WO2019082776A1 - Power storage system - Google Patents

Power storage system

Info

Publication number
WO2019082776A1
WO2019082776A1 PCT/JP2018/038765 JP2018038765W WO2019082776A1 WO 2019082776 A1 WO2019082776 A1 WO 2019082776A1 JP 2018038765 W JP2018038765 W JP 2018038765W WO 2019082776 A1 WO2019082776 A1 WO 2019082776A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage
voltage
parallel
battery
Prior art date
Application number
PCT/JP2018/038765
Other languages
French (fr)
Japanese (ja)
Inventor
宜久 山口
耕司 間崎
将也 ▲高▼橋
拓也 木口
晋平 瀧田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880069656.5A priority Critical patent/CN111264014B/en
Publication of WO2019082776A1 publication Critical patent/WO2019082776A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a storage system.
  • a storage system in which a plurality of storage modules can be switched in series and in parallel is known.
  • the battery system for an industrial machine disclosed in Patent Document 1 aims to enable quick charging under high voltage and to use low voltage components.
  • charge / discharge switching means for selectively switching the connection state between the battery unit and the charge input unit or the power load, and alternatively or alternatively, electrically connecting the plurality of battery units in parallel or in series.
  • / or a parallel / serial switching unit or the like are examples of the connection state between the battery unit and the charge input unit or the power load.
  • a “storage module” is used as a term of the upper concept including the battery unit of Patent Document 1.
  • a situation in which a plurality of storage modules are switched to parallel connection after charging in series is completed, and the main machine motor as a load discharges and runs Is assumed. If, for example, the relay is operated to switch the connection while the potential difference between the plurality of power storage modules is large, the life of the relay may be reduced due to the arc of the contact or the short circuit current.
  • An object of the present disclosure is to provide a storage system that balances voltages of a plurality of storage modules while avoiding generation of a loss and a decrease in contact life when switching a plurality of storage modules from series to parallel. .
  • the storage system of the present disclosure includes a plurality of storage modules, a series-parallel switch, a power converter, and a control circuit.
  • Each of the plurality of storage modules includes one or more storage cells.
  • the series-parallel switch can switch connection states of a plurality of storage modules in series and in parallel.
  • the power converter transfers power between any two or more storage modules of the plurality of storage modules.
  • the control circuit controls the series-parallel switch and the power converter.
  • the control circuit performs “voltage balancing processing” to operate the power converter so that the potential difference between the plurality of power storage modules is equal to or less than a predetermined threshold prior to parallel switching of the plurality of power storage modules, and then performs serial / parallel switching Switch the
  • the voltage of the storage module is balanced by causing energy to flow back and forth between arbitrary storage modules via the power converter.
  • the inrush current can be suppressed when the contacts of the series-parallel switch such as a relay are connected, the reliability and the life of the series-parallel switch can be improved. Further, the loss can be reduced as compared with the prior art in which the current flows between the storage modules via the resistor.
  • the power converter has one or more input / output terminals connected to a target other than the power storage module separately from the plurality of input / output terminals connected to the plurality of power storage modules.
  • a main unit battery corresponds to a storage module.
  • a DC / DC converter used as an internal circuit of a charger that charges AC power supplied from an AC power source to a main unit battery, a DC / DC converter for auxiliary battery, an inverter that drives a main unit motor and an air conditioner Power converters are already mounted. By utilizing these power converters for voltage balancing processing, the number of devices can be reduced and the utilization efficiency of the devices can be improved.
  • FIG. 1 is a block diagram of the storage system of the first and second embodiments
  • FIG. 2 is a configuration diagram showing a battery voltage monitoring configuration of the storage module
  • Figure 3 shows the relationship between charging infrastructure and load drive voltage
  • FIG. 4 is a diagram for explaining an event at the time of switching from serial to parallel
  • Fig. 5 is a diagram showing an example of characteristics of relay contact life with respect to switching current
  • FIG. 6 is a diagram (1) for explaining the principle of the voltage balancing process
  • FIG. 7 is a diagram (2) illustrating the principle of the voltage balancing process
  • FIG. 8 is a flowchart of parallel connection processing
  • FIG. 1 is a block diagram of the storage system of the first and second embodiments
  • FIG. 2 is a configuration diagram showing a battery voltage monitoring configuration of the storage module
  • Figure 3 shows the relationship between charging infrastructure and load drive voltage
  • FIG. 4 is a diagram for explaining an event at the time of switching from serial to parallel
  • Fig. 5 is a diagram showing an example of characteristics of relay contact life
  • FIG. 9 is a flowchart of parallel cancellation processing
  • FIG. 10 is a block diagram of an on-vehicle charger in which a plurality of DC / DC converters are arranged in parallel, which is the power converter of the first embodiment
  • FIG. 11 is a block diagram of an on-board charger using a multiport DC / DC converter, which is a power converter of the second embodiment
  • FIG. 12 is a block diagram of the storage system of the third embodiment
  • FIG. 13 is a flowchart of series-parallel selection processing during external charging according to the third embodiment
  • FIG. 14 is a continuation of the flowchart of FIG.
  • FIG. 15 is a block diagram of the storage system of the fourth embodiment, FIG.
  • FIG. 16 is a flowchart of a voltage balancing process during external charging according to the fourth embodiment
  • FIG. 17 is a block diagram of the storage system of the fifth embodiment
  • FIG. 18 is a block diagram of a DC / DC converter for an accessory battery which is a power converter of a fifth embodiment
  • FIG. 19 is a configuration diagram of a power storage system according to a sixth embodiment
  • FIG. 20 is a block diagram of an inverter for an air conditioner compressor which is a power converter of a sixth embodiment
  • FIG. 21 is a block diagram of a power storage system of the seventh embodiment.
  • each storage module includes one or more storage cells.
  • the storage module in the present embodiment is a battery module including one or more battery cells.
  • a vehicle-mounted power storage system is equipped with a main battery module that becomes a power source of a vehicle in an electric vehicle or a plug-in hybrid vehicle.
  • a capacitor or the like may be used as the storage module.
  • connection states of the plurality of storage modules are switched in series and in parallel by the series-parallel switch.
  • the series-parallel switch is typically a relay composed of a mechanical relay or a semiconductor switch.
  • the storage system of the present embodiment includes a power converter for transferring power between any two or more storage modules among a plurality of storage modules, and a control circuit for controlling a series-parallel switch and the power converter. Prepare.
  • the following embodiments differ in the configuration of the power converter and the configuration relating to charging and discharging of the storage module.
  • the storage system 401 includes two batteries BT1 and BT2 as "a plurality of storage modules", relays RY1-RY7 as a "serial / parallel switch”, an on-vehicle charger 20 as a “power converter”, and a control circuit 45.
  • the batteries BT1 and BT2 are high-voltage battery modules, such as 400 V, which can be charged and discharged, such as lithium ion batteries.
  • the “battery module” is omitted and referred to as “battery”.
  • the low voltage (for example, 12V) "auxiliary battery” is mentioned in below-mentioned 5th Embodiment, all “battery” is used in the meaning of a high voltage battery.
  • the batteries BT1 and BT2 are provided between the external charge connection units 11 and 12 and the load 80.
  • the load 80 is exemplified by devices generally used in electric vehicles and plug-in hybrid vehicles.
  • Relays RY1 and RY3 respectively open and close a path between positive electrodes of batteries BT1 and BT2 and between negative electrodes.
  • Relay RY2 opens and closes the path between the negative electrode of battery BT1 and the positive electrode of battery BT2.
  • Relays RY4 and RY5 open and close the path between the positive and negative electrodes of battery BT2 and load 80, respectively.
  • the relay RY6 opens and closes the path between the positive electrode of the battery BT1 and the positive electrode terminal 11 of the external charging connection.
  • the relay RY7 opens and closes the path between the negative electrode of the battery BT2 and the negative electrode terminal 12 of the external charging connection.
  • An external charger described in the third and fourth embodiments is connected to the external charging connection units 11 and 12.
  • serial charging is performed in a state in which the batteries BT1 and BT2 are connected in series.
  • parallel charging is performed in a state where the batteries BT1 and BT2 are connected in parallel.
  • relay switching when “one relay is on” in RY1-RY7, it is assumed that “other relays are off”.
  • the relays RY2, RY6 and RY7 are turned on.
  • the relays RY1, RY3, RY6 and RY7 are turned on.
  • the relays RY1, RY3, RY4 and RY5 are turned on at the time of two parallel discharges in which the power of 400 V is supplied from the batteries BT1 and BT2 to the load 80.
  • the relay switching is operated by the command of the control circuit 45.
  • the on-vehicle charger 20 converts AC power supplied from an external commercial power source through the AC power supply connection units 16 and 17 into DC power and charges the batteries BT1 and BT2.
  • the positive and negative terminals of the battery BT1 are connected to the input / output port P1 of the on-vehicle charger 20, and the positive and negative terminals of the battery BT2 are connected to the input / output port P2. Ru.
  • the path between the batteries BT1 and BT2 and the input / output ports P1 and P2 of the on-vehicle charger 20 is referred to as a balanced current path.
  • the negative connection destination of the balanced current path may be the load 80 side, and the relay may be shared. Further, the relay 28 for opening and closing the path between the batteries BT1 and BT2 and the on-vehicle charger 20 may not be provided.
  • the input end of the on-vehicle charger 20 connected to the AC power supply connection portions 16 and 17 is “connected to a target other than the storage module different from the plurality of input / output ends connected to the plurality of storage modules. Equivalent to one or more input / output terminals. Also, the operation of the on-vehicle charger 20 is controlled by the control circuit 45. Details of the operation of the on-vehicle charger 20 will be described later.
  • the battery voltage monitoring unit 43 corresponds to a "module voltage monitoring unit”.
  • the control circuit 45 controls the operation of the in-vehicle charger 20 which is a power converter, based on the voltage detection value detected by the battery voltage monitoring unit 43, that is, the current voltage deviation is fed back. Specifically, the control circuit 45 performs parallelization processing and parallel cancellation processing, which will be described later, based on the voltage deviation ⁇ Vb and information of the relay current Iry flowing through the relays RY1 and RY3.
  • the battery voltage monitoring unit 43 may detect the inter-terminal voltages Vb1 and Vb2 of the batteries BT1 and BT2 by the voltage sensors 71 and 72, and calculate ⁇ Vb which is an absolute value of the difference. Alternatively, the battery voltage monitoring unit 43 may detect the voltage across the relay RY1 as the potential difference ⁇ Vb by the voltage sensor 73. Further, the battery voltage monitoring unit 43 may obtain the relay current Iry by converting it from the potential difference ⁇ Vb, or may detect it with a current sensor.
  • the battery voltages Vb1 and Vb2 are voltages including the loss due to the internal resistance at the time of energization. Therefore, symbols different from the open circuit voltages Vo_1 and Vo_2 in FIGS. 6 and 7 are used.
  • the battery voltage monitoring unit 43 detects an abnormality when the voltage of the batteries BT1 and BT2 is out of the normal range, and transmits the abnormality to the control circuit 45.
  • a battery temperature monitoring unit 44 may be provided which detects a temperature abnormality based on the temperatures Tb1 and Tb2 of the batteries BT1 and BT2 and transmits the temperature abnormality to the control circuit 45.
  • the control circuit 45 cuts off the connection between the battery in which the abnormality is detected and the charger, the load, or the power converter. That is, the battery voltage monitoring unit 43 and the battery temperature monitoring unit 44 function as an "abnormality detection unit".
  • FIG. 3 shows the relationship between the charging infrastructure for the storage module and the load drive voltage.
  • the voltage of the storage module is typically 400V class.
  • the storage module is charged with a charging infrastructure of a voltage different from the load drive voltage. Then, if two storage modules for driving a 400V class load are connected in series at the time of charging, charging can be performed with a 800V class charging infrastructure. And it can switch to parallel connection at the time of load drive, ie, discharge, and can be used by 400V class. Conversely, if the storage module charged in the 400V class charging infrastructure in the parallel connection state is switched to two series connection at the time of load driving, it can be used in the 800V class. As described above, by making it possible to switch the connection state of a plurality of power storage modules in series and in parallel, it is possible to cope with many charging infrastructures.
  • vehicle equipment such as main motors and accessories of electric vehicles and plug-in hybrid vehicles and charging infrastructure are expected to shift from the current 400 V class to the 800 V class in the future, for shortening charging time and the like. Then, a situation may occur where the vehicle specifications and the charging infrastructure specifications do not match, especially during the transition period of the transition. Therefore, it is required to make it possible to switch between series and parallel battery modules between charging and driving a load, that is, driving in the case of driving a main unit motor. To that end, a series-parallel switch such as a mechanical relay or a relay composed of a semiconductor switch is necessarily provided in the circuit.
  • FIG. 5 shows the relationship between the switching current and the switching endurance number of the relay, in other words, the relay contact life.
  • the horizontal and vertical axes are on a logarithmic scale.
  • the larger the switching current the smaller the number of switching endurance times. Therefore, in consideration of the design life of the device, it is necessary to suppress the switching current to a certain safe value or less based on the predetermined number of times of endurance and the characteristics of the relay. For this purpose, it is necessary to balance the voltages of the batteries BT1 and BT2 and eliminate the potential difference and then parallelize the voltages before the parallel connection.
  • Patent Document 1 Japanese Patent No. 5611400
  • a current is caused to flow between two battery units through a path provided with a resistance, so that a loss due to the resistance occurs.
  • the current can be suppressed by the resistance, there is a problem that it takes time for balancing.
  • the method of adjusting a battery pack disclosed in Japanese Patent Laid-Open No. 2005-151679 also applies a current between modules via a resistor, and has the same problem as that of the technology of Patent Document 1. Therefore, in the present embodiment, the potential difference between the storage modules is balanced in a short time while avoiding the occurrence of loss and the decrease in the life of the contact.
  • a plurality of batteries connected in parallel for example, the battery BT1 and the battery BT2 in the example of FIG. 1 are connected to the power converter.
  • the power converter is operated to exchange power between batteries having different terminal voltages. That is, energy is returned between the plurality of batteries by the power converter, and the voltage drop between the terminals and the voltage rise are caused to make the potential difference between the terminals of the plurality of batteries equal to or less than a predetermined threshold.
  • the relays for parallel connection (RY1 and RY3 in the example of FIG. 1) are turned on.
  • this process according to the present embodiment is referred to as “voltage balancing process”.
  • the contacts of the parallel connection relay can be turned on without generating an excessive inrush current, and hence the reliability and the life of the relay can be improved.
  • the loss can be reduced and the voltages among the plurality of batteries can be balanced in a short time.
  • FIG. 6 shows a state in which a balancing current is caused to flow between the batteries BT1 and BT2 using the power converter when the paralleling relays RY1 and RY3 are off.
  • FIG. 7 shows that the paralleling relays RY1 and RY3 are turned on. Shows the state after parallel connection. The rush current shown by a long broken line in FIG. 6 and the return current shown by a short broken line in FIG. 7 flow from the high voltage side to the low voltage side.
  • the voltage of the battery BT1 is higher than the voltage of the battery BT2.
  • the storage system of this embodiment uses a power converter connected to the batteries BT1 and BT2 to return power from the battery BT1 having a relatively high voltage to the battery BT2 having a relatively low voltage.
  • a discharge current flows in the battery BT1
  • a charge current flows in the battery BT2.
  • the deviation of the open circuit voltage Vo approaches zero. Therefore, the voltage applied to the parallelization relays RY1 and RY3 decreases.
  • a current is supplied using the power converter so that the potential difference between the batteries BT1 and BT2 is reduced, and the parallelization relays RY1 and RY3 are turned on in the state where the potential difference is less than the threshold.
  • the rush current can be suppressed, and the reliability of the relays RY1 and RY3 and the entire storage system 401 can be improved.
  • the potential difference between the batteries BT1 and BT2 at the moment when the relays RY1 and RY3 are turned on may be equal to or less than a predetermined threshold, and the power converter can be operated only for a limited short time before and after the on operation. Therefore, an operation of supplying a current larger than the continuous rated current of the power converter for a short time is also possible. Thus, parallelization of the batteries BT1 and BT2 can be completed in a shorter time.
  • the return current flows until the open circuit voltage Vo is balanced.
  • the continuous conduction allowable current of the relay is sufficiently large with respect to the switching current, so it does not affect the reliability of the battery or the relay.
  • the power converter for the voltage balancing process does not have to be dedicated.
  • a current may flow so as to reduce the potential difference between the batteries.
  • the configuration using these power converters will be sequentially described in each embodiment.
  • the process proceeds to S32.
  • S32 it is determined whether the potential difference between the batteries BT1 and BT2 is equal to or less than a threshold. If the potential difference is equal to or less than the threshold value and it is determined as YES in S32, the process proceeds to S35. If the potential difference exceeds the threshold and it is determined as NO in S32, the process proceeds to S33.
  • the control circuit 45 starts the voltage balancing operation by the power converter. This operation is continued until it is determined in S34 that the potential difference is less than or equal to the threshold.
  • the process proceeds to S42.
  • S42 it is determined whether the relay current flowing through the relays RY1 and RY3 is equal to or less than a threshold. If the relay current is equal to or less than the threshold value and it is determined YES in S42, the process proceeds to S45. If the relay current exceeds the threshold value and it is determined as NO in S42, the process proceeds to S43.
  • the control circuit 45 starts the voltage balancing operation by the power converter. This operation is continued until it is determined in S44 that the relay current is less than or equal to the threshold.
  • relays RY1 and RY3 When connecting in series again while the return current is flowing, or when all relays are turned off to stop the system, if relays RY1 and RY3 are shut off as they are, the return current will be cut off, and the contacts of relays RY1 and RY3 May reduce the reliability of the Therefore, as it is, it can not cut off immediately.
  • FIGS. 10 and 11 Two forms of a specific configuration of the on-vehicle charger 20 are shown as a first embodiment and a second embodiment in FIGS. 10 and 11.
  • the codes of the in-vehicle chargers of the first and second embodiments are "201" and "202", respectively.
  • the on-vehicle charger 201 of the first embodiment shown in FIG. 10 includes, for example, an AC / DC conversion circuit 21 configured as a PFC and a plurality of DC / DC converters 301 and 302 as internal circuits.
  • the AC / DC conversion circuit 21 has an input end connected to the commercial power supply 15 via the AC power supply connections 16 and 17.
  • the DC / DC converters 301 and 302 are connected in parallel to a common DC bus which is an output end of the AC / DC conversion circuit 21.
  • the DC / DC converters 301 and 302 are transformer type bidirectional DC / DC converters, and a circuit type such as dual active bridge type is applied, for example.
  • the first DC / DC converter 301 includes a core 331, a primary winding 311 and a secondary winding 321, and a switching circuit 341 on the primary side and a switching circuit 351 on the secondary side. Each one primary winding 311 and one secondary winding 321 are wound around one core 331.
  • the switching circuits 341, 351 periodically alternate the direction of the current flowing through the windings 311, 321.
  • the second DC / DC converter 302 includes a core 332, a primary winding 312 and a secondary winding 322, and a switching circuit 342 on the primary side and a switching circuit 352 on the secondary side. Each one primary winding 312 and one secondary winding 322 are wound around one core 332.
  • the switching circuits 342 and 352 periodically alternate the direction of the current flowing in the windings 312 and 322.
  • the same specifications or the winding ratios of at least the primary windings 311 and 312 and the secondary windings 321 and 322 are set to be the same.
  • the batteries BT1 and BT2 are connected to the secondary side output ports P1 and P2 of the DC / DC converters 301 and 302, respectively. Then, as indicated by thick arrows, a path from the secondary side of the first DC / DC converter 301 to the primary side, and a path from the primary side to the secondary side of the second DC / DC converter 302 via the common DC bus. , And the power between the batteries BT1 and BT2 is returned.
  • the vehicle-mounted charger 202 of 2nd Embodiment shown in FIG. 11 contains the AC / DC conversion circuit 21 comprised as PFC, for example, and one multiport DC / DC converter 303 as an internal circuit.
  • the AC / DC conversion circuit 21 has an input end connected to the commercial power supply 15 via the AC power supply connections 16 and 17.
  • the DC / DC converter 303 is connected to a DC bus which is an output end of the AC / DC conversion circuit 21.
  • the DC / DC converter 303 is a transformer type bidirectional DC / DC converter, and a circuit type such as a triple active bridge type is applied, for example.
  • the DC / DC converter 303 includes a core 33, a primary winding 31, two secondary windings 321 and 322, a switching circuit 34 on the primary side, and switching circuits 351 and 352 on the secondary side.
  • One primary winding 31 and two secondary windings 321 and 322 are wound around one core 33.
  • the switching circuits 34, 351, 352 periodically alternate the direction of the current flowing through the windings 31, 321, 322.
  • the batteries BT1 and BT2 are connected to the two secondary side output ports P1 and P2 of the DC / DC converter 303, respectively. Then, as indicated by a thick arrow, power between the batteries BT1 and BT2 is returned along a path passing from the secondary side of the first DC / DC converter 301 to the secondary side of the second DC / DC converter 302. In this configuration, the power return path is shortened and the loss is reduced as compared with the on-vehicle charger 201 of the first embodiment. In addition, since the number of primary windings is reduced, the size of the DC / DC converter can be reduced.
  • a storage system 401 in a vehicle includes a positive electrode terminal 11 and a negative electrode terminal 12 as external charging connection parts.
  • the external charger 10 is connected to the external charging connections 11 and 12 via a power line. Also, information on the possible output voltage of the external charger 10 is transmitted to the control circuit 45 by wired or wireless communication.
  • FIG. 12 also shows the external charging of the on-vehicle charger 20.
  • the commercial power supply device 15 is connected to the AC power connection portions 16 and 17 and can charge the on-vehicle charger 20 of the storage system 401 with an alternating voltage of 100 V or 200 V. Also in this configuration, when the commercial power supply device 15 has the management and communication function of the output capability, the information may be communicated to the control circuit 45 at the time of charging.
  • the series-parallel selection processing during external charging according to the third embodiment is shown in the flowcharts of FIGS. 13 and 14.
  • the two flowcharts are connected at points A, B, C.
  • the parallelization process of S30 and the parallel cancellation process of S40 are shown in detail in FIG. 8 and FIG.
  • the external charge start process of S50 is a general process such as turning on the connection relays RY6 and RY7 with the external charger 10 based on communication etc. and supplying the output current of the external charger 10 based on the command, etc. Details The description is omitted.
  • the control circuit 45 determines whether the batteries BT1 and BT2 are abnormal based on voltage information from the battery voltage monitoring unit 43, temperature information from the battery temperature monitoring unit 44, and the like. In the case of abnormality, the processing is ended because charging is impossible. However, when one of the batteries BT1 and BT2 is normal and the other is abnormal, the control circuit 45 connects only the normal battery to the charger or load to charge or discharge, for example, by using a matrix-like relay. It is possible to That is, it is also possible to disconnect only the battery determined to be abnormal. If it is determined that the batteries BT1 and BT2 are not abnormal and there is an external charge request in S12, the process proceeds to S13.
  • the control circuit 45 determines in S13 whether the maximum voltage of the external charger 10 exceeds the maximum voltage (for example, 400 V) in paralleling the batteries. In the case of NO, it is determined that external charging is not possible, and the process is ended. If YES in S13, the control circuit 45 determines in S14 whether the maximum voltage of the external charger 10 exceeds the calculated value of the current battery series voltage, that is, the voltage corresponding to the current battery series connection. In this case, the sum of the voltages of the batteries BT1 and BT2 may be simply calculated, or a correction may be added to the value of the sum. If YES in S14, series charging is determined, and the process proceeds to S15. If NO in S14, parallel charging is determined, and the process proceeds to S25.
  • the maximum voltage of the external charger 10 exceeds the maximum voltage (for example, 400 V) in paralleling the batteries. In the case of NO, it is determined that external charging is not possible, and the process is ended. If YES in S13, the control circuit 45 determines in
  • control circuit 45 determines that the current state is the parallel state in S15, the control circuit 45 performs the parallel cancellation process in S40. After the parallel cancellation processing, or when it is determined that the current state is not the parallel state in S15, the control circuit 45 turns on the serialization relay RY2 in S16 and performs the external charge start processing in S50.
  • the control circuit 45 When series charging is performed, the voltage in series of the batteries BT1 and BT2 gradually increases. Therefore, the control circuit 45 repeatedly determines whether the present battery series voltage has reached the maximum voltage of the external charger 10 at S18 during external charging. If the current battery series voltage exceeds the maximum voltage of the external charger 10, S18 is determined to be NO. And after NO determination of S25, it transfers to S30, and the parallel external charge is continued after parallelization processing. In this case, charging can be started in series, and switching to parallel charging can be performed halfway along with the rise in battery voltage. If it is determined that the external charge termination condition is satisfied in S19 after the serial charge is performed, the control circuit 45 performs the parallelization process in S30 and then ends the process.
  • the control circuit 45 determines that the current state is not the parallel state at S25, the control circuit 45 performs the parallelization process at S30. After the parallelization processing, or when it is determined that the current state is not the parallel state at S25, the control circuit 45 performs the external charge start processing at S50. The step of monitoring that the current battery parallel voltage has not reached the maximum voltage of the external charger 10 during the external charging in parallel is omitted. In addition, if the current battery parallel voltage exceeds the maximum voltage of the external charger 10 by performing the same steps as S18, charging with a constant voltage (CV charging) may be continued, or the processing may be terminated due to a charge continuation failure. You may Thereafter, when it is determined in S29 that the external charge termination condition is satisfied, the control circuit 45 terminates the process.
  • CV charging constant voltage
  • the control circuit 45 switches between serial charging and parallel charging based on the information of the possible output voltage communicated from the external charger 10. If the possible output voltage of the external charger 10 is a level capable of series charging, the control circuit 45 can select the series charging to enable rapid charging. On the other hand, if the possible output voltage of the external charger 10 is insufficient for series charging but parallel charging is possible, the control circuit 45 can meet the external charging request by selecting parallel charging. Therefore, appropriate external charging can be performed according to the condition of the external charger 10.
  • FIG. 15 shows the relays RY2, RY6 and RY7 of FIG. 12, that is, the state in which the serialization relay is turned on.
  • the voltage balancing process is performed by the power return between the batteries BT1 and BT2 during series charging.
  • the paralleling relays are turned on in the voltage balancing processing. It takes time to do it. Therefore, in the fourth embodiment, during external charging in series by the external charger 10, voltage balancing processing between the batteries BT1 and BT2 by the power converter in the vehicle is performed in parallel.
  • the on-vehicle charger 20 is used as a power converter.
  • the voltage balancing process during external charging according to the fourth embodiment is shown in the flowchart of FIG. Steps in FIG. 16 other than step S17 are substantially the same as in FIG. 13 and FIG. Moreover, description is abbreviate
  • the voltage deviation caused due to the difference in the capacity, internal resistance and the like of the batteries BT1 and BT2 can be reduced prior to the parallelization operation during the execution of the external charge. Therefore, it is possible to shorten the time required for voltage balancing before switching to parallel after completion of external charging in series, or to switch in parallel immediately after charging is completed.
  • a power converter other than the on-vehicle charger 20 is used for the voltage balancing process, as compared with the above embodiment.
  • the fifth embodiment will be described with reference to FIGS. 17 and 18.
  • the auxiliary battery DC / DC converter 50 is used as a power converter for voltage balancing processing.
  • the auxiliary battery DC / DC converter 50 steps down the high voltage of the batteries BT1 and BT2 to a low voltage such as 12 V or 48 V and supplies it to the auxiliary battery 55.
  • the output terminal on the accessory battery 55 side of the accessory battery DC / DC converter 50 “One or more connected to a target other than the storage module other than the plurality of input / output terminals connected to the plurality of storage modules Corresponds to the input / output end of
  • batteries BT1 and BT2 are connected to input / output ports P1 and P2 of auxiliary battery DC / DC converter 50, respectively.
  • the open / close patterns of the relays RY1-RY7 during charging and discharging are the same as in the first and second embodiments.
  • the on-vehicle charger 20 is treated as a type of load 80.
  • the auxiliary battery DC / DC converter 50 has a configuration of a multiport DC / DC converter 303 similar to that of the second embodiment, for example. Power is returned between the secondary winding 341 connected to the battery BT1 and the secondary winding 342 connected to the battery BT2.
  • the auxiliary battery DC / DC converter 50 may have a configuration in which a plurality of DC / DC converters 301 and 302 are arranged in parallel, as in the first embodiment.
  • the auxiliary battery 55 is different from the batteries BT1 and BT2 and corresponds to a storage module whose serial-parallel connection can not be switched, that is, "another storage module to which serial connection or parallel connection is fixed".
  • the auxiliary battery DC / DC converter 50 has an auxiliary battery whose one end opposite to the input / output terminal connected to the batteries BT1 and BT2 is "another storage module in which serial connection or parallel connection is fixed”. Connected to 55.
  • the voltage balancing process can be performed by effectively utilizing the on-vehicle device.
  • a plurality of inverters 61 and 62 of the electric air conditioning compressor 60 is used as a power converter for voltage balancing processing.
  • the inverters 61 and 62 convert direct current power of the batteries BT1 and BT2 into, for example, three-phase alternating current power, and supply them to the plurality of winding sets 63 and 64 of the alternating current motor 65.
  • the AC output terminals of the inverters 61 and 62 correspond to “one or more input / output terminals connected to a target other than the plurality of storage modules connected to a target other than the plurality of storage modules”.
  • the batteries BT1 and BT2 are connected to input / output ports P1 and P2 of the electric air-conditioner compressor 60, that is, input ends of the inverters 61 and 62.
  • the negative connection destination of the balanced current path may be the load 80 side, and the relay may be shared.
  • the relay 68 for opening and closing the path between the batteries BT1 and BT2 and the electric air conditioner compressor 60 may not be provided.
  • the open / close patterns of the relays RY1-RY7 during charging and discharging are the same as in the first and second embodiments.
  • the on-vehicle charger 20 is treated as a type of load 80.
  • two sets of three-phase winding sets 63 and 64 are wound around a common stator core.
  • the AC motor 65 rotates a common output shaft to generate a single mechanical output by energizing each of the winding sets 63, 64.
  • the output end of the first inverter 61 is connected to one winding set 63, and the output end of the second inverter 62 is connected to the other winding set 64. That is, the output ends of the inverters 61 and 62 are connected to different winding sets 63 and 64, respectively.
  • One battery BT1 is connected to the input end of a first inverter 61 for supplying power to the first winding set 63.
  • the other battery BT2 is connected to the input end of a second inverter 62 that supplies power to the second winding set 64.
  • the control circuit 45 causes the first inverter 61 to perform a powering operation and controls the phase so as to cause the second inverter 61 to perform a regenerative operation. Therefore, the first inverter 61 consumes the power of the battery BT1, supplies energy to the AC motor 65, and performs a power running operation to generate torque on the output shaft.
  • the second inverter 62 performs a regenerative operation so as to return the energy of the back electromotive force due to the rotation of the output shaft of the AC motor 65 to the battery BT2.
  • the return of power is realized between the two inverters 61 and 62.
  • the voltage balancing process can be performed by effectively using the electric air conditioning compressor 60 already installed in the vehicle.
  • the configuration in which one of the plurality of inverters is in a powering operation and the other is in a regenerative operation to return electric power is not limited to the configuration of an AC motor that generates a single mechanical output as described above.
  • the mechanical output generated by the power running operation of one of the inverters may be converted into a gas pressure, and the mechanical input in which the gas pressure is reconverted may cause the other inverter to perform a regenerative operation.
  • the storage system 407 of the seventh embodiment uses the on-vehicle charger 20 as a power converter to switch between series-parallel connection of three batteries BT1, BT2, and BT3.
  • a battery BT3 and relays RY8 to RY10 are added to the storage system 401 of FIG. Similar to the storage system 401, the negative connection destination of the balancing current path may be the load 80 side, and the relay may be shared. Further, the relay 28 for opening and closing the path between the batteries BT1 and BT2 and the on-vehicle charger 20 may not be provided.
  • the relays RY2, RY9, RY6, RY7 are turned on during three-series charging.
  • the relays RY1, RY3, RY8, RY10, RY6, RY7 are turned on.
  • the relays RY1, RY3, RY8, RY10, RY4, RY5 are turned on.
  • the same operation and effect can be obtained by the voltage balancing process similar to that of the above embodiment.
  • the voltage balancing process of the plurality of storage modules basically, it is assumed that the plurality of storage modules are simultaneously connected to the power converter.
  • each storage module to the power converter in a time division manner by using, for example, a matrix-like relay. Therefore, in the storage system including three or more storage modules, the power converter may not be connected to all the storage modules simultaneously. That is, any two or more storage modules of the plurality of storage modules may be connected to the power converter.
  • the control circuit 45 is not limited to feedback control of the power converter based on the voltage detection value detected by the battery voltage monitoring unit 43.
  • the power converter is feed-forwarded from the initial voltage at the start of operation and the operation time. You may control.
  • the power converter may be controlled based on a voltage estimated value estimated from other parameters, instead of using the detected value of the battery voltage.
  • the charging infrastructure and the load drive voltage are roughly classified into two in the 400V class and the 800V class, but the present disclosure is not limited to this, and can also be applied to a system having a 200V class load voltage, for example. . More specifically, when driving a load, storage modules may be connected in parallel and used in 200V class, and when charging, storage modules may be connected in series and charged in a 400V class charging infrastructure.
  • the storage system of the present disclosure is not limited to one mounted on an electric vehicle or a plug-in hybrid vehicle, and can be applied to any system capable of switching the connection state of multiple storage modules in series and parallel.
  • the storage module is not limited to the battery module, and a capacitor or the like may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

A power storage system (401) is provided with: batteries (BT1, BT2) as "a plurality of power storage modules each including at least one power storage cell"; relays (RY1-RY7); an on-vehicle charger (20) as a power converter; and a control circuit (45). The relays (RY1-RY3) are capable of switching the connection state of the batteries (BT1, BT2) between series connection and parallel connection. The on-vehicle charger (20) causes power to be exchanged between the batteries (BT1, BT2). The control circuit (45) controls the relays (RY1-RY7) and the on-vehicle charger (20). The control circuit (45) performs, prior to switching of the batteries (BT1, BT2) to the parallel connection, a voltage balancing process of causing the on-vehicle charger (20) to operate so that the potential difference between the batteries (BT1, BT2) becomes not more than a predetermined threshold value, and then turns on the relays (RY1, RY3).

Description

蓄電システムPower storage system 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年10月27日に出願された特許出願番号2017-207925号に基づくものであり、ここにその記載内容を援用する。 This application is based on patent application number 2017-207925 filed on October 27, 2017, the contents of which are incorporated herein by reference.
 本発明は、蓄電システムに関する。 The present invention relates to a storage system.
 従来、複数の蓄電モジュールを直列及び並列に切り替え可能とした蓄電システムが知られている。例えば特許文献1に開示された産業機械用電池システムは、高電圧下における急速充電が可能で且つ低電圧系のコンポーネントを使用可能とすることを目的とするものである。このシステムは、電池ユニットと充電入力部又は電力負荷との接続状態を択一的に切り替えるための充放電切り替え手段、及び、複数の電池ユニット間の電気的な接続を並列または直列に択一的に切り替えるための並列/直列切り替え手段等を備える。 BACKGROUND Conventionally, a storage system in which a plurality of storage modules can be switched in series and in parallel is known. For example, the battery system for an industrial machine disclosed in Patent Document 1 aims to enable quick charging under high voltage and to use low voltage components. In this system, charge / discharge switching means for selectively switching the connection state between the battery unit and the charge input unit or the power load, and alternatively or alternatively, electrically connecting the plurality of battery units in parallel or in series. And / or a parallel / serial switching unit or the like.
 このシステムの放電制御フローでは、複数の電池ユニットを並列に接続した状態で、複数の電池ユニットから電力負荷への放電を行う。また充電制御フローでは、複数の電池ユニットを直列に接続した状態で、急速充電器から充電入力部を介して複数の電池ユニットに充電を行う。充電完了後、複数の電池ユニット間の電圧差が閾値以上である場合、電圧差をなくすための電圧ユニット間バランス処理が行われる。 In the discharge control flow of this system, in a state where a plurality of battery units are connected in parallel, discharge from the plurality of battery units to the power load is performed. In addition, in the charge control flow, in a state in which a plurality of battery units are connected in series, the rapid charger charges the plurality of battery units via the charge input unit. After completion of charging, if the voltage difference between the plurality of battery units is equal to or greater than the threshold value, voltage unit balance processing is performed to eliminate the voltage difference.
特許第5611400号公報Patent No. 5611400
 特許文献1の電圧ユニット間バランス処理では、抵抗が設けられた経路を介して二つの電池ユニット間に電流を流すため、抵抗による損失が発生する。また、抵抗により電流が抑えられるためバランス化に時間を要する。なお、特許文献1のシステムでは、電圧ユニット間バランス処理の完了後、待機状態としており、バランス化に要する時間は問題にしていないものと推定される。 In the voltage unit balancing process of Patent Document 1, a current is caused to flow between the two battery units through a path provided with a resistance, so that a loss due to the resistance occurs. In addition, since the current can be suppressed by the resistance, it takes time for balancing. In addition, in the system of patent document 1, after completion of the balance process between voltage units, it is set as a standby state, and it is estimated that the time which balancing takes is not a problem.
 以下、本明細書では、特許文献1の電池ユニットを含む上位概念の用語として「蓄電モジュール」を用いる。特許文献1の技術を電気自動車やプラグインハイブリッド自動車の外部充電に適用する場合、直列での充電完了後、複数の蓄電モジュールを並列接続に切り替え、負荷としての主機モータに放電して走行する状況が想定される。仮に、複数の蓄電モジュール間の電位差が大きいままで例えばリレーを操作して接続を切り替えると、接点のアークや短絡電流によりリレーの寿命が低下するおそれがある。 Hereinafter, in the present specification, a “storage module” is used as a term of the upper concept including the battery unit of Patent Document 1. When the technology of Patent Document 1 is applied to the external charging of an electric car or a plug-in hybrid car, a situation in which a plurality of storage modules are switched to parallel connection after charging in series is completed, and the main machine motor as a load discharges and runs Is assumed. If, for example, the relay is operated to switch the connection while the potential difference between the plurality of power storage modules is large, the life of the relay may be reduced due to the arc of the contact or the short circuit current.
 本開示の目的は、複数の蓄電モジュールの直列から並列への切り替えに際し、損失の発生や接点の寿命低下を回避しつつ、複数の蓄電モジュールの電圧を均衡化する蓄電システムを提供することにある。 An object of the present disclosure is to provide a storage system that balances voltages of a plurality of storage modules while avoiding generation of a loss and a decrease in contact life when switching a plurality of storage modules from series to parallel. .
 本開示の蓄電システムは、複数の蓄電モジュールと、直並列切り替え器と、電力変換器と、制御回路と、を備える。複数の蓄電モジュールは、それぞれが一つ以上の蓄電セルを含む。直並列切り替え器は、複数の蓄電モジュールの接続状態を直列及び並列に切り替え可能である。電力変換器は、複数の蓄電モジュールのうち任意の二つ以上の蓄電モジュール間で電力を授受させる。制御回路は、直並列切り替え器及び電力変換器を制御する。 The storage system of the present disclosure includes a plurality of storage modules, a series-parallel switch, a power converter, and a control circuit. Each of the plurality of storage modules includes one or more storage cells. The series-parallel switch can switch connection states of a plurality of storage modules in series and in parallel. The power converter transfers power between any two or more storage modules of the plurality of storage modules. The control circuit controls the series-parallel switch and the power converter.
 制御回路は、複数の蓄電モジュールの並列切り替えに先立ち、複数の蓄電モジュール間の電位差が所定の閾値以下となるように電力変換器を動作させる「電圧均衡化処理」を実施した後、直並列切り替え器を切り替える。 The control circuit performs “voltage balancing processing” to operate the power converter so that the potential difference between the plurality of power storage modules is equal to or less than a predetermined threshold prior to parallel switching of the plurality of power storage modules, and then performs serial / parallel switching Switch the
 本開示では、電力変換器を介して、任意の蓄電モジュール間でエネルギーを還流させて充放電させることにより、蓄電モジュールの電圧を均衡化する。これにより、リレー等の直並列切り替え器の接点を接続したとき突入電流を抑制することができるため、直並列切り替え器の信頼性や寿命を向上させることができる。また、抵抗を介して蓄電モジュール間に電流を流す従来技術に比べ、損失を低減することができる。 In the present disclosure, the voltage of the storage module is balanced by causing energy to flow back and forth between arbitrary storage modules via the power converter. As a result, since the inrush current can be suppressed when the contacts of the series-parallel switch such as a relay are connected, the reliability and the life of the series-parallel switch can be improved. Further, the loss can be reduced as compared with the prior art in which the current flows between the storage modules via the resistor.
 好ましくは、電力変換器は、複数の蓄電モジュールに接続される複数の入出力端とは別に、蓄電モジュール以外の対象に接続される一つ以上の入出力端を有する。 Preferably, the power converter has one or more input / output terminals connected to a target other than the power storage module separately from the plurality of input / output terminals connected to the plurality of power storage modules.
 例えば電気自動車やプラグインハイブリッド車のような電動車両に搭載される蓄電システムでは、主機バッテリが蓄電モジュールに相当する。電動車両には、交流電源から供給される交流電力を主機バッテリに充電する充電器の内部回路として用いられるDC/DCコンバータ、補機バッテリ用のDC/DCコンバータ、主機モータやエアコンを駆動するインバータ等の電力変換器が既に搭載されている。これらの電力変換器を電圧均衡化処理に活用することで、機器の数を減らし、また、機器の利用効率を高めることができる。 For example, in a storage system mounted on an electric vehicle such as an electric vehicle or a plug-in hybrid vehicle, a main unit battery corresponds to a storage module. For electric vehicles, a DC / DC converter used as an internal circuit of a charger that charges AC power supplied from an AC power source to a main unit battery, a DC / DC converter for auxiliary battery, an inverter that drives a main unit motor and an air conditioner Power converters are already mounted. By utilizing these power converters for voltage balancing processing, the number of devices can be reduced and the utilization efficiency of the devices can be improved.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1、第2実施形態の蓄電システムの構成図であり、 図2は、蓄電モジュールのバッテリ電圧監視構成を示す構成図であり、 図3は、充電インフラと負荷駆動電圧との関係を示す図であり、 図4は、直列から並列への切り替え時における事象を説明する図であり、 図5は、開閉時電流に対するリレー接点寿命の特性例を示す図であり、 図6は、電圧均衡化処理の原理を説明する図(1)であり、 図7は、電圧均衡化処理の原理を説明する図(2)であり、 図8は、並列接続処理のフローチャートであり、 図9は、並列解除処理のフローチャートであり、 図10は、第1実施形態の電力変換器である、複数のDC/DCコンバータを並列配置した車載充電器の構成図であり、 図11は、第2実施形態の電力変換器である、マルチポートDC/DCコンバータを用いた車載充電器の構成図であり、 図12は、第3実施形態の蓄電システムの構成図であり、 図13は、第3実施形態による外部充電時の直並列選択処理のフローチャートであり、 図14は、図13のフローチャートの続きであり、 図15は、第4実施形態の蓄電システムの構成図であり、 図16は、第4実施形態による外部充電中の電圧均衡化処理のフローチャートであり、 図17は、第5実施形態の蓄電システムの構成図であり、 図18は、第5実施形態の電力変換器である補機バッテリ用DC/DCコンバータの構成図であり、 図19は、第6実施形態の蓄電システムの構成図であり、 図20は、第6実施形態の電力変換器であるエアコンコンプレッサ用インバータの構成図であり、 図21は、第7実施形態の蓄電システムの構成図である。
The above object and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings. The drawing is
FIG. 1 is a block diagram of the storage system of the first and second embodiments, FIG. 2 is a configuration diagram showing a battery voltage monitoring configuration of the storage module, Figure 3 shows the relationship between charging infrastructure and load drive voltage, FIG. 4 is a diagram for explaining an event at the time of switching from serial to parallel; Fig. 5 is a diagram showing an example of characteristics of relay contact life with respect to switching current, FIG. 6 is a diagram (1) for explaining the principle of the voltage balancing process, FIG. 7 is a diagram (2) illustrating the principle of the voltage balancing process, FIG. 8 is a flowchart of parallel connection processing; FIG. 9 is a flowchart of parallel cancellation processing; FIG. 10 is a block diagram of an on-vehicle charger in which a plurality of DC / DC converters are arranged in parallel, which is the power converter of the first embodiment; FIG. 11 is a block diagram of an on-board charger using a multiport DC / DC converter, which is a power converter of the second embodiment; FIG. 12 is a block diagram of the storage system of the third embodiment, FIG. 13 is a flowchart of series-parallel selection processing during external charging according to the third embodiment, FIG. 14 is a continuation of the flowchart of FIG. FIG. 15 is a block diagram of the storage system of the fourth embodiment, FIG. 16 is a flowchart of a voltage balancing process during external charging according to the fourth embodiment, FIG. 17 is a block diagram of the storage system of the fifth embodiment, FIG. 18 is a block diagram of a DC / DC converter for an accessory battery which is a power converter of a fifth embodiment, FIG. 19 is a configuration diagram of a power storage system according to a sixth embodiment, FIG. 20 is a block diagram of an inverter for an air conditioner compressor which is a power converter of a sixth embodiment, FIG. 21 is a block diagram of a power storage system of the seventh embodiment.
 以下、複数の蓄電モジュールを備える蓄電システムの実施形態を図面に基づいて説明する。複数の実施形態において実質的に同一の構成には、同一の符号を付して説明を省略する。第1~第7実施形態を包括して「本実施形態」という。ここで、各蓄電モジュールは一つ以上の蓄電セルを含む。本実施形態における蓄電モジュールは、一つ以上のバッテリセルを含むバッテリモジュールである。特に本実施形態では、電気自動車やプラグインハイブリッド車において車両の動力源となる主機バッテリモジュールを備える車載の蓄電システムを想定する。なお、他の実施形態では、蓄電モジュールとしてキャパシタ等が用いられてもよい。 Hereinafter, an embodiment of a power storage system including a plurality of power storage modules will be described based on the drawings. Substantially the same configurations in the plurality of embodiments will be assigned the same reference numerals and descriptions thereof will be omitted. The first to seventh embodiments are collectively referred to as "the present embodiment". Here, each storage module includes one or more storage cells. The storage module in the present embodiment is a battery module including one or more battery cells. In particular, in the present embodiment, it is assumed that a vehicle-mounted power storage system is equipped with a main battery module that becomes a power source of a vehicle in an electric vehicle or a plug-in hybrid vehicle. In other embodiments, a capacitor or the like may be used as the storage module.
 複数の蓄電モジュールは、直並列切り替え器によって、接続状態が直列及び並列に切り替えられる構成となっている。直並列切り替え器は、典型的に、機械式リレー又は半導体スイッチにより構成されるリレーである。さらに本実施形態の蓄電システムは、複数の蓄電モジュールのうち任意の二つ以上の蓄電モジュールの間で電力を授受させる電力変換器と、直並列切り替え器及び電力変換器を制御する制御回路とを備える。以下の各実施形態は、電力変換器の構成や蓄電モジュールの充放電に係る構成が異なる。 The connection states of the plurality of storage modules are switched in series and in parallel by the series-parallel switch. The series-parallel switch is typically a relay composed of a mechanical relay or a semiconductor switch. Furthermore, the storage system of the present embodiment includes a power converter for transferring power between any two or more storage modules among a plurality of storage modules, and a control circuit for controlling a series-parallel switch and the power converter. Prepare. The following embodiments differ in the configuration of the power converter and the configuration relating to charging and discharging of the storage module.
 (第1、第2実施形態)
 最初に図1を参照し、第1、第2実施形態に共通する蓄電システム401の構成を説明する。蓄電システム401は、「複数の蓄電モジュール」としての二つのバッテリBT1、BT2、「直並列切り替え器」としてのリレーRY1-RY7、「電力変換器」としての車載充電器20、及び、制御回路45を備える。バッテリBT1、BT2は、リチウムイオン電池等の充放電可能な、例えば400Vの高圧バッテリモジュールである。以下、「バッテリモジュール」を省略して「バッテリ」という。また、後述の第5実施形態では低圧(例えば12V)の「補機バッテリ」について言及するが、それ以外の「バッテリ」は、いずれも高圧バッテリの意味で用いる。
First and second embodiments
First, the configuration of a power storage system 401 common to the first and second embodiments will be described with reference to FIG. The storage system 401 includes two batteries BT1 and BT2 as "a plurality of storage modules", relays RY1-RY7 as a "serial / parallel switch", an on-vehicle charger 20 as a "power converter", and a control circuit 45. Equipped with The batteries BT1 and BT2 are high-voltage battery modules, such as 400 V, which can be charged and discharged, such as lithium ion batteries. Hereinafter, the "battery module" is omitted and referred to as "battery". Moreover, although the low voltage (for example, 12V) "auxiliary battery" is mentioned in below-mentioned 5th Embodiment, all "battery" is used in the meaning of a high voltage battery.
 蓄電システム401においてバッテリBT1、BT2は、外部充電接続部11、12と負荷80との間に設けられる。負荷80としては、電気自動車やプラグインハイブリッド車で一般に用いられる機器を例示する。リレーRY1及びRY3は、それぞれバッテリBT1、BT2の正極同士の間、及び、負極同士の間の経路を開閉する。リレーRY2は、バッテリBT1の負極と、バッテリBT2の正極との間の経路を開閉する。リレーRY4及びRY5は、それぞれバッテリBT2の正極及び負極と負荷80との間の経路を開閉する。リレーRY6は、バッテリBT1の正極と外部充電接続部の正極端子11との間の経路を開閉する。リレーRY7は、バッテリBT2の負極と外部充電接続部の負極端子12との間の経路を開閉する。 In the storage system 401, the batteries BT1 and BT2 are provided between the external charge connection units 11 and 12 and the load 80. The load 80 is exemplified by devices generally used in electric vehicles and plug-in hybrid vehicles. Relays RY1 and RY3 respectively open and close a path between positive electrodes of batteries BT1 and BT2 and between negative electrodes. Relay RY2 opens and closes the path between the negative electrode of battery BT1 and the positive electrode of battery BT2. Relays RY4 and RY5 open and close the path between the positive and negative electrodes of battery BT2 and load 80, respectively. The relay RY6 opens and closes the path between the positive electrode of the battery BT1 and the positive electrode terminal 11 of the external charging connection. The relay RY7 opens and closes the path between the negative electrode of the battery BT2 and the negative electrode terminal 12 of the external charging connection.
 外部充電接続部11、12には、第3、第4実施形態で説明する外部充電器が接続される。外部充電接続部11、12を経由する外部充電において、800V対応の外部充電器を用いる場合、バッテリBT1、BT2を二直列に接続した状態で直列充電が行われる。一方、400V対応の外部充電器を用いる場合、バッテリBT1、BT2を二並列に接続した状態で並列充電が行われる。 An external charger described in the third and fourth embodiments is connected to the external charging connection units 11 and 12. In the case of using an external charger compatible with 800 V in external charging via the external charging connection portions 11 and 12, serial charging is performed in a state in which the batteries BT1 and BT2 are connected in series. On the other hand, when an external charger compatible with 400 V is used, parallel charging is performed in a state where the batteries BT1 and BT2 are connected in parallel.
 以下のリレー開閉パターンの説明で、RY1-RY7のうちの「あるリレーがオン」という場合、「それ以外のリレーはオフ」であるものとする。二直列充電時にはリレーRY2、RY6、RY7がオンされる。二並列充電時にはリレーRY1、RY3、RY6、RY7がオンされる。バッテリBT1、BT2から負荷80に400Vの電力を供給する二並列放電時にはリレーRY1、RY3、RY4、RY5がオンされる。これらのリレー開閉は、制御回路45の指令により操作される。 In the following description of the relay switching pattern, when “one relay is on” in RY1-RY7, it is assumed that “other relays are off”. During two series charging, the relays RY2, RY6 and RY7 are turned on. During two parallel charging, the relays RY1, RY3, RY6 and RY7 are turned on. The relays RY1, RY3, RY4 and RY5 are turned on at the time of two parallel discharges in which the power of 400 V is supplied from the batteries BT1 and BT2 to the load 80. The relay switching is operated by the command of the control circuit 45.
 車載充電器20は、一般的な機能として、外部の商用電源からAC電源接続部16、17を介して供給された交流電力を直流電力に変換しバッテリBT1、BT2に充電する。第1、第2実施形態の蓄電システム401においては、車載充電器20の入出力ポートP1にはバッテリBT1の正極及び負極が接続され、入出力ポートP2にはバッテリBT2の正極及び負極が接続される。バッテリBT1、BT2と車載充電器20の入出力ポートP1、P2との間の経路を均衡化電流経路という。破線Gで示すように、均衡化電流経路の負側接続先を負荷80側とし、リレーを共用してもよい。また、バッテリBT1、BT2と車載充電器20との間の経路を開閉するリレー28は無くてもよい。 As a general function, the on-vehicle charger 20 converts AC power supplied from an external commercial power source through the AC power supply connection units 16 and 17 into DC power and charges the batteries BT1 and BT2. In the storage system 401 of the first and second embodiments, the positive and negative terminals of the battery BT1 are connected to the input / output port P1 of the on-vehicle charger 20, and the positive and negative terminals of the battery BT2 are connected to the input / output port P2. Ru. The path between the batteries BT1 and BT2 and the input / output ports P1 and P2 of the on-vehicle charger 20 is referred to as a balanced current path. As indicated by the broken line G, the negative connection destination of the balanced current path may be the load 80 side, and the relay may be shared. Further, the relay 28 for opening and closing the path between the batteries BT1 and BT2 and the on-vehicle charger 20 may not be provided.
 ここで、AC電源接続部16、17に接続される車載充電器20の入力端は、「複数の蓄電モジュールに接続される複数の入出力端とは別の、蓄電モジュール以外の対象に接続される一つ以上の入出力端」に相当する。また、車載充電器20の動作は、制御回路45により制御される。車載充電器20の動作の詳細については後述する。 Here, the input end of the on-vehicle charger 20 connected to the AC power supply connection portions 16 and 17 is “connected to a target other than the storage module different from the plurality of input / output ends connected to the plurality of storage modules. Equivalent to one or more input / output terminals. Also, the operation of the on-vehicle charger 20 is controlled by the control circuit 45. Details of the operation of the on-vehicle charger 20 will be described later.
 次に図2を参照し、各実施形態に共通する制御回路45の情報入力に関する構成について補足する。制御回路45は、バッテリ電圧監視部43から、バッテリBT1のバッテリ電圧Vb1と、バッテリBT2のバッテリ電圧Vb2とのバッテリ電圧偏差(以下「電位差」ともいう)ΔVb(=|Vb1-Vb2|)の情報を取得する。バッテリ電圧監視部43は「モジュール電圧監視部」に相当する。制御回路45は、バッテリ電圧監視部43が検出した電圧検出値に基づいて、すなわち現在の電圧偏差がフィードバックされることにより、電力変換器である車載充電器20の動作を制御する。詳しくは、制御回路45は、電圧偏差ΔVb、及びリレーRY1、RY3を流れるリレー電流Iryの情報に基づいて、後述する並列化処理及び並列解除処理等を行う。 Next, with reference to FIG. 2, the configuration regarding the information input of the control circuit 45 common to each embodiment will be supplemented. Control circuit 45 receives information from battery voltage monitoring unit 43 of battery voltage deviation (hereinafter also referred to as “potential difference”) ΔVb (= | Vb1-Vb2 |) between battery voltage Vb1 of battery BT1 and battery voltage Vb2 of battery BT2. To get The battery voltage monitoring unit 43 corresponds to a "module voltage monitoring unit". The control circuit 45 controls the operation of the in-vehicle charger 20 which is a power converter, based on the voltage detection value detected by the battery voltage monitoring unit 43, that is, the current voltage deviation is fed back. Specifically, the control circuit 45 performs parallelization processing and parallel cancellation processing, which will be described later, based on the voltage deviation ΔVb and information of the relay current Iry flowing through the relays RY1 and RY3.
 バッテリ電圧監視部43は、電圧センサ71、72により、バッテリBT1、BT2の端子間電圧Vb1、Vb2を検出し、その差の絶対値であるΔVbを算出してもよい。或いはバッテリ電圧監視部43は、電圧センサ73により、リレーRY1の両端の電圧を電位差ΔVbとして検出してもよい。また、バッテリ電圧監視部43は、リレー電流Iryを電位差ΔVbから換算して求めてもよいし、電流センサにより検出してもよい。なお、バッテリ電圧Vb1、Vb2は通電時の内部抵抗による損失分を含む電圧とする。したがって、図6、図7における開放電圧Vo_1、Vo_2とは異なる記号を用いる。 The battery voltage monitoring unit 43 may detect the inter-terminal voltages Vb1 and Vb2 of the batteries BT1 and BT2 by the voltage sensors 71 and 72, and calculate ΔVb which is an absolute value of the difference. Alternatively, the battery voltage monitoring unit 43 may detect the voltage across the relay RY1 as the potential difference ΔVb by the voltage sensor 73. Further, the battery voltage monitoring unit 43 may obtain the relay current Iry by converting it from the potential difference ΔVb, or may detect it with a current sensor. The battery voltages Vb1 and Vb2 are voltages including the loss due to the internal resistance at the time of energization. Therefore, symbols different from the open circuit voltages Vo_1 and Vo_2 in FIGS. 6 and 7 are used.
 また、バッテリ電圧監視部43は、バッテリBT1、BT2の電圧が正常範囲外である場合に異常を検出し、制御回路45に伝える。その他、バッテリBT1、BT2の温度Tb1、Tb2に基づき温度異常を検出し、制御回路45に伝えるバッテリ温度監視部44が設けられてもよい。制御回路45は、異常が検出されたバッテリと充電器、負荷、又は電力変換器との接続を遮断する。すなわち、バッテリ電圧監視部43及びバッテリ温度監視部44は、「異常検出部」として機能する。 Further, the battery voltage monitoring unit 43 detects an abnormality when the voltage of the batteries BT1 and BT2 is out of the normal range, and transmits the abnormality to the control circuit 45. In addition, a battery temperature monitoring unit 44 may be provided which detects a temperature abnormality based on the temperatures Tb1 and Tb2 of the batteries BT1 and BT2 and transmits the temperature abnormality to the control circuit 45. The control circuit 45 cuts off the connection between the battery in which the abnormality is detected and the charger, the load, or the power converter. That is, the battery voltage monitoring unit 43 and the battery temperature monitoring unit 44 function as an "abnormality detection unit".
 続いて、各実施形態の具体的構成や作用効果の説明に移る前に、本実施形態の背景について図3~図5を参照して説明する。図3に、蓄電モジュール用の充電インフラと負荷駆動電圧との関係を示す。ここで、蓄電モジュールの電圧が標準的に400V級であると仮定する。また、充電スタンド等の充電インフラには400V級対応及び800V級対応の2種類が存在し、使用される負荷も400V級で駆動されるものと800V級で駆動されるものの2種類が存在すると仮定する。400V級で負荷を駆動する蓄電モジュールに400V級の充電インフラで充電する場合や、800V級で負荷を駆動する蓄電モジュールに800V級の充電インフラで充電する場合、何ら問題は無い。 Subsequently, the background of the present embodiment will be described with reference to FIGS. 3 to 5 before the description of the specific configuration and effects of the embodiments. FIG. 3 shows the relationship between the charging infrastructure for the storage module and the load drive voltage. Here, it is assumed that the voltage of the storage module is typically 400V class. In addition, it is assumed that there are two types of charging infrastructures, such as a charging station, compatible with 400V and 800V, and there are two types of loads used: one driven by 400V and one driven by 800V. Do. There is no problem when charging a storage module that drives a load with a 400V class with a 400V charging infrastructure or charging an storage module that drives a load with a 800V class with a 800V charging infrastructure.
 一方、負荷駆動電圧とは異なる電圧の充電インフラで蓄電モジュールを充電する場合を考える。すると、400V級の負荷を駆動する蓄電モジュールを充電時に二つ直列接続すれば、800V級の充電インフラで充電可能である。そして、負荷駆動時すなわち放電時には並列接続に切り替えて400V級で使用することができる。逆に、並列接続状態で400V級の充電インフラで充電した蓄電モジュールを、負荷駆動時に二直列接続に切り替えれば、800V級で使用することができる。このように複数の蓄電モジュールの接続状態を直列及び並列に切り替え可能とすることで、多くの充電インフラに対応可能となる。 On the other hand, consider a case where the storage module is charged with a charging infrastructure of a voltage different from the load drive voltage. Then, if two storage modules for driving a 400V class load are connected in series at the time of charging, charging can be performed with a 800V class charging infrastructure. And it can switch to parallel connection at the time of load drive, ie, discharge, and can be used by 400V class. Conversely, if the storage module charged in the 400V class charging infrastructure in the parallel connection state is switched to two series connection at the time of load driving, it can be used in the 800V class. As described above, by making it possible to switch the connection state of a plurality of power storage modules in series and in parallel, it is possible to cope with many charging infrastructures.
 具体的には、電動自動車やプラグインハイブリッド車の主機モータや補機等の車両機器及び充電インフラは、充電時間短縮等のため、現状の400V級から将来は800V級に移行すると予想される。すると、特に移行の過渡期には車両仕様と充電インフラの仕様とがマッチングしない状況が生じ得る。そこで、充電時と負荷駆動時、つまり主機モータの駆動の場合には走行時とで、バッテリモジュールの直並列を切り替え可能とすることが求められる。そのためには必然的に、機械式リレーや半導体スイッチで構成されるリレー等の直並列切り替え器が回路に設けられる。 Specifically, vehicle equipment such as main motors and accessories of electric vehicles and plug-in hybrid vehicles and charging infrastructure are expected to shift from the current 400 V class to the 800 V class in the future, for shortening charging time and the like. Then, a situation may occur where the vehicle specifications and the charging infrastructure specifications do not match, especially during the transition period of the transition. Therefore, it is required to make it possible to switch between series and parallel battery modules between charging and driving a load, that is, driving in the case of driving a main unit motor. To that end, a series-parallel switch such as a mechanical relay or a relay composed of a semiconductor switch is necessarily provided in the circuit.
 図4を参照し、内部抵抗等のばらつきに起因して、二つのバッテリBT1、BT2間に電位差が生じている状況を想定する。二つのバッテリBT1、BT2を直列接続したときの電圧を100%としたとき、例えばバッテリBT1の電圧が52%、バッテリBT2の電圧が48%であると仮定する。なお、太線の矢印は細線の矢印よりも電圧が高いことを意味する。そして、外部充電器時での直流充電後にリレーをオンし並列接続に切り替えたとき、バッテリBT1、BT2間の電位差による短絡電流が流れ、リレー接点にアークが発生する。 Referring to FIG. 4, it is assumed that there is a potential difference between the two batteries BT1 and BT2 due to the variation in internal resistance and the like. Assuming that the voltage when the two batteries BT1 and BT2 are connected in series is 100%, for example, it is assumed that the voltage of the battery BT1 is 52% and the voltage of the battery BT2 is 48%. Note that thick arrows indicate that the voltage is higher than thin arrows. When the relay is turned on and switched to parallel connection after DC charging in the external charger, a short circuit current due to the potential difference between the batteries BT1 and BT2 flows, and an arc occurs at the relay contact.
 図5に、リレーの開閉時電流と開閉耐久回数、言い換えればリレー接点寿命との関係を示す。横軸及び縦軸は対数スケールである。図5からわかるように、開閉時電流が大きいほど開閉耐久回数が少なくなる。したがって、機器の設計寿命を考慮すると、予め定めた耐久回数とリレーの特性とに基づき、開閉時電流をある安全値以下に抑える必要がある。そのためには、並列接続する前にバッテリBT1、BT2の電圧を均衡化し電位差を解消してから並列化することが必要となる。 FIG. 5 shows the relationship between the switching current and the switching endurance number of the relay, in other words, the relay contact life. The horizontal and vertical axes are on a logarithmic scale. As can be seen from FIG. 5, the larger the switching current, the smaller the number of switching endurance times. Therefore, in consideration of the design life of the device, it is necessary to suppress the switching current to a certain safe value or less based on the predetermined number of times of endurance and the characteristics of the relay. For this purpose, it is necessary to balance the voltages of the batteries BT1 and BT2 and eliminate the potential difference and then parallelize the voltages before the parallel connection.
 ここで、特許文献1(特許第5611400号公報)に開示された従来技術では、抵抗が設けられた経路を介して二つの電池ユニット間に電流を流すため、抵抗による損失が発生する。また、抵抗により電流が抑えられるためバランス化に時間を要するという問題がある。また、特開2005-151679号公報に開示された組電池の調整方法も、抵抗を介してモジュール間に電流を流すものであり、特許文献1の技術と同様の問題がある。そこで、本実施形態は、損失の発生や接点の寿命低下を回避しつつ、蓄電モジュール間の電位差を短時間で均衡化する。 Here, in the prior art disclosed in Patent Document 1 (Japanese Patent No. 5611400), a current is caused to flow between two battery units through a path provided with a resistance, so that a loss due to the resistance occurs. In addition, since the current can be suppressed by the resistance, there is a problem that it takes time for balancing. Further, the method of adjusting a battery pack disclosed in Japanese Patent Laid-Open No. 2005-151679 also applies a current between modules via a resistor, and has the same problem as that of the technology of Patent Document 1. Therefore, in the present embodiment, the potential difference between the storage modules is balanced in a short time while avoiding the occurrence of loss and the decrease in the life of the contact.
 そのため本実施形態では、並列接続する複数のバッテリ、例えば図1の例ではバッテリBT1とバッテリBT2を電力変換器に接続する。そして、直列から並列への切り替えに先立ち、電力変換器を動作させて、端子間電圧が異なるバッテリ間で電力を授受させる。すなわち、電力変換器により複数のバッテリ間でエネルギーを還流させ、端子間電圧に電圧降下、電圧上昇を起こさせることによって複数のバッテリの端子間電圧の電位差を所定の閾値以下にする。そして、電位差が閾値以下となっている状態で、並列接続用のリレー(図1の例ではRY1及びRY3)をオンする。以下、本実施形態によるこの処理を「電圧均衡化処理」という。 Therefore, in the present embodiment, a plurality of batteries connected in parallel, for example, the battery BT1 and the battery BT2 in the example of FIG. 1 are connected to the power converter. Then, prior to switching from series to parallel, the power converter is operated to exchange power between batteries having different terminal voltages. That is, energy is returned between the plurality of batteries by the power converter, and the voltage drop between the terminals and the voltage rise are caused to make the potential difference between the terminals of the plurality of batteries equal to or less than a predetermined threshold. Then, in a state where the potential difference is equal to or less than the threshold value, the relays for parallel connection (RY1 and RY3 in the example of FIG. 1) are turned on. Hereinafter, this process according to the present embodiment is referred to as “voltage balancing process”.
 本実施形態では、電圧均衡化処理により、過大な突入電流を生じることなく並列接続用リレーの接点をオンすることができ、ひいてはリレーの信頼性や寿命を向上させることができる。また、従来技術のように抵抗を介して電流を流す構成ではないため、損失を低減し、且つ、複数のバッテリ間の電圧を短時間で均衡化することができる。 In the present embodiment, by the voltage balancing process, the contacts of the parallel connection relay can be turned on without generating an excessive inrush current, and hence the reliability and the life of the relay can be improved. In addition, since the current is not supplied through the resistor as in the prior art, the loss can be reduced and the voltages among the plurality of batteries can be balanced in a short time.
 次に、電圧均衡化処理の原理について図6、図7を参照して説明する。図6には、並列化リレーRY1、RY3がオフの状態で電力変換器を用いてバッテリBT1、BT2間に均衡化電流を流す状態を示し、図7には、並列化リレーRY1、RY3をオンした並列接続後の状態を示す。図6に長破線で示す突入電流、及び、図7に短破線で示す還流電流は、電圧が高い側から低い側へ流れる。 Next, the principle of the voltage balancing process will be described with reference to FIGS. 6 and 7. FIG. 6 shows a state in which a balancing current is caused to flow between the batteries BT1 and BT2 using the power converter when the paralleling relays RY1 and RY3 are off. FIG. 7 shows that the paralleling relays RY1 and RY3 are turned on. Shows the state after parallel connection. The rush current shown by a long broken line in FIG. 6 and the return current shown by a short broken line in FIG. 7 flow from the high voltage side to the low voltage side.
 [バッテリ電圧差]
 バッテリBT1、BT2を直列から並列へ切り替える時、並列接続するバッテリBT1、BT2間に電圧のばらつきが生じることがある。例えば、バッテリ容量のばらつきや、並列接続前に各バッテリが異なる負荷に対して使用されていたこと等がその要因として考えられる。
[Battery voltage difference]
When switching the batteries BT1 and BT2 from series to parallel, voltage variations may occur between the batteries BT1 and BT2 connected in parallel. For example, variations in battery capacity, that each battery was used for different loads before parallel connection, and the like are considered as the factors.
 バッテリBT1、BT2は、開放電圧Vo、直列等価抵抗R0、分極モデルRn及び容量Cn(n=1~N)を用いた等価回路で表すことができる。Nの値はモデル再現レベルにより選択されるが、ここでは、n=1、2として図示する。バッテリBT1については各記号の末尾を「_1」、バッテリBT2については各記号の末尾を「_2」と記す。 The batteries BT1 and BT2 can be represented by an equivalent circuit using an open circuit voltage Vo, a series equivalent resistance R0, a polarization model Rn, and capacitors Cn (n = 1 to N). The value of N is selected according to the model reproduction level, but is illustrated here as n = 1,2. For the battery BT1, the end of each symbol is denoted as “_1”, and for the battery BT2, the end of each symbol is denoted as “_2”.
 例えば、開放電圧Vo_1=410V、Vo_2=390V、等価直列抵抗R0_1=10mΩ、R0_2=10mΩと仮定する。このまま並列化リレーRY1、RY3をオンすると、下式で算出されるように非常に大きな突入電流が流れ、リレーRY1、RY3の接点の信頼性が著しく悪化する。
 (410V-390V)/(10mΩ+10mΩ)=1000A
For example, it is assumed that open circuit voltage Vo_1 = 410V, Vo_2 = 390V, equivalent series resistance R0_1 = 10 mΩ, and R0_2 = 10 mΩ. If the paralleling relays RY1 and RY3 are turned on as it is, a very large inrush current flows as calculated by the following equation, and the reliability of the contacts of the relays RY1 and RY3 is significantly deteriorated.
(410 V-390 V) / (10 mΩ + 10 mΩ) = 1000 A
 [電力変換器の動作]
 例えばバッテリBT1の電圧がバッテリBT2の電圧より高い場合を想定する。本実施形態の蓄電システムは、バッテリBT1、BT2に接続された電力変換器を用い、相対的に電圧の高いバッテリBT1から、相対的に電圧の低いバッテリBT2に電力を還流させる。このとき、バッテリBT1は放電電流が流れ、バッテリBT2は充電電流が流れる。この電流により、直列等価抵抗R0及び分極Rn/Cnに電圧降下が生じることに加え、開放電圧Voの偏差がゼロに近づく。したがって、並列化リレーRY1及びRY3に掛かる電圧が小さくなる。
[Power converter operation]
For example, it is assumed that the voltage of the battery BT1 is higher than the voltage of the battery BT2. The storage system of this embodiment uses a power converter connected to the batteries BT1 and BT2 to return power from the battery BT1 having a relatively high voltage to the battery BT2 having a relatively low voltage. At this time, a discharge current flows in the battery BT1, and a charge current flows in the battery BT2. In addition to the voltage drop occurring in the series equivalent resistance R0 and the polarization Rn / Cn due to this current, the deviation of the open circuit voltage Vo approaches zero. Therefore, the voltage applied to the parallelization relays RY1 and RY3 decreases.
 このように本実施形態では、電力変換器を用いてバッテリBT1、BT2の電位差が小さくなるように電流を流し、電位差が閾値以下となった状態で並列化リレーRY1、RY3をオンする。これにより突入電流を抑制でき、リレーRY1、RY3、及び、蓄電システム401全体の信頼性を向上させることができる。 As described above, in the present embodiment, a current is supplied using the power converter so that the potential difference between the batteries BT1 and BT2 is reduced, and the parallelization relays RY1 and RY3 are turned on in the state where the potential difference is less than the threshold. Thus, the rush current can be suppressed, and the reliability of the relays RY1 and RY3 and the entire storage system 401 can be improved.
 [電圧均衡化について]
 電圧均衡化処理では、開放電圧Voが厳密に等しくなるまで充放電させる必要はない。バッテリの内部抵抗R0や分極Rn/Cnに電圧降下を生じさせることで、あくまで、並列化リレーRY1、RY3を閉じる際の突入電流が軽減されればよい。これは、リレー信頼性に与える影響は、リレーの連続通電時の許容電流よりも開閉時電流の方が支配的なためである。
[About voltage balancing]
In the voltage balancing process, it is not necessary to charge and discharge until the open circuit voltage Vo becomes exactly equal. By causing a voltage drop in the internal resistance R0 and the polarization Rn / Cn of the battery, the inrush current at the time of closing the paralleling relays RY1 and RY3 may be reduced to the last. This is because the relay reliability is affected by the switching current rather than the allowable current during continuous energization of the relay.
 要するに、リレーRY1、RY3をオンする瞬間のバッテリBT1、BT2の電位差が所定の閾値以下であればよく、オン動作前後の限られた短い時間のみ電力変換器を動作させることも可能である。したがって、電力変換器の連続定格電流よりも大きい電流を短時間通電するという操作も可能である。これにより、より短時間にバッテリBT1、BT2の並列化を完了させることができる。 In short, the potential difference between the batteries BT1 and BT2 at the moment when the relays RY1 and RY3 are turned on may be equal to or less than a predetermined threshold, and the power converter can be operated only for a limited short time before and after the on operation. Therefore, an operation of supplying a current larger than the continuous rated current of the power converter for a short time is also possible. Thus, parallelization of the batteries BT1 and BT2 can be completed in a shorter time.
 図7に示すように、並列接続後にも開放電圧Voが均衡化するまで還流電流が流れる。しかし、上述の通り、一般にリレーの連続通電許容電流は開閉電流に対して十分大きいため、バッテリやリレーの信頼性に影響を与えるものではない。 As shown in FIG. 7, even after the parallel connection, the return current flows until the open circuit voltage Vo is balanced. However, as described above, in general, the continuous conduction allowable current of the relay is sufficiently large with respect to the switching current, so it does not affect the reliability of the battery or the relay.
 [電力変換器について]
 電圧均衡化処理のための電力変換器は専用に設けられる必要はない。例えば電動車両に搭載された車載充電器、補機バッテリ用DC/DCコンバータ、電動エアコンコンプレッサ、或いはそれらを組み合わせて用いることで、バッテリ間の電位差を小さくするように電流が流れればよい。これらの電力変換器を用いる構成は、各実施形態で順次説明する。主に電圧均衡化以外の機能で連続的に用いられるこれらの電力変換器を、バッテリの並列接続化の前後にのみ電圧均衡化処理に活用することで、機器の数を減らし、また、機器の利用効率を高めることができる。
[About power converter]
The power converter for the voltage balancing process does not have to be dedicated. For example, by using an on-board charger mounted on an electric vehicle, a DC / DC converter for auxiliary battery, an electric air conditioner compressor, or a combination thereof, a current may flow so as to reduce the potential difference between the batteries. The configuration using these power converters will be sequentially described in each embodiment. By using these power converters, which are continuously used mainly for functions other than voltage balancing, for voltage balancing processing only before and after parallel connection of batteries, the number of devices can be reduced, and Utilization efficiency can be improved.
 次に、直並列の切り替えにおける基本的動作である並列化処理及び並列解除処理について、図8、図9のフローチャートを参照して説明する。この並列化処理及び並列解除処理は、図13、図16のフローチャートにおいて定義済みステップS30及びS40として引用される。以下のフローチャートの説明で、記号「S」はステップを示す。 Next, parallelization processing and parallel cancellation processing, which are basic operations in the series-parallel switching, will be described with reference to the flowcharts of FIGS. The parallelization processing and the parallel cancellation processing are referred to as defined steps S30 and S40 in the flowcharts of FIGS. 13 and 16. In the following description of the flow chart, the symbol "S" indicates a step.
 図8に示す並列化処理では、まずS31で並列接続要求があると判断されると、S32に移行する。S32では、バッテリBT1、BT2間の電位差が閾値以下であるか否か判断される。電位差が閾値以下であり、S32でYESと判定された場合、S35に移行する。電位差が閾値を超えており、S32でNOと判定された場合、S33に移行する。S33では、制御回路45は、電力変換器による電圧均衡化動作を開始する。この動作は、S34で電位差が閾値以下であると判定されるまで継続される。S32又はS34で電位差が閾値以下であると判定されると、S35に移行し、制御回路45は並列化リレーRY1、RY3をオンする。そして制御回路45は、S36で電力変換器の動作を停止する。 In the parallelization process shown in FIG. 8, if it is determined that there is a parallel connection request in S31, the process proceeds to S32. In S32, it is determined whether the potential difference between the batteries BT1 and BT2 is equal to or less than a threshold. If the potential difference is equal to or less than the threshold value and it is determined as YES in S32, the process proceeds to S35. If the potential difference exceeds the threshold and it is determined as NO in S32, the process proceeds to S33. At S33, the control circuit 45 starts the voltage balancing operation by the power converter. This operation is continued until it is determined in S34 that the potential difference is less than or equal to the threshold. If it is determined in S32 or S34 that the potential difference is equal to or less than the threshold value, the process proceeds to S35, and the control circuit 45 turns on the parallelization relays RY1 and RY3. Then, the control circuit 45 stops the operation of the power converter at S36.
 図9に示す並列解除処理では、まずS41で並列解除要求があると判断されると、S42に移行する。S42では、リレーRY1、RY3を流れるリレー電流が閾値以下であるか否か判断される。リレー電流が閾値以下であり、S42でYESと判定された場合、S45に移行する。リレー電流が閾値を超えており、S42でNOと判定された場合、S43に移行する。S43では、制御回路45は、電力変換器による電圧均衡化動作を開始する。この動作は、S44でリレー電流が閾値以下であると判定されるまで継続される。S42又はS44でリレー電流が閾値以下であると判定されると、S45に移行し、制御回路45は並列化リレーRY1、RY3をオフする。そして制御回路45は、S46で電力変換器の動作を停止する。 In the parallel release process shown in FIG. 9, when it is determined that there is a parallel release request in S41, the process proceeds to S42. In S42, it is determined whether the relay current flowing through the relays RY1 and RY3 is equal to or less than a threshold. If the relay current is equal to or less than the threshold value and it is determined YES in S42, the process proceeds to S45. If the relay current exceeds the threshold value and it is determined as NO in S42, the process proceeds to S43. At S43, the control circuit 45 starts the voltage balancing operation by the power converter. This operation is continued until it is determined in S44 that the relay current is less than or equal to the threshold. If it is determined in S42 or S44 that the relay current is equal to or less than the threshold value, the process proceeds to S45, and the control circuit 45 turns off the parallelization relays RY1 and RY3. Then, the control circuit 45 stops the operation of the power converter in S46.
 ここで、並列接続直後に再び並列接続を解除する場合に並列解除処理を実行する意義を説明する。電力変換器によりバッテリBT1、BT2間の電位差を解消して並列化した直後は、バッテリ開放電圧Vo_1、Vo_2が均衡化するまでバッテリBT1、BT2間に還流電流が流れる。バッテリBT1、BT2の内部抵抗や分極の時定数が大きい場合、時間を要することがある。還流電流が流れている状態で再び直列接続する場合や、全リレーをオフしてシステム停止状態とする場合、そのままリレーRY1、RY3を遮断すると還流電流を遮断することとなり、リレーRY1、RY3の接点の信頼性を低下させるおそれがある。したがって、そのままでは即時遮断できない。 Here, the meaning of executing the parallel cancellation processing when the parallel connection is canceled again immediately after the parallel connection will be described. Immediately after the potential difference between the batteries BT1 and BT2 is eliminated by the power converter and parallelization is performed, a return current flows between the batteries BT1 and BT2 until the battery open voltages Vo_1 and Vo_2 are balanced. If the internal resistance of the batteries BT1 and BT2 and the time constant of polarization are large, it may take time. When connecting in series again while the return current is flowing, or when all relays are turned off to stop the system, if relays RY1 and RY3 are shut off as they are, the return current will be cut off, and the contacts of relays RY1 and RY3 May reduce the reliability of the Therefore, as it is, it can not cut off immediately.
 そこでこの問題に対し、リレーRY1、RY3に還流電流が流れている場合は、リレーRY1、RY3をオフする前に電力変換器で還流電流を通流させ、リレーRY1、RY3を流れる電流が閾値以下となった状態で遮断する。これにより、並列解除要求があり、且つ、バッテリBT1、BT2間で還流電流が流れている場合も、均衡化電流の減衰を待たずにリレーRY1、RY3を遮断することが可能となる。 In order to solve this problem, when the return current is flowing to the relays RY1 and RY3, the return current is made to flow in the power converter before turning off the relays RY1 and RY3, and the current flowing through the relays RY1 and RY3 is below the threshold Shut off in the state of This makes it possible to shut off the relays RY1 and RY3 without waiting for the attenuation of the balancing current even when there is a parallel cancellation request and a reflux current flows between the batteries BT1 and BT2.
 次に車載充電器20の具体的な構成について2通りの形態を、第1実施形態及び第2実施形態として図10、図11に示す。ここで、第1、第2実施形態の車載充電器の符号をそれぞれ「201」、「202」とする。 Next, two forms of a specific configuration of the on-vehicle charger 20 are shown as a first embodiment and a second embodiment in FIGS. 10 and 11. Here, the codes of the in-vehicle chargers of the first and second embodiments are "201" and "202", respectively.
 図10に示す第1実施形態の車載充電器201は、例えばPFCとして構成されるAC/DC変換回路21、及び複数のDC/DCコンバータ301、302を内部回路として含む。AC/DC変換回路21は、入力端がAC電源接続部16、17を介して商用電源15に接続される。DC/DCコンバータ301、302は、AC/DC変換回路21の出力端である共通のDCバスに並列に接続される。 The on-vehicle charger 201 of the first embodiment shown in FIG. 10 includes, for example, an AC / DC conversion circuit 21 configured as a PFC and a plurality of DC / DC converters 301 and 302 as internal circuits. The AC / DC conversion circuit 21 has an input end connected to the commercial power supply 15 via the AC power supply connections 16 and 17. The DC / DC converters 301 and 302 are connected in parallel to a common DC bus which is an output end of the AC / DC conversion circuit 21.
 DC/DCコンバータ301、302は、トランス式の双方向DC/DCコンバータであり、例えばデュアルアクティブブリッジ式等の回路形式が適用される。第1DC/DCコンバータ301は、コア331、一次巻線311及び二次巻線321、並びに、一次側のスイッチング回路341及び二次側のスイッチング回路351を含む。各一つの一次巻線311及び二次巻線321が一つのコア331に巻回される。スイッチング回路341、351は、巻線311、321に流れる電流の向きを周期的に交替させる。 The DC / DC converters 301 and 302 are transformer type bidirectional DC / DC converters, and a circuit type such as dual active bridge type is applied, for example. The first DC / DC converter 301 includes a core 331, a primary winding 311 and a secondary winding 321, and a switching circuit 341 on the primary side and a switching circuit 351 on the secondary side. Each one primary winding 311 and one secondary winding 321 are wound around one core 331. The switching circuits 341, 351 periodically alternate the direction of the current flowing through the windings 311, 321.
 同様に第2DC/DCコンバータ302は、コア332、一次巻線312及び二次巻線322、並びに、一次側のスイッチング回路342及び二次側のスイッチング回路352を含む。各一つの一次巻線312及び二次巻線322が一つのコア332に巻回される。スイッチング回路342、352は、巻線312、322に流れる電流の向きを周期的に交替させる。第1DC/DCコンバータ301と第2DC/DCコンバータ302とは、同一の仕様、又は、少なくとも一次巻線311、312と二次巻線321、322との巻線比が同一に設定される。 Similarly, the second DC / DC converter 302 includes a core 332, a primary winding 312 and a secondary winding 322, and a switching circuit 342 on the primary side and a switching circuit 352 on the secondary side. Each one primary winding 312 and one secondary winding 322 are wound around one core 332. The switching circuits 342 and 352 periodically alternate the direction of the current flowing in the windings 312 and 322. In the first DC / DC converter 301 and the second DC / DC converter 302, the same specifications or the winding ratios of at least the primary windings 311 and 312 and the secondary windings 321 and 322 are set to be the same.
 電圧均衡化処理では、DC/DCコンバータ301、302の二次側出力ポートP1、P2に、それぞれバッテリBT1、BT2が接続される。そして、太線矢印で示すように、第1DC/DCコンバータ301の二次側から一次側を通り、共通のDCバスを経由して第2DC/DCコンバータ302の一次側から二次側を通る経路で、バッテリBT1、BT2間の電力が還流される。 In the voltage balancing process, the batteries BT1 and BT2 are connected to the secondary side output ports P1 and P2 of the DC / DC converters 301 and 302, respectively. Then, as indicated by thick arrows, a path from the secondary side of the first DC / DC converter 301 to the primary side, and a path from the primary side to the secondary side of the second DC / DC converter 302 via the common DC bus. , And the power between the batteries BT1 and BT2 is returned.
 図11に示す第2実施形態の車載充電器202は、例えばPFCとして構成されるAC/DC変換回路21、及びマルチポート式の一つのDC/DCコンバータ303を内部回路として含む。AC/DC変換回路21は、入力端がAC電源接続部16、17を介して商用電源15に接続される。DC/DCコンバータ303は、AC/DC変換回路21の出力端であるDCバスに接続される。 The vehicle-mounted charger 202 of 2nd Embodiment shown in FIG. 11 contains the AC / DC conversion circuit 21 comprised as PFC, for example, and one multiport DC / DC converter 303 as an internal circuit. The AC / DC conversion circuit 21 has an input end connected to the commercial power supply 15 via the AC power supply connections 16 and 17. The DC / DC converter 303 is connected to a DC bus which is an output end of the AC / DC conversion circuit 21.
 DC/DCコンバータ303は、トランス式の双方向DC/DCコンバータであり、例えばトリプルアクティブブリッジ式等の回路形式が適用される。DC/DCコンバータ303は、コア33、一次巻線31、及び、二つの二次巻線321、322、並びに、一次側のスイッチング回路34及び二次側のスイッチング回路351、352を含む。一つの一次巻線31及び二つの二次巻線321、322が一つのコア33に巻回される。スイッチング回路34、351、352は、巻線31、321、322に流れる電流の向きを周期的に交替させる。 The DC / DC converter 303 is a transformer type bidirectional DC / DC converter, and a circuit type such as a triple active bridge type is applied, for example. The DC / DC converter 303 includes a core 33, a primary winding 31, two secondary windings 321 and 322, a switching circuit 34 on the primary side, and switching circuits 351 and 352 on the secondary side. One primary winding 31 and two secondary windings 321 and 322 are wound around one core 33. The switching circuits 34, 351, 352 periodically alternate the direction of the current flowing through the windings 31, 321, 322.
 電圧均衡化処理では、DC/DCコンバータ303の二つの二次側出力ポートP1、P2に、それぞれバッテリBT1、BT2が接続される。そして、太線矢印で示すように、第1DC/DCコンバータ301の二次側から第2DC/DCコンバータ302の二次側を通る経路で、バッテリBT1、BT2間の電力が還流される。この構成では、第1実施形態の車載充電器201に比べ、電力還流経路が短縮され、損失が低減する。また、一次巻線の数が少なくなるため、DC/DCコンバータの体格を小さくすることができる。 In the voltage balancing process, the batteries BT1 and BT2 are connected to the two secondary side output ports P1 and P2 of the DC / DC converter 303, respectively. Then, as indicated by a thick arrow, power between the batteries BT1 and BT2 is returned along a path passing from the secondary side of the first DC / DC converter 301 to the secondary side of the second DC / DC converter 302. In this configuration, the power return path is shortened and the loss is reduced as compared with the on-vehicle charger 201 of the first embodiment. In addition, since the number of primary windings is reduced, the size of the DC / DC converter can be reduced.
 (第3実施形態)
 第3、第4実施形態では、直列又は並列に接続された二つのバッテリBT1、BT2に外部充電器10から直流電力を充電する構成について説明する。例えば充電スタンドにおいて電気自動車やプラグインハイブリッド車に給電する状況を想定する。二つのバッテリBT1、BT2の直列接続状態では例えば800V、並列接続状態では例えば400Vの直流電圧が外部充電されることが要求される。しかし、外部充電器10の充電能力が常に十分であるとは限らないため、外部充電開始前に確認する必要がある。
Third Embodiment
In the third and fourth embodiments, a configuration will be described in which direct current power is charged from the external charger 10 to two batteries BT1 and BT2 connected in series or in parallel. For example, it is assumed that power is supplied to an electric car or a plug-in hybrid car at a charging station. It is required that a DC voltage of, for example, 800 V in the series connection state of the two batteries BT1, BT2 be externally charged in the parallel connection state, for example, 400 V. However, since the charging capability of the external charger 10 is not always sufficient, it is necessary to confirm it before starting the external charging.
 第3実施形態について図12~図14を参照して説明する。図12に示すように、車両内の蓄電システム401は、外部充電接続部としての正極端子11及び負極端子12を備える。外部充電の実施時、外部充電器10は、電力線を介して外部充電接続部11、12に接続される。また、外部充電器10の出力可能電圧の情報は、有線又は無線の通信により制御回路45に伝達される。 A third embodiment will be described with reference to FIGS. 12 to 14. As shown in FIG. 12, a storage system 401 in a vehicle includes a positive electrode terminal 11 and a negative electrode terminal 12 as external charging connection parts. When performing external charging, the external charger 10 is connected to the external charging connections 11 and 12 via a power line. Also, information on the possible output voltage of the external charger 10 is transmitted to the control circuit 45 by wired or wireless communication.
 なお、第3実施形態の主題ではないが、車載充電器20への外部充電についても併せて図12に示す。商用電源供給装置15はAC電源接続部16、17に接続され、100V又は200Vの交流電圧を蓄電システム401の車載充電器20に充電可能である。この構成においても、商用電源供給装置15が出力能力の管理及び通信機能を有する場合は、充電時に制御回路45に情報通信するようにしてもよい。 Although not the subject of the third embodiment, FIG. 12 also shows the external charging of the on-vehicle charger 20. The commercial power supply device 15 is connected to the AC power connection portions 16 and 17 and can charge the on-vehicle charger 20 of the storage system 401 with an alternating voltage of 100 V or 200 V. Also in this configuration, when the commercial power supply device 15 has the management and communication function of the output capability, the information may be communicated to the control circuit 45 at the time of charging.
 第3実施形態による外部充電時の直並列選択処理を図13、図14のフローチャートに示す。二つのフローチャートは点A、B、Cで連結されている。S30の並列化処理、及び、S40の並列解除処理は、図8、図9に詳細が示される。S50の外部充電開始処理は、通信等に基づき外部充電器10との接続リレーRY6、RY7をオンし、指令に基づき外部充電器10の出力電流を流す、等の一般的な処理であり、詳細な記載を省略する。 The series-parallel selection processing during external charging according to the third embodiment is shown in the flowcharts of FIGS. 13 and 14. The two flowcharts are connected at points A, B, C. The parallelization process of S30 and the parallel cancellation process of S40 are shown in detail in FIG. 8 and FIG. The external charge start process of S50 is a general process such as turning on the connection relays RY6 and RY7 with the external charger 10 based on communication etc. and supplying the output current of the external charger 10 based on the command, etc. Details The description is omitted.
 最初に制御回路45は、S11で、バッテリ電圧監視部43からの電圧情報やバッテリ温度監視部44からの温度情報等に基づき、バッテリBT1、BT2が異常であるか判断する。異常の場合、充電不可であるため処理を終了する。ただし、バッテリBT1、BT2のいずれか一方が正常で他方が異常の場合、制御回路45は、例えばマトリクス状のリレーを用いることで、正常なバッテリのみを充電器もしくは負荷に接続して充電もしくは放電させることが可能である。つまり、異常と判断したバッテリのみ切り離すことも可能である。バッテリBT1、BT2が異常でなく、S12で外部充電要求があると判断されると、S13に移行する。 First, in S11, the control circuit 45 determines whether the batteries BT1 and BT2 are abnormal based on voltage information from the battery voltage monitoring unit 43, temperature information from the battery temperature monitoring unit 44, and the like. In the case of abnormality, the processing is ended because charging is impossible. However, when one of the batteries BT1 and BT2 is normal and the other is abnormal, the control circuit 45 connects only the normal battery to the charger or load to charge or discharge, for example, by using a matrix-like relay. It is possible to That is, it is also possible to disconnect only the battery determined to be abnormal. If it is determined that the batteries BT1 and BT2 are not abnormal and there is an external charge request in S12, the process proceeds to S13.
 制御回路45は外部充電器10からの情報に基づき、S13で、外部充電器10の最大電圧がバッテリ並列時の最大電圧(例えば400V)を超えているか判断する。NOの場合、外部充電不可と判断し処理を終了する。S13でYESの場合、制御回路45は、S14で、外部充電器10の最大電圧が現在のバッテリ直列電圧の演算値、すなわち、現在のバッテリ直列接続時相当の電圧を超えているか判断する。この場合、単純に各バッテリBT1、BT2の電圧の和を算出してもよいし、和の値に補正を加えてもよい。S14でYESの場合、直列充電が決定され、S15に移行する。S14でNOの場合、並列充電が決定され、S25に移行する。 Based on the information from the external charger 10, the control circuit 45 determines in S13 whether the maximum voltage of the external charger 10 exceeds the maximum voltage (for example, 400 V) in paralleling the batteries. In the case of NO, it is determined that external charging is not possible, and the process is ended. If YES in S13, the control circuit 45 determines in S14 whether the maximum voltage of the external charger 10 exceeds the calculated value of the current battery series voltage, that is, the voltage corresponding to the current battery series connection. In this case, the sum of the voltages of the batteries BT1 and BT2 may be simply calculated, or a correction may be added to the value of the sum. If YES in S14, series charging is determined, and the process proceeds to S15. If NO in S14, parallel charging is determined, and the process proceeds to S25.
 直列充電が決定されたとき、制御回路45は、S15で現在並列状態であると判断すると、S40で並列解除処理を行う。並列解除処理の後、又は、S15で現在並列状態でないと判断したとき、制御回路45は、S16で直列化リレーRY2をオンし、S50で外部充電開始処理を行う。 When the serial charging is determined, if the control circuit 45 determines that the current state is the parallel state in S15, the control circuit 45 performs the parallel cancellation process in S40. After the parallel cancellation processing, or when it is determined that the current state is not the parallel state in S15, the control circuit 45 turns on the serialization relay RY2 in S16 and performs the external charge start processing in S50.
 直列充電が実施されると、バッテリBT1、BT2の直列での電圧は次第に上昇する。そこで制御回路45は、外部充電中、S18で、現在のバッテリ直列電圧が外部充電器10の最大電圧に達していないか繰り返し判断する。現在のバッテリ直列電圧が外部充電器10の最大電圧を超えると、S18でNOと判定される。そして、S25のNO判定を経てS30に移行し、並列化処理後、並列での外部充電が継続される。この場合、直列で充電を開始し、バッテリ電圧の上昇に伴って途中から並列充電に切り替えることが可能となる。直列充電の実施後、S19で外部充電終了条件が成立すると判断されると、制御回路45は、S30の並列化処理を行った後、処理を終了する。 When series charging is performed, the voltage in series of the batteries BT1 and BT2 gradually increases. Therefore, the control circuit 45 repeatedly determines whether the present battery series voltage has reached the maximum voltage of the external charger 10 at S18 during external charging. If the current battery series voltage exceeds the maximum voltage of the external charger 10, S18 is determined to be NO. And after NO determination of S25, it transfers to S30, and the parallel external charge is continued after parallelization processing. In this case, charging can be started in series, and switching to parallel charging can be performed halfway along with the rise in battery voltage. If it is determined that the external charge termination condition is satisfied in S19 after the serial charge is performed, the control circuit 45 performs the parallelization process in S30 and then ends the process.
 並列充電が決定されたとき、制御回路45は、S25で現在並列状態でないと判断すると、S30で並列化処理を行う。並列化処理の後、又は、S25で現在並列状態でないと判断したとき、制御回路45は、S50で外部充電開始処理を行う。なお、並列での外部充電中、現在のバッテリ並列電圧が外部充電器10の最大電圧に達していないことを監視するステップは省略する。なお、S18と同様のステップを実施し、現在のバッテリ並列電圧が外部充電器10の最大電圧を超えた場合、定電圧での充電(CV充電)を継続するか、充電継続不可により処理を終了してもよい。その後、S29で外部充電終了条件が成立すると判断されると、制御回路45は処理を終了する。 When the parallel charging is determined, if the control circuit 45 determines that the current state is not the parallel state at S25, the control circuit 45 performs the parallelization process at S30. After the parallelization processing, or when it is determined that the current state is not the parallel state at S25, the control circuit 45 performs the external charge start processing at S50. The step of monitoring that the current battery parallel voltage has not reached the maximum voltage of the external charger 10 during the external charging in parallel is omitted. In addition, if the current battery parallel voltage exceeds the maximum voltage of the external charger 10 by performing the same steps as S18, charging with a constant voltage (CV charging) may be continued, or the processing may be terminated due to a charge continuation failure. You may Thereafter, when it is determined in S29 that the external charge termination condition is satisfied, the control circuit 45 terminates the process.
 このように第3実施形態では、外部充電器10から通信される出力可能電圧の情報に基づいて、制御回路45が直列充電又は並列充電を切り替える。仮に外部充電器10の出力可能電圧が直列充電可能なレベルであれば、制御回路45が直列充電を選択することで急速充電が可能となる。一方、外部充電器10の出力可能電圧が直列充電には不足するが並列充電可能なレベルであれば、制御回路45が並列充電を選択することで外部充電要求に応えられる。したがって、外部充電器10の状況に応じて適切な外部充電を実施することができる。 As described above, in the third embodiment, the control circuit 45 switches between serial charging and parallel charging based on the information of the possible output voltage communicated from the external charger 10. If the possible output voltage of the external charger 10 is a level capable of series charging, the control circuit 45 can select the series charging to enable rapid charging. On the other hand, if the possible output voltage of the external charger 10 is insufficient for series charging but parallel charging is possible, the control circuit 45 can meet the external charging request by selecting parallel charging. Therefore, appropriate external charging can be performed according to the condition of the external charger 10.
 (第4実施形態)
 次に、第3実施形態を応用した第4実施形態について、図15、図16を参照して説明する。図15は、図12のリレーRY2、RY6、RY7、すなわち直列化リレーをオンした状態を示す。第4実施形態では、直列充電中にバッテリBT1、BT2間の電力還流により電圧均衡化処理を行うものである。
Fourth Embodiment
Next, a fourth embodiment to which the third embodiment is applied will be described with reference to FIG. 15 and FIG. FIG. 15 shows the relays RY2, RY6 and RY7 of FIG. 12, that is, the state in which the serialization relay is turned on. In the fourth embodiment, the voltage balancing process is performed by the power return between the batteries BT1 and BT2 during series charging.
 バッテリBT1、BT2の内部抵抗が大きい場合や電圧均衡化処理に用いられる電力変換器の電流定格が低い場合、バッテリBT1、BT2間の電圧偏差が大きいと、電圧均衡化処理において並列化リレーをオンするまでの時間を要する。そこで第4実施形態では、外部充電器10による直列での外部充電中に、併行して車内の電力変換器によるバッテリBT1、BT2間の電圧均衡化処理を行う。図15に示す蓄電システム401の例では、電力変換器として車載充電器20が用いられる。 If the voltage deviation between the batteries BT1 and BT2 is large when the internal resistance of the batteries BT1 and BT2 is large or the current rating of the power converter used for voltage balancing is low, the paralleling relays are turned on in the voltage balancing processing. It takes time to do it. Therefore, in the fourth embodiment, during external charging in series by the external charger 10, voltage balancing processing between the batteries BT1 and BT2 by the power converter in the vehicle is performed in parallel. In the example of the storage system 401 shown in FIG. 15, the on-vehicle charger 20 is used as a power converter.
 第4実施形態による外部充電中の電圧均衡化処理を、図16のフローチャートに示す。図16においてS17以外のステップは、図13、図14と実質的に同一であるため説明を省略する。また、図13におけるS11、S13、S18については記載を省略する。S14でYESと判定されて直流充電が決定され、S16の直列化リレーオン後、S50で外部充電が開始されると、続いてS17で、電力変換器による電圧均衡化動作が開始される。その後、S19で外部充電終了条件が成立すると判断されると、制御回路45は、S30の並列化処理を行った後、処理を終了する。 The voltage balancing process during external charging according to the fourth embodiment is shown in the flowchart of FIG. Steps in FIG. 16 other than step S17 are substantially the same as in FIG. 13 and FIG. Moreover, description is abbreviate | omitted about S11, S13, S18 in FIG. If it is determined as YES in S14 that DC charging is determined and external charging is started in S50 after the serialization relay of S16 is turned on, then in S17, voltage balancing operation by the power converter is started. Thereafter, when it is determined in S19 that the external charge termination condition is satisfied, the control circuit 45 performs the parallelization process of S30 and then terminates the process.
 第4実施形態では、バッテリBT1、BT2の容量や内部抵抗等の違いに起因して生じる電圧偏差を、外部充電の実行中に並列化動作に先立って低減することができる。したがって、直列での外部充電終了後、並列への切り替え動作をするまでに電圧均衡化に要する時間を短縮する、又は、充電終了後ただちに並列に切り替えることが可能となる。 In the fourth embodiment, the voltage deviation caused due to the difference in the capacity, internal resistance and the like of the batteries BT1 and BT2 can be reduced prior to the parallelization operation during the execution of the external charge. Therefore, it is possible to shorten the time required for voltage balancing before switching to parallel after completion of external charging in series, or to switch in parallel immediately after charging is completed.
 (第5実施形態)
 第5、第6実施形態では、上記実施形態に対し、車載充電器20以外の電力変換器が電圧均衡化処理に用いられる。第5実施形態について図17、図18を参照して説明する。第5実施形態の蓄電システム405では、電圧均衡化処理の電力変換器として補機バッテリ用DC/DCコンバータ50が用いられる。補機バッテリ用DC/DCコンバータ50は、バッテリBT1、BT2の高電圧を12V又は48V等の低電圧に降圧し、補機バッテリ55に供給する。補機バッテリ用DC/DCコンバータ50の補機バッテリ55側の出力端は「複数の蓄電モジュールに接続される複数の入出力端とは別の、蓄電モジュール以外の対象に接続される一つ以上の入出力端」に相当する。
Fifth Embodiment
In the fifth and sixth embodiments, a power converter other than the on-vehicle charger 20 is used for the voltage balancing process, as compared with the above embodiment. The fifth embodiment will be described with reference to FIGS. 17 and 18. In the storage system 405 of the fifth embodiment, the auxiliary battery DC / DC converter 50 is used as a power converter for voltage balancing processing. The auxiliary battery DC / DC converter 50 steps down the high voltage of the batteries BT1 and BT2 to a low voltage such as 12 V or 48 V and supplies it to the auxiliary battery 55. The output terminal on the accessory battery 55 side of the accessory battery DC / DC converter 50 “One or more connected to a target other than the storage module other than the plurality of input / output terminals connected to the plurality of storage modules Corresponds to the input / output end of
 図17に示すように、バッテリBT1、BT2は、それぞれ補機バッテリ用DC/DCコンバータ50の入出力ポートP1、P2に接続される。充電時及び放電時における各リレーRY1-RY7の開閉パターンは第1、第2実施形態と同様である。なお、車載充電器20は、負荷80の一種として扱われる。 As shown in FIG. 17, batteries BT1 and BT2 are connected to input / output ports P1 and P2 of auxiliary battery DC / DC converter 50, respectively. The open / close patterns of the relays RY1-RY7 during charging and discharging are the same as in the first and second embodiments. The on-vehicle charger 20 is treated as a type of load 80.
 図18に示すように、補機バッテリ用DC/DCコンバータ50は、例えば第2実施形態と同様のマルチポート式DC/DCコンバータ303の構成を有する。バッテリBT1に接続された二次巻線341とバッテリBT2に接続された二次巻線342との間で電力が還流される。なお、補機バッテリ用DC/DCコンバータ50は、第1実施形態と同様に、複数のDC/DCコンバータ301、302が並列配置される構成としてもよい。 As shown in FIG. 18, the auxiliary battery DC / DC converter 50 has a configuration of a multiport DC / DC converter 303 similar to that of the second embodiment, for example. Power is returned between the secondary winding 341 connected to the battery BT1 and the secondary winding 342 connected to the battery BT2. The auxiliary battery DC / DC converter 50 may have a configuration in which a plurality of DC / DC converters 301 and 302 are arranged in parallel, as in the first embodiment.
 ここで、補機バッテリ55は、バッテリBT1、BT2とは異なり、直並列が切り替えられない蓄電モジュール、すなわち「直列接続又は並列接続が固定された他の蓄電モジュール」に相当する。補機バッテリ用DC/DCコンバータ50は、バッテリBT1、BT2に接続される入出力端とは反対側の一端が、「直列接続又は並列接続が固定された他の蓄電モジュール」である補機バッテリ55に接続される。これにより、車載機器を有効に活用して電圧均衡化処理を実施することができる。 Here, the auxiliary battery 55 is different from the batteries BT1 and BT2 and corresponds to a storage module whose serial-parallel connection can not be switched, that is, "another storage module to which serial connection or parallel connection is fixed". The auxiliary battery DC / DC converter 50 has an auxiliary battery whose one end opposite to the input / output terminal connected to the batteries BT1 and BT2 is "another storage module in which serial connection or parallel connection is fixed". Connected to 55. Thus, the voltage balancing process can be performed by effectively utilizing the on-vehicle device.
 (第6実施形態)
 第6実施形態について図19、図20を参照して説明する。第6実施形態の蓄電システム406では、電圧均衡化処理用の電力変換器として、電動エアコンコンプレッサ60の複数のインバータ61、62が用いられる。インバータ61、62は、バッテリBT1、BT2の直流電力を例えば三相交流電力に変換し、交流電動機65の複数の巻線組63、64に供給する。インバータ61、62の交流出力端は「複数の蓄電モジュールに接続される複数の入出力端とは別の、蓄電モジュール以外の対象に接続される一つ以上の入出力端」に相当する。
Sixth Embodiment
A sixth embodiment will be described with reference to FIGS. 19 and 20. In the storage system 406 of the sixth embodiment, a plurality of inverters 61 and 62 of the electric air conditioning compressor 60 is used as a power converter for voltage balancing processing. The inverters 61 and 62 convert direct current power of the batteries BT1 and BT2 into, for example, three-phase alternating current power, and supply them to the plurality of winding sets 63 and 64 of the alternating current motor 65. The AC output terminals of the inverters 61 and 62 correspond to “one or more input / output terminals connected to a target other than the plurality of storage modules connected to a target other than the plurality of storage modules”.
 図19に示すように、バッテリBT1、BT2は、それぞれ電動エアコンコンプレッサ60の入出力ポートP1、P2、すなわちインバータ61、62の入力端に接続される。破線Gで示すように、均衡化電流経路の負側接続先を負荷80側とし、リレーを共用してもよい。また、バッテリBT1、BT2と電動エアコンコンプレッサ60との間の経路を開閉するリレー68は無くてもよい。充電時及び放電時における各リレーRY1-RY7の開閉パターンは第1、第2実施形態と同様である。なお、車載充電器20は、負荷80の一種として扱われる。 As shown in FIG. 19, the batteries BT1 and BT2 are connected to input / output ports P1 and P2 of the electric air-conditioner compressor 60, that is, input ends of the inverters 61 and 62. As indicated by the broken line G, the negative connection destination of the balanced current path may be the load 80 side, and the relay may be shared. Further, the relay 68 for opening and closing the path between the batteries BT1 and BT2 and the electric air conditioner compressor 60 may not be provided. The open / close patterns of the relays RY1-RY7 during charging and discharging are the same as in the first and second embodiments. The on-vehicle charger 20 is treated as a type of load 80.
 図20に示す交流電動機65には、共通のステータコアに二組の三相巻線組63、64が巻回される。交流電動機65は、各巻線組63、64への通電により、共通の出力軸を回転させ単一の機械出力を発生する。第1インバータ61の出力端は一方の巻線組63に接続され、第2インバータ62の出力端は他方の巻線組64に接続される。すなわち、各インバータ61、62の出力端は、互いに異なる巻線組63、64に接続される。一方のバッテリBT1は、第1巻線組63に電力供給する第1インバータ61の入力端に接続される。他方のバッテリBT2は、第2巻線組64に電力供給する第2インバータ62の入力端に接続される。 In the AC motor 65 shown in FIG. 20, two sets of three- phase winding sets 63 and 64 are wound around a common stator core. The AC motor 65 rotates a common output shaft to generate a single mechanical output by energizing each of the winding sets 63, 64. The output end of the first inverter 61 is connected to one winding set 63, and the output end of the second inverter 62 is connected to the other winding set 64. That is, the output ends of the inverters 61 and 62 are connected to different winding sets 63 and 64, respectively. One battery BT1 is connected to the input end of a first inverter 61 for supplying power to the first winding set 63. The other battery BT2 is connected to the input end of a second inverter 62 that supplies power to the second winding set 64.
 例えばバッテリBT1の電圧がバッテリBT2の電圧より高い場合、制御回路45は、第1インバータ61を力行動作させ、第2インバータ61を回生動作させるように位相を制御する。したがって、第1インバータ61は、バッテリBT1の電力を消費して交流電動機65にエネルギー供給し、出力軸にトルクを発生させするように力行動作する。第2インバータ62は、交流電動機65の出力軸の回転による逆起電力のエネルギーをバッテリBT2に戻すように回生動作する。 For example, when the voltage of the battery BT1 is higher than the voltage of the battery BT2, the control circuit 45 causes the first inverter 61 to perform a powering operation and controls the phase so as to cause the second inverter 61 to perform a regenerative operation. Therefore, the first inverter 61 consumes the power of the battery BT1, supplies energy to the AC motor 65, and performs a power running operation to generate torque on the output shaft. The second inverter 62 performs a regenerative operation so as to return the energy of the back electromotive force due to the rotation of the output shaft of the AC motor 65 to the battery BT2.
 こうして二つのインバータ61、62の間で電力の還流が実現される。このように第6実施形態では、車両に既設の電動エアコンコンプレッサ60を有効に活用して電圧均衡化処理を実施することができる。 Thus, the return of power is realized between the two inverters 61 and 62. As described above, in the sixth embodiment, the voltage balancing process can be performed by effectively using the electric air conditioning compressor 60 already installed in the vehicle.
 なお、複数のインバータの一方を力行動作、他方を回生動作させて電力還流させる構成は、上述のように単一の機械出力を生成する交流電動機の構成に限らない。例えば、一方のインバータの力行動作により生成された機械出力がガス圧力に変換され、そのガス圧力が再変換された機械入力により他方のインバータが回生動作する構成としてもよい。 Note that the configuration in which one of the plurality of inverters is in a powering operation and the other is in a regenerative operation to return electric power is not limited to the configuration of an AC motor that generates a single mechanical output as described above. For example, the mechanical output generated by the power running operation of one of the inverters may be converted into a gas pressure, and the mechanical input in which the gas pressure is reconverted may cause the other inverter to perform a regenerative operation.
 (第7実施形態)
 次に、第7実施形態について図21を参照して説明する。第7実施形態の蓄電システム407は、電力変換器として車載充電器20を用い三つのバッテリBT1、BT2、BT3の直並列を切り替えるものである。図1の蓄電システム401に対し、バッテリBT3及びリレーRY8-RY10が追加されている。蓄電システム401と同様に、均衡化電流経路の負側接続先を負荷80側とし、リレーを共用してもよい。また、バッテリBT1、BT2と車載充電器20との間の経路を開閉するリレー28は無くてもよい。
Seventh Embodiment
A seventh embodiment will now be described with reference to FIG. The storage system 407 of the seventh embodiment uses the on-vehicle charger 20 as a power converter to switch between series-parallel connection of three batteries BT1, BT2, and BT3. A battery BT3 and relays RY8 to RY10 are added to the storage system 401 of FIG. Similar to the storage system 401, the negative connection destination of the balancing current path may be the load 80 side, and the relay may be shared. Further, the relay 28 for opening and closing the path between the batteries BT1 and BT2 and the on-vehicle charger 20 may not be provided.
 リレー開閉パターンについて、三直列充電時にはリレーRY2、RY9、RY6、RY7がオンされる。三並列充電時にはリレーRY1、RY3、RY8、RY10、RY6、RY7がオンされる。三並列放電時にはリレーRY1、RY3、RY8、RY10、RY4、RY5がオンされる。 With regard to the relay open / close pattern, the relays RY2, RY9, RY6, RY7 are turned on during three-series charging. During three parallel charging, the relays RY1, RY3, RY8, RY10, RY6, RY7 are turned on. During three parallel discharges, the relays RY1, RY3, RY8, RY10, RY4, RY5 are turned on.
 このように、三つ以上の蓄電モジュールを備える蓄電システムにおいても上記実施形態と同様の電圧均衡化処理により同様の作用効果が得られる。ここで、複数の蓄電モジュールの電圧均衡化処理では、基本的に、複数の蓄電モジュールが電力変換器に同時に接続されることを想定する。 As described above, also in the storage system including three or more storage modules, the same operation and effect can be obtained by the voltage balancing process similar to that of the above embodiment. Here, in the voltage balancing process of the plurality of storage modules, basically, it is assumed that the plurality of storage modules are simultaneously connected to the power converter.
 ただし、例えばマトリクス状のリレーを用いることで、各蓄電モジュールを時分割で電力変換器に接続することも理論的には可能である。したがって、三つ以上の蓄電モジュールを備える蓄電システムでは、電力変換器は全ての蓄電モジュールに同時に接続されなくてもよい。つまり、複数の蓄電モジュールのうち任意の二つ以上の蓄電モジュールが電力変換器に接続可能な構成であればよい。 However, it is theoretically possible to connect each storage module to the power converter in a time division manner by using, for example, a matrix-like relay. Therefore, in the storage system including three or more storage modules, the power converter may not be connected to all the storage modules simultaneously. That is, any two or more storage modules of the plurality of storage modules may be connected to the power converter.
 (その他の実施形態)
 制御回路45は、バッテリ電圧監視部43により検出される電圧検出値に基づいて電力変換器をフィードバック制御する構成に限らず、例えば動作開始時の初期電圧と動作時間とから電力変換器をフィードフォワード制御してもよい。また、バッテリ電圧の検出値を用いるのでなく、他のパラメータから推定される電圧推定値に基づいて電力変換器を制御してもよい。
(Other embodiments)
The control circuit 45 is not limited to feedback control of the power converter based on the voltage detection value detected by the battery voltage monitoring unit 43. For example, the power converter is feed-forwarded from the initial voltage at the start of operation and the operation time. You may control. Also, the power converter may be controlled based on a voltage estimated value estimated from other parameters, instead of using the detected value of the battery voltage.
 図3では、充電インフラ及び負荷駆動電圧を400V級、800V級の2つに大別して例示したが、これに限らず、本開示は、例えば200V級の負荷電圧を持つシステムにも適用可能である。より具体的には、負荷駆動時には蓄電モジュールを並列に接続して200V級で使用し、充電時には蓄電モジュールを直列に接続して400V級の充電インフラで充電するように構成してもよい。 In FIG. 3, the charging infrastructure and the load drive voltage are roughly classified into two in the 400V class and the 800V class, but the present disclosure is not limited to this, and can also be applied to a system having a 200V class load voltage, for example. . More specifically, when driving a load, storage modules may be connected in parallel and used in 200V class, and when charging, storage modules may be connected in series and charged in a 400V class charging infrastructure.
 本開示の蓄電システムは、電気自動車やプラグインハイブリッド車に搭載されるものに限らず、複数の蓄電モジュールの直並列の接続状態を切り替え可能などのようなシステムにも適用可能である。上述の通り、蓄電モジュールはバッテリモジュールに限らず、キャパシタ等が用いられてもよい。また、例えば電動車両以外で用いられる場合、電圧均衡化処理の電力変換器として活用可能な機器が既にあるとは限らないため、電圧均衡化処理専用の電力変換器を設置してもよい。 The storage system of the present disclosure is not limited to one mounted on an electric vehicle or a plug-in hybrid vehicle, and can be applied to any system capable of switching the connection state of multiple storage modules in series and parallel. As described above, the storage module is not limited to the battery module, and a capacitor or the like may be used. Further, for example, when used other than the electric vehicle, there is not necessarily an apparatus that can be used as a power converter for the voltage balancing process, so a power converter dedicated to the voltage balancing process may be installed.
 以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。 As mentioned above, this indication is not limited at all to the above-mentioned embodiment, and can be carried out in various forms in the range which does not deviate from the meaning.
 本開示は実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も本開示の範疇および思想範囲に入るものである。 The present disclosure has been described in accordance with the embodiments. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and variations within the scope of equivalents. In addition, various combinations and forms, and further, other combinations and forms including one element or more, or less or less, are also within the scope and the scope of the present disclosure.

Claims (12)

  1.  それぞれが一つ以上の蓄電セルを含む複数の蓄電モジュール(BT1、BT2、BT3)と、
     複数の前記蓄電モジュールの接続状態を直列及び並列に切り替え可能な直並列切り替え器(RY1-RY10)と、
     複数の前記蓄電モジュールのうち任意の二つ以上の前記蓄電モジュール間で電力を授受させる電力変換器(201、202、50、61、62)と、
     前記直並列切り替え器及び前記電力変換器を制御する制御回路(45)と、
     を備え、
     前記制御回路は、複数の前記蓄電モジュールの並列切り替えに先立ち、複数の前記蓄電モジュール間の電位差が所定の閾値以下となるように前記電力変換器を動作させる電圧均衡化処理を実施した後、前記直並列切り替え器を切り替える蓄電システム。
    A plurality of storage modules (BT1, BT2, BT3) each including one or more storage cells;
    A series / parallel switch (RY1-RY10) capable of switching the connection states of the plurality of storage modules in series and in parallel;
    A power converter (201, 202, 50, 61, 62) for transferring power between any two or more of the plurality of storage modules;
    A control circuit (45) for controlling the series-parallel switch and the power converter;
    Equipped with
    The control circuit performs, prior to parallel switching of the plurality of storage modules, a voltage balancing process for operating the power converter such that a potential difference between the plurality of storage modules is equal to or less than a predetermined threshold value. A storage system that switches between series and parallel switches.
  2.  前記電力変換器は、複数の前記蓄電モジュールに接続される複数の入出力端とは別に、前記蓄電モジュール以外の対象に接続される一つ以上の入出力端を有する請求項1に記載の蓄電システム。 The power storage device according to claim 1, further comprising: at least one input / output terminal connected to an object other than the storage module in addition to the plurality of input / output terminals connected to the plurality of storage modules. system.
  3.  前記電力変換器(201)は、
     複数の前記蓄電モジュールにそれぞれ接続される入出力ポートを一端に有し、当該入出力ポート間で電力を双方向に通電可能な複数のDC/DCコンバータ(301、302)を含む請求項2に記載の蓄電システム。
    The power converter (201)
    A plurality of DC / DC converters (301, 302) each having an input / output port connected to each of the plurality of storage modules at one end, and capable of bi-directionally supplying power between the input / output ports Storage system as described.
  4.  前記電力変換器(202、50)は、
     一つの一次巻線(31)と、前記複数の蓄電モジュールがそれぞれ接続される複数の二次巻線(321、322)とが一つのコア(33)に巻回されたトランスを有し、前記複数の二次巻線の入出力ポート間で電力を双方向に通電可能なDC/DCコンバータ(303)を含む請求項2に記載の蓄電システム。
    The power converter (202, 50)
    It has a transformer in which one primary winding (31) and a plurality of secondary windings (321, 322) to which the plurality of storage modules are respectively connected are wound around one core (33), The storage system according to claim 2, further comprising a DC / DC converter (303) capable of bi-directionally supplying power between input and output ports of the plurality of secondary windings.
  5.  前記電力変換器は、外部の交流電源(15)から供給される交流電力を直流電力に変換するAC/DC変換回路(21)を含み、当該AC/DC変換回路が出力する直流電力を前記蓄電モジュールに充電可能な充電器(201、202)であり、
     一つ以上の前記DC/DCコンバータにおける前記蓄電モジュールに接続される入出力端とは反対側の一端は、前記AC/DC変換回路の出力であるDCバスに接続される請求項3または4に記載の蓄電システム。
    The power converter includes an AC / DC conversion circuit (21) that converts AC power supplied from an external AC power supply (15) into DC power, and stores DC power output from the AC / DC conversion circuit. It is a charger (201, 202) that can charge the module,
    The one end on the opposite side to the input / output terminal connected to the said electrical storage module in one or more said DC / DC converters is connected to DC bus which is an output of said AC / DC conversion circuit. Storage system as described.
  6.  前記電力変換器(50)は、一つ以上の前記DC/DCコンバータにおける前記蓄電モジュールに接続される入出力端とは反対側の一端が、前記蓄電モジュールとは別の、直列接続又は並列接続が固定された他の蓄電モジュールに接続される請求項3または4に記載の蓄電システム。 In the power converter (50), one end opposite to the input / output terminal connected to the storage module in one or more of the DC / DC converters is connected in series or in parallel, which is different from the storage module The storage system according to claim 3 or 4, wherein the storage module is connected to another storage module fixed.
  7.  前記電力変換器は、入力された直流電力を交流電力に変換して負荷(65)に出力する複数のインバータ(61、62)により構成され、
     前記蓄電モジュールは、それぞれ対応する前記インバータの入力端に接続され、
     複数のうち一部の前記インバータは、接続された前記蓄電モジュールの直流電力を消費して前記負荷にエネルギー供給するように力行動作し、
     複数のうち他の前記インバータは、前記負荷のエネルギーを、接続された前記蓄電モジュールに戻すように回生動作する請求項2に記載の蓄電システム。
    The power converter is constituted by a plurality of inverters (61, 62) which convert the input DC power into AC power and outputs the AC power to a load (65).
    The storage modules are connected to the input ends of the corresponding inverters, respectively.
    Among the plurality of inverters, a part of the plurality of inverters consumes DC power of the connected storage modules and performs a powering operation to supply energy to the load;
    The storage system according to claim 2, wherein among the plurality of inverters, the inverter performs a regenerative operation so as to return the energy of the load to the connected storage module.
  8.  複数の前記インバータの共通の負荷は、複数の巻線組(63、64)への通電により、単一の機械出力を発生する交流電動機(65)であり、各前記インバータの出力端は、互いに異なる前記巻線組に接続される請求項7に記載の蓄電システム。 The common load of the plurality of inverters is an AC motor (65) that generates a single mechanical output by energizing the plurality of winding sets (63, 64), and the output ends of the respective inverters are mutually connected The storage system according to claim 7, wherein the storage system is connected to different winding sets.
  9.  前記蓄電モジュールに直流電力を充電可能な外部充電器(10)に接続される外部充電接続部(11、12)をさらに備え、
     前記制御回路は、前記外部充電器による外部充電要求があるとき、前記外部充電器から通信された前記外部充電器の出力可能電圧の情報に基づき、前記蓄電モジュールの直列又は並列の切り替えを決定する請求項1~8のいずれか一項に記載の蓄電システム。
    It further comprises external charging connections (11, 12) connected to an external charger (10) capable of charging the storage module with DC power,
    The control circuit determines serial or parallel switching of the storage module based on information of an outputtable voltage of the external charger communicated from the external charger when there is an external charging request by the external charger. A storage system according to any one of claims 1 to 8.
  10.  前記蓄電モジュールに直流電力を充電可能な外部充電器(10)に接続される外部充電接続部(11、12)をさらに備え、
     前記制御回路は、複数の前記蓄電モジュールを直列接続した状態での外部充電中に前記電圧均衡化処理を実施する請求項1~9のいずれか一項に記載の蓄電システム。
    It further comprises external charging connections (11, 12) connected to an external charger (10) capable of charging the storage module with DC power,
    The storage system according to any one of claims 1 to 9, wherein the control circuit performs the voltage balancing process during external charging in a state in which a plurality of storage modules are connected in series.
  11.  前記蓄電モジュールの電圧を監視するモジュール電圧監視部(43)をさらに備え、
     前記制御回路は、前記モジュール電圧監視部が検出した電圧検出値に基づいて前記電力変換器を制御する請求項1~10のいずれか一項に記載の蓄電システム。
    And a module voltage monitoring unit (43) for monitoring the voltage of the storage module.
    The power storage system according to any one of claims 1 to 10, wherein the control circuit controls the power converter based on a voltage detection value detected by the module voltage monitoring unit.
  12.  前記蓄電モジュールの異常を検出する異常検出部(43、44)をさらに備え、
     前記異常検出部により前記蓄電モジュールの異常が検出されたとき、
     前記制御回路は、異常が検出された前記蓄電モジュールと充電器、負荷、又は前記電力変換器との接続を遮断する請求項1~11のいずれか一項に記載の蓄電システム。
    It further comprises an abnormality detection unit (43, 44) that detects an abnormality of the storage module,
    When an abnormality of the storage module is detected by the abnormality detection unit,
    The storage system according to any one of claims 1 to 11, wherein the control circuit shuts off the connection between the storage module in which an abnormality is detected and a charger, a load, or the power converter.
PCT/JP2018/038765 2017-10-27 2018-10-18 Power storage system WO2019082776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880069656.5A CN111264014B (en) 2017-10-27 2018-10-18 Power storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-207925 2017-10-27
JP2017207925A JP7073669B2 (en) 2017-10-27 2017-10-27 Power storage system

Publications (1)

Publication Number Publication Date
WO2019082776A1 true WO2019082776A1 (en) 2019-05-02

Family

ID=66247440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038765 WO2019082776A1 (en) 2017-10-27 2018-10-18 Power storage system

Country Status (3)

Country Link
JP (1) JP7073669B2 (en)
CN (1) CN111264014B (en)
WO (1) WO2019082776A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144875A (en) * 2017-12-21 2018-06-12 上海理工大学 A kind of battery series-parallel connection circuit apparatus for fast switching and switching method
EP3863143A1 (en) * 2020-02-10 2021-08-11 Yazaki Corporation Power supply device
CN113511084A (en) * 2021-04-25 2021-10-19 深圳威迈斯新能源股份有限公司 Vehicle-mounted charger with output end capable of being switched in series-parallel connection mode
WO2022009981A1 (en) * 2020-07-10 2022-01-13 株式会社オートネットワーク技術研究所 Converting device
US20220097536A1 (en) * 2020-09-29 2022-03-31 GM Global Technology Operations LLC Electric powertrain with battery system having a three-state high-voltage contactor
EP4001001A1 (en) * 2020-11-12 2022-05-25 Volvo Car Corporation Charging system and method for charging a battery of an electric vehicle
EP4052957A1 (en) * 2021-03-01 2022-09-07 Volvo Car Corporation Balancing in electric vehicle battery systems
US20220402395A1 (en) * 2021-06-17 2022-12-22 GM Global Technology Operations LLC Propulsion systems with power sources compatible with different charging stations and dynamically scalable for different vehicle speed and torque modes

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7320781B2 (en) * 2019-07-12 2023-08-04 株式会社デンソー power conversion system
KR102064876B1 (en) * 2019-07-26 2020-02-12 (주)비엠일렉텍 Multi type charger capable of extending battery life time by temperature control
JP7253738B2 (en) * 2019-08-08 2023-04-07 株式会社デンソー Multiport power conversion system
KR102465462B1 (en) * 2019-10-24 2022-11-10 신흥에스이씨주식회사 Battery switching device for slow or fast charging
JP7388277B2 (en) 2020-04-07 2023-11-29 株式会社デンソー Power system control device
JP7386774B2 (en) * 2020-09-11 2023-11-27 本田技研工業株式会社 charging system
FR3114918B1 (en) * 2020-10-02 2023-01-13 Renault Sas Dynamic Battery Module Charging Voltage Balancing System
CN112428840B (en) * 2020-11-27 2023-05-12 广州橙行智动汽车科技有限公司 Charging and discharging system and electric automobile
JPWO2022130936A1 (en) * 2020-12-17 2022-06-23
JP2022142270A (en) * 2021-03-16 2022-09-30 いすゞ自動車株式会社 Driving system
CN113335098A (en) * 2021-06-03 2021-09-03 优华劳斯汽车设计(上海)有限公司 Electric vehicle charging architecture compatible with 400V and 800V charging voltages and charging method thereof
WO2023286184A1 (en) * 2021-07-14 2023-01-19 住友電気工業株式会社 Charging device
JPWO2023286185A1 (en) * 2021-07-14 2023-01-19
WO2023073980A1 (en) * 2021-11-01 2023-05-04 株式会社EViP Battery module and motor drive circuit
WO2023073979A1 (en) * 2021-11-01 2023-05-04 株式会社EViP Charge/discharge circuit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142375A (en) * 2000-10-30 2002-05-17 Nippon Telegr & Teleph Corp <Ntt> Power storage system and control method therefor
JP2009071921A (en) * 2007-09-11 2009-04-02 Nissan Motor Co Ltd Accumulation system
JP2010098782A (en) * 2008-10-14 2010-04-30 Jm Energy Corp Voltage balance correcting circuit of serial cell and power storage apparatus
JP2010141970A (en) * 2008-12-09 2010-06-24 Mitsubishi Heavy Ind Ltd Device, method, and program for voltage equalization, and electric power storage system
JP2010239714A (en) * 2009-03-30 2010-10-21 Japan Research Institute Ltd Charge control device, battery pack, vehicle, and charge control method
US20120262121A1 (en) * 2011-04-15 2012-10-18 Simplo Technology Co., Ltd. Battery balancing circuit and balancing method thereof and battery activation method
JP2013106474A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Power supply for electric vehicle
WO2013140894A1 (en) * 2012-03-22 2013-09-26 日本電気株式会社 Regulating device, battery assembly and regulating method
JP2015019447A (en) * 2013-07-09 2015-01-29 富士電機株式会社 Parallel connection method of battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262140B (en) * 2008-04-30 2010-06-02 刘云海 Serial and parallel switching and charging method and charging device for lithium dynamic battery unit
CN101877494B (en) * 2009-04-30 2013-11-06 鸿富锦精密工业(深圳)有限公司 Solar energy storage system and method
CN101567574A (en) * 2009-06-03 2009-10-28 王创社 Proportional balancing method for voltage of energy storage device and circuit
CN105226736A (en) * 2014-06-20 2016-01-06 深圳中德世纪新能源有限公司 Electrokinetic cell bidirectional equalization system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142375A (en) * 2000-10-30 2002-05-17 Nippon Telegr & Teleph Corp <Ntt> Power storage system and control method therefor
JP2009071921A (en) * 2007-09-11 2009-04-02 Nissan Motor Co Ltd Accumulation system
JP2010098782A (en) * 2008-10-14 2010-04-30 Jm Energy Corp Voltage balance correcting circuit of serial cell and power storage apparatus
JP2010141970A (en) * 2008-12-09 2010-06-24 Mitsubishi Heavy Ind Ltd Device, method, and program for voltage equalization, and electric power storage system
JP2010239714A (en) * 2009-03-30 2010-10-21 Japan Research Institute Ltd Charge control device, battery pack, vehicle, and charge control method
US20120262121A1 (en) * 2011-04-15 2012-10-18 Simplo Technology Co., Ltd. Battery balancing circuit and balancing method thereof and battery activation method
JP2013106474A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Power supply for electric vehicle
WO2013140894A1 (en) * 2012-03-22 2013-09-26 日本電気株式会社 Regulating device, battery assembly and regulating method
JP2015019447A (en) * 2013-07-09 2015-01-29 富士電機株式会社 Parallel connection method of battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144875A (en) * 2017-12-21 2018-06-12 上海理工大学 A kind of battery series-parallel connection circuit apparatus for fast switching and switching method
US11581747B2 (en) 2020-02-10 2023-02-14 Yazaki Corporation Power supply device
EP3863143A1 (en) * 2020-02-10 2021-08-11 Yazaki Corporation Power supply device
US20210249875A1 (en) * 2020-02-10 2021-08-12 Yazaki Corporation Power supply device
CN113258632A (en) * 2020-02-10 2021-08-13 矢崎总业株式会社 Power supply device
CN113258632B (en) * 2020-02-10 2024-02-09 矢崎总业株式会社 Power supply device
JP7465432B2 (en) 2020-07-10 2024-04-11 株式会社オートネットワーク技術研究所 Converter
WO2022009981A1 (en) * 2020-07-10 2022-01-13 株式会社オートネットワーク技術研究所 Converting device
US20220097536A1 (en) * 2020-09-29 2022-03-31 GM Global Technology Operations LLC Electric powertrain with battery system having a three-state high-voltage contactor
US11548397B2 (en) * 2020-09-29 2023-01-10 GM Global Technology Operations LLC Electric powertrain with battery system having a three-state high-voltage contactor
EP4001001A1 (en) * 2020-11-12 2022-05-25 Volvo Car Corporation Charging system and method for charging a battery of an electric vehicle
EP4052957A1 (en) * 2021-03-01 2022-09-07 Volvo Car Corporation Balancing in electric vehicle battery systems
CN113511084A (en) * 2021-04-25 2021-10-19 深圳威迈斯新能源股份有限公司 Vehicle-mounted charger with output end capable of being switched in series-parallel connection mode
US20220402395A1 (en) * 2021-06-17 2022-12-22 GM Global Technology Operations LLC Propulsion systems with power sources compatible with different charging stations and dynamically scalable for different vehicle speed and torque modes

Also Published As

Publication number Publication date
JP7073669B2 (en) 2022-05-24
CN111264014B (en) 2024-01-16
JP2019080473A (en) 2019-05-23
CN111264014A (en) 2020-06-09

Similar Documents

Publication Publication Date Title
CN111264014B (en) Power storage system
US10369900B1 (en) Onboard DC charging circuit using traction drive components
KR101863737B1 (en) Electric power storage system
JP6557445B2 (en) Method and apparatus for charging a plurality of energy storage devices
JP5493441B2 (en) Inter-vehicle charging method, inter-vehicle charging cable, and electric vehicle
CN103192729B (en) Elec. vehicle
JP5288041B1 (en) Power storage system and method for controlling power storage system
JP2010273427A (en) Power supply device for electric vehicles and battery pack
WO2014115209A1 (en) Power supply system for vehicle
WO2019082778A1 (en) Power storage system
JP7320781B2 (en) power conversion system
US20150203060A1 (en) Power supply management system and power supply management method
CN102574470A (en) Vehicle charging system and electric vehicle equipped with same
US11046202B2 (en) Power supply and recharging assembly and method for an electric vehicle, and electric vehicle comprising the power supply and recharging assembly
JP2013085336A (en) Power storage system, and control method for power storage system
JP2018078752A (en) Electric automobile
US20230086550A1 (en) Power supply system
JP2006067683A (en) Storage device
JP5401239B2 (en) Battery control device
JP2018098954A (en) Controller for electric vehicle
JP2017112734A (en) Battery control system
JP6668210B2 (en) Power supply control device and power supply system
JP2012074333A (en) Power storage device and monitoring-control device used therefor
WO2022269826A1 (en) Charging system
WO2021106345A1 (en) Vehicle-mounted battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869807

Country of ref document: EP

Kind code of ref document: A1