WO2019082518A1 - シンクロナスリラクタンスモータ - Google Patents

シンクロナスリラクタンスモータ

Info

Publication number
WO2019082518A1
WO2019082518A1 PCT/JP2018/032966 JP2018032966W WO2019082518A1 WO 2019082518 A1 WO2019082518 A1 WO 2019082518A1 JP 2018032966 W JP2018032966 W JP 2018032966W WO 2019082518 A1 WO2019082518 A1 WO 2019082518A1
Authority
WO
WIPO (PCT)
Prior art keywords
max
reluctance motor
synchronous reluctance
slits
arc
Prior art date
Application number
PCT/JP2018/032966
Other languages
English (en)
French (fr)
Inventor
慎介 茅野
盛幸 枦山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2019082518A1 publication Critical patent/WO2019082518A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current

Definitions

  • the present invention relates to a synchronous reluctance motor using reluctance torque.
  • Synchronous reluctance motors are used in railway cars, air conditioners, automobiles and the like.
  • the synchronous reluctance motor generates a magnetic saliency by providing a slit in the rotor, and is rotated by reluctance torque generated by the magnetic saliency.
  • the synchronous reluctance motor has problems in that the output torque is inferior to that of a permanent magnet synchronous motor in which a magnet is embedded in a rotor, and that torque ripple increases due to a sharp change in permeance near the slit.
  • Patent Document 1 describes a method of reducing torque ripple by arranging slits in the rotor core at equal intervals, only reduction of torque ripple is examined, and the magnitude of output torque is not considered.
  • an annular stator core S slots arranged at equal intervals along the inner circumferential surface of the stator core, and windings stored in the respective slots,
  • a plurality of slits each of which is cylindrical and having a number of magnetic poles P and which is convex toward the center of the cylinder for each magnetic pole and whose respective apexes are located on the q axis.
  • the angle ⁇ between the adjacent slits and the center point of the portion along the cylinder outer peripheral surface in the opening with respect to the cylinder center is a constant value between the adjacent slits, and the angle ⁇ is 360 ° / A rotor core in the range of 2S ⁇ ⁇ 360 ° / 1.15S, wherein the central point of the slit closest to the d axis and the d axis make an angle of ⁇ / 2 with respect to the center of the cylinder; .
  • the slits can be provided at optimum intervals, so that it is possible to suppress an increase in torque ripple due to the intervals of the slots of the stator and generate a further high output torque. it can.
  • FIG. 3 is a cross-sectional view of the 6-pole 36-slot synchronous reluctance motor according to Embodiment 1 for carrying out the present invention, taken along line AA of FIG. 2;
  • FIG. 1 is a cross-sectional view showing one magnetic pole of a 6-pole 36-slot synchronous reluctance motor according to Embodiment 1 for carrying out the present invention.
  • the synchronous reluctance motor of 6 poles 54 slots which concerns on Embodiment 1 for implementing this invention WHEREIN: It is sectional drawing which shows a rotor whose number of slits is four.
  • FIG. 6 is a cross-sectional view showing a rotor having six slits, in the six-pole 54-slot synchronous reluctance motor according to Embodiment 1 for carrying out the present invention.
  • FIG. 7 is an explanatory view showing a relationship of an output torque with respect to an interval ⁇ of slits 15 in the 6-pole 36-slot synchronous reluctance motor according to Embodiment 1 for carrying out the present invention.
  • FIG. 6 is an explanatory view showing a relationship of torque ripple with respect to an interval ⁇ of slits 15 in the 6-pole 36-slot synchronous reluctance motor according to Embodiment 1 for carrying out the present invention.
  • FIG. 6 is an explanatory view showing a relationship of an output torque with respect to an interval ⁇ of slits 15 in the 6-pole 54-slot synchronous reluctance motor according to the first embodiment for carrying out the present invention.
  • FIG. 6 is an explanatory view showing a relationship of torque ripple with an interval ⁇ of slits 15 in the 6-pole 54-slot synchronous reluctance motor according to the first embodiment for carrying out the present invention.
  • a rotor of a synchronous reluctance motor of 6 poles 36 slots concerning Embodiment 2 for carrying out the present invention it is an explanatory view showing a size definition of a circle.
  • FIG. 18 is a diagram illustrating the relationship of the angular dimensions in FIG. 17 to FIG. 21 in the 6-pole 36-slot synchronous reluctance motor according to the second embodiment for carrying out the present invention.
  • the synchronous reluctance motor of 6 poles 36 slots concerning Embodiment 2 for implementing this invention WHEREIN It is explanatory drawing which shows the relationship of the output torque with respect to ratio k ( nmax ).
  • FIG. 14 is an explanatory view showing a torque ripple with respect to a ratio k (n max ) in a 6-pole 36-slot synchronous reluctance motor according to a second embodiment for carrying out the present invention.
  • the synchronous reluctance motor of 6 poles 36 slots concerning Embodiment 2 for implementing this invention WHEREIN It is explanatory drawing which shows the relationship of the inclination a with respect to ratio k ( nmax ).
  • the synchronous reluctance motor which concerns on Embodiment 2 for implementing this invention and is explanatory drawing which shows the relationship of ratio k ( nmax ) with respect to the number n of circular arcs. It is sectional drawing which shows the rotor of the synchronous reluctance motor which concerns on Embodiment 3 for implementing this invention. It is sectional drawing which shows one magnetic pole part of the synchronous reluctance motor which concerns on Embodiment 3 for implementing this invention. It is sectional drawing which shows the rotor of the synchronous reluctance motor which concerns on Embodiment 3 for implementing this invention. It is sectional drawing which shows the rotor of the conventional synchronous reluctance motor.
  • FIG. 1 is a block diagram showing a system when using a synchronous reluctance motor 1 according to a first embodiment of the present invention.
  • a synchronous reluctance motor 1 is an electric machine connected to a control device 3 via a power supply line 2 and converting electrical energy supplied from the control device 3 into mechanical energy.
  • FIG. 2 is a cross-sectional view of the synchronous reluctance motor 1 according to the first embodiment taken along the axial direction of the shaft 4.
  • the broken line B shown in FIG. 2 is the axis of the shaft 4.
  • an annular stator 6 inserted and fixed to the frame 5 by a method such as press fitting or shrink fitting, and a cylindrical rotor 7 use a bearing 8 to form a mechanical gap (magnetic gap). Are relatively rotatable.
  • the stator 6 is configured by applying a winding 10 to an annular stator core 9 made of an iron core. By applying electrical energy supplied from control device 3 to winding 10, a rotating magnetic field is generated in the magnetic gap.
  • the rotor 7 is integrally formed by inserting the shaft 4 into the center of the rotor core 11 having a cylindrical magnetic pole number P composed of an iron core by a method such as press fitting or shrink fitting.
  • FIG. 3 is a cross-sectional view of the 6-pole 36-slot synchronous reluctance motor 1 according to the first embodiment, taken along the line AA of FIG.
  • the stator core 9 includes an annular core back 12 and teeth 13 protruding radially inward from the core back 12 and arranged at equal intervals. Slots 14 are provided at equal intervals between the teeth 13 provided radially inward of the stator core 9, and the winding 10 is accommodated in the slots 14.
  • the teeth 13 and the slots 14 are provided at the same angle.
  • the number of slots of the synchronous reluctance motor 1 is S, and the number of magnetic poles of the rotor core 11 is P.
  • FIG. 3 illustrates the synchronous reluctance motor 1 with six poles and thirty six slots, this configuration is an example, and the number of slots S and the number of magnetic poles P are not limited thereto.
  • FIG. 4 is a cross-sectional view showing one magnetic pole of the synchronous reluctance motor 1 with six poles and thirty six slots according to the first embodiment. This is a model in which the area of 1/6 in FIG. 3 is extracted, and the stator 6 of the synchronous reluctance motor 1 with 6 poles and 36 slots is provided with 6 slots 14 per magnetic pole.
  • FIG. 5 is a cross-sectional view showing the rotor 7 of the 6-pole 36-slot synchronous reluctance motor 1 according to the first embodiment.
  • the d-axis is defined in the direction in which the magnetic flux easily passes (the centerline direction of the magnetic poles), and the q-axis is defined in the direction in which the magnetic fluxes do not pass easily (the centerline direction between the magnetic poles).
  • the d-axis and the q-axis electrically have a phase difference of 90 degrees.
  • the rotor 7 is rotated by an inductance torque generated based on the difference in inductance between the salient pole direction (d axis) and the non salient pole direction (q axis).
  • the synchronous reluctance motor 1 generates an output torque using the difference in magnetic resistance in the rotational direction. Therefore, the larger the difference in inductance between the d-axis and the q-axis, the more torque can be output.
  • the rotor core 11 has a plurality of slits 15 formed of arc-shaped openings convex toward the cylindrical center (center O) of the rotor core 11 for each magnetic pole of the rotor core 11 and each vertex is located on the q axis.
  • the rotor core 11 made of a magnetic material (for example, a magnetic steel sheet) and the slits 15 made of a nonmagnetic material (for example, air) are alternately provided in the radial direction.
  • the number of slits 15 is not limited to three, and may be another number.
  • the end of the slit 15 may be chamfered in an arc shape. For example, a straight line or the like that simulates an arc shape approximately is regarded as a similar shape.
  • the slits 15 are provided so as to be q-axis symmetric for each magnetic pole.
  • the arrangement method of the slits 15 will be described below. As shown in FIG. 5, one arbitrary d axis of the rotor core 11 is determined, and the outer peripheral surface of the rotor core 11 at the arc-like opening of the slit 15 closest to the d axis passing through the center O of the rotor core 11
  • the center point of the end (portion) along the center is referred to as a center point W.
  • the angle ⁇ between the center points W of the slits 15 provided in one magnetic pole and the center O of the rotor core 11 between the adjacent slits is set to be equal between adjacent slits.
  • the angle formed by the straight line connecting the center point W of the slit closest to the d-axis and the center O of the rotor core 11 and the d-axis is set to be ⁇ / 2.
  • the angle ⁇ between adjacent slits is referred to as the slit interval ⁇ .
  • a preferable range of the slit spacing ⁇ will be described below.
  • torque ripple occurs due to the relative relationship between the permeance of the stator 6 and the rotor 7. Therefore, when the change of the permeance of the stator 6 and the change of the permeance of the rotor 7 coincide with each other, the pulsation of the output torque increases and the torque ripple becomes remarkable.
  • the torque ripple has a large component attributable to the spacing of the slots 14 of the stator 6 and is mainly composed of a harmonic component attributable to the slot number S of the stator 6 and a harmonic component twice the slot number S of the stator 6.
  • the spacing ⁇ of the slits 15 needs to be determined so as not to be the same spacing as the spacing of the slots 14 of the stator 6 and the half spacing of the slots 14 of the stator 6. That is, ⁇ ⁇ 360 ° / S, and ⁇ ⁇ 360 ° / 2S. Further, if the slits 15 are provided at an interval (360 ° / S ⁇ ) larger than the interval of the slots 14 of the stator 6, the inductance on the q axis increases, so there is a possibility that the output torque can not be sufficiently twisted.
  • the slits 15 are provided at an interval ( ⁇ ⁇ 360 ° / 2S) smaller than the interval of 1 ⁇ 2 of the slots 14 of 6 in that the intervals of the slits 15 become narrow, punching of the rotor core 11 becomes difficult. The cost may increase.
  • FIG. 6 and 7 show one magnetic pole portion of the synchronous reluctance motor 1 in the case where the number of slits 15 is two and four in the synchronous reluctance motor 1 with six poles and 36 slots according to the first embodiment. It is a sectional view showing.
  • the case where there are four slits 15 is a model 101
  • the case where there are three slits is a model 102
  • the case where there are two slits is a model 103.
  • FIGS. 8 to 10 show one magnetic pole of the synchronous reluctance motor 1 in the case where the number of slits 15 is 6, 5 and 4 in the synchronous reluctance motor 1 of 6 poles and 54 slots according to the first embodiment. It is sectional drawing which extracts and shows a part.
  • the case where there are six slits 15 is a model 104, the case where five slits are a model 105, and the case where four slits are a model 106.
  • FIG. 11 is an explanatory view showing an output torque waveform with respect to the position of the rotor 7 in the 6-pole 36-slot synchronous reluctance motor 1 according to the first embodiment.
  • the winding 10 of the stator 6 is energized, and the output torque waveform for one cycle of the electrical angle calculated by electromagnetic field analysis is represented.
  • the average torque is At shown in FIG. 11 and is obtained by taking the average value of the output torque for one cycle of the electrical angle.
  • the torque ripple rate is Tr shown in FIG. 11, which is obtained by dividing both torque ripple amplitudes representing the amount of change of the output torque waveform by the average torque.
  • FIG. 12 is an explanatory view showing a relationship of an output torque with respect to an interval ⁇ of the slits 15 in the 6-pole 36-slot synchronous reluctance motor 1 according to the first embodiment.
  • the analysis result in the case of four slits 15 is indicated by a solid line
  • the analysis result in the case of three slits 15 is indicated by a dotted line
  • the analysis result in the case of two slits 15 is indicated by an alternate long and short dash line.
  • FIG. 13 is an explanatory view showing a relation of a torque ripple rate to an interval ⁇ of the slits 15 in the 6-pole 36-slot synchronous reluctance motor 1 according to the first embodiment.
  • the analysis results in the case of four slits 15 are indicated by solid lines
  • the analysis results in the case of two slits 15 are indicated by alternate long and short dashed lines.
  • the slits 15 at an interval ⁇ within the range shown in the equation (1), the change in the permeance of the stator 6 and the change in the permeance of the rotor 7 do not coincide with each other. Since the difference in inductance between the axis and the q axis increases, it is possible to suppress an increase in torque ripple due to the spacing of the slots 14 of the stator 6, and to generate a higher output torque. That is, by providing the slits 15 at an interval ⁇ in the range shown in the equation (1), low torque ripple and high output torque can be realized with a configuration in which the interval ⁇ of the slits 15 is wider.
  • FIG. 14 is an explanatory view showing a relationship of an output torque with respect to an interval ⁇ of the slits 15 in the 6-pole 54-slot synchronous reluctance motor 1 according to the first embodiment
  • FIG. FIG. 10 is an explanatory view showing a relationship of torque ripple with respect to an interval ⁇ of slits 15 in the synchronous reluctance motor 1 of a pole 54 slot.
  • the interval ⁇ of the slits 15 is 6 ° ⁇ ⁇ ⁇ 7.5 in FIG. It has been found that particularly low torque ripple and high output torque can be realized in the range of degrees and in the range of 4.14 ° ⁇ ⁇ ⁇ 4.8 ° in FIGS.
  • the change in the permeance of the stator 6 and the rotor 7 can be obtained by providing the slits 15 at the interval ⁇ in the range shown in equation (1). Since it is possible to avoid the coincidence of the change in permeance of V, it is possible to suppress the increase in torque ripple due to the spacing of the slots 14 of the stator 6, and the slits 15 provided increase the difference in inductance between the d and q axes. High output torque can be generated even in a configuration in which the interval ⁇ of the slits 15 is wider. Furthermore, a particularly remarkable effect can be obtained by providing the slits 15 with the interval ⁇ in the range shown in the equation (2).
  • the slits 15 can be provided at optimum intervals, so that an increase in torque ripple due to the intervals of the slots 14 of the stator 6 can be suppressed to further increase the output. It can generate torque.
  • FIG. 16 shows a cross section of the rotor 7 of the 6-pole 36-slot synchronous reluctance motor 1 according to the second embodiment, and is an explanatory view showing a dimension definition of a circular arc.
  • a slit configuration in which the slit width 21 which is the opening width in the short direction of each slit 15 and the core width 22 which is the width of the portion of the rotor core 11 sandwiched between the slits 15 become uniform.
  • the effect on the output torque and torque ripple due to the arc shape that is, the convex shape of the slit 15 and the slit width 21 will be described.
  • the dimensions necessary for the configuration of the arc shape of the slit 15 are defined.
  • the symbol m shown in FIG. 16 indicates the number of the slit 15 provided for each magnetic pole, and the slits 15 provided for each magnetic pole shown in FIG. 16 are closest to the outer peripheral surface of the rotor core 11 in the plurality of slits 15. In the case where the slit 15 is the first slit, the second slit, the third slit,..., And the m-th slit are in order from the one closest to the first slit.
  • the n shown in FIG. 16 indicates the numbers of the arcs of the outer edge (the edge farther from the center O) and the inner edge (the edge closer to the center O) of the slit 15 provided for each magnetic pole.
  • the spacing ⁇ between adjacent slits 15 in each magnetic pole is determined by the applied motor in the range of equation (1) or equation (2).
  • determines the interval of the slits 15 theta is, when the maximum number of slits 15 may provided on one magnetic pole of the rotor core 11 and m max, the range of m max is below It is determined according to equation (4).
  • the number of magnetic poles of the rotor core 11 is P. (2m max -1) ⁇ ⁇ ⁇ 360 / P (4) M max determined according to equation (4) is the largest natural number that satisfies equation (4).
  • n max 2 m max .
  • the slits 15 provided are symmetrical with respect to the d axis and the q axis.
  • each arc has an arc center Q on the q axis and at a distance D from the cylindrical outer peripheral surface of the rotor core 11. Since the distance D is a constant determined by the n max arc, it is defined as the distance D (n max ). Also, the radius of the nth arc relative to the arc center Q is defined as R (n). Here, the distance D the (n max) and the n-th ratio between the radius R (n) of the arc defined as k (n), the distance D (n max) and the radius ratio k of R (n) (n) Is defined as the following equation (5).
  • k (n) D (n max ) / R (n) (5) Since the distance D (n max ) is a constant determined by the n max arc, the possible radius R (n) of the n th arc can be taken as the ratio k (n) to the n th arc Change. However, the ratio k (n) satisfies the relationship of the following equation (6). k (n max ) ⁇ ⁇ ⁇ ⁇ k (n) ⁇ ⁇ ⁇ ⁇ k (1) ⁇ 1 (6) In addition, for example, a straight line or the like that approximates an arc shape is regarded as a similar shape.
  • a method of determining the distance D (n max ), the radius R (n) and the ratio k (n) will be described.
  • a point X that is the radius of the rotor 7 on the q axis shown in FIG. 16 is a point X
  • a point at which the n max arc intersects the outer peripheral surface of the rotor core 11 is a point Y and a point Y ′.
  • the radius R (n max ) of the n max -th arc is a circle passing through the point Y and the point Y ′, and since the arc center Q is on the q axis, the equation k (n max ) is determined. based on 5), n max th arc having a radius R (n max) and distance D (n max) is determined.
  • FIGS. 17 to 21 are cross-sectional views of the rotor 7 of the 6-pole 36-slot synchronous reluctance motor 1 according to the second embodiment.
  • the stator 6 uses the synchronous reluctance motor 1 with six poles and 36 slots according to the first embodiment shown in FIG.
  • the number of slits 15 is three in the model, it is not limited to this.
  • the angle s is the angle of the slit width 21 of the rotor outer peripheral surface end of the first slit 15 and is the angle of the slit width of the rotor outer peripheral surface end of the first slit 15. That is, it is an angle formed by a straight line passing through the center O with a point where the first arc intersects the rotor outer peripheral surface and a straight line passing through the center O with a point where the second circular arc intersects the rotor outer peripheral surface.
  • the angle t is the angle of the slit width 21 of the rotor outer peripheral surface end of the second slit 15
  • the angle u is the angle of the slit width 21 of the rotor outer peripheral surface end of the third slit 15.
  • FIG. 17 shows a model designed such that the angle of the slit width 21 of the outer peripheral surface end of each of the slits 15 is s> t> u.
  • FIG. 19 shows a model designed such that the angle of each slit width 21 satisfies s ⁇ t ⁇ u.
  • the angle v is the angle of the core width 22 of the rotor outer peripheral surface end between the first slit 15 and the second slit, that is, the second arc is the outer peripheral surface of the rotor core 11 And a straight line passing through the center O, and a straight line passing through the center O and a point where the third arc intersects the outer peripheral surface of the rotor core 11.
  • the angle w is the angle of the core width 22 of the outer peripheral surface of the rotor core 11 between the second slit 15 and the third slit.
  • FIG. 22 is a diagram illustrating the relationship of the angular dimensions in FIG. 17 to FIG. 21 in the 6-pole 36-slot synchronous reluctance motor 1 according to the second embodiment.
  • FIG. 17 shows the model 111
  • FIG. 18 shows the model 112
  • FIG. 19 shows the model 113
  • FIG. 20 shows the model 114
  • FIG. 21 shows the model 115
  • the angular dimensions of v, w are shown in the list of FIG.
  • FIG. 23 is an explanatory drawing showing an example of the ratio k (n) in the 6-pole 36-slot synchronous reluctance motor 1 according to the second embodiment.
  • FIG. 23 shows the ratio k (n) determined based on the equation (5) in the model 111. Further, the ratio k (1) in the first arc is constant, n max th according to the ratio k (n max) for the arc, the arc of up to 2 ⁇ (n max -1) th counted from the q-axis
  • the ratio k (n) of is determined according to the slit width 21 shown in FIG. “A” shown in FIG. 23 is the inclination when the values of the ratios k (n) for the 1st to n max arcs are linearly approximated.
  • FIG. 24 is an explanatory view showing a relationship of an output torque to a ratio k (n max ) in the 6-pole 36-slot synchronous reluctance motor 1 according to the second embodiment.
  • the analysis result of the model 111 is indicated by a solid line
  • the analysis result of the model 112 is indicated by a dotted line
  • the analysis result of the model 113 is indicated by an alternate long and short dash line
  • the analysis result of the model 114 is indicated by an alternate long and two dotted line
  • the analysis result of the model 115 is indicated by a broken line.
  • the range in the range of ratios k (n max) is 0.02 ⁇ k (n max) ⁇ 0.5, the ratio k of an average torque is equal to or greater than 98% of the maximum value of the output torque of (n max) I asked for.
  • FIG. 25 is an explanatory drawing showing the relationship between the torque ripple rate and the ratio k (n max ) in the 6-pole 36-slot synchronous reluctance motor 1 according to the second embodiment.
  • the analysis result of the model 111 is shown by a solid line
  • the analysis result of the model 112 is shown by a dotted line
  • the analysis result of the model 113 is shown by an alternate long and short dashed line
  • the analysis result of the model 114 is shown by an alternate long and two dotted line
  • the analysis result of the model 115 is shown by a dashed line.
  • Model in the range of ratios k (n max) is 0.02 ⁇ k (n max) ⁇ 0.5, it was determined range of ratio k (n max) that the torque ripple rate is the minimum value + 5% within .
  • the convex shape of the slit 15 is configured to easily pass the magnetic flux generated by the magnetomotive force of the stator 6 in the range shown in equation (7).
  • the difference in inductance with the shaft is increased, and higher output torque and lower torque ripple can be realized compared to the synchronous reluctance motor 1 according to the first embodiment.
  • FIG. 26 is an explanatory drawing showing the relationship of the inclination a when the values of the ratios k (1) to k (n max ) are linearly approximated in the 6-pole 36-slot synchronous reluctance motor 1 according to the second embodiment is there.
  • the relationship between the ratio k (n) of the model 111 and the slope a is solid line
  • the relationship between the ratio k (n) of the model 112 and the slope a is dotted line
  • the ratio k of the model 113 (similar to FIGS.
  • n) and the inclination a The relationship between n) and the inclination a is indicated by an alternate long and short dash line, the relationship between the ratio k (n) of the model 114 and the inclination a is indicated by a two dotted line, and the relationship between the ratio k (n) of the model 115 and the inclination a is indicated by a broken line.
  • the slope a with respect to the ratio k (n max ) of the models 111 to 115 to the n max -th arc is considered to be the same by approximation. .
  • the range of the ratio k (n max ) shown by the equation (7) satisfying the constraint of the average torque for the ratio k (n max ) and the torque ripple rate for the ratio k (n max ) is as shown in FIG. It can be calculated that the range is ⁇ a ⁇ ⁇ 0.119.
  • FIG. 27 is an explanatory drawing showing the relationship of the ratio k (n) to the n-th arc in the synchronous reluctance motor 1 according to the second embodiment.
  • FIG. 27 shows that the slope a changes even if the ratio k (n max ) to the n max -th arc is the same value, that is, the slope a changes with the number of slits 15.
  • the maximum value n max of the arc n is 6, that is, when the three slits 15 are provided
  • the inclination a is when the maximum value n max of the arc n is 8, that is, when the four slits 15 are provided. It is 4/3 times the slope a.
  • it is expressed as follows using an arc n.
  • the preferable range of the inclination a is the range of ( ⁇ 0.154 ⁇ n / n max ) ⁇ a ⁇ ( ⁇ 0.119 ⁇ n / n max ) from FIG. 26, that is, Formula (8) shown below It can be expressed as a range.
  • n max th arc a point Y, n max th arc having a radius R passing through the point Y'(n max), the radius R of the (n max)
  • the ratio k (n max ) of the distance D (n max ) from the arc center Q of the circle to the point X is determined in the range indicated by the equation (7).
  • the radius R (n) to the ratio k (n) of the nth arc is defined by the equation (5), and the ratio k (n) satisfies the relationship of the equation (6), and the ratio k (1)
  • the slope a when the value of k (n max ) is linearly approximated is determined so as to be within the range of Expression (8).
  • the first to (n max -1) -th arcs are provided with a constant inclination a, they are determined by the following equation (9).
  • k (n) k (n max )- ⁇ a ⁇ (n max -n) ⁇ (9)
  • the distance D (n max ) is a constant, and therefore the ratio k (n) for each of the 1- (n max -1) -th arcs is calculated based on equation (5).
  • the radius R (n) for) is determined. Since the position of the arc center Q is also determined when the distance D (n max ) is determined, the interval of each of the 1 to n max arcs is determined by the radius R (n). Therefore, the slit width 21 and the core width 22 are also determined.
  • the ratio k (n max ) for the n max th arc is the range shown in equation (7), and the ratio k (n) for the n th arc satisfies the relationship of equation (6), and the ratio k (1)
  • the values of the ratios k (1) to k (n) with respect to the first to n-th arcs, so that the slope a when the value of k (n max ) is linearly approximated is within the range of equation (8) By determining, it is possible to achieve both high output torque and low torque ripple.
  • the number m max of the slits 15 per magnetic pole is determined according to the equation (4), and the largest possible value of the arc n which is twice as large as m max The value n max is determined.
  • the ratio k (n max ) for the n max th arc is the range shown in equation (7), and the ratio k (n) for the n th arc satisfies the relationship of equation (6), and the ratio k (1)
  • Each slit 15 is provided such that the slope a when the value of k (n max ) is linearly approximated is within the range of Expression (8).
  • Embodiment 3 The synchronous reluctance motor 1 according to Embodiment 3 for carrying out the present invention is characterized in that a notch 31 is provided on the outer peripheral surface of the rotor core 11.
  • FIG. 28 is a cross-sectional view showing a rotor 7 of the synchronous reluctance motor 1 according to the third embodiment.
  • a notch 31 is provided on the outer peripheral surface of the rotor core 11 intersecting the q axis.
  • a groove-shaped notch 31 is disposed. Providing the notch 31 provides the nonmagnetic portion on the q-axis, so the same effect as providing the slit 15 is achieved. That is, since the q-axis inductance is reduced by the notch 31, the output torque is improved.
  • an angle ⁇ s (hereinafter referred to as “the interval ⁇ s of the notches 31”) formed by the both ends of the notches 31 along the outer peripheral surface of the rotor core 11 with respect to the center O of the rotor core 11 is greater than the interval ⁇ of the slits 15. If it is set widely, the permeance change with a long cycle will be given to the rotor 7, so torque ripple of lower order components can be reduced than the component due to the interval of the slots 14 of the stator 6 reduced by the slits 15.
  • FIG. 29 is a cross-sectional view extracting and showing one magnetic pole portion of the synchronous reluctance motor 1 according to the third embodiment.
  • the spacing ⁇ s of the notches 31 is made wider than the spacing ⁇ of the slits 15 as described above, the spacing ⁇ s of the notches 31 has a width that does not straddle two or more teeth 13, that is, the following equation (10) It is preferable to provide in the range of When two or more teeth 13 are straddled, a magnetic path short circuit occurs between the teeth 13 and causes, for example, a sixth-order component and a torque ripple component caused by the interval of the slots 14 of the stator 6 to be amplified. ⁇ s ⁇ 2 ⁇ (360 ° / S) (10)
  • the shape of the notch 31 described in the third embodiment is symmetrical with respect to the q-axis.
  • the permeance change of the q-axis is not affected.
  • the number of notches 31 is not limited to one.
  • the center position of the arc in the present invention is considered in the shape before the notch 31 is provided.
  • the center position of the arc is determined based on the broken line portion shown in FIG.
  • FIG. 30 is a cross-sectional view showing a rotor 7 of the synchronous reluctance motor 1 according to the third embodiment.
  • FIG. 30 also when the outer peripheral surface of the rotor core 11 intersecting the q-axis is cut, the same effect as the notch 31 can be obtained.
  • the shape of the cut surface may be flat or curved. That is, providing the notch 31 in the third embodiment means cutting, cutting, etc. on the outer peripheral surface of the rotor core 11 intersecting the q-axis to reduce the volume of the rotor core 11.
  • the nonmagnetic portion is provided on the q-axis by providing the notch 31 on the outer peripheral surface of the rotor core 11 intersecting the q-axis. Since the inductance is reduced, the output torque is improved. Further, since the permeance change can be applied to the rotor core 11 according to the width of the notches 31 according to the distance between the slits 15, torque ripple of the component according to the width of the notches 31 can be reduced.
  • the synchronous reluctance motor 1 according to the fourth embodiment for carrying out the present invention is characterized in that a bridge 42 is formed between the slit 15 and the outer peripheral surface of the rotor core 11.
  • FIG. 31 is a cross-sectional view showing a rotor 7 of a conventional synchronous reluctance motor 1. In high-speed applications, a rotor 7 excellent in centrifugal strength is required.
  • the outer peripheral surface of rotor core 11 along the radial direction from the center point Z of the portion along the outer peripheral surface of rotor core 11 in the arc-shaped opening forming slit 15 The outer peripheral surface of the rotor core 11 and the rotor core 11 of the slit 15 are provided by giving a chamfered shape (chamfered portion 401 and chamfered portion 402) symmetrical with respect to the line segment ZZ 'when making an intersection point Z' with the grated perpendicular.
  • a means is generally known to improve the strength of the outer peripheral surface end of the rotor core 11 against the centrifugal force applied to the bridge 42, which is the gap between the outer peripheral surface and the straight portion 41 facing the outer peripheral surface.
  • the bridge 42 is desirably as thin as possible in order to suppress a decrease in electromagnetic performance due to a short circuit of the magnetic path, but a decrease in the centrifugal strength leads to a decrease in thickness.
  • the configuration of the bridge 42 shown in FIG. 31 since the required chamfered area is large, the linear portion 41 opposed to the outer peripheral surface of the rotor core 11 of the slit 15 is shortened, and the magnetic resistance of the bridge 42 is reduced. As a result, the magnetic path of the bridge 42 is likely to be shorted.
  • FIG. 32 is a cross-sectional view showing a rotor 7 of the synchronous reluctance motor 1 according to the fourth embodiment.
  • the cross-sectional area of the chamfered portion 402 is larger than the cross-sectional area of the chamfered portion 401. That is, as shown in FIG. 32, synchronous reluctance motor 1 according to the fourth embodiment is sandwiched between line segment ZZ ′ and an extension extending to the outer peripheral surface of rotor core 11 along the inner edge of arcuate slit 15.
  • the synchronous reluctance motor 1 according to the fourth embodiment, by making the cross-sectional area of the chamfered portion 402 larger than the cross-sectional area of the chamfered portion 401, a configuration having high centrifugal force on the d-axis side with high rigidity is provided. Become. Therefore, the linear portion 41 of the slit 15 can be made longer than in the conventional configuration, and the decrease in magnetic resistance can be suppressed. Therefore, the end shape of the slit 15 of the rotor core 11 having high centrifugal strength can be realized without reducing the electromagnetic performance.
  • Embodiment 5 The synchronous reluctance motor 1 according to the fifth embodiment for carrying out the present invention is characterized in that a bridge 42 corresponding to each slit 15 is formed between the slit 15 and the outer peripheral surface of the rotor core 11.
  • FIG. 33 is an enlarged sectional view showing an end portion of the rotor 7 and the slit 15 of the synchronous reluctance motor 1 according to the fifth embodiment.
  • the synchronous reluctance motor 1 according to the fourth embodiment does not change the ratio of the cross-sectional area of the chamfered portion 401 to the cross-sectional area of the chamfered portion 402 according to each slit 15, the synchro according to the fifth embodiment.
  • the Nass reluctance motor 1 as shown in FIG.
  • the ratio of the cross-sectional area of the chamfered portion 402 to the cross-sectional area of the chamfered portion 401 is about the cross-sectional area of the chamfered portion 402 corresponding to the slit 15 adjacent to the outer peripheral surface of the rotor core 11. , A large configuration.
  • the centrifugal force exerted on the bridge 42 becomes larger as the bridge 42 approaches the d axis.
  • the radius of curvature is reduced as the arc of the slit 15 approaches the d axis. That is, in the synchronous reluctance motor 1 according to the fifth embodiment, the ratio of the cross-sectional area of the chamfered portion 402 to the cross-sectional area of the chamfered portion 401 is increased as the bridge 42 corresponds to the slit 15 closer to the q axis. Thereby, the end shape of the slit 15 of the rotor core 11 having high centrifugal resistance strength can be realized.
  • the ratio of the cross-sectional area of the chamfered portion 402 to the cross-sectional area of the chamfered portion 401 increases as the slits 15 approach the outer peripheral surface of the rotor core 11.
  • the linear portions 41 of 15 can be formed long, and the decrease in magnetic resistance at each slit 15 can be suppressed, so that the electromagnetic performance of the motor can be improved.
  • the synchronous reluctance motor 1 according to the sixth embodiment for carrying out the present invention is characterized in that a rib 51 is provided in the slit 15.
  • FIG. 34 is a cross-sectional view showing the rotor 7 of the synchronous reluctance motor 1 according to the sixth embodiment.
  • ribs 51 are provided so as to divide the arc-shaped opening forming the slit 15 into a plurality of portions.
  • the core layer 22 is separated except for the bridge 42 in the vicinity of the outer peripheral surface of the rotor.
  • the strength of the rotor core 11 can be improved, and the load concentrated on the bridge 42 can be reduced, so that the strength against centrifugal force is improved.
  • the number of ribs 51 and the positions of the ribs 51 are not limited to those shown in FIG.
  • the present invention is not limited to the shapes described in the first to sixth embodiments, and the embodiments can be freely combined within the scope of the invention, and the embodiments can be appropriately modified, It is possible to omit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

高出力トルクと低トルクリプルを両立することのできるシンクロナスリラクタンスモータを得る。円環状のステータコア9と、ステータコア9の内周面に沿って等間隔に配列されたS個のスロット14と、各スロット14に格納された巻線と、ステータコア9の内面側に、円筒状で磁極数がPであり、磁極毎に円筒中心に向かって凸となり各頂点がq軸上に位置する円弧状の開口部からなる複数のスリット15が設けられ、開口部における円筒外周面に沿った部位の中心点が隣接スリット15間で円筒中心に対して互いになす角度θは各隣接スリット15間で一定値であり、かつ、角度θは、360°/2S<θ<360°/1.15Sの範囲内であり、d軸に最も近接するスリット15の中心点とd軸とが円筒中心に対してなす角度がθ/2であるロータコア11と、を備える。

Description

シンクロナスリラクタンスモータ
 この発明は、リラクタンストルクを利用するシンクロナスリラクタンスモータに関する。
 シンクロナスリラクタンスモータは、鉄道車両、空気調和機、自動車等に用いられている。シンクロナスリラクタンスモータは、ロータにスリットを設けることによって磁気的な突極性が発生し、磁気的な突極性によって生じるリラクタンストルクにより回転する。しかしながら、シンクロナスリラクタンスモータは、ロータに磁石を埋設した永久磁石同期モータと比較して、出力トルクが劣る点、スリット近傍でのパーミアンスの急峻な変化によりトルクリプルが増加する点が課題である。
 シンクロナスリラクタンスモータの出力トルクを大きくするためには、ロータに設けるスリット数を増やし、モータの突極比を高める必要がある。さらに、トルクリプルはステータのスロット数に起因する成分が主であるため、トルクリプルを低減するためには、ロータコアに狭い間隔のスリットを設けることにより、ステータのスロットによる高調波成分を抑制する必要がある。そのため、高出力トルクと低トルクリプルを両立するシンクロナスリラクタンスモータが要求される。
 上述の課題を鑑みて、特許文献1に記載のリラクタンスモータ用回転子積層鉄心では、積層鉄心に回転軸孔側を凸形状として複数設けられた円弧状スリットの端部を、鉄心偏の全周に亘って等間隔角度に形成した技術が提案されている。
特開2009-77458号
 しかしながら、従来技術には以下のような課題がある。
 特許文献1には、ロータコアにスリットを等間隔角度に配置し、トルクリプルを低減する方法について記載されているが、トルクリプルの低減のみを吟味しており、出力トルクの大小までは検討されていない。
 また、特許文献1には、誘導電動機の設計理論に基づき、スリットの間隔を選定する手法が記載されている。しかし、誘導電動機ではロータコアにスロットを設け、スロット内に2次導体を挿入するため、2次導体が近接するような多スロットの構成は導体間の絶縁を考慮すると困難である。特許文献1におけるリラクタンスモータのスリット間隔の選定手法では、広い間隔でスリットを構成できるものの、シンクロナスリラクタンスモータのように高周波のトルクリプルが発生するモータに対しては、高出力トルクと低トルクリプルを両立することができない。
 本発明は、上記のような課題を解決するためになされたものであり、高出力トルクと低トルクリプルを両立することのできるシンクロナスリラクタンスモータを得ることを目的とする。
 本発明に係るシンクロナスリラクタンスモータによれば、円環状のステータコアと、前記ステータコアの内周面に沿って等間隔に配列されたS個のスロットと、前記各スロットに格納された巻線と、前記ステータコアの内面側に、円筒状で磁極数がPであり、磁極毎に円筒中心に向かって凸となり各頂点がq軸上に位置する円弧状の開口部からなる複数のスリットが設けられ、前記開口部における円筒外周面に沿った部位の中心点が隣接スリット間で前記円筒中心に対して互いになす角度θは各隣接スリット間で一定値であり、かつ、前記角度θは、360°/2S<θ<360°/1.15Sの範囲内であり、d軸に最も近接するスリットの前記中心点とd軸とが円筒中心に対してなす角度がθ/2であるロータコアと、を備える。
 本発明に係るシンクロナスリラクタンスモータによれば、最適な間隔でスリットを設けることができるため、ステータのスロットの間隔に起因するトルクリプルの増加を抑制して、さらには高い出力トルクを発生させることができる。
本発明を実施するための実施の形態1に係るシンクロナスリラクタンスモータを利用する際のシステムを示す構成図である。 本発明を実施するための実施の形態1に係るシンクロナスリラクタンスモータを軸線方向に沿って切断した断面図である。 本発明を実施するための実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータを、図2のA-A線で切断した断面図である。 本発明を実施するための実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータの1磁極分を示す断面図である。 本発明を実施するための実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータのロータを示す断面図である。 本発明を実施するための実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータにおいて、スリット本数が2本のロータを示す断面図である。 本発明を実施するための実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータにおいて、スリット本数が4本のロータを示す断面図である。 本発明を実施するための実施の形態1に係る6極54スロットのシンクロナスリラクタンスモータにおいて、スリット本数が4本のロータを示す断面図である。 本発明を実施するための実施の形態1に係る6極54スロットのシンクロナスリラクタンスモータにおいて、スリット本数が5本のロータを示す断面図である。 本発明を実施するための実施の形態1に係る6極54スロットのシンクロナスリラクタンスモータにおいて、スリット本数が6本のロータを示す断面図である。 本発明を実施するための実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータにおいて、ロータ位置に対する出力トルク波形を示す説明図である。 本発明を実施するための実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータにおいて、スリット15の間隔θに対する出力トルクの関係を示す説明図である。 本発明を実施するための実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータにおいて、スリット15の間隔θに対するトルクリプルの関係を示す説明図である。 本発明を実施するための実施の形態1に係る6極54スロットのシンクロナスリラクタンスモータにおいて、スリット15の間隔θに対する出力トルクの関係を示す説明図である。 本発明を実施するための実施の形態1に係る6極54スロットのシンクロナスリラクタンスモータにおいて、スリット15の間隔θに対するトルクリプルの関係を示す説明図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータのロータにおいて、円弧の寸法定義を示す説明図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータのロータを示す断面図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータのロータを示す断面図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータのロータを示す断面図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータのロータを示す断面図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータのロータを示す断面図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータにおいて、図17から図21における角度寸法の関係を例示する図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータにおいて、比率k(nmax)の一例を示す説明図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータにおいて、比率k(nmax)に対する出力トルクの関係を示す説明図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータにおいて、比率k(nmax)に対するトルクリプルの関係を示す説明図である。 本発明を実施するための実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータにおいて、比率k(nmax)に対する傾きaの関係を示す説明図である。 本発明を実施するための実施の形態2に係るシンクロナスリラクタンスモータで、円弧の数nに対する比率k(nmax)の関係を示す説明図である。 本発明を実施するための実施の形態3に係るシンクロナスリラクタンスモータのロータを示す断面図である。 本発明を実施するための実施の形態3に係るシンクロナスリラクタンスモータの1磁極分を示す断面図である。 本発明を実施するための実施の形態3に係るシンクロナスリラクタンスモータのロータを示す断面図である。 従来のシンクロナスリラクタンスモータのロータを示す断面図である。 本発明を実施するための実施の形態4に係るシンクロナスリラクタンスモータのロータを示す断面図である。 本発明を実施するための実施の形態5に係るシンクロナスリラクタンスモータのロータ及びスリットの端部を示す拡大断面図である。 本発明を実施するための実施の形態6に係るシンクロナスリラクタンスモータのロータを示す断面図である。
 以下、本発明に係るシンクロナスリラクタンスモータの好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。
実施の形態1.
 図1は、本発明を実施するための実施の形態1に係るシンクロナスリラクタンスモータ1を利用する際のシステムを示す構成図である。図1において、シンクロナスリラクタンスモータ1は、電源供給ライン2を介して制御装置3と接続され、制御装置3から供給される電気エネルギーを機械エネルギーに変換する電気機械である。
 図2は、実施の形態1に係るシンクロナスリラクタンスモータ1をシャフト4の軸線方向に沿って切断した断面図である。図2に示す破線Bがシャフト4の軸である。図2において、フレーム5に圧入又は焼き嵌め等の方法により挿入されて固定された円環状のステータ6と、円筒状のロータ7とが、軸受8を用いて、機械的な隙間(磁気ギャップ)を介して、相対的に回転自在に配置されている。
 ステータ6は、鉄心からなる円環状のステータコア9に巻線10を施して構成される。この巻線10に制御装置3から供給される電気エネルギーを与えることにより、磁気ギャップ中に回転磁界が発生される。また、ロータ7は、鉄心からなる円筒状の磁極数がPのロータコア11の中心に、シャフト4を圧入又は焼き嵌め等の方法により挿入して一体としたものである。
 図3は、実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータ1を、図2のA-A線で切断した断面図である。ステータコア9は、円環状のコアバック12と、コアバック12から径方向内側に突出して等間隔に配列されたティース13で構成される。ステータコア9の径方向内側に設けられたティース13の間には、等間隔にスロット14が設けられており、スロット14には巻線10が収納されている。実施の形態1に係るシンクロナスリラクタンスモータ1において、ティース13とスロット14は、同一の角度で設けられている。
 シンクロナスリラクタンスモータ1のスロット数をSとし、ロータコア11の磁極数をPとする。図3では、6極36スロットのシンクロナスリラクタンスモータ1について説明するが、かかる構成は一例であって、スロット数Sと磁極数Pはこれに限定されない。
 図4は、実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータ1の1磁極分を示す断面図である。これは、図3の1/6の領域を抽出したモデルであり、6極36スロットのシンクロナスリラクタンスモータ1のステータ6では、1磁極あたり6個のスロット14を備えている。
 図5は、実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータ1のロータ7を示す断面図である。ロータコア11の断面上には、磁束を通し易い方向(磁極の中心線方向)にd軸が定義され、磁束を通しにくい方向(磁極間の中心線方向)にq軸が定義されている。なお、d軸とq軸とは、電気的に90度の位相差がある。ロータ7は、突極方向(d軸)と非突極方向(q軸)とのインダクタンスの差に基づいて生じるインダクタンストルクによって回転する。シンクロナスリラクタンスモータ1は、回転方向の磁気抵抗の差異を利用して出力トルクを発生させる。したがって、d軸とq軸とのインダクタンスの差分が大きいほど、高い出力トルクを捻出できる。
 図5において、ロータコア11は、ロータコア11の磁極毎にロータコア11の円筒中心(中心O)に向かって凸となり各頂点がq軸上に位置する円弧状の開口部からなる複数のスリット15を有しており、磁性材(例えば、電磁鋼板)で構成されるロータコア11と、非磁性材(例えば、空気)で構成されるスリット15が径方向に交互に設けられている。ここで、スリット15の数は3本に限定されず、別の数であってもよい。また、スリット15の端部が円弧状に面取りされてもよい。円弧は、例えば直線などで近似的に円弧形状を模擬したものも同様の形状とみなす。なお、スリット15は、磁極ごとにq軸対称となるように設けられる。
 スリット15の配置方法について、以下に説明する。図5に示すように、ロータコア11の任意のd軸を一つ決定し、ロータコア11の中心Oを通過するd軸に、最も近接するスリット15の円弧状の開口部におけるロータコア11の外周面に沿った端部(部位)の中心点を、中心点Wとする。1磁極内に設けられた各スリット15の中心点Wが隣接スリット間でロータコア11の中心Oに対して互いになす角度θを、隣接するスリット間で等間隔になるように設ける。また、最もd軸に近接したスリットの中心点Wとロータコア11の中心Oとを結ぶ直線と、d軸とがなす角度をθ/2となるように設定する。以下、隣接スリット間の角度θを、スリットの間隔θと称する。
 スリットの間隔θの好適な範囲について、以下に説明する。シンクロナスリラクタンスモータ1では、ステータ6とロータ7とのパーミアンスの相対関係により、トルクリプルが発生する。そのため、ステータ6のパーミアンスの変化と、ロータ7のパーミアンスの変化のタイミングが合致すると、出力トルクの脈動が増大し、トルクリプルが顕著となる。トルクリプルは、ステータ6のスロット14の間隔に起因する成分が大きく、ステータ6のスロット数Sに起因する高調波成分と、ステータ6のスロット数Sの2倍の高調波成分とが主である。
 トルクリプルを低減するためには、ステータ6のパーミアンスの変化と、ロータ7のパーミアンスの変化が合致しないようにする必要がある。
 したがって、スリット15の間隔θは、ステータ6のスロット14の間隔及びステータ6のスロット14の1/2倍の間隔と同一の間隔にならないように決定する必要がある。つまり、θ≠360°/Sであり、かつ、θ≠360°/2Sである必要がある。
 また、ステータ6のスロット14の間隔よりも大きい間隔(360°/S<θ)でスリット15を設けると、q軸でのインダクタンスが増加するため、出力トルクが十分に捻出できないおそれがあり、ステータ6のスロット14の1/2倍の間隔よりも小さい間隔(θ<360°/2S)でスリット15を設けると、スリット15の間隔が狭くなるので、ロータコア11の打ち抜きが困難となるため、製造コストが増加してしまうおそれがある。
 図6と図7は、実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータ1において、スリット15の本数が2本と4本の場合のシンクロナスリラクタンスモータ1の1磁極分を抜き出して示す断面図である。スリット15が4本の場合をモデル101、3本の場合をモデル102、2本の場合をモデル103とする。
 図8から図10は、実施の形態1に係る6極54スロットのシンクロナスリラクタンスモータ1において、スリット15の本数がそれぞれ6本、5本、4本の場合のシンクロナスリラクタンスモータ1の1磁極分を抜き出して示す断面図である。スリット15が6本の場合をモデル104、5本の場合をモデル105、4本の場合をモデル106とする。
 スリット15の間隔θと出力トルク、スリット15の間隔θとトルクリプルの関係を、有限要素法による電磁界解析を用いて検討する。検討に際しては、図5から図10の6形状のシンクロナスリラクタンスモータ1を用いた。
 図11は、実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータ1において、ロータ7の位置に対する出力トルク波形を示す説明図である。スリット数を4本として、スリット15の間隔θの値をθ=6.66°とした場合と、スリット数を2本として、スリット15の間隔θの値をθ=15°とした場合の2ケースのモデルで、ステータ6の巻線10に通電し、電磁界解析にて算出された、電気角度1周期分の出力トルク波形を表す。なお、θ=6.66°は、360°/(1.5S)に相当し、ステータ6のスロット14の間隔の間隔θ=10°(360°/S)と、ステータ6のスロット14の間隔の1/2倍の間隔θ=5°(360°/2S)の間の値である。また、θ=15°(=360°/24)は、先行文献1に記載のスリット15の間隔θの決定方法に基づき、算出した値である。
 図11に示す解析結果において、スリット15の間隔θの値をθ=6.66°とした場合は、スリット15の間隔θの値をθ=15°とした場合と比較して、高出力トルクかつ低トルクリプルを実現できている。
 続いて、他のスリット15の間隔θの場合についても、出力トルクとトルクリプルへの影響について確認を行った。比較のため、平均トルクとトルクリプル率の値を算出し、比較する。平均トルクとは、図11に示すAtであり、電気角度1周期分の出力トルクの平均値を取ったものである。トルクリプル率とは、図11に示すTrであり、出力トルク波形の変化量を表すトルクリプルの両振幅を平均トルクで除したものである。
 図12は、実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータ1において、スリット15の間隔θに対する出力トルクの関係を示す説明図である。図12において、破線で示しているスリット15の間隔θ=10°は、ステータ6のスロット14の間隔に相当し、スリット15の間隔θ=5°は、ステータ6のスロット14の1/2倍の間隔に相当する。図12において、スリット15が4本の場合の解析結果を実線、スリット15が3本の場合の解析結果を点線、スリット15が2本の場合の解析結果を一点鎖線で示している。
 図13は、実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータ1において、スリット15の間隔θに対するトルクリプル率の関係を示す説明図である。図12と同様に、スリット15が4本の場合の解析結果を実線、スリット15が3本の場合の解析結果を点線、スリット15が2本の場合の解析結果を一点鎖線で示している。図13に示す解析結果において、スリット15の間隔が破線で示しているθ=5°とθ=10°の場合、いずれのモデルにおいてもトルクリプル率の悪化は顕著である。
 スリット15の間隔θがθ=5°より小さい範囲において、図13に示すようにトルクリプル率は小さいが、図12に示すように平均トルクは低下する。これは、スリット15の断面が大きくなるため、ロータコア11を通る磁束が減少し、d軸のインダクタンスが減少するためである。さらにスリット15の間隔が狭くなるので、ロータコア11の打ち抜きが困難となるため、製造コストが増加するおそれがある。
 図12、図13より、スリット15の間隔θが、図12及び図13に破線で示した5°<θ<8.70°の範囲内の場合、いずれのモデルにおいても最大の平均トルクを発生させ、低トルクリプルを実現できることを見出した。したがって、いずれのモデルにおいても最大の平均トルクを発生させ、低トルクリプルを実現できる範囲は、以下に示す式(1)の範囲であることを見出した。
 360°/2S<θ<360°/1.15S ・・・(1)
 したがって、スリット15を式(1)に示した範囲内の間隔θで設けることによって、ステータ6のパーミアンスの変化と、ロータ7のパーミアンスの変化が合致せず、さらに、設けられたスリット15によってd軸とq軸とのインダクタンスの差分が増大するため、ステータ6のスロット14の間隔に起因するトルクリプルの増加を抑制して、さらには高い出力トルクを発生させることができる。
 つまり、スリット15を式(1)に示した範囲内の間隔θで設けることによって、スリット15の間隔θがより広い構成で、低トルクリプルかつ高出力トルクを実現できる。
 図14は、実施の形態1に係る6極54スロットのシンクロナスリラクタンスモータ1において、スリット15の間隔θに対する出力トルクの関係を示す説明図であり、図15は、実施の形態1に係る6極54スロットのシンクロナスリラクタンスモータ1において、スリット15の間隔θに対するトルクリプルの関係を示す説明図である。
 図14、15において、スリット15の間隔θ=6.66°は、ステータ6のスロット14の間隔に相当し、スリット15の間隔θ=3.33°は、ステータ6のスロット14の1/2倍の間隔に相当する。
 図14、図15において、スリット15の間隔θが、3.33°<θ<5.80°の範囲内の場合、いずれのモデルにおいても最大の平均トルクを発生させ、低トルクリプルを実現できることを見出した。つまり、図12、図13に示した6極36スロットのシンクロナスリラクタンスモータ1の解析結果と同様、スリット15を式(1)に示した範囲内の間隔θで設けることによって、低トルクリプルかつ高出力トルクを実現できる。
 図12~図15に示すスリット15の間隔θに対する出力トルクの関係、スリット15の間隔θに対するトルクリプルの関係より、スリット15の間隔θは、図12、図13では6°≦θ≦7.5°の範囲、図14、図15では、4.14°≦θ≦4.8°の範囲において特に低トルクリプルかつ高出力トルクを実現できることを見出した。
 したがって、図12~図15に示すスリット15の間隔θに対する出力トルクの関係、スリット15の間隔θに対するトルクリプルの関係において特に低トルクリプルかつ高出力トルクを実現できる範囲は、以下の式(2)に示す範囲であることが分かった。式(2)に示す範囲は、スリット数に依らず、同じ傾向である。なお、磁極数Pは、スロット数をSとすると、以下の式(3)に示す関係を満たす。
 360°/[P×{1.5(S/P)+1}]≦θ≦360°/[P×{1.5(S/P)-1}] ・・・(2)
 P≦S/3 ・・・(3)
 以上より、磁極数Pとスロット数Sの組み合わせ及びスリット15の本数によらず、スリット15を式(1)に示した範囲の間隔θで設けることによって、ステータ6のパーミアンスの変化と、ロータ7のパーミアンスの変化の合致を回避できるため、ステータ6のスロット14の間隔に起因するトルクリプルの増加を抑制できるとともに、設けられたスリット15によってd軸とq軸とのインダクタンスの差分が増大するため、スリット15の間隔θがより広い構成においても高い出力トルクを発生させることができる。さらに、スリット15を式(2)に示した範囲の間隔θで設けることによって、特に顕著な効果を得ることができる。
 実施の形態1に係るシンクロナスリラクタンスモータ1によれば、最適な間隔でスリット15を設けることができるため、ステータ6のスロット14の間隔に起因するトルクリプルの増加を抑制して、さらには高い出力トルクを発生させることができる。
実施の形態2.
 本発明を実施するための実施の形態2では、高出力トルク化および低トルクリプル化を図るため、スリット15を構成する好適な円弧形状について説明する。
 図16は、実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータ1のロータ7の断面を示しており、円弧の寸法定義を示す説明図である。実施の形態1では、各スリット15の短手方向の開口幅であるスリット幅21と、各スリット15間に挟まれたロータコア11の部位の幅であるコア幅22とが均一となるスリット構成として、スリット15の配置間隔θによる効果を説明したが、実施の形態2では、円弧形状、つまりスリット15の凸形状とスリット幅21による出力トルクとトルクリプルへの影響を説明する。
 高出力トルクと低トルクリプルの効果を得るためには、ステータ6の起磁力によって発生する磁束を通し易い構成にするため、スリット幅21を、全て又は部分的に、コア幅22より狭くする必要がある。
 以下、有限要素法による電磁界解析結果を用いて、スリット15の凸形状とスリット幅21による出力トルクとトルクリプルへの影響を説明する。
 スリット15の円弧形状の構成に必要な寸法を定義する。
 図16に示すmは、磁極毎に設けられたスリット15の番号を示しており、図16に示す磁極毎に設けられたスリット15において、複数のスリット15においてロータコア11の外周面に最も近接するスリット15を1番目のスリットとする場合、1番目のスリットに近いものから順に2番目、3番目・・・m番目のスリットとする。
 図16に示すnは、磁極毎に設けられたスリット15の外縁(中心Oから遠い方の縁)及び内縁(中心Oから近い方の縁)の円弧の番号を示しており、例えば、m番目のスリット15の外縁をn=2m-1番目の円弧とし、内縁をn=2m番目の円弧とする。図16で示す円弧は、スリット数が3なので、n=1~6の値を取りうる。
 各磁極の中で隣接する各スリット15の間隔θは、式(1)又は式(2)の範囲において、適用するモータによって決定される。式(1)又は式(2)の範囲において、スリット15の間隔θが決定し、ロータコア11の一磁極に設けうるスリット15の最大数をmmaxとすると、mmaxの範囲は、以下に示す式(4)にしたがって決定される。なお、ロータコア11の磁極数をPとする。
 (2mmax-1)×θ≦360/P ・・・(4)
 式(4)にしたがって決定されるmmaxは、式(4)を満たす最大の自然数である。
 mmax番目のスリットの内縁を、ロータコア11の一磁極に設けうるスリット15の最大数mmaxに対する円弧の最大数nmaxとするとき、円弧の最大数nmaxは、mmaxの2倍である。つまり、nmax=2mmaxとなる。例えば、図16の構成では、mmax=3となり、nmax=6となる。なお、設けられるスリット15はd軸及びq軸に対して対称の形状である。
 図16に示すように、各円弧は、q軸上かつロータコア11の円筒外周面から距離Dの位置に円弧中心Qを有している。なお、距離Dは、nmax番目の円弧によって決定される定数であるため、距離D(nmax)と規定する。また、円弧中心Qに対するn番目の円弧の半径をR(n)と規定する。ここで、距離D(nmax)とn番目の円弧の半径R(n)との比率をk(n)と規定し、距離D(nmax)と半径R(n)の比率k(n)を以下に示す式(5)ように定義する。
 k(n)=D(nmax)/R(n) ・・・(5)
 距離D(nmax)は、nmax番目の円弧によって決定される定数であるため、n番目の円弧に対する比率k(n)に伴い、n番目の円弧の半径R(n)が取りうる値が変化する。ただし、比率k(n)は、以下の式(6)の関係を満たす。
 k(nmax)<・・・<k(n)<・・・<k(1)<1 ・・・(6)
 なお、円弧は、例えば直線などで近似的に円弧形状を模擬したものも同様の形状とみなす。
 距離D(nmax)と半径R(n)と比率k(n)の決定方法について説明する。
 図16に示したq軸上のロータ7の半径となる点を点Xとし、nmax番目の円弧がロータコア11の外周面と交わる点を点Y及び点Y´とする。式(4)に基づき、mmaxが決定すると、円弧の取りうる最大の値nmaxを決定することができる。比率k(nmax)は、以下に示す式(7)の範囲において決定される。式(7)の算出方法については、後で詳述する。
 0.20≦k(nmax)≦0.37 ・・・(7)
 nmax番目の円弧の半径R(nmax)は、点Y、点Y´を通る円であり、q軸上に円弧中心Qを有するため、比率k(nmax)が決定されると式(5)に基づき、nmax番目の円弧の半径R(nmax)と距離D(nmax)が決定する。
 続いて、電磁界解析に用いる解析モデルについて説明する。図17から図21は、実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータ1のロータ7の断面図である。ステータ6は、図3に示す実施の形態1に係る6極36スロットのシンクロナスリラクタンスモータ1を用いる。効果を示す一例として、スリット15の間隔θがθ=6.66°のモデルを作成した。なお、モデルではスリット15の本数が3本であるが、これに限定しない。角度sは、1番目のスリット15のロータ外周面端部のスリット幅21の角度であり、1番目のスリット15のロータ外周面端部のスリット幅の角度である。つまり、1番目の円弧がロータ外周面端部と交わる点と中心Oを通る直線と、2番目の円弧がロータ外周面端部と交わる点と中心Oを通る直線とがなす角度である。同様に角度tは、2番目のスリット15のロータ外周面端部のスリット幅21の角度であり、角度uは、3番目のスリット15のロータ外周面端部のスリット幅21の角度である。
 図17は、各スリット15のロータコア11の外周面端部のスリット幅21の角度が、s>t>uとなるように設計したモデルを示しており、図18では、各スリット幅21の角度がs=t=uとなるように設計したモデルを示しており、図19では、各スリット幅21の角度がs<t<uとなるように設計したモデルを示している。
 図20と図21において、角度vは、1番目のスリット15と2番目のスリットの間のロータ外周面端部のコア幅22の角度であり、つまり、2番目の円弧がロータコア11の外周面と交わる点と中心Oを通る直線と、3番目の円弧がロータコア11の外周面と交わる点と中心Oを通る直線とがなす角度である。同様に角度wは、2番目のスリット15と3番目のスリットの間のロータコア11の外周面のコア幅22の角度である。
 図20は、各スリット幅21の角度と各コア幅の角度22とが(s=t=u)<(v=w)となるように設計したモデルを示しており、図21では、各スリット幅21の角度と各コア幅の角度22とが(s=t=u)>(v=w)となるように設計したモデルを示している。
 図22は、実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータ1において、図17から図21における角度寸法の関係を例示する図である。ここで、図17にモデル111を、図18にモデル112を、図19にモデル113を、図20にモデル114を、図21にモデル115を示し、今回の解析に用いる角度s、t、u、v、wの角度寸法を図22の一覧表に示す。
 図23は、実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータ1において、比率k(n)の一例を示す説明図である。図23は、モデル111において、式(5)に基づき決定した比率k(n)を示している。また、1番目の円弧での比率k(1)を一定とし、nmax番目の円弧に対する比率k(nmax)に応じて、q軸から数えた2~(nmax-1)番目までの円弧の比率k(n)を、図22に示すスリット幅21に応じて決定した。図23に示すaは、1~nmax番目の円弧に対するそれぞれの比率k(n)の値を直線近似した場合の傾きである。
 ステータ6の巻線10に通電し、有限要素法による電磁界解析にて比率k(nmax)に対する出力トルクと、比率k(nmax)に対するトルクリプルの関係を検討する。検討に際しては、6極36スロットのシンクロナスリラクタンスモータ1を用いて解析したが、効果の適用範囲は、この磁極数Pとスロット数Sに限定されるものではない。
 図24は、実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータ1における、比率k(nmax)に対する出力トルクの関係を示す説明図である。モデル111の解析結果を実線、モデル112の解析結果を点線、モデル113の解析結果を一点鎖線、モデル114の解析結果を二点鎖線、モデル115の解析結果を破線で示している。モデルごとに、比率k(nmax)が0.02≦k(nmax)≦0.5の範囲において、平均トルクが出力トルクの最大値の98%以上となる比率k(nmax)の範囲を求めた。
 図25は、実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータ1における、比率k(nmax)に対するトルクリプル率の関係を示す説明図である。図24と同様に、モデル111の解析結果を実線、モデル112の解析結果を点線、モデル113の解析結果を一点鎖線、モデル114の解析結果を二点鎖線、モデル115の解析結果を破線で示している。モデルごとに、比率k(nmax)が0.02≦k(nmax)≦0.5の範囲において、トルクリプル率が最小値から+5%以内になる比率k(nmax)の範囲を求めた。
 図24と図25の解析結果より、比率k(nmax)に対する平均トルクと、比率k(nmax)に対するトルクリプル率のそれぞれの制約を満たす範囲は、nmax番目の円弧の場合において式(7)に示す範囲であることを見出した。
 nmax番目の円弧に対する比率k(nmax)は、式(7)に示す範囲では、スリット15の凸形状がステータ6の起磁力によって発生する磁束を通し易い構成となるため、d軸とq軸とのインダクタンスの差分が増大し、実施の形態1に係るシンクロナスリラクタンスモータ1よりも更に高出力トルクと低トルクリプルを実現することができる。
 図26は、実施の形態2に係る6極36スロットのシンクロナスリラクタンスモータ1において、比率k(1)~k(nmax)の値を直線近似した場合の傾きaの関係を示す説明図である。図26の横軸は、nmax番目の円弧に対する比率k(nmax)(実施の形態2では、nmax=6)であり、図26の縦軸は、傾きaである。図26に、図24、25と同様に、モデル111の比率k(n)と傾きaの関係を実線、モデル112の比率k(n)と傾きaの関係を点線、モデル113の比率k(n)と傾きaの関係を一点鎖線、モデル114の比率k(n)と傾きaの関係を二点鎖線、モデル115の比率k(n)と傾きaの関係を破線で示している。モデル111~115において、それぞれ点Y、点Y´を同一としたため、モデル111~115のそれぞれのnmax番目の円弧に対する比率k(nmax)に対する傾きaは、近似により同一であると考えられる。
 比率k(nmax)に対する平均トルクと比率k(nmax)に対するトルクリプル率の制約を満たす式(7)で示す比率k(nmax)の範囲は、図26より、傾きaが-0.154≦a≦-0.119の範囲であると算出できる。
 図27は、実施の形態2に係るシンクロナスリラクタンスモータ1において、n番目の円弧に対する比率k(n)の関係を示す説明図である。図27は、nmax番目の円弧に対する比率k(nmax)が同じ値でも傾きaは変化する、つまり、スリット15の本数によって傾きaが変化することを表す。例えば、円弧nの最大値nmaxが6のとき、つまりスリット15を3個設けたときの傾きaは、円弧nの最大値nmaxが8のとき、つまりスリット15を4個設けたときの傾きaの4/3倍となる。傾きaの好適な範囲を一般化させるため、円弧nを用いて次のように表す。
 傾きaの好適な範囲は、図26から、(-0.154×n/nmax)≦a≦(-0.119×n/nmax)の範囲、つまり、以下に示す式(8)の範囲と表せる。nは、実施の形態2における円弧の最大値(n=6)であり、円弧nの取りうる最大の値nmaxは、式(4)に基づき決定されるスリット15の数mmaxの2倍である。
 (-0.92/nmax)≦a≦(-0.71/nmax) ・・・(8)
 実施の形態2に係るシンクロナスリラクタンスモータにおいて、nmax番目の円弧の場合における、点Y、点Y´を通るnmax番目の円弧の半径R(nmax)と、半径R(nmax)の円の円弧中心Qから点Xまでの距離D(nmax)の比率k(nmax)は、式(7)で示す範囲において決定される。n番目の円弧の比率k(n)に対する半径R(n)は、式(5)によって定義されており、比率k(n)は、式(6)の関係を満たし、比率k(1)~k(nmax)の値を直線近似した場合の傾きaが、式(8)の範囲内となるように決定される。なお、1~(nmax-1)番目の円弧が一定の傾きaによって設けられる場合は、以下に示す式(9)によって決定される。
 k(n)=k(nmax)-{a×(nmax-n)} ・・・(9)
 しかし、1~(nmax-1)番目の円弧は、一定の傾きaとしてnmax番目の円弧から等間隔となるように決定する必要はなく、1~nmax番目の円弧に対する比率k(n)の傾きaが近似によって、式(8)で示す範囲内となるように決定すればよい。
 n番目の円弧に対する比率k(n)が決定すると、距離D(nmax)は定数であるため式(5)に基づき、1~(nmax-1)番目の円弧のそれぞれの比率k(n)に対する半径R(n)が決定する。距離D(nmax)が決定すると円弧中心Qの位置も決定するため、半径R(n)によって1~nmax番目の円弧のそれぞれの間隔が決定する。したがって、スリット幅21とコア幅22も決定する。
 以上より、式(1)又は式(2)の範囲において、スリット15の間隔θが決定すると、1磁極あたりのスリット15の数mmaxが、式(4)にしたがって決定され、mmaxの2倍である円弧の取りうる最大の値nmaxが決定する。nmax番目の円弧に対する比率k(nmax)が式(7)に示す範囲であり、n番目の円弧に対する比率k(n)は、式(6)の関係を満たし、比率k(1)~k(nmax)の値を直線近似した場合の傾きaが、式(8)の範囲内となるように、1~n番目の円弧に対するそれぞれの比率k(1)~k(n)の値を決定することで、高出力トルクと低トルクリプルを両立できる。
 図24において、モデル111で、スリット幅21が統一であるモデル112より高い出力トルクを捻出でき、モデル114でも高い出力トルクが捻出できている。これは、傾きaを式(8)で示す範囲で設定し、特に磁束の多く通るd軸に近いスリット15の幅を、コア幅22より狭くすることでd軸近傍の磁気飽和を緩和し、d軸インダクタンスが大きくなったことによる効果である。
 図25において、nmax番目の円弧に対する比率k(nmax)が式(7)に示す範囲の場合、トルクリプル率は最小値から+5%以内である。これは、各モデルにおいて、比率k(nmax)によって決定するスリット15の円弧形状に伴うロータ7のパーミアンスの変化のタイミングが、ステータ6のパーミアンスの変化のタイミングと大きく異なることによって、出力トルクの脈動を打ち消すためである。
 実施の形態2に係るシンクロナスリラクタンスモータ1によれば、1磁極あたりのスリット15の数mmaxが、式(4)にしたがって決定され、mmaxの2倍である円弧nの取りうる最大の値nmaxが決定する。nmax番目の円弧に対する比率k(nmax)が式(7)に示す範囲であり、n番目の円弧に対する比率k(n)は、式(6)の関係を満たし、比率k(1)~k(nmax)の値を直線近似した場合の傾きaが、式(8)の範囲内となるように各スリット15が設けられる。
 その結果、ロータコア11における磁気飽和を緩和し、d軸インダクタンスが大きくなることによって、実施の形態1に係るシンクロナスリラクタンスモータ1よりさらに高出力トルクを実現することができ、スリット15の円弧形状の変化に伴うロータ7のパーミアンスの変化によって、ステータ6のパーミアンスの変化のタイミングと、ロータ7のパーミアンスの変化のタイミングがさらに合致しなくなるため、出力トルクの脈動を打ち消し、ステータ6のスロット14の間隔に起因するトルクリプルの増加をさらに抑制できる。
実施の形態3.
 本発明を実施するための実施の形態3に係るシンクロナスリラクタンスモータ1では、ロータコア11の外周面に切り欠き31を設けたことを特徴としている。
 図28は、実施の形態3に係るシンクロナスリラクタンスモータ1のロータ7を示す断面図である。実施の形態3に係るシンクロナスリラクタンスモータ1は、q軸と交差するロータコア11の外周面に切り欠き31を施す。例えば、図28のように溝形状の切り欠き31を配置する。切り欠き31を設けることは、q軸上に非磁性体部を設けることになるため、スリット15を設けることと同様の効果を奏する。つまり、この切り欠き31により、q軸インダクタンスが低下するため、出力トルクが向上する。
 続いて、切り欠き31を設けることによるトルクリプルへの効果について説明する。例えば、切り欠き31のロータコア11の外周面に沿った両端がロータコア11の中心Oに対してなす角度θs(以下、「切り欠き31の間隔θs」という。)を、スリット15の間隔θよりも広く設定すると、周期の長いパーミアンス変化をロータ7に付与することになるため、スリット15で低減させるステータ6のスロット14の間隔に起因する成分よりも低次の成分のトルクリプルを低減できる。
 切り欠き31の間隔θsをスリット15の間隔θと該同一とすると、スリット数を増加させた場合と該等価の磁気回路を形成することができ、スリット15によるトルクリプル低減効果をより大きくできる。
 切り欠き31の間隔θsをスリット15の間隔θよりも短く設定すると、周期の短いパーミアンス変化をロータ7に付与することになるため、スリット15で低減させるステータ6のスロット14の間隔に起因する成分よりも高次の成分のトルクリプルを低減できる。
 図29は、実施の形態3に係るシンクロナスリラクタンスモータ1の1磁極分を抜き出して示す断面図である。上述のように切り欠き31の間隔θsをスリット15の間隔θよりも広くする場合、切り欠き31の間隔θsは、ティース13を2本以上跨がない幅、つまり、以下に示す式(10)の範囲で設けることが好ましい。ティース13を2本以上跨いでしまうと、ティース13間で磁路短絡が生じてしまい、例えば6次成分、ステータ6のスロット14の間隔に起因するトルクリプル成分を増幅させる要因となる。
 θs<2×(360°/S) ・・・(10)
 好ましくは、実施の形態3に記載の切り欠き31の形状は、q軸に対して左右対称の形状にする。切り欠き31の形状をq軸に対して左右対称の形状とすることで、q軸のパーミアンス変化に影響を及ぼさないようにするためである。また、切り欠き31の個数は1つに限定しない。
 なお、切り欠き31を施した場合、ロータコア11の外周面が径方向内側に凹むが、本発明における円弧の中心位置の定義は、切り欠き31を施す前の形状で考える。例えば、図28に示す破線部を基準として円弧の中心位置を決定する。
 次に、切り欠き31の別例を示す。図30は、実施の形態3に係るシンクロナスリラクタンスモータ1のロータ7を示す断面図である。図30に示すように、q軸と交差するロータコア11の外周面を切断した場合も、切り欠き31と同様の効果を得ることができる。なお、切断面の形状は平らでも曲面でも構わない。つまり、実施の形態3において切り欠き31を設けるとは、q軸と交差するロータコア11の外周面に対して切削、切断等を行い、ロータコア11の体積を減じることである。
 実施の形態3に係るシンクロナスリラクタンスモータ1によれば、q軸と交差するロータコア11の外周面に切り欠き31を設けることで、q軸上に非磁性体部を設けることになり、q軸インダクタンスが低下するため、出力トルクが向上する。
 また、切り欠き31の幅をスリット15の間隔に応じたパーミアンス変化をロータコア11に付与することができるため、切り欠き31の幅に応じた成分のトルクリプルを低減できる。
実施の形態4.
 本発明を実施するための実施の形態4に係るシンクロナスリラクタンスモータ1では、スリット15とロータコア11の外周面の間にブリッジ42を形成したことを特徴としている。
 図31は、従来のシンクロナスリラクタンスモータ1のロータ7を示す断面図である。高速回転の用途では、耐遠心力強度に優れたロータ7が要求される。
 耐遠心力強度低下の対策として、図31のように、スリット15をなす円弧状の開口部におけるロータコア11の外周面に沿った部位の中心点Zから径方向に沿ってロータコア11の外周面におろした垂線との交点Z´とするとき、線分ZZ´に対して左右対称の面取り形状(面取り部401と面取り部402)を施すことにより、ロータコア11の外周面と、スリット15のロータコア11の外周面に対向する直線部分41との間隙部分であるブリッジ42にかかる遠心力に対して、ロータコア11の外周面端部の強度を向上させる手段が一般的に知られている。また、ブリッジ42は、磁路の短絡による電磁気性能の低下を抑制するため、可能な限り薄くすることが望ましいが、薄くすることにより耐遠心力強度の低下を招く。図31に示すブリッジ42の構成では必要な面取り領域が大きいため、スリット15のロータコア11の外周面に対向する直線部分41が短くなり、ブリッジ42の磁気抵抗を低下させてしまう。結果として、ブリッジ42の磁路が短絡しやすくなる。
 図32は、実施の形態4に係るシンクロナスリラクタンスモータ1のロータ7を示す断面図である。実施の形態4に係るシンクロナスリラクタンスモータ1では、面取り部401の断面積よりも、面取り部402の断面積を大きいように構成する。つまり、実施の形態4に係るシンクロナスリラクタンスモータ1は、図32に示すように、線分ZZ´と、円弧状のスリット15の内縁に沿ってロータコア11の外周面に至る延長線とに挟まれたロータコア11の部位の面取り部402の断面積が、線分ZZ´と円弧状のスリット15の外縁に沿ってロータコア11の外周面に至る延長線に挟まれたロータコア11の部位の面取り部401の断面積より大きいように構成する。
 実施の形態4に係るシンクロナスリラクタンスモータ1によれば、面取り部401の断面積よりも、面取り部402の断面積を大きくすることで、剛性の高いd軸側で遠心力を多く受け持つ構成となる。そのため、スリット15の直線部分41を従来の構成よりも長くすることができ、磁気抵抗の低下を抑制できる。したがって、電磁気性能を低下させることなく、高耐遠心力強度をもったロータコア11のスリット15の端部形状を実現することができる。
実施の形態5.
 本発明を実施するための実施の形態5に係るシンクロナスリラクタンスモータ1では、スリット15とロータコア11の外周面の間に、各スリット15に対応したブリッジ42を形成したことを特徴としている。
 図33は、実施の形態5に係るシンクロナスリラクタンスモータ1のロータ7及びスリット15の端部を示す拡大断面図である。実施の形態4に係るシンクロナスリラクタンスモータ1は、各スリット15に応じて、面取り部401の断面積と面取り部402の断面積の比率を変化させてはいないが、実施の形態5に係るシンクロナスリラクタンスモータ1は、図33に示すように、面取り部401の断面積に対する面取り部402の断面積の比率が、ロータコア11の外周面に近接するスリット15に対応する面取り部402の断面積ほど、大きい構成である。
 ブリッジ42にかかる遠心力は、d軸に近接するブリッジ42ほど大きくなる。実施の形態5に係るシンクロナスリラクタンスモータ1では、d軸に近接するスリット15の円弧ほど曲率半径を小さくする。つまり、実施の形態5に係るシンクロナスリラクタンスモータ1では、q軸に近接するスリット15に対応するブリッジ42ほど、面取り部401の断面積に対する面取り部402の断面積の比率を大きくする構成とすることにより、高耐遠心力強度をもったロータコア11のスリット15の端部形状を実現することができる。
 また、実施の形態5に係るシンクロナスリラクタンスモータ1では、ロータコア11の外周面に近接するスリット15程、面取り部401の断面積に対する面取り部402の断面積の比率を大きくすることによって、各スリット15の直線部41を長く形成でき、各スリット15での磁気抵抗の低下を抑制できるため、モータの電磁気性能の向上を図ることができる。
実施の形態6.
 本発明を実施するための実施の形態6に係るシンクロナスリラクタンスモータ1は、スリット15にリブ51を設けたことを特徴としている。
 図34は、実施の形態6に係るシンクロナスリラクタンスモータ1のロータ7を示す断面図である。ロータ7の耐遠心力強度の向上のため、スリット15をなす円弧状の開口部を、複数の部位に分断するように、リブ51を設ける。スリット15にリブ51を設けないロータ7では、コア層22は、ロータ外周面近傍のブリッジ42以外において離間している。スリット15にかかるリブ51を設けることによって、各スリット15において連続する円弧の長さが短くなるため、コア層22に係る曲げモーメントを小さくできる。したがって、ロータコア11の強度向上を実現でき、ブリッジ42に集中する負荷を低減することができるため、耐遠心力強度が向上する。なお、実施の形態6に係るシンクロナスリラクタンスモータ1において、リブ51の数、リブ51の位置は図34に限定しない。
 なお、本発明は、実施の形態1から6で説明した形状に限定されるものでなく、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。
1 シンクロナスリラクタンスモータ
2 電源供給ライン
3 制御装置
4 シャフト
5 フレーム
6 ステータ
7 ロータ
8 軸受
9 ステータコア
10 巻線
11 ロータコア 
12 コアバック
13 ティース
14 スロット
15 スリット
21 スリット幅
22 コア幅
31 切り欠き
41 直線部分
42 ブリッジ
51 リブ
401、402 面取り部

Claims (12)

  1.  円環状のステータコアと、
     前記ステータコアの内周面に沿って等間隔に配列されたS個のスロットと、
     前記各スロットに格納された巻線と、
     前記ステータコアの内面側に、円筒状で磁極数がPであり、磁極毎に円筒中心に向かって凸となり各頂点がq軸上に位置する円弧状の開口部からなる複数のスリットが設けられ、前記開口部における円筒外周面に沿った部位の中心点が隣接スリット間で前記円筒中心に対して互いになす角度θは各隣接スリット間で一定値であり、かつ、前記角度θは、
      360°/2S<θ<360°/1.15S
     の範囲内であり、d軸に最も近接するスリットの前記中心点とd軸とが円筒中心に対してなす角度がθ/2であるロータコアと、
     を備えるシンクロナスリラクタンスモータ。
  2.  円環状のステータコアと、
     前記ステータコアの内周面に沿って等間隔に配列されたS個のスロットと、
     前記スロットに格納された巻線と、
     前記ステータコアの内面側に、円筒状で磁極数がPであり、磁極毎に円筒中心に向かって凸となり各頂点がq軸上に位置する円弧状の開口部からなる複数のスリットが設けられ、前記開口部における円筒外周面に沿った部位の中心点が隣接スリット間で前記円筒中心に対して互いになす角度θは各隣接スリット間で一定値であり、かつ、前記角度θは、
      360°/[P×{1.5(S/P)+1}]≦θ≦360°/[P×{1.5(S/P)-1}]
     の範囲内であり、d軸に最も近接するスリットの前記中心点とd軸とが円筒中心に対してなす角度がθ/2であるロータコアと、
     を備えるシンクロナスリラクタンスモータ。
  3.  前記ロータコアの磁極数Pと前記スロット数Sは、
      P≦S/3
     の関係を満たすことを特徴とする請求項2記載のシンクロナスリラクタンスモータ。
  4.  前記ロータコアの一極に設けうる前記スリットの最大数mmaxは、
      (2mmax-1)×θ≦360/P
     の関係を満たす最大の自然数であることを特徴とする請求項1から請求項3のいずれか1項に記載のシンクロナスリラクタンスモータ。
  5.  前記複数のスリットにおいて前記ロータコアの外周面に最も近接する前記スリットを1番目のスリットとし、m番目のスリットは、前記m番目のスリットをなす円弧状の開口部の円筒中心に近い内縁をn=2m番目の円弧、前記内縁に対向する外縁をn=2m-1番目の円弧と規定し、前記円筒中心に最も近接するmmax番目のスリットの内縁の円弧をnmaxと規定する場合に、
     前記各円弧は、前記nmax番目の円弧に基づき決定される、q軸上に沿って前記円筒外周面から距離D(nmax)の位置に円弧中心点を有し、前記円弧中心点に対するn番目の円弧の半径をR(n)とする場合に、
     前記距離D(nmax)と前記半径R(n)との比率k(n)は、
      k(n)=D(nmax)/R(n)
     によって規定され、前記nmax番目の円弧に対する比率k(nmax)は、
      0.20≦k(nmax)≦0.37
     の範囲であり、
     前記n番目の円弧に対する比率k(n)は、
      k(nmax)<・・・<k(n)<・・・<k(1)<1
     の関係を満たし、
     前記比率k(1)ないしk(nmax)の各数値を直線近似した場合の傾きaが、
      (-0.92/nmax)≦a≦(-0.71/nmax
     の範囲内となるように、前記1ないしn番目の円弧にそれぞれ対応する前記比率k(1)ないしk(n)の値を決定することを特徴とする請求項4に記載のシンクロナスリラクタンスモータ。
  6.  前記比率k(n)は、
      k(n)=k(nmax)-{a×(nmax-n)}
     に基づき決定されることを特徴とする請求項5記載のシンクロナスリラクタンスモータ。
  7.  前記各スリットをなす円弧状の開口部における短手方向の開口幅は、前記円筒中心側から円筒外周面に近づくにつれて狭くなることを特徴とする請求項5記載のシンクロナスリラクタンスモータ。
  8.  前記各スリットの短手方向の開口幅は、前記各スリット間に挟まれたロータコア部位の幅よりも狭いことを特徴とする請求項5または請求項7に記載のシンクロナスリラクタンスモータ。
  9.  q軸と交差する前記ロータコアの円筒外周面に切り欠きが設けられ、
     前記切り欠きの円筒外周面に沿った両端が前記円筒中心に対してなす角度θsは、
      θs<2×(360°/S)
     の範囲であることを特徴とする請求項5から請求項8のいずれか1項に記載のシンクロナスリラクタンスモータ。
  10.  前記各スリットをなす円弧状の開口部における円筒外周面に沿った部位の中心点から円筒外周面に至る垂線と前記円弧状の開口部の内縁に沿って円筒外周面に至る延長線とに挟まれた前記ロータコア部位である第1面取り部の断面積が、前記中心点から円筒外周面に至る垂線と前記円弧状の開口部の外縁に沿って円筒外周面に至る延長線に挟まれた前記ロータコア部位である第2面取り部の断面積より大きいことを特徴とする請求項5から請求項9のいずれか1項に記載のシンクロナスリラクタンスモータ。
  11.  前記第2面取り部の断面積に対する前記第1面取り部の断面積の比率は、q軸に近接する前記スリットに対応する前記第1面取り部の断面積ほど、大きいことを特徴とする請求項10に記載のシンクロナスリラクタンスモータ。
  12.  前記スリットをなす円弧状の開口部を、複数の部位に分断すべく設けられたリブを有することを特徴とする請求項1から請求項11のいずれか1項に記載のシンクロナスリラクタンスモータ。
PCT/JP2018/032966 2017-10-24 2018-09-06 シンクロナスリラクタンスモータ WO2019082518A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-205324 2017-10-24
JP2017205324A JP2021016205A (ja) 2017-10-24 2017-10-24 シンクロナスリラクタンスモータ

Publications (1)

Publication Number Publication Date
WO2019082518A1 true WO2019082518A1 (ja) 2019-05-02

Family

ID=66247320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032966 WO2019082518A1 (ja) 2017-10-24 2018-09-06 シンクロナスリラクタンスモータ

Country Status (2)

Country Link
JP (1) JP2021016205A (ja)
WO (1) WO2019082518A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556991A (zh) * 2019-09-27 2019-12-10 深圳市百盛传动有限公司 新型同步磁阻转子结构
CN113853724A (zh) * 2019-05-22 2021-12-28 西门子股份公司 四极同步磁阻马达

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336917A (ja) * 1994-06-07 1995-12-22 Toshiba Corp 永久磁石形モータ及び冷却装置用コンプレッサ
US5818140A (en) * 1995-07-11 1998-10-06 Vagati; Alfredo Synchronous reluctance electrical motor having a low torque-ripple design
JP2016154428A (ja) * 2015-02-21 2016-08-25 株式会社ミツバ ブラシレスモータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336917A (ja) * 1994-06-07 1995-12-22 Toshiba Corp 永久磁石形モータ及び冷却装置用コンプレッサ
US5818140A (en) * 1995-07-11 1998-10-06 Vagati; Alfredo Synchronous reluctance electrical motor having a low torque-ripple design
JP2016154428A (ja) * 2015-02-21 2016-08-25 株式会社ミツバ ブラシレスモータ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853724A (zh) * 2019-05-22 2021-12-28 西门子股份公司 四极同步磁阻马达
CN113853724B (zh) * 2019-05-22 2024-04-09 西门子股份公司 四极同步磁阻马达
CN110556991A (zh) * 2019-09-27 2019-12-10 深圳市百盛传动有限公司 新型同步磁阻转子结构

Also Published As

Publication number Publication date
JP2021016205A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
EP3136559B1 (en) Permanent magnet synchronous motor and rotor thereof
US8436504B2 (en) Stator for an electric machine
EP1598920B1 (en) Permanent magnet rotary electric motor
JP4901839B2 (ja) 電動機及び圧縮機及び送風機及び換気扇
JP5811565B2 (ja) 回転子および永久磁石電動機
US11456633B2 (en) Permanent magnet rotating electric machine
EP3534496B1 (en) Permanent magnet motor
US10411535B2 (en) Rotor for rotating electric machine
KR101996687B1 (ko) 전기 기계에서의 토크 리플 감소
EP3226385B1 (en) Synchronous reluctance motor
JPWO2014038062A1 (ja) 永久磁石埋込型電動機
JP5601903B2 (ja) モータ
US20190280540A1 (en) Synchronous Machine with Magnetic Rotating Field Reduction and Flux Concentration
CN107453571B (zh) 开关磁阻电机
EP2775594A2 (en) Inductor type rotary motor
JP3672919B1 (ja) 永久磁石型回転モータ
KR20180024339A (ko) 라인기동식 동기형 릴럭턴스 전동기 및 그 회전자
JP2004080944A (ja) 電動機用ステータコア
CN108736614A (zh) 旋转电机的定子
WO2019082518A1 (ja) シンクロナスリラクタンスモータ
WO2020194390A1 (ja) 回転電機
JP2017055560A (ja) 永久磁石式回転電機
WO2017171037A1 (ja) ロータ及びロータの設計方法
JP2007097290A (ja) 永久磁石型リラクタンス回転電機
CN210629214U (zh) 一种转子结构及永磁同步电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP