WO2019084920A1 - 光发射次模块和光模块 - Google Patents

光发射次模块和光模块 Download PDF

Info

Publication number
WO2019084920A1
WO2019084920A1 PCT/CN2017/109378 CN2017109378W WO2019084920A1 WO 2019084920 A1 WO2019084920 A1 WO 2019084920A1 CN 2017109378 W CN2017109378 W CN 2017109378W WO 2019084920 A1 WO2019084920 A1 WO 2019084920A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
plated
module
reflective film
triangular prisms
Prior art date
Application number
PCT/CN2017/109378
Other languages
English (en)
French (fr)
Inventor
周恩宇
陈聪
杨素林
程宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780092909.6A priority Critical patent/CN110832793B/zh
Priority to PCT/CN2017/109378 priority patent/WO2019084920A1/zh
Publication of WO2019084920A1 publication Critical patent/WO2019084920A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present application relates to the field of passive optical network technologies, and in particular, to a light emitting sub-module and an optical module of a passive optical network.
  • the 10G EPON is expected to be replaced by an improved DML due to its low extinction ratio and low dispersion cost.
  • EML but XG-PON has high requirements for extinction ratio and dispersion cost. It is not possible to use DML instead of EML alone.
  • the optical path of the TOSA Transmitter Optical Subassembly
  • the light source is a DML chip
  • the collimation lens collimates.
  • the etalon Fabry–Pérot Interferometer
  • BS Beam Splitter
  • WDM Wave-division Multiplexing (Wavelength Division Multiplexing) devices are finally concentrated into a Fiber Receptacle by a Converging lens.
  • MPD Monitoring Photo Diode
  • FPD Front Photo Diode
  • TEC Temporal Controller
  • Embodiments of the present application provide a light emitting sub-module and an optical module of a passive optical network, wherein the optical transmitting sub-module improves component integration by integrating an optical splitter, an Etalon device, and a WDM device into one component. Degree, streamlined the packaging process, saving packaging costs.
  • an embodiment of the present application provides a light emitting sub-module TOSA, which includes a thermoelectric cooler, an isolator, a composite optical component, a converging lens, a front end photodiode FPD, an optical fiber ferrule, and is disposed in the thermoelectric cooler.
  • the composite optical element is composed of two triangular prisms, and the two triangular prisms are plated with a first reflective film on a vertical plane of the collimating lens, the two three a prismatic body is plated with a second reflective film on a vertical plane of the isolator, and the two triangular prisms are plated with a splitting and wavelength division composite film to directly modulate the back light emitted by the laser DML to the monitoring a photodiode MPD, the forward light emitted by the direct modulation laser DML reaches the composite optical element through the collimating lens and the isolator, and a part of the front end photodiode FPD Converging lens to
  • the splitting and wavelength division multiplexing composite film is plated on one of the inclined faces or the two inclined faces of the two triangular prisms.
  • the first reflective film and the second reflective film are plated on the composite lens by an ion source assisted coating technique.
  • the first reflective film and the second reflective film have a thickness of 7-14 micrometers.
  • the splitting and wavelength division composite film is plated on the composite lens by an ion source assisted coating technique.
  • the splitting and wavelength division multiplexing composite film has a thickness of 7-14 micrometers.
  • the first reflective film and the second reflective film are either or both of antimony pentoxide and silicon dioxide.
  • the splitting and wavelength division multiplexing composite film is any one or two of tantalum pentoxide and silicon dioxide.
  • an optical module comprising the aforementioned light emitting sub-module TOSA.
  • the two triangular prisms on the composite component are plated with a splitting and wave division composite film to realize the splitting.
  • a splitting function the two triangular prisms of the composite component are plated with a first reflective film on a vertical plane of the collimating lens, and the two triangular prisms are plated with a second reflective film on a vertical plane adjacent to the isolator.
  • the etalon resonant cavity is formed, thereby improving the integration of components without reducing the existing TOSA function, simplifying the packaging process and saving the packaging cost.
  • FIG. 1 is a schematic structural diagram of a light emitting sub-module TOSA in the prior art
  • FIG. 2 is a schematic structural diagram of a light emitting sub-module TOSA according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of full polarization of a splitting and wavelength division composite film of a light emitting sub-module TOSA according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a principle of a light emitting sub-module TOSA according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of an optical module according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a light emitting sub-module TOSA11 according to an embodiment of the present disclosure, which includes a thermoelectric cooler TEC110, an isolator 111, a composite optical component 112, a converging lens 113, a front end photodiode FPD114, an optical fiber ferrule 115, A heat sink 116 and a collimating lens 117 disposed on the TEC 110, a monitor photodiode MPD 118 disposed on the heat sink TEC 110, and a direct modulation laser DML 119, wherein the MPD 118 monitors the back side illumination of the DML 119.
  • the composite optical element 112 is placed between the isolator 111 and the converging lens 113.
  • the composite optical element 112 is composed of two triangular prisms.
  • the two triangular prisms are plated with a first reflective film 1121 (7-14 um thickness) on a vertical plane of the collimating lens 117, and the two triangular prisms are close to each other.
  • the vertical plane of the isolator is plated with a second reflective film 1122 (7-14 ⁇ m thickness), and the two triangular prism bonding faces are plated with a splitting and wavelength division composite film 1123.
  • the splitting and wavelength division multiplexing composite film 1123 is plated on one of the inclined faces of the two triangular prisms or on both inclined faces, as long as the thickness satisfies 7-14 micrometers.
  • the splitting and wavelength division composite film 1123 is plated in the middle of the two triangular prisms of the composite optical element 112, so that in the case of full polarization (S-polarization state and P-polarization state), the O band region (wavelength 1260-1360 nm) is all reversed, L
  • the band (wavelength 1565-1625 nm) region is partially partially transmissive, such as 95% transmission and 5% reflection, as shown in FIG. Then, the two triangular prisms are combined into a square block.
  • the two triangular prisms are plated with a first reflective film 1121 near the vertical plane of the collimating lens 117, and the two triangular prisms are plated on the vertical plane near the isolator.
  • the second reflective film 1122 forms an etalon resonator, and finally forms a composite component integrating the etalon, splitting, and splitting functions.
  • the first reflective film and the second reflective film, and the split and wavelength division composite film 1123 are all plated on the composite lens by an ion source assisted coating technique.
  • the above description is merely illustrative and not intended to be limiting.
  • one mode is either or both of antimony pentoxide and silicon dioxide.
  • the splitting and wavelength division multiplexing composite film may also be selected to be the same material as the first reflective film and the second reflective film.
  • Directly modulating the back light from the laser DML to the monitoring photodiode MPD directly modulating the forward light from the laser DML through the collimating lens, the isolator to the composite optical component, a portion to the front end photodiode FPD, and a portion to the converging lens to converge to the optical fiber In the ferrule.
  • the principle of the scheme is shown in Figure 4.
  • the FPD/MPD ratio is set.
  • the temperature of the LD is adjusted by the TEC, and then the wavelength of the LD is adjusted to make the wavelength of the signal 1 coincide with the wavelength of the etalon transmission spectrum, thereby effectively increasing the extinction ratio of the DML and reducing it.
  • the dispersion cost is such that it meets the standard requirements.
  • DML has a difference of several GHz between the signal 1 and the signal 0 due to modulation, and this difference has different insertion loss for the etalon transmission spectrum. As shown in Fig. 2, the insertion loss of the signal 1 is small, and the signal 0 is inserted. Large, the original extinction ratio after Etalon will be improved, meet the requirements of XG-PON, but it will not change, the dispersion cost is the same as the original, to meet the standard requirements.
  • the two triangular prisms on the composite component are plated with a splitting and wave division composite film to realize the splitting.
  • a splitting function the two triangular prisms of the composite component are plated with a first reflective film on a vertical plane of the collimating lens, and the two triangular prisms are plated with a second reflective film on a vertical plane adjacent to the isolator.
  • the etalon resonant cavity is formed, thereby improving the integration of components without reducing the existing TOSA function, simplifying the packaging process and saving the packaging cost.
  • the embodiment of the present application further provides an optical module, including a light receiving sub-module ROSA 501 and the foregoing optical transmitting sub-module TOSA 502.
  • the structure and principle of the optical transmitting sub-module TOSA 502 refer to the above introduction. Let me repeat.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本申请实施例提供一种光发射次模块TOSA,该TOSA包括热电制冷器、隔离器、复合光元件、汇聚透镜、前端光电二极管、光纤插芯、设置在热电制冷器TEC上的热沉和准直透镜、设置于热沉TEC上的监控光电二极管MPD和直接调制激光器DML;复合光元件由两个三棱柱体组成,两个三棱柱体靠近所述准直透镜的垂直平面上镀有第一反射膜,两个三棱柱体靠近所述隔离器的垂直平面上镀有第二反射膜,两个三棱柱体贴合面上镀有分光和波分复合膜,其中直接调制激光器DML发出的前向光经过所述准直透镜、隔离器到达所述复合光元件,一部分到所述前端光电二极管FPD,一部分到达所述汇聚透镜汇聚到光纤插芯中。本申请实施例提高了元器件的集成度,精简了封装工艺,节省了封装成本。

Description

光发射次模块和光模块 技术领域
本申请涉及无源光网络技术领域,尤其涉及一种无源光网络的光发射次模块和光模块。
背景技术
随着用户对带宽需求的不断增长,传统的铜线宽带接入系统越来越面临带宽瓶颈;与此同时,随着带宽容量巨大的光纤通信技术日益成熟,应用成本逐年下降,使得光纤接入网将成为下一代宽带接入网的有力竞争者,其中无源光网络(Passive Optical Network,PON)的低成本优势使其更具竞争力。现有最主要PON的类型为基于以太网(Ethernet)的以太无源光网络(Ethernet over PON,EPON),具有千兆比特速率的千兆比特速率无源光网络(Gigabit Passive Optical Network,GPON)。
而随着VR,4K和8K视频的兴起,对PON带宽的要求越来越高,因此EPON升级到10G EPON,GPON升级到XG-PON是电信运营商在未来几年内需要大力投入的事情,10G EPON和XG-PON在OLT端的发射需要采用EML(Externally Modulated Laser,外调制激光器)芯片才能满足各自的标准要求,相比于GPON和EPON所用的DML(Direct Modulated Laser,直接调制激光器),这又带来了成本的提升和功耗急剧增大,因此有厂商打算采用改良的DML芯片代替EML芯片来解决该问题,10G EPON由于消光比小,色散代价要求不高,有望通过改良的DML来代替EML,但XG-PON由于消光比和色散代价要求高,单独用DML代替EML现在看来还无法实现。
因此,业界提出DML+etalon方案,其光器件结构如图1所示,其中TOSA(Transmitter Optical Subassembly,光发射次模块)光路如下:光源为DML芯片发光经准直透镜(collimation lens)准直,再经过隔离器(isolate),再经过etalon(Fabry–Pérot Interferometer,法布里-珀罗干涉仪),在经过光分路器(Beam Splitter,BS)分一小部分监控光,再经过WDM(Wave-division Multiplexing,波分复用)器件,最后通过汇聚透镜(Converging lens)汇聚到光纤插芯(Fiber Receptacle)中。MPD(Monitor Photo Diode,监控光二极管)监控DML的背向光,FPD(Front Photo Diode,前端光二极管)监控过etlaon的前向光,设定FPD/MPD比值,通过TEC(Temperature Controller,温度控制器)调节DML的温度,进而调节DML的波长,使DML发出的光信号的波长和etalon透射谱波长一致,从而达到消光比提升的目的。图1所示的TOSA结构复杂,封装元器件非常多,增加了封装成本。
发明内容
本申请实施例提供一种无源光网络的光发射次模块和光模块,其中光发射次模块通过将光分路器、Etalon器件和WDM器件集成为一个元器件,提高了元器件的集成 度,精简了封装工艺,节省了封装成本。
第一方面,本申请实施例提供一种光发射次模块TOSA,该TOSA包括热电制冷器、隔离器、复合光元件、汇聚透镜、前端光电二极管FPD、光纤插芯、设置在所述热电制冷器TEC上的热沉和准直透镜、设置于所述热沉上的监控光电二极管MPD和直接调制激光器DML,所述MPD监控所述DML背向发光,所述复合光元件放置于所述隔离器和所述汇聚透镜之间;所述复合光元件由两个三棱柱体组成,所述两个三棱柱体靠近所述准直透镜的垂直平面上镀有第一反射膜,所述两个三棱柱体靠近所述隔离器的垂直平面上镀有第二反射膜,所述两个三棱柱体贴合面上镀有分光和波分复合膜,直接调制激光器DML发出的背向光到所述监控光电二极管MPD,所述直接调制激光器DML发出的前向光经过所述准直透镜、隔离器到达所述复合光元件,一部分到所述前端光电二极管FPD,一部分到达所述汇聚透镜汇聚到光纤插芯中。
其中一种可选的实现方式中,所述分光和波分复用复合膜镀在所述两个三棱柱体的其中一个倾斜面或者两个倾斜面上。
其中一种可选的实现方式中,所述第一反射膜和第二反射膜采用离子源辅助镀膜技术镀在所述复合透镜上。
其中一种可选的实现方式中,所述第一反射膜和第二反射膜的厚度为7-14微米。
其中一种可选的实现方式中,所述分光和波分复合膜采用离子源辅助镀膜技术镀在所述复合透镜上。
其中一种可选的实现方式中,所述分光和波分复用复合膜的厚度为7-14微米。
其中一种可选的实现方式中,所述第一反射膜和第二反射膜为五氧化二钽、二氧化硅中的任意一种或二种。
其中一种可选的实现方式中,所述分光和波分复用复合膜为五氧化二钽、二氧化硅中的任意一种或二种。
第二方面,提供了一种光模块,该光模块包括前述的光发射次模块TOSA。
通过以上技术方案可以看出,通过将光分路器、Etalon器件和WDM器件集成为一个复合元器件,复合元器件的两个三棱柱体贴合面上镀有分光和波分复合膜,实现分光和分波功能,复合元器件的两个三棱柱体靠近准直透镜的垂直平面上镀有第一反射膜,两个三棱柱体靠近所述隔离器的垂直平面上镀有第二反射膜,构成etalon谐振腔,进而在不缩减现有TOSA功能的前提下,提高了元器件的集成度,精简了封装工艺,节省了封装成本。
附图说明
图1现有技术中的一种光发射次模块TOSA结构示意图;
图2为本申请实施例提供的一种光发射次模块TOSA的结构示意图;
图3为本申请实施例提供的一种光发射次模块TOSA的分光和波分复合膜全偏振示意图;
图4为本申请实施例提供的一种光发射次模块TOSA的原理示意图;
图5本申请实施例提供的一种光模块示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图2为本申请实施例提供的一种光发射次模块TOSA11结构示意图,该组件包括热电制冷器TEC110、隔离器111、复合光元件112、汇聚透镜113、前端光电二极管FPD114、光纤插芯115、设置在TEC 110上的热沉116和准直透镜117、设置于热沉TEC110上的监控光电二极管MPD118和直接调制激光器DML119,其中MPD118监控DML119的背向发光。
其中,复合光元件112放置于隔离器111和汇聚透镜113之间。本实施例中复合光元件112由两个三棱柱体组成,两个三棱柱体靠近准直透镜117的垂直平面上镀有第一反射膜1121(7-14um厚度),两个三棱柱体靠近隔离器的垂直平面上镀有第二反射膜1122(7-14um厚度),两个三棱柱体贴合面上镀有分光和波分复合膜1123。其中分光和波分复用复合膜1123镀在所两个三棱柱体的其中一个倾斜面上或者两个倾斜面上均可,只要厚度满足7-14微米即可。复合光元件112的两个三棱柱体的中间镀上分光和波分复合膜1123,使得全偏振(S偏振态和P偏振态)情况下,O band区域(波长1260-1360nm)全反,L band(波长1565-1625nm)区域部分透过部分反射,例如95%透过和5%反射,图3所示。然后,把两个三棱柱体结合成方形块体,两个三棱柱体靠近准直透镜117的垂直平面上镀有第一反射膜1121,两个三棱柱体靠近隔离器的垂直平面上镀有第二反射膜1122,形成etalon谐振腔,最终形成集成etalon、分波和分光功能的复合元件。
涉及到具体的镀膜工艺,第一反射膜和第二反射膜以及分光和波分复合膜1123均采用离子源辅助镀膜技术镀在所述复合透镜上。以上说明仅仅是举例说明,并非作具体限制。
至于第一反射膜和第二反射膜的材料选择,一种方式为五氧化二钽、二氧化硅中的任意一种或二种。分光和波分复用复合膜也可以选择跟第一反射膜和第二反射膜的材料相同。以上说明仅仅是举例说明,并非作具体限制。
直接调制激光器DML发出的背向光到监控光电二极管MPD,直接调制激光器DML发出的前向光经过准直透镜、隔离器到达复合光元件,一部分到前端光电二极管FPD,一部分到达汇聚透镜汇聚到光纤插芯中。
该方案原理如图4所示,设定FPD/MPD比值,通过TEC调LD的温度,进而调LD的波长,使信号1的波长和etalon透射谱波长一致,有效提升DML的消光比,并且降低色散代价,使之满足标准要求。
DML由于调制使得信号1和信号0频率有几GHz的差别,而这个差别针对etalon透射谱来说,有不同的插损,如图2所示,信号1的插损小,而信号0插损大,通过Etalon后原先的消光比会提升,满足XG-PON的要求,但啁啾不会变,色散代价还是和原先一样,满足标准要求。
通过以上技术方案可以看出,通过将光分路器、Etalon器件和WDM器件集成为一个复合元器件,复合元器件的两个三棱柱体贴合面上镀有分光和波分复合膜,实现分光和分波功能,复合元器件的两个三棱柱体靠近准直透镜的垂直平面上镀有第一反射膜,两个三棱柱体靠近所述隔离器的垂直平面上镀有第二反射膜,构成etalon谐振腔,进而在不缩减现有TOSA功能的前提下,提高了元器件的集成度,精简了封装工艺,节省了封装成本。
如图5所示,本申请实施例还提供了一种光模块,包括光接收次模块ROSA501和前述的光发射次模块TOSA 502,该光发射次模块TOSA 502的结构和原理参照以上介绍,不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种光发射次模块,其特征在于,包括热电制冷器、隔离器、复合光元件、汇聚透镜、前端光电二极管FPD、光纤插芯、设置在所述热电制冷器TEC上的热沉和准直透镜、设置于所述热沉TEC上的监控光电二极管MPD和直接调制激光器DML,所述MPD监控所述DML背向发光,所述复合光元件放置于所述隔离器和所述汇聚透镜之间;所述复合光元件由两个三棱柱体组成,所述两个三棱柱体靠近所述准直透镜的垂直平面上镀有第一反射膜,所述两个三棱柱体靠近所述隔离器的垂直平面上镀有第二反射膜,所述两个三棱柱体贴合面上镀有分光和波分复合膜,所述直接调制激光器DML发出的背向光到所述监控光电二极管MPD,所述直接调制激光器DML发出的前向光经过所述准直透镜、隔离器到达所述复合光元件,一部分到所述前端光电二极管FPD,一部分到达所述汇聚透镜汇聚到光纤插芯中。
  2. 根据权利要求1所述的光发射次模块,其特征在于,所述分光和波分复用复合膜镀在所述两个三棱柱体的其中一个倾斜面或者两个倾斜面上。
  3. 根据权利要求1所述的光发射次模块,其特征在于,所述第一反射膜和第二反射膜采用离子源辅助镀膜技术镀在所述复合透镜上。
  4. 根据权利要求2所述的光发射次模块,其特征在于,所述第一反射膜和第二反射膜的厚度为7-14微米。
  5. 根据权利要求1所述的光发射次模块,其特征在于,所述分光和波分复合膜采用离子源辅助镀膜技术镀在所述复合透镜上。
  6. 根据权利要求4所述的光发射次模块,其特征在于,所述分光和波分复用复合膜的厚度为7-14微米。
  7. 根据权利要求3或4所述的光发射次模块,其特征在于,所述第一反射膜和第二反射膜为五氧化二钽、二氧化硅中的任意一种或二种。
  8. 根据权利要求5或6所述的光发射次模块,其特征在于,所述分光和波分复用复合膜为五氧化二钽、二氧化硅中的任意一种或二种。
  9. 一种光模块,其特征在于,包括权利要求1-8所述的光发射次模块。
PCT/CN2017/109378 2017-11-03 2017-11-03 光发射次模块和光模块 WO2019084920A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780092909.6A CN110832793B (zh) 2017-11-03 2017-11-03 光发射次模块和光模块
PCT/CN2017/109378 WO2019084920A1 (zh) 2017-11-03 2017-11-03 光发射次模块和光模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109378 WO2019084920A1 (zh) 2017-11-03 2017-11-03 光发射次模块和光模块

Publications (1)

Publication Number Publication Date
WO2019084920A1 true WO2019084920A1 (zh) 2019-05-09

Family

ID=66332753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109378 WO2019084920A1 (zh) 2017-11-03 2017-11-03 光发射次模块和光模块

Country Status (2)

Country Link
CN (1) CN110832793B (zh)
WO (1) WO2019084920A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120020381A1 (en) * 2010-07-21 2012-01-26 Fujitsu Limited Optical transmission module and controlling method for optical transmission module
CN103650386A (zh) * 2013-07-18 2014-03-19 华为技术有限公司 一种增强消光比的装置和光发射机、光接收机、光模块
CN103703700A (zh) * 2013-07-15 2014-04-02 华为技术有限公司 一种波长对准的方法、装置、及光网络系统
CN105634614A (zh) * 2014-10-30 2016-06-01 华为技术有限公司 光发射机、波长对准方法及无源光网络系统
CN106656347A (zh) * 2016-12-26 2017-05-10 武汉光迅科技股份有限公司 一种用于控制光发射组件波长的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2402752B (en) * 2003-06-12 2006-07-26 Agilent Technologies Inc Optical component and compact wavelength locking arrangement including such a component
US7682090B2 (en) * 2005-12-16 2010-03-23 Finisar Corporation Integrated focusing and reflecting structure in an optical assembly
CN106908912B (zh) * 2015-12-23 2018-11-09 福州高意通讯有限公司 用于高速收发系统的单纤双向bosa光学结构
CN106646699A (zh) * 2017-03-09 2017-05-10 索尔思光电(成都)有限公司 棱镜及光收发组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120020381A1 (en) * 2010-07-21 2012-01-26 Fujitsu Limited Optical transmission module and controlling method for optical transmission module
CN103703700A (zh) * 2013-07-15 2014-04-02 华为技术有限公司 一种波长对准的方法、装置、及光网络系统
CN103650386A (zh) * 2013-07-18 2014-03-19 华为技术有限公司 一种增强消光比的装置和光发射机、光接收机、光模块
CN105634614A (zh) * 2014-10-30 2016-06-01 华为技术有限公司 光发射机、波长对准方法及无源光网络系统
CN106656347A (zh) * 2016-12-26 2017-05-10 武汉光迅科技股份有限公司 一种用于控制光发射组件波长的方法及装置

Also Published As

Publication number Publication date
CN110832793B (zh) 2021-02-23
CN110832793A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
US10009136B2 (en) External cavity FP laser
EP3008844B1 (en) Tunable laser with multiple in-line sections
US9515728B2 (en) Light source module and optical transceiver
US20130071123A1 (en) Device and method for controlling lasing wavelength of tunable laser, and a wavelength division multiplexed-passive optical network having the same
US9432122B2 (en) Optical networking unit (ONU) packaging
US9768586B2 (en) Compact WDM optical modules
US20220014272A1 (en) Multi-channel, bi-directional optical communication module
JP2008090019A (ja) 双方向光モジュール
US20160231581A1 (en) Multiple Laser Optical Assembly
US20160277117A1 (en) Tunable laser including parallel lasing cavities with a common output
CN110531470A (zh) 一种窄波长间隔的单纤双向收发器
WO2019173998A1 (zh) 光接收、组合收发组件、组合光模块、olt及pon系统
CN111290089A (zh) 一种多波长耦合光发射装置
WO2021196686A1 (zh) 光电调制芯片、光组件、光模块和光网络设备
WO2019084920A1 (zh) 光发射次模块和光模块
WO2012106920A1 (zh) 光模块及其突发发射方法、激光器及光网络系统
US10411823B2 (en) Optical transmitter and optical receiver
WO2016041163A1 (zh) 一种光信号调制装置和系统
KR102134333B1 (ko) 광통신 네트워크에 사용되는 광 송신장치
US20170195079A1 (en) Optical transceiver assembly including thermal dual arrayed waveguide grating
KR20060125052A (ko) 양방향 전송 광송수신 모듈
WO2017219252A1 (zh) 一种激光发射组件及无源光网络系统
CN215934862U (zh) 面向10gpon应用的cml光组件及其olt光组件
KR102398045B1 (ko) 양방향 광액세스를 위한 파장 할당 방법 및 장치
WO2020238279A1 (zh) 一种plc芯片、tosa、bosa、光模块、以及光网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930394

Country of ref document: EP

Kind code of ref document: A1