WO2018132951A1 - 采用非线性电导复合材料均压结构的穿墙套管 - Google Patents

采用非线性电导复合材料均压结构的穿墙套管 Download PDF

Info

Publication number
WO2018132951A1
WO2018132951A1 PCT/CN2017/071447 CN2017071447W WO2018132951A1 WO 2018132951 A1 WO2018132951 A1 WO 2018132951A1 CN 2017071447 W CN2017071447 W CN 2017071447W WO 2018132951 A1 WO2018132951 A1 WO 2018132951A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite material
conductive composite
nonlinear
electrically conductive
Prior art date
Application number
PCT/CN2017/071447
Other languages
English (en)
French (fr)
Inventor
何金良
胡军
赵孝磊
杨霄
余占清
曾嵘
张波
李琦
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2017/071447 priority Critical patent/WO2018132951A1/zh
Priority to CH00700/19A priority patent/CH714353B1/de
Priority to DE112017005557.1T priority patent/DE112017005557T5/de
Publication of WO2018132951A1 publication Critical patent/WO2018132951A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/28Capacitor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/22Installations of cables or lines through walls, floors or ceilings, e.g. into buildings

Definitions

  • the invention relates to the field of high-voltage transmission and connection equipment, in particular to a wall-through casing adopting a non-linear electrically conductive composite material equalizing structure.
  • the wall bushing is used to pass high voltage wires through the wall as an important device of the power system, and its reliability has an important influence on the safe and reliable operation of the power system.
  • the sleeve is formed by inserting a high-voltage electrode guide rod into the center of the intermediate flange of the ground electrode. It is a typical electric field having an insulating structure with a vertical medium surface component. The main insulation is prone to breakdown and the flashover is prone to occur at the edge of the flange. To this end, it is necessary to improve the electric field near the flange and the guide rod, improve the dielectric strength of the medium, and design and select suitable insulation structures and materials.
  • Wall bushings come in a variety of forms and are currently dominated by capacitive voltage equalization.
  • the inner insulation of the capacitor bushing adopts a capacitor core structure to force the electric field inside the bushing to be equalized.
  • the fabrication of the capacitor core has high requirements on the process level, and various quality problems are prone to occur in the production process, which has a significant impact on the reliability of the capacitor sleeve; the higher required technical level also severely restricts the production cost. Reduced and increased productivity.
  • the high-voltage DC bushing using the capacitor core is a major hidden danger of safe and reliable operation of the bushing due to its large size and serious internal heat.
  • the object of the present invention is to solve the above problems, and to design a wall bushing using a nonlinear conductive composite material equalizing structure.
  • the specific design scheme is:
  • a wall bushing adopting a non-linear conductive composite material grading structure comprising a guiding rod, wherein the guiding rod is a rod-shaped structure, the outer side of the guiding rod is covered with a pressure equalizing layer, and the pressure equalizing layer outer wrapping is limited
  • the flow layer is covered with a silicone rubber umbrella group sheath, and the current limiting layer is embedded with an electrode extension layer.
  • the pressure equalization layer and the electrode extension layer are all nonlinear electrically conductive composite materials composed of inorganic filler powder particles and high dielectric strength organic materials, and the threshold field of the uniform pressure layer 5 nonlinear electrically conductive composite material is stronger than The electrode extension layer has a threshold field strength of the nonlinear electrically conductive composite material.
  • a lower flange is disposed at both ends of the guiding rod, and the lower flange and the silicone rubber umbrella group sheath form a closed space, and the guiding rod, the equalizing layer, the current limiting layer and the electrode extending layer are all located in the sealing In the space, both ends of the guiding rod penetrate the lower flange and are connected with connecting terminals.
  • the middle portion of the silicone rubber umbrella group sheath is provided with an upper flange, and both ends of the upper flange are connected with the silicone rubber umbrella group sheath, and the inner ring of the flange is in contact with the electrode extension layer ,
  • the silicone rubber umbrella group sheath is a tubular structure, and the outer ring of the silicone rubber umbrella group sheath is provided with an umbrella-shaped protrusion, and the umbrella-shaped protrusion and the silicone rubber umbrella group sheath are once injection molded. the whole frame,
  • the number of the umbrella-shaped protrusions is plural, and the plurality of umbrella-shaped protrusions are distributed in a linear array along the axial direction of the sheath of the silicone rubber umbrella group.
  • the inorganic filler powder particles include at least one of zinc oxide varistor ceramic powder, SiC powder, TiO2 powder, SrTiO3 powder, CCTO powder, and SnO2 powder.
  • the high dielectric strength organic material includes epoxy resin, polyethylene, polypropylene, and ethylene propylene diene monomer.
  • the threshold field strength of the nonlinear electrically conductive composite material is selected by a voltage in a casing, and a threshold field strength of the nonlinear electrically conductive composite material passes through a geometric rule of the nonlinear electrically conductive composite material
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by the particle size of the inorganic filler powder particles.
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by the volume fraction of the inorganic filler powder particles,
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by multi-component blending by introducing a small volume fraction of conductive powder particles.
  • the inorganic filler powder has a particle size ranging from 30 nm to 300 ⁇ m.
  • the volume fraction of each component in the inorganic filler powder particles is from 5 parts to 80 parts of the zinc oxide varistor ceramic powder, or from 10 parts to 95 parts of the SiC, TiO2, SrTiO3, CCTO, and SnO2 powders.
  • the main insulation breakdown and the flange are not well solved.
  • the problem of flashover is also reduced in size, the heat dissipation performance of the casing is significantly improved, the production process is greatly simplified, and the efficiency and economic benefits are improved.
  • FIG. 1 is a schematic structural view of a wall bushing according to the present invention using a non-linear conductive composite material pressure equalizing structure
  • terminal block 2, lower flange; 3, silicone rubber umbrella group sheath; 4, guide rod; 5, pressure equalization layer; 6, current limiting layer; 7, electrode extension layer; Lan.
  • FIG. 1 is a schematic structural view of a through-wall bushing using a non-linear conductive composite material equalizing structure according to the present invention, as shown in FIG. 1, a through-wall bushing using a nonlinear conductive composite material equalizing structure, including a guide a rod 4, the guide rod 4 is a rod-shaped structure, the outer side of the guide rod 4 is wrapped with a pressure equalization layer 5, and the pressure equalization layer 5 is wrapped with a limited flow layer 6, and the current limiting layer 6 is wrapped with silicon A rubber umbrella group sheath 3 is embedded with an electrode extension layer 7 in the current limiting layer 6.
  • the pressure equalization layer 5 and the electrode extension layer 7 are all nonlinear electrically conductive composite materials composed of inorganic filler powder particles and high dielectric strength organic materials, and the threshold field of the uniform pressure layer 5 nonlinear electrically conductive composite material Stronger than the threshold field strength of the non-linear conducting composite of the electrode extension layer 7.
  • the lower end of the guide rod 4 is provided with a lower flange 2, the lower flange 2, the silicone rubber umbrella group sheath 3 form a closed space, the guide rod 4, the pressure equalization layer 5, the current limiting layer 6, the electrode
  • the extending layers 7 are all located in the sealed space, and both ends of the guiding rod 4 penetrate the lower flange 2 and are connected with connecting terminals.
  • An upper flange 8 is disposed in a middle portion of the silicone rubber umbrella group sheath 3, and both ends of the upper flange 8 are connected to the silicone rubber umbrella group sheath 3, and the inner ring of the flange 8 is The electrode extension layer 7 is in contact with each other,
  • the silicone rubber umbrella group sheath 3 is a tubular structure, and the outer ring of the silicone rubber umbrella group sheath 3 is provided with an umbrella-shaped protrusion, and the umbrella-shaped protrusion and the silicone rubber umbrella group sheath 3 are once
  • the number of the umbrella-shaped projections is plural, and the plurality of umbrella-shaped projections are distributed in a linear array along the axial direction of the silicone rubber umbrella group sheath 3.
  • the inorganic filler powder particles include zinc oxide varistor ceramic powder, SiC powder TiO2 powder, SrTiO3 powder, CCTO powder, single powder of SnO2 powder or a combination of two or more powders,
  • the high dielectric strength organic material includes epoxy resin, polyethylene, polypropylene, and ethylene propylene diene monomer.
  • the threshold field strength of the nonlinear electrically conductive composite material is selected by the voltage in the casing,
  • the threshold field strength of the nonlinear electrically conductive composite material is selected by the geometry of the nonlinear electrically conductive composite material,
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by the particle size of the inorganic filler powder particles.
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by the volume fraction of the inorganic filler powder particles,
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by multi-component blending by introducing a small volume fraction of conductive powder particles.
  • the particle size range of the zinc oxide varistor ceramic powder in the inorganic filler powder particles is 30 ⁇ m to 300 ⁇ m.
  • the volume fraction of each component in the inorganic filler powder particles is 5 parts - 80 parts of zinc oxide varistor ceramic powder, or 10 parts - 95 of SiC, TiO2, SrTiO3, CCTO, SnO2 powder Share.
  • the inorganic filler powder particles include zinc oxide varistor ceramic powder,
  • the high dielectric strength organic material includes epoxy resin, polyethylene, polypropylene, and ethylene propylene diene monomer.
  • the threshold field strength of the nonlinear electrically conductive composite material is selected by the voltage in the casing,
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by the volume fraction of the inorganic filler powder particles,
  • the threshold field strength of the nonlinear electrically conductive composite is adjusted by multi-component blending by introducing a small volume fraction of carbon black.
  • the particle size range of the zinc oxide varistor ceramic powder in the inorganic filler powder particles is 30-50 ⁇ m.
  • the volume fraction of each component in the inorganic filler powder particles is a value of zinc oxide pressure sensitive ceramics 40 parts of porcelain powder.
  • the inorganic filler powder particles include zinc oxide varistor ceramic powder and SiC powder.
  • the high dielectric strength organic material includes epoxy resin, polyethylene, polypropylene, and ethylene propylene diene monomer.
  • the threshold field strength of the nonlinear electrically conductive composite material is selected by the geometry of the nonlinear electrically conductive composite material,
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by the particle size of the inorganic filler powder particles.
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by the volume fraction of the inorganic filler powder particles,
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by multi-component blending by introducing a small volume fraction of graphite.
  • the particle size range of the zinc oxide varistor ceramic powder in the inorganic filler powder particles is 150-200 ⁇ m, and the SiC powder particle size is 300-500 nm.
  • the volume fraction of each component in the inorganic filler powder particles is 20 parts of zinc oxide varistor ceramic powder and 40 parts of SiC powder.
  • the inorganic filler powder particles include zinc oxide varistor ceramic powder and SiC powder.
  • the high dielectric strength organic material includes epoxy resin, polyethylene, polypropylene, and ethylene propylene diene monomer.
  • the threshold field strength of the nonlinear electrically conductive composite material is selected by the voltage in the casing,
  • the threshold field strength of the nonlinear electrically conductive composite material is selected by the geometry of the nonlinear electrically conductive composite material,
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by the volume fraction of the inorganic filler powder particles,
  • the threshold field strength of the nonlinear electrically conductive composite material is adjusted by multi-component blending by introducing a small volume fraction of carbon fibers.
  • the particle size range of the zinc oxide varistor ceramic powder in the inorganic filler powder particles is 250-300 ⁇ m, SiC powder particle size is 600-800nm,
  • the volume fraction of each component in the inorganic filler powder particles is 10 parts of zinc oxide varistor ceramic powder and 60 parts of SiC powder.
  • the wall bushing adopts a three-layer structure main insulation mainly composed of a non-linear conductive composite material, and the pressure equalization layer 5 adopts a nonlinear electric conductivity composite material with a large threshold field strength, which is used for limiting and uniformly distributing the field strength distribution in the main insulation.
  • the electrode extension layer 7 at the upper flange 8 is used to realize the ground electrode extension to reduce the field strength concentration at the flange 2; the performance parameters of the nonlinear electrically conductive composite material and the spatial field strength can be adaptively matched and intelligent Improve the effect of spatial field strength; when the local field strength of the casing is too large, the electrical conductivity of the nonlinear composite increases, which reduces the partial pressure and reduces the local field strength, thereby reducing the main insulation breakdown and flashover along the surface. The probability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Thermistors And Varistors (AREA)

Abstract

一种采用非线性电导复合材料均压结构的穿墙套管,包括导杆,所述导杆为杆状结构,所述导杆的外侧包裹有均压层,所述均压层外包裹有限流层,所述限流层外包裹有硅橡胶伞群护套,所述限流层内镶嵌有电极延伸层。其有益效果是:通过采用非线性电导复合材料作为均压层与电极延伸层来均匀主绝缘内部及法兰附近的场强,不仅很好地解决了主绝缘发生击穿和法兰处发生闪络的问题,同时也使得穿墙套管尺寸得到减小,套管的散热性能得到明显改善,生产工艺得到很大的简化,效率与经济效益得到提升。

Description

采用非线性电导复合材料均压结构的穿墙套管 技术领域
本发明涉及高压输电连接设备领域,特别是一种采用非线性电导复合材料均压结构的穿墙套管。
背景技术
穿墙套管用于将高电压导线穿过墙体,作为电力系统的重要设备,其可靠性对电力系统的安全可靠运行具有重要影响作用。套管由高压电极导杆插入地电极中间法兰的中心而构成,是一种典型的电场具有垂直介质表面分量的绝缘结构,其主绝缘容易发生击穿且法兰边缘处容易发生闪络。为此必须改善法兰和导杆附近的电场,提高介质的绝缘强度,设计和选择合适的绝缘结构及材料。穿墙套管具有多种形式,目前以电容式均压的结构为主。电容式套管内绝缘采用电容芯子结构,强迫套管内部电场均化。但电容芯子的制作对工艺水平具有很高的要求,在生产过程中容易出现各种质量问题,对电容式套管的可靠性产生显著影响;较高要求的技术水平也严重制约了生产成本的降低和生产效率的提高。此外,采用电容芯子的高压直流套管由于尺寸大、内部发热严重,是套管安全可靠运行的重大隐患所在。
发明内容
本发明的目的是为了解决上述问题,设计了一种采用非线性电导复合材料均压结构的穿墙套管。具体设计方案为:
一种采用非线性电导复合材料均压结构的穿墙套管,包括导杆,所述导杆为杆状结构,所述导杆的外侧包裹有均压层,所述均压层外包裹有限流层,所述限流层外包裹有硅橡胶伞群护套,所述限流层内镶嵌有电极延伸层。
所述均压层、电极延伸层均为由无机填料粉体颗粒、高绝缘强度有机材料复合而成的非线性电导复合材料,所述均压层5非线性电导复合材料的阀值场强大于所述电极延伸层非线性电导复合材料的阀值场强。
所述导杆的两端设有下法兰,所述下法兰、硅橡胶伞群护套形成密闭空间,所述导杆、均压层、限流层、电极延伸层均位于所述密闭空间内,所述导杆的两端贯穿所述下法兰并连接有接线端子。
所述硅橡胶伞群护套的中部设有上法兰,所述上法兰的两端与所述硅橡胶伞群护套连接,所述法兰的内环与所述电极延伸层相接触,
所述硅橡胶伞群护套为管状结构,所述硅橡胶伞群护套的外环设有伞状凸起,所述伞状凸起与所述硅橡胶伞群护套为一次注塑成型的整体结构,
所述伞状凸起的数量为多个,多个伞状凸起沿所述硅橡胶伞群护套的轴向方向呈直线阵列分布。
所述无机填料粉体颗粒包括氧化锌压敏陶瓷粉体、SiC粉体,TiO2粉体、SrTiO3粉体、CCTO粉体、SnO2粉体的至少一种,
所述高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶。
所述非线性电导复合材料的阀值场强通过套管中电压选择,所述非线性电导复合材料的阀值场强通过所述非线性电导复合材料的几何尺
寸选择,所述非线性电导复合材料的阀值场强通过无机填料粉体颗粒的颗粒大小调整,
所述非线性电导复合材料的阀值场强通过无机填料粉体颗粒的体积份数调整,
所述非线性电导复合材料的阀值场强通过引入微量体积分数的导电粉体颗粒进行多元共混掺杂调整。
所述无机填料粉体颗粒大小取值区间为30nm到300μm,
所述无机填料粉体颗粒中的各成分的体积份数取值为氧化锌压敏陶瓷粉末5份-80份,或SiC、TiO2、SrTiO3、CCTO、SnO2粉体10份-95份。
通过本发明的上述技术方案得到的采用非线性电导复合材料均压结构的穿墙套管,其有益效果是:
通过采用非线性电导复合材料作为均压层与电极延伸层来均匀主绝缘内部及法兰附近的场强,不仅很好地解决了主绝缘发生击穿和法兰处发 生闪络的问题,同时也使得穿墙套管尺寸得到减小,套管的散热性能得到明显改善,生产工艺得到很大的简化,效率与经济效益得到提升。
附图说明
图1是本发明所述采用非线性电导复合材料均压结构的穿墙套管的结构示意图;
图中,1、接线端子;2、下法兰;3、硅橡胶伞群护套;4、导杆;5、均压层;6、限流层;7、电极延伸层;8、上法兰。
具体实施方式
下面结合附图对本发明进行具体描述。
图1是本发明所述采用非线性电导复合材料均压结构的穿墙套管的结构示意图,如图1所示,一种采用非线性电导复合材料均压结构的穿墙套管,包括导杆4,所述导杆4为杆状结构,所述导杆4的外侧包裹有均压层5,所述均压层5外包裹有限流层6,所述限流层6外包裹有硅橡胶伞群护套3,所述限流层6内镶嵌有电极延伸层7。
所述均压层5、电极延伸层7均为由无机填料粉体颗粒、高绝缘强度有机材料复合而成的非线性电导复合材料,所述均压层5非线性电导复合材料的阀值场强大于所述电极延伸层7非线性电导复合材料的阀值场强。所述导杆4的两端设有下法兰2,所述下法兰2、硅橡胶伞群护套3形成密闭空间,所述导杆4、均压层5、限流层6、电极延伸层7均位于所述密闭空间内,所述导杆4的两端贯穿所述下法兰2并连接有接线端子。
所述硅橡胶伞群护套3的中部设有上法兰8,所述上法兰8的两端与所述硅橡胶伞群护套3连接,所述法兰8的内环与所述电极延伸层7相接触,
所述硅橡胶伞群护套3为管状结构,所述硅橡胶伞群护套3的外环设有伞状凸起,所述伞状凸起与所述硅橡胶伞群护套3为一次注塑成型的整体结构,所述伞状凸起的数量为多个,多个伞状凸起沿所述硅橡胶伞群护套3的轴向方向呈直线阵列分布。
所述无机填料粉体颗粒包括氧化锌压敏陶瓷粉体、SiC粉体TiO2粉体、 SrTiO3粉体、CCTO粉体、SnO2粉体的单一粉体或两种及多种粉体的组合,
所述高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶。
所述非线性电导复合材料的阀值场强通过套管中电压选择,
所述非线性电导复合材料的阀值场强通过所述非线性电导复合材料的几何尺寸选择,
所述非线性电导复合材料的阀值场强通过无机填料粉体颗粒的颗粒大小调整,
所述非线性电导复合材料的阀值场强通过无机填料粉体颗粒的体积份数调整,
所述非线性电导复合材料的阀值场强通过引入微量体积分数的导电粉体颗粒进行多元共混掺杂调整。
所述无机填料粉体颗粒中的氧化锌压敏陶瓷粉末颗粒大小取值区间为30μm到300μm,
所述无机填料粉体颗粒中的各成分的体积份数取值为氧化锌压敏陶瓷粉体5份-80份,或SiC、TiO2、SrTiO3、CCTO、SnO2任一种粉体10份-95份。
实施例1
所述无机填料粉体颗粒包括氧化锌压敏陶瓷粉体,
所述高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶。
所述非线性电导复合材料的阀值场强通过套管中电压选择,
所述非线性电导复合材料的阀值场强通过无机填料粉体颗粒的体积份数调整,
所述非线性电导复合材料的阀值场强通过引入微量体积分数的炭黑进行多元共混掺杂调整。
所述无机填料粉体颗粒中的氧化锌压敏陶瓷粉体颗粒大小取值区间为30-50μm,
所述无机填料粉体颗粒中的各成分的体积份数取值为氧化锌压敏陶 瓷粉体40份。
实施例2
所述无机填料粉体颗粒包括氧化锌压敏陶瓷粉体、SiC粉体,
所述高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶。
所述非线性电导复合材料的阀值场强通过所述非线性电导复合材料的几何尺寸选择,
所述非线性电导复合材料的阀值场强通过无机填料粉体颗粒的颗粒大小调整,
所述非线性电导复合材料的阀值场强通过无机填料粉体颗粒的体积份数调整,
所述非线性电导复合材料的阀值场强通过引入微量体积分数的石墨进行多元共混掺杂调整。
所述无机填料粉体颗粒中的氧化锌压敏陶瓷粉体颗粒大小取值区间为150-200μm,SiC粉体颗粒大小为300-500nm,
所述无机填料粉体颗粒中的各成分的体积份数取值为氧化锌压敏陶瓷粉体20份,SiC粉体40份。
实施例3
所述无机填料粉体颗粒包括氧化锌压敏陶瓷粉体、SiC粉体,
所述高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶。
所述非线性电导复合材料的阀值场强通过套管中电压选择,
所述非线性电导复合材料的阀值场强通过所述非线性电导复合材料的几何尺寸选择,
所述非线性电导复合材料的阀值场强通过无机填料粉体颗粒的体积份数调整,
所述非线性电导复合材料的阀值场强通过引入微量体积分数的碳纤维进行多元共混掺杂调整。
所述无机填料粉体颗粒中的氧化锌压敏陶瓷粉体颗粒大小取值区间为 250-300μm,SiC粉体颗粒大小为600-800nm,
所述无机填料粉体颗粒中的各成分的体积份数取值为氧化锌压敏陶瓷粉末10份,SiC粉体60份。
穿墙套管采用非线性电导复合材料为主的三层结构主绝缘,均压层5采用具有大阀值场强非线性电导复合材料,用于限制并均匀主绝缘内场强分布,而在上法兰处8的电极延伸层7,用于实现地电极延伸作用而减小法兰2处场强集中问题;非线性电导复合材料性能参数与空间场强大小能够自适应匹配,起到智能改善空间场强的作用;当套管局部场强过大时,非线性复合材料电导率增加而使得这一部分分压减小、局部场强降低,从而降低了主绝缘击穿与沿面发生闪络的概率。
上述技术方案仅体现了本发明技术方案的优选技术方案,本技术领域的技术人员对其中某些部分所可能做出的一些变动均体现了本发明的原理,属于本发明的保护范围之内。

Claims (7)

  1. 一种采用非线性电导复合材料均压结构的穿墙套管,包括导杆(4),其特征在于,所述导杆(4)为杆状结构,所述导杆(4)的外侧包裹有均压层(5),所述均压层(5)外包裹有限流层(6),所述限流层(6)外包裹有硅橡胶伞群护套(3),所述限流层(6)内镶嵌有电极延伸层(7)。
  2. 根据权利要求1中所述的采用非线性电导复合材料均压结构的穿墙套管,其特征在于,所述均压层(5)、电极延伸层(7)均为由无机填料粉体颗粒、高绝缘强度有机材料复合而成的非线性电导复合材料,所述均压层(5)非线性电导复合材料的阀值场强大于所述电极延伸层(7)非线性电导复合材料的阀值场强。
  3. 根据权利要求1中所述的采用非线性电导复合材料均压结构的穿墙套管,其特征在于,所述导杆(4)的两端设有下法兰(2),所述下法兰(2)、硅橡胶伞群护套(3)形成密闭空间,所述导杆(4)、均压层(5)、限流层(6)、电极延伸层(7)均位于所述密闭空间内,所述导杆(4)的两端贯穿所述下法兰(2)并连接有接线端子。
  4. 根据权利要求1中所述的采用非线性电导复合材料均压结构的穿墙套管,其特征在于,所述硅橡胶伞群护套(3)的中部设有上法兰(8),所述上法兰(8)的两端与所述硅橡胶伞群护套(3)连接,所述法兰(8)的内环与所述电极延伸层(7)相接触,
    所述硅橡胶伞群护套(3)为管状结构,所述硅橡胶伞群护套(3)的外环设有伞状凸起,所述伞状凸起与所述硅橡胶伞群护套(3)为一次注塑成型的整体结构,所述伞状凸起的数量为多个,多个伞状凸起沿所述硅橡胶伞群护套(3)的轴向方向呈直线阵列分布。
  5. 根据权利要求2中所述的采用非线性电导复合材料均压结构的穿墙套管,其特征在于,所述无机填料粉体颗粒包括氧化锌压敏陶瓷粉体、SiC粉体,TiO2粉体、SrTiO3粉体、CCTO粉体、SnO2粉体的至少一种,
    所述高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶。
  6. 根据权利要求5中所述的采用非线性电导复合材料均压结构的穿墙套管,其特征在于,所述非线性电导复合材料的阀值场强通过套管中电压选 择,
    所述非线性电导复合材料的阀值场强通过所述非线性电导复合材料的几何尺寸选择,
    所述非线性电导复合材料的阀值场强通过无机填料粉体颗粒的颗粒大小调整,
    所述非线性电导复合材料的阀值场强通过无机填料粉体颗粒的体积份数调整,
    所述非线性电导复合材料的阀值场强通过引入微量体积分数的导电粉体颗粒进行多元共混掺杂调整。
  7. 根据权利要求6中所述的采用非线性电导复合材料均压结构的穿墙套管,其特征在于,所述无机填料粉体颗粒大小取值区间为30nm到300μm,所述无机填料粉体颗粒中的各成分的体积份数取值为氧化锌压敏陶瓷粉末5份-80份,或SiC、TiO2、SrTiO3、CCTO、SnO2粉体10份-95份。
PCT/CN2017/071447 2017-01-17 2017-01-17 采用非线性电导复合材料均压结构的穿墙套管 WO2018132951A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/071447 WO2018132951A1 (zh) 2017-01-17 2017-01-17 采用非线性电导复合材料均压结构的穿墙套管
CH00700/19A CH714353B1 (de) 2017-01-17 2017-01-17 Futterrohr zur Führung einer Hochspannungsleitung durch eine Wand mit einer Druckausgleichsschicht aus Verbundstoff mit nichtlinearer elektrischer Leitfähigkeit.
DE112017005557.1T DE112017005557T5 (de) 2017-01-17 2017-01-17 Wanddurchführungsfutterrohr mit einer nichtlinearen leitfähigen Verbundstoff-Druckausgleichsstruktur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071447 WO2018132951A1 (zh) 2017-01-17 2017-01-17 采用非线性电导复合材料均压结构的穿墙套管

Publications (1)

Publication Number Publication Date
WO2018132951A1 true WO2018132951A1 (zh) 2018-07-26

Family

ID=62907669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071447 WO2018132951A1 (zh) 2017-01-17 2017-01-17 采用非线性电导复合材料均压结构的穿墙套管

Country Status (3)

Country Link
CH (1) CH714353B1 (zh)
DE (1) DE112017005557T5 (zh)
WO (1) WO2018132951A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729684A (zh) * 2019-10-31 2020-01-24 西安交通大学 一种超/特高压sf6气体绝缘穿墙套管及其绝缘支撑结构
WO2022267985A1 (zh) * 2021-06-23 2022-12-29 西安交通大学 一种gis/gil支撑绝缘子法兰处局部放电抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU888217A2 (ru) * 1979-06-06 1981-12-07 Предприятие П/Я А-7186 Высоковольтное устройство
CN200947533Y (zh) * 2006-09-15 2007-09-12 范凯 户内-户外排导体穿墙套管
CN201340770Y (zh) * 2008-11-28 2009-11-04 天水长城开关厂有限公司 穿墙套管
CN201397713Y (zh) * 2009-01-20 2010-02-03 江苏大全封闭母线有限公司 管形母线屏蔽绝缘套管
CN201860065U (zh) * 2010-11-22 2011-06-08 中国西电电气股份有限公司 一种胶浸纸电容式直流穿墙套管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU888217A2 (ru) * 1979-06-06 1981-12-07 Предприятие П/Я А-7186 Высоковольтное устройство
CN200947533Y (zh) * 2006-09-15 2007-09-12 范凯 户内-户外排导体穿墙套管
CN201340770Y (zh) * 2008-11-28 2009-11-04 天水长城开关厂有限公司 穿墙套管
CN201397713Y (zh) * 2009-01-20 2010-02-03 江苏大全封闭母线有限公司 管形母线屏蔽绝缘套管
CN201860065U (zh) * 2010-11-22 2011-06-08 中国西电电气股份有限公司 一种胶浸纸电容式直流穿墙套管

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729684A (zh) * 2019-10-31 2020-01-24 西安交通大学 一种超/特高压sf6气体绝缘穿墙套管及其绝缘支撑结构
CN110729684B (zh) * 2019-10-31 2020-10-27 西安交通大学 一种超/特高压sf6气体绝缘穿墙套管及其绝缘支撑结构
WO2022267985A1 (zh) * 2021-06-23 2022-12-29 西安交通大学 一种gis/gil支撑绝缘子法兰处局部放电抑制方法

Also Published As

Publication number Publication date
DE112017005557T5 (de) 2019-07-18
CH714353B1 (de) 2021-07-15

Similar Documents

Publication Publication Date Title
CN107257116B (zh) 采用非线性电导复合材料均压结构的穿墙套管
CN102906955B (zh) 高压直流电缆终端装置
US20030003802A1 (en) Cable sealing end
RU2681643C1 (ru) Кабельная арматура для соединения высоковольтного кабеля с высоковольтным компонентом
US10283242B2 (en) Polymer bushing
CN106159868B (zh) 采用非线性预制橡胶应力锥的交流电缆端头
CN101436449B (zh) 能抑制绝缘层内部电树枝生成与发展的高压、超高压电缆
WO2017148159A1 (zh) 大电容量的绝缘芯体、高压电器和多功能高压套管
CN101441906B (zh) 带非线性屏蔽层的高压、超高压交联聚乙烯绝缘电力电缆
WO2010057422A1 (zh) 一种能提高外绝缘电气强度的绝缘子
KR102386760B1 (ko) 초고압 직류 전력케이블용 중간접속함
WO2018132951A1 (zh) 采用非线性电导复合材料均压结构的穿墙套管
CN107785133B (zh) 采用电导率自适应调控复合材料的设备出线套管
KR101034878B1 (ko) 전계완화 및 절연성능이 개선된 고전압 부싱
CN101763923A (zh) 高电压端头
CN202307285U (zh) 一种高压电缆
Sima et al. Corona ring design of±800KV DC composite insulator based on computer analysis
CN100449653C (zh) 带衬层的高压绝缘芯体
CN201191751Y (zh) 一种电缆终端头
CN107768045A (zh) 一种具有非线性电导材料均压结构的复合绝缘子
RU184107U1 (ru) Соединительная муфта для силового кабеля
KR20130080121A (ko) 부싱
Yuan et al. Advances in HVdc Bushing Using Nonlinear Materials: Theory, Materials, Structure, and Realization
KR20150117355A (ko) 전력케이블의 종단접속부
CN201966006U (zh) 用于特高压直流输电双联悬垂串复合绝缘子的双环均压环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892219

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17892219

Country of ref document: EP

Kind code of ref document: A1