WO2019082523A1 - Chip resistor and method for manufacturing chip resistor - Google Patents

Chip resistor and method for manufacturing chip resistor

Info

Publication number
WO2019082523A1
WO2019082523A1 PCT/JP2018/033296 JP2018033296W WO2019082523A1 WO 2019082523 A1 WO2019082523 A1 WO 2019082523A1 JP 2018033296 W JP2018033296 W JP 2018033296W WO 2019082523 A1 WO2019082523 A1 WO 2019082523A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
electrode
slit
floating island
chip resistor
Prior art date
Application number
PCT/JP2018/033296
Other languages
French (fr)
Japanese (ja)
Inventor
松本 健太郎
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to CN201880068331.5A priority Critical patent/CN111279443B/en
Publication of WO2019082523A1 publication Critical patent/WO2019082523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/242Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material

Definitions

  • the present invention relates to a chip resistor whose resistance value is adjusted by forming a trimming groove in a resistor provided on an insulating substrate, and a method of manufacturing such a chip resistor.
  • the chip resistor includes a rectangular parallelepiped insulating substrate, a pair of front electrodes disposed opposite to the surface of the insulating substrate at a predetermined distance, and a pair of electrodes disposed opposite to the rear surface of the insulating substrate at a predetermined distance. It is mainly composed of a back electrode, an end face electrode that bridges the front electrode and the back electrode, a resistor that bridges the pair of front electrodes, a protective film that covers the resistor, and the like.
  • a large number of electrodes, resistors, protective films, etc. are collectively formed on a large-sized collective substrate, and then the collective substrate is divided into grids. It divides along a line (for example, dividing groove) to take a large number of chip resistors.
  • many resistors are formed by printing and baking a resistor paste on one side of the collective substrate, but the positional deviation or blur during printing, or the temperature unevenness in the baking furnace, etc. It is difficult to avoid slight variations in the size and film thickness of each resistor due to the influence of the resistance. Therefore, the adjustment of the resistance value is achieved by forming trimming grooves in each resistor in the collective substrate state and setting the desired resistance value. Work is done.
  • a pair of front electrodes 12 are formed at predetermined intervals at both ends of the insulating substrate 11, and then a resistance which is two-turn meandering between the two front electrodes 12 by printing technique.
  • a chip resistor 100 is proposed in which the resistor 13 is made to meander for three turns by forming the trimming groove 14 by laser trimming in the non-serpentine region of the resistor 13 after the body 13 is formed. (See Patent Document 1).
  • the combined use of printing technique such as screen printing and laser trimming makes it possible to increase the overall length of the resistor 13 (three-turn meandering) and improve the surge characteristics, and the trimming groove 14 Since the formation of the two also serves to adjust the resistance value, it is possible to improve the resistance value accuracy.
  • the resistor 13 can be made to meander as well as adjusting the resistance value.
  • the resistance value accuracy can be improved as compared to the case where the resistor 13 is formed.
  • the resistor 13 at the tip end portion of the trimming groove 14 is a portion which is weak to the load due to the occurrence of the micro crack, the portion is particularly inside the turn portion where the load concentrates in the resistor 13. The risk of causing a failure such as a change in resistance due to a load increases.
  • the present invention has been made in view of the circumstances of the prior art as described above, and a first object of the present invention is to reduce the adverse effect on the characteristics caused by the micro crack and to improve the surge characteristics.
  • a second object of the present invention is to provide a resistor, and to provide a method of manufacturing such a chip resistor.
  • a chip resistor comprises an insulating substrate, a pair of electrodes opposed to each other at a predetermined distance on the insulating substrate, and a bridge between the pair of electrodes
  • a trimming groove is formed in the resistor, extending toward the inter-electrode toward the floating island conductor, and the floating island conductor is separated from the electrode by a slit formed in the electrode.
  • the floating island conductor is formed in the turn portion facing the electrode with a gap, and the current flowing through the turn portion is a floating island with a small electric resistance formed outside the turn portion. Since it is easy to flow through the conductor, the load applied to the inside of the turn can be reduced, and even if micro cracks occur at the tip of the trimming groove, the adverse effect on the characteristics due to the micro cracks can be reduced. Further, since the floating island conductor is separated from the electrode by forming a slit in the electrode, there is no need to additionally provide the floating island conductor, and the chip resistor can be easily manufactured.
  • the trimming groove when the trimming groove is formed to have a length of 1/2 or more of the inter-electrode distance, the current flowing through the turn easily flows through the floating island conductor having a small electric resistance. Can be further reduced.
  • the slit and the trimming groove may be formed in separate steps, or may be formed using different means, but when the slit and the trimming groove are continuous, for example, If the laser beam irradiated to the electrode is directly extended to the resistor, the formation of the floating island conductor by the slit and the adjustment of the resistance value by the trimming groove can be continuously performed.
  • the meandering shape of the resistor may be defined by the trimming groove, but the meandering shape may be defined by both the printed pattern of the resistor and the trimming groove. It is also possible to configure. For example, when one of the two turn portions is formed by a printed pattern of a resistor, a notch extending in the direction of the other electrode toward the turn portion is printed in advance in the resistor, and the tip of the slit formed in the electrode If the width of the cut is set wider than that of the slit, the tip of the slit continuous to the cut is separated from the resistor, so that the micro crack does not occur in the resistor. Therefore, the adverse effect on the properties due to the micro crack can be further reduced. Although the width of the cut may be set wider than the slit over the entire length of the cut, the width of the cut may be set wider than the slit only in the portion of the cut continuous to the tip of the slit. .
  • a convex portion protruding in the direction of the other electrode is formed on at least one of the pair of electrodes, and a resistor is connected to the convex portion to the convex portion
  • a notch extending in the electrode direction toward the turn is printed on the resistor, and the width of the protrusion is set smaller than the width of the resistor overlapping the protrusion, and the protrusion is cut longitudinally
  • the tip of the slit is continuous with this cut, a space connected to the cut is secured in the vicinity of the overlapping portion of the convex portion and the resistor, and the tip of the slit continuous with this space is separated from the resistor.
  • the width of the cut can be set narrow, and the space for forming the resistor can be enlarged accordingly.
  • a method of manufacturing a chip resistor according to the present invention comprises an insulating substrate, a pair of electrodes disposed opposite to each other with a predetermined gap on the insulating substrate, and a pair of these And a resistor for bridging between the electrodes, wherein the resistor is formed in a serpentine shape having a plurality of turn portions facing each other with a gap between the electrodes. Forming a floating island conductor separated from the electrode at the turn portion by forming a slit reaching the connection portion with the resistor, extending the slit and extending the slit toward the floating island conductor Forming a trimming groove extending in a direction between the electrodes.
  • a floating island conductor is formed on the turn of the resistor facing the tip of the trimming groove, and the current flowing through the turn is the electric current formed on the outside of the turn
  • the load on the inside of the turn can be reduced because it is easy to flow through the floating island conductor with low resistance, and even if micro cracks occur at the tip of the trimming groove, the adverse effect on the characteristics due to micro cracks is reduced. be able to.
  • the floating island conductor is separated from the electrode by forming a slit in the electrode, there is no need to additionally provide the floating island conductor, and the chip resistor can be easily manufactured.
  • the present invention it is possible to provide a chip resistor capable of improving the surge characteristics as well as reducing the adverse effect on the characteristics due to the micro crack.
  • a chip resistor 1 according to a first embodiment of the present invention includes a rectangular parallelepiped insulating substrate 2 and a surface of the insulating substrate 2 The first electrode 3 and the second electrode 4 disposed opposite to each other with a predetermined interval at both ends in the longitudinal direction, the meandering resistor 5 connected to the first and second electrodes 3 and 4, and the resistor It is mainly comprised by the protective film etc. which cover 5 which are not shown.
  • the insulating substrate 2 is made of ceramic or the like, and the insulating substrate 2 is obtained by dividing a large-sized collective substrate to be described later along dividing grooves in the vertical and horizontal directions.
  • the 1st electrode 3 and the 2nd electrode 4 screen-print Ag-based paste, and are dried and baked.
  • the lower end portion of the first electrode 3 shown on the left side of the drawing is connected to one end of the resistor 5, and the upper end of the second electrode 4 shown on the right side of the drawing shown in FIG. It is connected to the other end.
  • the resistor 5 is obtained by screen-printing a resistor paste such as ruthenium oxide, dried, and fired, and the resistor 5 has a lead portion 5a extending in the interelectrode direction through the turn portion 5b whose direction of extension is reversed. It is formed in a continuous meandering shape (meaning shape).
  • the three lead portions 5a form a resistor body 5 of two-turn meandering which continues alternately via two turn portions 5b, and among these three lead portions 5a, the leads on the lower side
  • the portion 5 a is connected to the first electrode 3, and the lead portion 5 a on the upper side is connected to the second electrode 4.
  • floating island conductors 6A and 6B are respectively formed in the two turn portions 5b, and these floating island conductors 6A and 6B are made of the same material as the first and second electrodes 3 and 4.
  • the floating island conductor 6A on the left side of the drawing faces the first electrode 3 via the L-shaped slit S1
  • the floating island conductor 6B on the right side of the drawing faces the second electrode 4 via the reverse L-shaped slit S2. ing.
  • the trimming groove 7A on the lower side in the drawing extends continuously in the inter-electrode direction continuously from the tip of the slit S1 formed in the first electrode 3, and the tip of the trimming groove 7A is formed in the turn 5b on the right in the figure. It faces the floating island conductor 6B.
  • the trimming groove 7B on the upper side in the figure extends continuously in the inter-electrode direction continuously to the tip of the slit S2 formed in the second electrode 4, and the tip of the trimming groove 7B is a floating island formed in the turn 5b on the left side in the figure.
  • the slit S1 and the trimming groove 7A, and the slit S2 and the trimming groove 7B are respectively formed continuously by laser beam irradiation, and their width dimensions are set to be the same.
  • the protective film (not shown) is obtained by screen printing an epoxy resin paste and heat curing it.
  • the protective film has a function of protecting the resistor 5 from the external environment.
  • a large-sized collective substrate in which a large number of insulating substrates 2 are taken is prepared.
  • this collective substrate primary division grooves and secondary division grooves are provided in advance in a lattice shape, and each one of the squares divided by both division grooves becomes one chip area.
  • the collective substrate 2A corresponding to one chip area is representatively shown in FIG. 2, in actuality, each process described below is collectively performed on a collective substrate corresponding to a large number of chip areas. Be done.
  • a resistor paste such as ruthenium oxide is screen-printed on the surface of the collective substrate 2A, dried and fired to form first and second electrodes 3 and 4 at both ends as shown in FIG. 2 (b).
  • a resistor printing step To form a rectangular resistor 5 (resistor printing step).
  • the laser light is irradiated from the upper end of the first electrode 3 in the direction (downward) orthogonal to the inter-electrode direction, and then it is changed in direction to the inter-electrode direction
  • the laser light is also irradiated to the resistor 5 (see reference numeral LT1).
  • an L-shaped slit S1 reaching the resistor 5 from the upper end of the first electrode 3 is formed, and the portion separated from the first electrode 3 by the slit S1 is It becomes floating island conductor 6A (electrode cutting process).
  • a trimming groove 7A continuous with the tip of the slit S1 is formed in the resistor 5, and the trimming groove 7A linearly extends toward the second electrode 4 so that the resistance value of the resistor 5 is greater than the target resistance value.
  • the resistance is adjusted to a value slightly lower than the above (resistance adjustment step).
  • the laser light is irradiated from the lower end of the second electrode 4 in a direction (upward) perpendicular to the inter-electrode direction, and then it is changed to a right direction in the inter-electrode direction
  • the laser light is also irradiated to the resistor 5 (see reference numeral LT2).
  • an inverted L-shaped slit S2 reaching the resistor 5 from the lower end of the second electrode 4 is formed, and a portion separated from the second electrode 4 by the slit S2 Is the floating island conductor 6B. Further, a trimming groove 7B continuous to the tip of the slit S2 is formed in the resistor 5, and the trimming groove 7B linearly extends toward the first electrode 3 so that the resistance value of the resistor 5 becomes the target resistance value.
  • the resistance value is adjusted to be
  • the order of forming the slits S1 and S2 may be reversed, and after the slit S2 and the subsequent trimming groove 7B are formed from the second electrode 4 side, the slit S1 and the subsequent trimming groove 7A are formed from the first electrode 3 side. It is also possible to form
  • the resistor 5 printed in a rectangular shape becomes a continuous meandering shape through the two turn portions 5b.
  • the floating island conductors 6A and 6B separated from the first electrode 3 and the second electrode 4 are formed in the portion 5b.
  • the surface of the resistor 5 may be covered with a precoat layer of glass paste or the like, and laser light may be irradiated from above the precoat layer.
  • epoxy resin paste is screen-printed in a region including both slits S1 and S2 and heat curing is performed, whereby a portion including floating island conductors 6A and 6B of the first electrode 3 and the second electrode 4 and the resistor 5 Forming a protective film (not shown) covering the entire surface of the substrate (protective film forming step).
  • Each of the steps up to here is batch processing on the collective substrate 2A for taking a large number of pieces, but in the next step, primary break processing of dividing the collective substrate 2A into strip shapes along primary division grooves is performed Thus, a strip-like substrate (not shown) provided with a plurality of chip areas is obtained (primary division step). Then, an Ag paste is applied to the divided surface of the strip-like substrate, dried and fired, or Ni / Cr is sputtered instead of the Ag paste to form the first electrode 3 and the second electrode 4 and the corresponding back electrode. Form an end face electrode (not shown) for bridging (end face electrode forming step).
  • the floating island conductors 6A and 6B are formed in the turn portion 5b of the resistor 5 opposed to the tips of the trimming grooves 7A and 7B.
  • the current flowing through the portion 5b can easily flow through the floating island conductors 6A and 6B having small electric resistance formed outside the turn portion 5b, so that the load applied to the inside of the turn portion 5b can be reduced. Even if microcracks occur at the tip, adverse effects on the characteristics due to the microcracks can be reduced.
  • the floating island conductors 6A and 6B are separated from the first electrode 3 and the second electrode 4 by the slits S1 and S2, there is no need for the troublesome process of separately providing the floating island conductors 6A and 6B
  • the vessel 1 can be easily manufactured. Moreover, it is not necessary to secure a wider gap in consideration of positional deviation, bleeding, etc. between the turn 5b of the resistor 5 and the two electrodes 3 and 4, and accordingly, a space for forming the resistor 5 is increased. Since the width can be increased, the total length of the meander-shaped resistor 5 can be increased, and the chip resistor 1 having excellent surge characteristics can be realized.
  • the laser beam irradiated to the first electrode 3 is directly extended to the resistor 5 to form the trimming groove 7A, or the second electrode 4 is formed.
  • the irradiated laser beam can be extended as it is to the resistor 5 to form the trimming groove 7B, and the formation of the floating island conductors 6A and 6B and the adjustment of the resistance value can be continuously performed.
  • FIG. 3 is a plan view of a chip resistor 10 according to a second embodiment of the present invention.
  • the parts corresponding to FIG. 1 are given the same reference numerals.
  • the difference between the chip resistor 10 according to the second embodiment and the chip resistor 1 according to the first embodiment is that the tip of the trimming groove 7B continuing to the slit S2 reaches the floating island conductor 6A.
  • the other configurations are basically the same.
  • microcracks are not generated at the tip of the trimming groove 7B in contact with the floating island conductor 6A, and the portion where the microcrack is generated is trimming facing the other floating island conductor 6B. Since only one tip of the groove 7A is provided, the adverse effect on the characteristics due to the micro crack can be further reduced.
  • FIG. 4 is a plan view of a chip resistor 20 according to a third embodiment of the present invention
  • FIG. 5 is an explanatory view showing a manufacturing process of the chip resistor 20 according to the third embodiment.
  • the corresponding parts are given the same reference numerals.
  • the difference between the chip resistor 20 according to the third embodiment shown in FIG. 4 and the chip resistor 1 according to the first embodiment is that the resistor 5 is directed from the second electrode 4 to one floating island conductor 6A.
  • the extending cut 8 is formed by printing, and the serpentine shape of the resistor 5 is defined by the cut 8 and the trimming groove 7A extending from the first electrode 3 to the other floating island conductor 6B, and others
  • the configuration of is basically the same. That is, one of the turn portions 5b is defined by the notch 8 printed on the resistor 5, and the tip of the slit S2 formed in the second electrode 4 is continuous to the notch 8;
  • the width dimension of the incision 8 is set sufficiently wider than the slit S2.
  • FIG. 5A the pair of first electrodes 3 and the second electrodes facing each other with a predetermined interval on the surface of the collective substrate 2A.
  • a resistor 5 is formed by printing, the both ends of which overlap the first electrode 3 and the second electrode 4.
  • a rectangular notch 8 extending from the second electrode 4 to a position in front of the first electrode 3 is formed.
  • the laser light is irradiated from the lower end of the second electrode 4 in a direction (upward) orthogonal to the inter-electrode direction, and then it is changed to a right direction in the inter-electrode direction
  • an inverted L-shaped slit S2 extending from the lower end of the second electrode 4 to the notch 8 as shown in FIG. 5D by scanning into the notch 8 (see symbol LT2), this slit is formed.
  • the floating island conductor 6B separated from the second electrode 4 is obtained by S2.
  • the tip of the slit S2 is made continuous with the cut 8 simply and reliably. be able to.
  • the tip of the slit S2 continuing to the cut 8 is separated from the resistor 5, micro cracks do not occur in the resistor 5.
  • the laser light is irradiated from the upper end portion of the first electrode 3 in a direction (downward) orthogonal to the inter-electrode direction, and then the direction is orthogonally changed to the inter-electrode direction
  • the L-shaped slit S1 is formed in the first electrode 3 and the trimming groove 7A continuous with the tip of the slit S1 is formed in the resistor 5, as shown in FIG. Do.
  • the floating island conductor 6A separated from the first electrode 3 is obtained by the slits S1, and the floating island conductor 6A is formed in the turn portion 5b opposed to the cut 8.
  • the resistance value of the resistor 5 is adjusted by the trimming groove 7A so as to be the target resistance value.
  • the resistor 5 has a serpentine shape having two turn parts 5b by the cut 8 and the trimming groove 7A.
  • the subsequent steps are basically the same as those of the first embodiment, and thus redundant description will be omitted.
  • the notch 8 extending in the electrode direction toward the one turn 5b is printed and formed in the resistor 5 in advance. Since the tip of the slit S2 formed in the two electrodes 4 is made continuous and the width of the cut 8 is set wider than the slit S2, no microcrack is generated at the tip of the slit S2 continuous to the cut 8 It is possible to further reduce the adverse effect on the properties caused by
  • FIG. 6 is a plan view of a chip resistor 30 according to a fourth embodiment of the present invention.
  • the parts corresponding to FIG. 1 are given the same reference numerals.
  • a part of the resistor 5 is interposed between the floating island conductor 6A separated from the first electrode 3 and the notch 8, but the chip resistor shown in FIG. 6 As in 30, the tip of the cut 8 may be extended to the floating island conductor 6A.
  • the width of the resistor 5A is a trimming groove
  • the width is set smaller than the width of the resistor 5B in which 7A is formed.
  • a load is likely to be applied to the narrower resistor 5A, and microcracks are not generated by the trimming groove in this resistor 5A, so the load on the resistor 5B in which the trimming groove 7A is formed is reduced.
  • the load characteristics of the entire chip resistor 30 can be improved.
  • FIG. 7 is a plan view of a chip resistor 40 according to a fifth embodiment of the present invention
  • FIG. 8 is an explanatory view showing a manufacturing process of the chip resistor 40 according to the fifth embodiment.
  • the corresponding parts are given the same reference numerals.
  • the floating island conductor 6B is separated from the second electrode 4 by the linearly extending slit S2, and the notch 8 is continuous at the tip of the slit S2. It is done.
  • the first electrode 3 and the second electrode 3 facing the surface of the collective substrate 2A with a predetermined interval are described.
  • the electrode 4 is formed.
  • the first electrode 3 has a rectangular shape
  • the second electrode 4 is formed with a convex portion 4 a that protrudes toward the first electrode 3.
  • a resistor 5 is formed by printing, the both ends of which overlap the first electrode 3 and the second electrode 4.
  • This resistor 5 has a rectangular resistor 5A formed between the first electrode 3 and the second electrode 4 and a rectangular resistor 5B formed between the first electrode 3 and the convex portion 4a.
  • the resistor 5A and the resistor 5B are opposed to each other across the narrow cut 8.
  • the width of the resistor 5A is set smaller than the width of the resistor 5B
  • the width of the convex portion 4a is set smaller than the width of the resistor 5B.
  • the laser light is irradiated from the upper end of the first electrode 3 in the direction orthogonal to the inter-electrode direction, and then it is changed in direction to the inter-electrode direction at right angles (
  • the L-shaped slit S1 is formed in the first electrode 3 and the trimming groove 7A continuous with the tip of the slit S1 is formed in the resistor 5B as shown in FIG.
  • the floating island conductor 6A separated from the first electrode 3 is obtained by the slit S1, and the resistance value of the resistor 5 is adjusted by the trimming groove 7A so as to be the target resistance value.
  • the subsequent steps are basically the same as those of the first embodiment, and thus redundant description will be omitted.
  • the second electrode 4 is provided with the convex portion 4 a that protrudes toward the first electrode 3 on the other side, and the convex portion 4 a is formed
  • the convex portion 4a is separated from the second electrode 4 to obtain the floating island conductor 6B. Therefore, the floating island conductor 6B is cut by cutting the convex portion 4a. It can be easily formed.
  • the notch 8 for defining a part of the meandering shape is printed on the resistor 5 and the width of the convex portion 4a is set smaller than the width of the resistor 5B overlapping the convex portion 4a, the convex portion A space connected to the cut 8 can be secured in the vicinity of the overlapping portion of 4 a and the resistor 5 B. Then, by making the tip of the slit S2 continuous with this space, the tip of the slit S2 can be separated from the resistor 5A, so that no micro crack is generated in the resistor 5A, and as a result, it is defined by printing It is possible to set the width of the notch 8 narrow, and the space for forming the resistor 5 can be enlarged accordingly.
  • the tip of the incision 8 may not necessarily reach the floating island conductor 6A on the first electrode 3 side, and even if a part of the resistor 5 is interposed between the incision 8 and the floating island conductor 6A good.
  • the tip of the slit S2 is formed to be continuous with the notch 8 formed by printing on the resistor 5, but as in the first embodiment and the second embodiment, Even if the trimming groove 7A, 7B is used to define the meandering shape of the resistor 5 without forming a cut, the tip of the slit S2 may be extended in the orthogonal direction as it is to form the trimming groove 7B. good.
  • FIG. 9 is a plan view of a chip resistor 50 according to a sixth embodiment of the present invention.
  • the floating island conductor 6B is separated from the convex portion of the second electrode 4, but the floating island conductor 6A is also formed of the first electrode 3. It is comprised so that it may isolate
  • FIG. 10 is a plan view of a chip resistor 60 according to a seventh embodiment of the present invention
  • FIG. 11 is an explanatory view showing a manufacturing process of the chip resistor 60 according to the seventh embodiment.
  • the corresponding parts are given the same reference numerals.
  • the resistor 5 is formed in an N-shaped meandering shape by the printed pattern, and the first electrode is formed on one of the turn portions 5 b of the resistor 5. While the floating island conductor 6A separated from 3 is formed, the floating island conductor 6B separated from the 2nd electrode 4 is formed in the other turn part 5b. Further, L-shaped trimming grooves 7A and 7B are respectively formed in the lead portions 5a on both end sides of the resistor 5, and one trimming groove 7A is the tip of the slit S1 separating the first electrode 3 and the floating island conductor 6A. The other trimming groove 7B is continuous with the tip of the slit S2 separating the second electrode 4 and the floating island conductor 6B.
  • the first electrode 3 and the second electrode 3 facing the surface of the collective substrate 2A with a predetermined interval are described.
  • the electrode 4 is formed.
  • the first electrode 3 is formed with a convex portion 3 a projecting toward the second electrode 4
  • the second electrode 4 is formed with a convex portion 4 a projecting toward the first electrode 3.
  • a meandering resistor 5 whose both end portions overlap the first electrode 3 and the second electrode 4 is formed by printing.
  • the resistor 5 includes two turn portions 5b connected to the convex portions 3a and 4a of the first electrode 3 and the second electrode 4, and a lead portion 5a connecting the first electrode 3 and one of the turn portions 5b in a straight line.
  • a lead portion 5a connecting the second electrode 4 and the other turn portion 5b linearly and a total of three lead portions 5a connecting these two lead portions 5a in a diagonal direction are provided.
  • a laser beam is irradiated from the right side of the convex portion 4a of the second electrode 4 to the left, and after passing through the convex portion 4a, this laser beam is left as it is Extend into 5a (see symbol LT2).
  • a linear slit S2 is formed in the second electrode 4, and an L-shaped trimming groove 7B continuous with the slit S2 is formed in the lead portion 5a of the resistor 5B.
  • the floating island conductor 6B separated from the second electrode 4 is obtained by the slits S2.
  • the laser beam is irradiated from the left side of the convex portion 3a of the first electrode 3 to the right, and the laser beam is directly extended into the lead portion 5a on the right side of the figure after passing through the convex portion 3a ( Reference symbol LT1).
  • a linear slit S1 is formed in the first electrode 3 and an L-shaped trimming groove 7A continuous with the slit S1 is formed in the lead portion 5a of the resistor 5B.
  • the floating island conductor 6A separated from the first electrode 3 is obtained by the slit S1, and the resistance value of the resistor 5 is adjusted by the both trimming grooves 7A and 7B so as to be the target resistance value.
  • the subsequent steps are basically the same as those of the first embodiment, and thus redundant description will be omitted.
  • the meandering shape is defined by the printed pattern of the resistor 5 and the two slits S1 and S2 formed in the first electrode 3 and the second electrode 4.
  • the floating island conductors 6A and 6B are formed on the turn portions 5b facing the tips of the trimming grooves 7A and 7B, respectively, so that the load applied to the turn portions 5b can be reduced. Even if microcracks occur at the tips of 7A and 7B, the adverse effect on the characteristics due to the microcracks can be reduced.
  • the trimming grooves 7A and 7B are formed in an L shape starting from the inner side in the width direction of the lead portion 5a, the resistance value of the resistor 5 is adjusted with high precision. Since the slits S1 and S2 and the trimming grooves 7A and 7B are continuous, the start point (starting point) of the trimming grooves 7A and 7B is stable, and the resistance value can be easily adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

Provided is a chip resistor which is capable of reducing the adverse effects due to microcracks on characteristics and improving surge characteristics. This chip resistor 1 is provided with: an insulating substrate 2; first and second electrodes 3, 4 arranged on the insulating substrate to face each other at a predetermined distance; and a resistive body 5 that bridges the first and second electrodes 3, 4, wherein the resistive body 5 is formed in a meandering shape having a plurality of turn parts 5b facing each other while spaced apart from the first and second electrodes 3, 4. The chip resistor 1 is configured such that: trimming grooves 7A, 7B facing the turn parts 5b are formed on the resistive body 5; a floating island conductor 6A separate from the first electrode 3 is formed on one turn part 5b; and a floating island conductor 6B separate from the second electrode 4 is formed on the other turn part 5b.

Description

チップ抵抗器およびチップ抵抗器の製造方法Chip resistor and method of manufacturing chip resistor
 本発明は、絶縁基板上に設けられた抵抗体にトリミング溝を形成することで抵抗値が調整されるチップ抵抗器と、そのようなチップ抵抗器の製造方法に関するものである。 The present invention relates to a chip resistor whose resistance value is adjusted by forming a trimming groove in a resistor provided on an insulating substrate, and a method of manufacturing such a chip resistor.
 チップ抵抗器は、直方体形状の絶縁基板と、絶縁基板の表面に所定間隔を存して対向配置された一対の表電極と、絶縁基板の裏面に所定間隔を存して対向配置された一対の裏電極と、表電極と裏電極を橋絡する端面電極と、対をなす表電極どうしを橋絡する抵抗体と、抵抗体を覆う保護膜等によって主に構成されている。 The chip resistor includes a rectangular parallelepiped insulating substrate, a pair of front electrodes disposed opposite to the surface of the insulating substrate at a predetermined distance, and a pair of electrodes disposed opposite to the rear surface of the insulating substrate at a predetermined distance. It is mainly composed of a back electrode, an end face electrode that bridges the front electrode and the back electrode, a resistor that bridges the pair of front electrodes, a protective film that covers the resistor, and the like.
 一般的に、このようなチップ抵抗器を製造する場合、大判の集合基板に対して多数個分の電極や抵抗体や保護膜等を一括して形成した後、この集合基板を格子状の分割ライン(例えば分割溝)に沿って分割してチップ抵抗器を多数個取りするようにしている。かかるチップ抵抗器の製造過程で、集合基板の片面には抵抗ペーストを印刷・焼成することにより多数の抵抗体が形成されるが、印刷時の位置ずれや滲み、あるいは焼成炉内の温度むら等の影響により、各抵抗体の大きさや膜厚に若干のばらつきを生じることは避け難いため、集合基板の状態で各抵抗体にトリミング溝を形成して所望の抵抗値に設定するという抵抗値調整作業が行われる。 Generally, in the case of manufacturing such a chip resistor, a large number of electrodes, resistors, protective films, etc. are collectively formed on a large-sized collective substrate, and then the collective substrate is divided into grids. It divides along a line (for example, dividing groove) to take a large number of chip resistors. In the process of manufacturing such a chip resistor, many resistors are formed by printing and baking a resistor paste on one side of the collective substrate, but the positional deviation or blur during printing, or the temperature unevenness in the baking furnace, etc. It is difficult to avoid slight variations in the size and film thickness of each resistor due to the influence of the resistance. Therefore, the adjustment of the resistance value is achieved by forming trimming grooves in each resistor in the collective substrate state and setting the desired resistance value. Work is done.
 このような構成のチップ抵抗器において、静電気や電源ノイズ等で発生するサージ電圧が印加すると、過剰な電気的ストレスにより抵抗器の特性に影響を与えることになり、最悪の場合に抵抗器が破壊されてしまうことがある。サージ特性を向上させるためには、抵抗体を蛇行形状(ミアンダ形状)にして全長を長くすれば、電位降下がなだらかになってサージ特性を改善できることが知られている。 In a chip resistor with such a configuration, when a surge voltage generated by static electricity or power supply noise is applied, excessive electrical stress will affect the characteristics of the resistor, and in the worst case, the resistor may be broken. It may be done. In order to improve the surge characteristics, it is known that the potential drop can be smoothed and the surge characteristics can be improved by making the resistor serpentine shape (meander shape) and lengthening the entire length.
 そこで、図12に示すように、絶縁基板11の両端部に所定間隔を存して一対の表電極12を形成し、次いで、これら両表電極12間に印刷技法により2ターン蛇行している抵抗体13を形成した後、この抵抗体13の蛇行していない領域にレーザートリミング法でトリミング溝14を形成することにより、抵抗体13を3ターン分蛇行させるようにしたチップ抵抗器100が提案されている(特許文献1参照)。 Therefore, as shown in FIG. 12, a pair of front electrodes 12 are formed at predetermined intervals at both ends of the insulating substrate 11, and then a resistance which is two-turn meandering between the two front electrodes 12 by printing technique. A chip resistor 100 is proposed in which the resistor 13 is made to meander for three turns by forming the trimming groove 14 by laser trimming in the non-serpentine region of the resistor 13 after the body 13 is formed. (See Patent Document 1).
 このチップ抵抗器100においては、スクリーン印刷等の印刷技法とレーザートリミング加工との併用により、抵抗体13の全長を長く(3ターン蛇行)してサージ特性を向上させることができると共に、トリミング溝14の形成が抵抗値の調整を兼ねているため、抵抗値精度を向上させることができる。 In the chip resistor 100, the combined use of printing technique such as screen printing and laser trimming makes it possible to increase the overall length of the resistor 13 (three-turn meandering) and improve the surge characteristics, and the trimming groove 14 Since the formation of the two also serves to adjust the resistance value, it is possible to improve the resistance value accuracy.
特開平9-205004号公報Japanese Patent Laid-Open No. 9-205004
 特許文献1に記載された従来技術では、直線状に延びるトリミング溝14を形成することによって、抵抗値調整を兼ねて抵抗体13を蛇行させることができるため、印刷技法のみを用いて蛇行形状の抵抗体13を形成する場合に比べると、抵抗値精度を向上させることができる。しかし、トリミング溝14の先端部分の抵抗体13はマイクロクラックの発生によって負荷に弱い部分であるにもかかわらず、当該部分は抵抗体13の中で特に負荷の集中するターン部の内側であるため、負荷による抵抗値変化などの不具合を発生させてしまう危険性が高くなる。 In the prior art described in Patent Document 1, by forming the trimming grooves 14 extending in a straight line, the resistor 13 can be made to meander as well as adjusting the resistance value. The resistance value accuracy can be improved as compared to the case where the resistor 13 is formed. However, although the resistor 13 at the tip end portion of the trimming groove 14 is a portion which is weak to the load due to the occurrence of the micro crack, the portion is particularly inside the turn portion where the load concentrates in the resistor 13. The risk of causing a failure such as a change in resistance due to a load increases.
 本発明は、このような従来技術の実情に鑑みてなされたもので、その第1の目的は、マイクロクラックに起因する特性への悪影響を軽減できると共に、サージ特性を向上させることが可能なチップ抵抗器を提供することにあり、第2の目的は、そのようなチップ抵抗器の製造方法を提供することにある。 The present invention has been made in view of the circumstances of the prior art as described above, and a first object of the present invention is to reduce the adverse effect on the characteristics caused by the micro crack and to improve the surge characteristics. A second object of the present invention is to provide a resistor, and to provide a method of manufacturing such a chip resistor.
 上記第1の目的を達成するために、本発明のチップ抵抗器は、絶縁基板と、この絶縁基板上に所定間隔を存して対向配置された一対の電極と、これら一対の電極間を橋絡する抵抗体とを備え、前記抵抗体が前記電極と隙間を存して対向する複数のターン部を有する蛇行形状に形成されているチップ抵抗器において、前記ターン部に浮島導体が形成されていると共に、前記抵抗体に前記浮島導体に向かって電極間方向へ延びるトリミング溝が形成されており、前記浮島導体は前記電極に形成されたスリットによって該電極から分離されたものであることを特徴としている。 In order to achieve the first object, a chip resistor according to the present invention comprises an insulating substrate, a pair of electrodes opposed to each other at a predetermined distance on the insulating substrate, and a bridge between the pair of electrodes A chip resistor having a meandering shape including a resistor to be entangled and the resistor having a plurality of turn portions facing each other with a gap to the electrode, a floating island conductor is formed on the turn portion And a trimming groove is formed in the resistor, extending toward the inter-electrode toward the floating island conductor, and the floating island conductor is separated from the electrode by a slit formed in the electrode. And
 このように構成されたチップ抵抗器では、電極と隙間を存して対向するターン部に浮島導体が形成されており、ターン部を流れる電流はターン部の外側に形成された電気抵抗の小さい浮島導体を流れやすいため、ターン部の内側にかかる負荷を軽減することができ、トリミング溝の先端部にマイクロクラックが発生しても、マイクロクラックに起因する特性への悪影響を軽減することができる。また、浮島導体は電極にスリットを入れることで電極から分離されたものであるから、浮島導体をわざわざ別途設ける必要がなく、チップ抵抗器を容易に製造することができる。しかも、抵抗体のターン部と電極との間に位置ずれや滲み等を考慮して広めの隙間を確保しておく必要がなくなり、その分、抵抗体の形成スペースを広くすることができるため、蛇行形状の抵抗体の全長を長くすることが可能となり、サージ特性に優れたチップ抵抗器を実現することができる。 In the chip resistor configured in this way, the floating island conductor is formed in the turn portion facing the electrode with a gap, and the current flowing through the turn portion is a floating island with a small electric resistance formed outside the turn portion. Since it is easy to flow through the conductor, the load applied to the inside of the turn can be reduced, and even if micro cracks occur at the tip of the trimming groove, the adverse effect on the characteristics due to the micro cracks can be reduced. Further, since the floating island conductor is separated from the electrode by forming a slit in the electrode, there is no need to additionally provide the floating island conductor, and the chip resistor can be easily manufactured. In addition, it is not necessary to secure a wide gap in consideration of positional displacement and bleeding between the turn portion of the resistor and the electrode, and the space for forming the resistor can be widened accordingly. It is possible to increase the overall length of the meander-shaped resistor, and a chip resistor having excellent surge characteristics can be realized.
 上記構成のチップ抵抗器において、トリミング溝が電極間距離の1/2以上の長さに形成されていると、ターン部を流れる電流は電気抵抗の小さい浮島導体を流れやすいため、ターン部の内側にかかる負荷をより一層軽減することができる。 In the chip resistor having the above configuration, when the trimming groove is formed to have a length of 1/2 or more of the inter-electrode distance, the current flowing through the turn easily flows through the floating island conductor having a small electric resistance. Can be further reduced.
 また、上記構成のチップ抵抗器において、スリットとトリミング溝を別工程で形成したり、異なる手段を用いて形成することも可能であるが、これらスリットとトリミング溝とが連続していると、例えば電極に照射したレーザー光をそのまま抵抗体まで延ばせば、スリットによる浮島導体の形成とトリミング溝による抵抗値調整とを連続的に行うことができる。 In the chip resistor having the above configuration, the slit and the trimming groove may be formed in separate steps, or may be formed using different means, but when the slit and the trimming groove are continuous, for example, If the laser beam irradiated to the electrode is directly extended to the resistor, the formation of the floating island conductor by the slit and the adjustment of the resistance value by the trimming groove can be continuously performed.
 また、上記構成のチップ抵抗器において、トリミング溝によって抵抗体の蛇行形状が規定されるように構成しても良いが、抵抗体の印刷パターンとトリミング溝の両方によって蛇行形状が規定されるように構成することも可能である。例えば、2つのターン部の一方を抵抗体の印刷パターンによって形成する場合、抵抗体にターン部に向かって相手側の電極方向へ延びる切込みを予め印刷形成しておき、電極に形成したスリットの先端を切込みに連続させると共に、切込みの幅をスリットよりも広く設定するという構成にすると、切込みに連続するスリットの先端が抵抗体と離間するため、抵抗体にマイクロクラックが発生しなくなる。したがって、マイクロクラックに起因する特性への悪影響をより一層軽減することができる。なお、切込みの全長に亘って切込みの幅をスリットよりも広く設定しても良いが、切込みのうちスリットの先端に連続する部分だけ、切込みの幅をスリットよりも広く設定するようにしても良い。 In the chip resistor having the above configuration, the meandering shape of the resistor may be defined by the trimming groove, but the meandering shape may be defined by both the printed pattern of the resistor and the trimming groove. It is also possible to configure. For example, when one of the two turn portions is formed by a printed pattern of a resistor, a notch extending in the direction of the other electrode toward the turn portion is printed in advance in the resistor, and the tip of the slit formed in the electrode If the width of the cut is set wider than that of the slit, the tip of the slit continuous to the cut is separated from the resistor, so that the micro crack does not occur in the resistor. Therefore, the adverse effect on the properties due to the micro crack can be further reduced. Although the width of the cut may be set wider than the slit over the entire length of the cut, the width of the cut may be set wider than the slit only in the portion of the cut continuous to the tip of the slit. .
 また、上記構成のチップ抵抗器において、一対の電極の少なくとも一方に相手側の電極方向へ突出する凸部が形成されていると共に、この凸部に抵抗体が接続されており、凸部に対してスリットを電極間方向と直交する方向に沿って形成することにより、凸部が電極から分離されて浮島導体となるように構成すると、凸部を直線的に切断することが可能になるため、浮島導体を容易に形成することができる。 Further, in the chip resistor having the above configuration, a convex portion protruding in the direction of the other electrode is formed on at least one of the pair of electrodes, and a resistor is connected to the convex portion to the convex portion By forming the slits along the direction perpendicular to the inter-electrode direction, the projection can be cut linearly if it is configured such that the projection is separated from the electrode and becomes a floating island conductor. The floating island conductor can be easily formed.
 この場合において、抵抗体にターン部に向かって電極方向へ延びる切込みが印刷形成されていると共に、凸部の幅が該凸部に重なる抵抗体の幅より小さく設定されており、凸部を縦断するスリットの先端がこの切込みに連続していると、凸部と抵抗体の重なり部分の近傍に切込みに繋がるスペースが確保され、このスペースに連続するスリットの先端が抵抗体と離間するため、抵抗体にマイクロクラックは発生しなくなる。したがって、切込みの幅を狭く設定することが可能となり、その分、抵抗体の形成スペースを広くすることができる。 In this case, a notch extending in the electrode direction toward the turn is printed on the resistor, and the width of the protrusion is set smaller than the width of the resistor overlapping the protrusion, and the protrusion is cut longitudinally When the tip of the slit is continuous with this cut, a space connected to the cut is secured in the vicinity of the overlapping portion of the convex portion and the resistor, and the tip of the slit continuous with this space is separated from the resistor. There are no micro cracks in the body. Therefore, the width of the cut can be set narrow, and the space for forming the resistor can be enlarged accordingly.
 また、上記第2の目的を達成するために、本発明によるチップ抵抗器の製造方法は、絶縁基板と、この絶縁基板上に所定間隔を存して対向配置された一対の電極と、これら一対の電極間を橋絡する抵抗体とを備え、前記抵抗体が前記電極と隙間を存して対向する複数のターン部を有する蛇行形状に形成されているチップ抵抗器の製造方法において、前記電極に前記抵抗体との接続箇所に達するスリットを形成することにより、前記ターン部に前記電極から分離された浮島導体を形成する工程と、前記スリットを延長して前記抵抗体に前記浮島導体に向かって電極間方向へ延びるトリミング溝を形成する工程と、を含むことを特徴としている。 Further, in order to achieve the above second object, a method of manufacturing a chip resistor according to the present invention comprises an insulating substrate, a pair of electrodes disposed opposite to each other with a predetermined gap on the insulating substrate, and a pair of these And a resistor for bridging between the electrodes, wherein the resistor is formed in a serpentine shape having a plurality of turn portions facing each other with a gap between the electrodes. Forming a floating island conductor separated from the electrode at the turn portion by forming a slit reaching the connection portion with the resistor, extending the slit and extending the slit toward the floating island conductor Forming a trimming groove extending in a direction between the electrodes.
 このような工程を含むチップ抵抗器の製造方法では、トリミング溝の先端部と対向する抵抗体のターン部に浮島導体が形成され、このターン部を流れる電流はターン部の外側に形成された電気抵抗の小さい浮島導体を流れやすいため、ターン部の内側にかかる負荷を軽減することができ、トリミング溝の先端部にマイクロクラックが発生しても、マイクロクラックに起因する特性への悪影響を軽減することができる。また、浮島導体は電極にスリットを入れることで電極から分離されたものであるから、浮島導体をわざわざ別途設ける必要がなく、チップ抵抗器を容易に製造することができる。しかも、抵抗体のターン部と電極との間に位置ずれや滲み等を考慮して広めの隙間を確保しておく必要がなくなり、その分、抵抗体の形成スペースを広くすることができるため、蛇行形状の抵抗体の全長を長くすることが可能となり、サージ特性に優れたチップ抵抗器を実現することができる。 In a method of manufacturing a chip resistor including such steps, a floating island conductor is formed on the turn of the resistor facing the tip of the trimming groove, and the current flowing through the turn is the electric current formed on the outside of the turn The load on the inside of the turn can be reduced because it is easy to flow through the floating island conductor with low resistance, and even if micro cracks occur at the tip of the trimming groove, the adverse effect on the characteristics due to micro cracks is reduced. be able to. Further, since the floating island conductor is separated from the electrode by forming a slit in the electrode, there is no need to additionally provide the floating island conductor, and the chip resistor can be easily manufactured. In addition, it is not necessary to secure a wide gap in consideration of positional displacement and bleeding between the turn portion of the resistor and the electrode, and the space for forming the resistor can be widened accordingly. It is possible to increase the overall length of the meander-shaped resistor, and a chip resistor having excellent surge characteristics can be realized.
 本発明によれば、マイクロクラックに起因する特性への悪影響を軽減できると共に、サージ特性を向上させることが可能なチップ抵抗器を提供することができる。 According to the present invention, it is possible to provide a chip resistor capable of improving the surge characteristics as well as reducing the adverse effect on the characteristics due to the micro crack.
本発明の第1実施形態例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a 1st example of an embodiment of the present invention. 第1実施形態例に係るチップ抵抗器の製造工程を示す説明図である。It is an explanatory view showing a manufacturing process of a chip resistor concerning a 1st example of an embodiment. 本発明の第2実施形態例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a 2nd embodiment of the present invention. 本発明の第3実施形態例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a 3rd embodiment of the present invention. 第3実施形態例に係るチップ抵抗器の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the chip resistor which concerns on the example of 3rd Embodiment. 本発明の第4実施形態例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a 4th example of embodiment of the present invention. 本発明の第5実施形態例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a 5th example of embodiment of the present invention. 第5実施形態例に係るチップ抵抗器の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the chip resistor which concerns on the example of 5th Embodiment. 本発明の第6実施形態例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a 6th embodiment of the present invention. 本発明の第7実施形態例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a 7th embodiment of the present invention. 第7実施形態例に係るチップ抵抗器の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the chip resistor which concerns on the example of 7th Embodiment. 従来例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a conventional example.
 発明の実施の形態について図面を参照して説明すると、図1に示すように、本発明の第1実施形態例に係るチップ抵抗器1は、直方体形状の絶縁基板2と、絶縁基板2の表面における長手方向両端部に所定間隔を存して対向配置された第1電極3および第2電極4と、これら第1および第2電極3,4に接続する蛇行形状の抵抗体5と、抵抗体5を覆う図示せぬ保護膜等によって主に構成されている。 A preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a chip resistor 1 according to a first embodiment of the present invention includes a rectangular parallelepiped insulating substrate 2 and a surface of the insulating substrate 2 The first electrode 3 and the second electrode 4 disposed opposite to each other with a predetermined interval at both ends in the longitudinal direction, the meandering resistor 5 connected to the first and second electrodes 3 and 4, and the resistor It is mainly comprised by the protective film etc. which cover 5 which are not shown.
 絶縁基板2はセラミック等からなり、この絶縁基板2は後述する大判の集合基板を縦横の分割溝に沿って分割して多数個取りされたものである。 The insulating substrate 2 is made of ceramic or the like, and the insulating substrate 2 is obtained by dividing a large-sized collective substrate to be described later along dividing grooves in the vertical and horizontal directions.
 第1電極3と第2電極4はAg系ペーストをスクリーン印刷して乾燥・焼成させたものである。図示左側の第1電極3は段付き状に突出する下端部が抵抗体5の一端部と接続されており、図示右側の第2電極4は段付き状に突出する上端部が抵抗体5の他端部と接続されている。 The 1st electrode 3 and the 2nd electrode 4 screen-print Ag-based paste, and are dried and baked. The lower end portion of the first electrode 3 shown on the left side of the drawing is connected to one end of the resistor 5, and the upper end of the second electrode 4 shown on the right side of the drawing shown in FIG. It is connected to the other end.
 抵抗体5は酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成させたものであり、この抵抗体5は電極間方向に延びるリード部5aが延出方向を反転するターン部5bを介して連続する蛇行形状(ミアンダ形状)に形成されている。本実施形態例の場合、3つのリード部5aが2つのターン部5bを介して交互に連続する2ターン蛇行の抵抗体5となっており、これら3つのリード部5aのうち、下段側のリード部5aが第1電極3に接続され、上段側のリード部5aが第2電極4に接続されている。また、2つのターン部5bにはそれぞれ浮島導体6A,6Bが形成されており、これら浮島導体6A,6Bは第1および第2電極3,4と同一材料からなる。図示左側の浮島導体6AはL字状のスリットS1を介して第1電極3に対向しており、図示右側の浮島導体6Bは逆L字状のスリットS2を介して第2電極4に対向している。 The resistor 5 is obtained by screen-printing a resistor paste such as ruthenium oxide, dried, and fired, and the resistor 5 has a lead portion 5a extending in the interelectrode direction through the turn portion 5b whose direction of extension is reversed. It is formed in a continuous meandering shape (meaning shape). In the case of the present embodiment, the three lead portions 5a form a resistor body 5 of two-turn meandering which continues alternately via two turn portions 5b, and among these three lead portions 5a, the leads on the lower side The portion 5 a is connected to the first electrode 3, and the lead portion 5 a on the upper side is connected to the second electrode 4. In addition, floating island conductors 6A and 6B are respectively formed in the two turn portions 5b, and these floating island conductors 6A and 6B are made of the same material as the first and second electrodes 3 and 4. The floating island conductor 6A on the left side of the drawing faces the first electrode 3 via the L-shaped slit S1, and the floating island conductor 6B on the right side of the drawing faces the second electrode 4 via the reverse L-shaped slit S2. ing.
 抵抗体5には抵抗値調整用の2本のトリミング溝7A,7Bが形成されており、これらトリミング溝7A,7Bによって抵抗体5はS字状の蛇行形状となっている。図示下側のトリミング溝7Aは第1電極3に形成されたスリットS1の先端部に連続して電極間方向へ延びており、このトリミング溝7Aの先端は図示右側のターン部5bに形成された浮島導体6Bに対向している。図示上側のトリミング溝7Bは第2電極4に形成されたスリットS2の先端部に連続して電極間方向へ延びており、このトリミング溝7Bの先端は図示左側のターン部5bに形成された浮島導体6Aに対向している。詳細については後述するが、スリットS1とトリミング溝7AおよびスリットS2とトリミング溝7Bは、レーザー光の照射によってそれぞれ連続的に形成されたものであり、それぞれの幅寸法は同一に設定されている。 Two trimming grooves 7A and 7B for adjusting the resistance value are formed in the resistor 5, and the resistor 5 has an S-shaped meandering shape by the trimming grooves 7A and 7B. The trimming groove 7A on the lower side in the drawing extends continuously in the inter-electrode direction continuously from the tip of the slit S1 formed in the first electrode 3, and the tip of the trimming groove 7A is formed in the turn 5b on the right in the figure. It faces the floating island conductor 6B. The trimming groove 7B on the upper side in the figure extends continuously in the inter-electrode direction continuously to the tip of the slit S2 formed in the second electrode 4, and the tip of the trimming groove 7B is a floating island formed in the turn 5b on the left side in the figure. It faces the conductor 6A. Although details will be described later, the slit S1 and the trimming groove 7A, and the slit S2 and the trimming groove 7B are respectively formed continuously by laser beam irradiation, and their width dimensions are set to be the same.
 図示せぬ保護膜はエポキシ系の樹脂ペーストをスクリーン印刷して加熱硬化させたものであり、この保護膜は抵抗体5を外部環境から保護する機能を有している。 The protective film (not shown) is obtained by screen printing an epoxy resin paste and heat curing it. The protective film has a function of protecting the resistor 5 from the external environment.
 次に、上記の如く構成されたチップ抵抗器1の製造工程について、図2を参照しながら説明する。 Next, a manufacturing process of the chip resistor 1 configured as described above will be described with reference to FIG.
 まず、絶縁基板2が多数個取りされる大判の集合基板を準備する。この集合基板には予め1次分割溝と2次分割溝が格子状に設けられており、両分割溝によって区切られたマス目の1つ1つが1個分のチップ領域となる。図2には1個分のチップ領域に相当する集合基板2Aが代表して示されているが、実際は多数個分のチップ領域に相当する集合基板に対して以下に説明する各工程が一括して行われる。 First, a large-sized collective substrate in which a large number of insulating substrates 2 are taken is prepared. In this collective substrate, primary division grooves and secondary division grooves are provided in advance in a lattice shape, and each one of the squares divided by both division grooves becomes one chip area. Although the collective substrate 2A corresponding to one chip area is representatively shown in FIG. 2, in actuality, each process described below is collectively performed on a collective substrate corresponding to a large number of chip areas. Be done.
 すなわち、図2(a)に示すように、この集合基板2Aの表面にAg系ペーストをスクリーン印刷した後、これを乾燥・焼成して一対の第1電極3と第2電極4を形成する(表電極形成工程)。なお、この表電極形成工程と同時あるいは前後して、集合基板2Aの裏面にAg系ペーストをスクリーン印刷した後、これを乾燥・焼成することにより、第1および第2電極3,4に対応する図示せぬ裏電極を形成する(裏電極形成工程)。 That is, as shown in FIG. 2A, after Ag-based paste is screen-printed on the surface of the collective substrate 2A, it is dried and fired to form a pair of first electrodes 3 and a second electrode 4 (see FIG. Front electrode formation process). At the same time or before or after the front electrode forming step, an Ag-based paste is screen-printed on the back surface of the collective substrate 2A, and then dried and fired to correspond to the first and second electrodes 3 and 4. A back electrode (not shown) is formed (back electrode formation step).
 次に、集合基板2Aの表面に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成することにより、図2(b)に示すように、両端部が第1電極3と第2電極4に重なる長方形状の抵抗体5を形成する(抵抗体印刷工程)。 Next, a resistor paste such as ruthenium oxide is screen-printed on the surface of the collective substrate 2A, dried and fired to form first and second electrodes 3 and 4 at both ends as shown in FIG. 2 (b). To form a rectangular resistor 5 (resistor printing step).
 次に、図2(c)に示すように、レーザー光を第1電極3の上端部から電極間方向と直交する方向(下方)へ照射した後、これを電極間方向へ直角に方向変換して抵抗体5にもレーザー光を照射する(符号LT1参照)。 Next, as shown in FIG. 2C, the laser light is irradiated from the upper end of the first electrode 3 in the direction (downward) orthogonal to the inter-electrode direction, and then it is changed in direction to the inter-electrode direction The laser light is also irradiated to the resistor 5 (see reference numeral LT1).
 これにより、図2(d)に示すように、第1電極3の上端部から抵抗体5に達するL字状のスリットS1が形成され、このスリットS1によって第1電極3から分離された部分が浮島導体6Aとなる(電極切断工程)。また、抵抗体5にスリットS1の先端と連続するトリミング溝7Aが形成され、このトリミング溝7Aが第2電極4に向かって直線状に延びることにより、抵抗体5の抵抗値が目標抵抗値よりも幾分下回る値まで抵抗値調整される(抵抗値調整工程)。 As a result, as shown in FIG. 2D, an L-shaped slit S1 reaching the resistor 5 from the upper end of the first electrode 3 is formed, and the portion separated from the first electrode 3 by the slit S1 is It becomes floating island conductor 6A (electrode cutting process). Further, a trimming groove 7A continuous with the tip of the slit S1 is formed in the resistor 5, and the trimming groove 7A linearly extends toward the second electrode 4 so that the resistance value of the resistor 5 is greater than the target resistance value. The resistance is adjusted to a value slightly lower than the above (resistance adjustment step).
 次に、図2(d)に示すように、レーザー光を第2電極4の下端部から電極間方向と直交する方向(上方)へ照射した後、これを電極間方向へ直角に方向変換して抵抗体5にもレーザー光を照射する(符号LT2参照)。 Next, as shown in FIG. 2D, the laser light is irradiated from the lower end of the second electrode 4 in a direction (upward) perpendicular to the inter-electrode direction, and then it is changed to a right direction in the inter-electrode direction The laser light is also irradiated to the resistor 5 (see reference numeral LT2).
 これにより、図2(e)に示すように、第2電極4の下端部から抵抗体5に達する逆L字状のスリットS2が形成され、このスリットS2によって第2電極4から分離された部分が浮島導体6Bとなる。また、抵抗体5にスリットS2の先端と連続するトリミング溝7Bが形成され、このトリミング溝7Bが第1電極3に向かって直線状に延びることにより、抵抗体5の抵抗値が目標抵抗値となるように抵抗値調整される。なお、スリットS1とスリットS2の形成順序は上記と逆でも良く、第2電極4側からスリットS2とそれに続くトリミング溝7Bを形成した後に、第1電極3側からスリットS1とそれに続くトリミング溝7Aを形成することも可能である。 As a result, as shown in FIG. 2E, an inverted L-shaped slit S2 reaching the resistor 5 from the lower end of the second electrode 4 is formed, and a portion separated from the second electrode 4 by the slit S2 Is the floating island conductor 6B. Further, a trimming groove 7B continuous to the tip of the slit S2 is formed in the resistor 5, and the trimming groove 7B linearly extends toward the first electrode 3 so that the resistance value of the resistor 5 becomes the target resistance value. The resistance value is adjusted to be The order of forming the slits S1 and S2 may be reversed, and after the slit S2 and the subsequent trimming groove 7B are formed from the second electrode 4 side, the slit S1 and the subsequent trimming groove 7A are formed from the first electrode 3 side. It is also possible to form
 このようにスリットS1,S2と2本のトリミング溝7A,7Bが形成された時点で、長方形状に印刷された抵抗体5は2つのターン部5bを介して連続する蛇行形状となり、これら両ターン部5bに第1電極3と第2電極4から分離した浮島導体6A,6Bが形成される。なお、抵抗体5の表面をガラスペースト等からなるプリコート層で覆い、このプリコート層の上からレーザー光を照射するようにしても良い。 When the slits S1 and S2 and the two trimming grooves 7A and 7B are formed as described above, the resistor 5 printed in a rectangular shape becomes a continuous meandering shape through the two turn portions 5b. The floating island conductors 6A and 6B separated from the first electrode 3 and the second electrode 4 are formed in the portion 5b. The surface of the resistor 5 may be covered with a precoat layer of glass paste or the like, and laser light may be irradiated from above the precoat layer.
 次に、両スリットS1,S2を含む領域にエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化することにより、第1電極3と第2電極4の浮島導体6A,6Bを含む一部と抵抗体5の全体を覆う図示せぬ保護膜を形成する(保護膜形成工程)。 Next, epoxy resin paste is screen-printed in a region including both slits S1 and S2 and heat curing is performed, whereby a portion including floating island conductors 6A and 6B of the first electrode 3 and the second electrode 4 and the resistor 5 Forming a protective film (not shown) covering the entire surface of the substrate (protective film forming step).
 ここまでの各工程は多数個取り用の集合基板2Aに対する一括処理であるが、次なる工程では、集合基板2Aを1次分割溝に沿って短冊状に分割するという1次ブレーク加工を行うことより、複数個分のチップ領域が設けられた図示せぬ短冊状基板を得る(1次分割工程)。次いで、短冊状基板の分割面にAgペーストを塗布して乾燥・焼成したり、Agペーストの代わりにNi/Crをスパッタすることにより、第1電極3および第2電極4と対応する裏電極とを橋絡する図示せぬ端面電極を形成する(端面電極形成工程)。 Each of the steps up to here is batch processing on the collective substrate 2A for taking a large number of pieces, but in the next step, primary break processing of dividing the collective substrate 2A into strip shapes along primary division grooves is performed Thus, a strip-like substrate (not shown) provided with a plurality of chip areas is obtained (primary division step). Then, an Ag paste is applied to the divided surface of the strip-like substrate, dried and fired, or Ni / Cr is sputtered instead of the Ag paste to form the first electrode 3 and the second electrode 4 and the corresponding back electrode. Form an end face electrode (not shown) for bridging (end face electrode forming step).
 しかる後、短冊状基板を2次分割溝に沿って分割するという2次ブレーク加工を行うことにより、チップ抵抗器1と同等の大きさのチップ単体を得る(2次分割工程)。最後に、個片化された各チップ単体の絶縁基板の長手方向両端部にNiとAuやSn等の電解メッキを施し、保護膜から露出する第1電極3と第2電極4を覆う図示せぬ外部電極を形成することにより、図1に示すようなチップ抵抗器1が得られる。 Thereafter, by performing secondary break processing of dividing the strip-like substrate along the secondary division grooves, a single chip of the same size as the chip resistor 1 is obtained (secondary division step). Finally, electrolytic plating of Ni, Au, Sn, etc. is applied to both end portions in the longitudinal direction of the insulating substrate of each singulated chip to cover the first electrode 3 and the second electrode 4 exposed from the protective film. By forming an external electrode, a chip resistor 1 as shown in FIG. 1 is obtained.
 以上説明したように、第1実施形態例に係るチップ抵抗器1では、トリミング溝7A,7Bの先端部と対向する抵抗体5のターン部5bに浮島導体6A,6Bが形成されており、ターン部5bを流れる電流はターン部5bの外側に形成された電気抵抗の小さい浮島導体6A,6Bを流れやすいため、ターン部5bの内側にかかる負荷を軽減することができ、トリミング溝7A,7Bの先端部にマイクロクラックが発生しても、マイクロクラックに起因する特性への悪影響を軽減することができる。 As described above, in the chip resistor 1 according to the first embodiment, the floating island conductors 6A and 6B are formed in the turn portion 5b of the resistor 5 opposed to the tips of the trimming grooves 7A and 7B. The current flowing through the portion 5b can easily flow through the floating island conductors 6A and 6B having small electric resistance formed outside the turn portion 5b, so that the load applied to the inside of the turn portion 5b can be reduced. Even if microcracks occur at the tip, adverse effects on the characteristics due to the microcracks can be reduced.
 また、浮島導体6A,6BはスリットS1,S2によって第1電極3と第2電極4から分離されたものであるから、浮島導体6A,6Bをわざわざ別途設けるという面倒な工程必要がなくなり、チップ抵抗器1を容易に製造することができる。しかも、抵抗体5のターン部5bと両電極3,4との間に位置ずれや滲み等を考慮して広めの隙間を確保しておく必要がなくなり、その分、抵抗体5の形成スペースを広くすることができるため、蛇行形状の抵抗体5の全長を長くすることが可能となり、サージ特性に優れたチップ抵抗器1を実現することができる。 Further, since the floating island conductors 6A and 6B are separated from the first electrode 3 and the second electrode 4 by the slits S1 and S2, there is no need for the troublesome process of separately providing the floating island conductors 6A and 6B The vessel 1 can be easily manufactured. Moreover, it is not necessary to secure a wider gap in consideration of positional deviation, bleeding, etc. between the turn 5b of the resistor 5 and the two electrodes 3 and 4, and accordingly, a space for forming the resistor 5 is increased. Since the width can be increased, the total length of the meander-shaped resistor 5 can be increased, and the chip resistor 1 having excellent surge characteristics can be realized.
 さらに、スリットS1,S2とトリミング溝7A,7Bとが連続しているため、第1電極3に照射したレーザー光をそのまま抵抗体5まで延ばしてトリミング溝7Aを形成したり、第2電極4に照射したレーザー光をそのまま抵抗体5まで延ばしてトリミング溝7Bを形成することができ、浮島導体6A,6Bの形成と抵抗値調整を連続的に行うことができる。 Furthermore, since the slits S1 and S2 and the trimming grooves 7A and 7B are continuous, the laser beam irradiated to the first electrode 3 is directly extended to the resistor 5 to form the trimming groove 7A, or the second electrode 4 is formed. The irradiated laser beam can be extended as it is to the resistor 5 to form the trimming groove 7B, and the formation of the floating island conductors 6A and 6B and the adjustment of the resistance value can be continuously performed.
 図3は本発明の第2実施形態例に係るチップ抵抗器10の平面図であり、図1に対応する部分には同一符号を付してある。第2実施形態例に係るチップ抵抗器10が第1実施形態例に係るチップ抵抗器1と相違する点は、スリットS2に連続するトリミング溝7Bの先端が浮島導体6Aまで達していることにあり、それ以外の構成は基本的に同様である。 FIG. 3 is a plan view of a chip resistor 10 according to a second embodiment of the present invention. The parts corresponding to FIG. 1 are given the same reference numerals. The difference between the chip resistor 10 according to the second embodiment and the chip resistor 1 according to the first embodiment is that the tip of the trimming groove 7B continuing to the slit S2 reaches the floating island conductor 6A. The other configurations are basically the same.
 このように構成されたチップ抵抗器10によれば、浮島導体6Aと接触するトリミング溝7Bの先端にマイクロクラックは発生せず、マイクロクラックが発生する部位はもう一方の浮島導体6Bと対向するトリミング溝7Aの先端1箇所だけとなるため、マイクロクラックに起因する特性への悪影響をより一層軽減することができる。 According to the chip resistor 10 configured in this manner, microcracks are not generated at the tip of the trimming groove 7B in contact with the floating island conductor 6A, and the portion where the microcrack is generated is trimming facing the other floating island conductor 6B. Since only one tip of the groove 7A is provided, the adverse effect on the characteristics due to the micro crack can be further reduced.
 図4は本発明の第3実施形態例に係るチップ抵抗器20の平面図、図5は第3実施形態例に係るチップ抵抗器20の製造工程を示す説明図であり、図1,2に対応する部分には同一符号を付してある。 FIG. 4 is a plan view of a chip resistor 20 according to a third embodiment of the present invention, and FIG. 5 is an explanatory view showing a manufacturing process of the chip resistor 20 according to the third embodiment. The corresponding parts are given the same reference numerals.
 図4に示す第3実施形態例に係るチップ抵抗器20が第1実施形態例に係るチップ抵抗器1と相違する点は、抵抗体5に第2電極4から一方の浮島導体6Aに向かって延びる切込み8が印刷形成されており、この切込み8と第1電極3から他方の浮島導体6Bに向かって延びるトリミング溝7Aとによって抵抗体5の蛇行形状が規定されていることにあり、それ以外の構成は基本的に同様である。すなわち、抵抗体5に印刷形成された切込み8によって一方のターン部5bが規定されると共に、この切込み8に第2電極4に形成されたスリットS2の先端が連続するように構成されており、切込み8の幅寸法はスリットS2よりも十分に幅広に設定されている。 The difference between the chip resistor 20 according to the third embodiment shown in FIG. 4 and the chip resistor 1 according to the first embodiment is that the resistor 5 is directed from the second electrode 4 to one floating island conductor 6A. The extending cut 8 is formed by printing, and the serpentine shape of the resistor 5 is defined by the cut 8 and the trimming groove 7A extending from the first electrode 3 to the other floating island conductor 6B, and others The configuration of is basically the same. That is, one of the turn portions 5b is defined by the notch 8 printed on the resistor 5, and the tip of the slit S2 formed in the second electrode 4 is continuous to the notch 8; The width dimension of the incision 8 is set sufficiently wider than the slit S2.
 このように構成されたチップ抵抗器20の製造工程について説明すると、図5(a)に示すように、集合基板2Aの表面に所定間隔を存して対向する一対の第1電極3と第2電極4を形成した後、図5(b)に示すように、両端部が第1電極3と第2電極4に重なる抵抗体5を印刷形成する。この抵抗体5の内側領域には、第2電極4を始点として第1電極3の手前位置まで延びる長方形状の切込み8が形成されている。 The manufacturing process of the chip resistor 20 configured in this way will be described. As shown in FIG. 5A, the pair of first electrodes 3 and the second electrodes facing each other with a predetermined interval on the surface of the collective substrate 2A. After the electrode 4 is formed, as shown in FIG. 5B, a resistor 5 is formed by printing, the both ends of which overlap the first electrode 3 and the second electrode 4. In the inner region of the resistor 5, a rectangular notch 8 extending from the second electrode 4 to a position in front of the first electrode 3 is formed.
 次に、図5(c)に示すように、レーザー光を第2電極4の下端部から電極間方向と直交する方向(上方)へ照射した後、これを電極間方向へ直角に方向変換して切込み8内まで走査することにより(符号LT2参照)、図5(d)に示すように、第2電極4の下端部から切込み8に達する逆L字状のスリットS2を形成すると、このスリットS2によって第2電極4から分離した浮島導体6Bが得られる。その際、切込み8がスリットS2に対して幅広に設定されているため、スリットS2の先端が切込み8に対して多少位置ずれしても、スリットS2の先端を切込み8に簡単かつ確実に連続させることができる。また、切込み8に連続するスリットS2の先端が抵抗体5と離間するため、抵抗体5にマイクロクラックは発生しなくなる。 Next, as shown in FIG. 5C, the laser light is irradiated from the lower end of the second electrode 4 in a direction (upward) orthogonal to the inter-electrode direction, and then it is changed to a right direction in the inter-electrode direction By forming an inverted L-shaped slit S2 extending from the lower end of the second electrode 4 to the notch 8 as shown in FIG. 5D by scanning into the notch 8 (see symbol LT2), this slit is formed. The floating island conductor 6B separated from the second electrode 4 is obtained by S2. At this time, since the cut 8 is set wider than the slit S2, even if the tip of the slit S2 is slightly misaligned with respect to the cut 8, the tip of the slit S2 is made continuous with the cut 8 simply and reliably. be able to. In addition, since the tip of the slit S2 continuing to the cut 8 is separated from the resistor 5, micro cracks do not occur in the resistor 5.
 次に、図5(d)に示すように、レーザー光を第1電極3の上端部から電極間方向と直交する方向(下方)へ照射した後、これを電極間方向へ直角に方向変換することにより(符号LT1参照)、図5(e)に示すように、第1電極3にL字状のスリットS1を形成すると共に、抵抗体5にスリットS1の先端と連続するトリミング溝7Aを形成する。このスリットS1によって第1電極3から分離した浮島導体6Aが得られ、この浮島導体6Aは切込み8と対向するターン部5bに形成される。また、トリミング溝7Aによって抵抗体5の抵抗値が目標抵抗値となるように抵抗値調整される。この時点で抵抗体5は切込み8とトリミング溝7Aによって2つのターン部5bを有する蛇行形状となる。なお、これ以降の工程は第1実施形態例と基本的に同様であるため、ここでは重複する説明を省略する。 Next, as shown in FIG. 5D, the laser light is irradiated from the upper end portion of the first electrode 3 in a direction (downward) orthogonal to the inter-electrode direction, and then the direction is orthogonally changed to the inter-electrode direction Thus, as shown in FIG. 5 (e), the L-shaped slit S1 is formed in the first electrode 3 and the trimming groove 7A continuous with the tip of the slit S1 is formed in the resistor 5, as shown in FIG. Do. The floating island conductor 6A separated from the first electrode 3 is obtained by the slits S1, and the floating island conductor 6A is formed in the turn portion 5b opposed to the cut 8. Further, the resistance value of the resistor 5 is adjusted by the trimming groove 7A so as to be the target resistance value. At this time, the resistor 5 has a serpentine shape having two turn parts 5b by the cut 8 and the trimming groove 7A. The subsequent steps are basically the same as those of the first embodiment, and thus redundant description will be omitted.
 以上説明したように、第3実施形態例に係るチップ抵抗器20では、抵抗体5に一方のターン部5bに向かって電極方向へ延びる切込み8を予め印刷形成しておき、この切込み8に第2電極4に形成したスリットS2の先端を連続させると共に、切込み8の幅をスリットS2よりも広く設定しているため、切込み8に連続するスリットS2の先端にマイクロクラックは発生せず、マイクロクラックに起因する特性への悪影響をより一層軽減することができる。 As described above, in the chip resistor 20 according to the third embodiment, the notch 8 extending in the electrode direction toward the one turn 5b is printed and formed in the resistor 5 in advance. Since the tip of the slit S2 formed in the two electrodes 4 is made continuous and the width of the cut 8 is set wider than the slit S2, no microcrack is generated at the tip of the slit S2 continuous to the cut 8 It is possible to further reduce the adverse effect on the properties caused by
 図6は本発明の第4実施形態例に係るチップ抵抗器30の平面図であり、図1に対応する部分には同一符号を付してある。第3実施形態例に係るチップ抵抗器20では、第1電極3から分離する浮島導体6Aと切込み8との間に抵抗体5の一部を介在させているが、図6に示すチップ抵抗器30のように、切込み8の先端を浮島導体6Aまで延ばしても良い。 FIG. 6 is a plan view of a chip resistor 30 according to a fourth embodiment of the present invention. The parts corresponding to FIG. 1 are given the same reference numerals. In the chip resistor 20 according to the third embodiment, a part of the resistor 5 is interposed between the floating island conductor 6A separated from the first electrode 3 and the notch 8, but the chip resistor shown in FIG. 6 As in 30, the tip of the cut 8 may be extended to the floating island conductor 6A.
 ここで、切込み8によって分離された2つの抵抗体5のうち、図示上側の抵抗体に符号5Aを付し、図示下側の抵抗体に符号5Bを付すと、抵抗体5Aの幅はトリミング溝7Aが形成された抵抗体5Bの幅よりも狭く設定されている。このようにすると、負荷は幅の狭い方の抵抗体5Aにかかりやすくなり、この抵抗体5Aにはトリミング溝によるマイクロクラックが発生しないため、トリミング溝7Aが形成された抵抗体5Bの負荷を軽減でき、結果的にチップ抵抗器30全体の負荷特性を向上することができる。 Here, among the two resistors 5 separated by the notch 8, when the symbol 5A is attached to the resistor on the upper side in the drawing and the resistor 5B on the lower side in the drawing, the width of the resistor 5A is a trimming groove The width is set smaller than the width of the resistor 5B in which 7A is formed. In this case, a load is likely to be applied to the narrower resistor 5A, and microcracks are not generated by the trimming groove in this resistor 5A, so the load on the resistor 5B in which the trimming groove 7A is formed is reduced. As a result, the load characteristics of the entire chip resistor 30 can be improved.
 図7は本発明の第5実施形態例に係るチップ抵抗器40の平面図、図8は第5実施形態例に係るチップ抵抗器40の製造工程を示す説明図であり、図1,2に対応する部分には同一符号を付してある。図7に示す第5実施形態例に係るチップ抵抗器40では、浮島導体6Bが直線状に延びるスリットS2によって第2電極4から分離され、このスリットS2の先端に切込み8が連続するように構成されている。 7 is a plan view of a chip resistor 40 according to a fifth embodiment of the present invention, and FIG. 8 is an explanatory view showing a manufacturing process of the chip resistor 40 according to the fifth embodiment. The corresponding parts are given the same reference numerals. In the chip resistor 40 according to the fifth embodiment shown in FIG. 7, the floating island conductor 6B is separated from the second electrode 4 by the linearly extending slit S2, and the notch 8 is continuous at the tip of the slit S2. It is done.
 このように構成されたチップ抵抗器40の製造工程について説明すると、まず、図8(a)に示すように、集合基板2Aの表面に所定間隔を存して対向する第1電極3と第2電極4を形成する。その際、第1電極3は長方形状であるが、第2電極4には第1電極3に向かって突出する凸部4aが形成されている。 First, as shown in FIG. 8A, the first electrode 3 and the second electrode 3 facing the surface of the collective substrate 2A with a predetermined interval are described. The electrode 4 is formed. At this time, although the first electrode 3 has a rectangular shape, the second electrode 4 is formed with a convex portion 4 a that protrudes toward the first electrode 3.
 次に、図8(b)に示すように、両端部が第1電極3と第2電極4に重なる抵抗体5を印刷形成する。この抵抗体5は、第1電極3と第2電極4間に形成された長方形状の抵抗体5Aと、第1電極3と凸部4a間に形成された長方形状の抵抗体5Bとを有し、これら抵抗体5Aと抵抗体5Bは幅狭な切込み8を挟んで対向している。ここで、抵抗体5Aの幅は抵抗体5Bの幅よりも狭く設定されており、この抵抗体5Bの幅よりも凸部4aの幅が小さく設定されている。 Next, as shown in FIG. 8B, a resistor 5 is formed by printing, the both ends of which overlap the first electrode 3 and the second electrode 4. This resistor 5 has a rectangular resistor 5A formed between the first electrode 3 and the second electrode 4 and a rectangular resistor 5B formed between the first electrode 3 and the convex portion 4a. The resistor 5A and the resistor 5B are opposed to each other across the narrow cut 8. Here, the width of the resistor 5A is set smaller than the width of the resistor 5B, and the width of the convex portion 4a is set smaller than the width of the resistor 5B.
 次に、図8(c)に示すように、第2電極4から突出する凸部4aの下端部からレーザー光を上方へ照射し、このレーザー光を凸部4aを通過する位置まで走査する(符号LT2参照)。これにより、図8(d)に示すように、第2電極4に凸部4aを縦断して切込み8に達する直線状のスリットS2が形成され、このスリットS2によって第2電極4から分離した浮島導体6Bが得られる。 Next, as shown in FIG. 8C, laser light is emitted upward from the lower end of the convex portion 4a protruding from the second electrode 4 and this laser light is scanned to a position passing through the convex portion 4a ( Reference sign LT2). As a result, as shown in FIG. 8D, a linear slit S2 is formed in the second electrode 4 to reach the cut 8 by cutting the convex portion 4a longitudinally, and the floating island separated from the second electrode 4 by the slit S2 Conductor 6B is obtained.
 次に、図8(d)に示すように、レーザー光を第1電極3の上端部から電極間方向と直交する方向へ照射した後、これを電極間方向へ直角に方向変換することにより(符号LT1参照)、図8(e)に示すように、第1電極3にL字状のスリットS1を形成すると共に、抵抗体5BにスリットS1の先端と連続するトリミング溝7Aを形成する。このスリットS1によって第1電極3から分離した浮島導体6Aが得られると共に、トリミング溝7Aによって抵抗体5の抵抗値が目標抵抗値となるように抵抗値調整される。なお、これ以降の工程は第1実施形態例と基本的に同様であるため、ここでは重複する説明を省略する。 Next, as shown in FIG. 8D, the laser light is irradiated from the upper end of the first electrode 3 in the direction orthogonal to the inter-electrode direction, and then it is changed in direction to the inter-electrode direction at right angles ( As shown in FIG. 8E, the L-shaped slit S1 is formed in the first electrode 3 and the trimming groove 7A continuous with the tip of the slit S1 is formed in the resistor 5B as shown in FIG. The floating island conductor 6A separated from the first electrode 3 is obtained by the slit S1, and the resistance value of the resistor 5 is adjusted by the trimming groove 7A so as to be the target resistance value. The subsequent steps are basically the same as those of the first embodiment, and thus redundant description will be omitted.
 以上説明したように、第5実施形態例に係るチップ抵抗器40では、第2電極4に相手側の第1電極3に向かって突出する凸部4aが形成されており、この凸部4aに対してスリットS2を電極間方向と直交する方向に沿って形成することにより、凸部4aが第2電極4から分離されて浮島導体6Bが得られるため、凸部4aの切断によって浮島導体6Bを容易に形成することができる。しかも、抵抗体5に蛇行形状の一部を規定する切込み8が印刷形成されていると共に、凸部4aの幅が凸部4aに重なる抵抗体5Bの幅より小さく設定されているため、凸部4aと抵抗体5Bが重なる部分の近傍に切込み8に繋がるスペースを確保することができる。そして、スリットS2の先端をこのスペースに連続させることで、スリットS2の先端を抵抗体5Aと離間させることができるため、抵抗体5Aにマイクロクラックは発生しなくなり、結果的に、印刷によって規定される切込み8の幅を狭く設定することが可能となり、その分、抵抗体5の形成スペースを広くすることができる。 As described above, in the chip resistor 40 according to the fifth embodiment, the second electrode 4 is provided with the convex portion 4 a that protrudes toward the first electrode 3 on the other side, and the convex portion 4 a is formed In contrast, by forming the slits S2 along the direction orthogonal to the inter-electrode direction, the convex portion 4a is separated from the second electrode 4 to obtain the floating island conductor 6B. Therefore, the floating island conductor 6B is cut by cutting the convex portion 4a. It can be easily formed. Moreover, since the notch 8 for defining a part of the meandering shape is printed on the resistor 5 and the width of the convex portion 4a is set smaller than the width of the resistor 5B overlapping the convex portion 4a, the convex portion A space connected to the cut 8 can be secured in the vicinity of the overlapping portion of 4 a and the resistor 5 B. Then, by making the tip of the slit S2 continuous with this space, the tip of the slit S2 can be separated from the resistor 5A, so that no micro crack is generated in the resistor 5A, and as a result, it is defined by printing It is possible to set the width of the notch 8 narrow, and the space for forming the resistor 5 can be enlarged accordingly.
 なお、切込み8の先端は必ずしも第1電極3側の浮島導体6Aまで達していなくても良く、切込み8と浮島導体6Aとの間に抵抗体5の一部が介在するように構成しても良い。また、上記第5実施形態例では、抵抗体5に印刷形成された切込み8にスリットS2の先端が連続するように構成されているが、第1実施形態例や第2実施形態例と同様に、切込みを形成せずにトリミング溝7A,7Bだけで抵抗体5の蛇行形状を規定するように構成し、スリットS2の先端をそのまま直交方向へ延長してトリミング溝7Bを形成するようにしても良い。 The tip of the incision 8 may not necessarily reach the floating island conductor 6A on the first electrode 3 side, and even if a part of the resistor 5 is interposed between the incision 8 and the floating island conductor 6A good. Further, in the fifth embodiment, the tip of the slit S2 is formed to be continuous with the notch 8 formed by printing on the resistor 5, but as in the first embodiment and the second embodiment, Even if the trimming groove 7A, 7B is used to define the meandering shape of the resistor 5 without forming a cut, the tip of the slit S2 may be extended in the orthogonal direction as it is to form the trimming groove 7B. good.
 図9は本発明の第6実施形態例に係るチップ抵抗器50の平面図である。図9に示すように、第6実施形態例に係るチップ抵抗器50では、浮島導体6Bを第2電極4の凸部から分離して形成するだけでなく、浮島導体6Aも第1電極3の凸部から分離して形成するように構成されている。すなわち、第1電極3には第2電極4に向かって突出する図示せぬ凸部が形成されており、この凸部を縦断するようにスリットS1を入れることで浮島導体6Aが得られ、このスリットS1の先端がトリミング溝7Bと連続するようになっている。 FIG. 9 is a plan view of a chip resistor 50 according to a sixth embodiment of the present invention. As shown in FIG. 9, in the chip resistor 50 according to the sixth embodiment, not only the floating island conductor 6B is separated from the convex portion of the second electrode 4, but the floating island conductor 6A is also formed of the first electrode 3. It is comprised so that it may isolate | separate and form from a convex part. That is, a convex portion (not shown) protruding toward the second electrode 4 is formed in the first electrode 3, and the floating island conductor 6A is obtained by inserting the slit S1 so as to longitudinally cut the convex portion. The tip of the slit S1 is continuous with the trimming groove 7B.
 図10は本発明の第7実施形態例に係るチップ抵抗器60の平面図、図11は第7実施形態例に係るチップ抵抗器60の製造工程を示す説明図であり、図1,2に対応する部分には同一符号を付してある。 10 is a plan view of a chip resistor 60 according to a seventh embodiment of the present invention, and FIG. 11 is an explanatory view showing a manufacturing process of the chip resistor 60 according to the seventh embodiment. The corresponding parts are given the same reference numerals.
 図10に示す第7実施形態例に係るチップ抵抗器60では、抵抗体5は印刷パターンによってN字状の蛇行形状に形成されており、この抵抗体5の一方のターン部5bに第1電極3から分離した浮島導体6Aが形成されると共に、他方のターン部5bに第2電極4から分離した浮島導体6Bが形成されている。また、抵抗体5の両端側のリード部5aにそれぞれL字状のトリミング溝7A,7Bが形成されており、一方のトリミング溝7Aは第1電極3と浮島導体6Aを分離するスリットS1の先端と連続し、他方のトリミング溝7Bは第2電極4と浮島導体6Bを分離するスリットS2の先端と連続している。 In the chip resistor 60 according to the seventh embodiment shown in FIG. 10, the resistor 5 is formed in an N-shaped meandering shape by the printed pattern, and the first electrode is formed on one of the turn portions 5 b of the resistor 5. While the floating island conductor 6A separated from 3 is formed, the floating island conductor 6B separated from the 2nd electrode 4 is formed in the other turn part 5b. Further, L-shaped trimming grooves 7A and 7B are respectively formed in the lead portions 5a on both end sides of the resistor 5, and one trimming groove 7A is the tip of the slit S1 separating the first electrode 3 and the floating island conductor 6A. The other trimming groove 7B is continuous with the tip of the slit S2 separating the second electrode 4 and the floating island conductor 6B.
 このように構成されたチップ抵抗器60の製造工程について説明すると、まず、図11(a)に示すように、集合基板2Aの表面に所定間隔を存して対向する第1電極3と第2電極4を形成する。その際、第1電極3には第2電極4に向かって突出する凸部3aを形成し、第2電極4には第1電極3に向かって突出する凸部4aを形成する。 First, as shown in FIG. 11A, the first electrode 3 and the second electrode 3 facing the surface of the collective substrate 2A with a predetermined interval are described. The electrode 4 is formed. At this time, the first electrode 3 is formed with a convex portion 3 a projecting toward the second electrode 4, and the second electrode 4 is formed with a convex portion 4 a projecting toward the first electrode 3.
 次に、図11(b)に示すように、両端部が第1電極3と第2電極4に重なる蛇行形状の抵抗体5を印刷形成する。この抵抗体5は、第1電極3と第2電極4の凸部3a,4aに接続する2つのターン部5bと、第1電極3と一方のターン部5bを直線状に繋ぐリード部5aと、第2電極4と他方のターン部5bを直線状に繋ぐリード部5aと、これら2つのリード部5aを斜め方向に繋ぐ合計3つのリード部5aを有している。 Next, as shown in FIG. 11B, a meandering resistor 5 whose both end portions overlap the first electrode 3 and the second electrode 4 is formed by printing. The resistor 5 includes two turn portions 5b connected to the convex portions 3a and 4a of the first electrode 3 and the second electrode 4, and a lead portion 5a connecting the first electrode 3 and one of the turn portions 5b in a straight line. A lead portion 5a connecting the second electrode 4 and the other turn portion 5b linearly and a total of three lead portions 5a connecting these two lead portions 5a in a diagonal direction are provided.
 次に、図11(c)に示すように、レーザー光を第2電極4の凸部4aの右側部から左方へ照射し、このレーザー光を凸部4aの通過後にそのまま図示左側のリード部5a内に延ばす(符号LT2参照)。これにより、図11(d)に示すように、第2電極4に直線状のスリットS2を形成すると共に、抵抗体5Bのリード部5aにスリットS2に連続するL字状のトリミング溝7Bを形成し、このスリットS2によって第2電極4から分離した浮島導体6Bが得られる。 Next, as shown in FIG. 11C, a laser beam is irradiated from the right side of the convex portion 4a of the second electrode 4 to the left, and after passing through the convex portion 4a, this laser beam is left as it is Extend into 5a (see symbol LT2). As a result, as shown in FIG. 11D, a linear slit S2 is formed in the second electrode 4, and an L-shaped trimming groove 7B continuous with the slit S2 is formed in the lead portion 5a of the resistor 5B. The floating island conductor 6B separated from the second electrode 4 is obtained by the slits S2.
 また、これに前後して、レーザー光を第1電極3の凸部3aの左側部から右方へ照射し、このレーザー光を凸部3aの通過後にそのまま図示右側のリード部5a内に延ばす(符号LT1参照)。これにより、図11(e)に示すように、第1電極3に直線状のスリットS1を形成すると共に、抵抗体5Bのリード部5aにスリットS1に連続するL字状のトリミング溝7Aを形成し、このスリットS1によって第1電極3から分離した浮島導体6Aが得られると共に、両トリミング溝7A,7Bによって抵抗体5の抵抗値が目標抵抗値となるように抵抗値調整される。なお、これ以降の工程は第1実施形態例と基本的に同様であるため、ここでは重複する説明を省略する。 Also, before and after this, the laser beam is irradiated from the left side of the convex portion 3a of the first electrode 3 to the right, and the laser beam is directly extended into the lead portion 5a on the right side of the figure after passing through the convex portion 3a ( Reference symbol LT1). As a result, as shown in FIG. 11E, a linear slit S1 is formed in the first electrode 3 and an L-shaped trimming groove 7A continuous with the slit S1 is formed in the lead portion 5a of the resistor 5B. The floating island conductor 6A separated from the first electrode 3 is obtained by the slit S1, and the resistance value of the resistor 5 is adjusted by the both trimming grooves 7A and 7B so as to be the target resistance value. The subsequent steps are basically the same as those of the first embodiment, and thus redundant description will be omitted.
 以上説明したように、第7実施形態例に係るチップ抵抗器60では、抵抗体5の印刷パターンと第1電極3および第2電極4に形成した両スリットS1,S2とによって蛇行形状を規定するように構成されており、トリミング溝7A,7Bの先端部と対向するターン部5bにそれぞれ浮島導体6A,6Bが形成されているため、ターン部5bにかかる負荷を軽減することができ、トリミング溝7A,7Bの先端部にマイクロクラックが発生しても、マイクロクラックに起因する特性への悪影響を軽減することができる。 As described above, in the chip resistor 60 according to the seventh embodiment, the meandering shape is defined by the printed pattern of the resistor 5 and the two slits S1 and S2 formed in the first electrode 3 and the second electrode 4. The floating island conductors 6A and 6B are formed on the turn portions 5b facing the tips of the trimming grooves 7A and 7B, respectively, so that the load applied to the turn portions 5b can be reduced. Even if microcracks occur at the tips of 7A and 7B, the adverse effect on the characteristics due to the microcracks can be reduced.
 また、第7実施形態例では、トリミング溝7A,7Bがリード部5aの幅方向内側を始点としてL字状に形成されているため、抵抗体5の抵抗値を高精度に抵抗値調整することができると共に、スリットS1,S2とトリミング溝7A,7Bが連続しているため、トリミング溝7A,7Bのスタートポイント(始点)が安定し、抵抗値調整を容易に行うことができる。 Further, in the seventh embodiment, since the trimming grooves 7A and 7B are formed in an L shape starting from the inner side in the width direction of the lead portion 5a, the resistance value of the resistor 5 is adjusted with high precision. Since the slits S1 and S2 and the trimming grooves 7A and 7B are continuous, the start point (starting point) of the trimming grooves 7A and 7B is stable, and the resistance value can be easily adjusted.
 1,10,20,30,40,50,60 チップ抵抗器
 2 絶縁基板
 2A 集合基板
 3 第1電極
 3a 凸部
 4 第2電極
 4a 凸部
 5 抵抗体
 5a リード部
 5b ターン部
 6A,6B 浮島導体
 7A,7B トリミング溝
 8 切込み
 S1,S2 スリット
1, 10, 20, 30, 40, 50, 60 Chip resistor 2 Insulating substrate 2A Assembly substrate 3 First electrode 3a Convex portion 4 Second electrode 4a Convex portion 5 Resistor 5a Lead portion 5b Turn portion 6A, 6B Floating island conductor 7A, 7B trimming groove 8 notches S1, S2 slits

Claims (7)

  1.  絶縁基板と、この絶縁基板上に所定間隔を存して対向配置された一対の電極と、これら一対の電極間を橋絡する抵抗体とを備え、前記抵抗体が前記電極と隙間を存して対向する複数のターン部を有する蛇行形状に形成されているチップ抵抗器において、
     前記ターン部に浮島導体が形成されていると共に、前記抵抗体に前記浮島導体に向かって電極間方向へ延びるトリミング溝が形成されており、前記浮島導体は前記電極に形成されたスリットによって該電極から分離されたものであることを特徴とするチップ抵抗器。
    An insulating substrate, a pair of electrodes disposed opposite to each other at a predetermined distance on the insulating substrate, and a resistor bridging between the pair of electrodes, the resistor having a gap with the electrode A chip resistor formed in a serpentine shape having a plurality of opposing turns;
    A floating island conductor is formed in the turn portion, and a trimming groove extending in a direction between the electrodes toward the floating island conductor is formed in the resistor, and the floating island conductor is a slit formed in the electrode. Chip resistor characterized in that it is separated from.
  2.  請求項1の記載において、前記トリミング溝が電極間距離の1/2以上の長さに形成されていることを特徴とするチップ抵抗器。 The chip resistor according to claim 1, wherein the trimming groove is formed to have a length of 1/2 or more of an inter-electrode distance.
  3.  請求項1の記載において、前記スリットと前記トリミング溝とが連続していることを特徴とするチップ抵抗器。 The chip resistor according to claim 1, wherein the slit and the trimming groove are continuous.
  4.  請求項1の記載において、前記抵抗体は前記ターン部に向かって電極方向へ延びる切込みを有しており、この切込みと前記スリットとが連続していると共に、前記切込みが前記スリットよりも幅広に設定されていることを特徴とするチップ抵抗器。 In the first aspect of the present invention, the resistor has a cut extending toward the electrode toward the turn portion, and the cut and the slit are continuous, and the cut is wider than the slit. Chip resistor characterized in that it is set.
  5.  請求項1の記載において、一対の前記電極の少なくとも一方に相手側の電極方向へ突出する凸部が形成されていると共に、この凸部に前記抵抗体が接続されており、前記凸部に対して前記スリットを電極間方向と直交する方向に沿って形成することにより、前記凸部が前記電極から分離されて前記浮島導体となることを特徴とするチップ抵抗器。 According to the first aspect of the present invention, at least one of the pair of electrodes is formed with a protrusion projecting in the direction of the other electrode, and the resistor is connected to the protrusion, and the protrusion is formed relative to the protrusion A chip resistor characterized in that the convex portion is separated from the electrode to be the floating island conductor by forming the slit along a direction orthogonal to the inter-electrode direction.
  6.  請求項5の記載において、前記抵抗体に前記ターン部に向かって電極方向へ延びる切込みが印刷形成されていると共に、前記凸部の幅が該凸部に重なる前記抵抗体の幅より小さく設定されており、前記スリットの先端が前記切込みに連続していることを特徴とするチップ抵抗器。 According to a fifth aspect of the present invention, the notch extending in the electrode direction toward the turn is printed on the resistor, and the width of the protrusion is set smaller than the width of the resistor overlapping the protrusion. A tip resistor characterized in that a tip of the slit is continuous with the cut.
  7.  絶縁基板と、この絶縁基板上に所定間隔を存して対向配置された一対の電極と、これら一対の電極間を橋絡する抵抗体とを備え、前記抵抗体が前記電極と隙間を存して対向する複数のターン部を有する蛇行形状に形成されているチップ抵抗器の製造方法において、
     前記電極に前記抵抗体との接続箇所に達するスリットを形成することにより、前記ターン部に前記電極から分離された浮島導体を形成する工程と、
     前記スリットを延長して前記抵抗体に前記浮島導体に向かって電極間方向へ延びるトリミング溝を形成する工程と、
    を含むことを特徴とするチップ抵抗器の製造方法。
    An insulating substrate, a pair of electrodes disposed opposite to each other at a predetermined distance on the insulating substrate, and a resistor bridging between the pair of electrodes, the resistor having a gap with the electrode In a method of manufacturing a chip resistor which is formed in a serpentine shape having a plurality of opposing turn portions,
    Forming a floating island conductor separated from the electrode in the turn portion by forming a slit in the electrode to reach a connection point with the resistor;
    Forming the trimming groove extending in the direction between the electrodes toward the floating island conductor in the resistor by extending the slit;
    A method of manufacturing a chip resistor comprising:
PCT/JP2018/033296 2017-10-25 2018-09-07 Chip resistor and method for manufacturing chip resistor WO2019082523A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880068331.5A CN111279443B (en) 2017-10-25 2018-09-07 Chip resistor and method for manufacturing chip resistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-206566 2017-10-25
JP2017206566A JP7014563B2 (en) 2017-10-25 2017-10-25 Manufacturing method of chip resistors and chip resistors

Publications (1)

Publication Number Publication Date
WO2019082523A1 true WO2019082523A1 (en) 2019-05-02

Family

ID=66246353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033296 WO2019082523A1 (en) 2017-10-25 2018-09-07 Chip resistor and method for manufacturing chip resistor

Country Status (3)

Country Link
JP (1) JP7014563B2 (en)
CN (1) CN111279443B (en)
WO (1) WO2019082523A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102300015B1 (en) 2019-12-12 2021-09-09 삼성전기주식회사 Resistor component
KR20220075630A (en) 2020-11-30 2022-06-08 삼성전기주식회사 Chip resistor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164301A (en) * 1990-10-29 1992-06-10 Matsushita Electric Ind Co Ltd Trimming method of film resistance
JP2000277310A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd Resistor and manufacture thereof
JP2003031405A (en) * 2001-07-19 2003-01-31 Murata Mfg Co Ltd Trimming method for resistance element
JP2014017378A (en) * 2012-07-09 2014-01-30 Denso Corp Method for trimming resistor
JP2016076555A (en) * 2014-10-03 2016-05-12 Koa株式会社 Trimming method of resistor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109513A (en) * 1991-10-21 1993-04-30 Matsushita Electric Ind Co Ltd Formation of thick film resistor
JPH06188536A (en) * 1992-12-18 1994-07-08 Mitsubishi Electric Corp Hybrid integrated circuit device
JP3242247B2 (en) * 1993-12-28 2001-12-25 コーア株式会社 Manufacturing method of square chip resistor
JPH10289803A (en) * 1997-04-16 1998-10-27 Matsushita Electric Ind Co Ltd Resistor and manufacture thereof
JP2004200424A (en) * 2002-12-19 2004-07-15 Aoi Electronics Co Ltd Chip resistor
JP2007059934A (en) * 2006-10-18 2007-03-08 Rohm Co Ltd Structure of chip resistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164301A (en) * 1990-10-29 1992-06-10 Matsushita Electric Ind Co Ltd Trimming method of film resistance
JP2000277310A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd Resistor and manufacture thereof
JP2003031405A (en) * 2001-07-19 2003-01-31 Murata Mfg Co Ltd Trimming method for resistance element
JP2014017378A (en) * 2012-07-09 2014-01-30 Denso Corp Method for trimming resistor
JP2016076555A (en) * 2014-10-03 2016-05-12 Koa株式会社 Trimming method of resistor

Also Published As

Publication number Publication date
CN111279443B (en) 2022-02-25
JP2019079963A (en) 2019-05-23
CN111279443A (en) 2020-06-12
JP7014563B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6822947B2 (en) Square chip resistor and its manufacturing method
WO2019220811A1 (en) Chip resistor and chip resistor production method
WO2016051939A1 (en) Resistor trimming method
JP2008218621A (en) Chip resistor and its manufacturing method
JP2018010987A (en) Chip resistor and manufacturing method of chip resistor
WO2019082523A1 (en) Chip resistor and method for manufacturing chip resistor
JP6371080B2 (en) Manufacturing method of chip resistor
JP6618248B2 (en) Resistor and manufacturing method thereof
JP5696331B2 (en) Chip resistor and manufacturing method thereof
JP2015230922A (en) Manufacturing method of chip resistor
JP2017152431A (en) Chip resistor
JP2002367818A (en) Chip resistor
JP2019046879A (en) Method of manufacturing chip resistor
CN115206609B (en) Chip resistor and method for manufacturing chip resistor
US11742116B2 (en) Chip resistor
JP6393484B2 (en) Chip resistor
JP2019016643A (en) Chip resistor and method of manufacturing chip resistor
JP2013089655A (en) Method for manufacturing chip resistor
JP2007165358A (en) Chip-type capacitor
JP2018006711A (en) Chip resistor, and trimming method of chip resistor
TW201946073A (en) Chip resistor
JP2018107374A (en) Chip resistor
JP2018107375A (en) Chip resistor
JP2008078293A (en) Chip component and manufacturing method thereof
JP2016046333A (en) Manufacturing method of chip resistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870721

Country of ref document: EP

Kind code of ref document: A1