WO2019083228A1 - 압력밀도식 수위 계측모듈 - Google Patents

압력밀도식 수위 계측모듈

Info

Publication number
WO2019083228A1
WO2019083228A1 PCT/KR2018/012387 KR2018012387W WO2019083228A1 WO 2019083228 A1 WO2019083228 A1 WO 2019083228A1 KR 2018012387 W KR2018012387 W KR 2018012387W WO 2019083228 A1 WO2019083228 A1 WO 2019083228A1
Authority
WO
WIPO (PCT)
Prior art keywords
density
pressure
water level
digestion tank
wastewater
Prior art date
Application number
PCT/KR2018/012387
Other languages
English (en)
French (fr)
Inventor
이명렬
임정구
이목도
김대령
신기섭
조현웅
Original Assignee
주식회사 환경에너지오앤엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 환경에너지오앤엠 filed Critical 주식회사 환경에너지오앤엠
Priority to JP2019572849A priority Critical patent/JP6749561B1/ja
Publication of WO2019083228A1 publication Critical patent/WO2019083228A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel

Definitions

  • the present invention relates to a water level measuring module, and more particularly, to a water level measuring module for measuring the pressure and density of water level in an anaerobic digestion tank, measuring the water level in the digestion tank accurately according to the measurement value of pressure and density according to water level, Density water level meter module for controlling the water level.
  • Anaerobic digestion is the decomposition of high concentration of organic solid materials such as food waste disposal liquid, livestock manure, and organic sludge by anaerobic microorganism. And processing biogas such as methane.
  • An anaerobic digestion process for decomposing high concentration organic solids is very important for maintaining the homogeneity of the microorganisms. If the hydraulic retention time of the digestion tank is not constant, the overload due to the increase of the solid concentration in the digestion tank and the anaerobic There is a risk that the digester can not be operated normally due to microbial death.
  • the digester In the operation of anaerobic digester, frequent occurrence of scum and influence of disturbance can not accurately measure the level in the digester. As a result, the digester may be operated under an overload condition, or the organic solid material introduced into the digester may leak out or be pulled out , It is very important to maintain the homogeneity of the microorganisms by maintaining the water level in the digester constantly as the optimum way to improve the stable operation of the digester and the quantity and quality of the produced biogas.
  • the radar level meter is influenced by the wave, scum, and high concentration of solid matter in the wastewater, causing disturbance such as reflection of light and causing errors in the water level measurement.
  • the present invention has been made to solve the above problems and it is an object of the present invention to precisely measure the pressure and density of wastewater contained in a digestion tank so as to constantly maintain the homogeneity of microorganisms in the digestion tank, Density water level measuring module for measuring the water level of the water.
  • the pressure-density level measuring module is provided on a side surface of an anaerobic digestion tank, and is provided at a plurality of measurement points having different heights from the bottom surface of the anaerobic digestion tank, A pressure density measuring unit for measuring a pressure of the wastewater flowing into the reactor; And calculating the average density at the plurality of measurement points individually based on the measurement values received from the pressure density measurement unit, and based on the calculated result, the wastewater is introduced into the interior of the anaerobic digestion tank or discharged And a control unit for controlling the water level of the wastewater flowing into the anaerobic digestion tank.
  • the pressure density measuring unit may be separately provided to correspond to the measurement points of three or more points, and the first pressure density meter may measure the pressure of the wastewater at each measurement point. And a second pressure density meter disposed at a specific point higher than the water level of the received wastewater to measure atmospheric pressure or an internal atmospheric pressure of the closed anaerobic digestion tank.
  • the control unit may calculate an average density at each measurement point based on the pressure value of the wastewater at each measurement point received from each first pressure density meter,
  • the reference water level information including the reference density trend line of the wastewater flowing into the digester can be generated and stored.
  • the controller When the reference water level information is generated and stored, the controller re-calculates the average density at the measurement point based on the measurement values received in real time from each first pressure density meter at predetermined time intervals, Based on the calculated result, real-time water level information including the real-time density trend line of the wastewater flowing into the anaerobic digestion tank can be generated and compared with the stored reference water level information.
  • the control unit controls the level of the wastewater flowing into the anaerobic digestion tank to be adjusted according to a result of the comparison between the real-time water level information and the stored reference water level information, .
  • the first pressure density meter provided to correspond to each of the measurement points is provided separately to correspond to the measurement points of the three or more points and is disposed on the outer periphery of the anaerobic digestion tank,
  • the control unit is arranged at every set height interval and is provided on the upper and lower sides with respect to the respective measurement points so that the upper and lower pressures at the respective measurement points are individually measured, When the upper and lower pressure values are received, the pressure difference at each of the measurement points can be calculated.
  • the reference density trend line and the real-time density trend line may be non-linear type trend lines generated based on the average density at the measurement points of the three or more points.
  • the control unit calculates a pressure difference between a measurement point provided at the uppermost one of the three or more measurement points and a specified point higher than the level of the received wastewater and calculates an average density of the water surface of the wastewater through the real- , The water level of the wastewater can be measured.
  • the control unit compares the reference density trend line and the real-time density trend line on a water level basis, and when the density value of the real-time density trend line is relatively low, the wastewater flows into the body portion, Can be increased.
  • the control unit compares the reference density trend line and the real-time density trend line on a water level basis.
  • the density value of the real-time density trend line is relatively higher, the sludge contained in the wastewater is discharged from the body part, When the water level is lowered due to the discharge of the sludge, the wastewater flows into the body portion, and the water level can be adjusted to be higher.
  • the pressure and density in the digester can be accurately measured and the water level of the digester can be controlled and maintained to be constant, thereby preventing the organic solid matter from leaking out or being pulled out due to the microorganisms dead .
  • the hydraulic retention time and solids retention time according to the accurate water level measurement in the digester can be kept constant, and convenience for operation and management of the digester can be provided.
  • FIG. 1 is a schematic view of an anaerobic digester provided with a pressure-density level measuring module according to an embodiment of the present invention.
  • FIG. 2 is a block diagram schematically illustrating a pressure-density level measuring module according to an embodiment of the present invention.
  • FIG. 3 is a top view of a pressure density measuring part among the components of the pressure-density level measuring module according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining the pressure density measuring part among the components of the pressure-density level measuring module according to an embodiment of the present invention in more detail.
  • FIG. 5 is a graph showing measured values of density and density of wastewater according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating density trend lines generated based on measured values of pressure of water level of wastewater according to an embodiment of the present invention.
  • FIG. 1 is a schematic view of an anaerobic digestion tank equipped with a pressure-density level measuring module according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a pressure-density level measuring module according to an embodiment of the present invention.
  • FIG. 3 is a view illustrating a pressure density measurement unit 100 among the components of the water level measurement module according to an embodiment of the present invention.
  • the pressure-density level measuring module (hereinafter referred to as a "level measuring module”) will be described with reference to FIG. 1 to FIG.
  • the anaerobic digester in which the water level measurement module is installed, measures the average density according to the pressure difference of the wastewater contained in the digestion tank to accurately measure the level of the digestion tank so as to maintain the homogeneity of the microorganism in the digestion tank, It is provided to ensure that the level of the digester is constantly adjusted and maintained.
  • the concentration of the wastewater contained in the digestion tank is kept constant as the digester is maintained at a constant water level, so that the homogeneity of the microbes in the digestion tank is kept constant.
  • the anaerobic digester in which the level meter module is installed, includes not only the water level measuring module but also the mixed feed adjusting tank 10, the feed pipe 20, the body 30, the agitator 40, 50 and a gas purification facility 60 may be additionally provided.
  • the mixed feed control tank 10 stores wastewater containing acid-fermented organic waste discharged from an acid fermentation tank (not shown), and allows part of the stored wastewater to flow into the body portion 30, If some of the wastewater is discharged without proper treatment, the wastewater can be flowed back and stored.
  • the mixed feed regulating tank 10 can mix the scum discharged from the body portion 30 via the scum removing unit 50 with the acid fermented organic waste discharged from the acid fermentation tank.
  • the scum generated in the body 30 is discharged from the body 30 by the scum removing unit 50, and the discharged scum is removed by the mixed supply regulating tank 10 from the acid fermented organic waste Can be mixed and reintroduced into the body portion 30 by the inlet valve 21 and the inflow pump 22.
  • the mixed feed regulating tank 10 is supplied with the hydrogen sulfide removing agent such as FeCl2 and FeSo4 and mixed with the acid fermented organic waste and the scum.
  • the hydrogen sulfide removing agent such as FeCl2 and FeSo4
  • Such a hydrogen sulfide removing agent is fed into the mixed feed regulating tank 10,
  • the hydrogen sulfide generated in the methane fermentation process of the organic waste can be removed from the inside of the body portion 30 by being mixed with the organic waste and injected into the body portion 30.
  • the mixed feed regulating tank 10 may be provided with heating means 11 for heating the acid-fermented organic waste and the scum mixture introduced into the mixed feed regulating tank 10.
  • the heating means 11 can heat the acid-fermented organic wastes and scum mixed in the mixing and supply regulating tank 10 with the heat exchange unit through which the heating medium such as hot water flows, Specifically, it is preferable to heat the acid-fermented organic waste and scum mixture, which is implemented as a heating coil, and is introduced into the body portion 30 so that the internal temperature of the body portion 30 is 35 ° C to 38 ° C.
  • the transfer piping section 20 is provided to transfer waste water between the body section 30 and the mixed supply regulating tank 10.
  • the transfer piping section 20 includes an inlet valve 21, an inflow pump 22, a first transfer pipe 23, a discharge valve 24, a second transfer pipe 25, a sludge discharge valve 26 , A supercritical water discharge valve 27 and a first discharge pipe 28.
  • the inlet valve 21 is provided to control the flow of wastewater discharged from the mixed supply regulating tank 10 into or out of the body portion 30 depending on whether the inlet valve 21 is open or closed, And the wastewater discharged from the mixed supply regulating tank 10 flows into the inside of the body portion 30 more effectively when the waste water 21 is opened.
  • the first conveyance pipe 23 is connected to the inlet valve 21 and is provided to provide a path for allowing wastewater discharged from the mixed supply regulating tank 10 to flow into the body portion 30.
  • the inflow pump 22 may be provided between the mixed supply regulating tank 10 and the first transfer pipe 23.
  • the discharge valve 24 is provided for controlling the wastewater exceeding the appropriate level to flow into or out of the mixed supply regulating tank 10 depending on whether the wastewater exceeds the proper level from the body 30,
  • the second conveyance pipe 25 is connected to the discharge valve 24 to provide a path for discharging wastewater exceeding an appropriate level to the mixed supply regulating tank 10 when the discharge valve 24 is opened can do.
  • the sludge discharge valve 26 is provided at the lower end of the body portion 30 and is provided to control the sludge or sediment deposited in accordance with whether the sludge or sediment accumulates or not to be discharged or discharged.
  • the inflow valve 21 and the sludge discharge valve 26 are not always opened but can be operated to open or close fluidly according to the judgment of the controller 200 or the operation of the manager.
  • the supernatant discharge valve 27 is provided to control whether the waste water contained in the body 30 is discharged or discharged after the solid-liquid separation is performed according to the anaerobic digestion process depending on whether the waste water is to be opened or closed. 28 is connected to the supernatant discharge valve 27 so as to provide a path through which the supernatant is discharged when the supernatant discharge valve 27 is opened.
  • the body portion 30 is formed in a cylindrical shape and is provided for appropriately treating the waste water introduced from the mixed feed adjusting tank 10 and contained therein.
  • the titration treatment refers to a treatment for methane fermentation of acid fermented organic waste, and the body part 30 can perform a role of a methane fermentation tank.
  • the body portion 30 may be connected to the inlet valve 21 to allow the wastewater to flow in, and to discharge the supernatant with proper anaerobic digestion of organic wastes.
  • the untreated wastewater is at an appropriate level , It is discharged and can be introduced from the mixed supply regulating tank 10.
  • the agitating part 40 is disposed inside the body part 30 and is provided for agitating the wastewater accommodated in the body part 30 by rotating the agitating part 40.
  • a motor (not shown) is disposed on one side of the body 30 and is extended from the motor to the inside of the body 30. When the motor generates a driving force, A shaft 41 to be rotated by a driving force and an impeller 42 connected to the shaft 41 and rotated together with the shaft 41 when the shaft 41 is rotated. 42 may be provided individually in four or more positions on one side of the inside of the body 30.
  • the scum removing unit 50 is provided for removing gas from the inside of the body 30 by injecting gas inside the acid fermentation tank.
  • the scum removing unit 50 is provided between the acid fermenter and the body 30 and includes a gas supply pipe 51 for supplying gas from the acid fermentation tank, a gas supply pipe A gas supply nozzle 52 connected to the gas supply pipe 51 for discharging the gas supplied through the gas supply pipe 51 to the inside of the body portion 30, And a scum box (53).
  • the gas supply nozzle 52 is provided at the inner upper end of the body portion 30, and is connected to the gas supply pipe 51 by rotating with the vertical central axis as a rotation axis, receives gas from the acid fermentation tank, 30, and the like.
  • the gas supply nozzle 52 may be provided with a plurality of removing plates so that the gas can be injected and the scum can be pushed out of the body portion 30 and the scum can be introduced into the scum box 53, ,
  • the gas to be injected may be hydrogen gas or carbon dioxide gas.
  • the gas refining facility 60 is provided to supply biogas (methane) generated in the inside of the body portion 30 to energy.
  • the water level measuring module measures the pressure of the wastewater accommodated in the anaerobic digestion tank and controls the pressure density meter 100 and the controller 200 to control the water level of the wastewater contained therein Lt; / RTI >
  • the pressure density measuring unit 100 is provided on the side surface of the body portion 30 and is provided for measuring the pressure of the wastewater by the water level. To this end, the pressure density measuring unit 100 may be provided with a plurality of pressure density measuring instruments for measuring the pressure of the wastewater at the measuring point.
  • the present pressure density measuring unit 100 individually measures the pressure of the wastewater at three or more measurement points at least at different points of the water level, wherein the plurality of pressure density meters are arranged to correspond to the respective measurement points, A first pressure density measuring instrument 110 for measuring a pressure and a second pressure density measuring unit 120 disposed at a point P0 higher than the water level of the wastewater so that the internal atmospheric pressure of the atmospheric pressure or the closed body 30 is measured, And a meter 120.
  • the first pressure density measuring instrument 110 is provided in plurality, and each of the first pressure density measuring instruments 110 is arranged at a predetermined height from the bottom surface of the body portion 30, And the second pressure density meter 120 is provided at the upper end of the body portion 30 so as to measure atmospheric pressure or an internal air pressure of the sealed body portion 30 at a point higher than the water level of the wastewater (P0).
  • the plurality of first pressure density meters 110 are individually provided on the side surface of the body portion 30 at different heights as shown in FIG. 3, and are arranged along the outer periphery of the body portion 30
  • the pressure is measured at the points P1, P2 and P3 so that the pressure is not arranged in one row on one side of the body 30 but is spaced apart from each other by a constant distance along the outer circumference of the body 30, When each measurement point is connected, a virtual spiral can be formed.
  • the plurality of first pressure density meters 110 are arranged so as to be spaced apart from each other by a certain distance and can measure the pressure of the wastewater accommodated in the body portion 30 more accurately by measuring the pressure of the water level Further, a more detailed description of the pressure density measuring unit 100 will be described later with reference to FIGS. 4 to 6.
  • FIG. 1 The plurality of first pressure density meters 110 are arranged so as to be spaced apart from each other by a certain distance and can measure the pressure of the wastewater accommodated in the body portion 30 more accurately by measuring the pressure of the water level Further, a more detailed description of the pressure density measuring unit 100 will be described later with reference to FIGS. 4 to 6.
  • the control unit 200 is provided for controlling the components of the anaerobic digestion tank to treat the various matters of the anaerobic digestion tank. Specifically, the control unit 200 individually controls the operation of the agitator 40, or individually calculates the average density at each measurement point based on the measurement values received from the pressure density measurement unit 100, The water level of the anaerobic digestion tank is measured based on the result of the measurement and when the measured water level of the digested digester exceeds or falls below the appropriate water level, the influent valve 21 and the inflow pump 22 are controlled, Or if the wastewater in an untreated state exceeds an appropriate level, it is discharged to the mixed supply regulating tank 10 so as to be discharged into the inside of the body portion 30 The water level of the received wastewater can be adjusted.
  • the anaerobic digester may further include a temperature measuring unit (not shown) for measuring the internal temperature of the body 30 and keeping it constant
  • a temperature measuring unit not shown
  • these components are different from the technical features of the present invention and will not be described in detail.
  • FIG. 4 is a view for explaining the pressure density measurement unit 100 among the components of the anaerobic digestion tank according to an embodiment of the present invention in more detail
  • FIG. 5 is a graph showing the pressure 6 is a view showing a density trend line generated based on the measurement value of the pressure of the water level of the wastewater according to an embodiment of the present invention.
  • the body 30 is implemented with a diameter of 0.6 (m) and a height of 1.3 (m), and the first pressure density meter 110,
  • the diameter of the second pressure density meter 120 may be 0.5 (inch), and the diameter of the second pressure density meter 120 may be 0.5 (inch).
  • the pressure density measuring unit 100 will be described with reference to a process for measuring the pressure of the wastewater accommodated in the body 30 by the level of the water.
  • the pressure density measuring unit 100 as described above, A first pressure density meter 110 measuring the pressure of the wastewater at different levels from the bottom surface of the unit 30 and measuring the internal pressure of the atmospheric pressure or hermetically sealed body 30, And a second pressure density meter 120 disposed at a point P0 higher than the water level of the waste water and measuring the pressure.
  • the first pressure density meter 110 measures a measurement points P1a, P2a, and P3a having predetermined heights on the upper side and the lower side with reference to the respective measurement points P1, P2, and P3 ), And the b measurement points P1b, P2b, and P3b.
  • the control unit 200 calculates the a measurement points P1a, P2a, and P3a based on the measured values when the pressure is measured at the measurement points P1a, P2a, and P3a and the measurement points P1b, P2b, and P3b, b and P3b between the measurement points P1b, P2b and P3b and calculates the average density at the intermediate point according to the calculated pressure differences? P1,? P2 and? P3 ? 1,? 2,? 3) can be calculated.
  • the pressure differences? P1,? P2,? P3 and the average densities?? 1,? 2,? 3 calculated based on the measured values measured at the respective measurement points are shown in Figs. Respectively.
  • control unit 200 receives the measured values (the pressures at the a measurement point and the b measurement point) according to the respective measurement points from the respective first pressure density meters 110,
  • the pressure differences? P1,? P2 and? P3 between the measurement points P1a, P2a and P3a and the b measurement points P1b, P2b and P3b are calculated and the calculated pressure differences? P1,? P2 and? P3 ),
  • the water level information including the density trend line can be generated according to the calculated average densities (? 1,? 2,? 3) in accordance with the average density (? 1,? 2,? 3) have.
  • the controller 200 does not measure the water level according to the entire average density of the body 30, but calculates the average density (?? 1,? 2,? 3,
  • the average density (?? 0) between the specific measurement point P0 and the a measurement point P1a provided at the upper end according to the density trend line is calculated by dividing the density trend line by the water level, To accurately measure the water level.
  • the control unit 200 calculates the pressure difference [Delta] P1 between the pressure measurement value at the a measurement point P1a corresponding to the first measurement point P1 and the b measurement point P1b,
  • the average density ⁇ 1 at the first measuring point P1 can be calculated according to the difference ⁇ P1 and the average density ⁇ 1 at the second measuring point and the third measuring points P2 and P3 can be similarly calculated P2 and P3 between the measurement points P3a and P3a and the measurement points P2b and P3b and calculates the average density ⁇ 2 at each measurement point in accordance with the calculated pressure differences ⁇ P2 and ⁇ P3 ,? R3) can be calculated.
  • control unit 200 determines that the atmospheric pressure from the specific measuring point P0 to the water surface is constant, and calculates the average density ⁇ 0 by using the reference density trend line A or the real-time density trend line B
  • the water depth from the water surface to the a measurement point P1a provided at the uppermost level is calculated and the height h0 from the floor surface of the body portion 300 corresponding to the fixed water level to the a measurement point P1a provided at the uppermost stage,
  • the water level can be precisely measured by adding the depth? H from the water level corresponding to the water level to the a measurement point P1a provided at the uppermost level.
  • the water depth from the water surface of the wastewater is 0.2 (m), 0.5 (m), and 0.8 (m), respectively, before the anaerobic digestion process proceeds.
  • the average of the pressure differences ( ⁇ P1, ⁇ P2, and ⁇ P3) and the pressure differences ( ⁇ P1, ⁇ P2, and ⁇ P3) at the measurement points are intermediate points between the a measurement points and the b measurement points.
  • the reference density trend line A as shown in FIG. 6 based on the average densities (? 1,? 2,? 3) is calculated so that the density (? 1,? 2,? 3) Information can be generated.
  • the control unit 200 stores the reference water level information including the generated reference density trend line A and calculates the pressure differences ⁇ P1 and ⁇ P2 at the same measurement point at predetermined time intervals as the anaerobic digestion process proceeds And the average densities ⁇ 1, ⁇ 2 and ⁇ 3 according to the pressure differences ⁇ P1, ⁇ P2 and ⁇ P3 are calculated and the calculated average densities ⁇ 1, ⁇ 2 and ⁇ 3 are calculated,
  • the real-time water level information including the real-time density trend line B is generated based on the real-time density trend line B, and the previously stored reference water level information and the real-time water level information can be compared.
  • the control unit 200 compares the reference density trend line A with the real-time density trend line B by the water level (or the water depth), and calculates the density value of the real-time density trend line B by the water level
  • the wastewater flows into the body portion 30 to increase the level of the wastewater.
  • the density value of the real-time density trend line B is relatively higher than the water level
  • the sludge is discharged through the discharge valve 26.
  • the inflow valve 21 and the inflow pump 22 are controlled, The wastewater can be introduced from the control tank 10 so that the level of the wastewater can be increased.
  • control unit 200 may control the flow of the reference density trend line A and the real-time density trend line B in the process of the anaerobic digestion process by closing the inflow valve 21 and the sludge discharge valve 26,
  • the inlet valve 21 and the inflow pump 22 or the sludge discharge valve 26 are controlled in accordance with the result of the comparison to lower or raise the level of the wastewater so that the level of the anaerobic digestion process It can be restored to a proper water level.
  • a predetermined error may be generated, but it is preferable that the error should not exceed 1% of the total water level, and the error is 0.3% of the total water level It is more preferable to prevent it from exceeding.
  • the water depth from the water surface to the a measurement point P1a provided at the uppermost stage is calculated in accordance with the calculated average density ⁇ 0 and the a measurement point P1a provided at the uppermost level on the bottom surface of the body portion 300 corresponding to the fixed water level
  • the water depth DELTA h from the water surface corresponding to the fluctuating water level to the a measurement point P1a provided at the uppermost stage are added to each other, the water level can be precisely measured, And the density are accurately measured and the water level of the digester is constantly controlled and maintained, thereby preventing the organic solid matter from leaking out or being pulled out due to the microorganisms dead due to the untreated organic solid matter.
  • the hydraulic retention time and solids retention time according to the accurate water level measurement in the digester can be kept constant, and convenience for operation and management of the digester can be provided.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Fluid Mechanics (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

혐기성 소화조 내 수위별로 압력과 밀도를 계측하여, 수위별 압력과 밀도의 계측 값에 따라 소화조 내부의 수위가 정밀하게 계측되도록 하고, 소화조 내부의 수위가 조절되도록 하는 압력밀도식 수위 계측모듈이 개시된다. 본 압력밀도식 수위 계측모듈은 혐기성 소화조의 측면에 마련되어, 상기 혐기성 소화조의 바닥면으로부터 서로 다른 높이를 갖는 복수의 계측 지점에서 상기 혐기성 소화조에 유입된 폐수의 압력이 계측되도록 하는 압력밀도 계측부; 및 상기 압력밀도 계측부로부터 수신된 계측 값들을 기반으로, 상기 복수의 계측 지점에서의 평균 밀도를 개별적으로 산출하고, 산출된 결과를 기반으로 상기 혐기성 소화조의 내부에 상기 폐수가 유입되도록 하거나 또는 배출되도록 하여, 상기 혐기성 소화조의 내부에 유입된 폐수의 수위가 조절되도록 하는 제어부;를 포함한다. 이에 의해, 소화조 내 압력 및 밀도를 정확히 계측하여, 소화조의 수위가 일정하게 조절 및 유지되도록 함으로써, 미생물의 폐사로 인해 유기성 고형물이 적정하게 처리되지 못한 체 유출되거나, 인발되는 현상을 방지할 수 있다. 또한, 소화조 내 정확한 수위 계측에 따른 수리학적 체류시간 및 고형물 체류시간을 일정하게 유지할 수 있어, 소화조 운영관리에 편의를 제공할 수 있다.

Description

압력밀도식 수위 계측모듈
본 발명은 수위 계측모듈에 관한 것으로, 더욱 상세하게는 혐기성 소화조 내 수위별로 압력과 밀도를 계측하여, 수위별 압력과 밀도의 계측 값에 따라 소화조 내부의 수위가 정밀하게 계측되도록 하고, 소화조 내부의 수위가 조절되도록 하는 압력밀도식 수위 계측모듈에 관한 것이다.
혐기성 소화는 혐기성 미생물에 의하여 음식물류 폐기물 탈리액, 가축분뇨, 유기성 슬러지 등 고농도 유기성 고형물을 분해. 처리함과 동시에 메탄 등 바이오가스를 생산하는 공정이다.
고농도 유기성 고형물을 분해하는 혐기성 소화 공정은 미생물의 항상성을 유지시키는 과정이 매우 중요하며, 소화조의 수리학적 체류시간이 일정하지 않거나, 소화조 내 고형물농도 증가로 인한 과부하 및 교반기가 정상적으로 작동되지 않을 경우 혐기성 미생물 폐사로 이어져 소화조를 정상적으로 운전할 수 없는 리스크가 빈번하게 발생하고 있는 실정이다.
이러한 혐기성 소화조 운영에 있어 스컴의 잦은 발생 및 외란의 영향은 소화조 내 수위를 정확하게 계측할 수 없는 주요인으로 소화조를 과부하 상태로 운전하거나 소화조로 유입된 유기성 고형물이 미처리된 상태로 유출되거나 인발될 수 있어, 소화조의 안정적 운영 및 생산되는 바이오가스의 양과 질을 향상시킬 수 있는 최적의 방안으로 소화조 내 수위를 일정하게 유지하여 미생물의 항상성을 유지시키는 것이 매우 중요하다.
지금까지 혐기성 소화조의 수위계측을 위해 이용되었던 방법들은 압력식 수위계, 초음파 수위계, 레이다 수위계 등이 있으나, 압력식 수위계는 소화조 내의 밀도가 일정하지 않아, 수위 계측 결과의 정확성이 현저히 떨어지고, 초음파 수위계나 레이다 수위계는 폐수의 파동, 스컴, 높은 고형물의 농도에 영향을 받아, 빛의 반사와 같은 외란이 발생하여, 수위 계측에 오류가 발생하는 문제점이 있었다.
이에, 혐기성 소화조의 안정적인 운영을 위해 소화조의 정확한 수위계측이 가능한 계측장비를 개발하여 미생물의 항상성을 일정하게 유지될 수 있는 방안의 모색이 요구된다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로 본 발명의 목적은 소화조 내에 미생물의 항상성이 일정하게 유지되도록 하기 위해, 소화조에 수용된 폐수의 압력 및 밀도를 정확히 계측하여, 소화조의 수위가 일정하게 조절 및 유지되도록 하는 압력밀도식 수위 계측모듈을 제공함에 있다.
상기와 같은 문제를 해결하기 위한 본 발명의 일 실시예에 따른 압력밀도식 수위 계측모듈은 혐기성 소화조의 측면에 마련되어, 상기 혐기성 소화조의 바닥면으로부터 서로 다른 높이를 갖는 복수의 계측 지점에서 상기 혐기성 소화조에 유입된 폐수의 압력이 계측되도록 하는 압력밀도 계측부; 및 상기 압력밀도 계측부로부터 수신된 계측 값들을 기반으로, 상기 복수의 계측 지점에서의 평균 밀도를 개별적으로 산출하고, 산출된 결과를 기반으로 상기 혐기성 소화조의 내부에 상기 폐수가 유입되도록 하거나 또는 배출되도록 하여, 상기 혐기성 소화조의 내부에 유입된 폐수의 수위가 조절되도록 하는 제어부;를 포함한다.
여기서, 상기 압력밀도 계측부는, 세 지점 이상의 계측 지점에 대응되도록 개별적으로 마련되어, 각각의 계측 지점에서의 폐수의 압력이 계측되도록 하는 제1 압력밀도 계측기; 및 상기 수용된 폐수의 수위보다 높은 특정 지점에 배치되어, 대기압 또는 밀폐된 혐기성 소화조의 내부 기압이 계측되도록 하는 제2 압력밀도 계측기;를 포함할 수 있다.
또한, 상기 제어부는, 각각의 제1 압력밀도 계측기로부터 수신된 각각의 계측 지점에서의 폐수의 압력 값을 기반으로, 각각의 계측 지점에서의 평균 밀도를 산출하고, 산출된 결과를 기반으로 상기 혐기성 소화조의 내부에 유입된 폐수의 기준 밀도 추세선이 포함된 기준 수위정보를 생성하여 저장할 수 있다.
그리고 상기 제어부는, 상기 기준 수위정보가 생성되어 저장되면, 기설정된 시간 간격마다 상기 각각의 제1 압력밀도 계측기로부터 실시간으로 수신된 계측 값들을 기반으로, 계측 지점에서의 평균 밀도를 재산출하고, 산출된 결과를 기반으로 상기 혐기성 소화조의 내부에 유입된 폐수의 실시간 밀도 추세선이 포함된 실시간 수위정보를 생성하여, 상기 저장된 기준 수위정보와 비교할 수 있다.
또한, 상기 제어부는, 상기 실시간 수위정보와 상기 저장된 기준 수위정보의 비교 결과에 따라 상기 혐기성 소화조의 내부에 폐수가 유입되도록 하거나 또는 배출되도록 하여, 상기 혐기성 소화조의 내부에 유입된 폐수의 수위가 조절되도록 할 수 있다.
그리고 상기 각각의 계측 지점에 대응되도록 마련된 제1 압력밀도 계측기는, 상기 세 지점 이상의 계측 지점에 대응되도록 개별적으로 마련되며, 상기 혐기성 소화조의 외주연 위에 배치되고, 상기 몸체의 바닥면을 기준으로 기설정된 높이 간격마다 배치되어, 각각의 계측 지점을 기준으로 상측과 하측에 마련되어, 상기 각각의 계측 지점에서의 상측과 하측의 압력이 개별적으로 계측되도록 하고, 상기 제어부는, 상기 각각의 계측 지점에서의 상측과 하측의 압력 값이 수신되면, 상기 각각의 계측 지점에서의 압력차가 산출되도록 할 수 있다.
또한, 상기 기준 밀도 추세선과 상기 실시간 밀도 추세선은, 상기 세 지점 이상의 계측 지점에서의 평균 밀도를 기반으로 생성된 비선형 타입의 추세선일 수 있다.
그리고 상기 제어부는, 상기 세 지점 이상의 계측 지점 중 최상단에 마련된 계측 지점과 상기 수용된 폐수의 수위보다 높은 특정 지점 간의 압력차를 산출하고, 상기 실시간 밀도 추세선을 통해 상기 폐수의 수면의 평균 밀도를 산출하여, 상기 폐수의 수위를 측정할 수 있다.
또한, 상기 제어부는, 상기 기준 밀도 추세선과 상기 실시간 밀도 추세선을 수위별로 비교하여, 상기 실시간 밀도 추세선의 수위별 밀도 값이 상대적으로 더 낮은 경우, 상기 몸체부로 상기 폐수가 유입되어, 상기 폐수의 수위가 높아지도록 할 수 있다.
그리고 상기 제어부는, 상기 기준 밀도 추세선과 상기 실시간 밀도 추세선을 수위별로 비교하여, 상기 실시간 밀도 추세선의 수위별 밀도 값이 상대적으로 더 높은 경우, 상기 몸체부로부터 상기 폐수에 포함된 슬러지가 배출되고, 상기 슬러지의 배출로 인하여 상기 수위가 낮아지면, 상기 몸체부로 상기 폐수가 유입되어, 상기 수위가 높아지도록 조절할 수 있다.
이에 의해, 소화조 내 압력 및 밀도를 정확히 계측하여, 소화조의 수위가 일정하게 조절 및 유지되도록 함으로써, 미생물의 폐사로 인해 유기성 고형물이 적정하게 처리되지 못한 체 유출되거나, 인발되는 현상을 방지할 수 있다. 또한, 소화조 내 정확한 수위 계측에 따른 수리학적 체류시간 및 고형물 체류시간을 일정하게 유지할 수 있어, 소화조 운영관리에 편의를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 압력밀도식 수위 계측모듈이 설치되는 혐기성 소화조가 개략적으로 도시된 도면이다.
도 2는 본 발명의 일 실시예에 따른 압력밀도식 수위 계측모듈이 개략적으로 도시된 블록도이다.
도 3은 본 발명의 일 실시예에 따른 압력밀도식 수위 계측모듈의 구성요소 중 압력밀도 계측부를 위에서 바라본 모습이 도시된 도면이다.
도 4는 본 발명의 일 실시예에 따른 압력밀도식 수위 계측모듈의 구성요소 중 압력밀도 계측부를 더욱 상세히 설명하기 위해 도시된 도면이다.
도 5는 본 발명의 일 실시예에 따른 폐수의 수위별 압력의 계측 값과 밀도의 산출 값이 도시된 도면이다.
도 6는 본 발명의 일 실시예에 따른 폐수의 수위별 압력의 계측 값을 기반으로 생성된 밀도 추세선이 도시된 도면이다.
이하에서는 본 발명의 실시예들을 첨부 도면을 참조하여 상세히 설명한다. 이하에 소개되는 실시예들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위한 예로서 제공되는 것이다. 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다.
도 1은 본 발명의 일 실시예에 따른 압력밀도식 수위 계측모듈이 설치되는 혐기성 소화조가 개략적으로 도시된 도면이고, 도 2는 본 발명의 일 실시예에 따른 압력밀도식 수위 계측모듈이 개략적으로 도시된 블록도이며, 도 3은 본 발명의 일 실시예에 따른 수위 계측모듈의 구성요소 중 압력밀도 계측부(100)를 위에서 바라본 모습이 도시된 도면이다.
이하에서는 도 1 내지 도 3을 참조하여 본 압력밀도식 수위 계측모듈(이하에서는 '수위 계측모듈'을 설명하기로 한다.
본 수위 계측모듈이 설치되는 혐기성 소화조는 소화조 내에 미생물의 항상성이 일정하게 유지되도록 하기 위해, 소화조에 수용된 폐수의 압력차에 따라 평균 밀도를 계측하여, 소화조의 수위를 정밀하게 계측하고, 이를 통해, 소화조의 수위가 일정하게 조절 및 유지되도록 하기 위해 마련된다.
즉, 본 혐기성 소화조는 소화조의 수위가 일정하게 유지됨에 따라, 소화조에 수용된 폐수의 농도 역시 일정하게 유지되도록 함으로써, 소화조 내에 미생물의 항상성이 일정하게 유지되도록 하는 것이다.
이를 위해, 수위 계측모듈이 설치되는 혐기성 소화조는, 수위 계측모듈뿐 아니라, 혼합공급조절조(10), 이송 배관부(20), 몸체부(30), 교반부(40), 스컴 제거부(50) 및 가스 정제 설비(60)가 추가로 마련될 수 있다.
혼합공급조절조(10)는 산발효조(미도시)에서 배출되는 산발효된 유기성 폐기물이 포함된 폐수를 저장하고, 저장된 폐수 중 일부가 몸체부(30)에 유입되도록 하거나, 몸체부(30)로부터 폐수 중 일부가 적정 처리되지 않고 배출되면, 이를 다시 유입하여, 저장되도록 할 수 있다.
더불어, 혼합공급조절조(10)는 스컴 제거부(50)를 통해 몸체부(30)로부터 배출된 스컴을 산발효조에서 배출되는 산발효된 유기성 폐기물과 혼합할 수 있다.
즉, 몸체부(30)에서 발생된 스컴은 스컴 제거부(50)에 의해, 몸체부(30)로부터 배출되고, 배출된 스컴은 혼합공급조절조(10)에 의해, 산발효된 유기성 폐기물과 혼합되어, 유입 밸브(21) 및 유입 펌프(22)에 의해, 몸체부(30)로 재투입될 수 있다.
그리고 이때, 혼합공급조절조(10)는 FeCl2, FeSo4와 같은 황화수소제거제를 공급받아 산발효된 유기성 폐기물 및 스컴과 혼합시키는 것이 바람직하며, 이러한 황화수소제거제는 혼합공급조절조(10)에서 산발효된 유기성 폐기물과 혼합되어 몸체부(30)에 투입됨으로써, 몸체부(30)의 내부에서 유기성 폐기물의 메탄발효 과정에서 발생하는 황화수소를 제거할 수 있다.
또한, 혼합공급조절조(10)는 혼합공급조절조(10)의 내부로 유입된 산발효된 유기성 폐기물과 스컴 혼합물을 가열하는 가열 수단(11)이 구비될 수 있다.
가열 수단(11)은 온수와 같은 열매체가 흐르는 열교환부를 혼합공급조절조(10)의 내부에 구비되어 혼합공급조절조(10)의 내부에서 혼합되는 산발효된 유기성 폐기물과 스컴을 가열할 수 있으며, 구체적으로, 가열 코일로 구현되어, 몸체부(30)의 내부온도가 35℃ ~ 38℃가 되도록 몸체부(30)에 투입되는 산발효된 유기성 폐기물과 스컴 혼합물을 가열하는 것이 바람직하다.
이송 배관부(20)는 몸체부(30)와 혼합공급조절조(10) 간에 폐수가 이송되도록 하기 위해 마련된다. 이를 위해, 이송 배관부(20)는, 유입 벨브(21), 유입 펌프(22), 제1 이송관(23), 배출 밸브(24), 제2 이송관(25), 슬러지 배출 밸브(26), 상등수 배출 밸브(27) 및 제1 배출관(28)으로 구성될 수 있다.
유입 밸브(21)는 개폐 여부에 따라 혼합공급조절조(10)로부터 배출된 폐수가 몸체부(30)의 내부로 유입되거나 유입되지 않도록, 제어하기 위해 마련되며, 유입 펌프(22)는 유입 밸브(21)가 개방되는 경우, 혼합공급조절조(10)로부터 배출된 폐수가 보다 효과적으로 몸체부(30)의 내부로 유입되도록 하기 위해 마련된다. 그리고 제1 이송관(23)은 유입 밸브(21)에 연결되어, 혼합공급조절조(10)로부터 배출된 폐수가 몸체부(30)에 유입되도록 하는 경로를 제공하기 위해 마련된다. 이때, 유입 펌프(22)는 혼합공급조절조(10)와 제1 이송관(23) 사이에 마련될 수 있다.
배출 밸브(24)는 몸체부(30)로부터 적정 수위를 초과하는 경우, 적정 수위를 초과한 폐수가 개폐 여부에 따라 혼합공급조절조(10)로 유입되거나 유입되지 않도록, 제어하기 위해 마련되며, 제2 이송관(25)은 배출 밸브(24)에 연결되어, 배출 밸브(24)가 개방되는 경우, 적정 수위를 초과하는 폐수가 배출되어 혼합공급조절조(10)로 유입되도록 하는 경로를 제공할 수 있다.
슬러지 배출 밸브(26)는 몸체부(30)의 하단에 마련되어, 슬러지 또는 침전물이 퇴적되는 경우, 개폐 여부에 따라 퇴적되는 슬러지 또는 침전물이 외부로 배출되도록 하거나, 배출되지 않도록 제어하기 위해 마련된다.
이때, 유입 밸브(21) 및 슬러지 배출 밸브(26)는 항시 개방되는 것이 아니라, 제어부(200)의 판단 또는 관리자의 조작에 따라 유동적으로 개방 또는 폐쇄되도록 조작될 수 있다.
상등수 배출 밸브(27)는 개폐 여부에 따라 몸체부(30)의 내부에 수용된 폐수가 혐기성 소화 공정에 따라 고액 분리가 이루어진 후, 상등수가 배출되거나 배출되지 않도록 제어하기 위해 마련되며, 제1 배출관(28)은 상등수 배출 밸브(27)에 연결되어, 상등수 배출 밸브(27)가 개방되는 경우, 상등수가 배출되도록 하는 경로를 제공하기 위해 마련된다.
몸체부(30)는 원통 형상으로 형성되어, 혼합공급조절조(10)로부터 유입되어 수용된 폐수가 적정 처리되도록 하기 위해 마련된다. 여기서, 적정 처리라 함은, 산발효된 유기성 폐기물을 메탄 발효시키는 처리를 의미하며, 몸체부(30)는 메탄 발효조의 역할을 수행할 수 있다.
더불어, 몸체부(30)는, 유입 밸브(21)와 연결되어, 폐수가 유입되도록 하고, 유기성 폐기물에 대한 혐기성 소화가 적정하게 이루어진 상등수가 배출되도록 할 수 있으며, 적정 처리되지 않은 폐수가 적정 수위를 초과하는 경우, 배출되어, 혼합공급조절조(10)로부터 유입되도록 할 수 있다.
교반부(40)는 몸체부(30)의 내부에 배치되어, 몸체부(30)의 내부에 수용된 폐수를 회전시켜 교반하기 위해 마련된다. 이를 위해, 교반부(40)는 몸체부(30)의 일측에 모터(미도시)가 배치되고, 모터로부터 몸체부(30)의 내부방향으로 연장형성되어, 모터가 구동력을 발생시키면, 발생된 구동력에 의해, 회전되도록 하는 샤프트(41), 샤프트(41)에 연결되어, 샤프트(41)가 회전되면, 함께 회전하는 임펠라(42)로 구성될 수 있으며, 모터, 샤프트(41) 및 임펠라(42)는 복수로 마련되되, 몸체부(30)의 내부 일측 중 네 지점 이상에 각각 개별적으로 마련될 수 있다.
스컴 제거부(50)는, 산발효조 내부의 가스를 유입하여, 몸체부(30)의 내부에 가스를 분사하여, 스컴을 제거하기 위해 마련된다.
이를 위해, 스컴 제거부(50)는 산발효조와 몸체부(30) 사이에 마련되어, 산발효조로부터 가스가 공급되도록 하는 가스 공급관(51), 몸체부(30)의 내부에 마련되되, 가스 공급관(51)에 연결되어, 가스 공급관(51)을 통해 공급된 가스가 몸체부(30)의 내부에 분사되도록 하는 가스 공급 노즐(52), 분사된 가스에 의해, 밀려난 스컴이 유입되어 저장될 수 있는 스컴 박스(53)로 구성될 수 있다.
이때, 가스 공급 노즐(52)은 몸체부(30)의 내측 상단에 마련되며, 수직 중심축을 회전축으로 하여 회전하는 구성으로 가스 공급관(51)과 연결되어, 산발효조로부터 가스를 공급받아 몸체부(30)의 내부로 가스를 분사할 수 있는 구조로 형성될 수 있다.
더불어, 가스 공급 노즐(52)은 가스를 분사하며, 스컴을 몸체부(30)의 외측으로 밀어내어, 스컴이 스컴 박스(53)로 유입될 수 있도록, 다수의 제거판이 구비될 수 있으며, 이때, 분사되는 가스는 수소 가스 또는 이산화탄소 가스일 수 있다.
가스 정제 설비(60)는 몸체부(30)의 내부에서 발생된 바이오가스(메탄)를 공급받아 에너지화하기 위해 마련된다.
한편, 수위 계측모듈은 혐기성 소화조의 내부에 수용된 폐수의 압력을 정확히 계측하여, 내부에 수용된 폐수의 수위가 일정하게 조절 및 유지되도록 하기 위해 압력밀도 계측부(100)와 이를 제어하는 제어부(200)로 구성될 수 있다.
압력밀도 계측부(100)는 몸체부(30)의 측면에 마련되어, 폐수의 압력을 수위별로 계측하기 위해 마련된다. 이를 위해, 압력밀도 계측부(100)는, 계측 지점에서의 폐수의 압력가 계측되도록 하는 압력밀도 계측기가 복수로 구비될 수 있다.
구체적으로, 본 압력밀도 계측부(100)는 적어도 수위가 서로 다른 지점 중 세 지점 이상의 계측 지점에서 개별적으로 폐수의 압력이 계측되도록 하는데, 복수의 압력밀도 계측기는 각각의 계측 지점에 대응되도록 배치되어, 압력을 계측하는 제1 압력밀도 계측기(110)와 대기압 또는 밀폐된 몸체부(30)의 내부 기압이 측정되도록, 폐수의 수위보다 높은 지점(P0)에 배치되어, 압력을 계측하는 제2 압력밀도 계측기(120)로 나뉠 수 있다.
여기서, 제1 압력밀도 계측기(110)는 복수로 마련되되, 각각의 제1 압력밀도 계측기(110)가 몸체부(30)의 바닥면으로부터 기설정된 높이마다 배치되어, 배치된 지점에 따른 수위별로 압력을 계측할 수 있도록 하며, 제2 압력밀도 계측기(120)는 몸체부(30)의 상단에 마련되되, 대기압 또는 밀폐된 몸체부(30)의 내부 기압이 측정되도록, 폐수의 수위보다 높은 지점(P0)에 배치될 수 있다.
구체적으로, 복수의 제1 압력밀도 계측기(110)는 도 3에 도시된 바와 같이 서로 다른 높이로 몸체부(30)의 측면에 개별적으로 마련되어, 몸체부(30)의 외주연을 따라 위치되는 계측 지점(P1, P2, P3)에서 압력을 계측하되, 몸체부(30)의 일측면에 일렬로 배치되는 것이 아니라, 몸체부(30)의 외주연을 따라 서로 간에 일정한 거리가 이격되도록 배치되어, 각각의 계측 지점이 연결되면, 가상의 나선이 형성되도록 할 수 있다.
이러한 복수의 제1 압력밀도 계측기(110)는 상호 간에 일정한 거리가 이격되도록 배치된 상태로, 수위별 압력을 계측함으로써, 몸체부(30)의 내부에 수용된 폐수의 압력을 보다 정확하게 계측할 수 있으며, 그 밖에, 압력밀도 계측부(100)에 대한 더욱 상세한 설명은 도 4 내지 도 6를 참조하여 후술하기로 한다.
제어부(200)는 혐기성 소화조의 구성요소들을 제어하여 혐기성 소화조의 제반사항들을 처리하기 위해 마련된다. 구체적으로 제어부(200)는 교반부(40)의 동작 여부를 제어하거나, 또는 압력밀도 계측부(100)로부터 수신된 계측 값들을 기반으로, 각각의 계측 지점에서의 평균 밀도를 개별적으로 산출하고, 산출된 결과를 기반으로 혐기성 소화조의 수위를 계측하며, 계측된 소화조의 수위가 적정 수위를 초과하거나 미달되면, 유입 밸브(21) 및 유입 펌프(22)를 제어하여 몸체부(30)에 폐수가 유입되도록 하거나 또는 배출 밸브(24)의 개폐 여부를 제어하여, 적정 처리되지 않은 상태의 폐수가 적정 수위를 초과하는 경우, 혼합공급조절조(10)로 배출되도록 하여, 몸체부(30)의 내부에 수용된 폐수의 수위를 조절할 수 있다.
이에 대한 더욱 상세한 설명은 전술한 압력밀도 계측부(100)와 함께, 도 4 내지 도 6을 참조하여 후술하기로 한다.
다만, 여기서 한 가지 더 첨언하면, 본 혐기성 소화조는 전술한 구성요소들 이외에, 몸체부(30)의 내부 온도를 계측하여, 일정하게 유지하기 위해 온도 계측 수단(미도시)이 추가로 마련될 수 있으나, 이러한 구성요소들은 본 발명의 기술적 요부와 상이하여, 더욱 상세한 설명을 생략하기로 한다.
도 4는 본 발명의 일 실시예에 따른 혐기성 소화조의 구성요소 중 압력밀도 계측부(100)를 더욱 상세히 설명하기 위해 도시된 도면이며, 도 5는 본 발명의 일 실시예에 따른 폐수의 수위별 압력의 계측 값과 밀도의 산출 값이 도시된 도면이고, 도 6은 본 발명의 일 실시예에 따른 폐수의 수위별 압력의 계측 값을 기반으로 생성된 밀도 추세선이 도시된 도면이다. 여기서, 도 5 내지 도 6에 도시된 계측 값들을 획득하기 위하여, 몸체부(30)는 직경이 0.6(m)이고, 높이가 1.3(m)인 것으로 구현하였으며, 제1 압력밀도 계측기(110)의 직경은 0.75(inch)이며, 제2 압력밀도 계측기(120)의 직경은 0.5(inch)로 구현될 수 있다.
이하에서는 도 4 내지 도 6를 참조하여, 본 혐기성 소화조의 폐수의 수위별 압력을 계측하기 위한 과정과 계측 결과를 이용하여, 폐수의 수위를 조절하는 과정에 대한 동작특성을 더욱 상세히 설명하기로 한다.
우선, 몸체부(30)의 내부에 수용된 폐수의 수위별 압력을 계측하기 위한 과정을 설명하기 위해, 압력밀도 계측부(100)에 대하여 설명하면, 본 압력밀도 계측부(100)는 전술한 바와 같이 몸체부(30)의 바닥면으로부터 서로 다른 높이를 갖도록 마련되어, 서로 다른 수위에서 폐수의 압력을 계측하는 제1 압력밀도 계측기(110)와 대기압 또는 밀폐된 몸체부(30)의 내부 기압이 측정되도록, 폐수의 수위보다 높은 지점(P0)에 배치되어, 압력을 계측하는 제2 압력밀도 계측기(120)를 구비할 수 있다.
도 4를 참조하면, 제1 압력밀도 계측기(110)는, 각각의 계측 지점(P1, P2, P3)을 기준으로 하여, 상측과 하측에 소정의 높이를 갖는 a 계측 지점(P1a, P2a, P3a)과, b 계측 지점(P1b, P2b, P3b)에서 압력이 계측되도록 할 수 있다.
제어부(200)는 a 계측 지점(P1a, P2a, P3a)과, b 계측 지점(P1b, P2b, P3b)에서 압력이 계측되면, 계측 값들을 기반으로 a 계측 지점(P1a, P2a, P3a)과, b 계측 지점(P1b, P2b, P3b) 간의 압력차(△P1, △P2, △P3)를 산출하고, 산출된 압력차(△P1, △P2, △P3)에 따라 중간 지점에서의 평균 밀도(△ρ1, △ρ2, △ρ3)를 산출할 수 있다. 이때, 각각의 계측 지점에서 계측된 계측 값들을 기반으로 산출된 압력차(△P1, △P2, △P3) 및 평균 밀도(△ρ1, △ρ2, △ρ3)는 도 5a 내지 도 5b에 각각 도시된 바와 같다.
특히, 제어부(200)는, 각각의 제1 압력밀도 계측기(110)로부터 각각의 계측 지점에 따른 계측 값(a 계측 지점과 b 계측 지점에서 압력)들을 수신하면, 수신된 계측 값들을 기반으로 a 계측 지점(P1a, P2a, P3a)과 b 계측 지점(P1b, P2b, P3b)의 압력차(△P1, △P2, △P3)를 산출하고, 산출된 압력차(△P1, △P2, △P3)에 따라 중간 지점에서의 평균 밀도(△ρ1, △ρ2, △ρ3)를 산출하고, 산출된 평균 밀도(△ρ1, △ρ2, △ρ3)에 따라 밀도 추세선이 포함된 수위정보를 생성할 수 있다.
즉, 제어부(200)는 몸체부(30)의 전체 평균 밀도에 따른 수위 측정을 하는 것이 아니라, 각각의 계측지점에서의 압력차(△P1, △P2, △P3)에 따른 평균 밀도(△ρ1, △ρ2, △ρ3)를 수위별로 세분화하여, 밀도 추세선이 포함된 수위정보를 생성하며, 밀도 추세선에 따라 특정 계측 지점(P0)과 최상단에 마련된 a 계측 지점(P1a) 간의 평균밀도(△ρ0)를 정확하게 산출하여 정밀한 수위 계측이 가능하도록 하는 것이다.
구체적으로, 제어부(200)는 제1 계측 지점(P1)에 대응되는 a 계측 지점(P1a)에서의 압력 계측 값과 b 계측 지점(P1b) 간의 압력차(△P1)를 산출하고, 산출된 압력차(△P1)에 따라 제1 계측 지점(P1)에서의 평균 밀도(△ρ1)를 산출할 수 있으며, 제2 계측 지점 및 제3 계측 지점(P2, P3)에서도 동일하게 a 계측 지점(P2a, P3a)과 b 계측 지점(P2b, P3b) 간의 압력차(△P2, △P3)를 산출하고, 산출된 압력차(△P2, △P3)에 따라 각각의 계측 지점에서의 평균 밀도(△ρ2, △ρ3)를 산출할 수 있다.
더불어, 제어부(200)는 제2 압력밀도 계측기(120)를 통해서, 폐수의 수위보다 높게 배치된 특정 계측 지점(P0)에서 대기압 또는 밀폐된 몸체부(30)의 기압이 계측되면, 특정 계측 지점(P0)과 최상단에 마련된 a 계측 지점(P1a) 간의 압력차(△P0)를 산출하고, 추세선의 수위정보에서 산출된 평균밀도(△ρ0)를 이용하여, 변동 수위를 산출할 수 있다.
여기서, 제어부(200)는 특정 계측 지점(P0)으로부터, 수면까지의 기압은 일정한 것으로 가정하고, 기준 밀도 추세선(A) 또는 실시간 밀도 추세선(B)을 이용하여 산출된 평균밀도(△ρ0)에 따라 수면으로부터 최상단에 마련된 a 계측 지점(P1a)까지의 수심을 산출하고, 고정 수위에 해당하는 몸체부(300)의 바닥면에서 최상단에 마련된 a 계측 지점(P1a)까지의 높이(h0)와 변동 수위에 해당하는 수면으로부터 최상단에 마련된 a 계측 지점(P1a)까지의 수심(△h)을 더하여 수위를 정밀하게 계측할 수 있다.
더불어, 제어부(200)는, 도 5a에 도시된 바와 같이 혐기성 소화 과정의 진행되기에 앞서, 폐수가 적정 수위까지 유입되면, 폐수의 수면으로부터 수심이 각각 0.2(m), 0.5(m), 0.8(m) 되는 계측 지점(각각의 a 계측 지점과 b 계측 지점의 중간 지점)에서의 압력차(△P1, △P2, △P3)와 압력차(△P1, △P2, △P3)에 따른 평균 밀도(△ρ1, △ρ2, △ρ3)가 산출되도록 하고, 평균 밀도(△ρ1, △ρ2, △ρ3)를 기반으로, 도 6에 도시된 바와 같은 기준 밀도 추세선(A)이 포함된 기준 수위정보를 생성할 수 있다.
그리고 제어부(200)는 생성된 기준 밀도 추세선(A)이 포함된 기준 수위정보를 저장하고, 혐기성 소화 과정이 진행되면서, 기설정된 시간 간격마다, 동일 계측 지점에서의 압력차(△P1, △P2, △P3)와 압력차(△P1, △P2, △P3)에 따른 평균 밀도(△ρ1, △ρ2, △ρ3)가 산출되도록 하고, 산출된 평균 밀도(△ρ1, △ρ2, △ρ3)를 기반으로 실시간 밀도 추세선(B)이 포함된 실시간 수위정보를 생성하여, 기저장된 기준 수위정보와 실시간 수위정보를 비교할 수 있다.
구체적으로, 제어부(200)는, 기준 밀도 추세선(A)과 실시간 밀도 추세선(B)을 수위별(또는 수심별)로 비교하여, 비교 결과에 따라 실시간 밀도 추세선(B)의 수위별 밀도 값이 상대적으로 더 낮은 경우, 몸체부(30)로 폐수가 유입되어, 폐수의 수위가 높아지도록 하고, 실시간 밀도 추세선(B)의 수위별 밀도 값이 상대적으로 더 높은 경우, 몸체부(30)에서 슬러지 배출 밸브(26)를 통해, 슬러지가 배출되도록 하고, 슬러지가 배출되면, 슬러지와 함께 폐수가 배출됨에 따라 폐수의 수위가 낮아지면, 유입 밸브(21)와 유입 펌프(22)를 제어하여 혼합공급조절조(10)로부터 폐수가 유입되도록 하여, 폐수의 수위가 높아지도록 조절할 수 있다.
예를 들면, 제어부(200)는, 혐기성 소화 과정이 진행되는 과정에서는 유입 밸브(21) 및 슬러지 배출 밸브(26)는 폐쇄되도록 하고, 기준 밀도 추세선(A)과 실시간 밀도 추세선(B)을 수위별(또는 수심별)로 비교하여, 비교 결과에 따라 유입 밸브(21) 및 유입 펌프(22) 또는 슬러지 배출 밸브(26)를 제어하여, 폐수의 수위를 낮추거나 높여, 수위가 혐기성 소화 과정의 적정 수위로 복원되도록 할 수 있다.
다만, 도 5c에 도시된 바와 같이 수위를 복원하는 경우에도, 소정의 오차는 발생될 수 있으나, 이러한 오차는 총 수위의 1%를 초과하지 않도록 하는 것이 바람직하며, 오차가 총 수위의 0.3%를 초과하지 않도록 하는 것이 더 바람직하다.
더불어, 높아지거나 낮아지는 변동 수위(△h)는 기준 밀도 추세선(A)과 실시간 밀도 추세선(B)에 따라 산출된 평균밀도(△ρ0)에 따라 수면으로부터 최상단에 마련된 a 계측 지점(P1a)까지의 수심이 산출되며, 고정 수위에 해당하는 몸체부(300)의 바닥면에서 최상단에 마련된 a 계측 지점(P1a)까지의 높이(h0)와 변동 수위에 해당하는 수면으로부터 최상단에 마련된 a 계측 지점(P1a)까지의 수심(△h)가 더해짐으로써, 수위를 정밀하게 계측할 수 있으며, 이에 의해, 소화조 내 압력 및 밀도를 정확히 계측하여, 소화조의 수위가 일정하게 조절 및 유지되도록 함으로써, 미생물의 폐사로 인해 유기성 고형물이 적정하게 처리되지 못한 체 유출되거나, 인발되는 현상을 방지할 수 있다. 또한, 소화조 내 정확한 수위 계측에 따른 수리학적 체류시간 및 고형물 체류시간을 일정하게 유지할 수 있어, 소화조 운영관리에 편의를 제공할 수 있다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (10)

  1. 혐기성 소화조의 측면에 마련되어, 상기 혐기성 소화조의 바닥면으로부터 서로 다른 높이를 갖는 복수의 계측 지점에서 상기 혐기성 소화조에 유입된 폐수의 압력이 계측되도록 하는 압력밀도 계측부; 및
    상기 압력밀도 계측부로부터 수신된 계측 값들을 기반으로, 상기 복수의 계측 지점에서의 평균 밀도를 개별적으로 산출하고, 산출된 결과를 기반으로 상기 혐기성 소화조의 내부에 상기 폐수가 유입되도록 하거나 또는 배출되도록 하여, 상기 혐기성 소화조의 내부에 유입된 폐수의 수위가 조절되도록 하는 제어부;를 포함하는 압력밀도식 수위 계측모듈.
  2. 제1항에 있어서,
    상기 압력밀도 계측부는,
    세 지점 이상의 계측 지점에 대응되도록 개별적으로 마련되어, 각각의 계측 지점에서의 폐수의 압력이 계측되도록 하는 제1 압력밀도 계측기; 및
    상기 수용된 폐수의 수위보다 높은 특정 지점에 배치되어, 대기압 또는 밀폐된 혐기성 소화조의 내부 기압이 계측되도록 하는 제2 압력밀도 계측기;를 포함하는 것을 특징으로 하는 압력밀도식 수위 계측모듈.
  3. 제2항에 있어서,
    상기 제어부는,
    각각의 제1 압력밀도 계측기로부터 수신된 각각의 계측 지점에서의 폐수의 압력 값을 기반으로, 각각의 계측 지점에서의 평균 밀도를 산출하고, 산출된 결과를 기반으로 상기 혐기성 소화조의 내부에 유입된 폐수의 기준 밀도 추세선이 포함된 기준 수위정보를 생성하여 저장하는 것을 특징으로 하는 압력밀도식 수위 계측모듈.
  4. 제3항에 있어서,
    상기 제어부는,
    상기 기준 수위정보가 생성되어 저장되면, 기설정된 시간 간격마다 상기 각각의 제1 압력밀도 계측기로부터 실시간으로 수신된 계측 값들을 기반으로, 계측 지점에서의 평균 밀도를 재산출하고, 산출된 결과를 기반으로 상기 혐기성 소화조의 내부에 유입된 폐수의 실시간 밀도 추세선이 포함된 실시간 수위정보를 생성하여, 상기 저장된 기준 수위정보와 비교하는 것을 특징으로 하는 압력밀도식 수위 계측모듈.
  5. 제4항에 있어서,
    상기 제어부는,
    상기 실시간 수위정보와 상기 저장된 기준 수위정보의 비교 결과에 따라 상기 혐기성 소화조의 내부에 폐수가 유입되도록 하거나 또는 배출되도록 하여, 상기 혐기성 소화조의 내부에 유입된 폐수의 수위가 조절되도록 하는 것을 특징으로 하는 압력밀도식 수위 계측모듈.
  6. 제2항에 있어서,
    상기 각각의 계측 지점에 대응되도록 마련된 제1 압력밀도 계측기는,
    상기 세 지점 이상의 계측 지점에 대응되도록 개별적으로 마련되며, 상기 혐기성 소화조의 외주연 위에 배치되고, 상기 몸체의 바닥면을 기준으로 기설정된 높이 간격마다 배치되어, 각각의 계측 지점을 기준으로 상측과 하측에 마련되어, 상기 각각의 계측 지점에서의 상측과 하측의 압력이 개별적으로 계측되도록 하고,
    상기 제어부는,
    상기 각각의 계측 지점에서의 상측과 하측의 압력 값이 수신되면, 상기 각각의 계측 지점에서의 압력차가 산출되도록 하는 것을 특징으로 하는 압력밀도식 수위 계측모듈.
  7. 제6항에 있어서,
    상기 기준 밀도 추세선과 상기 실시간 밀도 추세선은,
    상기 세 지점 이상의 계측 지점에서의 평균 밀도를 기반으로 생성된 비선형 타입의 추세선인 것으로 하는 것을 특징으로 하는 압력밀도식 수위 계측모듈.
  8. 제7항에 있어서,
    상기 제어부는,
    상기 세 지점 이상의 계측 지점 중 최상단에 마련된 계측 지점과 상기 수용된 폐수의 수위보다 높은 특정 지점 간의 압력차를 산출하고, 상기 실시간 밀도 추세선을 통해 상기 폐수의 수면의 평균 밀도를 산출하여, 상기 폐수의 수위를 측정하는 것을 특징으로 하는 압력밀도식 수위 계측모듈.
  9. 제8항에 있어서,
    상기 제어부는,
    상기 기준 밀도 추세선과 상기 실시간 밀도 추세선을 수위별로 비교하여, 상기 실시간 밀도 추세선의 수위별 밀도 값이 상대적으로 더 낮은 경우, 상기 몸체부로 상기 폐수가 유입되어, 상기 폐수의 수위가 높아지도록 하는 것을 특징으로 하는 압력밀도식 수위 계측모듈.
  10. 제8항에 있어서,
    상기 제어부는,
    상기 기준 밀도 추세선과 상기 실시간 밀도 추세선을 수위별로 비교하여, 상기 실시간 밀도 추세선의 수위별 밀도 값이 상대적으로 더 높은 경우, 상기 몸체부로부터 상기 폐수에 포함된 슬러지가 배출되고,
    상기 슬러지의 배출로 인하여 상기 수위가 낮아지면, 상기 몸체부로 상기 폐수가 유입되어, 상기 수위가 높아지도록 조절하는 것을 특징으로 하는 압력밀도식 수위 계측모듈.
PCT/KR2018/012387 2017-10-26 2018-10-19 압력밀도식 수위 계측모듈 WO2019083228A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019572849A JP6749561B1 (ja) 2017-10-26 2018-10-19 圧力密度式水位計測モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0140122 2017-10-26
KR1020170140122A KR101836383B1 (ko) 2017-10-26 2017-10-26 압력밀도식 수위 계측모듈

Publications (1)

Publication Number Publication Date
WO2019083228A1 true WO2019083228A1 (ko) 2019-05-02

Family

ID=61726289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012387 WO2019083228A1 (ko) 2017-10-26 2018-10-19 압력밀도식 수위 계측모듈

Country Status (3)

Country Link
JP (1) JP6749561B1 (ko)
KR (1) KR101836383B1 (ko)
WO (1) WO2019083228A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417502A (zh) * 2022-08-01 2022-12-02 清华苏州环境创新研究院 一种气升环流沉淀分离型生物反应器及运行方法
CN116626566A (zh) * 2023-07-25 2023-08-22 北京中科富海低温科技有限公司 低温实验系统、低温实验系统的液位测定方法和复温方法
CN117129054A (zh) * 2023-10-20 2023-11-28 中国核电工程有限公司 一种两相贮槽倒料终点的监测方法、装置及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102023639B1 (ko) 2018-11-30 2019-09-20 주식회사 환경에너지오앤엠 고농도 유기성 폐기물 처리를 위한 고율 건식 혐기성 소화 장치
KR102474559B1 (ko) * 2022-03-28 2022-12-06 주식회사 이지에버텍 Plc 알고리즘 기반의 수위센서 오작동 예측 감지를 위한 방법 및 제어 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041579A1 (ja) * 2007-09-27 2009-04-02 Nippon Steel Engineering Co., Ltd. 気泡塔型炭化水素反応器、及びスラリー液面検知方法
KR20100041996A (ko) * 2008-10-15 2010-04-23 박종진 전단면 지반침하 측정 장치와 그 방법
KR101152875B1 (ko) * 2011-11-25 2012-06-12 주식회사 부강테크 3지점 압력측정을 통한 수처리시설의 운영제어방법 및 이를 활용한 운영제어장치
KR101304751B1 (ko) * 2013-04-26 2013-09-05 김용 경사형 레이저 수위 측정기
KR20170099600A (ko) * 2016-02-24 2017-09-01 블루그린링크(주) 관리부를 구비한 정화장치 및 그 관리방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044096A (ja) * 1990-04-19 1992-01-08 Shinko Pantec Co Ltd 上向流嫌気性廃水処理槽における微生物床界面の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041579A1 (ja) * 2007-09-27 2009-04-02 Nippon Steel Engineering Co., Ltd. 気泡塔型炭化水素反応器、及びスラリー液面検知方法
KR20100041996A (ko) * 2008-10-15 2010-04-23 박종진 전단면 지반침하 측정 장치와 그 방법
KR101152875B1 (ko) * 2011-11-25 2012-06-12 주식회사 부강테크 3지점 압력측정을 통한 수처리시설의 운영제어방법 및 이를 활용한 운영제어장치
KR101304751B1 (ko) * 2013-04-26 2013-09-05 김용 경사형 레이저 수위 측정기
KR20170099600A (ko) * 2016-02-24 2017-09-01 블루그린링크(주) 관리부를 구비한 정화장치 및 그 관리방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417502A (zh) * 2022-08-01 2022-12-02 清华苏州环境创新研究院 一种气升环流沉淀分离型生物反应器及运行方法
CN115417502B (zh) * 2022-08-01 2023-09-19 清华苏州环境创新研究院 一种气升环流沉淀分离型生物反应器及运行方法
CN116626566A (zh) * 2023-07-25 2023-08-22 北京中科富海低温科技有限公司 低温实验系统、低温实验系统的液位测定方法和复温方法
CN116626566B (zh) * 2023-07-25 2023-09-22 北京中科富海低温科技有限公司 低温实验系统、低温实验系统的液位测定方法和复温方法
CN117129054A (zh) * 2023-10-20 2023-11-28 中国核电工程有限公司 一种两相贮槽倒料终点的监测方法、装置及系统

Also Published As

Publication number Publication date
KR101836383B1 (ko) 2018-03-08
JP2020528544A (ja) 2020-09-24
JP6749561B1 (ja) 2020-09-02

Similar Documents

Publication Publication Date Title
WO2019083228A1 (ko) 압력밀도식 수위 계측모듈
WO2020111747A1 (ko) 고농도 유기성 폐기물 처리를 위한 고율 건식 혐기성 소화 장치
US20090305379A1 (en) Digester system
US20240002267A1 (en) Chemical sewage treatment and reuse system
WO2009134023A2 (ko) 나선형 구조물이 구비된 생물막 반응기 및 이를 이용한 수처리장치
KR102087622B1 (ko) 회분식 반응조 및 그의 제어방법
CN112479476A (zh) 一种污水深度处理设备
CN108325375A (zh) 一种污水处理厂好氧活性污泥同步曝气除臭工艺
AU2014319091B2 (en) Digestion of organic sludge
US11142474B2 (en) Facility and method for biologically treating organic waste and effluents
CN208648879U (zh) 一体化mbr污水处理装置
KR100661455B1 (ko) 하수처리장치 및 이를 이용한 하수처리방법
KR101363477B1 (ko) 재래식 혐기성 소화기술을 개선한 고율 연속 회분식 소화장치
KR101334873B1 (ko) 혐기성소화 처리장치와 이를 갖는 수처리 장치 및 혐기성소화 처리방법
KR20180045871A (ko) 슬러지완충조를 활용한 연속회분식토양활성슬러지공법의 하폐수고도처리장치
CN209210479U (zh) 厌氧氨氧化反应器
CN115974345A (zh) 基于生物接触氧化法的医院污水处理系统
CN114853300B (zh) 注氧脱硫的污泥处理方法及厌氧消化池
KR101555024B1 (ko) 에스비알 공법에 의한 고도처리 방법 및 이에 사용되는 장치
KR101812448B1 (ko) 음폐수의 혐기성 소화 장치
WO2017119718A1 (ko) 다층 파공 분리판과 교반펌프에 의한 음식물류폐기물 혐기성소화 처리시스템
CN115572014A (zh) 一种难降解污水微生物在线强化处理方法及系统
CN108314182A (zh) 一种新型uasb联合abr颗粒污泥反应器和使用方法
KR101613622B1 (ko) 다기능 흡입순환을 이용한 혐기성 처리 장치
CN113636644A (zh) 厌氧反应器及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019572849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869674

Country of ref document: EP

Kind code of ref document: A1