WO2017219252A1 - 一种激光发射组件及无源光网络系统 - Google Patents
一种激光发射组件及无源光网络系统 Download PDFInfo
- Publication number
- WO2017219252A1 WO2017219252A1 PCT/CN2016/086601 CN2016086601W WO2017219252A1 WO 2017219252 A1 WO2017219252 A1 WO 2017219252A1 CN 2016086601 W CN2016086601 W CN 2016086601W WO 2017219252 A1 WO2017219252 A1 WO 2017219252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- filter
- substrate
- laser emitting
- assembly
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/572—Wavelength control
Definitions
- the present invention relates to the field of network technologies, and in particular, to a laser transmitting component and a passive optical network system.
- the optical communication network mainly exists in the form of a PON (Passive Optical Network).
- the PON network consists of three parts: an OLT (Optical Line Terminal) and an ODN (Optical Distribution Network). And ONU (Optical Network Unit).
- the optical modules in the OLT and ONU devices are responsible for the photoelectric conversion and transmission of network signals.
- the optical modules are composed of module circuit boards and optical devices; XG-PON (10Gigabit-Capable Passive Optical Network) , 10G passive optical network)
- the optical device in the optical module is BOSA (Bi-directional Optical sub-assembly), and the BOSA is further composed of TOSA (Transmitting Optical sub-assembly) and ROSA (Receiving Optical). Sub-assembly, light receiving component).
- a typical BOSA can be composed of TOSA, ROSA, WDM (Wavelength division multiplexing) and fiber ferrules; the role of TOSA is to convert electrical signals into optical signals and input them into the optical network for transmission; ROSA is used to receive light. Signal and convert it into electrical signals.
- TOSA TOSA, ROSA, WDM (Wavelength division multiplexing) and fiber ferrules; the role of TOSA is to convert electrical signals into optical signals and input them into the optical network for transmission; ROSA is used to receive light. Signal and convert it into electrical signals.
- the existing DMD optical transmitting component of the typical XMD (10Gbit/s Miniature Device) package adopts the Etalon (FP cavity filter) with built-in BS (Bean splitter), and cancels the prior art.
- MPD Monitoring Photodiode, monitoring photodiode
- the invention provides a laser emitting component and a passive optical network system, which can solve the interference of the reflected light of the filter on the monitoring photodiode, so that the monitoring photodiode truly reflects the back light of the laser component, thereby reducing The effect of the laser emitting component on wavelength monitoring and improved lock wave accuracy of the laser emitting component.
- a laser emitting assembly comprising a substrate, a monitoring photodiode, a laser assembly, a collimating lens, and a filter with a built-in beam splitter; the monitoring photodiode and the laser component along a direction of illumination of the laser component a collimating lens and a filter having a built-in beam splitter are sequentially arranged; the monitor photodiode and the laser component are relatively fixed; the laser component is mounted to the substrate through a transition block; the collimating lens and the filtering Mounted on the substrate; the filter has a rectangular parallelepiped structure, and a length direction of the filter is perpendicular to a light emitting direction of the laser component, the filter facing a bottom surface of the substrate and the lining In the angle formed between the bottom and the surface of the filter, the angle of the opening direction away from the collimating lens is an acute angle.
- the light emitted by the laser component passes through the collimating lens and is directed to the filter, and a part of the light that is directed to the filter is reflected by the filter to form a reflected light that is directed toward the side of the collimating lens, due to filtering.
- the opening formed by the bottom surface of the device and the surface of the substrate is away from the angle of the collimating lens at an acute angle, and since the filter has a rectangular parallelepiped structure and the length direction of the filter is perpendicular to the direction of illumination of the laser component, the filter is formed at the top end.
- the fixed state in which the direction of the straight lens is tilted causes the reflected light generated by the filter to illuminate the transition block toward the side of the collimator lens without causing the reflected light to illuminate the laser component and the monitor photodiode.
- the above laser emitting component can solve the interference of the reflected light of the filter on the monitoring photodiode, so that the monitoring photodiode truly reflects the back light of the laser component, thereby reducing the influence of the laser emitting component on the wavelength monitoring, and improving the laser emitting component.
- the accuracy of the lock wave can solve the interference of the reflected light of the filter on the monitoring photodiode, so that the monitoring photodiode truly reflects the back light of the laser component, thereby reducing the influence of the laser emitting component on the wavelength monitoring, and improving the laser emitting component.
- the acute angle is greater than 0° and less than or equal to 1.2°.
- the above-described laser emitting component causes the increased peak loss of the filter to be small.
- the acute angle is greater than 0° and less than or equal to 0.8°.
- the laser emitting assembly described above can further reduce the increased peak loss of the filter and can increase the peak loss by less than 0.4 dB.
- the transition block is disposed toward a side surface of the collimating lens with a light absorbing mechanism for absorbing an orientation reflected by the filter Light in the direction of the transition block.
- the side surface of the transition block facing the collimator lens is provided with a suction for absorbing reflected light generated by the filter
- the optical mechanism therefore, can be absorbed by the light absorbing mechanism when the filter generates reflected light in the direction of the transition block, reducing the influence of the reflected light generated by the filter on the laser component, and reducing further reflection due to the reflected light
- the effects of the laser components, the monitoring photodiodes, and other components enable the monitoring photodiodes to further accurately reflect the back-illumination of the laser components.
- the light absorbing mechanism is a light absorbing layer formed on the side of the transition block facing the collimating lens and formed by the light absorbing material coating.
- the monitoring photodiode is disposed on a side surface of the transition block facing away from the substrate.
- the monitor photodiode and the laser component are mounted on the substrate through the transition block, and at the same time, the monitor photodiode and the laser component are mounted on the transition block,
- the laser emitting component described above can ensure the relative fixation of the monitoring photodiode and the laser component, and can improve the structural stability of the monitoring photodiode and the laser component.
- the monitoring photodiode is fixed to a ceramic support provided on a base outside the substrate.
- the monitoring photodiode is fixed on the base outside the substrate through the ceramic support, only the laser component is disposed on the transition block, so that the length of the transition block can be reduced, and the length of the substrate can be reduced, thereby reducing
- the small laser emits the volume of the assembly and makes the laser emitting assembly suitable for the packaging of small volume devices.
- the laser component is a semiconductor laser, and the laser component is inverted on the substrate.
- the laser component is a semiconductor laser and the laser component is attached to the substrate, the active layer of the laser component is close to the transition block; when the laser component emits light, the light emitted by the laser component is brought closer to the substrate, and the direction of the filter is generated.
- the reflected light of the collimating lens is also closer to the lower side of the transition block. Therefore, the laser emitting component can further solve the interference of the reflected light of the filter on the monitoring photodiode, so that the monitoring photodiode truly reflects the back light of the laser component, and further The effect of the laser emitting component on the wavelength monitoring is reduced, and the lock wave accuracy of the laser emitting component is improved.
- the method further includes a frequency monitoring photodiode disposed on a side of the filter facing away from the substrate.
- the utility model further includes a thermoelectric refrigerator, wherein the thermoelectric cooler is provided with a metal plate, and the metal plate forms the substrate.
- the laser emitting assembly further includes a thermoelectric cooler, and the metal plate of the thermoelectric cooler forms a substrate. Since the metal plate has good thermal conductivity and heat dissipation performance, the laser emitting component can generate heat generated by each component through the metal plate. Conducted to the thermoelectric cooler to cool the components to ensure proper operation of the components.
- the laser component is a direct modulation laser.
- the laser component used in the above laser emitting component is a direct modulation laser. Since the direct modulation laser has the advantages of low cost, low power consumption, and high light output power, the laser emitting component using the direct modulation laser also has low cost and low power consumption. High light output power.
- the filter is an FP cavity filter.
- a passive optical network system comprising any one of the twelve possible implementations described above.
- the filter of the laser emitting component has a rectangular parallelepiped structure, and the length direction of the filter is perpendicular to the light emitting direction of the laser component, and the filter is oriented toward the lining.
- the angle of the opening away from the collimating lens is an acute angle; since the opening formed by the bottom surface of the filter and the surface of the substrate faces away from the collimating lens at an acute angle
- the filter since the filter has a rectangular parallelepiped structure and the length direction of the filter is perpendicular to the light emitting direction of the laser component, the filter forms a fixed state in which the tip is inclined toward the direction of the collimating lens, so that the reflected light generated by the filter is irradiated to the transition block. It faces the side of the collimating lens without causing the reflected light to illuminate the laser assembly and the monitor photodiode.
- the laser emitting component can solve the interference of the reflected light of the filter on the monitoring photodiode, so that the monitoring photodiode truly reflects the back light of the laser component, thereby reducing the influence of the laser emitting component on the wavelength monitoring, and improving the laser emitting component.
- the accuracy of the lock wave is the accuracy of the lock wave.
- FIG. 1 is a schematic structural diagram of a laser emitting component according to an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of another laser emitting component according to an embodiment of the present invention.
- Embodiments of the present invention provide a laser emitting component and a passive optical network system.
- the passive optical network system includes a laser emitting component, and the laser emitting component can solve the interference of the reflected light of the filter on the monitoring photodiode, so that the monitoring photoelectric
- the diode truly reflects the back-out of the laser component, thereby reducing the effect of the laser-emitting component on wavelength monitoring and improving the lock-wave accuracy of the laser-emitting component.
- a laser emitting device includes a substrate 1, a monitor photodiode 2, a laser component 3, a collimating lens 4, and a filter 5 with a built-in beam splitter;
- the light-emitting direction of the laser unit 3, the monitor photodiode 2, the laser unit 3, the collimator lens 4, and the filter 5 with the built-in beam splitter are sequentially arranged; the monitor photodiode 2 and the laser unit 3 are relatively fixed; the laser unit 3 is mounted through the transition block 6.
- the substrate 1; the collimator lens 4 and the filter 5 are mounted on the substrate 1; the filter 5 has a rectangular parallelepiped structure, and the length direction of the filter 5 is perpendicular to the light emitting direction of the laser unit 3, and the filter 5 faces the substrate 1.
- the angle of the opening direction away from the collimator lens 4 is an acute angle.
- the light emitted by the laser component 3 passes through the collimating lens 4 and is directed toward the filter 5. A part of the light that is incident on the filter 5 is reflected by the filter 5 to form a beam toward the collimating lens 4.
- the reflected light because the opening formed by the bottom surface of the filter 5 and the surface of the substrate 1 is away from the angle of the collimator lens 4, and the filter 5 has a rectangular parallelepiped structure, and the length direction of the filter 5 and the laser assembly 3 Since the light-emitting direction is vertical, the filter 5 forms a fixed state in which the tip end is inclined toward the direction of the collimator lens 4, so that the reflected light generated by the filter 5 is irradiated onto the side of the transition block 6 toward the collimator lens 4 without causing reflected light. It is irradiated onto the laser unit 3 and the monitor photodiode 2.
- the laser emitting component can solve the interference of the reflected light of the filter 5 on the monitoring photodiode 2, so that the monitoring photodiode 2 truly reflects the back light of the laser component 3, thereby reducing the influence of the laser emitting component on the wavelength monitoring, and Improve the lock wave accuracy of laser emitting components.
- the filter 5 faces the corner formed between the bottom surface of the substrate 1 and the surface of the substrate 1 facing the filter 5, and the opening direction faces away from the corner of the collimator lens 4.
- the acute angle is greater than 0° and less than or equal to 1.2°; the acute angles may be 0.2°, 0.4°, 0.6°, 0.7°, 0.8°, 0.9°, 1.0°, 1.2°.
- the above-described laser emitting module causes the increased peak loss of the filter 5 to be small.
- the acute angle is greater than 0° and less than or equal to 0.8°, and the acute angles may be 0.2°, 0.4°, 0.5°, 0.6°, 0.7°, 0.75°, and 0.8°.
- the filter 5 When the opening formed by the bottom surface of the filter 5 and the surface of the substrate 1 away from the collimator lens 4 is an acute angle greater than 0° and less than or equal to 0.8°, since the maximum value of the acute angle is within 0.8°, the filter 5 is increased.
- the peak loss is less than 0.4 dB, so the above-described laser emitting component can further reduce the increased peak loss of the filter 5 and can increase the peak loss by less than 0.4 dB.
- the transition block 6 is provided with a light absorbing mechanism 61 toward one side surface of the collimator lens 4, and the light absorbing mechanism 61 is used. The light reflected by the filter 5 in the direction of the transition block 6 is absorbed.
- the light absorbing mechanism 61 for absorbing the reflected light generated by the filter 5 is provided on the side surface of the transition block 6 facing the collimator lens 4, when the filter 5 generates the reflected light in the direction toward the transition block 6, it is able to Absorbed by the light absorbing mechanism 61, the influence of the reflected light generated by the filter 5 on the laser component 3 is reduced, and the further reflection by the reflected light can be reduced to affect the laser component 3, the monitor photodiode 2, and other components, thereby enabling The monitoring photodiode 2 further truly reflects the back-illumination of the laser assembly 3.
- the light absorbing mechanism 61 may be a light absorbing coating applied to the side of the transition block 6 toward the side of the collimator lens 4 and formed of a light absorbing material.
- the light absorbing mechanism 61 can also be any other mechanism that satisfies the requirements for absorbing, canceling or blocking light rays reflected by the filter in the direction of the transition block.
- the above laser component 3 may be a semiconductor laser, and the laser component 3 is attached to the substrate 1.
- the laser component 3 is a semiconductor laser and the laser component 3 is attached to the substrate 1, the active layer of the laser component 3 is brought close to the transition block 6; when the laser component 3 emits light, the light emitted by the laser component 3 is brought closer to the substrate 1.
- the reflected light generated by the filter 5 toward the collimator lens 4 is also closer to the lower side of the transition block 6, so that the above-mentioned laser emitting component can further solve the interference of the reflected light of the filter 5 on the monitoring photodiode 2, so that The monitoring photodiode 2 truly reflects the back-out light of the laser component 3, thereby reducing the influence of the laser emitting component on the wavelength monitoring, and improving the locking wave accuracy of the laser emitting component.
- the laser emitting module may further include a thermoelectric cooler 8 and a frequency monitoring photodiode 7 disposed on a side of the filter 5 facing away from the substrate 1, and the thermoelectric cooler 8 is provided with a metal.
- a plate, a metal plate forms the substrate 1.
- the above-mentioned laser emitting assembly further includes a thermoelectric cooler 8, and the metal plate of the thermoelectric cooler 8 forms the substrate 1. Since the metal plate has good thermal conductivity and heat dissipation performance, the above-mentioned laser emitting assembly can carry out various components through the metal plate. The generated heat is conducted to the thermoelectric cooler 8 to cool the components to ensure proper operation of the components.
- the laser component 3 may be a direct modulation laser
- the filter 5 may be an FP cavity filter.
- the laser component 3 used in the above laser emitting component is a direct modulation laser. Since the direct modulation laser has the advantages of low cost, low power consumption, and high light output power, the laser emitting component using the direct modulation laser also has low cost and low power consumption. And the effect of high light output power.
- the above laser emitting component can also have the following two implementations. the way:
- the monitor photodiode 2 is disposed on a side surface of the transition block 6 facing away from the substrate 1.
- the monitor photodiode 2 When the monitor photodiode 2 is disposed on a side surface of the transition block 6 facing away from the substrate 1, the monitor photodiode 2 and the laser assembly 3 are both mounted on the substrate 1 through the transition block 6, while monitoring the photodiode 2 and the laser assembly 3 are all mounted on the transition block 6, so that the above-described laser emitting assembly can ensure the relative fixation of the monitoring photodiode 2 and the laser assembly 3, and can improve the structural stability of the monitoring photodiode 2 and the laser assembly 3.
- the monitor photodiode 2 is fixed to the ceramic holder 91 provided on the base 9 outside the substrate 1.
- the monitor photodiode 2 is fixed to the base 9 outside the substrate 1 by the ceramic holder 91, only the laser unit 3 is provided on the transition block 6, so that the length of the transition block 6 can be reduced while reducing the lining
- the length of the bottom 1 further reduces the volume of the laser emitting assembly and makes the laser emitting assembly suitable for packaging of small volume devices.
- an embodiment of the present invention further provides a passive optical network system, including any one of the laser emitting components provided by the foregoing embodiments.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
Abstract
一种激光发射组件及无源光网络系统,该激光发射组件包括沿激光器组件的发光方向依次排列的监控光电二极管(2)、激光器组件(3)、准直透镜(4)和内置分光片的滤波器(5);监控光电二极管(2)和激光器组件(3)相对固定;激光器组件(3)通过过渡块(6)安装于衬底(1);准直透镜(4)和滤波器(5)安装于衬底(1)上;滤波器(5)具有长方体结构、且滤波器(5)的长度方向与激光器组件(3)的发光方向垂直,滤波器(3)朝向衬底(1)的底面与衬底(1)朝向滤波器(5)的表面之间形成的角中,开口方向背离准直透镜(4)的角为锐角。该激光发射组件能够解决滤波器(5)的反射光对监控光电二极管(2)的干扰,使监控光电二极管(2)真实反映激光器组件的背向出光,进而减小激光发射组件对波长监控的影响,且提高激光发射组件的锁波精确性。
Description
本发明涉及网络技术领域,特别涉及一种激光发射组件及无源光网络系统。
目前,随着光纤网络技术的发展,DWDM(Dense wavelength division multiplexing,密集波分复用)等新技术的应用使得主干网络已经有了突破性的发展。光通信网络主要以PON(Passive Optical Network,无源光网络)的形式存在,PON网络由三部分组成,分别为OLT(Optical Line Terminal,光线路端)、ODN(Optical Distribution Network,光分配网络)和ONU(Optical Network Unit,光网络单元)。
作为光网络中的关键构成,OLT及ONU设备里面的光模块担负着将网络信号进行光电转换及传输的任务,光模块是由模块电路板和光器件组成;XG-PON(10Gigabit-Capable Passive Optical Network,10G无源光网络)光模块中的光器件为BOSA(Bi-directional Optical sub-assembly,双向光组件),而BOSA又由TOSA(Transmitting Optical sub-assembly,光发射组件)和ROSA(Receiving Optical sub-assembly,光接收组件)组成。典型的BOSA可由TOSA、ROSA、WDM(Wavelength division multiplexing,波分复用)和光纤插芯组成;TOSA的作用是将电信号转化为光信号,并输入光纤网络进行传输;ROSA的作用是接收光信号,并对其进行电信号转化。
随着XG-PON系统商业化的不断临近,XG-PON光模块的成本已经成为影响产业化的重要因素,而激光器作为OLT光模块中BOSA的重要组成部分,更是占据了成本的一大部分。相比工艺复杂、成本昂贵的10G的EML(Electro-absorption Modulated Laser,电吸收调制激光器),10G的DML(Direct Modulated Laser,直接调制激光器)在成本、功耗和出光功率上具有绝对的优势。
现有典型的XMD(10Gbit/s Miniature Device,10G微型化器件)封装的DML光发射组件因采用内置BS(Bean splitter,分光片)的Etalon(FP腔滤波器),并取消了现有技术中设置在Etalon(FP腔滤波器)和准直透镜之间的隔离器,进而减小了DML光发射组件的整体器件长度;但是,现有的DML光发射组件中被Etalon反射的光线会对MPD(Monitor Photodiode,监控光电二极管)造成干扰,从而导致MPD不能真实反映激光器的背向出光,从而影响光发射组件的波长监控,而产生锁波不准的现象。
发明内容
本发明提供了一种激光发射组件及无源光网络系统,该激光发射组件能够解决滤波器的反射光对监控光电二极管的干扰,使监控光电二极管真实反映激光器组件的背向出光,进而减小激光发射组件对波长监控的影响,且提高激光发射组件的锁波精确性。
第一方面,提供一种激光发射组件,包括衬底、监控光电二极管、激光器组件、准直透镜和内置分光片的滤波器;沿所述激光器组件的发光方向,所述监控光电二极管、激光器组件、准直透镜和内置分光片的滤波器依次排列;所述监控光电二极管和所述激光器组件相对固定;所述激光器组件通过过渡块安装于所述衬底;所述准直透镜和所述滤波器安装于所述衬底上;所述滤波器具有长方体结构、且所述滤波器的长度方向与所述激光器组件的发光方向垂直,所述滤波器朝向所述衬底的底面与所述衬底朝向所述滤波器的表面之间形成的角中,开口方向背离所述准直透镜的角为锐角。
上述激光发射组件在工作过程中,激光器组件发出的光线透过准直透镜后射向滤波器,射向滤波器的一部分光线被滤波器反射形成射向准直透镜一侧的反射光,由于滤波器的底面与衬底的表面形成的开口背离准直透镜的角为锐角,又由于滤波器为长方体结构、且滤波器的长度方向与激光器组件的发光方向垂直,所以,滤波器形成顶端朝向准直透镜方向倾斜的固定状态,使滤波器产生的反射光照射到过渡块朝向准直透镜的侧面上,而不会使反射光照射到激光器组件和监控光电二极管上。
因此,上述激光发射组件能够解决滤波器的反射光对监控光电二极管的干扰,使监控光电二极管真实反映激光器组件的背向出光,进而减小激光发射组件对波长监控的影响,且提高激光发射组件的锁波精确性。
结合上述第一方面,在第一种可能的实现方式中,所述锐角大于0°且小于等于1.2°。
当滤波器的底面与衬底的表面形成的开口背离准直透镜的角为大于0°且小于等于1.2°的锐角时,上述激光发射组件使滤波器增加的峰值损耗较小。
结合上述第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述锐角大于0°且小于等于0.8°。
当滤波器的底面与衬底的表面形成的开口背离准直透镜的角为大于0°且小于等于0.8°的锐角时,由于锐角的最大值为0.8°以内时,滤波器增加的峰值损耗小于0.4dB,因此,上述激光发射组件能够进一步减小滤波器增加的峰值损耗,并可使增加的峰值损耗小于0.4dB。
结合上述第一方面,在第三种可能的实现方式中,所述过渡块朝向所述准直透镜的一侧表面设置有吸光机构,所述吸光机构用于吸收由所述滤波器反射的朝向所述过渡块方向的光线。
由于在过渡块朝向准直透镜的一侧表面设置有用于吸收由滤波器产生的反射光的吸
光机构,因此,在滤波器产生朝向过渡块的方向的反射光时,能够被吸光机构吸收,减小滤波器产生的反射光对激光器组件的影响,并可减小因反射光产生的进一步反射而影响激光器组件、监控光电二极管及其它组件,进而能够使监控光电二极管进一步真实反映激光器组件的背向出光。
结合上述第一方面的第三种可能的实现方式,在第四种可能的实现方式中,吸光机构为涂覆于所述过渡块朝向所述准直透镜的侧面、且由吸光材料形成的吸光涂层。
结合上述第一方面,在第五种可能的实现方式中,所述监控光电二极管设置于所述过渡块背离所述衬底的一侧表面上。
当监控光电二极管设置于过渡块背离衬底的一侧表面上时,监控光电二极管和激光器组件均通过过渡块安装于衬底上,同时,监控光电二极管和激光器组件均安装于过渡块上,因此,上述激光发射组件能够保证监控光电二极管和激光器组件的相对固定,并能提高监控光电二极管和激光器组件的结构稳定性。
结合上述第一方面,在第六种可能的实现方式中,所述监控光电二极管固定于位于所述衬底外侧的底座设有的陶瓷支座上。
由于监控光电二极管通过陶瓷支座固定于衬底外侧的底座上,在过渡块上只需设置激光器组件,因此,能够减小过渡块的长度,同时还能减小衬底的长度,进而能够减小激光发射组件的体积,并使激光发射组件适合小体积器件的封装。
结合上述第一方面、第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式、第四种可能的实现方式、第五种可能的实现方式、第六种可能的实现方式,在第七种可能的实现方式中,所述激光器组件为半导体激光器,且所述激光器组件倒贴于所述衬底。
由于激光器组件为半导体激光器、且激光器组件倒贴于衬底,使得激光器组件的有源层靠近过渡块;在激光器组件发光时,使激光器组件发出的光线更加靠近衬底,同时,滤波器产生的朝向准直透镜的反射光也更加接近过渡块的下侧,因此,上述激光发射组件能够进一步解决滤波器的反射光对监控光电二极管的干扰,使监控光电二极管真实反映激光器组件的背向出光,进而减小激光发射组件对波长监控的影响,且提高激光发射组件的锁波精确性。
结合上述第一方面的第七种可能的实现方式,在第八种可能的实现方式中,还包括设置于所述滤波器背离所述衬底一侧的频率监控光电二极管。
结合上述第一方面、第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式、第四种可能的实现方式、第五种可能的实现方式、第六种可能的实现方式,在第七种可能的实现方式中,在第九种可能的实现方式中,还包括热电制冷器,所述热电制冷器设有金属板,所述金属板形成所述衬底。
上述激光发射组件还包括热电制冷器,并且热电制冷器的金属板形成衬底,由于金属板具有较好的导热性能和散热性能,因此,上述激光发射组件能够通过金属板将各部件产生的热量传导到热电制冷器以对各部件进行冷却,确保各部件的正常工作。
结合上述第一方面、第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式、第四种可能的实现方式、第五种可能的实现方式、第六种可能的实现方式,在第七种可能的实现方式中,在第十种可能的实现方式中,所述激光器组件为直接调制激光器。
上述激光发射组件采用的激光器组件为直接调制激光器,由于直接调制激光器具有成本低、功耗小和出光功率高的优点,因此,采用直接调制激光器的激光发射组件同样具有成本低、功耗小和出光功率高的效果。
结合上述第一方面、第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式、第四种可能的实现方式、第五种可能的实现方式、第六种可能的实现方式,在第七种可能的实现方式中,在第十一种可能的实现方式中,所述滤波器为FP腔滤波器。
第二方面,提供一种无源光网络系统,包括上述十二种可能的实现方式中任意一种激光发射组件。
根据第一方面提供的激光发射组件以及第二方面提供的无源光网络系统,上述激光发射组件的滤波器具有长方体结构、且滤波器的长度方向与激光器组件的发光方向垂直,滤波器朝向衬底的底面与衬底朝向滤波器的表面之间形成的角中,开口方向背离准直透镜的角为锐角;由于滤波器的底面与衬底的表面形成的开口背离准直透镜的角为锐角,又由于滤波器为长方体结构、且滤波器的长度方向与激光器组件的发光方向垂直,所以,滤波器形成顶端朝向准直透镜方向倾斜的固定状态,使滤波器产生的反射光照射到过渡块朝向准直透镜的侧面上,而不会使反射光照射到激光器组件和监控光电二极管上。
因此,该激光发射组件能够解决滤波器的反射光对监控光电二极管的干扰,使监控光电二极管真实反映激光器组件的背向出光,进而减小激光发射组件对波长监控的影响,且提高激光发射组件的锁波精确性。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种实施例提供的一种激光发射组件的结构示意图;
图2为本发明一种实施例提供的另一种激光发射组件的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种激光发射组件及无源光网络系统,上述无源光网络系统包括激光发射组件,该激光发射组件能够解决滤波器的反射光对监控光电二极管的干扰,使监控光电二极管真实反映激光器组件的背向出光,进而减小激光发射组件对波长监控的影响,且提高激光发射组件的锁波精确性。
其中,请参考图1以及图2,本发明一种实施例提供的激光发射组件,包括衬底1、监控光电二极管2、激光器组件3、准直透镜4和内置分光片的滤波器5;沿激光器组件3的发光方向,监控光电二极管2、激光器组件3、准直透镜4和内置分光片的滤波器5依次排列;监控光电二极管2和激光器组件3相对固定;激光器组件3通过过渡块6安装于衬底1;准直透镜4和滤波器5安装于衬底1上;滤波器5具有长方体结构、且滤波器5的长度方向与激光器组件3的发光方向垂直,滤波器5朝向衬底1的底面与衬底1朝向滤波器5的表面之间形成的角中,开口方向背离准直透镜4的角为锐角。
上述激光发射组件在工作过程中,激光器组件3发出的光线透过准直透镜4后射向滤波器5,射向滤波器5的一部分光线被滤波器5反射形成射向准直透镜4一侧的反射光,由于滤波器5的底面与衬底1的表面形成的开口背离准直透镜4的角为锐角,又由于滤波器5为长方体结构、且滤波器5的长度方向与激光器组件3的发光方向垂直,所以,滤波器5形成顶端朝向准直透镜4方向倾斜的固定状态,使滤波器5产生的反射光照射到过渡块6朝向准直透镜4的侧面上,而不会使反射光照射到激光器组件3和监控光电二极管2上。
因此,上述激光发射组件能够解决滤波器5的反射光对监控光电二极管2的干扰,使监控光电二极管2真实反映激光器组件3的背向出光,进而减小激光发射组件对波长监控的影响,且提高激光发射组件的锁波精确性。
一种具体的实施方式中,如图1结构所示,滤波器5朝向衬底1的底面与衬底1朝向滤波器5的表面之间形成的角中,开口方向背离准直透镜4的角为锐角,锐角大于0°且小于等于1.2°;锐角可为0.2°、0.4°、0.6°、0.7°、0.8°、0.9°、1.0°、1.2°。
当滤波器5的底面与衬底1的表面形成的开口背离准直透镜4的角为大于0°且小于等于1.2°的锐角时,上述激光发射组件使滤波器5增加的峰值损耗较小。
具体的,锐角大于0°且小于等于0.8°,锐角可为0.2°、0.4°、0.5°、0.6°、0.7°、0.75°、0.8°。
当滤波器5的底面与衬底1的表面形成的开口背离准直透镜4的角为大于0°且小于等于0.8°的锐角时,由于锐角的最大值为0.8°以内时,滤波器5增加的峰值损耗小于0.4dB,因此,上述激光发射组件能够进一步减小滤波器5增加的峰值损耗,并可使增加的峰值损耗小于0.4dB。
如图1以及图2结构所示,为了进一步使监控光电二极管2能够真实反映激光器组件3的背向出光,过渡块6朝向准直透镜4的一侧表面设置有吸光机构61,吸光机构61用于吸收由滤波器5反射的朝向过渡块6方向的光线。
由于在过渡块6朝向准直透镜4的一侧表面设置有用于吸收由滤波器5产生的反射光的吸光机构61,因此,在滤波器5产生朝向过渡块6的方向的反射光时,能够被吸光机构61吸收,减小滤波器5产生的反射光对激光器组件3的影响,并可减小因反射光产生的进一步反射而影响激光器组件3、监控光电二极管2及其它组件,进而能够使监控光电二极管2进一步真实反映激光器组件3的背向出光。
为了简化激光发射组件的结构,吸光机构61可以为涂覆于过渡块6朝向准直透镜4的侧面、且由吸光材料形成的吸光涂层。当然,吸光机构61还可以为用于吸收、抵消或阻挡由滤波器反射的朝向过渡块方向的光线的其他满足要求的任意机构。
具体地,上述激光器组件3可以为半导体激光器,且激光器组件3倒贴于衬底1。
由于激光器组件3为半导体激光器、且激光器组件3倒贴于衬底1,使得激光器组件3的有源层靠近过渡块6;在激光器组件3发光时,使激光器组件3发出的光线更加靠近衬底1,同时,滤波器5产生的朝向准直透镜4的反射光也更加接近过渡块6的下侧,因此,上述激光发射组件能够进一步解决滤波器5的反射光对监控光电二极管2的干扰,使监控光电二极管2真实反映激光器组件3的背向出光,进而减小激光发射组件对波长监控的影响,且提高激光发射组件的锁波精确性。
具体地,如图1以及图2结构所示,上述激光发射组件还可包括热电制冷器8以及设置于滤波器5背离衬底1一侧的频率监控光电二极管7,热电制冷器8设有金属板,金属板形成衬底1。
上述激光发射组件还包括热电制冷器8,并且热电制冷器8的金属板形成衬底1,由于金属板具有较好的导热性能和散热性能,因此,上述激光发射组件能够通过金属板将各部件产生的热量传导到热电制冷器8以对各部件进行冷却,确保各部件的正常工作。
更进一步地,激光器组件3可以为直接调制激光器,滤波器5可以为FP腔滤波器。
上述激光发射组件采用的激光器组件3为直接调制激光器,由于直接调制激光器具有成本低、功耗小和出光功率高的优点,因此,采用直接调制激光器的激光发射组件同样具有成本低、功耗小和出光功率高的效果。
根据监控光电二极管2的设置位置的不同,上述激光发射组件还可具有以下两种实施
方式:
方式一,如图1结构所示,监控光电二极管2设置于过渡块6背离衬底1的一侧表面上。
当监控光电二极管2设置于过渡块6背离衬底1的一侧表面上时,监控光电二极管2和激光器组件3均通过过渡块6安装于衬底1上,同时,监控光电二极管2和激光器组件3均安装于过渡块6上,因此,上述激光发射组件能够保证监控光电二极管2和激光器组件3的相对固定,并能提高监控光电二极管2和激光器组件3的结构稳定性。
方式二,如图2结构所示,监控光电二极管2固定于位于衬底1外侧的底座9设有的陶瓷支座91上。
由于监控光电二极管2通过陶瓷支座91固定于衬底1外侧的底座9上,在过渡块6上只需设置激光器组件3,因此,能够减小过渡块6的长度,同时还能减小衬底1的长度,进而能够减小激光发射组件的体积,并使激光发射组件适合小体积器件的封装。
另外,本发明实施例还提供一种无源光网络系统,包括上述实施例提供的任意一种激光发射组件。
本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (13)
- 一种激光发射组件,包括衬底、监控光电二极管、激光器组件、准直透镜和内置分光片的滤波器;沿所述激光器组件的发光方向,所述监控光电二极管、激光器组件、准直透镜和内置分光片的滤波器依次排列;所述监控光电二极管和所述激光器组件相对固定;所述激光器组件通过过渡块安装于所述衬底;所述准直透镜和所述滤波器安装于所述衬底上;其特征在于,所述滤波器具有长方体结构、且所述滤波器的长度方向与所述激光器组件的发光方向垂直,所述滤波器朝向所述衬底的底面与所述衬底朝向所述滤波器的表面之间形成的角中,开口方向背离所述准直透镜的角为锐角。
- 根据权利要求1所述的激光发射组件,其特征在于,所述锐角大于0°且小于等于1.2°
- 根据权利要求2所述的激光发射组件,其特征在于,所述锐角大于0°且小于等于0.8°。
- 根据权利要求1所述的激光发射组件,其特征在于,所述过渡块朝向所述准直透镜的一侧表面设置有吸光机构,所述吸光机构用于吸收由所述滤波器反射的朝向所述过渡块方向的光线。
- 根据权利要求4所述的激光发射组件,其特征在于,吸光机构为涂覆于所述过渡块朝向所述准直透镜的侧面、且由吸光材料形成的吸光涂层。
- 根据权利要求1所述的激光发射组件,其特征在于,所述监控光电二极管设置于所述过渡块背离所述衬底的一侧表面上。
- 根据权利要求1所述的激光发射组件,其特征在于,所述监控光电二极管固定于位于所述衬底外侧的底座设有的陶瓷支座上。
- 根据权利要求1-7任一项所述的激光发射组件,其特征在于,所述激光器组件为半导体激光器,且所述激光器组件倒贴于所述衬底。
- 根据权利要求8所述的激光发射组件,其特征在于,还包括设置于所述滤波器背离所述衬底一侧的频率监控光电二极管。
- 根据权利要求1-7任一项所述的激光发射组件,其特征在于,还包括热电制冷器,所述热电制冷器设有金属板,所述金属板形成所述衬底。
- 根据权利要求1-7任一项所述的激光发射组件,其特征在于,所述激光器组件为直接调制激光器。
- 根据权利要求1-7任一项所述的激光发射组件,其特征在于,所述滤波器为FP腔滤波器。
- 一种无源光网络系统,包括如权利要求1-12任一项所述的激光发射组件。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680082142.4A CN108702220B (zh) | 2016-06-21 | 2016-06-21 | 一种激光发射组件及无源光网络系统 |
PCT/CN2016/086601 WO2017219252A1 (zh) | 2016-06-21 | 2016-06-21 | 一种激光发射组件及无源光网络系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/086601 WO2017219252A1 (zh) | 2016-06-21 | 2016-06-21 | 一种激光发射组件及无源光网络系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017219252A1 true WO2017219252A1 (zh) | 2017-12-28 |
Family
ID=60783608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/086601 WO2017219252A1 (zh) | 2016-06-21 | 2016-06-21 | 一种激光发射组件及无源光网络系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108702220B (zh) |
WO (1) | WO2017219252A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117826169A (zh) * | 2024-01-04 | 2024-04-05 | 广东兴颂科技有限公司 | 相位法激光测距光路系统及相位法激光测距装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112290375A (zh) * | 2020-10-29 | 2021-01-29 | 瑞泰(威海)电子科技有限公司 | 波长可调谐的光组件 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080063402A1 (en) * | 2006-09-12 | 2008-03-13 | Electronics And Telecommunications Research Institute | Hybrid optical transceiver module and passive optical network including the same |
CN201616584U (zh) * | 2010-03-26 | 2010-10-27 | 福州高意通讯有限公司 | 一种可见光波段光纤耦合激光器功率监控结构 |
CN102752051A (zh) * | 2012-07-23 | 2012-10-24 | 青岛海信宽带多媒体技术有限公司 | 具有光时域反射功能的光网络单元光组件 |
CN103326790A (zh) * | 2013-06-28 | 2013-09-25 | 成都思迈科技发展有限责任公司 | 可自动控制功率的光发射机 |
CN103557937A (zh) * | 2013-10-31 | 2014-02-05 | 中国科学院半导体研究所 | 激光功率监测组件及应用其的激光发射模块、光放大器 |
CN105634614A (zh) * | 2014-10-30 | 2016-06-01 | 华为技术有限公司 | 光发射机、波长对准方法及无源光网络系统 |
-
2016
- 2016-06-21 WO PCT/CN2016/086601 patent/WO2017219252A1/zh active Application Filing
- 2016-06-21 CN CN201680082142.4A patent/CN108702220B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080063402A1 (en) * | 2006-09-12 | 2008-03-13 | Electronics And Telecommunications Research Institute | Hybrid optical transceiver module and passive optical network including the same |
CN201616584U (zh) * | 2010-03-26 | 2010-10-27 | 福州高意通讯有限公司 | 一种可见光波段光纤耦合激光器功率监控结构 |
CN102752051A (zh) * | 2012-07-23 | 2012-10-24 | 青岛海信宽带多媒体技术有限公司 | 具有光时域反射功能的光网络单元光组件 |
CN103326790A (zh) * | 2013-06-28 | 2013-09-25 | 成都思迈科技发展有限责任公司 | 可自动控制功率的光发射机 |
CN103557937A (zh) * | 2013-10-31 | 2014-02-05 | 中国科学院半导体研究所 | 激光功率监测组件及应用其的激光发射模块、光放大器 |
CN105634614A (zh) * | 2014-10-30 | 2016-06-01 | 华为技术有限公司 | 光发射机、波长对准方法及无源光网络系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117826169A (zh) * | 2024-01-04 | 2024-04-05 | 广东兴颂科技有限公司 | 相位法激光测距光路系统及相位法激光测距装置 |
CN117826169B (zh) * | 2024-01-04 | 2024-07-30 | 广东兴颂科技有限公司 | 相位法激光测距光路系统及相位法激光测距装置 |
Also Published As
Publication number | Publication date |
---|---|
CN108702220A (zh) | 2018-10-23 |
CN108702220B (zh) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11916600B2 (en) | Receiver optical sub-assembly, combo bi-directional optical sub- assembly, combo optical module, OLT, and PON system | |
Doerr et al. | Silicon photonics coherent transceiver in a ball-grid array package | |
WO2019105113A1 (zh) | 光收发器件 | |
US9515728B2 (en) | Light source module and optical transceiver | |
US20090226138A1 (en) | Fibre-Optic Module | |
US20210149129A1 (en) | Receiver Optical Subassembly, Combo Transceiver Subassembly, Combo Optical Module, Communications Apparatus, and PON System | |
WO2020187149A1 (zh) | 光模块 | |
KR20130052819A (ko) | 송신용 광 모듈 | |
CN218728198U (zh) | 一种光模块 | |
CN115718351A (zh) | 一种光模块 | |
CN115712179A (zh) | 一种光模块 | |
CN218995729U (zh) | 一种光模块 | |
CN110531470A (zh) | 一种窄波长间隔的单纤双向收发器 | |
CN218037458U (zh) | 一种光模块 | |
CN221528957U (zh) | 光学装置 | |
CN115728884A (zh) | 一种光模块 | |
WO2017219252A1 (zh) | 一种激光发射组件及无源光网络系统 | |
CN113885143A (zh) | 一种光模块 | |
CN215678864U (zh) | 一种光模块 | |
CN115728886A (zh) | 一种光模块 | |
CN215895037U (zh) | 一种光模块 | |
CN215575799U (zh) | 一种combo pon光器件 | |
JP7418725B2 (ja) | 光子集積技術に基づく真空のゆらぎ量子乱数発生器チップ | |
CN113759479A (zh) | 一种光模块 | |
JP2015225979A (ja) | 光通信モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16905794 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16905794 Country of ref document: EP Kind code of ref document: A1 |