CN107785133B - 采用电导率自适应调控复合材料的设备出线套管 - Google Patents

采用电导率自适应调控复合材料的设备出线套管 Download PDF

Info

Publication number
CN107785133B
CN107785133B CN201711043283.8A CN201711043283A CN107785133B CN 107785133 B CN107785133 B CN 107785133B CN 201711043283 A CN201711043283 A CN 201711043283A CN 107785133 B CN107785133 B CN 107785133B
Authority
CN
China
Prior art keywords
conductivity
powder
layer
composite material
adaptively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711043283.8A
Other languages
English (en)
Other versions
CN107785133A (zh
Inventor
何金良
胡军
赵孝磊
杨霄
余占清
曾嵘
张波
李琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201711043283.8A priority Critical patent/CN107785133B/zh
Priority to PCT/CN2017/110456 priority patent/WO2019084999A1/zh
Priority to CH00496/20A priority patent/CH715655B1/de
Publication of CN107785133A publication Critical patent/CN107785133A/zh
Application granted granted Critical
Publication of CN107785133B publication Critical patent/CN107785133B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/32Single insulators consisting of two or more dissimilar insulating bodies
    • H01B17/325Single insulators consisting of two or more dissimilar insulating bodies comprising a fibre-reinforced insulating core member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • H01B17/583Grommets; Bushings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/265Fastening of insulators to support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/006Other inhomogeneous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Abstract

本发明提出的一种采用电导率自适应调控复合材料的设备出线套管,属于高压输电连接设备技术领域,包括导杆,以及由内至外依次包裹在该导杆外侧的均压层、限流层和玻璃纤维套筒;玻璃纤维套筒上段外侧包裹有硅橡胶伞群护套,限流层内镶嵌有电极延伸层;均压层、电极延伸层均为由无机填料粉体颗粒和高绝缘强度有机材料复合而成的电导率自适应调控复合材料制成;导杆的两端均设有与玻璃纤维套筒形成密闭空间的第一法兰;玻璃纤维套筒的中部设有顶部与硅橡胶伞群护套一端固接、内壁与电极延伸层相接触的第二法兰。本发明解决了主绝缘发生击穿和法兰处发生闪络的问题,同时减小设备出线套管尺寸,改善套管的散热性能和机械性能,简化生产工艺。

Description

采用电导率自适应调控复合材料的设备出线套管
技术领域
本发明属于高压输电连接设备技术领域,特别是一种采用非线性电导复合材料的设备出线套管,适用于交流和直流电力系统。
背景技术
设备出线套管用于高电压设备引出线对地绝缘与固定,作为电力系统的重要设备,其可靠性对电力系统的安全可靠运行具有重要影响作用。设备出线套管由高压电极导杆插入地电极中间法兰的中心而构成,是一种典型的电场具有垂直介质表面分量的绝缘结构,其主绝缘容易发生击穿且法兰边缘处容易发生闪络。为此必须改善法兰和导杆附近的电场,提高介质的绝缘强度,设计和选择合适的绝缘结构及材料。设备出线套管具有多种形式,目前以电容式均压的结构为主。电容式套管内绝缘采用电容芯子结构,强迫套管内部电场均化。但电容芯子的制作对工艺水平具有很高的要求,在生产过程中容易出现各种质量问题,对电容式套管的可靠性产生显著影响;较高要求的技术水平也严重制约了生产成本的降低和生产效率的提高。此外,采用电容芯子的高压套管由于尺寸大、内部发热严重,是套管安全可靠运行的重大隐患所在。
发明内容
本发明的目的是为了解决上述问题,设计了一种适用于交流和直流电力系统的采用电导率自适应调控复合材料的设备出线套管。
本发明采用如下技术方案:
一种采用电导率自适应调控复合材料的设备出线套管,适用于交直流电力系统,包括一导杆,其特征在于,该设备出线套管还包括由内至外依次包裹在所述导杆外侧的均压层、限流层和玻璃纤维套筒;其中,所述玻璃纤维套筒上段外侧包裹有硅橡胶伞群护套,所述限流层内镶嵌有电极延伸层;所述均压层、电极延伸层均为由无机填料粉体颗粒和高绝缘强度有机材料复合而成的电导率自适应调控复合材料制成;所述导杆的两端均设有与所述玻璃纤维套筒形成密闭空间的第一法兰,所述导杆、均压层、限流层以及电极延伸层均位于所述密闭空间内,所述导杆的两端贯穿所述第一法兰并连接有接线端子;所述玻璃纤维套筒的中部设有第二法兰,该第二法兰顶端与所述硅橡胶伞群护套一端固接,该第二法兰内壁与所述电极延伸层相接触。
所述均压层和电极延伸层的电导率自适应调控复合材料性能参数与空间电场强度大小自适应匹配,且所述均压层的电导率自适应调控复合材料的阀值场强大于所述电极延伸层的电导率自适应调控复合材料的阀值场强。
所述电导率自适应调控复合材料中无机填料粉体颗粒包括ZnO压敏陶瓷粉体、碳纤维粉体、CB粉体、SiC粉体、TiO2粉体、SrTiO3粉体、CCTO粉体、SnO2粉体、ZnO晶须、Al2O3粉体的单一粉体或两种及多种粉体的组合;所述电导率自适应调控复合材料中高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种;通过在100份高绝缘强度有机材料中加入若干份无机填料粉体颗粒制备所述电导率自适应调控复合材料。
所述电导率自适应调控复合材料的阀值场强根据所述设备出线套管的电压等级和几何尺寸选择,范围为100V/mm到8000V/mm。
所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒的颗粒大小调整,所述无机填料粉体颗粒大小取值区间为30nm到300μm。
所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒和高绝缘强度有机材料之间的份数比例进行调整,所述无机填料粉体颗粒中各成分的份数取值为:ZnO压敏陶瓷粉体50-200份,或ZnO晶须、碳纤维、CB、SiC、TiO2、SrTiO3、CCTO、SnO2、Al2O3任一种粉体10-95份。
所述电导率自适应调控复合材料的阀值场强通过引入3-50份的导电粉体颗粒进行多元共混掺杂调整。
所述限流层采用电导率固定的高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种。
通过本发明的上述技术方案得到的采用电导率自适应调控复合材料的设备出线套管,其有益效果是:
通过电导率自适应调控复合材料作为均压层与电极延伸层来均匀主绝缘内部及法兰附近的场强,不仅很好地解决了主绝缘发生击穿和法兰处发生闪络的问题,同时也使得设备出线套管尺寸得到减小,套管的散热性能得到明显改善,生产工艺得到很大的简化,效率与经济效益得到提升。
附图说明
图1是本发明所述采用电导率自适应调控复合材料的设备出线套管的结构示意图;
图2是图1的局部放大图;
图中,1、接线端子;2、第一法兰;3、硅橡胶伞群护套;4、导杆;5、均压层;6、限流层;7、电极延伸层;8、第二法兰;9、玻璃纤维套筒。
具体实施方式
下面结合附图对本发明进行具体描述。
图1是本发明所述采用电导率自适应调控复合材料的设备出线套管的结构示意图,如图1所示,包括导杆4,以及由内至外依次包裹在该导杆4外侧的均压层5、限流层6和玻璃纤维套筒9;所述玻璃纤维套筒9上段外侧包裹有硅橡胶伞群护套3,所述限流层6内镶嵌有电极延伸层7(该电极延伸层长度由应用电压等级决定);所述均压层5、电极延伸层7均为由无机填料粉体颗粒和高绝缘强度有机材料复合而成的电导率自适应调控复合材料制成;所述导杆4的两端均设有与所述玻璃纤维套筒9形成密闭空间的第一法兰2,所述导杆4、均压层5、限流层6以及电极延伸层7均位于该密闭空间内,所述导杆4的两端贯穿所述第一法兰2并连接有接线端子1;所述玻璃纤维套筒9的中部设有第二法兰8,该第二法兰8顶端与所述硅橡胶伞群护套3一端固接,该第二法兰8内壁与所述电极延伸层7相接触,如图2所示,该第二法兰8用于本套管与设备出线端口的连接与固定。
所述电导率自适应调控复合材料性能参数与空间电场强度大小自适应匹配,所述均压层5电导率自适应调控复合材料的阀值场强大于所述电极延伸层7电导率自适应调控复合材料的阀值场强。
本实施例各组成部件的具体实现方式如下:
所述导杆4为一杆状结构,该导管贯穿整个设备出线套管;为常规产品。
所述硅橡胶伞群护套3为由内环管状结构和外环伞状凸起一次注塑成型的整体结构,所述伞状凸起的数量为多个,多个伞状凸起沿该硅橡胶伞群护套3内环管状结构的轴向方向呈直线阵列分布;为常规产品。
所述限流层6采用电导率固定的高绝缘强度有机材料,该高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种。由于均压层5与限流层6为串联结构,所以可以通过限流层6中固定电导率的高强度有机材料限制主绝缘中泄漏电流过大,避免本设备出线套管的主绝缘发热。
所述无机填料粉体颗粒包括ZnO压敏陶瓷粉体、碳纤维粉体、CB粉体、SiC粉体、TiO2粉体、SrTiO3粉体、CCTO粉体、SnO2粉体、ZnO晶须、Al2O3粉体的单一粉体或两种及多种粉体的组合;所述高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种;通过在100份高绝缘强度有机材料中加入若干份无机填料粉体颗粒制备(具体制备流程为本领域常规技术)所述电导率自适应调控复合材料。
所述电导率自适应调控复合材料的阀值场强根据该设备出线套管的电压等级和几何尺寸选择,阀值场强范围为100V/mm到8000V/mm。
所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒的颗粒大小调整,所述无机填料粉体颗粒大小取值区间为30nm到300μm。
所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒和高绝缘强度有机材料之间的份数比例进行调整,令高绝缘强度有机材料的份数为100份,则所述无机填料粉体颗粒中的各成分的份数取值为:ZnO压敏陶瓷粉体50-200份,或ZnO晶须、碳纤维、CB、SiC、TiO2、SrTiO3、CCTO、SnO2、Al2O3任一种粉体10-95份。
所述电导率自适应调控复合材料的阀值场强通过引入微量份数的导电粉体颗粒进行多元共混掺杂调整,引入的导电粉体颗粒份数在3-50份之间。
实施例1
本实施例的设备出线套管用在110kV直流电压等级下,均压层5和电极延伸层7中的无机填料粉体颗粒均采用ZnO压敏陶瓷粉体、高绝缘强度有机材料均采用100份三元乙丙橡胶;其中,所述均压层5所采用的ZnO压敏陶瓷粉体颗粒大小为30-50μm,该ZnO压敏陶瓷粉体的份数为80份;所述电极延伸层7所采用的ZnO压敏陶瓷粉体颗粒大小为150-200μm,该ZnO压敏陶瓷粉体的份数为200份。
本实施例通过在均压层5和电极延伸层7中均引入份数为20份的炭黑对所述电导率自适应调控复合材料的阀值场强进行多元共混掺杂调整。
实施例2
本实施例的设备出线套管用在500kV直流电压等级下,均压层5和电极延伸层7的无机填料粉体颗粒分别采用SiC粉体和ZnO压敏陶瓷粉体,高绝缘强度有机材料均采用100份环氧树脂;其中,均压层5所采用的SiC粉体颗粒大小为300-500nm,该SiC粉体的份数为40份;电极延伸层7所采用的ZnO压敏陶瓷粉体颗粒大小为150-200μm,该ZnO压敏陶瓷粉体的份数为200份。
实施例3
本实施例的设备出线套管用在330kV交流电压等级下,均压层5的无机填料粉体颗粒采用ZnO压敏陶瓷粉体和SiC粉体,电极延伸层7的无机填料粉体颗粒采用ZnO压敏陶瓷粉体和CB粉体,高绝缘强度有机材料均采用100份聚丙烯;其中,
均压层5所采用的ZnO压敏陶瓷粉体和SiC粉体的颗粒大小分别为30-50μm和600-800nm,ZnO压敏陶瓷粉体和SiC粉体的份数分别为50份和20份;
电极延伸层7所采用的ZnO压敏陶瓷粉体和CB粉体的颗粒大小分别为100-125μm,和30nm,ZnO压敏陶瓷粉体和CB粉体的份数分别为100份和20份。
本发明的工作原理如下:设备出线套管采用电导率自适应调控复合材料为主的三层结构主绝缘,均压层5采用具有大阀值场强的电导率自适应调控复合材料,用于限制并均匀主绝缘内场强分布,而在第二法兰处8的电极延伸层7,用于实现地电极延伸作用而减小第一法兰2处场强集中问题;电导率自适应调控复合材料性能参数与空间场强大小能够自适应匹配,起到智能改善空间场强的作用;当本设备出线套管局部场强过大时,电导率自适应调控复合材料电导率增加而使得这一部分分压减小、局部场强降低,从而降低了主绝缘击穿与沿面发生闪络的概率。
上述技术方案仅体现了本发明技术方案的优选技术方案,本技术领域的技术人员对其中某些部分所可能做出的一些变动均体现了本发明的原理,包括采用传统的瓷外套代替环氧玻璃钢筒及外部硅橡胶伞裙,都属于本发明的保护范围之内。

Claims (6)

1.一种采用电导率自适应调控复合材料的设备出线套管,适用于交直流电力系统,包括一导杆,其特征在于,该设备出线套管还包括由内至外依次包裹在所述导杆外侧的均压层、限流层和玻璃纤维套筒;其中,所述玻璃纤维套筒上段外侧包裹有硅橡胶伞群护套,所述限流层内镶嵌有电极延伸层;所述均压层、电极延伸层均为由无机填料粉体颗粒和高绝缘强度有机材料复合而成的电导率自适应调控复合材料制成;所述导杆的两端均设有与所述玻璃纤维套筒形成密闭空间的第一法兰,所述导杆、均压层、限流层以及电极延伸层均位于所述密闭空间内,所述导杆的两端贯穿所述第一法兰并连接有接线端子;所述玻璃纤维套筒的中部设有第二法兰,该第二法兰顶端与所述硅橡胶伞群护套一端固接,该第二法兰内壁与所述电极延伸层相接触;所述均压层和电极延伸层的电导率自适应调控复合材料性能参数与空间电场强度大小自适应匹配,且所述均压层的电导率自适应调控复合材料的阀值场强大于所述电极延伸层的电导率自适应调控复合材料的阀值场强;所述电导率自适应调控复合材料的阀值场强根据所述设备出线套管的电压等级和几何尺寸选择,范围为100V/mm到8000V/mm。
2.根据权利要求1所述的设备出线套管,其特征在于,所述电导率自适应调控复合材料中无机填料粉体颗粒包括ZnO压敏陶瓷粉体、碳纤维粉体、CB粉体、SiC粉体、TiO2粉体、SrTiO3粉体、CCTO粉体、SnO2粉体、ZnO晶须、Al2O3粉体的单一粉体或两种及多种粉体的组合;所述电导率自适应调控复合材料中高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种;通过在100份高绝缘强度有机材料中加入若干份无机填料粉体颗粒制备所述电导率自适应调控复合材料。
3.根据权利要求1所述的设备出线套管,其特征在于,所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒的颗粒大小调整,所述无机填料粉体颗粒大小取值区间为30nm到300μm。
4.根据权利要求1所述的设备出线套管,其特征在于,所述电导率自适应调控复合材料的阀值场强通过无机填料粉体颗粒和高绝缘强度有机材料之间的份数比例进行调整,所述无机填料粉体颗粒中各成分的份数取值为:ZnO压敏陶瓷粉体50-200份,或ZnO晶须、碳纤维、CB、SiC、TiO2、SrTiO3、CCTO、SnO2、Al2O3任一种粉体10-95份。
5.根据权利要求1所述的设备出线套管,其特征在于,所述电导率自适应调控复合材料的阀值场强通过引入3-50份的导电粉体颗粒进行多元共混掺杂调整。
6.根据权利要求1所述的设备出线套管,其特征在于,所述限流层采用电导率固定的高绝缘强度有机材料制成,所述高绝缘强度有机材料包括环氧树脂、聚乙烯、聚丙烯、三元乙丙橡胶中的任意一种。
CN201711043283.8A 2017-10-31 2017-10-31 采用电导率自适应调控复合材料的设备出线套管 Active CN107785133B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201711043283.8A CN107785133B (zh) 2017-10-31 2017-10-31 采用电导率自适应调控复合材料的设备出线套管
PCT/CN2017/110456 WO2019084999A1 (zh) 2017-10-31 2017-11-10 采用电导率自适应调控复合材料的设备出线套管
CH00496/20A CH715655B1 (de) 2017-10-31 2017-11-10 Durchführungshülse mit einem elektrische Leitfähigkeit selbstadaptiv regulierenden Verbundmaterial.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711043283.8A CN107785133B (zh) 2017-10-31 2017-10-31 采用电导率自适应调控复合材料的设备出线套管

Publications (2)

Publication Number Publication Date
CN107785133A CN107785133A (zh) 2018-03-09
CN107785133B true CN107785133B (zh) 2019-09-27

Family

ID=61432200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711043283.8A Active CN107785133B (zh) 2017-10-31 2017-10-31 采用电导率自适应调控复合材料的设备出线套管

Country Status (3)

Country Link
CN (1) CN107785133B (zh)
CH (1) CH715655B1 (zh)
WO (1) WO2019084999A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018686A (zh) * 2020-07-17 2020-12-01 清华大学 一种低压交直流穿墙套管及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002463B (zh) * 2020-07-17 2021-11-19 清华大学 一种35kV以上的高压交直流穿墙套管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3066180A (en) * 1957-04-06 1962-11-27 Asea Ab Coating for equalizing the potential gradient along the surface of an electric insulation
CN1409328A (zh) * 2002-10-08 2003-04-09 黄维枢 浸环氧树脂纤维高压绝缘芯体
CN201397713Y (zh) * 2009-01-20 2010-02-03 江苏大全封闭母线有限公司 管形母线屏蔽绝缘套管
CN102298996A (zh) * 2011-08-31 2011-12-28 清华大学 一种电场分布均匀的特高压合成绝缘子
CN203166434U (zh) * 2013-04-08 2013-08-28 丽水市中仪电力科技有限公司 复合干式穿墙套管
CN107257116A (zh) * 2017-06-19 2017-10-17 清华大学 采用非线性电导复合材料均压结构的穿墙套管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867622B1 (fr) * 2004-03-09 2006-05-26 Nexans Materiau de controle de champ electrique
CN103035345A (zh) * 2010-05-24 2013-04-10 南通市神马电力科技有限公司 一种245kv、252kv互感器用空心复合绝缘子
CN202816510U (zh) * 2011-12-20 2013-03-20 江苏神马电力股份有限公司 一种1100kV气体绝缘复合套管
CN106941032B (zh) * 2016-01-05 2019-08-13 泰科电子(上海)有限公司 绝缘子及其制造方法
CN106159868B (zh) * 2016-08-03 2018-04-10 清华大学 采用非线性预制橡胶应力锥的交流电缆端头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3066180A (en) * 1957-04-06 1962-11-27 Asea Ab Coating for equalizing the potential gradient along the surface of an electric insulation
CN1409328A (zh) * 2002-10-08 2003-04-09 黄维枢 浸环氧树脂纤维高压绝缘芯体
CN201397713Y (zh) * 2009-01-20 2010-02-03 江苏大全封闭母线有限公司 管形母线屏蔽绝缘套管
CN102298996A (zh) * 2011-08-31 2011-12-28 清华大学 一种电场分布均匀的特高压合成绝缘子
CN203166434U (zh) * 2013-04-08 2013-08-28 丽水市中仪电力科技有限公司 复合干式穿墙套管
CN107257116A (zh) * 2017-06-19 2017-10-17 清华大学 采用非线性电导复合材料均压结构的穿墙套管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018686A (zh) * 2020-07-17 2020-12-01 清华大学 一种低压交直流穿墙套管及其制备方法
CN112018686B (zh) * 2020-07-17 2022-04-01 清华大学 一种35kV及以下的高压交直流穿墙套管及其制备方法

Also Published As

Publication number Publication date
WO2019084999A1 (zh) 2019-05-09
CH715655B1 (de) 2022-06-15
CN107785133A (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
CN107257116B (zh) 采用非线性电导复合材料均压结构的穿墙套管
CN106159868B (zh) 采用非线性预制橡胶应力锥的交流电缆端头
CN107785133B (zh) 采用电导率自适应调控复合材料的设备出线套管
WO2010057422A1 (zh) 一种能提高外绝缘电气强度的绝缘子
CN207718954U (zh) 复合绝缘子和复合套管
WO2018132951A1 (zh) 采用非线性电导复合材料均压结构的穿墙套管
CN209730211U (zh) 一种10kV中压电缆网双花瓣接线结构
CN107768045B (zh) 一种具有非线性电导材料均压结构的复合绝缘子
CN203086080U (zh) 一种电力设备用复合穿墙套管
CN101419856B (zh) 直流复合支柱绝缘子及其伞裙结构
CN204835458U (zh) 一种66kV~220kV XLPE绝缘电缆用户外终端
CN201742071U (zh) 高压电缆复合型应力控制电缆终端
CN207782370U (zh) 一种新型固定方式的直流电缆终端
CN209447585U (zh) 一种耐磨性强的5g通信电缆
CN107332195A (zh) 一种高压直流电缆户外终端
CN107800109A (zh) 采用非线性电导材料预制橡胶压控管的电缆端头
CN207021122U (zh) 一种免开手孔式变压器套管
CN205377244U (zh) 一种用于高压直流电缆附件的应力锥
CN204712416U (zh) 一种双层硅橡胶对挤机头
CN107947100A (zh) 一种新型固定方式的直流电缆终端
CN109273177A (zh) 一种特殊的改进结构的绝缘子
CN206021991U (zh) 空心绝缘子
CN207052520U (zh) 一种固封极柱
CN203366873U (zh) 一种用于电力系统的绝缘套管
CN217239086U (zh) 一种抗压性能好的电线电缆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant