WO2019084741A1 - 一种脱硫催化剂、其制造方法及其应用 - Google Patents

一种脱硫催化剂、其制造方法及其应用 Download PDF

Info

Publication number
WO2019084741A1
WO2019084741A1 PCT/CN2017/108464 CN2017108464W WO2019084741A1 WO 2019084741 A1 WO2019084741 A1 WO 2019084741A1 CN 2017108464 W CN2017108464 W CN 2017108464W WO 2019084741 A1 WO2019084741 A1 WO 2019084741A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
group
component
molecular sieve
metal
Prior art date
Application number
PCT/CN2017/108464
Other languages
English (en)
French (fr)
Inventor
龙军
侯栓弟
林伟
宋烨
田辉平
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to RU2020117555A priority Critical patent/RU2749402C1/ru
Priority to PCT/CN2017/108464 priority patent/WO2019084741A1/zh
Priority to US16/760,676 priority patent/US11318444B2/en
Priority to BR112020007352-0A priority patent/BR112020007352B1/pt
Publication of WO2019084741A1 publication Critical patent/WO2019084741A1/zh
Priority to SA520411853A priority patent/SA520411853B1/ar

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/049Pillared clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present invention relates to a desulfurization catalyst, and more particularly to a desulfurization catalyst for desulfurization of hydrocarbon oil.
  • the invention also relates to a process for the production of a desulfurization catalyst and to the use of these desulfurization catalysts in the desulfurization of hydrocarbon oils.
  • Cipheral Patent Application Publication No. CN1355727A discloses a particulate catalyst composition comprising a mixture of zinc oxide, silicon oxide, aluminum oxide and substantially reduced valence nickel for use in a cracking gasoline or diesel fuel feed stream in a desulfurization zone by the following method Desulfurization, the method comprising: contacting the feed stream in a desulfurization zone, and then separating the resulting low sulfur content stream and a sulfurization catalyst to regenerate and activate the separated catalyst and return to the desulfurization zone.
  • Citride No. CN1208124C discloses a catalyst carrier comprising zinc oxide, expanded perlite and alumina impregnated with a promoter metal such as nickel and/or cobalt, and then the valence of the promoter metal is reduced to prepare for cracking.
  • the use of ground expanded perlite in the formation of the catalyst support produces a support in which the zinc oxide content and binder content are adjusted to provide a wear resistant catalyst and extend the useful life of the catalyst.
  • the inventors of the present invention have diligently studied and discovered a novel desulfurization catalyst, and have completed the present invention on the basis of this.
  • the present invention relates to the following aspects.
  • a desulfurization catalyst comprising:
  • a sulfur storage metal oxide wherein the sulfur storage metal is selected from the group consisting of a metal of Group IIB of the periodic table, a metal of Group VB of the periodic table, and a metal of Group VIB of the periodic table, preferably selected from the group consisting of One or more of zinc, cadmium, lanthanum, cerium, chromium, molybdenum, tungsten and vanadium, more preferably one or more selected from the group consisting of zinc, molybdenum and vanadium, more preferably zinc;
  • an inorganic binder preferably one or more selected from the group consisting of heat resistant inorganic oxides, more preferably one or more selected from the group consisting of alumina, silica, zirconia, titania and tin oxide, more One or more selected from the group consisting of alumina, zirconia, titania and tin oxide;
  • a wear-resistant component which is boron nitride (preferably hexagonal boron nitride) or the boron nitride and an oxide, a nitride, a carbide, an oxynitride, a carbonitride, a carbon oxide selected from the element A.
  • the wear-resistant component is selected from the group consisting of boron carbide, silicon nitride, silicon carbide, silicon dioxide, aluminum nitride, aluminum carbide, aluminum oxide, zirconium nitride, zirconium carbide, zirconium oxide, titanium nitride, carbonization.
  • titanium and titanium oxide preferably boron nitride, more preferably hexagonal phase boron nitride;
  • an active metal component selected from the group consisting of metal elements of Group VIII of the periodic table, oxides of iron elements of the periodic table, metal elements of Group IB of the periodic table, oxides of elements of Group IB of the periodic table, elements One or more of the metal elements of Group VIIB of the periodic table and the metal elements of Group VIIB of the periodic table, preferably selected from the group consisting of iron, iron oxide, cobalt, cobalt oxide, nickel, nickel oxide, copper, One or more of copper oxide, manganese and manganese oxide, more preferably one or more of nickel, nickel oxide, cobalt and cobalt oxide, more preferably nickel, nickel oxide or a combination thereof;
  • the acidic porous material preferably one selected from the group consisting of molecular sieves and layered pillar clays, preferably selected from one or more of the group consisting of a soil, a cloud, a bentonite, a montmorillonite and a smectite
  • molecular sieves having an IMF structure preferably selected from the group consisting of HIM-5 molecular sieves, IM-5 molecular sieves, P-IM-5 molecular sieves, and P-Si-IM-5 molecular sieves
  • a molecular sieve having a FAU structure preferably selected from one or more of X molecular sieve, Y molecular sieve, USY molecular sieve, REUSY molecular sieve, REHY molecular sieve, REY molecular sieve, PUSY molecular sieve, PREHY molecular sieve, and PREY molecular sieve
  • the desulfurization catalyst according to any preceding aspect wherein the specific surface area of the boron nitride 100-300m 2 / g, preferably 120-260m 2 / g.
  • composition comprises:
  • the sulfur storage metal oxide (calculated as sulfur storage metal oxide) relative to the total weight of the desulfurization catalyst, or relative to the total weight of the component 1) to the component 5) (as 100 wt%) ) occupies 10 to 80% by weight, the inorganic binder (in terms of oxide) accounts for 3 to 35 wt%, the wear-resistant component (dry basis) accounts for 5 to 40% by weight, and the active metal component (in metal) The element accounts for 5-30% by weight and the acidic porous material (dry basis) accounts for 0-20% by weight.
  • the sulfur storage metal oxide to store sulfur
  • the sulfur storage metal oxide to the total weight of the desulfurization catalyst, or relative to the total weight of the component 1) to the component 5) (as 100 wt%) 25 to 70% by weight of the metal oxide, 6 to 25% by weight of the inorganic binder (as oxide), 10 to 30% by weight of the wear-resistant component (dry basis), the active metal group
  • the fraction (based on the metal element) accounts for 8-25% by weight and the acidic porous material (dry basis) accounts for 1-15% by weight.
  • the sulfur storage metal oxide (for storage) relative to the total weight of the desulfurization catalyst, or relative to the total weight of the component 1) to the component 5) (as 100 wt%) 40 to 60% by weight of the sulfur metal oxide, 8 to 15% by weight of the inorganic binder (as oxide), 12 to 25% by weight of the wear-resistant component (dry basis), the active metal
  • the component (calculated as a metal element) accounts for 12 to 20% by weight and the acidic porous material (dry basis) accounts for 2 to 10% by weight.
  • composition is a composition after calcination
  • composition after calcination refers to a composition measured after calcination at 650 ° C for 4 hours under an air atmosphere.
  • the composition further comprises at least one additive, preferably the additive is selected from the group consisting of alkali metal oxides (preferably selected from the group consisting of sodium oxide and potassium oxide) Or a variety of), clay (preferably selected from the group consisting of kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, quasi-allotite, saponite, rector, sepiolite, One or more of attapulgite, hydrotalcite and bentonite), a rare earth metal selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, One or more of Er, Tm, Yb, and Lu, preferably selected from one or more of La, Pr, and Nd) and one or more of cerium oxide.
  • alkali metal oxides preferably selected from the group consisting of sodium oxide and potassium oxide
  • clay preferably selected from the group consisting of kaolin, halloysite, montmorillonite,
  • a method of producing a desulfurization catalyst comprising the steps of:
  • sulfur storage metal is selected from the group consisting of a metal of Group IIB of the periodic table, a metal of Group VB of the periodic table, and a metal of Group VIB of the periodic table or a plurality, preferably one or more selected from the group consisting of zinc, cadmium, cerium, lanthanum, chromium, molybdenum, tungsten, and vanadium, more preferably one or more selected from the group consisting of zinc, molybdenum, and vanadium, more preferably zinc,
  • the inorganic binder is selected from one or more of heat resistant inorganic oxides, more preferably selected from the group consisting of alumina, silica, and zirconia.
  • the inorganic binder is selected from one or more of heat resistant inorganic oxides, more preferably selected from the group consisting of alumina, silica, and zirconia.
  • the wear-resistant component is boron nitride (preferably hexagonal boron nitride) or the boron nitride and an oxide, nitride selected from the element A, a combination of one or more of a carbide, an oxynitride, a carbonitride, a carbon oxide, and a oxycarbonitride, wherein the element A is selected from the group IVB metal element of the periodic table, boron, aluminum, and silicon
  • the wear-resistant component is more preferably selected from the group consisting of boron carbide, silicon nitride, silicon carbide, silicon dioxide, aluminum nitride, aluminum carbide, aluminum oxide, and nitriding.
  • zirconium, zirconium carbide, zirconium oxide, titanium nitride, titanium carbide, and titanium oxide preferably boron nitride
  • an active metal component and/or a precursor thereof wherein the active metal component is selected from the group consisting of a metal element of Group VIII of the periodic table, an oxide of an iron element of the periodic table, a metal element of Group IB of the periodic table, One or more of an oxide of a metal element of Group IB of the periodic table, a metal element of Group VIIB of the periodic table, and a metal element of a Group VIIB of the periodic table, preferably selected from the group consisting of iron, iron oxide, and cobalt.
  • cobalt oxide, nickel, nickel oxide, copper, copper oxide, manganese and manganese oxide more preferably one or more of nickel, nickel oxide, cobalt and cobalt oxide More preferably, nickel, nickel oxide or a combination thereof.
  • the acidic porous material and/or its precursor is selected from the group consisting of molecular sieves and layered pillar clays (preferably selected from the group consisting of retort, cloudstone, bentonite, montmorillonite, and One or more of one or more of smectites, more preferably selected from molecular sieves having an IMF structure (preferably selected from the group consisting of HIM-5 molecular sieves, IM-5 molecular sieves, P-IM-5 molecular sieves, and P a molecular sieve having a FAU structure (preferably selected from the group consisting of X molecular sieve, Y molecular sieve, USY molecular sieve, REUSY molecular sieve, REHY molecular sieve, REY molecular sieve, PUSY molecular sieve, PREHY molecular sieve, and PREY) One or more of the molecular sieves,
  • a medium for contact preferably water and/or an acidic liquid (preferably an aqueous solution of an acid or an acid),
  • step (1) comprises the steps of:
  • (1-1) a step of bringing the component 1), the component 2), the component 3), the optional component 5) and the component 6) into contact to obtain a carrier slurry ,
  • the calcination conditions comprise: calcination temperature of 300-800 ° C, preferably 450-750 ° C, calcination time of 0.5 hours or more, preferably 1-3 hours, oxygenation Under the atmosphere; or, the conditions for the reduction include: a reduction temperature of 300-600 ° C, preferably 400-500 ° C, a reduction time of 0.5-6 hours, preferably 1-3 hours, a hydrogen-containing atmosphere (preferably a hydrogen content of 10 - 60% by volume).
  • drying conditions comprise a drying temperature of 25 to 400 ° C, preferably 100 to 350 ° C, and a drying time of 0.5 hours or more, preferably 2 to 20 hours; or
  • the calcination conditions include a calcination temperature of 400 to 700 ° C, preferably 450 to 650 ° C, and a calcination time of 0.5 hours or longer, preferably 0.5 to 10 hours, under an oxygen-containing atmosphere.
  • the additive is selected from the group consisting of alkali metal oxides (preferably selected from the group consisting of sodium oxide and potassium oxide) One or more), clay (preferably selected from the group consisting of kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, quasi-allotite, saponite, rectorite, sepiolite, attapulgite, One or more of hydrotalcite and bentonite, a rare earth metal selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, One or more of Yb and Lu, preferably one selected from the group consisting of La, Pr, and Nd Or one or more of a variety of) and cerium oxide.
  • alkali metal oxides preferably selected from the group consisting of sodium oxide and potassium oxide
  • clay preferably selected from the group consisting of kaolin, halloysite, montmorillonite, diatomaceous earth, hall
  • a method of desulfurization comprising comprising a sulfur-containing hydrocarbon oil (preferably a crude oil or a petroleum fraction having a boiling range not exceeding 450 ° C, particularly a petroleum fraction having a distillation range of from -42.1 ° C to 350 ° C, more preferably selected from the group consisting of liquefied petroleum Step of contacting one or more of gas, cracked gasoline and diesel fuel with a desulfurization catalyst according to any of the preceding aspects or a desulfurization catalyst produced according to the manufacturing method according to any of the preceding aspects under desulfurization reaction conditions .
  • a sulfur-containing hydrocarbon oil preferably a crude oil or a petroleum fraction having a boiling range not exceeding 450 ° C, particularly a petroleum fraction having a distillation range of from -42.1 ° C to 350 ° C, more preferably selected from the group consisting of liquefied petroleum Step of contacting one or more of gas, cracked gasoline and diesel fuel with a desulfurization catalyst according to any of the preceding aspects or a des
  • the desulfurization reaction conditions comprise: a reaction temperature of 350-500 ° C, preferably 400-450 ° C, and a reaction pressure of 0.5-4 MPa (absolute pressure) under a hydrogen atmosphere, Preferably, it is 1.0-2.0 MPa (absolute pressure), the hydrogen oil volume ratio is 0.1-0.5, preferably 0.15-0.4, and the mass space velocity is 2-6 h -1 , preferably 2.5-5 h -1 .
  • At least one of the following technical effects can be achieved, or in a preferred case, at least two or more of the following technical effects can be simultaneously achieved.
  • the desulfurization catalyst of the invention has better stability and higher desulfurization activity, thereby being capable of more effectively transferring sulfur in the hydrocarbon oil in the process of desulfurization of the hydrocarbon oil.
  • a hydrocarbon oil having a lower sulfur content is obtained.
  • the desulfurization catalyst of the invention has better wear resistance, whereby the catalyst loss in the desulfurization process is lower, so that the desulfurization catalyst can exhibit a longer service life. Reduce the catalyst replenishment cycle and reduce the operating cost of the desulfurization process.
  • the desulfurization catalyst of the present invention can retain the octane number to the utmost extent when desulfurizing gasoline.
  • Example 1 is an XRD pattern of the desulfurization catalyst A1 obtained in Example 1 before and after hydrothermal aging.
  • the terms "precursor”, “precursor” or “precursor” must be understood in the ordinary sense of the chemical industry, unless otherwise specifically stated.
  • the term generally refers to a substance that can be converted to a target substance under dry conditions or calcination conditions.
  • the calcination conditions include a calcination temperature of 300 to 800 ° C, preferably 450 to 750 ° C, a calcination pressure of normal pressure (101,325 Pa), and a calcination time of 0.5 h or more, preferably 1 to 3 h, under an oxygen-containing atmosphere.
  • the drying conditions include a drying temperature of 25 to 400 ° C, preferably 100 to 350 ° C, a drying pressure of normal pressure (101,325 Pa), and a drying time of 0.5 h or more, preferably 2 to 20 h, in the presence of flowing air.
  • the step or treatment has no particular limitation on temperature and pressure, and those skilled in the art can according to the actual situation. Free choice unless the interpretation does not meet the conventional knowledge of those skilled in the art. Further, from the viewpoint of convenience of operation, this also means that the step or treatment can be usually carried out at normal temperature (25 ° C) and normal pressure (101,325 Pa).
  • oxygen-containing gas or “oxygen-containing atmosphere” generally means that the oxygen content is 10% by volume or more, preferably 20% by volume or more, unless otherwise specified.
  • hydrocarbon oil must be understood in the ordinary sense of the fuel chemical industry.
  • the term generally refers to a hydrocarbon or hydrocarbon mixture that is used as a feedstock in the fuel chemical industry or as a product, particularly in the form of crude oil or petroleum fractions having a boiling range not exceeding 450 °C.
  • the term "crude oil” must be understood in the ordinary sense of the fuel chemical industry.
  • the term generally refers to a petroleum fraction having a boiling range of no more than 450 °C.
  • liquefied petroleum gas must be understood in the ordinary sense of the fuel chemical industry.
  • the term generally refers to a colorless volatile liquid obtained by natural gas or a mixture of propane, propylene, butane, butene, under pressure and temperature liquefaction.
  • the term "cracked gasoline” must be understood in the ordinary sense of the fuel chemical industry.
  • the term generally refers to a hydrocarbon mixture having a boiling range of from 40 ° C to 210 ° C or any fraction thereof, typically a product from a thermal or catalytic process that cracks larger hydrocarbon molecules into smaller molecules.
  • suitable thermal cracking processes include, but are not limited to, coking, thermal cracking, visbreaking, and the like
  • suitable catalytic cracking processes include, but are not limited to, fluidized bed catalytic cracking and heavy oil catalytic cracking, etc. combination.
  • the cracked gasoline includes, but is not limited to, coker gasoline, thermally cracked gasoline, visbroken gasoline, fluid catalytic cracked gasoline, and heavy oil cracked gasoline, and combinations thereof.
  • the cracked gasoline may also be subjected to fractionation and/or hydrotreatment in advance, as needed.
  • diesel fuel must be understood in the ordinary sense of the fuel chemical industry.
  • the term generally refers to a hydrocarbon mixture having a boiling range of from 170 ° C to 450 ° C or any fraction thereof.
  • the diesel fuel includes, but is not limited to, light cycle oil, kerosene, straight run diesel, hydrotreated diesel, and the like, and combinations thereof.
  • sulfur must be understood in the ordinary sense of the fuel chemical industry.
  • the term generally refers to any form of sulfur element, particularly various sulfur compounds that are often present in hydrocarbon oils.
  • the sulfur compounds include, but are not limited to, carbon oxysulfide (COS), carbon disulfide (CS 2 ), mercaptans or other thiophenes, and the like, especially thiophene, benzothiophene, alkylthiophene, alkylbenzo Thiophene or alkyldibenzothiophene, or a thiophene compound having a larger molecular weight.
  • oxide generally refers to the most stable oxide of the target element in air at ambient temperature and pressure, unless otherwise specifically stated.
  • silicon oxide generally refers to the most stable oxide of silicon in air at normal temperature and pressure, that is, silica
  • alumina generally refers to the most stable aluminum in air at normal temperature and pressure.
  • Oxide namely aluminum oxide.
  • boiling point In the context of the present invention, boiling point, boiling range (sometimes referred to as distillation range), cutting temperature, end point and initial boiling point or similar physical property parameters all refer to measurements at atmospheric pressure (101325 Pa).
  • the measurement conditions of the XRD pattern include an X-ray diffractometer (Siemens Model D5005), a Cu target, K ⁇ radiation, a solid state detector, a tube voltage of 40 kV, and a tube current of 40 mA.
  • the measurement conditions of the BET method include: testing at a liquid nitrogen temperature of -196 ° C on an ASAP 2010 type adsorber manufactured by Mike Corporation, USA. Before the analysis, the sample was degassed at 300 ° C, 1.3 Pa for 8 h, and the specific surface area was calculated according to the BET method.
  • the composition of the desulfurization catalyst includes at least: a component 1) a sulfur storage metal oxide, a component 2) an inorganic binder, a component 3) a wear resistant component, and a component 4) an active metal component.
  • the sulfur storage metal in the component 1) sulfur storage metal oxide, may be a metal of Group IIB of the periodic table, a metal of Group VB of the periodic table, and a group VIB of the periodic table.
  • the metal preferably zinc, cadmium, ruthenium, osmium, chromium, molybdenum, tungsten and vanadium, more preferably zinc, molybdenum and vanadium, more preferably zinc.
  • the sulfur storage metal oxide for example, zinc oxide, cadmium oxide, vanadium oxide, cerium oxide, cerium oxide, chromium oxide, or the like may be mentioned.
  • Molybdenum oxide and tungsten oxide are preferred, such as zinc oxide, molybdenum oxide and vanadium oxide, more preferably zinc oxide.
  • any inorganic substance capable of exerting a bonding function which is conventionally used in the production of a catalyst in the chemical industry may be selected, and particularly, a heat resistant inorganic oxide may be mentioned.
  • the heat resistant inorganic oxide include alumina, silica, zirconia, titania, and tin oxide, and specific examples thereof include alumina, zirconia, titania, and tin oxide.
  • alumina as an inorganic binder may be present in the desulfurization catalyst in the form of alumina, a precursor thereof or a mixture of both.
  • the alumina in addition to the aluminum oxide, it may be SB powder, hydrated alumina, aluminum sol, boehmite (boehmite), pseudo-hydrated boehmite (pseudo-alumina) Boehmite), alumina trihydrate and amorphous aluminum hydroxide, preferably SB powder, pseudoboehmite and aluminum sol.
  • titanium oxide as an inorganic binder may be present in the desulfurization catalyst in the form of titanium oxide, a precursor thereof or a mixture of both.
  • titanium oxide in addition to titanium dioxide, hydrous titanium oxide, rutile type titanium dioxide or anatase type titanium dioxide may be used. These titanium oxides may be used alone or in combination of any ones in any ratio.
  • zirconia as an inorganic binder may be present in the desulfurization catalyst in the form of zirconia, a precursor thereof or a mixture of both, depending on the method of producing the desulfurization catalyst.
  • zirconia in addition to zirconium dioxide, hydrated zirconia may be used. These zirconias may be used alone or in combination of any ones in any ratio.
  • tin oxide as an inorganic binder may be present in the desulfurization catalyst in the form of tin oxide, a precursor thereof or a mixture of both.
  • tin oxide in addition to tin dioxide, it may be hydrated tin oxide.
  • the wear resistant component is a combination of boron nitride or boron nitride and a non-boron nitride type wear resistant component.
  • the non-boron nitride type wear-resistant component for example, any wear-resistant component conventionally used in the art for producing a desulfurization catalyst can be mentioned, and specific examples thereof include oxides and nitrides of the element A. Carbide, oxynitride, carbonitride, carbon oxide or carbon oxynitride.
  • the element A may be a metal element of Group IVB of the periodic table, boron, aluminum or silicon.
  • non-boron nitride type wear-resistant component more specifically, for example, boron carbide, silicon nitride, silicon carbide, silicon dioxide, aluminum nitride, aluminum carbide, aluminum oxide, zirconium nitride, zirconium carbide, Zirconia, titanium nitride, titanium carbide and titanium oxide.
  • These non-boron nitride type wear-resistant components may be used singly or in combination of any ones in any ratio.
  • the content of boron nitride is generally 5% by weight or more, preferably 10% by weight or more, and more preferably 50% by weight or more based on the total weight of the combination, but may not be limited thereto.
  • the component 3) wear-resistant component boron nitride is preferred, and hexagonal phase boron nitride is more preferred.
  • the hexagonal phase boron nitride has a hexagonal crystal structure and has a sheet-like and/or layered structure.
  • the ratio of the boron nitride surface area (BET method) generally 100-300m 2 / g, preferably 120-260m 2 / g.
  • the nitrogen-catalyzed pore volume (BET method) of the boron nitride is generally from 0.05 to 0.1 cm 3 /g.
  • the XRD spectrum of the desulfurization catalyst has a characteristic peak of boron nitride at 2 ⁇ of 27.2° ⁇ 0.5°, 41.5° ⁇ 0.5° and 50.3° ⁇ 0.5°, wherein 2 ⁇ is 41.5° ⁇ 0.5°. It is the strongest characteristic peak.
  • the desulfurization catalyst contains boron nitride (particularly hexagonal phase boron nitride) as a component, and since the boron nitride of the specific structure has high hydrothermal stability, it can be effectively used in the desulfurization process of the hydrocarbon oil. Avoid formation of catalytic inert substances such as zinc silicate in the composition of the desulfurization catalyst, ensure better desulfurization activity and stability of the desulfurization catalyst, and more effectively adsorb sulfur in the hydrocarbon oil to the desulfurization catalyst in the process of desulfurization of the hydrocarbon oil. A hydrocarbon oil having a lower sulfur content is obtained.
  • the desulfurization catalyst has no characteristic peak of zinc silicate at 2 ⁇ , 20.5, 25.54, 48.9, and 59.4 in its XRD spectrum after hydrothermal aging.
  • the conditions of the hydrothermal aging include a treatment temperature of 500 to 700 ° C, a partial pressure of water vapor of 10 to 30 kPa, and a treatment time of 10 to 24 hours.
  • the desulfurization catalyst thus has better wear resistance, the desulfurization catalyst has lower loss in desulfurization process, longer service life, and is more suitable for the desulfurization process of repeated reaction and regeneration.
  • the inorganic binder does not contain a silicon element.
  • the inorganic binder it is preferred that the inorganic binder does not contain silica, a precursor thereof, or a mixture of the two.
  • the wear resistant component does not contain silicon.
  • the element A is absent or not silicon.
  • any active metal component conventionally known in the art for a desulfurization catalyst can be mentioned, and specific examples thereof include a metal of Group VIII of the periodic table.
  • periodic table of the oxide of the iron element, the metal element of the group IB of the periodic table, the oxide of the metal element of the group IB of the periodic table, the metal element of the group VIIB of the periodic table and the metal element of the group VIIB of the periodic table The oxide is more specifically, for example, iron, iron oxide, cobalt, cobalt oxide, nickel, nickel oxide, copper, copper oxide, manganese and manganese oxide, and more specifically, for example, nickel and nickel are oxidized.
  • the material, cobalt and cobalt oxide more specifically, for example, nickel, nickel oxide or a combination thereof.
  • the active metal component may be present in the form of a metal element, a metal oxide or a mixture thereof. These active metal components may be used alone or in combination of any ones in any ratio.
  • the composition of the desulfurization catalyst may optionally also comprise component 5) an acidic porous material from the standpoint of maximizing the octane number.
  • an acidic porous material for example, any acidic porous material conventionally known in the art may be mentioned, and specific examples thereof include molecular sieves and layered column clays, preferably molecular sieves. These acidic porous materials may be used alone or in combination of any ones in any ratio.
  • the layered column clay is an interlayer mineral crystal composed of two monolayer mineral clay components alternately arranged with a bottom surface spacing of not less than 1.7 nm.
  • Specific examples of the layered column clay include a rector, a cloud, a bentonite, a montmorillonite, and a smectite. These layered pillar clays may be used alone or in combination of any ones in any ratio.
  • a molecular sieve having an IMF structure for example, a molecular sieve having an IMF structure, a molecular sieve having a FAU structure, a molecular sieve having a BEA structure, a molecular sieve having a SAFO structure, and a molecular sieve having an MFI structure can be exemplified.
  • These molecular sieves may be used alone or in combination of any ones in any ratio.
  • a typical representative of the molecular sieve having an MFI structure is a ZSM-5 zeolite developed by Mobil Corporation of the United States, characterized by having The ten-membered ring structure.
  • the molecular sieve having the MFI structure may be a ZSM-5 molecular sieve and/or a ZSM-5 molecular sieve modified with phosphorus or a transition metal.
  • the molecular sieve having the MFI structure has a molar ratio of SiO 2 :Al 2 O 3 of generally 15 to 100:1, preferably 20 to 40:1.
  • a ZSM-5 molecular sieve As the molecular sieve having the MFI structure, a ZSM-5 molecular sieve, a ZRP-1 molecular sieve, and a ZSP-3 molecular sieve are preferable. These molecular sieves may be used alone or in combination of any ones in any ratio.
  • the molecular sieve having the IMF structure is a two-dimensional ten-membered ring channel structure, the effective pore width is in the range of 0.48-0.56 nm, and a limited channel exists in the third dimension, and the structure is two-dimensional.
  • the ten-membered ring channel and some three-dimensional features of the cavity, the diameter of the channel is similar to ZSM-5.
  • the molecular sieve having an IMF structure may further include a modified molecular sieve having an IMF structure.
  • the modification method may include a hydrothermal method, a chemical treatment method (for example, a mineral acid treatment method, a fluorosilicate aluminum-supplementing method and a SiCl 4 gas phase method), or a combination of hydrothermal and chemical treatment.
  • the molecular sieve obtained after the modification includes, but is not limited to, HIM-5, IM-5, P-IM-5, P-Si-IM-5 and the like.
  • the molecular sieve having the IMF structure has a molar ratio of SiO 2 :Al 2 O 3 of generally 20 to 70:1, preferably 30 to 50.
  • a HIM-5 molecular sieve, an IM-5 molecular sieve, a P-IM-5 molecular sieve, and a P-Si-IM-5 molecular sieve are preferable. These molecular sieves may be used alone or in combination of any ones in any ratio.
  • the molecular sieve having a FAU structure is a faujasite type molecular sieve having a three-dimensional twelve-membered ring channel and a pore diameter of
  • the FAU structure molecular sieve is mainly an X-type and Y-type molecular sieve.
  • a SiO 2 /Al 2 O 3 molar ratio of 2.2-3.0 is an X-type molecular sieve
  • a SiO 2 /Al 2 O 3 molar ratio of more than 3.0 is Y type molecular sieve.
  • the skeleton structures of X-type and Y-type molecular sieves belong to the hexagonal system, the space group structure is Fd3m, and the unit cell parameters of the X-type molecular sieve Unit cell parameters of Y-type molecular sieve
  • the molecular sieve having a FAU structure further includes a modified molecular sieve having a FAU structure.
  • the modification method may include a hydrothermal method, a chemical treatment method (for example, a mineral acid treatment method, a fluorosilicate aluminum-supplementing method and a SiCl 4 gas phase method), or a combination of hydrothermal and chemical treatment.
  • the molecular sieve obtained by the modification includes, but is not limited to, an ultrastable Y type molecular sieve (USY), REUSY, REHY, REY containing a rare earth element, and PUSY, PREHY, PREY, etc. containing phosphorus. Further, such molecular sieves have a molar ratio of SiO 2 : Al 2 O 3 of from 1 to 4 : 1 , preferably from 1.5 to 3 : 1 .
  • X molecular sieve, Y molecular sieve, USY molecular sieve, REUSY molecular sieve, REHY molecular sieve, REY molecular sieve, PUSY molecular sieve, PREHY molecular sieve, and PREY molecular sieve are preferable. These molecular sieves may be used alone or in combination of any ones in any ratio.
  • the molecular sieve having a BEA structure is mainly a ⁇ molecular sieve having a structural formula of (Na n [Al n Si 64-n O 128 ], n ⁇ 7), which is composed of two structures but close A mixed crystal formed by the associated polymorphs A and B. Both have a twelve-membered three-dimensional pore system.
  • Polymorph A forms a pair of enantiomers
  • the space group is P4122 and P4322
  • the unit cell parameters are
  • the size of the twelve-membered ring channel in the molecular sieve having the BEA structure is ⁇ 100 direction> and ⁇ 001 direction>.
  • the molecular sieve having the BEA structure has a molar ratio of SiO 2 :Al 2 O 3 of generally 5 to 10:1, preferably 7 to 9:1.
  • a ⁇ molecular sieve is preferred. These molecular sieves may be used alone or in combination of any ones in any ratio.
  • the molecular sieve having the SAPO structure is a near-body silicoaluminophosphate obtained by introducing silicon into an aluminum phosphate skeleton, the skeleton of which is composed of PO 4 + , AlO 4 - and SiO 2 tetrahedra.
  • This type of molecular sieve includes 13 three-dimensional microporous framework structures with pore sizes of The pore volume is from 0.18 to 0.48 cm 3 /g.
  • the molecular sieve having the SAPO structure is, for example, SAPO-5, SAPO-11, SAPO-31, SAPO-34, and SAPO-20.
  • the pore sizes of SAPO-5, SAPO-11, SAPO-31, SAPO-34 and SAPO-20 molecular sieves are (12 yuan ring), (10 yuan ring), (10 yuan ring), (8 yuan ring) and (6-membered ring), the pore volumes were 0.31, 0.18, 0.42, 0.42, and 0.40 cm 3 /g, respectively.
  • SAPO-5 molecular sieve, SAPO-11 molecular sieve, SAPO-31 molecular sieve, SAPO-34 molecular sieve, and SAPO-20 molecular sieve are preferable. These molecular sieves may be used alone or in combination of any ones in any ratio.
  • the composition of the desulfurization catalyst may also optionally include an additive.
  • an additive for example, any additive conventionally known in the art for a desulfurization catalyst may be mentioned, and specific examples thereof include an alkali metal oxide, a clay, a rare earth metal oxide, and strontium oxide (Sb 2 O 3 ). These additives may be used alone or in combination of any ones in any ratio.
  • alkali metal oxide sodium oxide and potassium oxide are preferred. These alkali metal oxides may be used alone or in combination of any ones in any ratio.
  • the alkali metal oxide relative to the total weight of the desulfurization catalyst, or relative to the component 1) to the component 5) and the total weight of the additive (as 100% by weight)
  • the content in terms of alkali metal oxide is generally from 0.1 to 5% by weight.
  • the clay for example, a clay raw material well known to those skilled in the art may be mentioned, preferably kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, quasi-allogite, Soapstone, rectorite, sepiolite, attapulgite, hydrotalcite and bentonite.
  • these clays may be used alone or in combination of any ones in any ratio.
  • the clay dry basis
  • the content is generally from 1 to 10% by weight.
  • the rare earth metal of the rare earth metal oxide La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu are furthermore.
  • La, Pr and Nd are preferred.
  • These rare earth metals or rare earth metal oxides may be used alone or in combination of any ones in any ratio.
  • the rare earth metal oxide relative to the total weight of the desulfurization catalyst, or relative to the component 1) to the component 5) and the total weight of the additive (as 100 wt%)
  • the content in terms of the rare earth metal oxide is generally from 1 to 5% by weight.
  • the content of the cerium oxide when included, relative to the total weight of the desulfurization catalyst, or relative to the component 1) to the component 5) and the total weight of the additive (as 100 wt%), is generally from 1 to 3% by weight.
  • the tap density of the desulfurization catalyst (according to the Chinese National Standard GB/T 21354-2008) is generally 1.0-1.3 cm 3 /g.
  • the specific surface area (BET method) of the desulfurization catalyst is generally from 25 to 35 m 2 /g.
  • the total weight of the desulfurization catalyst, or relative to the total weight of the component 1) to the component 5) (as 100 wt%)
  • the sulfur storage metal oxide (based on the sulfur storage metal oxide) accounts for 10 to 80% by weight
  • the inorganic binder (in terms of oxide) accounts for 3 to 35 wt%
  • the wear resistant component (dry basis) accounts for 5 40% by weight
  • the active metal component (calculated as a metal element) is 5 to 30% by weight
  • the acidic porous material (dry basis) is 0 to 20% by weight.
  • the sulfur storage is relative to the total weight of the desulfurization catalyst, or relative to the total weight of the component 1) to the component 5) (as 100% by weight)
  • the metal oxide (calculated as sulfur storage metal oxide) accounts for 25-70% by weight
  • the inorganic binder (as oxide) accounts for 6-25% by weight
  • the wear-resistant component (dry basis) accounts for 10-30wt% %
  • the active metal component (calculated as a metal element) accounts for 8 to 25% by weight
  • the acidic porous material (dry basis) accounts for 1 to 15% by weight.
  • the sulfur storage is relative to the total weight of the desulfurization catalyst, or relative to the total weight of the component 1) to the component 5) (as 100% by weight)
  • the metal oxide (calculated as sulfur storage metal oxide) accounts for 40-60% by weight
  • the inorganic binder (as oxide) accounts for 8-15% by weight
  • the wear-resistant component (dry basis) accounts for 12-25wt% %
  • the active metal component (based on the metal element) accounts for 12-20% by weight
  • the acidic porous material (dry basis) accounts for 2-10% by weight.
  • the content of each of the foregoing components in the desulfurization catalyst can be measured by the following method (hereinafter sometimes referred to as XRD measurement):
  • the sample of the desulfurization catalyst was calcined at 650 ° C for 4 hours under an air atmosphere, and stored under a nitrogen atmosphere for use. 1 g of the calcined catalyst sample was weighed and subjected to XRD pattern measurement. The XRD spectrum is compared with a standard spectrum of the inorganic crystal structure database to identify each component and further determine the strongest characteristic peak of each of the components. Then, the peak area of the strongest characteristic peak of a component is divided by the sum of the peak areas of all the strongest characteristic peaks, and the ratio is used as the content of the component.
  • the active metal component is obtained by the measurement method in terms of the content of the metal oxide, and its content in terms of metal element can be obtained by simple conversion.
  • the specific content of each component in the desulfurization catalyst measured by the XRD method can be further referred to Q/SH 3360215-2009 "Determination of the chemical composition of the S-Zorb adsorbent", which is hereby incorporated by reference in its entirety.
  • each component including the aforementioned components 1) to 5) and additives, in the desulfurization catalyst It may be in the form of matter described in the preceding text of this manual (also known as the final material form, such as an oxide), but it may also be in the form of a precursor (such as hydroxide, hydrate or metal element). Or a combination of the two exists. It is known to those skilled in the art that the structure of such precursor forms is ever-changing and covers a wide range, thereby being incompletely predictable or not fully inductive.
  • the specification only describes the final material form (such as an oxide) for these component texts, without any precursor form thereof (such as hydroxide).
  • Detailed description of the substance, hydrate or metal element, etc. and does not describe in detail any combination of the final material form and the precursor form (such as a combination of oxides and hydroxides, oxides and hydrates) Combination or combination of oxide and metal element, etc.).
  • the precursor forms or the combinations are obviously within the scope of the invention, and the invention variants are also included in the scope of protection of the present invention. .
  • composition is also understood to mean the composition after calcination.
  • the inventors of the present invention have found through research that any of the precursor forms or the combinations can be converted into the final material form by calcination.
  • the firing conditions include: baking at 650 ° C for 4 hours under an air atmosphere.
  • the desulfurization catalyst can be produced using a specific manufacturing method.
  • the invention also relates to a method of producing a desulfurization catalyst.
  • the method for producing the desulfurization catalyst comprises the following steps (1) to (3).
  • steps (1) to (3) both step (2) and step (3) are optional steps.
  • Step (1) contacting at least component 1) to component 6) to obtain a catalyst precursor.
  • the step (1) is also referred to as a contacting step.
  • the components undergo a contact reaction in a contacting system, such as a reactor, to form a product mixture.
  • the catalyst precursor is then obtained by drying the product mixture in any manner conventionally known to remove volatile components such as water, as needed.
  • the catalyst precursor may also be referred to as a desulfurization catalyst before calcination, and is also a desulfurization catalyst covered by the scope of the present invention.
  • drying, drying, and blast drying may be mentioned.
  • the drying conditions for example, a drying temperature of 25 to 400 ° C, preferably 100 to 350 ° C, and a drying time of 0.5 h can be mentioned. Above, it is preferably 0.5 to 100 h, more preferably 2 to 20 h.
  • the step (1) comprises the following steps (1-1) to (1-3).
  • Step (1-1) contacting the component 1), the component 2), the component 3), the optional component 5) and the component 6) to obtain a carrier slurry .
  • the step (1-1) may be carried out in the manner of the step (1a) or in the manner of the step (1b), and is not particularly limited.
  • step (1-2) can be carried out in the same manner as in step (2a).
  • the carrier slurry may be in the form of a paste or slurry, preferably in the form of a slurry.
  • the carrier slurry is formed into microspheres having a particle size of 20 to 200 ⁇ m by spray drying.
  • the solids content of the carrier slurry before drying is generally from 10 to 50% by weight, preferably from 20 to 50% by weight.
  • the solid content can be adjusted in a conventionally known manner, such as thickening the carrier slurry or adding water to the carrier slurry, and is not particularly limited.
  • the drying or the first drying may be carried out in a manner and method known to those skilled in the art, for example, the drying method may be drying Dry, dry, and blast dry.
  • the drying temperature is usually from 25 to 400 ° C, preferably from 100 to 350 ° C
  • the drying time is usually from 0.5 h or more, preferably from 0.5 to 100 h, more preferably from 2 to 20 h.
  • the calcination or the first calcination may be carried out in a manner and method known to those skilled in the art.
  • the calcination conditions for example, the calcination temperature is generally 400-700 ° C, excellent The temperature is selected from 450 to 650 ° C, and the calcination time is usually 0.5 hours or more, preferably 0.5 to 100 hours, more preferably 0.5 to 10 hours, under an oxygen-containing atmosphere such as an air atmosphere.
  • the step (1-3) can be carried out in the same manner as in the step (3a).
  • the contacting or the introducing is preferably carried out by a dipping method or a precipitation method.
  • the catalyst support may be impregnated with a solution or suspension of the component 4); or, in order to carry out the precipitation process, the component 4) may be first The solution or suspension is mixed with the catalyst carrier and then precipitated by the addition of aqueous ammonia.
  • the second drying may be carried out in a manner and method known to those skilled in the art, for example, the drying method may be air drying, drying, and air drying.
  • drying conditions for example, a drying temperature of 50 to 300 ° C, preferably 100 to 250 ° C, and a drying time of 0.5 to 8 h, preferably 1 to 5 h can be mentioned.
  • the component 1) is a sulfur storage metal oxide and/or a precursor thereof.
  • the sulfur storage metal oxide is as described herein before.
  • the precursor of the sulfur storage metal oxide for example, any of the contact reaction by the step (1) and/or the conversion to the sulfur storage metal oxide under the calcination condition of the step (2) may be mentioned.
  • Specific examples of the substance include hydroxides of the sulfur storage metal (such as zinc hydroxide, etc.), hydrates, and water-soluble acid salts (such as zinc sulfate, zinc nitrate, zinc acetate, etc.), etc., and those skilled in the art. Conventional selection can be made in this regard, and is not particularly limited.
  • the component 1) may be directly added to the contacting step, or may be added to the contacting step after mixing with water to adjust to an aqueous solution or a slurry form, and is not particularly limited.
  • the component 2) is an inorganic binder and/or a precursor thereof.
  • the inorganic binder is as described herein before.
  • the precursor of the inorganic binder for example, any substance which can be converted into the inorganic binder by the contact reaction of the step (1) and/or the calcination condition of the step (2) can be mentioned.
  • the component 2) may be directly added to the contacting step, or may be added to the contacting step after mixing with water to adjust to an aqueous solution or a slurry form, and is not particularly limited.
  • a substance which can be converted into alumina under the calcination condition of the step (2) can be mentioned, for example, Illustrate SB powder, hydrated alumina, aluminum sol, boehmite (boehmite), pseudo-hydrated boehmite (pseudo-boehmite), alumina trihydrate and amorphous aluminum hydroxide, preferably SB powder, pseudo-boehmite and aluminum sol.
  • these precursors may be used alone or in combination of any ones in any ratio.
  • the component 2) particularly as a precursor of the titanium oxide, for example, hydrolysis can be carried out by the contact reaction of the step (1), and then the calcination condition in the step (2)
  • the substance which can be converted into anatase type titanium dioxide is specifically, for example, titanium tetrachloride, ethyl titanate, isopropyl titanate, titanium acetate, and hydrated titanium oxide. These precursors may be used alone or in combination of any ones in any ratio.
  • the component 2) particularly as the precursor of the zirconia, for example, hydrolysis can be carried out by the contact reaction of the step (1), followed by the calcination condition in the step (2).
  • the substance which can be converted into zirconium dioxide can be exemplified by zirconium tetrachloride, zirconium oxychloride, zirconium acetate, hydrated zirconia and amorphous zirconia. These precursors may be used alone or in combination of any ones in any ratio.
  • the component 2) particularly as the precursor of the tin oxide
  • hydrolysis can be carried out by the contact reaction of the step (1), followed by the calcination condition in the step (2).
  • the substance which can be converted into tin dioxide is specifically, for example, tin tetrachloride, tin tetraisopropoxide, tin acetate, and hydrated tin oxide. These precursors may be used alone or in combination of any ones in any ratio.
  • the component 3) is a wear resistant component and/or a precursor thereof.
  • the wear resistant component is as described herein before.
  • a contact reaction by the step (1) and/or a step (2) may be mentioned. Any substance capable of being converted into the wear-resistant component under firing conditions can be conventionally selected by those skilled in the art and is not particularly limited.
  • the component 3) may be directly added to the contacting step, or may be added to the contacting step after mixing with water to adjust to an aqueous solution or a slurry form, and is not particularly limited.
  • the component 4) is an active metal component and/or a precursor thereof.
  • the active metal component is as described herein before.
  • the precursor of the active metal component for example, any substance which can be converted into the active metal component by the contact reaction of the step (1) and/or under the calcination condition of the step (2) can be mentioned.
  • Specific examples thereof include hydroxides, hydrates, organic acid salts (such as acetates and oxalates) and inorganic acid salts (such as carbonates and nitrates) of the corresponding metal elements in the active metal component.
  • Sulfate and thiocyanate, etc., especially nitrates, etc. can be conventionally selected by those skilled in the art, and are not particularly limited.
  • the component 4) may be directly added to the contacting step, or may be added to the contacting step after mixing with water to adjust to an aqueous solution or a slurry form, and is not particularly limited.
  • the component 5) is an optional component and is an acidic porous material and/or a precursor thereof.
  • the acidic porous material is as described herein before.
  • the precursor of the acidic porous material for example, any substance which can be converted into the acidic porous material by the contact reaction of the step (1) and/or the calcination condition of the step (2) can be mentioned.
  • the skilled person can make conventional selections in this regard, and is not particularly limited.
  • the component 5) may be directly added to the contacting step, or may be added to the contacting step after mixing with water to adjust to an aqueous solution or a slurry form, and is not particularly limited.
  • the contacting step (including the step (1), the step (1-1), or the step (1a) and/or the step (1b) may be further performed as needed.
  • the additive and/or its precursor are introduced as an additive component.
  • the additives are as described herein before.
  • the precursor of the additive for example, any substance which can be converted into the additive by the contact reaction of the step (1) and/or under the calcination condition of the step (2) can be exemplified by those skilled in the art.
  • the additive may be directly added to the contacting step, or may be added after being mixed with water and adjusted to an aqueous solution or a slurry form.
  • the contact step is not particularly limited. Further, the amounts of these additive components can be directly referred to the conventional knowledge in the art, and are not particularly limited.
  • the precursor of the alkali metal oxide for example, a substance which can be converted into an alkali metal oxide under the calcination condition of the step (2) can be mentioned, and specific examples thereof include hydrogen of an alkali metal. Oxides, nitrates, sulfates and phosphates. These precursors may be used alone or in combination of any ones in any ratio.
  • the component 6) is a contact medium.
  • the contact medium for example, any medium conventionally used in the production of a desulfurization catalyst in the art may be mentioned, and specific examples thereof include water, an alcohol, and an acidic liquid. These contact media may be used singly or in combination of any ones in any ratio.
  • the amount of water used is not particularly limited as long as the contact reaction can be carried out, for example, in the form of a slurry.
  • an aqueous solution of an acid or an acid can be mentioned.
  • the acid include a water-soluble inorganic acid and a water-soluble organic acid, and specific examples thereof include hydrochloric acid, nitric acid, phosphoric acid, and acetic acid. These acids may be used alone or in combination of any ones in any ratio.
  • the acidic liquid is generally used in an amount such that the pH of the contact reaction reaches 1-5, preferably 1.5-4.
  • the relative charge ratio between the components is generally,
  • the relative charge ratio between the components is preferably, by weight
  • the relative charge ratio between the components is preferably, by weight
  • Step (2) the catalyst precursor is calcined (referred to as second calcination) to obtain a desulfurization catalyst.
  • the desulfurization catalyst may be referred to as a desulfurization catalyst after calcination, and is also a desulfurization catalyst covered by the scope of the present invention.
  • the second calcination in step (2), can be carried out in a manner and method known to those skilled in the art.
  • the calcination conditions include a calcination temperature of usually 300 to 800 ° C, preferably 450 to 750 ° C, and a calcination time of usually 0.5 h or more, preferably 1 to 3 h.
  • the second calcination can be carried out in the presence of oxygen or an oxygen-containing gas.
  • Step (3) Optionally, the desulfurization catalyst is reduced.
  • the step (3) only at least part (preferably all) of the active metal component in the desulfurization catalyst is converted into a metal element of the corresponding metal element by the reduction, so that it is substantially It exists in a reduced state, but does not substantially convert a metal element which may be contained in other components in the desulfurization catalyst into a simple substance of a metal.
  • the reduction temperature is usually 300-600 ° C, preferably 400-500 ° C
  • the reduction time is generally 0.5-6 hours, preferably 1-3 hours, in a hydrogen-containing atmosphere (preferably hydrogen content). It is 10-60% by volume).
  • the step (3) may be carried out immediately after the end of the step (2), or before the desulfurization catalyst is used (i.e., before being used for catalytic desulfurization). Since the active metal component is easily oxidized, it is preferred to carry out step (3) before the use of the desulfurization catalyst for ease of transportation.
  • any of the foregoing desulfurization catalysts of the present invention have hydrocarbon oil desulfurization activity.
  • the desulfurization catalyst includes both the foregoing text descriptions of the present specification.
  • the desulfurization catalyst also includes a desulfurization catalyst produced by the production method described in the foregoing text of the specification. To this end, the invention also relates to a desulfurization process.
  • the desulfurization process comprises the step of contacting a sulfur-containing hydrocarbon oil with any of the foregoing desulfurization catalysts of the present invention under desulfurization reaction conditions.
  • the sulfur content of the hydrocarbon oil can be lowered to 10 ⁇ g/g or less, or even lower.
  • hydrocarbon oil a crude oil or a petroleum fraction having a boiling range of not more than 450 ° C, particularly a petroleum fraction having a distillation range of from -42.1 ° C to 350 ° C, more preferably selected from liquefied petroleum gas, is preferred.
  • a crude oil or a petroleum fraction having a distillation range of from -42.1 ° C to 350 ° C, more preferably selected from liquefied petroleum gas is preferred.
  • These hydrocarbon oils may be used alone or in combination of any ones in any ratio.
  • the sulfur content of the hydrocarbon oil is generally from 200 to 1000 ⁇ g/g.
  • the contacting in the desulfurization method, as the manner of the contact, for example, a countercurrent contact or a downstream contact may be mentioned. Additionally, the contacting can be carried out, for example, in any reactor known in the art as is conventionally known. Specific examples of the reactor include a fixed bed reactor and a fluidized bed reactor.
  • the reaction temperature is generally 350-500 ° C, preferably 400-450 ° C
  • the reaction pressure is generally 0.5-4 MPa (absolute pressure), preferably 1.0-2.0 MPa (absolute pressure)
  • hydrogen oil volume ratio is generally 0.1-0.5, preferably 0.15-0.4
  • mass space velocity is generally 2-6 h -1 , preferably 2.5-5 h -1 .
  • the desulfurization catalyst after the catalytic desulfurization reaction can be reused after regeneration.
  • the regeneration may be carried out under an oxygen atmosphere, and the regeneration conditions may include a regeneration pressure of atmospheric pressure (101,325 Pa) and a regeneration temperature of 400 to 700 ° C, preferably 500 to 600 ° C.
  • the regenerated desulfurization catalyst is also subjected to reduction under a hydrogen-containing atmosphere prior to re-desulfurization of the hydrocarbon oil.
  • the reducing conditions of the regenerated desulfurization catalyst may include a temperature of 350 to 500 ° C, preferably 400 to 450 ° C, a pressure of 0.2 to 2 MPa (absolute pressure), preferably 0.2 to 1.5 MPa (absolute pressure).
  • the resulting carrier slurry was spray dried using a Niro Bowen Nozzle TowerTM model spray dryer at a spray drying pressure of 8.5 MPa and a spray drying gas inlet temperature of 480 ° C and an outlet temperature of 150 °C.
  • the microspheres obtained by spray drying are first dried at 180 ° C for 1 h, and then calcined at 635 ° C for 1 h to obtain a catalyst carrier;
  • the calcined product was reduced in a hydrogen atmosphere (hydrogen content: 70% by volume, and the balance was nitrogen) at 425 ° C for 2 h to obtain a desulfurization catalyst A1.
  • the dry chemical composition of the desulfurization catalyst A1 is: zinc oxide content of 44.3 wt%, hexagonal boron nitride content of 20.6% by weight, HIM-5 molecular sieve content of 7.0 wt%, titanium dioxide content of 10.0 wt%, and nickel content of 18.1 wt. %.
  • the spray-drying molding of the catalyst carrier slurry was carried out in accordance with the method of Example 1 and the active component nickel was introduced, and after reduction, the desulfurization catalyst A2 was obtained.
  • the dry chemical composition of the desulfurization catalyst A2 is: a zinc oxide content of 55.2% by weight, a hexagonal boron nitride content of 15.0% by weight, a REY molecular sieve content of 3.0% by weight, an alumina content of 11.7% by weight, and a nickel content of 15.1% by weight. .
  • Spray drying molding of the catalyst carrier slurry was carried out in accordance with the method of Example 1.
  • the calcined product and the catalyst were prepared in the same manner as in Example 1, except that a nickel nitrate and cobalt nitrate-impregnated catalyst carrier was replaced with a solution of nickel nitrate and cobalt nitrate, and active components of nickel and cobalt were introduced, followed by reduction to obtain a desulfurization catalyst A3.
  • the dry chemical composition of the desulfurization catalyst A3 is: zinc oxide content of 48.3 wt%, hexagonal boron nitride content of 12.0 wt%, SAPO-34 molecular sieve content of 10.0 wt%, titanium dioxide content of 13.5% by weight, and nickel content of 8.1 wt. %, the cobalt content was 8.1% by weight.
  • the spray-drying molding of the catalyst carrier slurry was carried out in accordance with the method of Example 1 and the active component nickel was introduced, and after reduction, the desulfurization catalyst A4 was obtained.
  • the dry chemical composition of the desulfurization catalyst A4 is: zinc oxide content of 48.3 wt%, hexagonal boron nitride content of 12.0 wt%, ZSP-3 molecular sieve content of 10.0 wt%, titanium dioxide content of 13.5% by weight, and nickel content of 16.2 wt. %.
  • the spray-drying of the catalyst carrier slurry was carried out in accordance with the method of Example 1 and the active component nickel was introduced, and after reduction, a desulfurization catalyst A5 was obtained.
  • the dry chemical composition of the desulfurization catalyst A5 is: a zinc oxide content of 44.3 wt%, a hexagonal boron nitride content of 20.6% by weight, an H ⁇ molecular sieve content of 7.0 wt%, an alumina content of 10.0 wt%, and a nickel content of 18.1 wt%. .
  • zirconium tetrachloride (Beijing Chemical Plant, analytical grade, 99% by weight) was slowly added to 3.0 kg of deionized water, and 4.6 kg of a 5% by weight nitric acid solution was added, and slowly stirred to avoid crystallization of zirconia.
  • Light yellow transparent zirconium sol pH 2.1; a mixed slurry of zinc oxide, ZRP-1 molecular sieve and hexagonal boron nitride was further added, and the mixture was stirred for 1 hour to obtain a carrier slurry having a pH of 3.5.
  • the spray-drying of the carrier slurry was carried out in accordance with the method of Example 1 and the active component nickel was introduced, and after reduction, a desulfurization catalyst A6 was obtained.
  • the dry chemical composition of the desulfurization catalyst A6 is: a zinc oxide content of 44.3 wt%, a hexagonal boron nitride content of 20.6% by weight, a ZRP-1 molecular sieve content of 7.0 wt%, a zirconium dioxide content of 10.0 wt%, and a nickel content of 18.1% by weight.
  • zirconium tetrachloride (Beijing Chemical Plant, analytical grade, 99% by weight) was slowly added to 3.0 kg of deionized water, and 4.6 kg of a 5% by weight nitric acid solution was added, and slowly stirred to avoid crystallization of zirconia.
  • Light yellow transparent zirconium sol pH 2.1; a mixed slurry of zinc oxide, REUSY molecular sieve and hexagonal boron nitride was further added, and stirred for 1 hour to obtain a carrier slurry having a pH of 3.5.
  • the spray-drying of the carrier slurry was carried out in accordance with the method of Example 1 and the active component nickel was introduced, and after reduction, a desulfurization catalyst A7 was obtained.
  • the dry chemical composition of the desulfurization catalyst A7 is: a zinc oxide content of 44.3 wt%, a hexagonal boron nitride content of 20.6% by weight, a REUSY molecular sieve content of 7.0 wt%, a zirconium dioxide content of 10.0 wt%, and a nickel content of 18.1 wt. %.
  • zirconium tetrachloride (Beijing Chemical Plant, analytical grade, 99% by weight) was slowly added to 3.0 kg of deionized water, and 4.6 kg of a 5% by weight nitric acid solution was added, and slowly stirred to avoid crystallization of zirconia.
  • Light yellow transparent zirconium sol pH 2.1; a mixed slurry of zinc oxide, P-IM-5 molecular sieve and hexagonal boron nitride was further added, and the mixture was stirred for 1 hour to obtain a carrier slurry having a pH of 3.5.
  • the spray drying of the carrier slurry was carried out in accordance with the method of Example 1 and introduced into the active group. Nickel is divided and the desulfurization catalyst A8 is obtained after reduction.
  • the dry chemical composition of the desulfurization catalyst A8 is: zinc oxide content of 44.3 wt%, hexagonal boron nitride content of 20.6% by weight, P-IM-5 molecular sieve content of 7.0 wt%, zirconium dioxide content of 10.0 wt%, nickel The content was 18.1% by weight.
  • the spray-drying of the catalyst carrier slurry was carried out in accordance with the method of Example 1 and the active component nickel was introduced, and after reduction, a desulfurization catalyst A9 was obtained.
  • the dry chemical composition of the desulfurization catalyst A9 is: zinc oxide content of 44.3 wt%, cubic boron nitride content of 20.6% by weight, H ⁇ molecular sieve content of 7.0 wt%, zirconia content of 10.0 wt%, and nickel content of 18.1 wt%. .
  • the spray-drying molding of the catalyst carrier slurry was carried out in accordance with the method of Example 1 and the active component nickel was introduced, and after reduction, the desulfurization catalyst B1 was obtained.
  • the dry chemical composition of the desulfurization catalyst B1 is: a zinc oxide content of 44.3 wt%, an expanded perlite content of 24.0 wt%, an alumina content of 13.6% by weight, and a nickel content of 18.1. weight%.
  • the spray-drying of the carrier slurry was carried out in accordance with the method of Example 1 and the active component nickel was introduced, and after reduction, the desulfurization catalyst B2 was obtained.
  • the dry chemical composition of the desulfurization catalyst B2 was such that the zinc oxide content was 55.2% by weight, the diatomaceous earth content was 18.0% by weight, the alumina content was 11.7% by weight, and the nickel content was 15.1% by weight.
  • the spray-drying of the carrier slurry was carried out in accordance with the method of Example 3 and the active components nickel and cobalt were introduced, and after reduction, a desulfurization catalyst B3 was obtained.
  • the dry chemical composition of the desulfurization catalyst B3 was: a zinc oxide content of 49.3% by weight, a diatomaceous earth content of 21.0% by weight, an alumina content of 13.5% by weight, a nickel content of 8.1% by weight, and a cobalt content of 8.1% by weight.
  • the spray-drying of the carrier slurry was carried out in accordance with the method of Example 1 and the active component nickel was introduced, and after reduction, a desulfurization catalyst B4 was obtained.
  • the dry chemical composition of the desulfurization catalyst B4 is: a zinc oxide content of 55.2% by weight, an expanded perlite content of 15.0% by weight, a P-IM-5 molecular sieve content of 3.0% by weight, an alumina content of 11.7% by weight, and a nickel content of 15.1% by weight.
  • the spray-drying molding of the catalyst carrier slurry was carried out in accordance with the method of Example 1 and the active component nickel was introduced, and after reduction, a desulfurization catalyst B5 was obtained.
  • the dry chemical composition of the desulfurization catalyst B5 is: zinc oxide content of 44.3 wt%, silicon nitride content of 20.6% by weight, HIM-5 molecular sieve content of 7.0 wt%, titanium dioxide content of 10.0 wt%, and nickel content of 18.1 wt%. .
  • the desulfurization catalysts A1-A9 and B1-B5 were subjected to a desulfurization evaluation experiment using a fixed bed microreactor apparatus, and 16 g of the desulfurization catalyst was packed in a fixed bed reactor having an inner diameter of 30 mm and a length of 1 m.
  • the raw material hydrocarbon oil is a catalytically cracked gasoline with a sulfur content of 1000 ppm, the reaction pressure is 2.1 MPa, the hydrogen flow rate is 6.3 L/h, the gasoline flow rate is 80 mL/h, the reaction temperature is 410 ° C, and the weight of the raw hydrocarbon oil is 4 h -1
  • the desulfurization reaction of the sulfur-containing hydrocarbon oil is carried out to obtain the product gasoline.
  • the sulfur content of the above products in gasoline is a measure of the desulfurization activity of the desulfurization catalyst.
  • the sulfur content of the product gasoline was determined by off-line chromatography using an Agilent GC6890-SCD instrument.
  • the catalyst after completion of the desulfurization evaluation experiment was subjected to regeneration treatment in an air atmosphere of 550 °C.
  • the desulfurization catalyst was subjected to the desulfurization evaluation experiment. After 6 cycles of regeneration, the activity was basically stabilized.
  • the sulfur content in the gasoline after the 6th cycle of the catalyst was stabilized, indicating the activity of the catalyst, and the sulfur content and liquid yield in the stabilized product gasoline. As shown in Table 1.
  • the sulfurization capacity of the desulfurization catalysts A1-A9 and B1-B5 for gasoline desulfurization was calculated, and the results are shown in Table 3.
  • the penetration in the penetration sulfur capacity means: from the beginning of the gasoline desulfurization to the obtained gasoline sulfur content exceeding 10 ⁇ g / g.
  • Permeation sulfur capacity refers to the total amount of sulfur adsorbed on the desulfurization catalyst before the breakthrough (based on the total weight of the desulfurization catalyst).
  • the motor octane number (MON) and the research octane number (RON) of gasoline before and after the sixth cycle stabilization were measured by GB/T 503-1995 and GB/T 5487-1995, respectively. The results are shown in Table 1. .
  • the desulfurization catalyst provided by the present invention contains a boron nitride component, and the desulfurization catalyst can still achieve a good reduction of the sulfur content of the gasoline after performing multiple cycles of desulfurization, indicating that the catalyst is better. Desulfurization activity and activity stability. Moreover, the desulfurization catalyst has a lower wear index, indicating better wear resistance, so that the desulfurization catalyst can have a longer service life.
  • the desulfurization catalyst in Comparative Example 4 contains HIM-5 molecular sieve, but does not contain the boron nitride of the present application, so the wear index is much higher than the wear index of the catalyst prepared in the examples, indicating that the desulfurization catalyst provided by the present invention can have better Wear resistance.
  • the adsorbent containing the hexagonal boron nitride having a layered structure has better wear resistance and octane number improving performance, although silicon nitride is also Can not produce zinc silicate,
  • the wear resistance of the adsorbent can be made higher, and the silicon nitride does not have an octane number improving effect and a hydrogen generating effect.
  • the desulfurization catalysts A1-A9 and B1-B5 were aged under the conditions that the catalyst was placed in an atmosphere of 600 ° C and a partial pressure of water vapor of 20 kPa for 16 hours.
  • the XRD patterns of the desulfurization catalysts A1 and B1 before and after aging were analyzed.
  • the XRD spectrum of the desulfurization catalyst A1 before and after hydrothermal aging is shown in Fig. 1.
  • the freshener and the aging agent both have a diffraction angle of 2 ⁇ of 27.2° ⁇ 0.5°.
  • the characteristic peaks of boron nitride appear at 41.5° ⁇ 0.5° and 50.3° ⁇ 0.5°;
  • the XRD spectrum of the desulfurization catalyst B1 before and after hydrothermal aging is shown in Fig. 2 .
  • the sulphur desulfurization catalysts A1-A9 and the desulfurization catalysts B1-B5 were subjected to calculation of the sulfurization capacity of gasoline desulfurization. The results are shown in Table 3.
  • the feed/discharge gas flow rates of the hydrogen-reactive catalysts of the catalysts A1-A9 and B1-B5 after aging were measured by the same evaluation method as in Example 10, and the hydrogen concentration was analyzed by a QRD-1102A thermal conductivity hydrogen analyzer.
  • the amount of hydrogen (Q1) and the amount of hydrogen discharged (Q2) were used to determine the difference in hydrogen amount. The results are shown in Table 2.
  • the desulfurization catalyst A1 containing boron nitride has better wear resistance, desulfurization performance and octane number performance than the desulfurization catalyst B5 containing silicon nitride.
  • the data on the octane number in the table is the amount of change compared to the octane number of the raw gasoline. "-" indicates a decrease in the octane number compared to the raw gasoline.
  • the raw material gasoline has a sulfur content of 1000 ppm, a RON of 93.8, and a MON of 83.1.
  • ⁇ MON represents the added value of the product MON
  • ⁇ (RON+MON)/2 is the difference between the antiknock index of the product and the antiknock index of the raw material.
  • the difference in hydrogen amount is the difference between the amount of hydrogen discharged (Q2) and the amount of hydrogen added (Q1) relative to 1 kg of hydrocarbon oil.
  • a positive value indicates hydrogen production, and a negative value indicates hydrogen consumption.
  • the data on the octane number in the table is the amount of change compared to the octane number of the raw gasoline. "-" indicates a decrease in the octane number compared to the raw gasoline.
  • the raw material gasoline has a sulfur content of 1000 ppm, a RON of 93.8, and a MON of 83.1.
  • ⁇ MON represents the added value of the product MON
  • ⁇ (RON + MON) / 2 is the difference between the product anti-explosion index and the raw material anti-explosion index
  • the difference in hydrogen amount is the difference between the amount of hydrogen discharged (Q2) and the amount of hydrogen added (Q1) relative to 1 kg of hydrocarbon oil.
  • a positive value indicates hydrogen production, and a negative value indicates hydrogen consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种脱硫催化剂、其制造方法及其应用。脱硫催化剂的组成至少包括:1)储硫金属氧化物、2)无机粘结剂、3)耐磨组分和4)活性金属组分,该催化剂稳定性更好、脱硫活性更高。

Description

一种脱硫催化剂、其制造方法及其应用 技术领域
本发明涉及一种脱硫催化剂,特别是一种用于烃油脱硫的脱硫催化剂。本发明还涉及一种脱硫催化剂的制造方法、以及这些脱硫催化剂在烃油脱硫中的应用。
背景技术
随着原油资源的日益匮乏,如何有效利用有限资源最大量生成轻质产品成为炼油技术开发商追求的目标。另一方面,随着环保要求的不断提高,环保法规也日渐严格。举例而言,目前实施的中国汽油质量标准GB17930-2013,要求自2017年1月1日起,汽油中的硫含量必须低于10ppm。为此,众多炼油企业一直都在致力于开发新的清洁产品生产技术,特别是开发新的脱硫催化剂。
中国专利申请公开CN1355727A公开了一种包含氧化锌、氧化硅、氧化铝和基本上还原价态镍的混合物的颗粒状催化剂组合物,用于通过以下方法在脱硫区使裂化汽油或柴油机燃料原料流脱硫,所述方法包括:在脱硫区与所述原料流接触,然后分离所得低硫含量的物流和硫化催化剂,使分离出的催化剂再生和活化,再返回脱硫区。
中国专利申请公开CN1208124C公开了一种用促进剂金属如镍和/或钴浸渍包含氧化锌、膨胀珍珠岩和氧化铝的催化剂载体,然后使所述促进剂金属的化合价还原,制备用于从裂化汽油和柴油机燃料中脱除硫和硫化合物如硫化氢、硫化羰和硫醇的催化剂组合物。形成所述催化剂载体中使用磨碎的膨胀珍珠岩产生一种载体,调节其中氧化锌含量和粘合剂含量提供耐磨性催化剂和延长所述催化剂的使用寿命。
发明内容
本发明的发明人经过刻苦的研究,发现了一种新型的脱硫催化剂,并在此基础之上完成了本发明。
具体而言,本发明涉及以下方面的内容。
1.一种脱硫催化剂,其组成包括:
1)储硫金属氧化物,其中所述储硫金属选自元素周期表第IIB族金属、元素周期表第VB族金属和元素周期表第VIB族金属中的一种或多种,优选选自锌、镉、铌、钽、铬、钼、钨和钒中的一种或多种,更优选选自锌、钼和钒中的一种或多种,更优选锌;
2)无机粘结剂,优选选自耐热无机氧化物中的一种或多种,更优选选自氧化铝、氧化硅、氧化锆、氧化钛和氧化锡中的一种或多种,更优选选自氧化铝、氧化锆、氧化钛和氧化锡中的一种或多种;
3)耐磨组分,是氮化硼(优选六方相氮化硼)或者所述氮化硼与选自元素A的氧化物、氮化物、碳化物、氧氮化物、碳氮化物、碳氧化物和碳氮氧化物中的一种或多种的组合,其中所述元素A选自元素周期表第IVB族金属元素、硼、铝和硅中的一种或多种(除了氮化硼),所述耐磨组分更优选选自碳化硼、氮化硅、碳化硅、二氧化硅、氮化铝、碳化铝、氧化铝、氮化锆、碳化锆、氧化锆、氮化钛、碳化钛和氧化钛中的一种或多种,优选氮化硼,更优选六方相氮化硼;
4)活性金属组分,选自元素周期表第VIII族金属元素、元素周期表铁系元素的氧化物、元素周期表第IB族金属元素、元素周期表第IB族金属元素的氧化物、元素周期表第VIIB族金属元素和元素周期表第VIIB族金属元素的氧化物中的一种或多种,优选选自铁、铁氧化物、钴、钴氧化物、镍、镍氧化物、铜、铜氧化物、锰和锰氧化物中的一种或多种,更优选镍、镍氧化物、钴和钴氧化物中的一种或多种,更优选镍、镍氧化物或其组合;和
5)任选地,酸性多孔材料,优选选自分子筛和层柱粘土(优选选自累托土、云蒙石、膨润土、蒙脱土和蒙皂石中的一种或多种)中的一种或多种,更优选选自具有IMF结构的分子筛(优选选自HIM-5分子筛、IM-5分子筛、P-IM-5分子筛和P-Si-IM-5分子筛中的一种或多种)、具有FAU结构的分子筛(优选选自X分子筛、Y分子筛、USY分子筛、REUSY分子筛、REHY分子筛、REY分子筛、PUSY分子筛、PREHY分子筛和PREY分子筛中的一种或多种)、具有BEA结构的分子筛(优选选自β分子筛中的一种或多种)、具有SAFO结构的分子筛(优选选自SAPO-5分子筛、SAPO-11分子筛、SAPO-31分子筛、SAPO-34分子筛和SAPO-20分子筛中的一种或多种)和具有MFI结构 的分子筛(优选选自ZSM-5分子筛、ZRP-1分子筛和ZSP-3分子筛中的一种或多种)中的一种或多种。
2.根据前述任一方面所述的脱硫催化剂,其中所述无机粘结剂和/或所述耐磨组分不含有硅元素。
3.根据前述任一方面所述的脱硫催化剂,其中所述氮化硼的比表面积为100-300m2/g,优选120-260m2/g。
4.根据前述任一方面所述的脱硫催化剂,其中所述组成包括:
相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)的总重量(作为100wt%),所述储硫金属氧化物(以储硫金属氧化物计)占10-80wt%、所述无机粘结剂(以氧化物计)占3-35wt%、所述耐磨组分(干基)占5-40wt%、所述活性金属组分(以金属元素计)占5-30wt%和所述酸性多孔材料(干基)占0-20wt%,
优选的是,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)的总重量(作为100wt%),所述储硫金属氧化物(以储硫金属氧化物计)占25-70wt%、所述无机粘结剂(以氧化物计)占6-25wt%、所述耐磨组分(干基)占10-30wt%、所述活性金属组分(以金属元素计)占8-25wt%和所述酸性多孔材料(干基)占1-15wt%,
更优选的是,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)的总重量(作为100wt%),所述储硫金属氧化物(以储硫金属氧化物计)占40-60wt%、所述无机粘结剂(以氧化物计)占8-15wt%、所述耐磨组分(干基)占12-25wt%、所述活性金属组分(以金属元素计)占12-20wt%和所述酸性多孔材料(干基)占2-10wt%。
5.根据前述任一方面所述的脱硫催化剂,其中所述组成是焙烧后组成,并且所述焙烧后组成指的是在空气气氛下在650℃下焙烧4小时之后测得的组成。
6.根据前述任一方面所述的脱硫催化剂,其中所述组成还包括至少一种添加剂,优选的是,所述添加剂选自碱金属氧化物(优选选自氧化钠和氧化钾中的一种或多种)、粘土(优选选自高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、准埃洛石、皂石、累托土、海泡石、 凹凸棒石、水滑石和膨润土中的一种或多种)、稀土金属氧化物(所述稀土金属选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的一种或多种,优选选自La、Pr和Nd中的一种或多种)和氧化锑中的一种或多种。
7.一种脱硫催化剂的制造方法,包括以下步骤:
(1)使至少以下组分接触,获得催化剂前体的步骤,
1)储硫金属氧化物和/或其前体,其中所述储硫金属选自元素周期表第IIB族金属、元素周期表第VB族金属和元素周期表第VIB族金属中的一种或多种,优选选自锌、镉、铌、钽、铬、钼、钨和钒中的一种或多种,更优选选自锌、钼和钒中的一种或多种,更优选锌,
2)无机粘结剂和/或其前体,优选的是,所述无机粘结剂选自耐热无机氧化物中的一种或多种,更优选选自氧化铝、氧化硅、氧化锆、氧化钛和氧化锡中的一种或多种,更优选选自氧化铝、氧化锆、氧化钛和氧化锡中的一种或多种,
3)耐磨组分和/或其前体,其中所述耐磨组分是氮化硼(优选六方相氮化硼)或者所述氮化硼与选自元素A的氧化物、氮化物、碳化物、氧氮化物、碳氮化物、碳氧化物和碳氮氧化物中的一种或多种的组合,其中所述元素A选自元素周期表第IVB族金属元素、硼、铝和硅中的一种或多种(除了氮化硼),所述耐磨组分更优选选自碳化硼、氮化硅、碳化硅、二氧化硅、氮化铝、碳化铝、氧化铝、氮化锆、碳化锆、氧化锆、氮化钛、碳化钛和氧化钛中的一种或多种,优选氮化硼,更优选六方相氮化硼,
4)活性金属组分和/或其前体,其中所述活性金属组分选自元素周期表第VIII族金属元素、元素周期表铁系元素的氧化物、元素周期表第IB族金属元素、元素周期表第IB族金属元素的氧化物、元素周期表第VIIB族金属元素和元素周期表第VIIB族金属元素的氧化物中的一种或多种,优选选自铁、铁氧化物、钴、钴氧化物、镍、镍氧化物、铜、铜氧化物、锰和锰氧化物中的一种或多种,更优选镍、镍氧化物、钴和钴氧化物中的一种或多种,更优选镍、镍氧化物或其组合,
5)任选地,酸性多孔材料和/或其前体,优选的是,所述酸性多孔材料选自分子筛和层柱粘土(优选选自累托土、云蒙石、膨润土、蒙脱土和蒙皂石中的一种或多种)中的一种或多种,更优选选自具有IMF结构的分子筛(优选选自HIM-5分子筛、IM-5分子筛、P-IM-5分子筛和P-Si-IM-5分子筛中的一种或多种)、具有FAU结构的分子筛(优选选自X分子筛、Y分子筛、USY分子筛、REUSY分子筛、REHY分子筛、REY分子筛、PUSY分子筛、PREHY分子筛和PREY分子筛中的一种或多种)、具有BEA结构的分子筛(优选选自β分子筛中的一种或多种)、具有AFO结构的分子筛(优选选自SAPO-5分子筛、SAPO-11分子筛、SAPO-31分子筛、SAPO-34分子筛和SAPO-20分子筛中的一种或多种)和具有MFI结构的分子筛(优选选自ZSM-5分子筛、ZRP-1分子筛和ZSP-3分子筛中的一种或多种)中的一种或多种,和
6)接触用介质,优选水和/或酸性液体(优选酸或者酸的水溶液),
(2)任选地,焙烧所述催化剂前体,获得脱硫催化剂的步骤,和
(3)任选地,还原所述脱硫催化剂的步骤。
8.根据前述任一方面所述的制造方法,其中所述步骤(1)包括以下步骤:
(1-1)使所述组分1)、所述组分2)、所述组分3)、任选的所述组分5)和所述组分6)接触,获得载体浆液的步骤,
(1-2)任选干燥之后,焙烧所述载体浆液,获得催化剂载体的步骤,和
(1-3)使所述组分4)与所述催化剂载体接触,获得所述催化剂前体的步骤。
9.根据前述任一方面所述的制造方法,其中按照重量计,各组分之间的相对投料比例为,
所述组分1)(以储硫金属氧化物计)∶所述组分2)(以氧化物计)∶所述组分3)(以耐磨组分计,干基)∶所述组分4)(以金属元素计)∶所述组分5)(以酸性多孔材料计,干基)∶水=
(10-80)∶(3-35)∶(5-40)∶(5-30)∶(0-20)∶(50-500),所述酸∶所述组分2)(以氧化物计)=(0.01-1.0)∶1,
优选的是,
所述组分1)(以储硫金属氧化物计)∶所述组分2)(以氧化物计)∶所述组分3)(以耐磨组分计,干基)∶所述组分4)(以金属元素计)∶所述组分5)(以酸性多孔材料计,干基)∶水=
(25-70)∶(6-25)∶(10-30)∶(8-25)∶(1-15)∶(100-400),所述酸∶所述组分2)(以氧化物计)=(0.02-0.9)∶1,
更优选的是,
所述组分1)(以储硫金属氧化物计)∶所述组分2)(以氧化物计)∶所述组分3)(以耐磨组分计,干基)∶所述组分4)(以金属元素计)∶所述组分5)(以酸性多孔材料计,干基)∶水=
(40-60)∶(8-15)∶(12-25)∶(12-20)∶(2-10)∶(150-300),所述酸∶所述组分2)(以氧化物计)=(0.03-0.8)∶1。
10.根据前述任一方面所述的制造方法,其中所述焙烧的条件包括:焙烧温度为300-800℃,优选450-750℃,焙烧时间为0.5小时以上,优选1-3小时,含氧气氛下;或者,所述还原的条件包括:还原温度为300-600℃,优选400-500℃,还原时间为0.5-6小时,优选1-3小时,含氢气气氛(优选氢气含量为10-60体积%)下。
11.根据前述任一方面所述的制造方法,其中所述干燥的条件包括:干燥温度为25-400℃,优选100-350℃,干燥时间为0.5小时以上,优选2-20小时;或者,所述焙烧的条件包括:焙烧温度为400-700℃,优选450-650℃,焙烧时间为0.5小时以上,优选0.5-10小时,含氧气氛下。
12.根据前述任一方面所述的制造方法,还包括引入添加剂和/或其前体的步骤,优选的是,所述添加剂选自碱金属氧化物(优选选自氧化钠和氧化钾中的一种或多种)、粘土(优选选自高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、准埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石和膨润土中的一种或多种)、稀土金属氧化物(所述稀土金属选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的一种或多种,优选选自La、Pr和Nd中的一种 或多种)和氧化锑中的一种或多种。
13.一种脱硫方法,包括使含硫的烃油(优选原油或者沸程不超过450℃的石油馏分,特别是馏程为从-42.1℃至350℃的石油馏分,更优选选自液化石油气、裂化汽油和柴油机燃料中的一种或多种)与根据前述任一方面所述的脱硫催化剂或者按照根据前述任一方面所述的制造方法制造的脱硫催化剂在脱硫反应条件下接触的步骤。
14.根据前述任一方面所述的脱硫方法,其中所述脱硫反应条件包括:氢气气氛下,反应温度为350-500℃,优选400-450℃,反应压力为0.5-4MPa(绝对压力),优选1.0-2.0MPa(绝对压力),氢油体积比为0.1-0.5,优选0.15-0.4,质量空速为2-6h-1,优选2.5-5h-1
技术效果
根据本发明,至少能够实现如下技术效果中的一个,或者在优选的情况下,至少能够同时实现如下技术效果中的两个或更多个。
(1)与现有技术的脱硫催化剂相比,本发明的脱硫催化剂具有更好的稳定性和更高的脱硫活性,由此能够在烃油脱硫过程中更有效地使烃油中的硫转移到脱硫催化剂上,得到硫含量更低的烃油。
(2)与现有技术的脱硫催化剂相比,本发明的脱硫催化剂具有更好的耐磨损性能,由此脱硫过程中催化剂的损耗更低,从而可以使脱硫催化剂显示出更长的使用寿命,降低催化剂补充周期,降低脱硫工艺的运行成本。
(3)在对汽油进行脱硫时,本发明的脱硫催化剂能够最大限度保留辛烷值。
附图说明
图1为实施例1得到的脱硫催化剂A1在水热老化前后的XRD图谱。
图2为对比例1得到的脱硫催化剂B1在水热老化前后的XRD图谱。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域常规使用”、“本领域常规已知”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用或已知的那些,但也包括目前还不常用或还不普遍知道,却将变成本领域公认为适用于类似目的的那些。
在本申请发明的上下文中,在没有另外特别说明的情况下,术语“前体”、“前身物”或者“前躯体”必须按照化工领域通常的含义进行理解。举例而言,该术语通常意指在干燥条件或者焙烧条件下可以转化成目标物质的物质。在此,所述焙烧条件包括:焙烧温度为300-800℃,优选450-750℃,焙烧压力为常压(101325Pa),焙烧时间为0.5h以上,优选1-3h,含氧气氛下。或者,所述干燥条件包括:干燥温度为25-400℃,优选100-350℃,干燥压力为常压(101325Pa),干燥时间为0.5h以上,优选2-20h,流动空气存在下。
在本申请发明的上下文中,在未明确规定某一步骤或处理的操作温度和操作压力时,通常意味着所述步骤或处理对温度和压力没有特别的限定,本领域技术人员可以根据实际情况自由选择,除非该解读不符合本领域技术人员的常规认识。另外,从方便操作的角度出发,该情况也意味着所述步骤或处理通常可以在常温(25℃)和常压(101325Pa)下进行。
在本申请发明的上下文中,在没有另外特别说明的情况下,表述“含氧气体”或者“含氧气氛”通常指的是氧气含量在10体积%以上,优选20体积%以上。
在本申请发明的上下文中,术语“烃油”必须按照燃料化工领域通常的含义进行理解。举例而言,该术语通常意指燃料化工领域作为原料而使用或者作为产品而生产的烃或烃混合物,特别意指原油或者沸程不超过450℃的石油馏分。
在本申请发明的上下文中,术语“原油”必须按照燃料化工领域通常的含义进行理解。举例而言,该术语通常意指沸程不超过450℃的石油馏分。
在本申请发明的上下文中,术语“液化石油气”必须按照燃料化工领域通常的含义进行理解。举例而言,该术语通常意指由天然气或者丙烷、丙烯、丁烷、丁烯混合物进行加压降温液化所得到的一种无色挥发性液体。
在本申请发明的上下文中,术语“裂化汽油”必须按照燃料化工领域通常的含义进行理解。举例而言,该术语通常意指沸程为40℃至210℃的烃混合物或其任何馏分,一般是来自使较大的烃分子裂化成较小分子的热或催化过程的产品。举例而言,适用的热裂化过程包括但不限制于焦化、热裂化和减粘裂化等及其组合,适用的催化裂化过程的例子包括但不限于流化床催化裂化和重油催化裂化等及其组合。举例而言,所述裂化汽油包括但不限于焦化汽油、热裂化汽油、减粘裂化汽油、流化床催化裂化汽油和重油裂化汽油及其组合。根据需要,所述裂化汽油还可以预先进行分馏和/或加氢处理。
在本申请发明的上下文中,术语“柴油机燃料”必须按照燃料化工领域通常的含义进行理解。举例而言,该术语通常意指沸程为170℃至450℃的烃混合物或其任何馏分。举例而言,所述柴油机燃料包括但不限于轻循环油、煤油、直馏柴油和加氢处理柴油等及其组合。
在本申请发明的上下文中,术语“硫”必须按照燃料化工领域通常的含义进行理解。举例而言,该术语通常代表任何形式的硫元素,特别是烃油中常存在的各种硫化合物。举例而言,所述硫化合物包括但不限于氧硫化碳(COS)、二硫化碳(CS2)、硫醇或其他噻吩类化合物 等,尤其是噻吩、苯并噻吩、烷基噻吩、烷基苯并噻吩或者烷基二苯并噻吩,或者分子量更大的噻吩类化合物。
在本申请发明的上下文中,在没有另外特别说明的情况下,术语“氧化物”通常指的是目标元素在常温常压下空气中最稳定的氧化物。具体举例而言,氧化硅通常指的是硅元素在常温常压下空气中最稳定的氧化物,即二氧化硅,而氧化铝通常指的是铝元素在常温常压下空气中最稳定的氧化物,即三氧化二铝。
在本申请发明的上下文中,沸点、沸程(有时也称为馏程)、切割温度、终馏点和初馏点或者类似的物性参数均指的是常压(101325Pa)下的测量值。
在本申请发明的上下文中,XRD谱图的测量条件包括:X射线衍射仪(Siemens公司D5005型),Cu靶,Kα辐射,固体探测器,管电压40kV,管电流40mA。
在本申请发明的上下文中,BET法的测量条件包括:在美国麦克公司生产的ASAP2010型吸附仪上,-196℃的液氮温度下进行测试。分析前,样品在300℃,1.3Pa下脱气处理8h,比表面积按照BET方法计算。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
需要特别说明的是,在本说明书的上下文中公开的两个或多个方面(或实施方式)可以彼此任意组合,由此而形成的技术方案(比如方法或系统)属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围之内。
根据本发明,首先涉及一种脱硫催化剂。在此,所述脱硫催化剂的组成至少包括:组分1)储硫金属氧化物、组分2)无机粘结剂、组分3)耐磨组分、和组分4)活性金属组分。
根据本发明的一个方面,在所述组分1)储硫金属氧化物中,所述储硫金属可以是元素周期表第IIB族金属、元素周期表第VB族金属和元素周期表第VIB族金属,优选锌、镉、铌、钽、铬、钼、钨和钒,更优选锌、钼和钒,更优选锌。在此,作为所述储硫金属氧化物,具体比如可以举出氧化锌、氧化镉、氧化钒、氧化铌、氧化钽、氧化铬、 氧化钼和氧化钨,优选氧化锌、氧化钼和氧化钒,更优选氧化锌。这些储硫金属氧化物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述组分2)无机粘结剂,可以选择化工领域在制造催化剂时常规使用的任何能够发挥粘结功能的无机物质,特别可以举出耐热无机氧化物。作为所述耐热无机氧化物,具体比如可以举出氧化铝、氧化硅、氧化锆、氧化钛和氧化锡,特别可以举出氧化铝、氧化锆、氧化钛和氧化锡。这些无机粘结剂或者耐热无机氧化物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,取决于所述脱硫催化剂的制造方法,作为无机粘结剂的氧化铝可能以氧化铝、其前体或者二者混合物的形式存在于所述脱硫催化剂中。为此,作为所述氧化铝,除了三氧化二铝之外,还可以是SB粉、水合氧化铝、铝溶胶、一水软铝石(薄水铝石)、假一水软铝石(拟薄水铝石)、三水合氧化铝和无定形氢氧化铝,优选SB粉、拟薄水铝石和铝溶胶。这些氧化铝可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,取决于所述脱硫催化剂的制造方法,作为无机粘结剂的氧化钛可能以氧化钛、其前体或者二者混合物的形式存在于所述脱硫催化剂中。为此,作为所述氧化钛,除了二氧化钛之外,还可以是水合氧化钛、金红石型二氧化钛或者锐钛矿型二氧化钛。这些氧化钛可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,取决于所述脱硫催化剂的制造方法,作为无机粘结剂的氧化锆可能以氧化锆、其前体或者二者混合物的形式存在于所述脱硫催化剂中。为此,作为所述氧化锆,除了二氧化锆之外,还可以是水合氧化锆。这些氧化锆可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,取决于所述脱硫催化剂的制造方法,作为无机粘结剂的氧化锡可能以氧化锡、其前体或者二者混合物的形式存在于所述脱硫催化剂中。为此,作为所述氧化锡,除了二氧化锡之外,还可以是水合氧化锡。这些氧化锡可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述组分3)耐磨组分,是氮化硼或者氮化硼与非氮化硼型耐磨组分的组合。在此,作为所述非氮化硼型耐磨组分,比如可以举出本领域在制造脱硫催化剂时常规使用的任何耐磨组分,具体比如可以举出元素A的氧化物、氮化物、碳化物、氧氮化物、碳氮化物、碳氧化物或者碳氮氧化物。在此,所述元素A可以是元素周期表第IVB族金属元素、硼、铝或者硅。作为所述非氮化硼型耐磨组分,更具体比如可以举出碳化硼、氮化硅、碳化硅、二氧化硅、氮化铝、碳化铝、氧化铝、氮化锆、碳化锆、氧化锆、氮化钛、碳化钛和氧化钛。这些非氮化硼型耐磨组分可以单独使用一种,或者以任意的比例组合使用多种。另外,在所述组合中,相对于所述组合的总重量,氮化硼的含量一般为5重量%以上,优选10重量%以上,更优选50重量%以上,但有时并不限于此。
根据本发明的一个方面,作为所述组分3)耐磨组分,优选氮化硼,更优选六方相氮化硼。在此,所述六方相氮化硼为六方晶体结构,呈片状和/或层状结构。优选的是,所述氮化硼的比表面积(BET法)一般为100-300m2/g,优选120-260m2/g。还优选的是,所述氮化硼的氮催化孔体积(BET法)一般为0.05-0.1cm3/g。
根据本发明,所述脱硫催化剂的XRD谱图中在2θ为27.2°±0.5°、41.5°±0.5°和50.3°±0.5°处存在氮化硼的特征峰,其中2θ为41.5°±0.5°处是最强特征峰。
根据本发明,所述脱硫催化剂含有氮化硼(特别是六方相氮化硼)作为组分,由于该特定结构的氮化硼具有高的水热稳定性,可以在烃油脱硫过程中有效地避免在脱硫催化剂的组成中形成硅酸锌等催化惰性物质,保证脱硫催化剂有更好的脱硫活性及稳定性,能够在烃油脱硫过程中更有效地将烃油中的硫吸附到脱硫催化剂上,得到硫含量更低的烃油。具体而言,所述脱硫催化剂经水热老化后在其XRD谱图中在2θ为22.0、25.54、48.9和59.4处没有硅酸锌的特征峰。在此,所述水热老化的条件包括:处理温度为500-700℃、水蒸气分压为10-30kPa、处理时间为10-24h。另外,所述脱硫催化剂由此也具有更好的耐磨损性能,脱硫过程中脱硫催化剂的损耗更低,使用寿命更长,也更适用于反复反应和再生的脱硫过程。
根据本发明的一个方面,为了最大限度避免在烃油脱硫过程中在脱硫催化剂的组成中形成硅酸锌等催化惰性物质,优选的是,所述无机粘结剂不含有硅元素。具体举例而言,作为所述无机粘结剂,优选不包含二氧化硅、其前体或者二者的混合物。或者,优选的是,所述耐磨组分不含有硅元素。具体举例而言,作为所述耐磨组分,优选所述元素A不存在或者不是硅。
根据本发明的一个方面,作为所述组分4)活性金属组分,比如可以举出本领域针对脱硫催化剂常规已知的任何活性金属组分,具体比如可以举出元素周期表第VIII族金属元素、元素周期表铁系元素的氧化物、元素周期表第IB族金属元素、元素周期表第IB族金属元素的氧化物、元素周期表第VIIB族金属元素和元素周期表第VIIB族金属元素的氧化物,更具体比如可以举出铁、铁氧化物、钴、钴氧化物、镍、镍氧化物、铜、铜氧化物、锰和锰氧化物,更具体比如可以举出镍、镍氧化物、钴和钴氧化物,更具体比如可以举出镍、镍氧化物或其组合。换句话说,所述活性金属组分可以以金属单质、金属氧化物或其混合物的形式存在。这些活性金属组分可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,从最大限度保留辛烷值的角度出发,所述脱硫催化剂的组成还可以任选包括组分5)酸性多孔材料。在此,作为所述酸性多孔材料,比如可以举出本领域常规已知的任何酸性多孔材料,具体比如可以举出分子筛和层柱粘土,优选分子筛。这些酸性多孔材料可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述层柱粘土为间层矿物晶体,是由两种单层矿物粘土组分规则交替排列组成,其底面间距不小于1.7nm。作为所述层柱粘土,具体比如可以举出累托土、云蒙石、膨润土、蒙脱土和蒙皂石。这些层柱粘土可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述分子筛,具体比如可以举出具有IMF结构的分子筛、具有FAU结构的分子筛、具有BEA结构的分子筛、具有SAFO结构的分子筛和具有MFI结构的分子筛。这些分子筛可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述具有MFI结构的分子筛的典型代表为美国Mobil公司开发的ZSM-5沸石,其特征在于具有
Figure PCTCN2017108464-appb-000001
的十元环结构。优选的是,所述具有MFI结构的分子筛可以为ZSM-5分子筛和/或采用磷或过渡金属改性的ZSM-5分子筛。另外,所述具有MFI结构的分子筛的SiO2∶Al2O3的摩尔比一般为15-100∶1,优选20-40∶1。作为所述具有MFI结构的分子筛,优选ZSM-5分子筛、ZRP-1分子筛和ZSP-3分子筛。这些分子筛可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述具有IMF结构的分子筛为二维十元环孔道结构,有效孔宽度在0.48-0.56nm范围,在第三维方向上还存在一个有限的孔道,结构由二维的十元环孔道和一些三维特征的空穴构成,孔道直径与ZSM-5相仿。另外,所述具有IMF结构的分子筛还可以包括改性后的具有IMF结构的分子筛。在此,所述改性方法可以包括水热法、化学处理法(例如无机酸处理法、氟硅酸抽铝补硅法和SiCl4气相法)或水热与化学处理相结合。所述改性后得到的分子筛包括但不限于HIM-5、IM-5、P-IM-5、P-Si-IM-5等。另外,所述具有IMF结构的分子筛的SiO2∶Al2O3的摩尔比一般为20-70∶1,优选30-50。作为所述具有IMF结构的分子筛,优选HIM-5分子筛、IM-5分子筛、P-IM-5分子筛和P-Si-IM-5分子筛。这些分子筛可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述具有FAU结构的分子筛为八面沸石型分子筛,该类型分子筛具有三维十二元环孔道,孔径为
Figure PCTCN2017108464-appb-000002
所述FAU结构分子筛主要为X型和Y型的分子筛,一般来说SiO2/Al2O3摩尔比为2.2-3.0的是X型分子筛,SiO2/Al2O3摩尔比大于3.0的是Y型分子筛。X型和Y型分子筛的骨架结构都属于六方晶系,空间群结构为Fd3m,X型分子筛的晶胞参数
Figure PCTCN2017108464-appb-000003
Y型分子筛的晶胞参数
Figure PCTCN2017108464-appb-000004
另外,所述具有FAU结构的分子筛还包括改性后的具有FAU结构的分子筛。在此,所述改性方法可以包括水热法、化学处理法(例如无机酸处理法、氟硅酸抽铝补硅法和SiCl4气相法)或水热与化学处理相结合。所述改性后得到的分子筛包括但不限于超稳Y型分子筛(USY),含有稀土元素的REUSY、REHY、REY,以 及含磷的PUSY、PREHY、PREY等。另外,这类分子筛的SiO2∶Al2O3的摩尔比为1-4∶1,优选1.5-3∶1。作为所述具有FAU结构的分子筛,优选X分子筛、Y分子筛、USY分子筛、REUSY分子筛、REHY分子筛、REY分子筛、PUSY分子筛、PREHY分子筛和PREY分子筛。这些分子筛可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述具有BEA结构的分子筛主要为β分子筛,其结构式为(Nan[AlnSi64-nO128],n<7),是由两个结构不同但却紧密相关的多形体A和B形成的混晶。两者都具有十二元环三维孔道体系。多形体A形成一对对映体,空间群为P4122和P4322,晶胞参数为
Figure PCTCN2017108464-appb-000005
多形体B属于非手性空间群C2/c,晶胞参数
Figure PCTCN2017108464-appb-000006
β=114.5°。所述具有BEA结构的分子筛中十二元环孔道尺寸为
Figure PCTCN2017108464-appb-000007
<100方向>和
Figure PCTCN2017108464-appb-000008
<001方向>。所述具有BEA结构的分子筛的SiO2∶Al2O3的摩尔比一般为5-10∶1,优选7-9∶1。作为所述具有BEA结构的分子筛,优选β分子筛。这些分子筛可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述具有SAPO结构的分子筛为近体硅铝磷酸盐,是将硅引入磷酸铝骨架中得到的,其骨架由PO4 +、AlO4 -及SiO2四面体组成。这类分子筛包括13种三维微孔骨架结构,其孔大小为
Figure PCTCN2017108464-appb-000009
孔体积为0.18-0.48cm3/g。具体举例而言,所述具有SAPO结构的分子筛比如是SAPO-5、SAPO-11、SAPO-31、SAPO-34和SAPO-20。SAPO-5、SAPO-11、SAPO-31、SAPO-34和SAPO-20分子筛的孔大小分别为
Figure PCTCN2017108464-appb-000010
(12元环)、
Figure PCTCN2017108464-appb-000011
(10元环)、
Figure PCTCN2017108464-appb-000012
(10元环)、
Figure PCTCN2017108464-appb-000013
(8元环)和
Figure PCTCN2017108464-appb-000014
(6元环),孔体积分别为0.31、0.18、0.42、0.42和0.40cm3/g。作为所述具有SAFO结构的分子筛,优选SAPO-5分子筛、SAPO-11分子筛、SAPO-31分子筛、SAPO-34分子筛和SAPO-20分子筛。这些分子筛可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述脱硫催化剂的组成还可以任选包括添加剂。在此,作为所述添加剂,比如可以举出本领域针对脱硫催化剂常规已知的任何添加剂,具体比如可以举出碱金属氧化物、粘土、 稀土金属氧化物和氧化锑(Sb2O3)。这些添加剂可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述碱金属氧化物,优选氧化钠和氧化钾。这些碱金属氧化物可以单独使用一种,或者以任意的比例组合使用多种。在包含时,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)和所述添加剂的总重量(作为100wt%),所述碱金属氧化物(以碱金属氧化物计)的含量一般为0.1-5重量%。
根据本发明的一个方面,作为所述粘土,比如可以举出本领域技术人员所熟知的粘土原料,优选高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、准埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石和膨润土。这些粘土可以单独使用一种,或者以任意的比例组合使用多种。在包含时,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)和所述添加剂的总重量(作为100wt%),所述粘土(干基)的含量一般为1-10重量%。
根据本发明的一个方面,作为所述稀土金属氧化物的稀土金属,优选La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu,更优选La、Pr和Nd。这些稀土金属或者稀土金属氧化物可以单独使用一种,或者以任意的比例组合使用多种。在包含时,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)和所述添加剂的总重量(作为100wt%),所述稀土金属氧化物(以稀土金属氧化物计)的含量一般为1-5重量%。
根据本发明的一个方面,在包含时,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)和所述添加剂的总重量(作为100wt%),所述氧化锑(以Sb2O3计)的含量一般为1-3重量%。
根据本发明的一个方面,所述脱硫催化剂的振实密度(按照中国国家标准GB/T 21354-2008)一般为1.0-1.3cm3/g。
根据本发明的一个方面,所述脱硫催化剂的比表面积(BET法)一般为25-35m2/g。
根据本发明的一个方面,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)的总重量(作为100wt%),所述 储硫金属氧化物(以储硫金属氧化物计)占10-80wt%、所述无机粘结剂(以氧化物计)占3-35wt%、所述耐磨组分(干基)占5-40wt%、所述活性金属组分(以金属元素计)占5-30wt%和所述酸性多孔材料(干基)占0-20wt%。
根据本发明的一个方面,优选的是,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)的总重量(作为100wt%),所述储硫金属氧化物(以储硫金属氧化物计)占25-70wt%、所述无机粘结剂(以氧化物计)占6-25wt%、所述耐磨组分(干基)占10-30wt%、所述活性金属组分(以金属元素计)占8-25wt%和所述酸性多孔材料(干基)占1-15wt%。
根据本发明的一个方面,优选的是,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)的总重量(作为100wt%),所述储硫金属氧化物(以储硫金属氧化物计)占40-60wt%、所述无机粘结剂(以氧化物计)占8-15wt%、所述耐磨组分(干基)占12-25wt%、所述活性金属组分(以金属元素计)占12-20wt%和所述酸性多孔材料(干基)占2-10wt%。
根据本发明,所述脱硫催化剂中前述各组分的含量可以按照以下方法(以下有时称为XRD测量法)进行测量:
将脱硫催化剂样品在空气气氛下在650℃下焙烧4小时,氮气气氛下贮存备用。量取1g焙烧后的催化剂样品,进行XRD谱图测量。将该XRD谱图与无机晶体结构数据库标准谱图进行对照,鉴别出每一种组分,并进一步确定所述每一种组分的最强特征峰。然后,某一组分最强特征峰的峰面积除以全部最强特征峰的峰面积之和,以该比值作为该组分的含量。特别地,所述活性金属组分通过该测量方法获得的是以金属氧化物计的含量,通过简单换算,即可获得其以金属元素计的含量。
根据本发明,通过XRD方法测量脱硫催化剂中各组分含量的具体内容还可以进一步参见Q/SH3360215-2009《S-Zorb吸附剂化学组成的测定》,本说明书在此就其全部内容参考引用。
根据本发明的一个方面,取决于所述脱硫催化剂的制造方法,各组分,包括前述的组分1)至组分5)以及添加剂,在所述脱硫催化剂 中可能以本说明书前文文字描述的物质形态(也可以称为最终物质形态,比如氧化物)存在,但也可能以该物质形态的前体形式(比如氢氧化物、水合物或者金属单质等)、或者二者组合形式存在。本领域技术人员已知的是,这类前体形式的结构千变万化,涵盖范围极其广泛,由此具有不可完全预测性或者不可完全归纳性。因此,为了方便本领域技术人员理解本发明并为了简化说明书篇幅起见,本说明书仅针对这些组分文字描述了其最终物质形态(比如氧化物),而没有对其任何前体形式(比如氢氧化物、水合物或者金属单质等)进行详细的文字描述,也没有详细描述所述最终物质形态与所述前体形式的任何组合(比如氧化物与氢氧化物的组合、氧化物与水合物的组合或者氧化物与金属单质的组合等)。但是,本领域技术人员应当理解的是,所述前体形式或者所述组合显然属于本领域技术人员能力可及的发明变形方案,因此这些发明变形方案也必然包括在本发明的保护范围之内。为了体现这一意图,在本申请发明的上下文中,所谓“组成”,也可以理解为焙烧后组成。本发明的发明人通过研究发现,通过焙烧,任何所述前体形式或者所述组合均可以转化为所述最终物质形态。在此,所述焙烧的条件包括:在空气气氛下在650℃下焙烧4小时。
根据本发明的一个方面,所述脱硫催化剂可以利用特定的制造方法进行制造。为此,本发明还涉及一种脱硫催化剂的制造方法。
根据本发明的一个方面,所述脱硫催化剂的制造方法包括以下步骤(1)至步骤(3)。在此,步骤(2)和步骤(3)都是任选步骤。
步骤(1):使至少组分1)至组分6)接触,获得催化剂前体。在此,所述步骤(1)也称为接触步骤。
根据本发明的一个方面,在所述接触步骤中,各组分在接触体系(比如反应器)中发生接触反应,形成产物混合物。然后,根据需要,通过常规已知的任何方式干燥所述产物混合物,以便除去水等挥发性组分,即可获得所述催化剂前体。在此,所述催化剂前体也可以称为焙烧前的脱硫催化剂,也属于本发明保护范围所涵盖的脱硫催化剂。
根据本发明的一个方面,在所述接触步骤中,作为所述干燥的方法,比如可以举出晾干、烘干和鼓风干燥。作为所述干燥的条件,比如可以举出干燥温度为25-400℃,优选100-350℃,干燥时间为0.5h 以上,优选0.5-100h,更优选2-20h。
根据本发明的一个方面,所述步骤(1)包括以下步骤(1-1)至步骤(1-3)。
步骤(1-1):使所述组分1)、所述组分2)、所述组分3)、任选的所述组分5)和所述组分6)接触,获得载体浆液。
根据本发明的一个方面,所述步骤(1-1)可以按照步骤(1a)的方式进行,也可以按照步骤(1b)的方式进行,并没有特别的限定。
步骤(1a):使所述组分2)、所述组分3)和所述组分6)接触,然后再与所述组分1)和任选的所述组分5)接触,获得载体浆液。
步骤(1b):使所述组分2)和所述组分6)接触,然后再与所述组分1)、所述组分3)和任选的所述组分5)接触,获得载体浆液。
步骤(1-2):任选干燥之后,焙烧所述载体浆液,获得催化剂载体。
根据本发明的一个方面,所述步骤(1-2)可以按照步骤(2a)的方式进行。
步骤(2a):将所述载体浆液进行成型、第一干燥和第一焙烧,获得催化剂载体。
根据本发明的一个方面,在前述各步骤中,所述载体浆液可以为糊状物或浆液等形式,优选浆液形式。作为所述成型的方法,优选的是,通过喷雾干燥,将所述载体浆液成型为粒度20-200微米的微球。为了便于喷雾干燥,干燥前所述载体浆液的固含量一般为10-50重量%,优选20-50重量%。所述固含量可以按照常规已知的方式进行调整,比如稠化所述载体浆液或者向所述载体浆液中加水,并没有特别的限定。
根据本发明的一个方面,在步骤(1-2)或者步骤(2a)中,所述干燥或者所述第一干燥可以按照本领域技术人员所公知的方式和方法进行,例如干燥方法可以是晾干、烘干、鼓风干燥。作为干燥条件,具体举例而言,干燥温度一般为25-400℃,优选100-350℃,干燥时间一般为0.5h以上,优选0.5-100h,更优选2-20h。
根据本发明的一个方面,在步骤(1-2)或者步骤(2a)中,所述焙烧或者所述第一焙烧可以按照本领域技术人员所公知的方式和方法进行。作为焙烧条件,具体举例而言,焙烧温度一般为400-700℃,优 选450-650℃,焙烧时间一般为0.5小时以上,优选0.5-100小时,更优选0.5-10小时,含氧气氛(比如空气气氛)下。
步骤(1-3):使所述组分4)与所述催化剂载体接触,获得催化剂前体。
根据本发明的一个方面,在前文所述的各个步骤中,作为所述接触的方式,从简便的角度出发,比如可以举出将有关组分按照预定的相对投料比例进行彼此混合,直至获得均匀体系的方法。在必要时,所述混合可以辅以搅拌。
根据本发明的一个方面,所述步骤(1-3)可以按照步骤(3a)的方式进行。
步骤(3a):向所述催化剂载体中引入所述组分4),然后进行第二干燥,获得所述催化剂前体。
根据本发明的一个方面,在步骤(1-3)或者步骤(3a)中,优选通过浸渍法或沉淀法进行所述接触或者所述引入。具体举例而言,为了进行所述浸渍法,可以使用所述组分4)的溶液或悬浮液来浸渍所述催化剂载体;或者,为了进行所述沉淀法,可以先使所述组分4)的溶液或悬浮液与所述催化剂载体混合,然后加入氨水使之沉淀。这些方法在本领域是常规已知的,在此不再赘述。
根据本发明的一个方面,在步骤(3a)中,所述第二干燥可以按照本领域技术人员所公知的方式和方法进行,例如干燥方法可以是晾干、烘干和鼓风干燥。作为干燥的条件,比如可以举出干燥温度为50-300℃,优选100-250℃,干燥时间为0.5-8h,优选1-5h。
根据本发明的一个方面,所述组分1)是储硫金属氧化物和/或其前体。在此,所述储硫金属氧化物如本说明书前文所述。另外,作为所述储硫金属氧化物的前体,比如可以举出通过步骤(1)的接触反应和/或在步骤(2)的焙烧条件下能够转化为所述储硫金属氧化物的任何物质,具体比如可以举出所述储硫金属的氢氧化物(比如氢氧化锌等)、水合物和水溶性酸盐(比如硫酸锌、硝酸锌、醋酸锌等)等等,本领域技术人员可以就此进行常规选择,并没有特别的限定。另外,所述组分1)可以直接加入所述接触步骤,也可以在与水混合而调整为水溶液或者浆液形式之后再加入所述接触步骤,并没有特别的限定。
根据本发明的一个方面,所述组分2)是无机粘结剂和/或其前体。在此,所述无机粘结剂如本说明书前文所述。另外,作为所述无机粘结剂的前体,比如可以举出通过步骤(1)的接触反应和/或在步骤(2)的焙烧条件下能够转化为所述无机粘结剂的任何物质,本领域技术人员可以就此进行常规选择,并没有特别的限定。另外,所述组分2)可以直接加入所述接触步骤,也可以在与水混合而调整为水溶液或者浆液形式之后再加入所述接触步骤,并没有特别的限定。
根据本发明的一个方面,作为所述组分2),特别是作为所述氧化铝的前体,比如可以举出在步骤(2)的焙烧条件下能够转化为氧化铝的物质,具体比如可以举出SB粉、水合氧化铝、铝溶胶、一水软铝石(薄水铝石)、假一水软铝石(拟薄水铝石)、三水合氧化铝和无定形氢氧化铝,优选SB粉、拟薄水铝石和铝溶胶。这些前体可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述组分2),特别是作为所述氧化钛的前体,比如可以举出通过步骤(1)的接触反应而水解,然后在步骤(2)的焙烧条件下能够转化为锐钛矿型二氧化钛的物质,具体比如可以举出四氯化钛、钛酸乙酯、钛酸异丙酯、醋酸钛和水合氧化钛。这些前体可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述组分2),特别是作为所述氧化锆的前体,比如可以举出通过步骤(1)的接触反应而水解,然后在步骤(2)的焙烧条件下能够转化为二氧化锆的物质,具体比如可以举出四氯化锆、氧氯化锆、醋酸锆、水合氧化锆和无定形二氧化锆。这些前体可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述组分2),特别是作为所述氧化锡的前体,比如可以举出通过步骤(1)的接触反应而水解,然后在步骤(2)的焙烧条件下能够转化为二氧化锡的物质,具体比如可以举出四氯化锡、四异丙醇锡、醋酸锡和水合氧化锡。这些前体可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述组分3)是耐磨组分和/或其前体。在此,所述耐磨组分如本说明书前文所述。另外,作为所述耐磨组分的前体,比如可以举出通过步骤(1)的接触反应和/或在步骤(2)的 焙烧条件下能够转化为所述耐磨组分的任何物质,本领域技术人员可以就此进行常规选择,并没有特别的限定。另外,所述组分3)可以直接加入所述接触步骤,也可以在与水混合而调整为水溶液或者浆液形式之后再加入所述接触步骤,并没有特别的限定。
根据本发明的一个方面,所述组分4)是活性金属组分和/或其前体。在此,所述活性金属组分如本说明书前文所述。另外,作为所述活性金属组分的前体,比如可以举出通过步骤(1)的接触反应和/或在步骤(2)的焙烧条件下能够转化为所述活性金属组分的任何物质,具体比如可以举出所述活性金属组分中相应金属元素的氢氧化物、水合物、有机酸盐(比如醋酸盐和草酸盐等)和无机酸盐(比如碳酸盐、硝酸盐、硫酸盐和硫氰酸盐等,特别是硝酸盐)等等,本领域技术人员可以就此进行常规选择,并没有特别的限定。这些前体可以单独使用一种,或者以任意的比例组合使用多种。另外,所述组分4)可以直接加入所述接触步骤,也可以在与水混合而调整为水溶液或者浆液形式之后再加入所述接触步骤,并没有特别的限定。
根据本发明的一个方面,所述组分5)属于任选组分,是酸性多孔材料和/或其前体。在此,所述酸性多孔材料如本说明书前文所述。另外,作为所述酸性多孔材料的前体,比如可以举出通过步骤(1)的接触反应和/或在步骤(2)的焙烧条件下能够转化为所述酸性多孔材料的任何物质,本领域技术人员可以就此进行常规选择,并没有特别的限定。另外,所述组分5)可以直接加入所述接触步骤,也可以在与水混合而调整为水溶液或者浆液形式之后再加入所述接触步骤,并没有特别的限定。
根据本发明的一个方面,在所述制造方法中,根据需要,还可以向所述接触步骤(包括步骤(1)、步骤(1-1)、或者步骤(1a)和/或步骤(1b))中引入添加剂和/或其前体作为添加剂组分。在此,所述添加剂如本说明书前文所述。另外,作为所述添加剂的前体,比如可以举出通过步骤(1)的接触反应和/或在步骤(2)的焙烧条件下能够转化为所述添加剂的任何物质,本领域技术人员可以就此进行常规选择,并没有特别的限定。另外,所述添加剂可以直接加入所述接触步骤,也可以在与水混合而调整为水溶液或者浆液形式之后再加入所 述接触步骤,并没有特别的限定。另外,这些添加剂组分的用量可以直接参照本领域的常规知识,并没有特别的限定。
根据本发明的一个方面,作为所述碱金属氧化物的前体,比如可以举出在步骤(2)的焙烧条件下能够转化为碱金属氧化物的物质,具体比如可以举出碱金属的氢氧化物、硝酸盐、硫酸盐和磷酸盐。这些前体可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述组分6)是接触用介质。在此,作为所述接触用介质,比如可以举出本领域在制造脱硫催化剂时常规使用的任何介质,具体比如可以举出水、醇和酸性液体。这些接触用介质可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,对水的用量没有特别的限定,只要能够使得所述接触反应得以进行即可,比如以浆液形式进行。在此,在计算所述水的用量时,需要考虑各组分(包括添加剂组分)如前所述(如果有的话)在调整为水溶液或者浆液形式时所消耗的水。
根据本发明的一个方面,作为所述酸性液体,可以举出酸或酸的水溶液。另外,作为所述酸,比如可以举出水溶性无机酸和水溶性有机酸,具体比如可以举出盐酸、硝酸、磷酸和醋酸。这些酸可以单独使用一种,或者以任意的比例组合使用多种。另外,所述酸性液体的用量一般使得所述接触反应的pH值达到1-5,优选达到1.5-4。
根据本发明的一个方面,在所述制造方法中,作为各组分的用量,按照重量计,各组分之间的相对投料比例一般为,
所述组分1)(以储硫金属氧化物计)∶所述组分2)(以氧化物计)∶所述组分3)(以耐磨组分计,干基)∶所述组分4)(以金属元素计)∶所述组分5)(以酸性多孔材料计,干基)∶水=
(10-80)∶(3-35)∶(5-40)∶(5-30)∶(0-20)∶(50-500),并且所述酸∶所述组分2)(以氧化物计)=(0.01-1.0)∶1。
根据本发明的一个方面,在所述制造方法中,作为各组分的用量,按照重量计,各组分之间的相对投料比例优选为,
所述组分1)(以储硫金属氧化物计)∶所述组分2)(以氧化物计)∶所述组分3)(以耐磨组分计,干基)∶所述组分4)(以金属元素计)∶所述组分5)(以酸性多孔材料计,干基)∶水=
(25-70)∶(6-25)∶(10-30)∶(8-25)∶(1-15)∶(100-400),并且所述酸∶所述组分2)(以氧化物计)=(0.02-0.9)∶1。
根据本发明的一个方面,在所述制造方法中,作为各组分的用量,按照重量计,各组分之间的相对投料比例优选为,
所述组分1)(以储硫金属氧化物计)∶所述组分2)(以氧化物计)∶所述组分3)(以耐磨组分计,干基)∶所述组分4)(以金属元素计)∶所述组分5)(以酸性多孔材料计,干基)∶水=
(40-60)∶(8-15)∶(12-25)∶(12-20)∶(2-10)∶(150-300),并且所述酸∶所述组分2)(以氧化物计)=(0.03-0.8)∶1。
步骤(2):任选地,焙烧(称为第二焙烧)所述催化剂前体,获得脱硫催化剂。在此,所述脱硫催化剂可以称为焙烧后的脱硫催化剂,也属于本发明保护范围所涵盖的脱硫催化剂。
根据本发明的一个方面,在步骤(2)中,所述第二焙烧可以按照本领域技术人员所公知的方式和方法进行。作为焙烧条件,具体比如可以举出焙烧温度一般为300-800℃,优选450-750℃,焙烧时间一般为0.5h以上,优选1-3h。另外,所述第二焙烧可以在有氧气或含氧气体存在下进行。
步骤(3):任选地,还原所述脱硫催化剂。
根据本发明的一个方面,在步骤(3)中,通过所述还原,仅仅将所述脱硫催化剂中的活性金属组分至少部分(优选全部)转变为相应金属元素的金属单质,使其基本上以还原态存在,但基本上不会使所述脱硫催化剂中其他组分可能包含的金属元素转变为金属单质。作为所述还原的条件,具体比如可以举出还原温度一般为300-600℃,优选400-500℃,还原时间一般为0.5-6小时,优选1-3小时,在含氢气气氛(优选氢气含量为10-60体积%)下。
根据本发明的一个方面,所述步骤(3)可以在步骤(2)结束之后立即进行,也可以在脱硫催化剂使用之前(即用于进行催化脱硫之前)才进行。由于活性金属组分容易氧化,因此为便于运输,优选在脱硫催化剂使用之前才进行步骤(3)。
根据本发明的一个方面,本发明前述的任何脱硫催化剂都具有烃油脱硫活性。在此,所述的脱硫催化剂既包括本说明书前文文字描述 的脱硫催化剂,也包括通过本说明书前文文字描述的制造方法所制造的脱硫催化剂。为此,本发明还涉及一种脱硫方法。
根据本发明的一个方面,所述脱硫方法包括使含硫的烃油与本发明前述的任何脱硫催化剂在脱硫反应条件下接触的步骤。在此,通过该接触,可以将所述烃油的硫含量降低至10μg/g以下,或者甚至更低。
根据本发明的一个方面,作为所述烃油,优选原油或者沸程不超过450℃的石油馏分,特别是馏程为从-42.1℃至350℃的石油馏分,更优选选自液化石油气、裂化汽油和柴油机燃料。这些烃油可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述烃油中的硫含量一般为200-1000μg/g。
根据本发明的一个方面,在所述脱硫方法中,作为所述接触的方式,比如可以举出逆流接触或者顺流接触。另外,所述接触比如可以在本领域就此常规已知的任何反应器中进行。作为所述反应器,具体比如可以举出固定床反应器和流化床反应器。
根据本发明的一个方面,在所述脱硫方法中,作为所述脱硫反应条件,具体比如可以举出:氢气气氛下,反应温度一般为350-500℃,优选400-450℃,反应压力一般为0.5-4MPa(绝对压力),优选1.0-2.0MPa(绝对压力),氢油体积比一般为0.1-0.5,优选0.15-0.4,质量空速一般为2-6h-1,优选2.5-5h-1
根据本发明的一个方面,催化脱硫反应后的所述脱硫催化剂可以经再生后重新使用。为此,所述再生可以在氧气气氛下进行,再生的条件可以包括:再生压力为常压(101325Pa),再生温度为400-700℃,优选500-600℃。
根据本发明的一个方面,再生后的脱硫催化剂在重新进行烃油脱硫之前,还需要在含氢气气氛下进行还原。为此,再生后的脱硫催化剂的还原条件可以包括:温度为350-500℃,优选400-450℃,压力为0.2-2MPa(绝对压力),优选0.2-1.5MPa(绝对压力)。
实施例
以下采用实施例对本发明进行进一步的例示性解释和说明,但本 发明并不限于这些实施例。
实施例1
取2.38kg的四氯化钛(北京化工厂,分析纯,99重量%)缓慢加入4.6kg的5重量%的稀盐酸,缓慢搅拌避免氧化钛结晶析出,得到淡黄色透明的钛溶胶pH=2.0;
将4.43kg的氧化锌粉末(Headhorse公司,纯度99.7重量%)、0.75kg的HIM-5分子筛(中国石化催化剂长岭分公司,含干基0.70kg,SiO2∶Al2O3的摩尔比为25)、2.06kg的六方氮化硼(纯度>99.0%,秦皇岛一诺高新材料开发有限公司)和6.57kg的去离子水混合,搅拌30分钟后得到氧化锌、HIM-5分子筛和六方氮化硼的混合浆液;然后加入上述钛溶胶,混合后搅拌1h得到pH值为3.5的载体浆液;
将所得载体浆液采用Niro Bowen Nozzle TowerTM型号的喷雾干燥机进行喷雾干燥,喷雾干燥压力为8.5MPa,喷雾干燥气入口温度480℃出口温度为150℃。由喷雾干燥得到的微球先在180℃下干燥1h,然后在635℃下焙烧1h得到催化剂载体;
将3.2kg的催化剂载体用含3.51kg的六水合硝酸镍(北京化学试剂公司,纯度>98.5重量%)和0.6kg去离子水的溶液浸渍,得到的浸渍物经过180℃干燥4h后,在空气气氛635℃焙烧1h,制得焙烧产物;
将焙烧产物在氢气气氛(氢气含量为70体积%,其余为氮气)中425℃下还原2h,得到脱硫催化剂A1。
脱硫催化剂A1的干基化学组成为:氧化锌含量为44.3重量%,六方氮化硼含量为20.6重量%,HIM-5分子筛含量为7.0重量%,二氧化钛含量为10.0重量%,镍含量为18.1重量%。
将拟薄水铝石1.56kg(中国石化催化剂南京分公司,含干基1.17kg)和1.50kg的六方氮化硼(纯度>99.0%,秦皇岛一诺高新材料开发有限公司)搅拌混合,然后加入去离子水8.2kg混合均匀为浆液后,再加入260ml的30重量%的盐酸使浆液pH=1.9,搅拌酸化1h后升温至80℃老化2h。待温度降低后再加入5.52kg的氧化锌粉末和0.38kg的REY分子筛(中国石化催化剂齐鲁分公司,含干基0.3kg,SiO2∶Al2O3的摩尔比为2,稀土含量16重量%),并搅拌1h得到pH为3.5的载体浆液。
参照实施例1的方法进行催化剂载体浆液的喷雾干燥成型并引入活性组分镍,还原后得到脱硫催化剂A2。
脱硫催化剂A2的干基化学组成为:氧化锌含量为55.2重量%,六方氮化硼含量为15.0重量%,REY分子筛含量为3.0重量%,氧化铝含量为11.7重量%,镍含量为15.1重量%。
实施例3
将4.83kg的氧化锌粉末、1.26kg的SAPO-34分子筛(中国石化催化剂齐鲁分公司,含干基1.0kg)、1.2kg的六方氮化硼和8.8kg的去离子水混合,搅拌30分钟后得到氧化锌、SAPO-34分子筛和六方氮化硼的混合浆液;
取钛酸乙酯3.90kg(Aldrich公司,分析纯,99重量%)和1.6kg的去离子水在搅拌的情况下缓慢加入到3.8kg的10重量%的硝酸(分析纯,北京化工厂出品)溶液中,pH=2.3,并搅拌1h,得到淡黄色透明的钛溶胶;再加入氧化锌、SAPO-34分子筛和六方氮化硼的混合浆液后搅拌1h得到pH值为3.5的催化剂载体浆液。
参照实施例1的方法进行催化剂载体浆液的喷雾干燥成型。
参照实施例1的方法制备焙烧产物和催化剂,不同的是,用硝酸镍和硝酸钴的溶液替代六水合硝酸镍浸渍催化剂载体,引入活性组分镍和钴,还原后得到脱硫催化剂A3。
脱硫催化剂A3的干基化学组成为:氧化锌含量为48.3重量%,六方氮化硼含量为12.0重量%,SAPO-34分子筛含量为10.0重量%,二氧化钛含量为13.5重量%,镍含量为8.1重量%,钴含量为8.1重量%。
实施例4
将4.83kg的氧化锌粉末、1.04kg的ZSP-3分子筛(中国石化催化剂齐鲁分公司,含干基1.0kg)、1.2kg的六方氮化硼和8.8kg的去离子水混合,搅拌30分钟后得到氧化锌、ZSP-3分子筛和六方氮化硼的混合浆液;
取钛酸乙酯3.90kg(Aldrich公司,分析纯,99重量%)和1.6kg的去离子水在搅拌的情况下缓慢加入到3.8kg的10重量%的硝酸(分析纯,北京化工厂出品)溶液中,pH=2.3,并搅拌1h,得到淡黄色透明的钛溶胶;再加入氧化锌、ZSP-3分子筛和六方氮化硼的混合浆液后 搅拌1h得到pH值为3.5的载体浆液。
参照实施例1的方法进行催化剂载体浆液的喷雾干燥成型并引入活性组分镍,还原后得到脱硫催化剂A4。
脱硫催化剂A4的干基化学组成为:氧化锌含量为48.3重量%,六方氮化硼含量为12.0重量%,ZSP-3分子筛含量为10.0重量%,二氧化钛含量为13.5重量%,镍含量为16.2重量%。
实施例5
将4.43kg的氧化锌粉末、0.88kg的Hβ分子筛(中国石化催化剂齐鲁分公司,含干基0.70kg,SiO2∶Al2O3的摩尔比为8)、2.06kg的六方氮化硼和6.57kg的去离子水混合,搅拌30分钟后得到氧化锌、Hβ分子筛和六方氮化硼的混合浆液;
取拟薄水铝石1.33kg(山东铝厂出品,含干基1.0kg)和去离子水4.6kg混合均匀为浆液后,加入300ml的30重量%的盐酸(化学纯,北京化工厂出品)使浆液pH=2.5,搅拌酸化1h后升温至80℃老化2h。再加入氧化锌、分子筛和六方氮化硼的混合浆液后搅拌1h得到载体浆液。
参照实施例1的方法进行催化剂载体浆液的喷雾干燥成型并引入活性组分镍,还原后得到脱硫催化剂A5。
脱硫催化剂A5的干基化学组成为:氧化锌含量为44.3重量%,六方氮化硼含量为20.6重量%,Hβ分子筛含量为7.0重量%,氧化铝含量为10.0重量%,镍含量为18.1重量%。
实施例6
将4.43kg的氧化锌粉末、0.88kg的ZRP-1分子筛(中国石化催化剂齐鲁分公司,含干基0.7kg)、2.06kg的六方氮化硼和6.57kg的去离子水混合,搅拌30分钟后得到氧化锌、ZRP-1分子筛和六方氮化硼的混合浆液;
将1.91kg的四氯化锆(北京化工厂,分析纯,99重量%)缓慢加入3.0kg的去离子水,并加入4.6kg的5重量%的硝酸溶液,缓慢搅拌避免氧化锆结晶析出,得到淡黄色透明的锆溶胶pH=2.1;再加入氧化锌、ZRP-1分子筛和六方氮化硼的混合浆液后搅拌1h得到pH值为3.5的载体浆液。
参照实施例1的方法进行载体浆液的喷雾干燥成型并引入活性组分镍,还原后得到脱硫催化剂A6。
脱硫催化剂A6的干基化学组成为:氧化锌含量为44.3重量%,六方氮化硼含量为20.6重量%,ZRP-1分子筛含量为7.0重量%,二氧化锆含量为10.0重量%,镍含量为18.1重量%。
实施例7
将4.43kg的氧化锌粉末、0.88kg的REUSY分子筛(中国石化催化剂齐鲁分公司,含干基0.7kg)、2.06kg的六方氮化硼和6.57kg的去离子水混合,搅拌30分钟后得到氧化锌、REUSY分子筛和六方氮化硼的混合浆液;
将1.91kg的四氯化锆(北京化工厂,分析纯,99重量%)缓慢加入3.0kg的去离子水,并加入4.6kg的5重量%的硝酸溶液,缓慢搅拌避免氧化锆结晶析出,得到淡黄色透明的锆溶胶pH=2.1;再加入氧化锌、REUSY分子筛和六方氮化硼的混合浆液后搅拌1h得到pH值为3.5的载体浆液。
参照实施例1的方法进行载体浆液的喷雾干燥成型并引入活性组分镍,还原后得到脱硫催化剂A7。
脱硫催化剂A7的干基化学组成为:氧化锌含量为44.3重量%,六方氮化硼含量为20.6重量%,REUSY分子筛含量为7.0重量%,二氧化锆含量为10.0重量%,镍含量为18.1重量%。
实施例8
将4.43kg的氧化锌粉末、0.92kg的P-IM-5分子筛(中国石化催化剂长岭分公司,含干基0.7kg,SiO2∶Al2O3的摩尔比为25,P含量为3重量%)、2.06kg的六方氮化硼和6.57kg的去离子水混合,搅拌30分钟后得到氧化锌、P-IM-5分子筛和六方氮化硼的混合浆液;
将1.91kg的四氯化锆(北京化工厂,分析纯,99重量%)缓慢加入3.0kg的去离子水,并加入4.6kg的5重量%的硝酸溶液,缓慢搅拌避免氧化锆结晶析出,得到淡黄色透明的锆溶胶pH=2.1;再加入氧化锌、P-IM-5分子筛和六方氮化硼的混合浆液后搅拌1h得到pH值为3.5的载体浆液。
参照实施例1的方法进行载体浆液的喷雾干燥成型并引入活性组 分镍,还原后得到脱硫催化剂A8。
脱硫催化剂A8的干基化学组成为:氧化锌含量为44.3重量%,六方氮化硼含量为20.6重量%,P-IM-5分子筛含量为7.0重量%,二氧化锆含量为10.0重量%,镍含量为18.1重量%。
实施例9
将1.91kg的四氯化锆(北京化工厂,分析纯,99重量%)缓慢加入3.0kg的去离子水,并加入4.6kg的5重量%的硝酸溶液,缓慢搅拌避免氧化锆结晶析出,得到淡黄色透明的锆溶胶pH=2.1;
将4.43kg的氧化锌粉末(Headhorse公司,纯度99.7重量%)、0.88kg的Hβ分子筛(中国石化催化剂齐鲁分公司,含干基0.70kg,SiO2∶Al2O3的摩尔比为8)、2.06kg的立方氮化硼(纯度>99.0%,秦皇岛一诺高新材料开发有限公司)和6.57kg的去离子水混合,搅拌30分钟后得到氧化锌、Hβ分子筛和立方氮化硼的混合浆液;然后加入上述锆溶胶,混合后搅拌1h得到载体浆液;
参照实施例1的方法进行催化剂载体浆液的喷雾干燥成型并引入活性组分镍,还原后得到脱硫催化剂A9。
脱硫催化剂A9的干基化学组成为:氧化锌含量为44.3重量%,立方氮化硼含量为20.6重量%,Hβ分子筛含量为7.0重量%,氧化锆含量为10.0重量%,镍含量为18.1重量%。
对比例1
将4.43kg的氧化锌粉末和6.57kg的去离子水混合,搅拌30分钟后得到氧化锌浆液;
取拟薄水铝石1.81kg(中国石化催化剂南京分公司,含干基1.36kg)和2.46kg的膨胀珍珠岩(中国石化催化剂南京分公司,含干基2.40kg)搅拌混合,然后加入去离子水4.6kg混合均匀,再加入360ml的30重量%的盐酸使浆液pH=2.1,搅拌酸化1h后升温至80℃老化2h,再加入氧化锌浆液混合后搅拌1h得到载体浆液。
参照实施例1的方法进行催化剂载体浆液的喷雾干燥成型并引入活性组分镍,还原后得到脱硫催化剂B1。
脱硫催化剂B1的干基化学组成为:氧化锌含量为44.3重量%,膨胀珍珠岩含量为24.0重量%,氧化铝含量为13.6重量%,镍含量为18.1 重量%。
对比例2
取拟薄水铝石1.56kg(山东铝厂出品,含干基1.17kg)和1.85kg的硅藻土(含干基1.80kg)搅拌混合,然后加入去离子水8.2kg混合均匀,再加入260ml的30重量%的盐酸使浆液pH=1.9,搅拌酸化1h后升温至80℃老化2h。待温度降低后再加入5.52kg的氧化锌粉末并搅拌1h得到载体浆液。
参照实施例1的方法进行载体浆液的喷雾干燥成型并引入活性组分镍,还原后得到脱硫催化剂B2。
脱硫催化剂B2的干基化学组成为:氧化锌含量为55.2重量%,硅藻土含量为18.0重量%,氧化铝含量为11.7重量%,镍含量为15.1重量%。
对比例3
将4.93kg的氧化锌粉末和5.57kg的去离子水混合,搅拌30分钟后得到氧化锌浆液;
取拟薄水铝石1.80kg(山东铝厂出品,含干基1.35kg)和2.16kg的硅藻土(世界矿业公司,含干基2.10kg)搅拌混合,然后加入去离子水4.6kg混合均匀,再加入300ml的30重量%的盐酸使浆液pH=2.5,搅拌酸化1h后升温至80℃老化2h。再加入氧化锌浆液混合后搅拌1h得到载体浆液。
参照实施例3的方法进行载体浆液的喷雾干燥成型并引入活性组分镍和钴,还原后得到脱硫催化剂B3。
脱硫催化剂B3的干基化学组成为:氧化锌含量为49.3重量%,硅藻土含量为21.0重量%,氧化铝含量为13.5重量%,镍含量为8.1重量%,钴含量为8.1重量%。
对比例4
将拟薄水铝石1.56kg(中国石化催化剂南京分公司,含干基1.17kg)和1.54kg的膨胀珍珠岩(中国石化催化剂南京分公司,含干基1.50kg)搅拌混合,然后加入去离子水8.2kg混合均匀为浆液后,再加入260ml的30重量%的盐酸使浆液pH=1.9,搅拌酸化1h后升温至80℃老化2h。待温度降低后再加入5.52kg的氧化锌粉末和0.37kg的P-IM-5分子筛 (中国石化催化剂长岭分公司,含干基0.3kg,SiO2∶Al2O3的摩尔比为25,P含量为3重量%),并搅拌1h得到载体浆液。
参照实施例1的方法进行载体浆液的喷雾干燥成型并引入活性组分镍,还原后得到脱硫催化剂B4。
脱硫催化剂B4的干基化学组成为:氧化锌含量为55.2重量%,膨胀珍珠岩含量为15.0重量%,P-IM-5分子筛含量为3.0重量%,氧化铝含量为11.7重量%,镍含量为15.1重量%。
对比例5
取2.38kg的四氯化钛(北京化工厂,分析纯,99重量%)缓慢加入4.6kg的5重量%的稀盐酸,缓慢搅拌避免氧化钛结晶析出,得到淡黄色透明的钛溶胶pH=2.0;
将4.43kg的氧化锌粉末(Headhorse公司,纯度99.7重量%)、0.75kg的HIM-5分子筛(中国石化催化剂长岭分公司,含干基0.70kg,SiO2∶Al2O3的摩尔比为25)、2.06kg的氮化硅(纯度>99.0%,秦皇岛一诺高新材料开发有限公司)和6.57kg的去离子水混合,搅拌30分钟后得到氧化锌、HIM-5分子筛和氮化硅的混合浆液;然后加入上述钛溶胶,混合后搅拌1h得到pH值为3.5的载体浆液;
参照实施例1的方法进行催化剂载体浆液的喷雾干燥成型并引入活性组分镍,还原后得到脱硫催化剂B5。
脱硫催化剂B5的干基化学组成为:氧化锌含量为44.3重量%,氮化硅含量为20.6重量%,HIM-5分子筛含量为7.0重量%,二氧化钛含量为10.0重量%,镍含量为18.1重量%。
实施例10
(1)烃油脱硫吸附剂耐磨损强度评价。对脱硫催化剂A1-A9和B1-B5进行耐磨损强度测试。采用直管磨损法,方法参考《石油化工分析方法(RIPP)实验方法》中RIPP 29-90试验方法,测定催化剂磨损指数,结果见表1。测试得到的数值越小,表明耐磨损强度越高。表1中磨损指数对应的是在一定条件下磨损时细粉生成的百分数。
(3)烃油脱硫吸附剂脱硫性能评价。对脱硫催化剂A1-A9和B1-B5采用固定床微反实验装置进行脱硫评价实验,将16g的脱硫催化剂装填在内径为30mm、长为1m的固定床反应器中。
原料烃油为硫含量1000ppm的催化裂化汽油,反应压力为2.1MPa,氢气流量为6.3L/h,汽油流量为80mL/h,反应温度为410℃,原料烃油的重量空速为4h-1,进行含硫烃油的脱硫反应,得到产品汽油。
以上产品汽油中硫含量衡量脱硫催化剂的脱硫活性。产品汽油中硫含量通过离线色谱分析方法,采用安捷仑公司的GC6890-SCD仪器进行测定。
为了准确表征出脱硫催化剂在工业实际运行中的活性,脱硫评价实验完成后的催化剂在550℃的空气气氛下进行再生处理。将脱硫催化剂进行脱硫评价实验,再生6个循环后其活性基本稳定下来,以催化剂第6次循环稳定后的产品汽油中的硫含量表示催化剂的活性,稳定后产品汽油中硫含量和液体收率如表1所示。
对脱硫催化剂A1-A9和B1-B5进行汽油脱硫的穿透硫容进行计算,结果见表3。其中,穿透硫容中的穿透是指:从开始进行汽油脱硫到得到的汽油硫含量突破10μg/g为止。穿透硫容是指:穿透前,脱硫催化剂上一共吸附的硫含量(以脱硫催化剂的总重量为基准)。
分别采用GB/T 503-1995和GB/T 5487-1995测出反应前和第六次循环稳定后汽油的马达法辛烷值(MON)和研究法辛烷值(RON),结果见表1。
测定催化剂A1-A9和B1-B5进行临氢反应的进料/排放气体流速,并以QRD-1102A热导式氢分析仪分析其中氢气浓度,计算加入氢气量(Q1)、排出氢气量(Q2)并求出氢气量差值,结果见表1。
从表1的结果数据可以看出,本发明提供的脱硫催化剂中含有氮化硼组分,脱硫催化剂进行多次循环脱硫后仍然可以很好地实现降低汽油的硫含量,说明该催化剂具有更好的脱硫活性和活性稳定性。而且该脱硫催化剂的磨损指数更低,说明具有更好的耐磨损强度,从而可以使该脱硫催化剂有更长的使用寿命。对比例4中的脱硫催化剂含有HIM-5分子筛,但不含有本申请的氮化硼,因此磨损指数远高于实施例制得的催化剂的磨损指数,说明本发明提供的脱硫催化剂可以具有更好的耐磨性能。从脱硫催化剂A1、脱硫催化剂A7和脱硫催化剂B5的比较可以看出含有具有层状结构的六方氮化硼的吸附剂具有更好的耐磨损性能和辛烷值提高性能,虽然氮化硅也可以不生成硅酸锌, 但是由于六方氮化硼的层状结构可以和粘结剂更好的相互作用,可以使吸附剂耐磨损强度更高,且氮化硅不具有辛烷值改善效果和产生氢气的效果。
实施例11
对脱硫催化剂A1-A9和B1-B5进行老化,条件为:把催化剂放置于600℃、水蒸气分压为20kPa的气氛下处理16h。
对老化前后的脱硫催化剂A1和B1进行XRD谱图分析,其中,脱硫催化剂A1水热老化前后的XRD谱图如图1所示,新鲜剂和老化剂均在衍射角2θ为27.2°±0.5°、41.5°±0.5°和50.3°±0.5°有氮化硼的特征峰出现;脱硫催化剂B1水热老化前后的XRD谱图如图2所示。
在图1中,脱硫催化剂A1水热老化后的XRD谱图中没有出现硅酸锌的2θ=22.0、25.54、48.9和59.4的特征峰;在图2中,脱硫催化剂B1水热老化后的XRD谱图中出现了硅酸锌的上述特征峰。基于这些XRD谱图,通过本说明书前文描述的XRD测量法,定量分析这些脱硫催化剂中的硅酸锌含量,结果见表2。
用与实施例10相同的评价方法评价老化后的脱硫催化剂A1-A9和脱硫催化剂B1-B5的脱硫性能,结果见表2。
对老化后的脱硫催化剂A1-A9和脱硫催化剂B1-B5进行汽油脱硫的穿透硫容进行计算,结果见表3。
用与实施例10相同的评价方法测定老化后催化剂A1-A9和B1-B5进行临氢反应的进料/排放气体流速,并以QRD-1102A热导式氢分析仪分析其中氢气浓度,计算加入氢气量(Q1)、排出氢气量(Q2)并求出氢气量差值,结果见表2。
从表2的结果可以看出,经老化过程后,实施例得到的脱硫催化剂中没有生成硅酸锌,而对比例1-4中的催化剂,氧化锌会与含氧化硅的材料生成硅酸锌,从而使催化剂的脱硫活性降低。
从表1-2中产品汽油的数据还可以看出,本发明提供的方法仍可以得到高的产品汽油收率,同时还具有明显的保留汽油辛烷值的优势。
从表3可以看出,老化前,采用本发明的脱硫催化剂进行汽油脱硫的穿透硫容和采用对比例的脱硫催化剂的穿透硫容相近,老化过程 后,由于实施例得到的脱硫催化剂中没有生成硅酸锌,而对比例1-4中的催化剂,氧化锌会与含氧化硅的材料生成硅酸锌,从而使催化剂的穿透硫容明显下降,因此脱硫活性也明显降低。
另外,从脱硫催化剂A1和脱硫催化剂B5的比较可以看出,含有氮化硼的脱硫催化剂A1比含有氮化硅的脱硫催化剂B5具有更好的耐磨损性能、脱硫性能、辛烷值提高性能。
表1
Figure PCTCN2017108464-appb-000015
注:表中有关辛烷值的数据是相比于原料汽油的辛烷值的变化量。“-”表示相比于原料汽油的辛烷值降低。
1、原料汽油的硫含量为1000ppm,RON为93.8,MON为83.1。
2、ΔMON表示产品MON的增加值;
3、ΔRON表示产品RON的增加值;
4、Δ(RON+MON)/2为产品抗爆指数与原料抗爆指数之差。
5、氢气量差值为相对于1kg烃油,排出氢气量(Q2)与加入氢气量(Q1)的差值,正值表示氢气产生,负值表示氢气消耗。
表2
Figure PCTCN2017108464-appb-000016
注:表中有关辛烷值的数据是相比于原料汽油的辛烷值的变化量。“-”表示相比于原料汽油的辛烷值降低。
1、原料汽油的硫含量为1000ppm,RON为93.8,MON为83.1。
2、ΔMON表示产品MON的增加值;
3、ΔRON表示产品RON的增加值;
4、Δ(RON+MON)/2为产品抗爆指数与原料抗爆指数之差;
5、氢气量差值为相对于1kg烃油,排出氢气量(Q2)与加入氢气量(Q1)的差值,正值表示氢气产生,负值表示氢气消耗。
表3
Figure PCTCN2017108464-appb-000017

Claims (14)

  1. 一种脱硫催化剂,其组成包括:
    1)储硫金属氧化物,其中所述储硫金属选自元素周期表第IIB族金属、元素周期表第VB族金属和元素周期表第VIB族金属中的一种或多种,优选选自锌、镉、铌、钽、铬、钼、钨和钒中的一种或多种,更优选选自锌、钼和钒中的一种或多种,更优选锌;
    2)无机粘结剂,优选选自耐热无机氧化物中的一种或多种,更优选选自氧化铝、氧化硅、氧化锆、氧化钛和氧化锡中的一种或多种,更优选选自氧化铝、氧化锆、氧化钛和氧化锡中的一种或多种;
    3)耐磨组分,是氮化硼(优选六方相氮化硼)或者所述氮化硼与选自元素A的氧化物、氮化物、碳化物、氧氮化物、碳氮化物、碳氧化物和碳氮氧化物中的一种或多种的组合,其中所述元素A选自元素周期表第IVB族金属元素、硼、铝和硅中的一种或多种(除了氮化硼),所述耐磨组分更优选选自碳化硼、氮化硅、碳化硅、二氧化硅、氮化铝、碳化铝、氧化铝、氮化锆、碳化锆、氧化锆、氮化钛、碳化钛和氧化钛中的一种或多种,优选氮化硼,更优选六方相氮化硼;
    4)活性金属组分,选自元素周期表第VIII族金属元素、元素周期表铁系元素的氧化物、元素周期表第IB族金属元素、元素周期表第IB族金属元素的氧化物、元素周期表第VIIB族金属元素和元素周期表第VIIB族金属元素的氧化物中的一种或多种,优选选自铁、铁氧化物、钴、钴氧化物、镍、镍氧化物、铜、铜氧化物、锰和锰氧化物中的一种或多种,更优选镍、镍氧化物、钴和钴氧化物中的一种或多种,更优选镍、镍氧化物或其组合;和
    5)任选地,酸性多孔材料,优选选自分子筛和层柱粘土(优选选自累托土、云蒙石、膨润土、蒙脱土和蒙皂石中的一种或多种)中的一种或多种,更优选选自具有IMF结构的分子筛(优选选自HIM-5分子筛、IM-5分子筛、P-IM-5分子筛和P-Si-IM-5分子筛中的一种或多种)、具有FAU结构的分子筛(优选选自X分子筛、Y分子筛、USY分子筛、REUSY分子筛、REHY分子筛、REY分子筛、PUSY分子筛、PREHY分子筛和PREY分子筛中的一种或多种)、具有BEA结构的 分子筛(优选选自β分子筛中的一种或多种)、具有SAFO结构的分子筛(优选选自SAPO-5分子筛、SAPO-11分子筛、SAPO-31分子筛、SAPO-34分子筛和SAPO-20分子筛中的一种或多种)和具有MFI结构的分子筛(优选选自ZSM-5分子筛、ZRP-1分子筛和ZSP-3分子筛中的一种或多种)中的一种或多种。
  2. 根据权利要求1所述的脱硫催化剂,其中所述无机粘结剂和/或所述耐磨组分不含有硅元素。
  3. 根据权利要求1所述的脱硫催化剂,其中所述氮化硼的比表面积为100-300m2/g,优选120-260m2/g。
  4. 根据权利要求1所述的脱硫催化剂,其中所述组成包括:
    相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)的总重量(作为100wt%),所述储硫金属氧化物(以储硫金属氧化物计)占10-80wt%、所述无机粘结剂(以氧化物计)占3-35wt%、所述耐磨组分(干基)占5-40wt%、所述活性金属组分(以金属元素计)占5-30wt%和所述酸性多孔材料(干基)占0-20wt%,
    优选的是,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)的总重量(作为100wt%),所述储硫金属氧化物(以储硫金属氧化物计)占25-70wt%、所述无机粘结剂(以氧化物计)占6-25wt%、所述耐磨组分(干基)占10-30wt%、所述活性金属组分(以金属元素计)占8-25wt%和所述酸性多孔材料(干基)占1-15wt%,
    更优选的是,相对于所述脱硫催化剂的总重量、或者相对于所述组分1)至所述组分5)的总重量(作为100wt%),所述储硫金属氧化物(以储硫金属氧化物计)占40-60wt%、所述无机粘结剂(以氧化物计)占8-15wt%、所述耐磨组分(干基)占12-25wt%、所述活性金属组分(以金属元素计)占12-20wt%和所述酸性多孔材料(干基)占2-10wt%。
  5. 根据权利要求1所述的脱硫催化剂,其中所述组成是焙烧后组成,并且所述焙烧后组成指的是在空气气氛下在650℃下焙烧4小时之后测得的组成。
  6. 根据权利要求1所述的脱硫催化剂,其中所述组成还包括至少 一种添加剂,优选的是,所述添加剂选自碱金属氧化物(优选选自氧化钠和氧化钾中的一种或多种)、粘土(优选选自高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、准埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石和膨润土中的一种或多种)、稀土金属氧化物(所述稀土金属选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的一种或多种,优选选自La、Pr和Nd中的一种或多种)和氧化锑中的一种或多种。
  7. 一种脱硫催化剂的制造方法,包括以下步骤:
    (1)使至少以下组分接触,获得催化剂前体的步骤,
    1)储硫金属氧化物和/或其前体,其中所述储硫金属选自元素周期表第IIB族金属、元素周期表第VB族金属和元素周期表第VIB族金属中的一种或多种,优选选自锌、镉、铌、钽、铬、钼、钨和钒中的一种或多种,更优选选自锌、钼和钒中的一种或多种,更优选锌,
    2)无机粘结剂和/或其前体,优选的是,所述无机粘结剂选自耐热无机氧化物中的一种或多种,更优选选自氧化铝、氧化硅、氧化锆、氧化钛和氧化锡中的一种或多种,更优选选自氧化铝、氧化锆、氧化钛和氧化锡中的一种或多种,
    3)耐磨组分和/或其前体,其中所述耐磨组分是氮化硼(优选六方相氮化硼)或者所述氮化硼与选自元素A的氧化物、氮化物、碳化物、氧氮化物、碳氮化物、碳氧化物和碳氮氧化物中的一种或多种的组合,其中所述元素A选自元素周期表第IVB族金属元素、硼、铝和硅中的一种或多种(除了氮化硼),所述耐磨组分更优选选自碳化硼、氮化硅、碳化硅、二氧化硅、氮化铝、碳化铝、氧化铝、氮化锆、碳化锆、氧化锆、氮化钛、碳化钛和氧化钛中的一种或多种,优选氮化硼,更优选六方相氮化硼,
    4)活性金属组分和/或其前体,其中所述活性金属组分选自元素周期表第VIII族金属元素、元素周期表铁系元素的氧化物、元素周期表第IB族金属元素、元素周期表第IB族金属元素的氧化物、元素周期表第VIIB族金属元素和元素周期表第VIIB族金属元素的氧化物中的一种或多种,优选选自铁、铁氧化物、钴、 钴氧化物、镍、镍氧化物、铜、铜氧化物、锰和锰氧化物中的一种或多种,更优选镍、镍氧化物、钴和钴氧化物中的一种或多种,更优选镍、镍氧化物或其组合,
    5)任选地,酸性多孔材料和/或其前体,优选的是,所述酸性多孔材料选自分子筛和层柱粘土(优选选自累托土、云蒙石、膨润土、蒙脱土和蒙皂石中的一种或多种)中的一种或多种,更优选选自具有IMF结构的分子筛(优选选自HIM-5分子筛、IM-5分子筛、P-IM-5分子筛和P-Si-IM-5分子筛中的一种或多种)、具有FAU结构的分子筛(优选选自X分子筛、Y分子筛、USY分子筛、REUSY分子筛、REHY分子筛、REY分子筛、PUSY分子筛、PREHY分子筛和PREY分子筛中的一种或多种)、具有BEA结构的分子筛(优选选自β分子筛中的一种或多种)、具有AFO结构的分子筛(优选选自SAPO-5分子筛、SAPO-11分子筛、SAPO-31分子筛、SAPO-34分子筛和SAPO-20分子筛中的一种或多种)和具有MFI结构的分子筛(优选选自ZSM-5分子筛、ZRP-1分子筛和ZSP-3分子筛中的一种或多种)中的一种或多种,和
    6)接触用介质,优选水和/或酸性液体(优选酸或者酸的水溶液),
    (2)任选地,焙烧所述催化剂前体,获得脱硫催化剂的步骤,和
    (3)任选地,还原所述脱硫催化剂的步骤。
  8. 根据权利要求7所述的制造方法,其中所述步骤(1)包括以下步骤:
    (1-1)使所述组分1)、所述组分2)、所述组分3)、任选的所述组分5)和所述组分6)接触,获得载体浆液的步骤,
    (1-2)任选干燥之后,焙烧所述载体浆液,获得催化剂载体的步骤,和
    (1-3)使所述组分4)与所述催化剂载体接触,获得所述催化剂前体的步骤。
  9. 根据权利要求7所述的制造方法,其中按照重量计,各组分之间的相对投料比例为,
    所述组分1)(以储硫金属氧化物计)∶所述组分2)(以氧化物计)∶所述组分3)(以耐磨组分计,干基)∶所述组分4)(以金属元素计)∶所述组分5)(以酸性多孔材料计,干基)∶水=(10-80)∶(3-35)∶(5-40)∶(5-30)∶(0-20)∶(50-500),所述酸∶所述组分2)(以氧化物计)=(0.01-1.0)∶1,
    优选的是,
    所述组分1)(以储硫金属氧化物计)∶所述组分2)(以氧化物计)∶所述组分3)(以耐磨组分计,干基)∶所述组分4)(以金属元素计)∶所述组分5)(以酸性多孔材料计,干基)∶水=(25-70)∶(6-25)∶(10-30)∶(8-25)∶(1-15)∶(100-400),所述酸∶所述组分2)(以氧化物计)=(0.02-0.9)∶1,
    更优选的是,
    所述组分1)(以储硫金属氧化物计)∶所述组分2)(以氧化物计)∶所述组分3)(以耐磨组分计,干基)∶所述组分4)(以金属元素计)∶所述组分5)(以酸性多孔材料计,干基)∶水=(40-60)∶(8-15)∶(12-25)∶(12-20)∶(2-10)∶(150-300),所述酸∶所述组分2)(以氧化物计)=(0.03-0.8)∶1。
  10. 根据权利要求7所述的制造方法,其中所述焙烧的条件包括:焙烧温度为300-800℃,优选450-750℃,焙烧时间为0.5小时以上,优选1-3小时,含氧气氛下;或者,所述还原的条件包括:还原温度为300-600℃,优选400-500℃,还原时间为0.5-6小时,优选1-3小时,含氢气气氛(优选氢气含量为10-60体积%)下。
  11. 根据权利要求8所述的制造方法,其中所述干燥的条件包括:干燥温度为25-400℃,优选100-350℃,干燥时间为0.5小时以上,优选2-20小时;或者,所述焙烧的条件包括:焙烧温度为400-700℃,优选450-650℃,焙烧时间为0.5小时以上,优选0.5-10小时,含氧气氛下。
  12. 根据权利要求7所述的制造方法,还包括引入添加剂和/或其前体的步骤,优选的是,所述添加剂选自碱金属氧化物(优选选自氧化钠和氧化钾中的一种或多种)、粘土(优选选自高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、准埃洛石、皂石、累托土、海泡石、 凹凸棒石、水滑石和膨润土中的一种或多种)、稀土金属氧化物(所述稀土金属选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的一种或多种,优选选自La、Pr和Nd中的一种或多种)和氧化锑中的一种或多种。
  13. 一种脱硫方法,包括使含硫的烃油(优选原油或者沸程不超过450℃的石油馏分,特别是馏程为从-42.1℃至350℃的石油馏分,更优选选自液化石油气、裂化汽油和柴油机燃料中的一种或多种)与根据权利要求1-6任一项所述的脱硫催化剂或者按照根据权利要求7-12任一项所述的制造方法制造的脱硫催化剂在脱硫反应条件下接触的步骤。
  14. 根据权利要求13所述的脱硫方法,其中所述脱硫反应条件包括:氢气气氛下,反应温度为350-500℃,优选400-450℃,反应压力为0.5-4MPa(绝对压力),优选1.0-2.0MPa(绝对压力),氢油体积比为0.1-0.5,优选0.15-0.4,质量空速为2-6h-1,优选2.5-5h-1
PCT/CN2017/108464 2017-10-31 2017-10-31 一种脱硫催化剂、其制造方法及其应用 WO2019084741A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2020117555A RU2749402C1 (ru) 2017-10-31 2017-10-31 Катализатор десульфуризации, его получение и применение
PCT/CN2017/108464 WO2019084741A1 (zh) 2017-10-31 2017-10-31 一种脱硫催化剂、其制造方法及其应用
US16/760,676 US11318444B2 (en) 2017-10-31 2017-10-31 Desulfurization catalyst, its production and application thereof
BR112020007352-0A BR112020007352B1 (pt) 2017-10-31 2017-10-31 Catalisador de dessulfurização, método para sua produção e método de dessulfurização
SA520411853A SA520411853B1 (ar) 2017-10-31 2020-04-27 محفز لنزع الكبريت وإنتاجه واستخدامه

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/108464 WO2019084741A1 (zh) 2017-10-31 2017-10-31 一种脱硫催化剂、其制造方法及其应用

Publications (1)

Publication Number Publication Date
WO2019084741A1 true WO2019084741A1 (zh) 2019-05-09

Family

ID=66333397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108464 WO2019084741A1 (zh) 2017-10-31 2017-10-31 一种脱硫催化剂、其制造方法及其应用

Country Status (5)

Country Link
US (1) US11318444B2 (zh)
BR (1) BR112020007352B1 (zh)
RU (1) RU2749402C1 (zh)
SA (1) SA520411853B1 (zh)
WO (1) WO2019084741A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975905A (zh) * 2019-11-22 2020-04-10 万华化学集团股份有限公司 一种耐磨损催化剂及其制备方法
CN114308018A (zh) * 2021-12-10 2022-04-12 瑞燃(上海)环境工程技术有限公司 一种锰复合价态交联物吸附催化材料及其制备方法和应用
CN115074169A (zh) * 2021-03-16 2022-09-20 克鲁勃润滑产品(上海)有限公司 润滑脂及包括其的减速器、机器人
CN115253678A (zh) * 2022-08-05 2022-11-01 沈阳三聚凯特催化剂有限公司 一种氧化锌脱硫剂回收利用的方法及应用
CN116060121A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 邻甲酚异构化催化剂及其制备方法以及邻甲酚异构化方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892580B (zh) * 2021-01-19 2023-08-08 浙江卫星能源有限公司 一种常温气相脱氯剂及其制备方法
CN115385359B (zh) * 2022-09-30 2024-05-31 山东工业陶瓷研究设计院有限公司 一种sapo-34分子筛的制备方法
CN116212939B (zh) * 2023-03-02 2023-09-19 安徽碳鑫科技有限公司 一种煤化工废水处理催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1224970A1 (en) * 1999-08-27 2002-07-24 Cosmo Oil Co., Ltd Deep desulfurization catalyst, method for preparing the same and method for desulfurization using the same
EP1309528A1 (en) * 2000-07-21 2003-05-14 ExxonMobil Research and Engineering Company Regeneration of hydrogen sulfide sorbents
CN104888762A (zh) * 2015-06-16 2015-09-09 崔成哲 一种烟气脱硫、脱氮半导体纳米催化剂及制造方法
CN105251523A (zh) * 2015-10-27 2016-01-20 江苏大学 类石墨烯型氮化硼负载磷钨酸催化剂及其制备方法和应用
CN105854930A (zh) * 2015-01-22 2016-08-17 中国石油化工股份有限公司 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN106955735A (zh) * 2016-01-08 2017-07-18 中国石油化工股份有限公司 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254766B1 (en) 1999-08-25 2001-07-03 Phillips Petroleum Company Desulfurization and novel sorbents for same
US6429170B1 (en) 2000-05-30 2002-08-06 Phillips Petroleum Company Sorbents for desulfurizing gasolines and diesel fuel
AU2005235711B2 (en) 2004-04-22 2008-11-13 Albemarle Netherlands B.V. Hydrotreating catalyst containing a group V metal
EP2721124A1 (en) * 2011-06-14 2014-04-23 Shell Internationale Research Maatschappij B.V. Process to produce biofuels from biomass
US8906227B2 (en) * 2012-02-02 2014-12-09 Suadi Arabian Oil Company Mild hydrodesulfurization integrating gas phase catalytic oxidation to produce fuels having an ultra-low level of organosulfur compounds
CN104887662A (zh) * 2015-05-12 2015-09-09 南京广康协生物医药技术有限公司 Daphmalenine A衍生物在制备抗鼻炎药物中的应用
US10384197B2 (en) * 2016-07-26 2019-08-20 Saudi Arabian Oil Company Additives for gas phase oxidative desulfurization catalysts
CN106563410A (zh) 2016-11-11 2017-04-19 江苏大学 一种活性氮化硼和制备方法及在吸附燃油脱硫中的应用
CN109722302B (zh) 2017-10-31 2021-06-11 中国石油化工股份有限公司 一种裂化脱硫联合方法和装置以及催化裂化和吸附脱硫的组合工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1224970A1 (en) * 1999-08-27 2002-07-24 Cosmo Oil Co., Ltd Deep desulfurization catalyst, method for preparing the same and method for desulfurization using the same
EP1309528A1 (en) * 2000-07-21 2003-05-14 ExxonMobil Research and Engineering Company Regeneration of hydrogen sulfide sorbents
CN105854930A (zh) * 2015-01-22 2016-08-17 中国石油化工股份有限公司 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN104888762A (zh) * 2015-06-16 2015-09-09 崔成哲 一种烟气脱硫、脱氮半导体纳米催化剂及制造方法
CN105251523A (zh) * 2015-10-27 2016-01-20 江苏大学 类石墨烯型氮化硼负载磷钨酸催化剂及其制备方法和应用
CN106955735A (zh) * 2016-01-08 2017-07-18 中国石油化工股份有限公司 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975905A (zh) * 2019-11-22 2020-04-10 万华化学集团股份有限公司 一种耐磨损催化剂及其制备方法
CN110975905B (zh) * 2019-11-22 2022-09-20 万华化学集团股份有限公司 一种耐磨损催化剂及其制备方法
CN115074169A (zh) * 2021-03-16 2022-09-20 克鲁勃润滑产品(上海)有限公司 润滑脂及包括其的减速器、机器人
CN115074169B (zh) * 2021-03-16 2023-11-17 克鲁勃润滑产品(上海)有限公司 润滑脂及包括其的减速器、机器人
CN116060121A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 邻甲酚异构化催化剂及其制备方法以及邻甲酚异构化方法
CN114308018A (zh) * 2021-12-10 2022-04-12 瑞燃(上海)环境工程技术有限公司 一种锰复合价态交联物吸附催化材料及其制备方法和应用
CN114308018B (zh) * 2021-12-10 2023-07-28 瑞燃(上海)环境工程技术有限公司 一种锰复合价态交联物吸附催化材料及其制备方法和应用
CN115253678A (zh) * 2022-08-05 2022-11-01 沈阳三聚凯特催化剂有限公司 一种氧化锌脱硫剂回收利用的方法及应用

Also Published As

Publication number Publication date
BR112020007352A2 (pt) 2020-10-06
US11318444B2 (en) 2022-05-03
US20200282381A1 (en) 2020-09-10
RU2749402C1 (ru) 2021-06-09
SA520411853B1 (ar) 2023-02-06
BR112020007352B1 (pt) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2019084741A1 (zh) 一种脱硫催化剂、其制造方法及其应用
CN109722302B (zh) 一种裂化脱硫联合方法和装置以及催化裂化和吸附脱硫的组合工艺
US10717939B2 (en) Desulfurization catalyst for hydrocarbon oils, its preparation, and use thereof
CN105289701B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN105289706A (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN105289705B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN109718840B (zh) 一种脱硫催化剂、其制造方法及其应用
CN105289683B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN105854930A (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN107970961B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN109718829B (zh) 一种含有fau结构分子筛的烃油脱硫催化剂及其制备方法和烃油脱硫的工艺
CN105312078A (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN107970962B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN107970994B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN109718830B (zh) 含有fau结构和/或bea结构分子筛的烃油脱硫催化剂及制备方法和工艺
CN109718842B (zh) 一种含有imf结构分子筛的烃油脱硫催化剂及其制备方法和烃油脱硫的工艺
CN107970963B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
TWI757356B (zh) 一種脫硫催化劑、其製造方法及其應用
CN109718838B (zh) 一种含有mfi结构分子筛的烃油脱硫催化剂及其制备方法和烃油脱硫的工艺
CN107970977B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN107971030B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN107970968B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN107970993B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN105312084A (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN109718847B (zh) 一种含有sapo分子筛的烃油脱硫催化剂及其制备方法和烃油脱硫的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020007352

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020007352

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200414

122 Ep: pct application non-entry in european phase

Ref document number: 17930495

Country of ref document: EP

Kind code of ref document: A1