WO2019082682A1 - Motor drive device and refrigerator using this - Google Patents

Motor drive device and refrigerator using this

Info

Publication number
WO2019082682A1
WO2019082682A1 PCT/JP2018/038019 JP2018038019W WO2019082682A1 WO 2019082682 A1 WO2019082682 A1 WO 2019082682A1 JP 2018038019 W JP2018038019 W JP 2018038019W WO 2019082682 A1 WO2019082682 A1 WO 2019082682A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
brushless
timing
control
degrees
Prior art date
Application number
PCT/JP2018/038019
Other languages
French (fr)
Japanese (ja)
Inventor
田中 秀尚
義典 竹岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880051910.9A priority Critical patent/CN111034011B/en
Publication of WO2019082682A1 publication Critical patent/WO2019082682A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time

Definitions

  • the present disclosure relates to a motor drive device that drives a brushless DC motor by inverter control, and a refrigerator using the same.
  • the conduction state of each phase of the brushless DC motor is controlled by PWM (Pulse Width Modulation) control.
  • the rectangular wave in PWM control is controlled so that the conduction interval of each phase is basically 120 degrees, and the brushless DC motor is driven. Further, when the on-duty (duty ratio) of the PWM control becomes 100%, the conduction interval is extended to 120 degrees or more. As a result, the drivable area of the brushless DC motor in the case of high speed and high load is expanded (see, for example, Patent Document 1).
  • FIG. 9 shows a block diagram of the motor drive device of Patent Document 1.
  • the inverter circuit 103 includes switching elements 103a to 103f.
  • the on-timing control means 104a performs lead angle control.
  • the advance timing control by the off timing control means 104b is not performed.
  • the overlap energization is performed.
  • the conduction angle and the advance angle of the switching element and the input DC voltage to the inverter are controlled such that the power supplied to the motor becomes the target power value.
  • high output of the motor drive device can be realized, and high rotation of the motor can be achieved.
  • the loss of the motor drive device is reduced (see, for example, Patent Document 2).
  • FIG. 10 shows a block diagram of the drive control means 201 of the motor drive device of Patent Document 2.
  • the drive control means 201 of the brushless DC motor has a power detection means 202 for detecting drive power, and a conduction pulse signal generation control means 203.
  • the energization pulse signal generation control unit 203 generates a drive signal pattern of the inverter and sets an inverter input voltage. Then, the input voltage value, the conduction angle, and the advance angle of the inverter are controlled such that the drive power matches the target set power value.
  • An object of the present disclosure is to suppress the loss of a motor drive device and to improve the efficiency of a brushless DC motor. Another object of the present invention is to realize a low vibration and low noise motor drive device and to improve the reliability of the motor drive device.
  • the motor drive device is configured to include a brushless DC motor having a rotor, and six switching elements, and supplies an electric power to the brushless DC motor, and the position of the rotor It has a position detection part to detect, and a PWM control part which performs PWM control which adjusts a voltage applied to a brushless DC motor by turning on and off the switching element at high frequency.
  • the motor drive apparatus further includes an energized phase control unit that sets the energized state of each phase of the brushless DC motor while maximizing the on time ratio of the switching element by PWM control, and the drive speed of the brushless DC motor.
  • a control amount adjustment unit that adjusts a control amount in control, and the control amount adjustment unit adjusts the control amount according to the state of power supply to the brushless DC motor.
  • FIG. 1 is a block diagram of a motor drive device according to a first embodiment of the present disclosure.
  • FIG. 2A is a diagram showing drive waveforms and a timing chart of the motor drive device according to Embodiment 1.
  • FIG. 2B is a diagram showing another drive waveform and timing chart of the motor drive device in the first embodiment.
  • FIG. 3 is a flowchart for determining the start of off timing adjustment control of the switching element.
  • FIG. 4 is a flowchart in which the transition from PWM control to off timing adjustment control is determined.
  • FIG. 5 is a flowchart showing off timing adjustment control.
  • FIG. 6 is a flowchart showing adjustment of the control amount.
  • FIG. 7A is a diagram showing a terminal voltage waveform of the section C1 in FIG. 2A.
  • FIG. 7B is a diagram showing a terminal voltage waveform of the section F1 in FIG. 2A.
  • FIG. 7C is a diagram showing a terminal voltage waveform of the section C3 in FIG. 2B.
  • FIG. 7D is a diagram showing a terminal voltage waveform of the section F2 in FIG. 2B.
  • FIG. 8A is a diagram showing phase current waveforms of the brushless DC motor when PWM control is performed.
  • FIG. 8B is a diagram showing a phase current waveform of the brushless DC motor when the on-time ratio is 100%.
  • FIG. 9 is a block diagram of a motor drive device of Patent Document 1.
  • FIG. 10 is a block diagram of a motor drive device of Patent Document 2.
  • FIG. 10 is a block diagram of a motor drive device of Patent Document 2.
  • the driveable region can be expanded in the case of high load and high speed by advancing the turn-on of the switching element and widening the power supply section to the brushless DC motor to 120 degrees or more.
  • a loss occurs with the on / off switching operation of the switching element by PWM control.
  • the switching operation at high frequency by PWM control is accompanied by an increase in motor iron loss.
  • the timing at which the control is possible is commutation (for example, in a 4-pole motor, 12 times during one rotation of the motor) Limited to
  • the conduction angle increased or decreased in control is always constant.
  • the amount of change in motor current per unit angle of the conduction angle to be increased or decreased is different between the case where the conduction angle is less than 120 degrees and the case where the conduction angle is 120 degrees or more.
  • the acceleration of the brushless DC motor becomes uneven, so that the motor is out of step due to rapid acceleration, and the brushless DC motor
  • the slow acceleration or deceleration of the brushless DC motor due to uneven acceleration causes vibration and noise of the brushless DC motor when the rotational frequency of the brushless DC motor passes through the resonance frequency band of the device. The inventors found that there was a problem.
  • a motor drive device includes: a brushless DC motor having a rotor; and an inverter circuit that supplies electric power to the brushless DC motor including six switching elements; and a rotational position of the rotor And a PWM control unit that performs PWM control to adjust a voltage applied to the brushless DC motor by turning on and off the switching element at a high frequency.
  • the motor drive apparatus further includes an energized phase control unit that sets the energized state of each phase in the brushless DC motor while maximizing the on time ratio of the switching element by PWM control, and the driving speed of the brushless DC motor.
  • the control amount adjustment unit adjusts the control amount in control, and the control amount adjustment unit adjusts the control amount according to the state of supply of power to the brushless DC motor.
  • control amount adjustment unit may be configured to switch the control amount at an electric angle of 120 degrees in a section where power is supplied to the brushless DC motor. .
  • the brushless DC motor of the above-described motor drive device may drive a compressor provided in a refrigeration cycle.
  • Such a configuration can improve the COP (Coefficient Of Performance) of the compressor. Moreover, the damage by piping which comprises a refrigerating-cycle apparatus can be prevented by the vibration by resonance being suppressed. Therefore, a highly efficient and reliable refrigeration cycle apparatus can be provided.
  • COP Coefficient Of Performance
  • the above-mentioned motor drive device may be used.
  • FIG. 1 shows a block diagram of a motor drive device according to a first embodiment of the present disclosure.
  • Motor drive device 30 includes an inverter circuit 3 and a DC brushless DC motor 4. Further, a DC voltage is supplied to the motor drive device 30, for example, by the converter circuit 2 or the like.
  • an alternating current power supply 1 is a general commercial power supply.
  • the commercial power supply has an effective value of 100 V and a power supply frequency of 50 Hz or 60 Hz in Japan.
  • Converter circuit 2 converts AC power supply 1 into a DC voltage.
  • Converter circuit 2 includes, for example, a rectifier circuit 2a and a smoothing circuit 2b.
  • the converter circuit 2 may also include a switching unit that switches the output voltage.
  • the converter circuit 2 in FIG. 1 includes a rectifier circuit 2a in which four diodes are bridge-connected, a smoothing circuit 2b having a capacitor, and a switch (switching unit) 2c that switches an output voltage.
  • the switch 2c switches the output voltage in two stages of voltage doubler rectification and full wave rectification.
  • the inverter circuit 3 is composed of six switching elements 3a to 3f.
  • a MOSFET is used for each of the switching elements 3a to 3f.
  • the switching elements 3a to 3f are connected in a three-phase bridge. By turning on and off any switching element, the input DC voltage of the inverter circuit 3 is converted into a three-phase AC voltage.
  • the brushless DC motor 4 is configured to include a stator and a rotor having permanent magnets.
  • the stator has three stator windings corresponding to three phases.
  • the brushless DC motor 4 is driven by three-phase AC power supplied from the inverter circuit 3.
  • the motor drive device 30 has a position detection unit 5.
  • the position detection unit 5 detects the magnetic pole position of the brushless DC motor 4. In the first embodiment, position detection is performed by detecting the zero crossing point of the induced voltage generated in the stator winding of the brushless DC motor 4 based on the terminal voltage of the motor. The induced voltage is generated by the rotation of the rotor of the brushless DC motor 4.
  • the position detection method may be a method using a position sensor such as a Hall IC or a method based on current detection using a current sensor or the like.
  • the motor drive device 30 may have the speed detection unit 6.
  • the speed detection unit 6 detects the driving speed of the brushless DC motor 4 from the output signal of the position detection unit 5.
  • the driving speed of the brushless DC motor 4 is calculated based on the cycle of the zero cross point of the induced voltage generated in the stator winding of the brushless DC motor 4.
  • the motor drive device 30 may have the speed error detection unit 7.
  • the speed error detection unit 7 detects the difference between the driving speed of the brushless DC motor 4 obtained by the speed detection unit 6 and the target speed.
  • the motor drive device 30 has an energized phase control unit 8.
  • the energization phase control unit 8 sets which stator winding of the three stator windings of the brushless DC motor 4 is to be supplied with power based on the signal from the position detection unit 5. Electric power is supplied to each stator winding in a range of 90 degrees or more and 150 degrees or less.
  • the energized phase control unit 8 includes an on timing control unit 8a and an off timing control unit 8b.
  • the on-timing control unit 8a sets timing (hereinafter, on-timing) to turn on the switching elements 3a to 3f.
  • the off-timing control unit 8b sets the timing (hereinafter referred to as off-timing) to turn off the switching elements 3a to 3f. That is, the on timing and the off timing of each of the switching elements 3a to 3f of the inverter circuit 3 are set individually.
  • the energization phase control unit 8 sets the energization state of each phase as described above. Then, the conduction phase control unit 8 sets the range (power supply section) of the power supply section to the brushless DC motor 4 by setting the on timing and the off timing of each of the switching elements 3a to 3f. Thus, speed control is performed such that the brushless DC motor 4 is driven at the target speed.
  • the conduction phase control unit 8 has a control amount adjustment unit 8c.
  • the control amount adjustment unit 8c adjusts the control amount in the speed control.
  • the increase / decrease amount of the section with respect to the power supply section set by the power supply phase control unit 8 corresponds to the control amount.
  • the control amount adjustment unit 8c adjusts the control amount according to the set value of the length of the power supply section by adjusting the on timing and the off timing of the switching element at the time of acceleration or deceleration.
  • the motor drive device 30 has a PWM control unit 11.
  • the PWM control unit 11 adjusts the three-phase AC output voltage from the inverter circuit 3 by PWM control. Thereby, the brushless DC motor 4 is controlled to drive at the target speed.
  • the on-time ratio (Duty Ratio) of PWM control of the brushless DC motor 4 is “(minimum value of electrical angle when power is supplied to the stator winding of the brushless DC motor) ⁇ 2- (electrical angle 120 degrees
  • the off-timing control unit 8b determines that the on-time time ratio of the PWM control is the maximum value.
  • the off timing of the switching element is advanced so as to be 100%.
  • the off timing control unit 8b advances the off timing of the switching element and the on time ratio is Make it 100%.
  • the PWM control on time ratio is 100%.
  • the on-timing of the switching element is advanced.
  • the brushless DC motor 4 is energized in an overlap manner, and the drive region of the brushless DC motor 4 is expanded.
  • the off timing and the on timing be gradually changed.
  • the change of the off timing may be divided into a plurality of times and may be advanced from the previous off timing.
  • the off timing and the on timing may be changed within one control cycle.
  • the speed control of the brushless DC motor 4 is performed by adjusting the on-time ratio by the PWM control unit 11 when the brushless DC motor 4 is driven at the above-described on-time ratio of PWM control or less. Limited. Therefore, PWM control is performed when the brushless DC motor 4 is driven in a relatively low load or low speed state, such as at startup, low speed drive, low load drive, and double voltage input at the start of the brushless DC motor 4. To be done.
  • the off phase and on timing of the switching element are controlled by the conduction phase control unit 8 so that the on time ratio of PWM control is 100%.
  • the power supply section to the brushless DC motor 4 is adjusted while the on-time ratio of the switching element by PWM control is maximized (100% in the stable driving state in the present embodiment). Control of the drive speed of the brushless DC motor 4 is performed.
  • the waveform synthesis unit 12 illustrated in FIG. 1 synthesizes the PWM signal generated by the PWM control unit 11 and the signal generated by the conduction phase control unit 8.
  • the drive unit 13 turns on or off the switching elements 3a to 3f of the inverter circuit 3 based on the signal synthesized by the waveform synthesis unit 12. This generates an arbitrary three-phase AC voltage.
  • the generated three-phase AC voltage is supplied to the brushless DC motor 4 to drive the brushless DC motor 4.
  • FIG. 1 shows an example in which the motor drive device 30 described above is used for the compressor 17.
  • the compressor 17 constitutes a refrigeration cycle together with the condenser 18, the pressure reducer 19 and the evaporator 20.
  • the refrigerator 21 is shown as an example of the refrigerating cycle apparatus using a refrigerating cycle.
  • the compressor 17 has a brushless DC motor 4 and a compression element 16.
  • the brushless DC motor 4 and the compression element 16 are housed in the same closed container.
  • the compression element 16 of the compressor 17 is connected to the shaft of the rotor of the brushless DC motor 4, sucks the refrigerant gas, and compresses and discharges the sucked refrigerant gas.
  • the refrigerant gas discharged from the compressor 17 is again drawn into the compressor 17 through the condenser 18, the pressure reducer 19 and the evaporator 20. This constitutes a refrigeration cycle. Since heat is released in the condenser 18 and heat absorption is performed in the evaporator 20 during the refrigeration cycle, the refrigeration cycle apparatus can perform heating or heat absorption.
  • a blower is used for the condenser 18 and the evaporator 20 as needed. This promotes heat exchange in the condenser 18 and the evaporator 20.
  • the refrigerator 21 has the food storage room 23 enclosed by the heat insulation wall 22, as shown in FIG.
  • the evaporator 20 is used to cool the inside of the food storage room 23.
  • FIG. 2A and FIG. 2B are drive waveforms and timing charts of the motor drive device according to the present embodiment.
  • FIG. 2A is a drive waveform and timing chart in the case of general energization at an electrical angle of 120 degrees.
  • FIG. 2B is a drive waveform and a timing chart in a state in which the off timing of the switching element is adjusted.
  • FIGS. 2A and 2B the induced voltage generated by the rotation of the brushless DC motor 4 is shown as Vu, which is the terminal voltage of the U phase among the E phases (U phase, V phase and W phase). Moreover, FIG. 2A and FIG. 2B have shown only the waveform about U phase.
  • the waveforms of the induced voltage and the terminal voltage of the V phase and the W phase are waveforms of the same shape in which the phases are respectively shifted by 120 degrees from the waveforms of the induced voltage and the terminal voltage of the U phase.
  • pressure side of the inverter circuit 3 is each shown as U +, V +, W +.
  • the drive signals of the switching elements 3d, 3e, 3f connected to the low voltage side of the inverter circuit 3 have respective phases from the drive signals of the switching elements 3a, 3b, 3c on the high voltage side corresponding to the switching elements 3d, 3e, 3f. It will be 180 degrees off.
  • the position detection unit 5 detects the position of the rotor of the brushless DC motor 4 directly or indirectly. Based on the detected rotor position information, the timing (not shown) for switching the energized phase in the stator winding is adjusted.
  • the position detection unit 5 detects the relative position of the magnetic poles of the rotor. Specifically, the position detection unit 5 detects the zero cross point of the induced voltage as a position signal.
  • C1 is a section where voltage is not applied to the stator winding of the corresponding phase (a section in which both switching elements 3a and 3d are turned off in the U phase shown in FIG. 2A and FIG. 2B) when detecting the zero cross point.
  • C2, C3, C4 points (P1, P2) at which the magnitude relationship between the induced voltage appearing in the stator winding and the half of the inverter input voltage Vdc is inverted are detected.
  • the position signal of the zero crossing point is detected twice for each phase per electrical angle cycle. That is, in all three phases, position signals are detected six times in total at every electrical angle of 60 degrees.
  • the induced voltage appears in the stator winding in the section C1 to C4 only during the period when the switching element of the other phase is on, that is, the ON period of the switching element by PWM control. Therefore, the turn-off of the switching element is controlled to be performed earlier than the turn-on, whereby the power supply interval to the brushless DC motor 4 is controlled to be short. As a result, the number of times the switching element is turned on and off due to PWM control is reduced, so that the loss of the inverter circuit 3 is suppressed.
  • the on time of the switching element by PWM control becomes longer.
  • the period during which the position detection unit 5 can acquire the position detection signal of the zero cross point is extended. Therefore, the accuracy of position detection by the position detection unit 5 is improved.
  • the off timing of the switching element is from immediately after the position detection of the zero cross point (P1) to the time when an electrical angle of 30 degrees elapses ( Range). This enables reliable commutation based on the result of position detection of the zero cross point (P1). Further, since the drive waveform is in the lead phase with respect to the induced voltage, the occurrence of the torque drop due to the delay phase is avoided.
  • the conduction angle to the three-phase stator winding is 90 degrees.
  • the above is adjusted to 120 degrees or less.
  • a larger advance angle B 1/2 of the electrical angle of the non-powered section
  • the load is the maximum load that can be driven by the conduction at 120 °.
  • the off timing is fixed when an electrical angle of 30 degrees elapses, and the on timing is advanced to a maximum of an electrical angle of 30 degrees while the on time ratio of PWM control is 100%. That is, commutation occurs simultaneously with the acquisition of the position detection signal.
  • the conduction angle of each phase can be expanded to an electrical angle of 150 degrees, and the range of loads that can be driven by the motor drive device 30 can be expanded.
  • FIG. 3 is a flowchart for determining the start of off timing adjustment control of the switching element.
  • the on-time ratio of the switching element generated by the PWM control unit 11 is larger than a predetermined value (S11). If the on time ratio is larger than the predetermined value (Yes in S11), the off timing adjustment control described later is performed (S12). When the on-time ratio is equal to or less than the predetermined value (No in S11), PWM control is performed (S13).
  • the minimum value of the power supply section to the stator winding of the brushless DC motor 4 is set to an electrical angle of 90 degrees.
  • the predetermined value of the on-time time ratio is set to 50% from ⁇ (90 degrees ⁇ 2) ⁇ 120 degrees ⁇ / 120 degrees.
  • the predetermined value of the on time ratio is set to an appropriate value in consideration of the application of the motor drive device.
  • the off-timing adjustment control of the switching element is started when the ratio is greater than or equal to the predetermined on-time period.
  • off timing adjustment control and PWM control are used in combination.
  • the drive speed is extremely low, such as when the brushless DC motor 4 is started, or when the load is extremely low at low speed driving, or when the load is relatively light at doubled voltage input or at low speed, etc.
  • a failure in starting of the brushless DC motor 4 due to an extremely short power supply section to the stator winding, an unstable operating condition, or an extreme torque drop can be prevented. Therefore, the brushless DC motor 4 can be stably driven under all load conditions.
  • FIG. 4 is a flowchart in which the transition from PWM control to off timing adjustment control is determined.
  • the off timing of the switching element is advanced by an arbitrary time (S21). Further, speed control is performed by PWM control (S22).
  • the off timing is advanced, as described above, it may be divided into a plurality of times and may be advanced from the previous off timing.
  • the off timing of the switching element is advanced (S21)
  • the power supply section to the brushless DC motor 4 becomes short. Therefore, the PWM control will increase the on time ratio.
  • the on-time ratio reaches 100% (No in S23)
  • the on-time ratio is maintained at 100% (S24). That is, in this case, the PWM control is not performed. Further, off timing adjustment control of the switching element is performed (S25). That is, when the on-time ratio becomes 100%, the PWM control is shifted to the off-timing adjustment control. Thereby, the drive speed of the brushless DC motor 4 is controlled so that the brushless DC motor 4 is driven at the target speed.
  • speed control by on timing control it may be done.
  • the on-timing control the on-timing of the switching element is advanced up to an electrical angle of 30 degrees. As a result, the drivable area of the brushless DC motor 4 is expanded, and the brushless DC motor 4 is appropriately driven at the target speed.
  • FIG. 5 is a flowchart showing off timing adjustment control.
  • the deviation between the driving speed of the brushless DC motor 4 detected by the speed detection unit 6 and the target speed is detected by the speed error detection unit 7.
  • the off timing of the switching element is advanced (S33). As a result, the power supply section to the stator winding is reduced, and speed control is performed such that the driving speed of the brushless DC motor 4 is reduced. If it is not possible to advance the off timing (No in S32), PWM control is performed by the PWM control unit 11 (S34).
  • the determination as to whether or not the off timing of the switching element can be advanced is performed as follows.
  • the off timing of the switching element is immediately after the position detection of the zero cross point, it is determined that the off timing can not be further advanced.
  • the minimum value of the conduction angle to each stator winding is 90 electrical degrees.
  • the conduction angle is less than 120 degrees, a non-power supply section having twice the electrical angle of the non-conduction section occurs. Therefore, when the conduction angle is 90 degrees, the non-conduction section is 30 degrees and a non-power supply section of 60 degrees occurs. That is, the output when the conduction angle is 90 degrees is 50% of the output when the conduction angle is 120 degrees.
  • the off timing of the switching element is between immediately after the detection of the zero cross point position and the time when the electrical angle is 30 degrees. It is determined whether there is any (S36).
  • the off timing of the switching element is earlier than the elapse of 30 electrical degrees (Yes in S36), the off timing of the switching element is delayed (S37). As a result, the power supply section to the stator winding of the brushless DC motor 4 is increased, and the speed control is performed so that the driving speed of the brushless DC motor 4 is increased.
  • the upper limit of the range in which the on-timing of the switching element can be advanced is immediately after the position detection of the zero cross point.
  • the maximum value of the power supply section to the stator winding when the off timing of the switching element is immediately after the position detection of the zero cross point is 150 degrees of electrical angle.
  • the current flowing through the brushless DC motor 4 is increased by 17% with respect to the current when the conduction angle is 120 degrees. Accordingly, the maximum output of the brushless DC motor 4 also increases by about 17%.
  • the advance angle is set to 0 degrees. Therefore, when the conduction angle is 120 degrees in electrical angle, the off timing and on timing of the switching element coincide with each other at an electrical angle of 30 degrees after the position detection of the zero cross point.
  • the motor drive device 30 can optimally drive various motors, including an IPM motor (Interior Permanent Magnet Motor).
  • IPM motor Interior Permanent Magnet Motor
  • permanent magnets are embedded in the rotor of the IPM motor. For this reason, in order to realize the optimum drive of the IPM motor, it is necessary to provide an appropriate advance angle.
  • the range of the off timing adjustment of the switching element and the range of the on timing adjustment are set as follows.
  • the off timing of the switching element is in the range from immediately after the detection of the position of the zero cross point to the time when ((electrical angle 30 degrees) ⁇ (advance angle)) has elapsed.
  • the on timing of the switching element is the time when ((electrical angle 30 degrees) ⁇ (advance angle)) has elapsed after the position detection of the zero cross point.
  • the off timing of the switching element is adjusted in the range from immediately after the position detection of the zero cross point to the time of the electrical angle of 20 degrees
  • the on timing is the position detection of the zero cross point It is adjusted when the electrical angle of 20 degrees has passed.
  • the sum of the electrical angle from the time of detecting the position of the zero cross point to the off timing and the electrical angle from the time of detecting the position of the zero cross point to the on timing is set to 60 degrees or less.
  • the off timing is adjusted in an arbitrary range from the on timing to the time when the electrical angle is 0 degrees to 30 degrees.
  • the advance angle, the on timing, and the off timing can be freely set in the range from immediately after the detection of the position of the zero cross point to the time when the electrical angle of 30 degrees has elapsed.
  • the conduction angle to the stator winding when the advance angle is added is adjusted in the range from "(electrical angle 90 degrees) + (advance angle)" to 120 electrical angle.
  • the on timing and off timing of the switching element may be adjusted as follows.
  • the off timing of the switching element is adjusted when "(electrical angle 30 degrees)-(advance angle)" has elapsed after the position detection of the zero cross point. Further, the on timing of the switching element is adjusted in the range from immediately after the detection of the position of the zero cross point to the time when ((electrical angle 30 degrees) ⁇ (advance angle)) has elapsed. As a result, the conduction angle to each stator winding of the brushless DC motor 4 can be adjusted within the range of “(electric angle 150 degrees) ⁇ (advance angle)” from 120 electrical degrees.
  • the motor drive device 30 can drive the brushless DC motor 4 in a wide range from the low speed and low load state to the high speed and high load state. is there.
  • the output power decreases to 50% and the conduction angle is 30 degrees
  • the output power increases by about 17%. That is, the amount of increase or decrease in the output power per unit conduction angle differs at the time of conduction at an electrical angle of 120 degrees. Therefore, when the conduction angle is increased or decreased at the same rate, the acceleration in the case of conduction at an electrical angle of 120 degrees or more is about 1/3 of the acceleration in the case of conduction at a conduction angle of less than 120 degrees.
  • the time for the drive frequency to pass through the resonance frequency band unique to the device increases. For this reason, a reduction in acceleration can be a source of vibration and noise.
  • the generated vibration may cause the device to fail.
  • the amount of change (control amount) of the on timing and the off timing of the switching element in speed control is corrected according to the conduction angle. This avoids a decrease in acceleration during acceleration or deceleration and provides a constant acceleration.
  • FIG. 6 is a flowchart showing adjustment of the control amount.
  • the on timing and off timing of the switching element in the conduction phase control unit 8 are set (S41).
  • Rate 1 and rate 2 are increase / decrease rates of the power supply section of the brushless DC motor.
  • the rate 1 is set to three times the rate 2. That is, in the case of energization at an electrical angle of 120 degrees or more, a conduction angle three times as large as the conduction angle to be increased or decreased in the case of less than 120 degrees is increased or decreased.
  • the conduction angle is increased or decreased by 0.1 degree per control cycle.
  • the conduction angle is 120 degrees or more, the conduction angle is increased or decreased by 0.3 degree per control cycle.
  • control amount is adjusted in accordance with the supply state (the power supply section in the present embodiment) of the power to the brushless DC motor 4.
  • FIGS. 7A and 7B respectively show terminal voltage waveforms in section C1 and section F1 in FIG. 2A.
  • FIGS. 7C and 7D respectively show terminal voltage waveforms in section C3 and section F2 in FIG. 2B.
  • a high frequency PWM carrier frequency component (period f) is superimposed on the waveform in the case of PWM control shown in FIG. 2A.
  • FIG. 8A is a diagram showing phase current waveforms of the brushless DC motor when PWM control is performed.
  • FIG. 8B is a diagram showing a phase current waveform of the brushless DC motor when the on-time ratio is 100%.
  • FIG. 8A shows a waveform in the case of energization at an electrical angle of 120 degrees. As shown in FIG. 8A, high-frequency current components accompanying switching on and off of the switching element by PWM control are superimposed on the phase current waveform when PWM control is performed. This high frequency current component causes the motor iron loss.
  • Refrigerator using motor drive A refrigeration cycle apparatus using a compressor 17 driven by the motor drive device 30 configured as described above will be described.
  • a refrigerator will be described as an example of the cooling cycle device.
  • the switching operation of the switching element at high frequency by the PWM control is not performed. Instead, the drive timing is controlled by adjusting the on timing or off timing of the switching element such that the on time ratio of the PWM control is 100%. As a result, the occurrence of switching loss of the inverter circuit 3 due to PWM control is avoided, and the circuit efficiency of the inverter circuit 3 is significantly improved.
  • a MOSFET is used as a switching element of the inverter circuit 3.
  • the MOSFET does not have a PN junction in the path of the output current when it is on. For this reason, the on-state loss, especially at low current output of the MOSFET, is very low compared to that of other power devices such as IGBTs.
  • the refrigerator is driven at low speed and low load during most of the time of day, and the current flowing to the brushless DC motor 4 is small. Therefore, when the motor drive device 30 of the present disclosure is used to drive the compressor 17 of the refrigerator as described above, the power consumption of the refrigerator is effectively reduced by using the MOSFET as the switching element of the inverter circuit 3. Be done.
  • the phase current flowing in the stator winding of the brushless DC motor 4 is high frequency. It can be avoided that current components are superimposed. As a result, motor iron loss can be significantly reduced, and motor efficiency can be improved.
  • PWM control switching operation of the switching element is generally performed at a PWM frequency of about 1 kHz to about 20 kHz, and noise due to a frequency component of the switching operation is generated. It is very important to improve the silent performance of the refrigerator, since the refrigerator is operated all day regardless of day and night. In the motor drive device 30 of the present embodiment, since the on-time ratio is set to 100%, generation of noise due to PWM control can be avoided, and noise reduction performance of the refrigerator can be improved.
  • the motor drive device can improve circuit efficiency and improve the efficiency of the brushless DC motor, as well as improve the reliability. In addition, it is possible to reduce the driving noise of the brushless DC motor and the vibration of the device. Therefore, the present invention can be applied to any device in which a brushless DC motor is used, such as a refrigerator, an air conditioner, a washing machine, a pump, a fan, a fan, and a vacuum cleaner.

Abstract

This motor drive device (30) is provided with a brushless DC motor (4) which has a rotor, an inverter circuit (3) which is configured comprising six switching elements (3a-3f) and which supplies power to the brushless DC motor (4), a position detection unit (5) which detects the rotation position of the rotor, and a PWM control unit (11) which performs PWM control for adjusting the voltage applied to the brushless DC motor (4) by turning the switching elements (3a-3f) ON and OFF at a high frequency. The motor drive device (30) further comprises an energized phase control unit (8) which sets the energized state of each phase of the brushless DC motor (4) while maximizing the ON time ratio of the switching elements (3a-3f) from the PWM control, and a control quantity adjustment unit (8c) which adjusts the control quantity in control of the drive speed of the brushless DC motor (4). The control quantity adjustment unit (8c) adjusts the control quantity depending on the state of power supply to the brushless DC motor (4).

Description

モータ駆動装置および、これを用いた冷蔵庫Motor drive device and refrigerator using the same
 本開示は、インバータ制御によりブラシレスDCモータを駆動するモータ駆動装置、および、これを用いた冷蔵庫に関する。 The present disclosure relates to a motor drive device that drives a brushless DC motor by inverter control, and a refrigerator using the same.
 従来、この種のブラシレスDCモータの駆動装置においては、ブラシレスDCモータの各相の通電状態が、PWM(Pulse Width Modulation)制御によって制御される。 Conventionally, in the drive device of this type of brushless DC motor, the conduction state of each phase of the brushless DC motor is controlled by PWM (Pulse Width Modulation) control.
 具体的には、PWM制御の矩形波によって、各相の通電区間が、基本的に120度となるように制御されて、ブラシレスDCモータが駆動される。また、PWM制御のオンデューティ(Duty Ratio)が100%となったときに、通電区間が120度以上に拡張される。これにより、ブラシレスDCモータの、高速かつ高負荷の場合における、駆動可能領域が拡張される(例えば、特許文献1参照)。 Specifically, the rectangular wave in PWM control is controlled so that the conduction interval of each phase is basically 120 degrees, and the brushless DC motor is driven. Further, when the on-duty (duty ratio) of the PWM control becomes 100%, the conduction interval is extended to 120 degrees or more. As a result, the drivable area of the brushless DC motor in the case of high speed and high load is expanded (see, for example, Patent Document 1).
 図9は、特許文献1のモータ駆動装置のブロック図を示している。図9に示すように、インバータ回路103は、スイッチング素子103a~103fによって構成される。各スイッチング素子103a~103fが、オフからオンに移行する際に、オンタイミング制御手段104aにより、進角制御が行われる。一方、各スイッチング素子103a~103fが、オンからオフに移行する際には、オフタイミング制御手段104bによる進角制御は行われない。これにより、オーバーラップ通電が行われる。 FIG. 9 shows a block diagram of the motor drive device of Patent Document 1. As shown in FIG. As shown in FIG. 9, the inverter circuit 103 includes switching elements 103a to 103f. When each of the switching elements 103a to 103f shifts from off to on, the on-timing control means 104a performs lead angle control. On the other hand, when the switching elements 103a to 103f shift from on to off, the advance timing control by the off timing control means 104b is not performed. Thus, the overlap energization is performed.
 また、従来の他のモータ駆動装置においては、モータに供給される電力が目標電力値となるように、スイッチング素子の通電角および進角、インバータへの入力直流電圧が制御される。これにより、モータ駆動装置の高出力化が実現されるとともに、モータの高回転が可能となる。また、モータ駆動装置の損失が低減されている(例えば、特許文献2参照)。 Further, in another conventional motor drive device, the conduction angle and the advance angle of the switching element and the input DC voltage to the inverter are controlled such that the power supplied to the motor becomes the target power value. As a result, high output of the motor drive device can be realized, and high rotation of the motor can be achieved. In addition, the loss of the motor drive device is reduced (see, for example, Patent Document 2).
 図10は、特許文献2のモータ駆動装置の駆動制御手段201のブロック図を示している。図10に示すように、ブラシレスDCモータの駆動制御手段201は、駆動電力を検出する電力検出手段202と、通電パルス信号生成制御手段203と、を有する。通電パルス信号生成制御手段203は、インバータの駆動信号パターンの生成、およびインバータ入力電圧の設定を行う。そして、駆動電力が目標設定電力値に一致するように、インバータの入力電圧値、通電角、および進角が制御される。 FIG. 10 shows a block diagram of the drive control means 201 of the motor drive device of Patent Document 2. As shown in FIG. As shown in FIG. 10, the drive control means 201 of the brushless DC motor has a power detection means 202 for detecting drive power, and a conduction pulse signal generation control means 203. The energization pulse signal generation control unit 203 generates a drive signal pattern of the inverter and sets an inverter input voltage. Then, the input voltage value, the conduction angle, and the advance angle of the inverter are controlled such that the drive power matches the target set power value.
 しかしながら、従来のモータ駆動装置においては、高効率化および信頼性の向上について、未だ改善の余地がある。 However, in the conventional motor drive device, there is still room for improvement in the improvement of the efficiency and the reliability.
特開2006-50804号公報Unexamined-Japanese-Patent No. 2006-50804 特開2008-167525号公報JP 2008-167525 A
 本開示は、モータ駆動装置の損失を抑も制し、ブラシレスDCモータの高効率化を図ることを目的とする。また、低振動かつ低騒音のモータ駆動装置を実現するとともに、モータ駆動装置の信頼性の向上を図ることを目的とする。 An object of the present disclosure is to suppress the loss of a motor drive device and to improve the efficiency of a brushless DC motor. Another object of the present invention is to realize a low vibration and low noise motor drive device and to improve the reliability of the motor drive device.
 具体的には、本開示のモータ駆動装置は、回転子を有するブラシレスDCモータと、6個のスイッチング素子を含んで構成され、ブラシレスDCモータに電力を供給するインバータ回路と、回転子の位置を検出する位置検出部と、スイッチング素子を高周波数でオンおよびオフすることで、ブラシレスDCモータに印加される電圧を調整するPWM制御を行うPWM制御部と、を有する。モータ駆動装置は、さらに、PWM制御によるスイッチング素子のオン時間時比率が最大となるようにしつつ、ブラシレスDCモータの各相の通電状態を設定する通電相制御部と、ブラシレスDCモータの駆動速度の制御における制御量を調整する制御量調整部とを、有し、制御量調整部は、ブラシレスDCモータへの電力供給状態応じて制御量を調整する。 Specifically, the motor drive device according to the present disclosure is configured to include a brushless DC motor having a rotor, and six switching elements, and supplies an electric power to the brushless DC motor, and the position of the rotor It has a position detection part to detect, and a PWM control part which performs PWM control which adjusts a voltage applied to a brushless DC motor by turning on and off the switching element at high frequency. The motor drive apparatus further includes an energized phase control unit that sets the energized state of each phase of the brushless DC motor while maximizing the on time ratio of the switching element by PWM control, and the drive speed of the brushless DC motor. And a control amount adjustment unit that adjusts a control amount in control, and the control amount adjustment unit adjusts the control amount according to the state of power supply to the brushless DC motor.
 このような構成により、モータ駆動装置の損失を抑制し、ブラシレスDCモータの高効率化を図ることができる。また、低振動かつ低騒音のモータ駆動装置を実現するとともに、モータ駆動装置の信頼性の向上を図ることができる。 With such a configuration, it is possible to suppress the loss of the motor drive device and to improve the efficiency of the brushless DC motor. Further, it is possible to realize a low vibration and low noise motor drive device and to improve the reliability of the motor drive device.
図1は、本開示の実施の形態1におけるモータ駆動装置のブロック図である。FIG. 1 is a block diagram of a motor drive device according to a first embodiment of the present disclosure. 図2Aは、実施の形態1におけるモータ駆動装置の駆動波形およびタイミングチャートを示す図である。FIG. 2A is a diagram showing drive waveforms and a timing chart of the motor drive device according to Embodiment 1. 図2Bは、実施の形態1におけるモータ駆動装置の他の駆動波形およびタイミングチャートを示す図である。FIG. 2B is a diagram showing another drive waveform and timing chart of the motor drive device in the first embodiment. 図3は、スイッチング素子のオフタイミング調整制御の開始が判定されるフローチャートである。FIG. 3 is a flowchart for determining the start of off timing adjustment control of the switching element. 図4は、PWM制御からオフタイミング調整制御への移行が判定されるフローチャートである。FIG. 4 is a flowchart in which the transition from PWM control to off timing adjustment control is determined. 図5は、オフタイミング調整制御を示すフローチャートである。FIG. 5 is a flowchart showing off timing adjustment control. 図6は、制御量の調整を示すフローチャートである。FIG. 6 is a flowchart showing adjustment of the control amount. 図7Aは、図2Aにおける区間C1の端子電圧波形を示す図である。FIG. 7A is a diagram showing a terminal voltage waveform of the section C1 in FIG. 2A. 図7Bは、図2Aにおける区間F1の端子電圧波形を示す図である。FIG. 7B is a diagram showing a terminal voltage waveform of the section F1 in FIG. 2A. 図7Cは、図2Bにおける区間C3の端子電圧波形を示す図である。FIG. 7C is a diagram showing a terminal voltage waveform of the section C3 in FIG. 2B. 図7Dは、図2Bにおける区間F2の端子電圧波形を示す図である。FIG. 7D is a diagram showing a terminal voltage waveform of the section F2 in FIG. 2B. 図8Aは、PWM制御された場合のブラシレスDCモータの相電流波形を示す図である。FIG. 8A is a diagram showing phase current waveforms of the brushless DC motor when PWM control is performed. 図8Bは、オン時間時比率が100%の場合のブラシレスDCモータの相電流波形を示す図である。FIG. 8B is a diagram showing a phase current waveform of the brushless DC motor when the on-time ratio is 100%. 図9は、特許文献1のモータ駆動装置のブロック図である。FIG. 9 is a block diagram of a motor drive device of Patent Document 1. As shown in FIG. 図10は、特許文献2のモータ駆動装置のブロック図である。FIG. 10 is a block diagram of a motor drive device of Patent Document 2. As shown in FIG.
 (本開示の基礎となった知見)
 本開示の発明者らは、モータ駆動装置の性能および信頼性の向上のために、鋭意検討した結果、以下の知見を得た。
(Findings that formed the basis of this disclosure)
The inventors of the present disclosure obtained the following findings as a result of intensive studies to improve the performance and reliability of the motor drive device.
 前述の特許文献1の構成では、スイッチング素子のターンオンを早めてブラシレスDCモータへの電力の供給区間を120度以上に広げることで、高負荷かつ高速の場合における駆動可能領域の拡張が可能となる。しかしながら、低負荷かつ低速の場合における駆動領域においては、PWM制御によるスイッチング素子のオンおよびオフのスイッチング動作に伴って、損失が発生する。また、PWM制御による高周波数でのスイッチング動作には、モータ鉄損の増加が伴う。 In the configuration of Patent Document 1 described above, the driveable region can be expanded in the case of high load and high speed by advancing the turn-on of the switching element and widening the power supply section to the brushless DC motor to 120 degrees or more. . However, in the drive region in the low load and low speed case, a loss occurs with the on / off switching operation of the switching element by PWM control. Also, the switching operation at high frequency by PWM control is accompanied by an increase in motor iron loss.
 また、上記特許文献2に記載された、ブラシレスDCモータの通電角の増減による速度の制御では、当該制御が可能なタイミングが転流時(例えば、4極モータでは、モータ1回転中12回)に限られる。 Further, in the control of the speed by the increase and decrease of the conduction angle of the brushless DC motor described in Patent Document 2 described above, the timing at which the control is possible is commutation (for example, in a 4-pole motor, 12 times during one rotation of the motor) Limited to
 特許文献2に記載されたモータ駆動装置では、制御において増減される通電角が常に一定である。しかし、通電角が120度未満の場合と、120度以上の場合とでは、増減される通電角の単位角度あたりのモータ電流変化量は異なる。このため、特許文献2の構成のように、一律の、制御周期または制御量によって制御される場合、ブラシレスDCモータの加速度が不均一になるため、急な加速によって脱調し、ブラシレスDCモータが停止するという問題があることを発明者らは見出した。また、不均一な加速に起因する、ブラシレスDCモータの緩慢な加速または減速は、ブラシレスDCモータの回転周波数が機器の共振周波数帯域を通過する際に、ブラシレスDCモータの振動および騒音を発生させるという問題があるということを発明者らは見出した。 In the motor drive device described in Patent Document 2, the conduction angle increased or decreased in control is always constant. However, the amount of change in motor current per unit angle of the conduction angle to be increased or decreased is different between the case where the conduction angle is less than 120 degrees and the case where the conduction angle is 120 degrees or more. For this reason, as in the configuration of Patent Document 2, when controlled by a uniform control cycle or control amount, the acceleration of the brushless DC motor becomes uneven, so that the motor is out of step due to rapid acceleration, and the brushless DC motor The inventors have found that there is a problem of stopping. In addition, the slow acceleration or deceleration of the brushless DC motor due to uneven acceleration causes vibration and noise of the brushless DC motor when the rotational frequency of the brushless DC motor passes through the resonance frequency band of the device. The inventors found that there was a problem.
 これらの新規な知見に基づき、本発明者らは、以下の開示をするに至った。 Based on these new findings, the present inventors have come to the following disclosure.
 本開示の一態様に係るモータ駆動装置は、回転子を有するブラシレスDCモータと、6個のスイッチング素子を有して構成され、ブラシレスDCモータに電力を供給するインバータ回路と、回転子の回転位置を検出する位置検出部と、スイッチング素子を高周波数でオンおよびオフすることで、ブラシレスDCモータに印加される電圧を調整するPWM制御を行うPWM制御部と、を有する。モータ駆動装置は、さらに、PWM制御によるスイッチング素子のオン時間時比率が最大となるようにしつつ、ブラシレスDCモータにおける各相の通電状態を設定する通電相制御部と、ブラシレスDCモータの駆動速度の制御における制御量を調整する制御量調整部と、を有し、制御量調整部は、ブラシレスDCモータへの電力の供給状態に応じて制御量を調整する。 A motor drive device according to an aspect of the present disclosure includes: a brushless DC motor having a rotor; and an inverter circuit that supplies electric power to the brushless DC motor including six switching elements; and a rotational position of the rotor And a PWM control unit that performs PWM control to adjust a voltage applied to the brushless DC motor by turning on and off the switching element at a high frequency. The motor drive apparatus further includes an energized phase control unit that sets the energized state of each phase in the brushless DC motor while maximizing the on time ratio of the switching element by PWM control, and the driving speed of the brushless DC motor. The control amount adjustment unit adjusts the control amount in control, and the control amount adjustment unit adjusts the control amount according to the state of supply of power to the brushless DC motor.
 このような構成により、PWM制御によるスイッチング素子のスイッチング損失を低減し、モータ駆動装置の高効率化を図ることができる。また、ブラシレスDCモータの駆動状態によらず、安定した加速性能を得ることが可能となる。従って、ブラシレスDCモータの加速または減速の際の、騒音および振動の発生を抑制でき、モータ駆動装置の信頼性を向上させることができる。 With such a configuration, it is possible to reduce the switching loss of the switching element by PWM control and to improve the efficiency of the motor drive device. In addition, stable acceleration performance can be obtained regardless of the driving state of the brushless DC motor. Therefore, generation of noise and vibration at the time of acceleration or deceleration of the brushless DC motor can be suppressed, and the reliability of the motor drive device can be improved.
 本開示の他の一態様に係るモータ駆動装置は、制御量調整部は、ブラシレスDCモータへの電力の供給区間について、電気角120度を境として、制御量を切り換えるように構成されてもよい。 In the motor drive device according to another aspect of the present disclosure, the control amount adjustment unit may be configured to switch the control amount at an electric angle of 120 degrees in a section where power is supplied to the brushless DC motor. .
 このような構成により、ブラシレスDCモータの駆動が、120度以上の通電角で行われている場合の加速度と、120度未満の通電角で行われている場合の加速度とを同等にすることができる。従って、ブラシレスDCモータの駆動周波数が機器の共振周波数帯域を通過する際のブラシレスDCモータの振動および騒音を抑制できる。また、ブラシレスDCモータの振動が抑制されることにより、振動に起因する機器の故障が回避されるため、モータ駆動装置の信頼性が向上する。 With such a configuration, it is possible to equalize the acceleration when the driving of the brushless DC motor is performed at an energization angle of 120 degrees or more and the acceleration when the driving is performed at an energization angle of less than 120 degrees. it can. Therefore, it is possible to suppress the vibration and noise of the brushless DC motor when the driving frequency of the brushless DC motor passes the resonance frequency band of the device. Further, by suppressing the vibration of the brushless DC motor, the failure of the device due to the vibration is avoided, and the reliability of the motor drive device is improved.
 本開示の他の一態様に係るモータ駆動装置は、上述のモータ駆動装置のブラシレスDCモータが、冷凍サイクル中に設けられた圧縮機を駆動するものであってもよい。 In a motor drive device according to another aspect of the present disclosure, the brushless DC motor of the above-described motor drive device may drive a compressor provided in a refrigeration cycle.
 このような構成により、圧縮機のCOP(Coefficient Of Performance)を向上させることができる。また、共振による振動が抑制されることで、冷凍サイクル装置を構成する配管の破損を防止できる。従って、効率が高く、かつ、信頼性の高い冷凍サイクル装置を提供できる。 Such a configuration can improve the COP (Coefficient Of Performance) of the compressor. Moreover, the damage by piping which comprises a refrigerating-cycle apparatus can be prevented by the vibration by resonance being suppressed. Therefore, a highly efficient and reliable refrigeration cycle apparatus can be provided.
 また、本開示に係る冷蔵庫においては、上述のモータ駆動装置が用いられてもよい。 Moreover, in the refrigerator which concerns on this indication, the above-mentioned motor drive device may be used.
 これにより、消費電力が低く、かつ、信頼性の高い冷蔵庫を提供できる。また、ブラシレスDCモータの加速または減速の際の冷蔵庫の振動および騒音の抑制を図ることができる。 This can provide a refrigerator with low power consumption and high reliability. In addition, it is possible to suppress the vibration and noise of the refrigerator during acceleration or deceleration of the brushless DC motor.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本開示が限定されるわけではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited by the present embodiment.
 (実施の形態1)
 [1.全体構成]
 図1は、本開示の実施の形態1におけるモータ駆動装置のブロック図を示している。
Embodiment 1
[1. overall structure]
FIG. 1 shows a block diagram of a motor drive device according to a first embodiment of the present disclosure.
 モータ駆動装置30は、インバータ回路3およびDCブラシレスDCモータ4を含む。また、モータ駆動装置30には、例えばコンバータ回路2などによって、直流電圧が供給される。 Motor drive device 30 includes an inverter circuit 3 and a DC brushless DC motor 4. Further, a DC voltage is supplied to the motor drive device 30, for example, by the converter circuit 2 or the like.
 図1において、交流電源1は一般的な商用電源である。商用電源は、日本国内の場合、実効値が100Vであり、電源周波数が50Hzまたは60Hzである。 In FIG. 1, an alternating current power supply 1 is a general commercial power supply. The commercial power supply has an effective value of 100 V and a power supply frequency of 50 Hz or 60 Hz in Japan.
 コンバータ回路2は、交流電源1を直流電圧に変換する。コンバータ回路2は、例えば整流回路2aおよび平滑回路2bを含む。また、コンバータ回路2は、出力電圧を切り替える切替部を含んでもよい。 Converter circuit 2 converts AC power supply 1 into a DC voltage. Converter circuit 2 includes, for example, a rectifier circuit 2a and a smoothing circuit 2b. The converter circuit 2 may also include a switching unit that switches the output voltage.
 図1におけるコンバータ回路2は、4個のダイオードをブリッジ接続した整流回路2aと、コンデンサを有する平滑回路2b、および、出力電圧を切り替えるスイッチ(切替部)2cで構成される。スイッチ2cは、出力電圧を倍電圧整流および全波整流の2段階で切り替える。 The converter circuit 2 in FIG. 1 includes a rectifier circuit 2a in which four diodes are bridge-connected, a smoothing circuit 2b having a capacitor, and a switch (switching unit) 2c that switches an output voltage. The switch 2c switches the output voltage in two stages of voltage doubler rectification and full wave rectification.
 インバータ回路3は、6個のスイッチング素子3a~3fで構成される。本実施の形態では、各スイッチング素子3a~3fには、それぞれMOSFETが用いられる。各スイッチング素子3a~3fは、3相ブリッジ接続されている。任意のスイッチング素子のオンおよびオフが切り替えられることで、インバータ回路3の入力直流電圧が3相交流電圧に変換される。 The inverter circuit 3 is composed of six switching elements 3a to 3f. In the present embodiment, a MOSFET is used for each of the switching elements 3a to 3f. The switching elements 3a to 3f are connected in a three-phase bridge. By turning on and off any switching element, the input DC voltage of the inverter circuit 3 is converted into a three-phase AC voltage.
 ブラシレスDCモータ4は、固定子、および、永久磁石を有する回転子を含んで構成される。固定子は、3相に対応する3つの固定子巻線を有する。ブラシレスDCモータ4は、インバータ回路3から供給される3相交流電力により駆動される。 The brushless DC motor 4 is configured to include a stator and a rotor having permanent magnets. The stator has three stator windings corresponding to three phases. The brushless DC motor 4 is driven by three-phase AC power supplied from the inverter circuit 3.
 また、モータ駆動装置30は、位置検出部5を有する。位置検出部5は、ブラシレスDCモータ4の磁極位置を検出する。本実施の形態1では、ブラシレスDCモータ4の固定子巻線に発生する誘起電圧のゼロクロスポイントが、モータの端子電圧に基づいて検出されることで、位置検出が行われる。誘起電圧は、ブラシレスDCモータ4の回転子の回転により発生する。なお、位置検出の方法としては、ホールIC等の位置センサを用いる方法、または、電流センサ等による電流検出に基づく方法等でもよい。 Further, the motor drive device 30 has a position detection unit 5. The position detection unit 5 detects the magnetic pole position of the brushless DC motor 4. In the first embodiment, position detection is performed by detecting the zero crossing point of the induced voltage generated in the stator winding of the brushless DC motor 4 based on the terminal voltage of the motor. The induced voltage is generated by the rotation of the rotor of the brushless DC motor 4. The position detection method may be a method using a position sensor such as a Hall IC or a method based on current detection using a current sensor or the like.
 また、モータ駆動装置30は、速度検出部6を有していてもよい。速度検出部6は、位置検出部5の出力信号からブラシレスDCモータ4の駆動速度を検出する。本実施の形態では、ブラシレスDCモータ4の駆動速度は、ブラシレスDCモータ4の固定子巻線に生じる誘起電圧のゼロクロスポイントの周期に基づいて算出される。 Further, the motor drive device 30 may have the speed detection unit 6. The speed detection unit 6 detects the driving speed of the brushless DC motor 4 from the output signal of the position detection unit 5. In the present embodiment, the driving speed of the brushless DC motor 4 is calculated based on the cycle of the zero cross point of the induced voltage generated in the stator winding of the brushless DC motor 4.
 また、モータ駆動装置30は、速度誤差検出部7を有していてもよい。速度誤差検出部7は、速度検出部6により得られたブラシレスDCモータ4の駆動速度と、目標速度との差を検出する。 Further, the motor drive device 30 may have the speed error detection unit 7. The speed error detection unit 7 detects the difference between the driving speed of the brushless DC motor 4 obtained by the speed detection unit 6 and the target speed.
 [2.通電相制御部]
 図1に示すように、モータ駆動装置30は、通電相制御部8を有する。通電相制御部8は、位置検出部5からの信号に基づいて、ブラシレスDCモータ4の3つの固定子巻線のうち、いずれの固定子巻線に電力を供給するかを設定する。各固定子巻線には、電気角90度以上かつ150度以下の範囲で、電力が供給される。
[2. Conducted phase control section]
As shown in FIG. 1, the motor drive device 30 has an energized phase control unit 8. The energization phase control unit 8 sets which stator winding of the three stator windings of the brushless DC motor 4 is to be supplied with power based on the signal from the position detection unit 5. Electric power is supplied to each stator winding in a range of 90 degrees or more and 150 degrees or less.
 通電相制御部8は、オンタイミング制御部8aと、オフタイミング制御部8bと、を有する。オンタイミング制御部8aは、各スイッチング素子3a~3fをターンオンするタイミング(以下、オンタイミング)を設定する。オフタイミング制御部8bは、各スイッチング素子3a~3fをターンオフするタイミング(以下、オフタイミング)を設定する。つまり、インバータ回路3の各スイッチング素子3a~3fのオンタイミングおよびオフタイミングは、個別に設定される。 The energized phase control unit 8 includes an on timing control unit 8a and an off timing control unit 8b. The on-timing control unit 8a sets timing (hereinafter, on-timing) to turn on the switching elements 3a to 3f. The off-timing control unit 8b sets the timing (hereinafter referred to as off-timing) to turn off the switching elements 3a to 3f. That is, the on timing and the off timing of each of the switching elements 3a to 3f of the inverter circuit 3 are set individually.
 通電相制御部8は、以上のようにして、各相の通電状態を設定する。そして、通電相制御部8は、各スイッチング素子3a~3fのオンタイミングおよびオフタイミングを設定することで、ブラシレスDCモータ4への電力の供給区間の範囲(電力供給区間)を設定する。これにより、ブラシレスDCモータ4が目標速度で駆動されるように速度制御が行われる。 The energization phase control unit 8 sets the energization state of each phase as described above. Then, the conduction phase control unit 8 sets the range (power supply section) of the power supply section to the brushless DC motor 4 by setting the on timing and the off timing of each of the switching elements 3a to 3f. Thus, speed control is performed such that the brushless DC motor 4 is driven at the target speed.
 また、通電相制御部8は、制御量調整部8cを有する。制御量調整部8cは、速度制御における制御量を調整する。本実施の形態では、通電相制御部8で設定された電力供給区間に対する区間の増減量が、制御量に該当する。制御量調整部8cは、加速または減速の際の、スイッチング素子のオンタイミングおよびオフタイミングを調整することで、電力供給区間の長さの設定値に応じて、制御量の調整を行う。 Moreover, the conduction phase control unit 8 has a control amount adjustment unit 8c. The control amount adjustment unit 8c adjusts the control amount in the speed control. In the present embodiment, the increase / decrease amount of the section with respect to the power supply section set by the power supply phase control unit 8 corresponds to the control amount. The control amount adjustment unit 8c adjusts the control amount according to the set value of the length of the power supply section by adjusting the on timing and the off timing of the switching element at the time of acceleration or deceleration.
 [3.ブラシレスDCモータの駆動速度の制御]
 図1に示すように、モータ駆動装置30は、PWM制御部11を有する。PWM制御部11は、PWM制御によって、インバータ回路3からの3相交流出力電圧を調節する。これにより、ブラシレスDCモータ4は、目標速度で駆動するように制御される。
[3. Control of Drive Speed of Brushless DC Motor]
As shown in FIG. 1, the motor drive device 30 has a PWM control unit 11. The PWM control unit 11 adjusts the three-phase AC output voltage from the inverter circuit 3 by PWM control. Thereby, the brushless DC motor 4 is controlled to drive at the target speed.
 ブラシレスDCモータ4のPWM制御のオン時間時比率(Duty Ratio)が、「(ブラシレスDCモータの固定子巻線へ電力が供給されるときの電気角の最小値)×2-(電気角120度)」を「電気角120度」で除した値より大きい状態においてブラシレスDCモータ4が駆動されている場合には、オフタイミング制御部8bは、PWM制御のオン時間時比率がその最大値である100%となるように、スイッチング素子のオフタイミングを早める。 The on-time ratio (Duty Ratio) of PWM control of the brushless DC motor 4 is “(minimum value of electrical angle when power is supplied to the stator winding of the brushless DC motor) × 2- (electrical angle 120 degrees When the brushless DC motor 4 is driven in a state larger than the value obtained by dividing “A” by “120 electrical degrees”, the off-timing control unit 8b determines that the on-time time ratio of the PWM control is the maximum value. The off timing of the switching element is advanced so as to be 100%.
 具体的には、例えば、ブラシレスDCモータ4への電力供給区間が、電力供給区間の最小値である電気角90度の場合、(90度×2-120度)÷120度=50[%]となる。従って、PWM制御のオン時間時比率が50%以上の状態でブラシレスDCモータ4が駆動されている場合には、オフタイミング制御部8bは、スイッチング素子のオフタイミングを早めて、オン時間時比率が100%となるようにする。 Specifically, for example, when the power supply section to the brushless DC motor 4 has an electrical angle of 90 degrees, which is the minimum value of the power supply section, (90 degrees × 2-120 degrees) 20120 degrees = 50 [%] It becomes. Therefore, when the brushless DC motor 4 is driven in a state where the on time ratio of PWM control is 50% or more, the off timing control unit 8b advances the off timing of the switching element and the on time ratio is Make it 100%.
 また、電力供給区間が120度、かつ、PWM制御のオン時間時比率が100%の状態で、ブラシレスDCモータ4の駆動速度が目標速度より遅い場合は、PWM制御のオン時間時比率が100%に保たれた状態において、オンタイミング制御部8aは、スイッチング素子のオンタイミングを早める。これにより、ブラシレスDCモータ4はオーバーラップ通電され、ブラシレスDCモータ4の駆動領域が拡張される。 When the drive speed of the brushless DC motor 4 is slower than the target speed in a state where the power supply interval is 120 degrees and the PWM control on time ratio is 100%, the PWM control on time ratio is 100%. In the state maintained in the on-timing control unit 8a, the on-timing of the switching element is advanced. As a result, the brushless DC motor 4 is energized in an overlap manner, and the drive region of the brushless DC motor 4 is expanded.
 ここで、ブラシレスDCモータ4の動作状態の急激な変化を防ぐため、オフタイミングおよびオンタイミングの変更は、徐々に行われることが望ましい。例えば、オフタイミングの変更は、複数回に分けて、前回のオフタイミングから早められてもよい。ただし、オフタイミングおよびオンタイミングの変更は、一つの制御周期内で行われてもよい。 Here, in order to prevent an abrupt change in the operating state of the brushless DC motor 4, it is desirable that the off timing and the on timing be gradually changed. For example, the change of the off timing may be divided into a plurality of times and may be advanced from the previous off timing. However, the off timing and the on timing may be changed within one control cycle.
 なお、PWM制御部11によるオン時間時比率の調整によってブラシレスDCモータ4の速度制御が行われるのは、ブラシレスDCモータ4が、上述したPWM制御のオン時間時比率以下で駆動されている場合に限られる。従って、PWM制御は、ブラシレスDCモータ4の起動時、低速駆動時、低負荷駆動時、および倍電圧入力時など、比較的、低負荷または低速の状態でブラシレスDCモータ4が駆動されている際に行われる。 The speed control of the brushless DC motor 4 is performed by adjusting the on-time ratio by the PWM control unit 11 when the brushless DC motor 4 is driven at the above-described on-time ratio of PWM control or less. Limited. Therefore, PWM control is performed when the brushless DC motor 4 is driven in a relatively low load or low speed state, such as at startup, low speed drive, low load drive, and double voltage input at the start of the brushless DC motor 4. To be done.
 それ以外の安定した駆動状態においては、PWM制御のオン時間時比率が100%となるように、通電相制御部8によってスイッチング素子のオフタイミングおよびオンタイミングが制御される。これによって、PWM制御によるスイッチング素子のオン時間時比率が最大(本実施の形態では、安定した駆動状態において、100%)になるようにしつつ、ブラシレスDCモータ4への電力供給区間が調整され、ブラシレスDCモータ4の駆動速度の制御が行われる。 In other stable drive states, the off phase and on timing of the switching element are controlled by the conduction phase control unit 8 so that the on time ratio of PWM control is 100%. As a result, the power supply section to the brushless DC motor 4 is adjusted while the on-time ratio of the switching element by PWM control is maximized (100% in the stable driving state in the present embodiment). Control of the drive speed of the brushless DC motor 4 is performed.
 なお、図1に示す波形合成部12は、PWM制御部11により生成されたPWM信号と、通電相制御部8により生成された信号とを合成する。ドライブ部13は、波形合成部12によって合成された信号を基に、インバータ回路3の各スイッチング素子3a~3fをオンまたはオフする。これによって、任意の3相交流電圧が生成される。生成された3相交流電圧がブラシレスDCモータ4に供給されることで、ブラシレスDCモータ4が駆動される。 The waveform synthesis unit 12 illustrated in FIG. 1 synthesizes the PWM signal generated by the PWM control unit 11 and the signal generated by the conduction phase control unit 8. The drive unit 13 turns on or off the switching elements 3a to 3f of the inverter circuit 3 based on the signal synthesized by the waveform synthesis unit 12. This generates an arbitrary three-phase AC voltage. The generated three-phase AC voltage is supplied to the brushless DC motor 4 to drive the brushless DC motor 4.
 [4.モータ駆動装置を用いた圧縮機]
 図1は、上述のモータ駆動装置30が圧縮機17に用いられた例を示している。
[4. Compressor using motor drive]
FIG. 1 shows an example in which the motor drive device 30 described above is used for the compressor 17.
 図1に示すように、圧縮機17は、凝縮器18、減圧器19および蒸発器20とともに、冷凍サイクルを構成する。図1では、冷凍サイクルを利用した冷凍サイクル装置の例として、冷蔵庫21を示している。 As shown in FIG. 1, the compressor 17 constitutes a refrigeration cycle together with the condenser 18, the pressure reducer 19 and the evaporator 20. In FIG. 1, the refrigerator 21 is shown as an example of the refrigerating cycle apparatus using a refrigerating cycle.
 圧縮機17は、ブラシレスDCモータ4および圧縮要素16を有する。ブラシレスDCモータ4および圧縮要素16は、同一の密閉容器に収納されている。 The compressor 17 has a brushless DC motor 4 and a compression element 16. The brushless DC motor 4 and the compression element 16 are housed in the same closed container.
 圧縮機17の圧縮要素16は、ブラシレスDCモータ4の回転子の軸に接続されており、冷媒ガスを吸入し、吸入された冷媒ガスを圧縮して吐出する。圧縮機17から吐出された冷媒ガスは、凝縮器18、減圧器19および蒸発器20を通って、再び圧縮機17に吸入される。これによって、冷凍サイクルが構成される。冷凍サイクル中の、凝縮器18では放熱が行われ、蒸発器20では吸熱が行われることから、冷凍サイクル装置は、加熱または吸熱を行うことができる。 The compression element 16 of the compressor 17 is connected to the shaft of the rotor of the brushless DC motor 4, sucks the refrigerant gas, and compresses and discharges the sucked refrigerant gas. The refrigerant gas discharged from the compressor 17 is again drawn into the compressor 17 through the condenser 18, the pressure reducer 19 and the evaporator 20. This constitutes a refrigeration cycle. Since heat is released in the condenser 18 and heat absorption is performed in the evaporator 20 during the refrigeration cycle, the refrigeration cycle apparatus can perform heating or heat absorption.
 なお、必要に応じて凝縮器18および蒸発器20に送風機が用いられる。これにより、凝縮器18および蒸発器20における熱交換が促進される。 In addition, a blower is used for the condenser 18 and the evaporator 20 as needed. This promotes heat exchange in the condenser 18 and the evaporator 20.
 また、冷蔵庫21は、図1に示すように、断熱壁22で囲われた食品貯蔵室23を有する。蒸発器20は、食品貯蔵室23内を冷却するために用いられる。 Moreover, the refrigerator 21 has the food storage room 23 enclosed by the heat insulation wall 22, as shown in FIG. The evaporator 20 is used to cool the inside of the food storage room 23.
 以上のように構成されたモータ駆動装置30について、以下その動作および作用を説明する。 The operation and action of the motor drive device 30 configured as described above will be described below.
 [5.モータ駆動装置の動作]
 [5-1.駆動波形およびタイミングチャート]
 図2Aおよび図2Bは、本実施の形態におけるモータ駆動装置の駆動波形およびタイミングチャートである。
[5. Operation of motor drive]
[5-1. Drive waveform and timing chart]
FIG. 2A and FIG. 2B are drive waveforms and timing charts of the motor drive device according to the present embodiment.
 図2Aは、一般的な、電気角120度での通電の場合の、駆動波形およびタイミングチャートである。図2Bは、スイッチング素子のオフタイミングが調整された状態における、駆動波形およびタイミングチャートである。 FIG. 2A is a drive waveform and timing chart in the case of general energization at an electrical angle of 120 degrees. FIG. 2B is a drive waveform and a timing chart in a state in which the off timing of the switching element is adjusted.
 図2Aおよび図2Bにおいて、ブラシレスDCモータ4の回転により発生する誘起電圧がE、3相(U相、V相、およびW相)のうちのU相の端子電圧がVuとして示されている。また、図2Aおよび図2Bは、U相についての波形のみ示している。なお、V相およびW相の誘起電圧および端子電圧の波形は、U相の誘起電圧および端子電圧の波形から、それぞれ位相が120度ずれた、同形状の波形である。 In FIGS. 2A and 2B, the induced voltage generated by the rotation of the brushless DC motor 4 is shown as Vu, which is the terminal voltage of the U phase among the E phases (U phase, V phase and W phase). Moreover, FIG. 2A and FIG. 2B have shown only the waveform about U phase. The waveforms of the induced voltage and the terminal voltage of the V phase and the W phase are waveforms of the same shape in which the phases are respectively shifted by 120 degrees from the waveforms of the induced voltage and the terminal voltage of the U phase.
 図2Aおよび図2Bにおいて、インバータ回路3の高圧側に接続されたスイッチング素子3a、3b、3cについての駆動信号のタイミングチャートが、それぞれ、U+、V+、W+として示されている。インバータ回路3の低圧側に接続されたスイッチング素子3d、3e、3fの駆動信号は、スイッチング素子3d、3e、3fに対応する高圧側のスイッチング素子3a、3b、3cの駆動信号から、それぞれ位相が180度ずれたものとなる。 In FIG. 2A and FIG. 2B, the timing chart of the drive signal about switching element 3a, 3b, 3c connected to the high voltage | pressure side of the inverter circuit 3 is each shown as U +, V +, W +. The drive signals of the switching elements 3d, 3e, 3f connected to the low voltage side of the inverter circuit 3 have respective phases from the drive signals of the switching elements 3a, 3b, 3c on the high voltage side corresponding to the switching elements 3d, 3e, 3f. It will be 180 degrees off.
 位置検出部5は、ブラシレスDCモータ4の回転子の位置を、直接的または間接的に検出する。検出された回転子の位置情報に基づいて、固定子巻線における通電相を切り換えるタイミング(図示せず)が調整される。 The position detection unit 5 detects the position of the rotor of the brushless DC motor 4 directly or indirectly. Based on the detected rotor position information, the timing (not shown) for switching the energized phase in the stator winding is adjusted.
 本実施の形態では、位置検出部5は、回転子の磁極の相対位置を検出する。具体的には、位置検出部5は、誘起電圧のゼロクロスポイントを位置信号として検出する。 In the present embodiment, the position detection unit 5 detects the relative position of the magnetic poles of the rotor. Specifically, the position detection unit 5 detects the zero cross point of the induced voltage as a position signal.
 ゼロクロスポイントの検出に際しては、該当する相の固定子巻線へ電圧印加がされていない区間(図2Aおよび図2Bに示すU相では、スイッチング素子3a、3dの両方がオフとなる区間であるC1、C2、C3、C4)に固定子巻線に現れる誘起電圧と、インバータ入力電圧Vdcの1/2との大小関係が反転するポイント(P1、P2)が検出される。 C1 is a section where voltage is not applied to the stator winding of the corresponding phase (a section in which both switching elements 3a and 3d are turned off in the U phase shown in FIG. 2A and FIG. 2B) when detecting the zero cross point. , C2, C3, C4), points (P1, P2) at which the magnitude relationship between the induced voltage appearing in the stator winding and the half of the inverter input voltage Vdc is inverted are detected.
 従って、電気角1周期あたり、各相について2回、ゼロクロスポイントの位置信号が検出される。すなわち、3相全体としては、電気角60度毎に計6回、位置信号が検出される。 Therefore, the position signal of the zero crossing point is detected twice for each phase per electrical angle cycle. That is, in all three phases, position signals are detected six times in total at every electrical angle of 60 degrees.
 図2Aに示す、駆動信号U+、V+、およびW+による通電パターンにおいては、ゼロクロスポイント(P1)の位置検出後、電気角30度が経過する時点において、W+のオフと同時にU+がオンとなり、スイッチング素子3aがオンされる。これにより、電気角360度の全範囲において、常に3相のうちのいずれかの相の固定子巻線が通電される。 In the energization pattern by drive signals U +, V +, and W + shown in FIG. 2A, U + is turned on simultaneously with the turning off of W + at the time when an electrical angle of 30 degrees passes after the position detection of the zero crossing point (P1). The element 3a is turned on. Thereby, the stator winding of any one of the three phases is always energized in the entire range of the electrical angle of 360 degrees.
 一方、図2Bに示す通電パターンにおいては、ゼロクロスポイント(P1)の位置検出後、電気角30度が経過する前に、W+がオフとなって、スイッチング素子3cがオフされたのち、電気角30度が経過する時点においてU+がオンとなって、スイッチング素子3aがオンされている。 On the other hand, in the energization pattern shown in FIG. 2B, after the position detection of the zero cross point (P1), W + is turned off and the switching element 3c is turned off before the electrical angle of 30 degrees elapses. At the time when the temperature passes, U + is turned on, and the switching element 3a is turned on.
 C1~C4区間において固定子巻線に誘起電圧が現れるのは、他相のスイッチング素子がオンしている期間、すなわち、PWM制御によるスイッチング素子のオン期間のみである。従って、スイッチング素子のターンオフは、ターンオンより早く行われるように制御され、これにより、ブラシレスDCモータ4への電力供給区間が短くなるように制御される。これにより、PWM制御によるスイッチング素子のオンおよびオフの回数が少なくなるため、インバータ回路3の損失が抑制される。 The induced voltage appears in the stator winding in the section C1 to C4 only during the period when the switching element of the other phase is on, that is, the ON period of the switching element by PWM control. Therefore, the turn-off of the switching element is controlled to be performed earlier than the turn-on, whereby the power supply interval to the brushless DC motor 4 is controlled to be short. As a result, the number of times the switching element is turned on and off due to PWM control is reduced, so that the loss of the inverter circuit 3 is suppressed.
 また、固定子巻線の電力供給区間が短くなることで、PWM制御によるスイッチング素子のオン時間は長くなる。これにより、位置検出部5によるゼロクロスポイントの位置検出信号の取得が可能な期間が長くなる。従って、位置検出部5による位置検出の精度が向上する。 Further, as the power supply section of the stator winding becomes shorter, the on time of the switching element by PWM control becomes longer. As a result, the period during which the position detection unit 5 can acquire the position detection signal of the zero cross point is extended. Therefore, the accuracy of position detection by the position detection unit 5 is improved.
 さらに、図2Aおよび図2Bに示すように、スイッチング素子のオフタイミングは、ゼロクロスポイント(P1)の位置検出の直後から、電気角30度が経過する時点まで(位置検出P1に対して区間A1の範囲)としている。これにより、ゼロクロスポイント(P1)の位置検出の結果に基づいて、確実に転流させることが可能となる。また、駆動波形が誘起電圧に対して進み位相となるため、遅れ位相によるトルク低下の発生が回避される。 Furthermore, as shown in FIGS. 2A and 2B, the off timing of the switching element is from immediately after the position detection of the zero cross point (P1) to the time when an electrical angle of 30 degrees elapses ( Range). This enables reliable commutation based on the result of position detection of the zero cross point (P1). Further, since the drive waveform is in the lead phase with respect to the induced voltage, the occurrence of the torque drop due to the delay phase is avoided.
 このように、スイッチング素子3a~3fのオフタイミングを、ゼロクロスポイントの位置検出直後から電気角30度が経過する時点までとすることで、3相の固定子巻線への通電角が、90度以上、かつ、120度以下に調節される。また、電力供給の休止区間(A1、A2、A3)が短いほど大きな進角B(電力無供給区間の電気角の1/2)が自動的に付加されるようにしている。 As described above, by setting the off timings of the switching elements 3a to 3f to the time when an electrical angle of 30 degrees passes immediately after the position detection of the zero cross point, the conduction angle to the three-phase stator winding is 90 degrees. The above is adjusted to 120 degrees or less. In addition, as the idle section (A1, A2, A3) of the power supply is shorter, a larger advance angle B (1/2 of the electrical angle of the non-powered section) is automatically added.
 これによって、ブラシレスDCモータ4のトルクが増加して、ブラシレスDCモータ4に対して電力が供給されない、電力無供給区間がある状態であっても、ブラシレスDCモータ4の脱調等が回避され、安定したブラシレスDCモータ4の駆動が可能となる。 As a result, the torque of the brushless DC motor 4 is increased, and even if there is no power supply section where power is not supplied to the brushless DC motor 4, step-out or the like of the brushless DC motor 4 is avoided. It becomes possible to drive the brushless DC motor 4 stably.
 負荷が増加して、スイッチング素子のオフタイミングが、ゼロクロスポイントの位置検出後、電気角30度の経過時となったときの負荷が、120度での通電によって駆動可能な最大負荷である。この場合、オフタイミングを位置検出後、電気角30度の経過時に固定し、PWM制御のオン時間時比率を100%とした状態で、オンタイミングが最大で電気角30度まで進められる。すなわち、位置検出信号の取得と同時に転流される。これによって、各相の通電角を電気角150度にまで広げることができ、モータ駆動装置30によって駆動可能な負荷の領域を拡張することができる。 When the load increases and the off timing of the switching element becomes 30 ° electrical angle after the position detection of the zero cross point, the load is the maximum load that can be driven by the conduction at 120 °. In this case, after the position detection, the off timing is fixed when an electrical angle of 30 degrees elapses, and the on timing is advanced to a maximum of an electrical angle of 30 degrees while the on time ratio of PWM control is 100%. That is, commutation occurs simultaneously with the acquisition of the position detection signal. As a result, the conduction angle of each phase can be expanded to an electrical angle of 150 degrees, and the range of loads that can be driven by the motor drive device 30 can be expanded.
 [5-2.速度制御の詳細]
 次に、前述したスイッチング素子のオンタイミングおよびオフタイミングの調整による、ブラシレスDCモータ4の速度制御について、フローチャートを用いて詳細に説明する。
5-2. Details of Speed Control]
Next, speed control of the brushless DC motor 4 by adjusting the on timing and off timing of the switching element described above will be described in detail using a flowchart.
 図3は、スイッチング素子のオフタイミング調整制御の開始が判定されるフローチャートである。 FIG. 3 is a flowchart for determining the start of off timing adjustment control of the switching element.
 まず、PWM制御部11で生成されたスイッチング素子のオン時間時比率が所定値より大きいか否か判定される(S11)。オン時間時比率が所定値より大きい場合(S11のYes)は、後述のオフタイミング調整制御が行われる(S12)。オン時間時比率が所定値以下の場合(S11のNo)は、PWM制御が行われる(S13)。 First, it is determined whether the on-time ratio of the switching element generated by the PWM control unit 11 is larger than a predetermined value (S11). If the on time ratio is larger than the predetermined value (Yes in S11), the off timing adjustment control described later is performed (S12). When the on-time ratio is equal to or less than the predetermined value (No in S11), PWM control is performed (S13).
 本実施の形態では、ブラシレスDCモータ4の固定子巻線への電力供給区間の最小値は、電気角90度に設定されている。このため、オン時間時比率の所定値は、{(90度×2)-120度}/120度より、50%に設定されている。なお、オン時間時比率の所定値は、モータ駆動装置の用途を考慮して、適正な任意の値に設定される。 In the present embodiment, the minimum value of the power supply section to the stator winding of the brushless DC motor 4 is set to an electrical angle of 90 degrees. For this reason, the predetermined value of the on-time time ratio is set to 50% from {(90 degrees × 2) −120 degrees} / 120 degrees. The predetermined value of the on time ratio is set to an appropriate value in consideration of the application of the motor drive device.
 このように、本実施の形態では、スイッチング素子のオフタイミング調整制御が開始されるのは、所定のオン時間時比率以上の場合である。この際、オフタイミング調整制御とPWM制御とが併用される。これにより、ブラシレスDCモータ4の起動時等のように極端に駆動速度が低い場合若しくは低速駆動時で非常に負荷が低い場合、倍電圧入力時で比較的負荷が軽い場合若しくは低速の場合などにおいて、固定子巻線への電力供給区間が極端に短くなることによるブラシレスDCモータ4の起動の失敗、不安定な運転状態、または極端なトルク低下等が防止される。従って、あらゆる負荷条件において、安定してブラシレスDCモータ4を駆動させることができる。 As described above, in the present embodiment, the off-timing adjustment control of the switching element is started when the ratio is greater than or equal to the predetermined on-time period. At this time, off timing adjustment control and PWM control are used in combination. As a result, when the drive speed is extremely low, such as when the brushless DC motor 4 is started, or when the load is extremely low at low speed driving, or when the load is relatively light at doubled voltage input or at low speed, etc. In addition, a failure in starting of the brushless DC motor 4 due to an extremely short power supply section to the stator winding, an unstable operating condition, or an extreme torque drop can be prevented. Therefore, the brushless DC motor 4 can be stably driven under all load conditions.
 図4は、PWM制御からオフタイミング調整制御への移行が判定されるフローチャートである。 FIG. 4 is a flowchart in which the transition from PWM control to off timing adjustment control is determined.
 図3に示したフローにより、オフタイミング調整制御の開始が決定されると、スイッチング素子のオフタイミングが任意の時間だけ早められる(S21)。また、PWM制御による速度制御が行われる(S22)。なお、オフタイミングが早められる際は、前述のように、複数回に分けて、前回のオフタイミングより早められてもよい。 When the start of the off timing adjustment control is determined by the flow shown in FIG. 3, the off timing of the switching element is advanced by an arbitrary time (S21). Further, speed control is performed by PWM control (S22). When the off timing is advanced, as described above, it may be divided into a plurality of times and may be advanced from the previous off timing.
 ここで、スイッチング素子のオフタイミングが早められているため(S21)、ブラシレスDCモータ4への電力供給区間が短くなる。従って、PWM制御によって、オン時間時比率は増加することになる。 Here, since the off timing of the switching element is advanced (S21), the power supply section to the brushless DC motor 4 becomes short. Therefore, the PWM control will increase the on time ratio.
 PWM制御によるオン時間時比率が100%未満の場合(S23のYes)は、スイッチング素子のオフタイミングが早められる(S21)とともに、PWM制御が行われる(S22)。 When the on-time ratio by PWM control is less than 100% (Yes in S23), the off timing of the switching element is advanced (S21) and PWM control is performed (S22).
 オン時間時比率が100%に到達した場合(S23のNo)、オン時間時比率は100%の状態に保持される(S24)。すなわち、この場合は、PWM制御が行われない。また、スイッチング素子のオフタイミング調整制御が行われる(S25)。つまり、オン時間時比率が100%となった時点で、PWM制御からオフタイミング調整制御に移行する。これにより、ブラシレスDCモータ4が目標速度で駆動するように、ブラシレスDCモータ4の駆動速度が制御される。 When the on-time ratio reaches 100% (No in S23), the on-time ratio is maintained at 100% (S24). That is, in this case, the PWM control is not performed. Further, off timing adjustment control of the switching element is performed (S25). That is, when the on-time ratio becomes 100%, the PWM control is shifted to the off-timing adjustment control. Thereby, the drive speed of the brushless DC motor 4 is controlled so that the brushless DC motor 4 is driven at the target speed.
 なお、スイッチング素子のオフタイミングが、ゼロクロスポイントの位置検出後、電気角30度(すなわち、120度での通電がされている状態)の経過時となった場合は、オンタイミング制御による速度制御が行われてもよい。オンタイミング制御では、スイッチング素子のオンタイミングが最大で電気角30度まで進められる。これによって、ブラシレスDCモータ4の駆動可能な領域が拡張され、ブラシレスDCモータ4が目標速度で適切に駆動される。 In addition, when the off timing of the switching element has reached the time when the electrical angle of 30 degrees (that is, the state of being energized at 120 degrees) elapses after the position detection of the zero cross point, speed control by on timing control It may be done. In the on-timing control, the on-timing of the switching element is advanced up to an electrical angle of 30 degrees. As a result, the drivable area of the brushless DC motor 4 is expanded, and the brushless DC motor 4 is appropriately driven at the target speed.
 次に、スイッチング素子のオフタイミング調整制御への移行後の、ブラシレスDCモータ4の速度制御について、図1および図5を用いて説明する。 Next, speed control of the brushless DC motor 4 after transition to off timing adjustment control of the switching element will be described with reference to FIGS. 1 and 5.
 図5は、オフタイミング調整制御を示すフローチャートである。 FIG. 5 is a flowchart showing off timing adjustment control.
 速度検出部6で検出されたブラシレスDCモータ4の駆動速度と目標速度との偏差が、速度誤差検出部7によって検出される。 The deviation between the driving speed of the brushless DC motor 4 detected by the speed detection unit 6 and the target speed is detected by the speed error detection unit 7.
 図5において、ブラシレスDCモータ4の駆動速度が目標速度より早い場合(S31のYes)は、オフタイミング制御部8bがスイッチング素子のオフタイミングを早めることが可能か否か判定される(S32)。このとき、PWM制御部11でのオン時間時比率は100%に保持されている。 In FIG. 5, when the driving speed of the brushless DC motor 4 is faster than the target speed (Yes in S31), it is determined whether the off timing control unit 8b can advance the off timing of the switching element (S32). At this time, the on-time ratio in the PWM control unit 11 is held at 100%.
 オフタイミングを早めることが可能である場合(S32のYes)には、スイッチング素子のオフタイミングが早められる(S33)。これによって、固定子巻線への電力供給区間を減少させて、ブラシレスDCモータ4の駆動速度が低下するように速度制御が行われる。オフタイミングを早めることが不可能である場合(S32のNo)は、PWM制御部11によるPWM制御が行われる(S34)。 If the off timing can be advanced (Yes in S32), the off timing of the switching element is advanced (S33). As a result, the power supply section to the stator winding is reduced, and speed control is performed such that the driving speed of the brushless DC motor 4 is reduced. If it is not possible to advance the off timing (No in S32), PWM control is performed by the PWM control unit 11 (S34).
 なお、本実施の形態において、スイッチング素子のオフタイミングを早めることが可能か否かの判定は、以下のように行われる。 In the present embodiment, the determination as to whether or not the off timing of the switching element can be advanced is performed as follows.
 スイッチング素子のオフタイミングがゼロクロスポイントの位置検出の直後である場合は、これ以上オフタイミングを早めることができないと判定される。 If the off timing of the switching element is immediately after the position detection of the zero cross point, it is determined that the off timing can not be further advanced.
 本実施の形態では、進角を0度としているため、各固定子巻線への通電角の最小値は、電気角90度である。ここで、通電角が120度未満の場合には、非通電区間の電気角に対して2倍の非電力供給区間が生じる。従って、通電角が90度の場合には、非通電区間が30度であり、60度の非電力供給区間が生じる。すなわち、通電角が90度の場合の出力は、通電角が120度の場合の出力の50%となる。 In the present embodiment, since the advance angle is 0 degrees, the minimum value of the conduction angle to each stator winding is 90 electrical degrees. Here, when the conduction angle is less than 120 degrees, a non-power supply section having twice the electrical angle of the non-conduction section occurs. Therefore, when the conduction angle is 90 degrees, the non-conduction section is 30 degrees and a non-power supply section of 60 degrees occurs. That is, the output when the conduction angle is 90 degrees is 50% of the output when the conduction angle is 120 degrees.
 ブラシレスDCモータ4の駆動速度が目標速度より遅いと判定された場合(S35のYes)は、スイッチング素子のオフタイミングが、ゼロクロスポイントの位置検出直後から、電気角30度の経過時までの間であるか否か判定される(S36)。 When it is determined that the drive speed of the brushless DC motor 4 is slower than the target speed (Yes in S35), the off timing of the switching element is between immediately after the detection of the zero cross point position and the time when the electrical angle is 30 degrees. It is determined whether there is any (S36).
 スイッチング素子のオフタイミングが電気角30度の経過時より前である場合(S36のYes)は、スイッチング素子のオフタイミングが遅らせられる(S37)。これにより、ブラシレスDCモータ4の固定子巻線への電力供給区間が増加され、ブラシレスDCモータ4の駆動速度が増加するように、速度制御が行われる。 If the off timing of the switching element is earlier than the elapse of 30 electrical degrees (Yes in S36), the off timing of the switching element is delayed (S37). As a result, the power supply section to the stator winding of the brushless DC motor 4 is increased, and the speed control is performed so that the driving speed of the brushless DC motor 4 is increased.
 一方、スイッチング素子のオフタイミングが電気角30度の経過時以降である場合(S36のNo)は、これ以上スイッチング素子のオフタイミングを遅らせると、誘起電圧に対して印加電圧位相が遅れ位相となり、モータトルクの低下およびこれに伴う脱調等が生じる可能性がある。このため、スイッチング素子のオンタイミングが早められる(S38)。これにより、固定子巻線への電力供給区間を増加され、ブラシレスDCモータ4の駆動速度が上昇するように、速度制御が行われる。 On the other hand, when the off timing of the switching element is after the lapse of the electrical angle of 30 degrees (No in S36), when the off timing of the switching element is further delayed, the applied voltage phase is delayed with respect to the induced voltage. A decrease in motor torque and an associated step out may occur. Therefore, the on timing of the switching element is advanced (S38). As a result, the power supply section to the stator winding is increased, and speed control is performed such that the driving speed of the brushless DC motor 4 is increased.
 本実施の形態では、スイッチング素子のオンタイミングが早められる範囲の上限は、ゼロクロスポイントの位置検出の直後までとしている。スイッチング素子のオフタイミングが、ゼロクロスポイントの位置検出の直後のときの固定子巻線への電力供給区間の最大値は、電気角150度となる。このとき、ブラシレスDCモータ4に流れる電流は、通電角が電気角120度の場合の電流に対して17%増加する。従って、ブラシレスDCモータ4の最大出力も、17%程度増加する。 In the present embodiment, the upper limit of the range in which the on-timing of the switching element can be advanced is immediately after the position detection of the zero cross point. The maximum value of the power supply section to the stator winding when the off timing of the switching element is immediately after the position detection of the zero cross point is 150 degrees of electrical angle. At this time, the current flowing through the brushless DC motor 4 is increased by 17% with respect to the current when the conduction angle is 120 degrees. Accordingly, the maximum output of the brushless DC motor 4 also increases by about 17%.
 なお、ブラシレスDCモータ4の駆動速度が目標速度と等しい場合(S35のNo)は、フローが終了する。 When the driving speed of the brushless DC motor 4 is equal to the target speed (No in S35), the flow ends.
 また、本実施の形態では、前述の通り、進角を0度としている。このため、通電角が電気角120度の場合、スイッチング素子のオフタイミングとオンタイミングとが、ゼロクロスポイントの位置検出後、電気角30度の経過時で一致する。 Further, in the present embodiment, as described above, the advance angle is set to 0 degrees. Therefore, when the conduction angle is 120 degrees in electrical angle, the off timing and on timing of the switching element coincide with each other at an electrical angle of 30 degrees after the position detection of the zero cross point.
 ここで、モータ駆動装置30は、IPMモータ(Interior Permanent Magnet Motor)を含め、種々のモータを最適に駆動可能であることが望ましい。例えば、IPMモータの回転子の内部には、永久磁石が埋め込まれている。このため、IPMモータの最適な駆動の実現のためには、適切な進角を設ける必要がある。 Here, it is desirable that the motor drive device 30 can optimally drive various motors, including an IPM motor (Interior Permanent Magnet Motor). For example, permanent magnets are embedded in the rotor of the IPM motor. For this reason, in order to realize the optimum drive of the IPM motor, it is necessary to provide an appropriate advance angle.
 本実施の形態では、スイッチング素子のオフタイミング調整の範囲およびオンタイミング調整の範囲は、以下のように設定されている。 In the present embodiment, the range of the off timing adjustment of the switching element and the range of the on timing adjustment are set as follows.
 すなわち、スイッチング素子のオフタイミングは、ゼロクロスポイントの位置検出の直後から、「(電気角30度)-(進角)」の経過時までの範囲である。 That is, the off timing of the switching element is in the range from immediately after the detection of the position of the zero cross point to the time when ((electrical angle 30 degrees) − (advance angle)) has elapsed.
 また、スイッチング素子のオンタイミングは、ゼロクロスポイントの位置検出後、「(電気角30度)-(進角)」の経過時である。 Further, the on timing of the switching element is the time when ((electrical angle 30 degrees) − (advance angle)) has elapsed after the position detection of the zero cross point.
 従って、例えば、進角が10度の場合、スイッチング素子のオフタイミングは、ゼロクロスポイントの位置検出直後から、電気角20度の経過時までの範囲において調整され、オンタイミングは、ゼロクロスポイントの位置検出後、電気角20度の経過時に調整される。また、ゼロクロスポイントの位置検出時からオフタイミングまでの電気角、および、ゼロクロスポイントの位置検出時からオンタイミングまでの電気角の和は、60度以下となるようにしている。さらに、オフタイミングは、オンタイミングから、電気角0度から30度の経過時までの間の任意の範囲で調整される。これにより、進角、オンタイミング、およびオフタイミングは、ゼロクロスポイントの位置検出直後から、電気角30度の経過時までの範囲において、自由に設定することができる。 Therefore, for example, when the advance angle is 10 degrees, the off timing of the switching element is adjusted in the range from immediately after the position detection of the zero cross point to the time of the electrical angle of 20 degrees, and the on timing is the position detection of the zero cross point It is adjusted when the electrical angle of 20 degrees has passed. Further, the sum of the electrical angle from the time of detecting the position of the zero cross point to the off timing and the electrical angle from the time of detecting the position of the zero cross point to the on timing is set to 60 degrees or less. Furthermore, the off timing is adjusted in an arbitrary range from the on timing to the time when the electrical angle is 0 degrees to 30 degrees. As a result, the advance angle, the on timing, and the off timing can be freely set in the range from immediately after the detection of the position of the zero cross point to the time when the electrical angle of 30 degrees has elapsed.
 なお、進角が付加されたときの固定子巻線への通電角は、「(電気角90度)+(進角)」から電気角120度までの範囲で調整される。 The conduction angle to the stator winding when the advance angle is added is adjusted in the range from "(electrical angle 90 degrees) + (advance angle)" to 120 electrical angle.
 なお、ブラシレスDCモータ4が、高速かつ高負荷で駆動される場合は、スイッチング素子のオンタイミングおよびオフタイミングは、以下のように調整されてもよい。 When the brushless DC motor 4 is driven at high speed and with a high load, the on timing and off timing of the switching element may be adjusted as follows.
 すなわち、スイッチング素子のオフタイミングは、ゼロクロスポイントの位置検出後、「(電気角30度)-(進角)」の経過時に調整される。また、スイッチング素子のオンタイミングは、ゼロクロスポイントの位置検出直後から「(電気角30度)-(進角)」の経過時までの範囲で調整される。これによって、ブラシレスDCモータ4の各固定子巻線への通電角は、電気角120度から「(電気角150度)-(進角)」の範囲内で調整することができる。 That is, the off timing of the switching element is adjusted when "(electrical angle 30 degrees)-(advance angle)" has elapsed after the position detection of the zero cross point. Further, the on timing of the switching element is adjusted in the range from immediately after the detection of the position of the zero cross point to the time when ((electrical angle 30 degrees) − (advance angle)) has elapsed. As a result, the conduction angle to each stator winding of the brushless DC motor 4 can be adjusted within the range of “(electric angle 150 degrees) − (advance angle)” from 120 electrical degrees.
 以上により、スイッチング素子のオンタイミングおよびオフタイミングを調整することにより、電気角90度から150度までの範囲(進角0度の場合)で通電角の調整が行われ、ブラシレスDCモータ4への電力の供給が調整される。従って、本実施の形態のモータ駆動装置30は、負荷の状態が、低速かつ低負荷の状態から、高速かつ高負荷の状態までの、幅広い範囲において、ブラシレスDCモータ4を駆動することが可能である。 As described above, by adjusting the on timing and off timing of the switching element, the conduction angle is adjusted in the range of 90 ° to 150 ° electrical angle (in the case of 0 ° advance angle), and the brushless DC motor 4 is adjusted. Power supply is regulated. Therefore, the motor drive device 30 according to the present embodiment can drive the brushless DC motor 4 in a wide range from the low speed and low load state to the high speed and high load state. is there.
 次に、ブラシレスDCモータ4の加速時または減速時の制御について検討する。 Next, control at the time of acceleration or deceleration of the brushless DC motor 4 will be discussed.
 前述したように、電気角120度の通電の場合における出力電力に対して、通電角が30度減少した90度での通電の場合は、出力電力が50%に減少し、通電角が30度増加した150度の通電の場合は、出力電力が17%程度増加する。つまり、単位通電角あたりの出力電力の増減量は、電気角120度の通電を境に異なる。このため、同一レートで通電角が増減された場合、電気角120度以上での通電の場合における加速度は、通電角120度未満の通電の場合における加速度の1/3程度になる。 As described above, in the case of conduction at 90 degrees where the conduction angle is reduced by 30 degrees with respect to the output power in the case of conduction at an electrical angle of 120 degrees, the output power decreases to 50% and the conduction angle is 30 degrees In the case of the increased 150 degree conduction, the output power increases by about 17%. That is, the amount of increase or decrease in the output power per unit conduction angle differs at the time of conduction at an electrical angle of 120 degrees. Therefore, when the conduction angle is increased or decreased at the same rate, the acceleration in the case of conduction at an electrical angle of 120 degrees or more is about 1/3 of the acceleration in the case of conduction at a conduction angle of less than 120 degrees.
 モータ駆動装置を利用する機器においては、ブラシレスDCモータが、機器に固有の共振周波数で駆動されると、振動および騒音が増大する。増大された振動は、機器の故障の原因となる懸念がある。このため、一般的に、機器に固有の共振周波数でのモータの駆動は、回避される。 In equipment using a motor drive, when the brushless DC motor is driven at a resonance frequency specific to the equipment, vibration and noise increase. The increased vibration may cause equipment failure. For this reason, in general the drive of the motor at the resonance frequency specific to the device is avoided.
 加速度が低下すると、駆動周波数が機器に固有の共振周波数帯を通過する時間が長くなる。このため、加速度の低下は、振動および騒音の発生の原因となりうる。また、頻繁に加速または減速が行われて、駆動周波数が、頻繁に機器の共振周波数帯を通過する場合には、発生した振動によって機器が故障する可能性がある。 As the acceleration decreases, the time for the drive frequency to pass through the resonance frequency band unique to the device increases. For this reason, a reduction in acceleration can be a source of vibration and noise. In addition, if acceleration or deceleration is frequently performed and the drive frequency frequently passes through the resonant frequency band of the device, the generated vibration may cause the device to fail.
 本実施の形態では、以下に説明するように、速度制御におけるスイッチング素子のオンタイミングおよびオフタイミングの変化量(制御量)は、通電角に応じて補正される。これにより、加速または減速の際の加速度の減少が回避され、一定の加速度が得られる。 In the present embodiment, as described below, the amount of change (control amount) of the on timing and the off timing of the switching element in speed control is corrected according to the conduction angle. This avoids a decrease in acceleration during acceleration or deceleration and provides a constant acceleration.
 図6は、制御量の調整を示すフローチャートである。 FIG. 6 is a flowchart showing adjustment of the control amount.
 まず、図5に示すフローチャートに沿って、通電相制御部8におけるスイッチング素子のオンタイミングおよびオフタイミングが設定される(S41)。 First, according to the flowchart shown in FIG. 5, the on timing and off timing of the switching element in the conduction phase control unit 8 are set (S41).
 次に、設定されたスイッチング素子のオンタイミングおよびオフタイミングから、通電角が120度以上か否か判定される(S42)。通電角が120度以上の場合(S42のYes)には、レート1が選定される(S43)。一方、通電角が120度より小さい場合(S42のNo)には、レート2が選定される(S44)。 Next, it is determined from the set on timing and off timing of the switching element whether the conduction angle is 120 degrees or more (S42). If the conduction angle is 120 degrees or more (Yes in S42), Rate 1 is selected (S43). On the other hand, if the conduction angle is smaller than 120 degrees (S42: No), Rate 2 is selected (S44).
 レート1およびレート2は、ブラシレスDCモータの電力供給区間の増減レートである。本実施の形態では、レート1は、レート2の3倍に設定されている。すなわち、電気角120度以上での通電の場合は、120度未満の場合に増減する通電角の3倍の通電角が増減されるようにしている。 Rate 1 and rate 2 are increase / decrease rates of the power supply section of the brushless DC motor. In the present embodiment, the rate 1 is set to three times the rate 2. That is, in the case of energization at an electrical angle of 120 degrees or more, a conduction angle three times as large as the conduction angle to be increased or decreased in the case of less than 120 degrees is increased or decreased.
 例えば、加速時または減速時において、通電角が120度未満の場合には、1制御周期あたり0.1度、通電角が増減される。一方、通電角が120度以上の場合は、1制御周期あたり0.3度、通電角が増減される。これにより、ブラシレスDCモータ4の駆動状態によらず、ほぼ一定の加速度が得られる。 For example, at the time of acceleration or deceleration, if the conduction angle is less than 120 degrees, the conduction angle is increased or decreased by 0.1 degree per control cycle. On the other hand, when the conduction angle is 120 degrees or more, the conduction angle is increased or decreased by 0.3 degree per control cycle. As a result, substantially constant acceleration can be obtained regardless of the driving state of the brushless DC motor 4.
 このようにして、ブラシレスDCモータ4への電力の供給状態(本実施の形態では、電力供給区間)に応じて、制御量が調整される。 In this manner, the control amount is adjusted in accordance with the supply state (the power supply section in the present embodiment) of the power to the brushless DC motor 4.
 次に、本実施の形態におけるブラシレスDCモータの端子電圧について、図7A~図7Dを用いて説明する。 Next, terminal voltages of the brushless DC motor according to the present embodiment will be described with reference to FIGS. 7A to 7D.
 図7Aおよび図7Bは、それぞれ、図2Aにおける区間C1および区間F1の端子電圧波形を示している。図7Cおよび図7Dは、それぞれ、図2Bにおける区間C3および区間F2の端子電圧波形を示している。 FIGS. 7A and 7B respectively show terminal voltage waveforms in section C1 and section F1 in FIG. 2A. FIGS. 7C and 7D respectively show terminal voltage waveforms in section C3 and section F2 in FIG. 2B.
 図7Aおよび図7Bに示すように、図2Aに示された、PWM制御された場合の波形には、高周波のPWMキャリア周波数成分(周期f)が重畳されている。 As shown in FIG. 7A and FIG. 7B, a high frequency PWM carrier frequency component (period f) is superimposed on the waveform in the case of PWM control shown in FIG. 2A.
 また、図7Aに示すように、区間C1では、PWMがオンとなった瞬間に、固定子巻線または浮遊容量等の影響によるリンギングノイズ成分も重畳される。 Further, as shown in FIG. 7A, in the section C1, at the moment when the PWM is turned on, a ringing noise component due to the influence of the stator winding or the stray capacitance is also superimposed.
 区間C1においては、ブラシレスDCモータ4の端子電圧Vuと、インバータ入力電圧Vdcの1/2とが比較され、その大小関係が反転するポイントがブラシレスDCモータ4の誘起電圧のゼロクロスポイント(P点)として検出される。 In section C1, the terminal voltage Vu of the brushless DC motor 4 and half of the inverter input voltage Vdc are compared, and the point at which the magnitude relationship is reversed is the zero cross point of the induced voltage of the brushless DC motor 4 (point P). Is detected as
 しかし、図7Aに示すように、端子電圧Vuにはリンギングノイズ成分が重畳されているため、Px点がゼロクロスポイントであると誤検出される。このように誤った位置検出がされると、ブラシレスDCモータ4の駆動速度の脈動、機器の振動および騒音の増大、および駆動効率の低下などが引き起こされる。 However, as shown in FIG. 7A, since the ringing noise component is superimposed on the terminal voltage Vu, the point Px is erroneously detected as the zero cross point. Such erroneous position detection causes pulsation of the driving speed of the brushless DC motor 4, increases in vibration and noise of the device, and reduction in driving efficiency.
 一方、図7Cに示すように、PWM制御のオン時間時比率が100%の場合、端子電圧Vuには誘起電圧波形が現れる。このため、ゼロクロスポイント(P点)の位置を正確に検出することが可能である。従って、低騒音、低振動、かつ低損失な、安定したブラシレスDCモータ4の駆動を実現することができる。 On the other hand, as shown in FIG. 7C, when the on-time ratio of PWM control is 100%, an induced voltage waveform appears at the terminal voltage Vu. For this reason, it is possible to accurately detect the position of the zero cross point (point P). Therefore, stable driving of the brushless DC motor 4 with low noise, low vibration and low loss can be realized.
 また、図7Bに示すように、区間F1では、PWM制御による高周波でのスイッチング素子のオンおよびオフに伴うスイッチング損失が発生する。一方、図7Dに示すように、オン時間時比率が100%で駆動される場合は、スイッチング素子のスイッチング動作が行われないため、スイッチング損失は発生しない。従って、モータ駆動装置30の回路損失が低減され、モータ駆動装置30の高効率化を実現することができる。 Further, as shown in FIG. 7B, in the section F1, a switching loss occurs with the on / off of the switching element at high frequency by PWM control. On the other hand, as shown in FIG. 7D, when the on-time ratio is driven at 100%, no switching loss occurs because the switching operation of the switching element is not performed. Therefore, the circuit loss of the motor drive device 30 is reduced, and high efficiency of the motor drive device 30 can be realized.
 図8Aは、PWM制御された場合のブラシレスDCモータの相電流波形を示す図である。図8Bは、オン時間時比率が100%の場合のブラシレスDCモータの相電流波形を示す図である。 FIG. 8A is a diagram showing phase current waveforms of the brushless DC motor when PWM control is performed. FIG. 8B is a diagram showing a phase current waveform of the brushless DC motor when the on-time ratio is 100%.
 図8Aは、電気角120度での通電の場合の波形を示している。図8Aに示すように、PWM制御された場合の相電流波形には、PWM制御によるスイッチング素子のオンおよびオフに伴う高周波電流成分が重畳されている。この高周波電流成分は、モータ鉄損の原因となる。 FIG. 8A shows a waveform in the case of energization at an electrical angle of 120 degrees. As shown in FIG. 8A, high-frequency current components accompanying switching on and off of the switching element by PWM control are superimposed on the phase current waveform when PWM control is performed. This high frequency current component causes the motor iron loss.
 一方、図8Bに示すように、PWMオン時間時比率が100%の状態でブラシレスDCモータ4が駆動されている場合には、高周波電流成分は発生しない。このため、モータ駆動装置30のモータ損失が低減され、モータ駆動装置30の高効率化を実現することができる。 On the other hand, as shown in FIG. 8B, when the brushless DC motor 4 is driven with the PWM on-time ratio being 100%, no high frequency current component is generated. For this reason, the motor loss of the motor drive device 30 is reduced, and high efficiency of the motor drive device 30 can be realized.
 [6.モータ駆動装置を用いた冷蔵庫]
 以上のように構成されたモータ駆動装置30により駆動される圧縮機17を用いた冷凍サイクル装置について説明する。ここでは、冷却サイクル装置の一例として、冷蔵庫について説明する。
[6. Refrigerator using motor drive]
A refrigeration cycle apparatus using a compressor 17 driven by the motor drive device 30 configured as described above will be described. Here, a refrigerator will be described as an example of the cooling cycle device.
 近年は、冷蔵庫に真空断熱材が採用されるなどして、冷蔵庫の断熱性能が向上しており、冷蔵庫の外部からの熱の侵入が非常に少ない。このため、家事が行われるのに伴って扉の開閉が頻繁に行われる朝夕の時間帯を除くと、1日の大半の時間帯において、冷蔵庫内は安定した冷却状態にある。このとき、圧縮機17は、冷凍能力の低い、低速かつ低負荷の状態で駆動される。従って、冷蔵庫の消費電力を削減するためには、圧縮機17に含まれるブラシレスDCモータ4が、低速かつ低負荷で駆動されている際の効率を上げることが、非常に有効である。 In recent years, a vacuum heat insulating material is adopted for a refrigerator, etc., and the heat insulation performance of the refrigerator is improved, and the penetration of heat from the outside of the refrigerator is very small. For this reason, the interior of the refrigerator is in a stable cooling state during most of the day, except during the morning and evening when doors are frequently opened and closed as household chores are performed. At this time, the compressor 17 is driven at low speed and low load with low refrigeration capacity. Therefore, in order to reduce the power consumption of the refrigerator, it is very effective to increase the efficiency when the brushless DC motor 4 included in the compressor 17 is driven at low speed and low load.
 本実施の形態では、ブラシレスDCモータ4が低速かつ低負荷で駆動されている状態において、PWM制御による、高周波数でのスイッチング素子のオンおよびオフのスイッチング動作が行われない。その代りに、ブラシレスDCモータ4は、PWM制御のオン時間時比率が100%となるように、スイッチング素子のオンタイミングまたはオフタイミングが調整されて、駆動速度が制御される。これにより、PWM制御によるインバータ回路3のスイッチング損失の発生が回避され、インバータ回路3の回路効率が大幅に向上する。 In the present embodiment, in a state where the brushless DC motor 4 is driven at low speed and low load, the switching operation of the switching element at high frequency by the PWM control is not performed. Instead, the drive timing is controlled by adjusting the on timing or off timing of the switching element such that the on time ratio of the PWM control is 100%. As a result, the occurrence of switching loss of the inverter circuit 3 due to PWM control is avoided, and the circuit efficiency of the inverter circuit 3 is significantly improved.
 本実施の形態では、インバータ回路3のスイッチング素子としてMOSFETが用いられている。MOSFETは、オン時の出力電流の経路中にPN接合を有さない。このため、特にMOSFETの低電流出力時におけるオン時の損失は、IGBT等の他のパワーデバイスのそれと比較して非常に低い。 In the present embodiment, a MOSFET is used as a switching element of the inverter circuit 3. The MOSFET does not have a PN junction in the path of the output current when it is on. For this reason, the on-state loss, especially at low current output of the MOSFET, is very low compared to that of other power devices such as IGBTs.
 上述のように、冷蔵庫は1日の大半の時間帯において、低速かつ低負荷の状態で駆動されており、ブラシレスDCモータ4に流れる電流が小さい。従って、本開示のモータ駆動装置30が、上述のように冷蔵庫の圧縮機17の駆動に用いられる場合、インバータ回路3のスイッチング素子としてMOSFETが用いられることで、冷蔵庫の消費電力が効果的に削減される。 As described above, the refrigerator is driven at low speed and low load during most of the time of day, and the current flowing to the brushless DC motor 4 is small. Therefore, when the motor drive device 30 of the present disclosure is used to drive the compressor 17 of the refrigerator as described above, the power consumption of the refrigerator is effectively reduced by using the MOSFET as the switching element of the inverter circuit 3. Be done.
 また、ブラシレスDCモータ4への電力供給の状態によらず、一定の加速度でブラシレスDCモータ4を加速または減速させることで、駆動速度の変更時の騒音および振動を抑えることができる。また、ブラシレスDCモータ4の駆動周波数が、機器に固有の共振周波数帯を素早く通過するため、圧縮機17の配管の損傷等の発生が回避され、圧縮機17および機器の信頼性を向上させることができる。 Further, regardless of the state of the power supply to the brushless DC motor 4, by accelerating or decelerating the brushless DC motor 4 with a constant acceleration, noise and vibration at the time of changing the driving speed can be suppressed. In addition, since the drive frequency of the brushless DC motor 4 quickly passes through the resonance frequency band unique to the device, the occurrence of damage or the like of the piping of the compressor 17 is avoided, and the reliability of the compressor 17 and the device is improved Can.
 また、PWM制御のオン時間比率を100%に設定して、PWM制御によるオンおよびオフのスイッチング動作が行われないようにすることで、ブラシレスDCモータ4の固定子巻線に流れる相電流に高周波電流成分が重畳されることを回避することができる。これにより、モータ鉄損が大幅に低減され、モータ効率の向上を図ることができる。 Also, by setting the on time ratio of the PWM control to 100% and preventing the on and off switching operation by the PWM control from being performed, the phase current flowing in the stator winding of the brushless DC motor 4 is high frequency. It can be avoided that current components are superimposed. As a result, motor iron loss can be significantly reduced, and motor efficiency can be improved.
 また、PWM制御では、一般的に1kHから20kHz程度のPWM周波数でスイッチング素子のスイッチング動作が行われ、このスイッチング動作の周波数成分に起因した騒音が発生する。冷蔵庫は、昼夜にかかわらず1日中運転されるため、冷蔵庫の静音性能を向上させることは非常に重要である。本実施の形態のモータ駆動装置30は、オン時間時比率が100%に設定されるため、PWM制御に起因した騒音の発生が回避され、よって、冷蔵庫の静音性能を向上させることができる。 Further, in PWM control, switching operation of the switching element is generally performed at a PWM frequency of about 1 kHz to about 20 kHz, and noise due to a frequency component of the switching operation is generated. It is very important to improve the silent performance of the refrigerator, since the refrigerator is operated all day regardless of day and night. In the motor drive device 30 of the present embodiment, since the on-time ratio is set to 100%, generation of noise due to PWM control can be avoided, and noise reduction performance of the refrigerator can be improved.
 以上のように、本開示にかかるモータ駆動装置は、回路損失を低減してブラシレスDCモータの効率の向上図るとともに、信頼性を向上することができる。また、ブラシレスDCモータの駆動騒音および機器の振動の低減が可能となる。このため、冷蔵庫、エアコン、洗濯機、ポンプ、扇風機、ファン、および電気掃除機など、ブラシレスDCモータが用いられる、あらゆる機器に適用することが可能である。 As described above, the motor drive device according to the present disclosure can improve circuit efficiency and improve the efficiency of the brushless DC motor, as well as improve the reliability. In addition, it is possible to reduce the driving noise of the brushless DC motor and the vibration of the device. Therefore, the present invention can be applied to any device in which a brushless DC motor is used, such as a refrigerator, an air conditioner, a washing machine, a pump, a fan, a fan, and a vacuum cleaner.
 1 交流電源
 2 コンバータ回路
 2a 整流回路
 2b 平滑回路
 2c スイッチ(切替部)
 3 インバータ回路
 3a,3b,3c,3d,3e,3f スイッチング素子
 4 ブラシレスDCモータ
 5 位置検出部
 6 速度検出部
 7 速度誤差検出部
 8 通電相制御部
 8c 制御量調整部
 11 PWM制御部
 12 波形合成部
 13 ドライブ部
 16 圧縮要素
 17 圧縮機
 18 凝縮器
 19 減圧器
 20 蒸発器
 21 冷蔵庫
 22 断熱壁
 23 食品貯蔵室
 30 モータ駆動装置
1 AC power supply 2 converter circuit 2a rectifier circuit 2b smoothing circuit 2c switch (switching unit)
DESCRIPTION OF SYMBOLS 3 inverter circuit 3a, 3b, 3c, 3d, 3f switching element 4 brushless DC motor 5 position detection part 6 speed detection part 7 speed error detection part 8 energized phase control part 8c control amount adjustment part 11 PWM control part 12 waveform composition Part 13 Drive part 16 Compression element 17 Compressor 18 Condenser 19 Depressurizer 20 Evaporator 21 Refrigerator 22 Heat insulation wall 23 Food storage room 30 Motor drive

Claims (4)

  1. 回転子を有するブラシレスDCモータと、
    6個のスイッチング素子を有して構成され、前記ブラシレスDCモータに電力を供給するインバータ回路と、
    前記回転子の位置を検出する位置検出部と、
    前記スイッチング素子を高周波数でオンおよびオフすることで、前記ブラシレスDCモータに印加される電圧を調整するPWM制御を行うPWM制御部と、を有するモータ駆動装置であって、
    前記モータ駆動装置はさらに、
    前記PWM制御による前記スイッチング素子のオン時間時比率が最大となるようにしつつ、前記ブラシレスDCモータにおける各相の通電状態を設定する通電相制御部と、
    前記ブラシレスDCモータの駆動速度の制御における制御量を調整する制御量調整部と、を有し、
    前記制御量調整部は、前記ブラシレスDCモータへの前記電力の供給状態に応じて前記制御量を調整する、
    モータ駆動装置。
    A brushless DC motor having a rotor;
    An inverter circuit configured to have six switching elements and supplying power to the brushless DC motor;
    A position detection unit that detects the position of the rotor;
    A motor drive device comprising: a PWM control unit that performs PWM control to adjust a voltage applied to the brushless DC motor by turning on and off the switching element at a high frequency;
    The motor drive further comprises:
    An energized phase control unit that sets the energized state of each phase in the brushless DC motor while maximizing the on time ratio of the switching element by the PWM control;
    A control amount adjustment unit configured to adjust a control amount in control of the drive speed of the brushless DC motor;
    The control amount adjustment unit adjusts the control amount according to the supply state of the power to the brushless DC motor.
    Motor drive.
  2. 前記制御量調整部は、前記ブラシレスDCモータへの前記電力の供給区間について、電気角120度を境として、前記制御量を切り換える、請求項1に記載のモータ駆動装置。 The motor drive device according to claim 1, wherein the control amount adjustment unit switches the control amount with respect to a section where the electric power is supplied to the brushless DC motor, at an electrical angle of 120 degrees.
  3. 前記ブラシレスDCモータは、冷凍サイクル中に設けられた圧縮機を駆動する、
    請求項1または請求項2に記載のモータ駆動装置。
    The brushless DC motor drives a compressor provided in a refrigeration cycle,
    The motor drive device of Claim 1 or Claim 2.
  4. 請求項3に記載のモータ駆動装置を用いた冷蔵庫。 A refrigerator using the motor drive device according to claim 3.
PCT/JP2018/038019 2017-10-27 2018-10-12 Motor drive device and refrigerator using this WO2019082682A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880051910.9A CN111034011B (en) 2017-10-27 2018-10-12 Motor driving device and refrigerator using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-208350 2017-10-27
JP2017208350A JP6979568B2 (en) 2017-10-27 2017-10-27 Motor drive device and refrigerator using it

Publications (1)

Publication Number Publication Date
WO2019082682A1 true WO2019082682A1 (en) 2019-05-02

Family

ID=66246443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038019 WO2019082682A1 (en) 2017-10-27 2018-10-12 Motor drive device and refrigerator using this

Country Status (3)

Country Link
JP (1) JP6979568B2 (en)
CN (1) CN111034011B (en)
WO (1) WO2019082682A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124865A1 (en) * 2021-12-27 2023-07-06 南京泉峰科技有限公司 Electric tool and control method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956012A (en) * 1995-08-18 1997-02-25 Kokusan Denki Co Ltd Control method for dc brushless motor in motor vehicle
JP2006050804A (en) * 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd Control device of refrigerator
JP2010259184A (en) * 2009-04-23 2010-11-11 Panasonic Corp Inverter controller, electric compressor, and household electrical appliance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789660B2 (en) * 2006-03-15 2011-10-12 パナソニック株式会社 Motor driving apparatus and motor driving method
JP4428440B2 (en) * 2007-05-28 2010-03-10 株式会社デンソー Rotor position detection circuit, motor drive device, and rotor position detection method
JP5428746B2 (en) * 2009-01-14 2014-02-26 パナソニック株式会社 Brushless DC motor driving apparatus and electric apparatus using the same
JP2011114995A (en) * 2009-11-30 2011-06-09 Nidec Shibaura Corp Drive circuit for motor and motor equipped with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956012A (en) * 1995-08-18 1997-02-25 Kokusan Denki Co Ltd Control method for dc brushless motor in motor vehicle
JP2006050804A (en) * 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd Control device of refrigerator
JP2010259184A (en) * 2009-04-23 2010-11-11 Panasonic Corp Inverter controller, electric compressor, and household electrical appliance

Also Published As

Publication number Publication date
CN111034011B (en) 2023-05-05
JP2019083594A (en) 2019-05-30
JP6979568B2 (en) 2021-12-15
CN111034011A (en) 2020-04-17

Similar Documents

Publication Publication Date Title
US8226372B2 (en) Electric compressor
EP2388905B1 (en) Motor drive device and electric equipment utilizing same
WO2017038024A1 (en) Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used
CN109155601B (en) Motor driving device and electric apparatus having compressor using the same
JP2017046513A (en) Motor drive device, drive device of compressor using the same, and freezing device, refrigerator
JP3860383B2 (en) Compressor control device
JP2008289310A (en) Motor drive and refrigerator using the same
JP3672637B2 (en) Compressor motor control device
JP3776102B2 (en) Brushless motor control device
JP2010252406A (en) Motor drive and refrigerator using the same
WO2019082682A1 (en) Motor drive device and refrigerator using this
JP5521405B2 (en) Motor drive device and electric apparatus using the same
JP4277762B2 (en) Refrigerator control device
JP6706757B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE HAVING COMPRESSOR USING THE SAME
JP2008005639A (en) Method and device for driving brushless dc motor
JP6970871B2 (en) Motor drive device and refrigerator using it
JP6706756B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE HAVING COMPRESSOR USING THE SAME
JP6450939B2 (en) Motor drive device, compressor drive device using the same, refrigeration device, and refrigerator
JP2011199926A (en) Motor drive and electrical apparatus using the same
JP7398616B2 (en) Motor drive device and refrigerator using the same
JP2004324552A (en) Electric compressor
JP2006304386A (en) Motor driving unit and refrigerator
JP2021129466A (en) Motor drive device and, refrigerator using the same
JP2021019417A (en) Motor drive device, refrigerator using the same, and refrigeration cycle device
JP2021019416A (en) Motor drive device, refrigerator using the same, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869726

Country of ref document: EP

Kind code of ref document: A1