极延伸层(7)相接触的第二法兰(8)。上述设备出线套管解决了主绝缘发生击穿和法兰处发生闪络的问题,同时减小设备出线套管尺寸,改善套管的散热性能和机械性能,简化生产工艺。

Description

采用电导率自适应调控复合材料的设备出线套管
相关申请的交叉引用
本申请要求清华大学于2017年10月31日提交的、发明名称为“采用电导率自适应调控复合材料的设备出线套管”的、中国专利申请号“201711043283.8”的优先权。
技术领域
本发明属于高压输电连接设备技术领域,特别是一种采用非线性电导复合材料的设备出线套管,适用于交流和直流电力系统。
背景技术
设备出线套管用于高电压设备引出线对地绝缘与固定,作为电力系统的重要设备,其可靠性对电力系统的安全可靠运行具有重要影响作用。设备出线套管由高压电极导杆插入地电极中间法兰的中心而构成,是一种典型的电场具有垂直介质表面分量的绝缘结构,其主绝缘容易发生击穿且法兰边缘处容易发生闪络。为此必须改善法兰和导杆附近的电场,提高介质的绝缘强度,设计和选择合适的绝缘结构及材料。设备出线套管具有多种形式,目前以电容式均压的结构为主。电容式套管内绝缘采用电容芯子结构,强迫套管内部电场均化。但电容芯子的制作对工艺水平具有很高的要求,在生产过程中容易出现各种质量问题,对电容式套管的可靠性产生显著影响;较高要求的技术水平也严重制约了生产成本的降低和生产效率的提高。此外,采用电容芯子的高压套管由于尺寸大、内部发热严重,是套管安全可靠运行的重大隐患所在。
发明内容
本发明的目的是为了解决上述问题,设计了一种适用于交流和直流电力系统的采用电导率自适应调控复合材料的设备出线套管。
本发明采用如下技术方案:
一种采用电导率自适应调控复合材料的设备出线套管,适用于交直流电力系统,包括一导杆,其特征在于,该设备出线套管还包括由内至外依次包裹在所述导杆外侧的均压层、限流层和玻璃纤维套筒;其中,所述玻璃纤维套筒上段外侧包裹有硅橡胶伞群护套,所述限流层内镶嵌有电极延伸层;所述均压层、电极延伸层均为由无机填料粉体颗粒和高绝缘强度有机材料复合而成的电导率自适应调控复合材料制成;所述导杆的两端均设有与所述 玻璃纤维套筒形成密闭空间的第一法兰,所述导杆、均压层、限流层以及电极延伸层均位于所述密闭空间内,所述导杆的两端贯穿所述第一法兰并连接有接线端子;所述玻璃纤维套筒的中部设有第二法兰,该第二法兰顶端与所述硅橡胶伞群护套一端固接,该第二法兰内壁与所述电极延伸层相接触。
所述均压层和电极延伸层的电导率自适应调控复合材料性能参数与空间电场强度大小自适应匹配,且所述均压层的电导率自适应调控复合材料的阀值场强大于所述电极延伸层的电导率自适应调控复合材料的阀值场强。
所述电导率自适应调控复合材料中无机填料粉体颗粒包括ZnO压敏陶瓷粉体、碳纤维粉体、CB粉体、SiC粉体、TiO2粉体、SrTiO3粉体、CCTO粉体、SnO2粉体、ZnO晶须、Al2O3粉体的单一粉体或两种及多种粉体的组合;所述电导率自适应调控复合材料中高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种;通过在100份高绝缘强度有机材料中加入若干份无机填料粉体颗粒制备所述电导率自适应调控复合材料。
所述电导率自适应调控复合材料的阀值场强根据所述设备出线套管的电压等级和几何尺寸选择,范围为100V/mm到8000V/mm。
所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒的颗粒大小调整,所述无机填料粉体颗粒大小取值区间为30nm到300μm。
所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒和高绝缘强度有机材料之间的份数比例进行调整,所述无机填料粉体颗粒中各成分的份数取值为:ZnO压敏陶瓷粉体50-200份,或ZnO晶须、碳纤维、CB、SiC、TiO2、SrTiO3、CCTO、SnO2、Al2O3任一种粉体10-95份。
所述电导率自适应调控复合材料的阀值场强通过引入3-50份的导电粉体颗粒进行多元共混掺杂调整。
所述限流层采用电导率固定的高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种。
通过本发明的上述技术方案得到的采用电导率自适应调控复合材料的设备出线套管,其有益效果是:
通过电导率自适应调控复合材料作为均压层与电极延伸层来均匀主绝缘内部及法兰附近的场强,不仅很好地解决了主绝缘发生击穿和法兰处发生闪络的问题,同时也使得设备出线套管尺寸得到减小,套管的散热性能得到明显改善,生产工艺得到很大的简化,效率与经济效益得到提升。
附图说明
图1是本发明所述采用电导率自适应调控复合材料的设备出线套管的结构示意图;
图2是图1的局部放大图;
图中,1、接线端子;2、第一法兰;3、硅橡胶伞群护套;4、导杆;5、均压层;6、限流层;7、电极延伸层;8、第二法兰;9、玻璃纤维套筒。
具体实施方式
下面结合附图对本发明进行具体描述。
图1是本发明所述采用电导率自适应调控复合材料的设备出线套管的结构示意图,如图1所示,包括导杆4,以及由内至外依次包裹在该导杆4外侧的均压层5、限流层6和玻璃纤维套筒9;所述玻璃纤维套筒9上段外侧包裹有硅橡胶伞群护套3,所述限流层6内镶嵌有电极延伸层7(该电极延伸层长度由应用电压等级决定);所述均压层5、电极延伸层7均为由无机填料粉体颗粒和高绝缘强度有机材料复合而成的电导率自适应调控复合材料制成;所述导杆4的两端均设有与所述玻璃纤维套筒9形成密闭空间的第一法兰2,所述导杆4、均压层5、限流层6以及电极延伸层7均位于该密闭空间内,所述导杆4的两端贯穿所述第一法兰2并连接有接线端子1;所述玻璃纤维套筒9的中部设有第二法兰8,该第二法兰8顶端与所述硅橡胶伞群护套3一端固接,该第二法兰8内壁与所述电极延伸层7相接触,如图2所示,该第二法兰8用于本套管与设备出线端口的连接与固定。
所述电导率自适应调控复合材料性能参数与空间电场强度大小自适应匹配,所述均压层5电导率自适应调控复合材料的阀值场强大于所述电极延伸层7电导率自适应调控复合材料的阀值场强。
本实施例各组成部件的具体实现方式如下:
所述导杆4为一杆状结构,该导管贯穿整个设备出线套管;为常规产品。
所述硅橡胶伞群护套3为由内环管状结构和外环伞状凸起一次注塑成型的整体结构,所述伞状凸起的数量为多个,多个伞状凸起沿该硅橡胶伞群护套3内环管状结构的轴向方向呈直线阵列分布;为常规产品。
所述限流层6采用电导率固定的高绝缘强度有机材料,该高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种。由于均压层5与限流层6为串联结构,所以可以通过限流层6中固定电导率的高强度有机材料限制主绝缘中泄漏电流过大,避免本设备出线套管的主绝缘发热。
所述无机填料粉体颗粒包括ZnO压敏陶瓷粉体、碳纤维粉体、CB粉体、SiC粉体、TiO2粉体、SrTiO3粉体、CCTO粉体、SnO2粉体、ZnO晶须、Al2O3粉体的单一粉体或两 种及多种粉体的组合;所述高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种;通过在100份高绝缘强度有机材料中加入若干份无机填料粉体颗粒制备(具体制备流程为本领域常规技术)所述电导率自适应调控复合材料。
所述电导率自适应调控复合材料的阀值场强根据该设备出线套管的电压等级和几何尺寸选择,阀值场强范围为100V/mm到8000V/mm。
所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒的颗粒大小调整,所述无机填料粉体颗粒大小取值区间为30nm到300μm。
所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒和高绝缘强度有机材料之间的份数比例进行调整,令高绝缘强度有机材料的份数为100份,则所述无机填料粉体颗粒中的各成分的份数取值为:ZnO压敏陶瓷粉体50-200份,或ZnO晶须、碳纤维、CB、SiC、TiO2、SrTiO3、CCTO、SnO2、Al2O3任一种粉体10-95份。
所述电导率自适应调控复合材料的阀值场强通过引入微量份数的导电粉体颗粒进行多元共混掺杂调整,引入的导电粉体颗粒份数在3-50份之间。
实施例1
本实施例的设备出线套管用在110kV直流电压等级下,均压层5和电极延伸层7中的无机填料粉体颗粒均采用ZnO压敏陶瓷粉体、高绝缘强度有机材料均采用100份三元乙丙橡胶;其中,所述均压层5所采用的ZnO压敏陶瓷粉体颗粒大小为30-50μm,该ZnO压敏陶瓷粉体的份数为80份;所述电极延伸层7所采用的ZnO压敏陶瓷粉体颗粒大小为150-200μm,该ZnO压敏陶瓷粉体的份数为200份。
本实施例通过在均压层5和电极延伸层7中均引入份数为20份的炭黑对所述电导率自适应调控复合材料的阀值场强进行多元共混掺杂调整。
实施例2
本实施例的设备出线套管用在500kV直流电压等级下,均压层5和电极延伸层7的无机填料粉体颗粒分别采用SiC粉体和ZnO压敏陶瓷粉体,高绝缘强度有机材料均采用100份环氧树脂;其中,均压层5所采用的SiC粉体颗粒大小为300-500nm,该SiC粉体的份数为40份;电极延伸层7所采用的ZnO压敏陶瓷粉体颗粒大小为150-200μm,该ZnO压敏陶瓷粉体的份数为200份。
实施例3
本实施例的设备出线套管用在330kV交流电压等级下,均压层5的无机填料粉体颗粒 采用ZnO压敏陶瓷粉体和SiC粉体,电极延伸层7的无机填料粉体颗粒采用ZnO压敏陶瓷粉体和CB粉体,高绝缘强度有机材料均采用100份聚丙烯;其中,
均压层5所采用的ZnO压敏陶瓷粉体和SiC粉体的颗粒大小分别为30-50μm和600-800nm,ZnO压敏陶瓷粉体和SiC粉体的份数分别为50份和20份;
电极延伸层7所采用的ZnO压敏陶瓷粉体和CB粉体的颗粒大小分别为100-125μm,和30nm,ZnO压敏陶瓷粉体和CB粉体的份数分别为100份和20份。
本发明的工作原理如下:设备出线套管采用电导率自适应调控复合材料为主的三层结构主绝缘,均压层5采用具有大阀值场强的电导率自适应调控复合材料,用于限制并均匀主绝缘内场强分布,而在第二法兰处8的电极延伸层7,用于实现地电极延伸作用而减小第一法兰2处场强集中问题;电导率自适应调控复合材料性能参数与空间场强大小能够自适应匹配,起到智能改善空间场强的作用;当本设备出线套管局部场强过大时,电导率自适应调控复合材料电导率增加而使得这一部分分压减小、局部场强降低,从而降低了主绝缘击穿与沿面发生闪络的概率。
上述技术方案仅体现了本发明技术方案的优选技术方案,本技术领域的技术人员对其中某些部分所可能做出的一些变动均体现了本发明的原理,包括采用传统的瓷外套代替环氧玻璃钢筒及外部硅橡胶伞裙,都属于本发明的保护范围之内。

Claims (8)

  1. 一种采用电导率自适应调控复合材料的设备出线套管,适用于交直流电力系统,包括一导杆,其特征在于,该设备出线套管还包括由内至外依次包裹在所述导杆外侧的均压层、限流层和玻璃纤维套筒;其中,所述玻璃纤维套筒上段外侧包裹有硅橡胶伞群护套,所述限流层内镶嵌有电极延伸层;所述均压层、电极延伸层均为由无机填料粉体颗粒和高绝缘强度有机材料复合而成的电导率自适应调控复合材料制成;所述导杆的两端均设有与所述玻璃纤维套筒形成密闭空间的第一法兰,所述导杆、均压层、限流层以及电极延伸层均位于所述密闭空间内,所述导杆的两端贯穿所述第一法兰并连接有接线端子;所述玻璃纤维套筒的中部设有第二法兰,该第二法兰顶端与所述硅橡胶伞群护套一端固接,该第二法兰内壁与所述电极延伸层相接触。
  2. 根据权利要求1所述的设备出线套管,其特征在于,所述均压层和电极延伸层的电导率自适应调控复合材料性能参数与空间电场强度大小自适应匹配,且所述均压层的电导率自适应调控复合材料的阀值场强大于所述电极延伸层的电导率自适应调控复合材料的阀值场强。
  3. 根据权利要求1所述的设备出线套管,其特征在于,所述电导率自适应调控复合材料中无机填料粉体颗粒包括ZnO压敏陶瓷粉体、碳纤维粉体、CB粉体、SiC粉体、TiO2粉体、SrTiO3粉体、CCTO粉体、SnO2粉体、ZnO晶须、Al2O3粉体的单一粉体或两种及多种粉体的组合;所述电导率自适应调控复合材料中高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种;通过在100份高绝缘强度有机材料中加入若干份无机填料粉体颗粒制备所述电导率自适应调控复合材料。
  4. 根据权利要求3所述的设备出线套管,其特征在于,所述电导率自适应调控复合材料的阀值场强根据所述设备出线套管的电压等级和几何尺寸选择,范围为100V/mm到8000V/mm。
  5. 根据权利要求4所述的设备出线套管,其特征在于,所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒的颗粒大小调整,所述无机填料粉体颗粒大小取值区间为30nm到300μm。
  6. 根据权利要求4所述的设备出线套管,其特征在于,所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒和高绝缘强度有机材料之间的份数比例进行调整,所述无机填料粉体颗粒中各成分的份数取值为:ZnO压敏陶瓷粉体50-200份,或ZnO晶须、碳纤维、CB、SiC、TiO2、SrTiO3、CCTO、SnO2、Al2O3任一种粉体10-95份。
  7. 根据权利要求4所述的设备出线套管,其特征在于,所述电导率自适应调控复合材 料的阀值场强通过引入3-50份的导电粉体颗粒进行多元共混掺杂调整。
  8. 根据权利要求1所述的设备出线套管,其特征在于,所述限流层采用电导率固定的高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种。
PCT/CN2017/110456 2017-10-31 2017-11-10 采用电导率自适应调控复合材料的设备出线套管 WO2019084999A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH00496/20A CH715655B1 (de) 2017-10-31 2017-11-10 Durchführungshülse mit einem elektrische Leitfähigkeit selbstadaptiv regulierenden Verbundmaterial.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711043283.8A CN107785133B (zh) 2017-10-31 2017-10-31 采用电导率自适应调控复合材料的设备出线套管
CN201711043283.8 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019084999A1 true WO2019084999A1 (zh) 2019-05-09

Family

ID=61432200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110456 WO2019084999A1 (zh) 2017-10-31 2017-11-10 采用电导率自适应调控复合材料的设备出线套管

Country Status (3)

Country Link
CN (1) CN107785133B (zh)
CH (1) CH715655B1 (zh)
WO (1) WO2019084999A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002463B (zh) * 2020-07-17 2021-11-19 清华大学 一种35kV以上的高压交直流穿墙套管及其制备方法
CN112018686B (zh) * 2020-07-17 2022-04-01 清华大学 一种35kV及以下的高压交直流穿墙套管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272428A1 (en) * 2004-03-09 2007-11-29 Lorrene Bayon Electric Field Control Material
CN202816510U (zh) * 2011-12-20 2013-03-20 江苏神马电力股份有限公司 一种1100kV气体绝缘复合套管
CN103035345A (zh) * 2010-05-24 2013-04-10 南通市神马电力科技有限公司 一种245kv、252kv互感器用空心复合绝缘子
CN106159868A (zh) * 2016-08-03 2016-11-23 清华大学 采用非线性预制橡胶应力锥的交流电缆端头
CN106941032A (zh) * 2016-01-05 2017-07-11 泰科电子(上海)有限公司 绝缘子及其制造方法
CN107257116A (zh) * 2017-06-19 2017-10-17 清华大学 采用非线性电导复合材料均压结构的穿墙套管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3066180A (en) * 1957-04-06 1962-11-27 Asea Ab Coating for equalizing the potential gradient along the surface of an electric insulation
CN1195304C (zh) * 2002-10-08 2005-03-30 黄维枢 浸环氧树脂纤维高压绝缘芯体
CN201397713Y (zh) * 2009-01-20 2010-02-03 江苏大全封闭母线有限公司 管形母线屏蔽绝缘套管
CN102298996B (zh) * 2011-08-31 2013-03-06 清华大学 一种电场分布均匀的特高压合成绝缘子
CN203166434U (zh) * 2013-04-08 2013-08-28 丽水市中仪电力科技有限公司 复合干式穿墙套管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272428A1 (en) * 2004-03-09 2007-11-29 Lorrene Bayon Electric Field Control Material
CN103035345A (zh) * 2010-05-24 2013-04-10 南通市神马电力科技有限公司 一种245kv、252kv互感器用空心复合绝缘子
CN202816510U (zh) * 2011-12-20 2013-03-20 江苏神马电力股份有限公司 一种1100kV气体绝缘复合套管
CN106941032A (zh) * 2016-01-05 2017-07-11 泰科电子(上海)有限公司 绝缘子及其制造方法
CN106159868A (zh) * 2016-08-03 2016-11-23 清华大学 采用非线性预制橡胶应力锥的交流电缆端头
CN107257116A (zh) * 2017-06-19 2017-10-17 清华大学 采用非线性电导复合材料均压结构的穿墙套管

Also Published As

Publication number Publication date
CN107785133B (zh) 2019-09-27
CN107785133A (zh) 2018-03-09
CH715655B1 (de) 2022-06-15

Similar Documents

Publication Publication Date Title
CN106159868B (zh) 采用非线性预制橡胶应力锥的交流电缆端头
CN107257116B (zh) 采用非线性电导复合材料均压结构的穿墙套管
CN101436449B (zh) 能抑制绝缘层内部电树枝生成与发展的高压、超高压电缆
WO2019084999A1 (zh) 采用电导率自适应调控复合材料的设备出线套管
CN101441906B (zh) 带非线性屏蔽层的高压、超高压交联聚乙烯绝缘电力电缆
WO2010057422A1 (zh) 一种能提高外绝缘电气强度的绝缘子
AU2015363625A1 (en) A method of manufacturing a high-voltage DC cable joint, and a high-voltage DC cable joint
KR20160084920A (ko) 중간접속함
CN106099826A (zh) 挤出式柔性直流电缆终端应力锥结构
KR20160063219A (ko) 초고압 직류 전력케이블용 중간접속함
CN207718954U (zh) 复合绝缘子和复合套管
WO2018132951A1 (zh) 采用非线性电导复合材料均压结构的穿墙套管
CN112002463B (zh) 一种35kV以上的高压交直流穿墙套管及其制备方法
CN109494029B (zh) 一种基于表面梯度电导的超导gil绝缘子电场均化方法
CN107768045B (zh) 一种具有非线性电导材料均压结构的复合绝缘子
Zhao et al. Tuning of potential distribution in DC cable joints with nonlinear material
CN201378468Y (zh) 带非线性屏蔽层的高压、超高压交联聚乙烯绝缘电力电缆
CN201378469Y (zh) 带非线性绝缘层的高压、超高压交联聚乙烯绝缘电力电缆
RU184107U1 (ru) Соединительная муфта для силового кабеля
WO2019105126A1 (zh) 复合绝缘子及其制造方法、复合套管
Teng et al. The Influence of Positive Temperature Coefficient Material on the DC Electric Field within Epoxy Composites
CN206962396U (zh) 一种母线
CN201742071U (zh) 高压电缆复合型应力控制电缆终端
CN205377244U (zh) 一种用于高压直流电缆附件的应力锥
Okamoto et al. Distinctive Downsizing of Cone-Type Insulating Spacer for 245 kV Class GIS by Functionally Insulating Materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930404

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10202000000496

Country of ref document: CH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930404

Country of ref document: EP

Kind code of ref document: A1