WO2019082281A1 - エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム - Google Patents

エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム

Info

Publication number
WO2019082281A1
WO2019082281A1 PCT/JP2017/038393 JP2017038393W WO2019082281A1 WO 2019082281 A1 WO2019082281 A1 WO 2019082281A1 JP 2017038393 W JP2017038393 W JP 2017038393W WO 2019082281 A1 WO2019082281 A1 WO 2019082281A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
aerosol
value
power supply
source
Prior art date
Application number
PCT/JP2017/038393
Other languages
English (en)
French (fr)
Inventor
山田 学
剛志 赤尾
一真 水口
創 藤田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to JP2019549723A priority Critical patent/JP6892929B2/ja
Priority to CN201780096070.3A priority patent/CN111246759B/zh
Priority to PCT/JP2017/038393 priority patent/WO2019082281A1/ja
Priority to EP17930120.5A priority patent/EP3701820A4/en
Priority to EP22156735.7A priority patent/EP4014767A3/en
Publication of WO2019082281A1 publication Critical patent/WO2019082281A1/ja
Priority to US16/850,012 priority patent/US11627763B2/en
Priority to JP2021066032A priority patent/JP6889345B1/ja
Priority to JP2021090532A priority patent/JP7184962B2/ja
Priority to JP2022186584A priority patent/JP7430235B2/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0244Heating of fluids
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts

Definitions

  • the present invention relates to an aerosol generation device, a control method of the aerosol generation device, and a program for causing a processor to execute the method.
  • a system has been proposed for generating inhalable vapors in an electronic vaporizer (e.g. U.S. Pat. No. 5,075,015).
  • it is determined whether vaporization has occurred by monitoring the power to the coil corresponding to the heater that atomizes the aerosol source. If the power required to hold the coil at the adjusted temperature is reduced, it is said to indicate that there is not enough liquid in the fluid core to cause normal vaporization.
  • the power or energy supplied to the heating element necessary to maintain the temperature of the heating element configured to heat the aerosol forming substrate that contains the aerosol source or corresponds to the aerosol source to the target temperature.
  • An aerosol generating device has been proposed that detects the presence of an aerosol forming substrate in proximity to the heating element by comparing the with the threshold value (e.g., Patent Document 2).
  • the power supply from the power supply to the heater is controlled such that the temperature of the heater is close to the boiling point of the aerosol source.
  • the power supplied from the power source to the heater exhibits a constant value or a continuous change.
  • the power supplied from the power supply to the heater is used. Indicates a constant value or a continuous change.
  • the remaining amount of aerosol source is an important variable used for various control of the aerosol generation device. As an example, if the remaining amount of the aerosol source is not detected or can not be detected with sufficient accuracy, power supply from the power source to the heater is continued even though the aerosol source is already depleted, and the storage amount of the power source is wasted There is a risk of
  • Patent Documents 3 and 4 As another method of detecting the remaining amount of the aerosol source, those using the temperature of the heater or the electric resistance value of the heater in Patent Documents 3 and 4 have been proposed. These are known to exhibit different values when the remaining amount of the aerosol source is sufficiently remaining and when it is depleted. However, it is difficult to accurately estimate the remaining amount of the aerosol source or the depletion thereof because each requires a dedicated sensor and a plurality of sensors.
  • the present invention has an object of providing an aerosol generation device, a control method of the aerosol generation device, and a program for causing a processor to execute the method, the accuracy of estimation of remaining amount of the aerosol source or its depletion being improved. Do.
  • the aerosol generating apparatus changes the electrical resistance according to the power supply and temperature, and atomizes the aerosol source by supplying power from the power supply or the load for heating the flavor source and the current value flowing to the load
  • the measured value showed a value less than the threshold within the judgment period included in the time axis in the power supply sequence that controls the power supply from the power supply to the load and controls the sensor that outputs the measured value and the power supply to the load.
  • the control unit performs a determination operation of determining an abnormality, and the control unit adjusts the length of the determination period based on the measurement value.
  • the reference in the judgment operation can be adjusted by changing the judgment period based on the measured value, and the accuracy of the judgment can be improved as compared with the case where a constant reference is always used. That is, for example, the accuracy of the remaining amount of the aerosol source estimated by the aerosol generation device can be improved.
  • the feeding sequence is performed a plurality of times, and the control unit performs a feeding sequence after the preceding feeding sequence on the time axis (hereinafter referred to as a trailing feeding sequence) based on the measured values in the previous feeding sequence (hereinafter referred to as the preceding feeding sequence).
  • the length of the determination period in may be adjusted. In this way, the determination period can be changed based on not only one measurement value but also time-series changes of a plurality of measurement values. Therefore, since the determination period which estimated the state of the aerosol production
  • control unit may adjust the determination period in the subsequent feeding sequence based on the time when the measured value becomes less than the threshold in the preceding feeding sequence. For example, as described above, the current determination period is adjusted based on the change in the measured value in the previous power supply period, or the next determination period is adjusted based on the change in the measured value in the current power supply period.
  • control unit adjusts the determination period in the subsequent feeding sequence based on the shorter one of the time when the measured value in the preceding feeding sequence becomes less than the threshold and the time when the power supply from the power supply continues to the load. It is also good.
  • control unit may stop power supply from the power supply to the load when the number of determination periods in which the measured value is less than the threshold exceeds a predetermined number. Further, the control unit may continue the power supply from the power supply to the load when the number of power supply sequences whose measured value is less than the threshold does not exceed a predetermined number within the determination period. . In addition, the control unit may stop power supply from the power supply to the load when the measured value is less than the threshold value within the determined number of consecutive determinations or more. Further, the control unit may continue the power supply from the power supply to the load when the measured value becomes less than the threshold value in the determination period less than the predetermined number of consecutive.
  • the setting of the default number makes it possible to reduce erroneous determination as compared with the case where the default number is not set.
  • the power supply circuit includes a feed circuit electrically connecting the power supply and the load, and the feed circuit includes a first feed path and a second feed path connected in parallel, and the control unit includes the first feed path and the second feed path.
  • the second feed path is controlled such that one of the feed paths is selectively functioned and the power supplied from the power source to the load is smaller than when the first feed path is functioning.
  • the determination operation may be performed while the function is activated.
  • the control unit can reduce the power loss in aerosol generation by the first feed path, and reduce the influence of the voltage drop from the power supply in the determination operation by the second feed path. Therefore, the utilization efficiency of the electric energy stored in the power supply is improved as compared with the case where only a single feeding path which serves as the first feeding path and the second feeding path is provided.
  • the power supply circuit includes a feed circuit electrically connecting the power supply and the load, the feed circuit includes a first feed path and a second feed path connected in parallel, and the second feed path is smaller than the first feed path
  • the control unit is configured to cause current to flow, and to selectively function one of the first feed path and the second feed path and to perform the determination operation while the second feed path is functioning. It is also good. With such a configuration, the power loss may be reduced in aerosol generation by the first feed path, and the influence of the voltage drop from the power supply may be reduced in the determination operation by the second feed path. Therefore, the utilization efficiency of the electric energy stored in the power supply is improved as compared with the case where only a single feeding path which serves as the first feeding path and the second feeding path is provided.
  • control unit includes a suction end provided at an end of the apparatus and releasing the aerosol, and the control unit is configured to perform the second power supply so that the aerosol is not released from the suction end while the second feed path is functioning.
  • the path may be controlled.
  • the control unit may control the feed circuit such that the load generates an aerosol only when the first feed path is made to function among the first feed path and the second feed path. Thus, the generation of aerosol may be reduced in the determination operation.
  • the control unit may cause the second feed path to function after the first feed path has functioned. In this way, the determination can be performed in a state in which the aerosol source is likely to be depleted immediately after the generation of the aerosol, and the accuracy of the determination can be easily improved.
  • the electric resistance value changes according to the power supply and temperature, and the load for atomizing the aerosol source or heating the flavor source by power supply from the power supply, and the current value flowing to the load
  • a sensor that outputs a measured value according to the power supply sequence, a power feeding sequence in which the power is supplied from the power source to the load in such a manner that the sensor can output the measured value, and
  • a control unit capable of executing the abnormality determination, wherein the determination period is shorter than the power supply sequence.
  • the control unit may make the determination period shorter than the power feeding sequence only when the possibility of depletion of the aerosol source or the flavor source estimated based on the measurement value is equal to or greater than the second threshold.
  • the reference in the determination operation can be adjusted, and the accuracy of the determination can be improved as compared with the case where the reference is not adjusted. That is, for example, the accuracy of the remaining amount of the aerosol source estimated by the aerosol generation device can be improved.
  • the electric resistance value changes according to the power supply and temperature, and the load for atomizing the aerosol source or heating the flavor source by power supply from the power supply, and the current value flowing to the load
  • a control unit that controls the power feeding sequence for feeding power from the power source to the load multiple times, and the control unit is configured to, based on the measured values in the previous power feeding sequence, The length of the feeding sequence after the feeding sequence may be determined.
  • determination can be made based on changes in the measurement values in multiple periods, and the criteria in the determination operation are adjusted. And may improve the accuracy of the determination. That is, the accuracy of the remaining amount of the aerosol source estimated by the aerosol generation device can be improved.
  • generation apparatus which concerns on another aspect changes a resistance value according to a power supply and temperature
  • the load which atomizes an aerosol source by heating from an electric power supply or a flavor source, an aerosol source or a flavor source
  • the sensor outputs a measured value that is affected by the remaining amount of the power, and the power supply from the power supply to the load is controlled, and the measured value is within the determination period included in the time axis in the power supply sequence that supplies power to the load.
  • a controller performing a determination operation to determine abnormality if the value smaller than the threshold is indicated, the controller determining the higher the possibility of exhaustion of the aerosol source or the flavor source estimated based on the measured value, The period may be set short.
  • the length of the determination period can be appropriately set based on the possibility of depletion of the aerosol source or the flavor source, and the accuracy of the determination can be improved. That is, the accuracy of the remaining amount of the aerosol source estimated by the aerosol generation device can be improved.
  • the electric resistance value changes according to the power supply and temperature
  • the control unit includes a sensor that outputs a corresponding measurement value, and a control unit that controls a power feeding sequence that feeds power from the power source to the load multiple times, and the control unit is based on the measurement value in the current power feeding sequence. The length of the subsequent feeding sequence may be determined.
  • the length of the current feed sequence may be determined based on the measured values in the past feed sequence, or the length of the subsequent feed sequence may be determined based on the measured values in the current feed sequence.
  • the contents described in the means for solving the problems can be combined as much as possible without departing from the problems and technical ideas of the present invention.
  • the contents of the means for solving the problems can be provided as a system including a device or a plurality of devices including a computer, a processor or an electrical circuit, a method executed by the device, or a program executed by the device.
  • the program can also be executed on a network.
  • a recording medium for holding the program may be provided.
  • an aerosol generating device a control method of the aerosol generating device, a method of estimating the remaining amount of the aerosol source or the flavor source, and a method of improving the accuracy of estimation of remaining amount of the aerosol source or its depletion.
  • a program for causing a processor to execute can be provided.
  • FIG. 1 is a perspective view showing an example of the appearance of an aerosol generating device.
  • FIG. 2 is an exploded view showing an example of the aerosol generation device.
  • FIG. 3 is a schematic view showing an example of the internal structure of the aerosol generation device.
  • FIG. 4 is a circuit diagram showing an example of the circuit configuration of the aerosol generation device.
  • FIG. 5 is a block diagram for explaining a process of estimating the amount of the aerosol source stored in the storage unit.
  • FIG. 6 is a process flow diagram showing an example of the remaining amount estimation process.
  • FIG. 7 is a timing chart showing an example of a state in which the user uses the aerosol generating device.
  • FIG. 8 is a diagram for explaining an example of how to determine the length of the determination period.
  • FIG. 1 is a perspective view showing an example of the appearance of an aerosol generating device.
  • FIG. 2 is an exploded view showing an example of the aerosol generation device.
  • FIG. 3 is a schematic view showing an example of the
  • FIG. 9 is a diagram showing another example of the change of the current value flowing through the load.
  • FIG. 10 is a process flow diagram showing an example of a process of setting a determination period.
  • FIG. 11 is a diagram schematically illustrating energy consumed in the storage unit, the supply unit, and the load.
  • FIG. 12 is a graph schematically showing the relationship between the energy consumed at load and the amount of aerosol generated.
  • FIG. 13 is an example of a graph showing the relationship between the remaining amount of aerosol and the resistance value of the load.
  • FIG. 14 is a view showing a modified example of the circuit provided in the aerosol generation device.
  • FIG. 15 is a view showing another modified example of the circuit included in the aerosol generation device.
  • FIG. 1 is a perspective view showing an example of the appearance of an aerosol generating device.
  • FIG. 2 is an exploded view showing an example of the aerosol generation device.
  • the aerosol generating device 1 is an electronic cigarette, a nebulizer, or the like, generates an aerosol in response to the user's suction, and provides the user with the aerosol.
  • one continuous suction which a user performs shall be called a "puff.”
  • the aerosol generating device 1 adds a component such as flavor to the generated aerosol and releases it into the oral cavity of the user.
  • the aerosol generating device 1 includes a main body 2, an aerosol source holding unit 3, and an additive component holding unit 4.
  • the main body 2 supplies power and controls the operation of the entire apparatus.
  • the aerosol source holding unit 3 holds an aerosol source for atomization to generate an aerosol.
  • the additive component holding unit 4 holds components such as flavor and nicotine.
  • the user can hold the suction port, which is the end on the side of the additive component holding unit 4, and can suction the aerosol to which the flavor and the like are added.
  • the aerosol generation device 1 is formed by the user or the like assembling the main body 2, the aerosol source holding unit 3 and the additive component holding unit 4.
  • the main body 2, the aerosol source holding unit 3 and the additive component holding unit 4 each have a cylindrical shape or a truncated cone shape having a predetermined size, and the main body 2, the aerosol source holding unit 3, and the addition
  • the components can be combined in the order of the component holding unit 4.
  • the main body 2 and the aerosol source holder 3 are coupled, for example, by screwing an external thread portion and an internal thread portion provided at the respective end portions.
  • the aerosol source holding unit 3 and the additive component holding unit 4 fit, for example, the additive component holding unit 4 tapered on the side surface into a cylindrical portion provided at one end of the aerosol source holding unit 3 Are combined by
  • the aerosol source holding unit 3 and the additive component holding unit 4 may be disposable replacement parts.
  • FIG. 3 is a schematic view showing an example of the inside of the aerosol generating device 1.
  • the main body 2 includes a power supply 21, a control unit 22, and a suction sensor 23.
  • the control unit 22 is electrically connected to the power supply 21 and the suction sensor 23, respectively.
  • the power source 21 is a secondary battery or the like, and supplies power to the electric circuit included in the aerosol generation device 1.
  • the control unit 22 is a processor such as a micro controller (MCU: Micro-Control Unit), and controls the operation of the electric circuit provided in the aerosol generation device 1.
  • the suction sensor 23 is an air pressure sensor, a flow sensor, or the like.
  • the suction sensor 23 When the user sucks from the suction port of the aerosol generating device 1, the suction sensor 23 outputs a value corresponding to the negative pressure and the flow rate of gas generated inside the aerosol generating device 1. That is, the control unit 22 can detect suction on the basis of the output value of the suction sensor 23.
  • the aerosol source holding unit 3 of the aerosol generation device 1 includes a storage unit 31, a supply unit 32, a load 33, and a remaining amount sensor 34.
  • the storage unit 31 is a container for storing a liquid aerosol source that is atomized by heating.
  • the aerosol source is, for example, a polyol-based material such as glycerin or propylene glycol.
  • the aerosol source may be a mixed liquid (also referred to as a “flavor source”) further containing a nicotine liquid, water, a flavor and the like. It is assumed that such an aerosol source is stored in advance in the storage section 31.
  • the aerosol source may be a solid that does not require the reservoir 31.
  • the feed section 32 includes a wick formed by twisting a fiber material such as glass fiber, for example.
  • the supply unit 32 is connected to the storage unit 31. Further, the supply unit 32 is connected to the load 33 or at least a part of the supply unit 32 is disposed in the vicinity of the load 33.
  • the aerosol source penetrates the wick by capillary action, and the heating by the load 33 moves the aerosol source to a portion where it can be atomized. In other words, the supply unit 32 sucks up the aerosol source from the storage unit 31 and carries it to the load 33 or in the vicinity thereof. In addition, it may replace with glass fiber and may use porous ceramic for a wick.
  • the load 33 is, for example, a coiled heater, and generates heat when a current flows. Also, for example, the load 33 has a positive temperature coefficient (PTC) characteristic, and its resistance value is approximately in direct proportion to the heat generation temperature. The load 33 does not have to have positive temperature coefficient characteristics, as long as there is a correlation between the resistance value and the heat generation temperature. As an example, the load 33 may have a negative temperature coefficient (NTC) characteristic.
  • NTC negative temperature coefficient
  • the load 33 may be wound around the outside of the wick, or conversely, the wick may cover the periphery of the load 33. Power supply to the load 33 is controlled by the control unit 22.
  • the control unit 22 supplies power to the load 33 to generate an aerosol.
  • the aerosol source in a sufficient amount is also supplied to the load 33, and the heat generated in the load 33 is transported to the aerosol source. Since the heat generated at the load 33 is used to heat and vaporize the aerosol source, the temperature of the load 33 almost never exceeds the previously designed predetermined temperature.
  • the supply amount of the aerosol source to the load 33 per hour decreases.
  • the heat generated by the load 33 is not transported to the aerosol source.
  • the load 33 is overheated. Also rise.
  • the remaining amount sensor 34 outputs sensing data for estimating the remaining amount of the aerosol source stored in the storage unit 31 based on the temperature of the load 33.
  • the remaining amount sensor 34 includes a resistor (shunt resistor) for current measurement connected in series with the load 33, and a measuring device connected in parallel with the resistor and measuring a voltage value of the resistor.
  • the resistor is a predetermined constant value whose resistance value hardly changes with temperature. Thus, based on the known resistance value and the measured voltage value, the current value flowing through the resistor is determined.
  • the Hall element may replace with the measuring device using the shunt resistance mentioned above, and may use the measuring device using a Hall element.
  • the Hall element is provided in series with the load 33. That is, around the conductive wire connected in series with the load 33, a gap core provided with a Hall element is arranged. Then, the Hall element detects the magnetic field generated by the current flowing therethrough.
  • the “current flowing through itself” is a current flowing through a conductor disposed at the center of the gap core and not in contact with the Hall element, and the current value is the same as the current flowing through the load 33 .
  • the remaining amount sensor 34 outputs the current value flowing to the resistor.
  • a value obtained by performing a predetermined operation on this may be used instead of the voltage value applied to both ends of the resistor, or the value of the current value or the voltage value itself.
  • the measurement value that can be used instead of the current value flowing to these resistors is a value whose value changes according to the current value flowing to the resistor. That is, the remaining amount sensor 34 may output a measured value corresponding to the value of the current flowing through the resistor.
  • using these measured values instead of the current value flowing to the resistor is included in the technical concept of the present invention.
  • the additive-component holding unit 4 of the aerosol generation device 1 holds a cut tobacco leaf and a flavor component 41 such as menthol inside.
  • the additive component holding unit 4 is provided with a vent in the suction port side and in a portion coupled to the aerosol source holding unit 3, and when the user sucks from the suction port, negative pressure is generated inside the additive component holding unit 4.
  • the aerosol generated in the holding unit 3 is aspirated, and components such as nicotine and flavor are added to the aerosol in the additional component holding unit 4 and released into the oral cavity of the user.
  • the internal configuration shown in FIG. 3 is an example.
  • the aerosol source holder 3 may be in the form of a torus provided along the side of a cylinder and having a cavity along the center of the circular cross section.
  • the supply unit 32 and the load 33 may be disposed in the central cavity.
  • an output unit such as a light emitting diode (LED) or a vibrator may be further provided.
  • LED light emitting diode
  • FIG. 4 is a circuit diagram showing an example of a portion related to detection of the remaining amount of the aerosol source and control of power supply to the load in the circuit configuration in the aerosol generation device.
  • the aerosol generation device 1 includes a power supply 21, a control unit 22, a voltage conversion unit 211, switches (switching elements) Q 1 and Q 2, a load 33, and a remaining amount sensor 34.
  • a portion including the switches Q1 and Q2 and the voltage conversion unit 211, which connects the power supply 21 and the load 33, is also referred to as a "feed circuit" according to the present invention.
  • the power supply 21 and the control unit 22 are provided in the main body 2 of FIGS.
  • the aerosol source holding unit 3 of FIGS. Provided in Further, by connecting the main body 2 and the aerosol source holder 3, the internal components are electrically connected, and a circuit as shown in FIG. 4 is formed. For example, at least a part of the voltage conversion unit 211, the switches Q1 and Q2, and the remaining amount sensor 34 may be provided in the main body 2.
  • the aerosol source holding unit 3 or the additive component holding unit 4 is configured as a disposable replacement part, the cost of the replacement part can be reduced as the number of components included in the disposable source replacement part decreases.
  • the power supply 21 is electrically connected directly or indirectly to each component to supply power to the circuit.
  • the control unit 22 is connected to the switches Q1 and Q2 and the remaining amount sensor 34. Further, the control unit 22 acquires the output value of the remaining amount sensor 34, calculates an estimated value of the aerosol source remaining in the storage unit 31, or based on the calculated estimated value, the output value of the suction sensor 23, etc. It controls the opening and closing of the switches Q1 and Q2.
  • the switches Q1 and Q2 are semiconductor switches such as MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) or the like. Further, one end of the switch Q 1 is connected to the power supply 21, and the other end is connected to the load 33. Then, by closing the switch Q1, the load 33 can be supplied with power to generate an aerosol. For example, when detecting a suction operation by the user, the control unit 22 closes the switch Q1.
  • route which passes switch Q1 and the load 33 shall also be called "aerosol production path
  • one end of the switch Q2 is connected to the power supply 21 via the voltage conversion unit 211, and the other end is connected to the load 33 via the remaining amount sensor 34. Then, the output value of the remaining amount sensor 34 can be obtained by closing the switch Q2.
  • the path that passes through the switch Q2, the remaining amount sensor 34, and the load 33 and the remaining amount sensor 34 outputs a predetermined measured value is the "remaining amount detection path" and the "second power feeding path" according to the present invention. I shall call.
  • the remaining amount sensor 34 does not need to be connected to the switch Q2 and the load 33, and provided so as to be able to output a predetermined measured value between the switch Q2 and the load 33. I hope there is. In other words, the wire connecting the switch Q2 and the load 33 may pass through the Hall element.
  • a second node 52 As described above, in the circuit illustrated in FIG. 4, the first node 51 that branches from the power supply 21 to the aerosol generation path and the remaining amount detection path, the aerosol generation path and the remaining amount detection path merge and are connected to the load 33. And a second node 52.
  • the voltage conversion unit 211 can convert the voltage output from the power supply 21 and output the converted voltage to the load 33. Specifically, it is a voltage regulator such as an LDO (Low Drop-Out) regulator shown in FIG. 4 and outputs a constant voltage. One end of the voltage conversion unit 211 is connected to the power supply 21, and the other end is connected to the switch Q2.
  • the voltage conversion unit 211 also includes a switch Q3, resistors R1 and R2, capacitors C1 and C2, a comparator Comp, and a constant voltage source that outputs a reference voltage V REF .
  • the output voltage Vout is obtained by the following equation (1).
  • V out R 2 / (R 1 + R 2 ) ⁇ V REF (1)
  • the switch Q3 is a semiconductor switch or the like, and is opened and closed according to the output of the comparator Comp. Further, one end of the switch Q3 is connected to the power supply 21, and the output voltage is changed by the opening / closing duty ratio of the switch Q3.
  • the output voltage of the switch Q3 is divided by the resistors R1 and R2 connected in series and applied to one input terminal of the comparator Comp. Further, the reference voltage V REF is applied to the other input terminal of the comparator Comp. Then, a signal indicating the comparison result of the reference voltage V REF and the output voltage of the switch Q3 is output.
  • the output voltage of the switch Q3 can be made constant by receiving feedback from the comparator Comp as long as the voltage value is equal to or greater than the predetermined value.
  • the comparator Comp and the switch Q3 are also referred to as a "voltage converter" according to the present invention.
  • One end of the capacitor C1 is connected to the end on the power supply 21 side in the voltage conversion unit 211, and the other end is connected to the ground.
  • the capacitor C1 stores power and protects the circuit from surge voltage.
  • One end of the capacitor C2 is connected to the output terminal of the switch Q3 to smooth the output voltage.
  • the voltage conversion unit 211 can supply a constant voltage even when the power supply voltage fluctuates to some extent.
  • Remaining amount sensor 34 includes a shunt resistor 341 and a voltmeter 342.
  • One end of the shunt resistor 341 is connected to the voltage conversion unit 211 via the switch Q2.
  • the other end of the shunt resistor 341 is connected to the load 33. That is, the shunt resistor 341 is connected in series to the load 33.
  • the voltmeter 342 is connected in parallel to the shunt resistor 341, and can measure the amount of voltage drop in the shunt resistor 341.
  • the voltmeter 342 is also connected to the control unit 22, and outputs the measured voltage drop amount in the shunt resistor 341 to the control unit 22.
  • FIG. 5 is a block diagram for explaining the process of estimating the amount of the aerosol source stored in the storage unit 31.
  • voltage Vout which the voltage conversion part 211 outputs shall be a constant.
  • the resistance value R shunt of the shunt resistor 341 is a known constant. Therefore, using the voltage V shunt across the shunt resistor 341, the current value I shunt flowing through the shunt resistor 341 can be obtained by the following equation (2).
  • I shunt V shunt / R shunt (2)
  • the current value I HTR flowing through the load 33 connected in series to the shunt resistor 341 is the same as I shunt .
  • the shunt resistor 341 is connected in series to the load 33, and a value corresponding to the value of the current flowing through the load is measured.
  • V out I shunt ⁇ (R shunt + R HTR ) (3)
  • R HTR V out / I shunt -R shunt (4)
  • the load 33 has a positive temperature coefficient (PTC) characteristic described above, the resistance value R HTR of the load 33 as shown in FIG. 5 is substantially proportional to the temperature T HTR load 33. Therefore, the temperature THTR of the load 33 can be calculated based on the resistance value RHTR of the load 33.
  • PTC positive temperature coefficient
  • information indicating the relationship between the resistance value RHTR of the load 33 and the temperature THTR is stored, for example, in a table in advance. Therefore, the temperature THTR of the load 33 can be estimated without using a dedicated temperature sensor. Even when the load 33 has a negative temperature coefficient characteristic (NTC), based on the resistance value R HTR and information indicating the relationship between the temperature T HTR, is possible to estimate the temperature T HTR load 33 it can.
  • NTC negative temperature coefficient characteristic
  • the load via the supply unit 32 33 the load via the supply unit 32 33
  • the aerosol source continues to be supplied. Therefore, if the remaining amount of the aerosol source in the storage unit 31 is equal to or more than a predetermined amount, the temperature of the load 33 does not generally increase significantly beyond the boiling point of the aerosol source. However, when the remaining amount of the aerosol source in the storage unit 31 decreases, the amount of the aerosol source supplied to the load 33 via the supply unit 32 also decreases accordingly, and the temperature of the load 33 exceeds the boiling point of the aerosol source Will rise further.
  • Such information indicating the relationship between the remaining amount of the aerosol source and the temperature of the load 33 is assumed to be known in advance by experiment or the like. Then, based on the information and the calculated temperature THTR of the load 33, the remaining amount Quantity of the aerosol source held by the storage unit 31 can be estimated. The remaining amount may be obtained as a ratio of the remaining amount to the capacity of the storage section 31.
  • the temperature of the load 33 is a temperature using the threshold of the temperature of the load 33 corresponding to the threshold of the predetermined remaining amount. It can be determined that the aerosol source of the reservoir 31 is depleted when the threshold of Furthermore, since there is a correspondence also between the resistance value of the load 33 and the temperature, the aerosol of the storage section 31 when the resistance value of the load 33 exceeds the threshold value of the resistance value corresponding to the above-described temperature threshold. It can also be judged that the source has been exhausted.
  • the threshold value of the current value corresponding to the threshold value of the above-described resistance value is also uniquely determined.
  • the current value I shunt flowing through the shunt resistor 341 is the same as the current value I HTR flowing through the load 33. Therefore, when the current value I HTR flowing through the load 33 indicates a value less than a predetermined current value threshold value, it can be determined that the aerosol source of the reservoir 31 has been depleted.
  • a measured value such as a current value to be supplied to the load 33, for example, a target value or target range in a state where the aerosol source sufficiently remains is determined, and the measured value belongs to a predetermined range including the target value or target range Therefore, it can be determined whether the remaining amount of the aerosol source is sufficient.
  • the predetermined range can be determined, for example, using the above-described threshold value.
  • the resistance value R shunt of the load 33 can be calculated using one measurement value of the value I shunt of the current flowing through the shunt resistor 341.
  • the current value I shunt of the shunt resistor 341 can be determined by measuring the voltage V shunt across the shunt resistor 341, as shown in equation (2).
  • measurement values output from the sensor include various errors such as an offset error, a gain error, a hysteresis error, and a linearity error.
  • the voltage conversion unit 211 that outputs a constant voltage, it is possible to estimate whether the remaining amount Quantity of the aerosol source held by the storage unit 31 or the aerosol source of the storage unit 31 has been depleted.
  • the variables to be assigned measurement values are one. Therefore, for example, the accuracy of the resistance value R shunt of the calculated load 33 is improved as compared to a method of calculating the resistance value or the like of the load by substituting the output values of different sensors into a plurality of variables. As a result, the remaining amount of the aerosol source estimated based on the resistance value R shunt of the load 33 also improves the accuracy.
  • FIG. 6 is a process flow diagram showing an example of the remaining amount estimation process.
  • FIG. 7 is a timing chart showing an example of a state in which the user uses the aerosol generating device.
  • the direction of the arrow indicates the passage of time t (s)
  • the graphs indicate the opening and closing of the switches Q1 and Q2, the value I HTR of the current flowing through the load 33, the calculated temperature T HTR of the load 33, and the aerosol It shows the change of the remaining quantity Quantity of the source.
  • the thresholds Thre1 and Thre2 are predetermined thresholds for detecting the depletion of the aerosol source.
  • the aerosol generation device 1 executes estimation of the remaining amount when the user uses the aerosol generation device 1, and performs predetermined processing when a decrease in the aerosol source is detected.
  • the control unit 22 of the aerosol generation device 1 determines whether the user has performed the suction operation based on the output of the suction sensor 23 (FIG. 6: S1). In this step, when the control unit 22 detects the generation of negative pressure, a change in flow rate, or the like based on the output of the suction sensor 23, it is determined that the suction of the user is detected. When the suction is not detected (S1: No), the process of S1 is repeated. The suction of the user may be detected by comparing the change in the negative pressure or the flow rate with a non-zero threshold value.
  • the control unit 22 performs pulse width control (PWM, Pulse Width Modulation) on the switch Q1 (FIG. 6: S2). For example, it is assumed that suction is detected at time t1 in FIG. After time t1, the control unit 22 opens and closes the switch Q1 at a predetermined cycle. Further, with the opening and closing of the switch Q1, a current flows through the load 33, and the temperature THTR of the load 33 rises to about the boiling point of the aerosol source. Also, the aerosol source is heated by the temperature of the load 33 and evaporates, and the remaining quantity Quantity of the aerosol source decreases.
  • PFM pulse frequency control
  • control unit 22 determines whether the user has finished the suction operation based on the output of the suction sensor 23 (FIG. 6: S3). In this step, the control unit 22 determines that the user has finished suction when generation of a negative pressure, a change in flow rate, or the like is not detected based on the output of the suction sensor 23. If the suction has not ended (S2: No), the control unit 22 repeats the process of S2. The end of suction by the user may be detected by comparing the change in negative pressure or flow rate with a non-zero threshold. Alternatively, when a predetermined time has elapsed since the user's suction was detected in step S1, the process may proceed to step S4, regardless of the determination in step S3.
  • the control unit 22 stops the PWM control of the switch Q1 (FIG. 6: S4).
  • the switch Q1 is in the open state (OFF), and the power supply to the load 33 is stopped.
  • the aerosol source is supplied to the load 33 from the storage unit 31 via the supply unit 32, and the temperature THTR of the load 33 gradually decreases due to heat radiation. Then, the evaporation of the aerosol source is stopped by the decrease of the temperature THTR of the load 33, and the decrease of the remaining quantity Quantity is also stopped.
  • the control unit 22 continuously closes the switch Q2 for a predetermined period (FIG. 6: S5).
  • a current flows in the remaining amount detection path shown in FIG. 4 in S5 to S10 surrounded by the dotted rounded rectangle in FIG.
  • the switch Q2 is in the closed state (ON).
  • a shunt resistor 341 is connected in series with the load 33. Therefore, since the shunt resistance 341 is added, the resistance value on the remaining amount detection path is larger than that on the aerosol generation path, and the current value I HTR flowing through the load 33 is lower.
  • the control unit 22 obtains a measured value from the remaining amount sensor 34, and detects a current value flowing through the shunt resistor 341 (FIG. 6: S6).
  • the current value I shunt of the shunt resistor 341 is calculated by the above-described equation (2).
  • the current value I shunt of the shunt resistor 341 is the same as the current value I HTR flowing through the load 33.
  • the control unit 22 determines whether the value of the current flowing through the load 33 indicates a value smaller than a predetermined current threshold (FIG. 6: S7). That is, the control unit 22 determines whether the measured value belongs to a predetermined range including the target value or the target range.
  • the threshold value of the current (FIG. 7: Thre1) is a value corresponding to the predetermined threshold value of the remaining amount of the aerosol source (FIG. 7: Thre2) which should be judged that the aerosol source of the reservoir 31 has been depleted. is there. That is, when the current value I HTR flowing through the load 33 indicates a value smaller than the threshold Thre1, it can be determined that the remaining amount of the aerosol source has become a value smaller than the threshold Thre2.
  • the control unit 22 detects depletion of the aerosol source and performs predetermined processing (FIG. 6: S8). If the voltage value measured in S6 and the current value obtained based on this are smaller than the predetermined threshold value, the remaining amount of the aerosol source is small, so the voltage value measured in S6 and the value obtained based thereon In this step, control is performed so that the current value to be reduced further decreases. For example, the control unit 22 stops the operation of the aerosol generation device 1 by, for example, stopping the operation of the switch Q1 or the switch Q2 or cutting off the power supply to the load 33 using a power fuse (not shown). You may
  • the current value I HTR is larger than the threshold value Thre1.
  • the control unit 22 opens the switch Q2 (FIG. 6: S9).
  • the switch Q2 is turned off since the predetermined period has elapsed and the current value I HTR is equal to or greater than the threshold value Thre1.
  • the predetermined period for closing switch Q2 (corresponding to time t3 to t4 in FIG. 7) is shorter than the period for closing switch Q1 in S2 to S4 (corresponding to time t1 to t2 in FIG. 7).
  • the switching duty ratio is adjusted in the opening / closing (S2) of the switch Q1 when suction is detected (S1: Yes)
  • the current value (measured value) calculated in S6 is controlled to converge to the target value or target range.
  • the measured value is better than the control of the feed circuit for causing the measured value to converge to the target value or the target range (also referred to as “first control mode” according to the present invention).
  • the amount of current flowing to the load 33 is reduced (also referred to as the “second control mode” according to the present invention) when the amount of current flowing to the load 33 does not belong to the predetermined range To be controlled.
  • the suction operation of the user is detected (FIG. 6: S1: Yes), and PWM control of the switch Q1 is started. Further, at time t6 in FIG. 7, it is determined that the user's suction operation is completed (FIG. 6: S3: Yes), and the PWM control of the switch Q1 is stopped. Then, at time t7 in FIG. 7, the switch Q2 is turned on (FIG. 6: S5), and the current value of the shunt resistor is calculated (FIG. 6: S6). Thereafter, as shown at time t7 after 7, the remaining amount of the aerosol source Quantity is less than the threshold thre2, the temperature T HTR load 33 is rising.
  • the control unit 22 detects that the current value I HTR indicates a value smaller than the threshold Thre2 (FIG. 6: S7: Yes).
  • the control unit 22 prevents the switch Q1 from being opened or closed even if the user's suction is detected after time t8, for example.
  • the switch Q2 is turned off (FIG. 6: S9).
  • the control unit 22 may turn off the switch Q2 at time t8 when the current value I HTR indicates a value smaller than the threshold value Thre2.
  • an error mixed in a variable used for control is reduced in estimating the remaining amount of the aerosol source or its depletion, for example, the aerosol source
  • the accuracy of control can be improved according to the remaining amount of
  • the control unit 22 continuously turns on the switch Q2 for a predetermined period to obtain the measurement value of the remaining amount sensor 34.
  • a period during which the switch Q2 is closed is referred to as a "power supply sequence" for supplying power to the remaining amount sensor 34 and the load 33.
  • a “determination period” for determining the remaining amount may be used. The determination period is, for example, included in the power supply sequence on the time axis, and its length is variable.
  • FIG. 8 is a diagram for explaining an example of how to determine the length of the determination period.
  • the horizontal axis indicates the passage of time t
  • the vertical axis indicates the current value I HTR flowing through the load 33.
  • the current value I HTR accompanying the opening and closing of the switch Q1 is omitted, and only the current value I HTR flowing through the load 33 is shown in the feeding sequence in which the switch Q2 is closed.
  • Period p1 of FIG. 8 is a power feeding sequence at a normal time, and the current value I HTR shown on the left is a schematic profile when the remaining amount of the aerosol source is sufficient.
  • the determination period is assumed to be the same as the feeding sequence (p1).
  • the temperature T HTR load 33 due to the energization is increased, the increase in the resistance value R HTR resistance load 33 of the load 33 due to this, although the current value I HTR gradually decreases, less than a threshold Thre1 Does not indicate a value. In such a case, the determination period is not changed.
  • the current value I HTR shown at the center represents an example in the case where the current value I HTR shows a value less than the threshold Thre1 in the determination period (p1).
  • a period p2 from the start of the power supply sequence to the time when the current value I HTR indicates a value smaller than the threshold Thre1 is taken as the length of the determination period included in the subsequent power supply sequence. That is, the determination period in the subsequent feeding sequence is adjusted based on the time when the current value I HTR in the previous feeding sequence indicates a value smaller than the threshold value Thre1. In other words, the determination period is set shorter as the aerosol source is more likely to be depleted.
  • the possibility of exhaustion of the aerosol source is the threshold (see the second aspect of the present invention. It may be determined that the threshold value is exceeded. In other words, it can be said that the determination period is shorter than the power supply sequence only when the possibility of depletion of the aerosol source is equal to or higher than the threshold.
  • the current value I HTR shown on the right represents an example in the case where the current value I HTR indicates a value less than the threshold Thre1 in the determination period (p2). While the aerosol generation device 1 is in use, the amount of the aerosol source held in the reservoir 31 is decreasing. Therefore, when the aerosol source is depleted, it can be generally said that the period from the start of power feeding to the time when the current value I HTR exhibits a value less than the threshold Thre1 becomes shorter. In the example of FIG. 8, when the case in which the current value I HTR is less than the threshold Thre1 in the determination period changed as described above occurs continuously in excess of the predetermined number in the repeated determination period, It shall be judged that the aerosol source has been depleted (ie, abnormal). When the aerosol source is depleted, power supply to the remaining amount detection circuit may be stopped as shown in FIG.
  • FIG. 9 is a diagram showing another example of the change of the current value flowing through the load. Changes in the left and center current values I HTR shown in FIG. 9 are the same as in FIG.
  • the current value I HTR shown on the right of FIG. 9 is the same as the profile when the remaining amount of the aerosol source is sufficient, and the current value I HTR does not indicate a value less than the threshold Thre1 within the determination period (p2) .
  • the supply of the aerosol source from the storage section 31 to the supply section 32 is performed by capillary action depending on the structure and the manner of suction by the user. Therefore, it is difficult to control this by the control unit 22 or the like.
  • the aerosol from the vicinity of the load 33 is temporarily more than normal.
  • the amount of source may be reduced.
  • the current value I HTR may indicate a value less than the threshold Thre1 in the determination period.
  • the current value I HTR does not show a value less than the threshold Thre1 within the determination period as shown on the right of FIG. Therefore, in the example of FIG. 9, since the case where the current value I HTR shows a value less than the threshold Thre1 in the determination period does not continuously exceed the predetermined number in the repeated determination period, the aerosol stored in the storage section 31 It is judged that the source is not depleted.
  • the determination period as described above, it is possible to further improve the accuracy of the determination as to whether or not the aerosol source has been depleted. That is, by changing the determination period, the reference in the determination operation can be adjusted, and the accuracy of the determination can be improved.
  • FIG. 10 is a process flow diagram showing an example of a process of setting a determination period.
  • the control unit 22 executes the determination process of FIG. 10 instead of the processes of S5 to S9 in the remaining amount estimation process shown in FIG.
  • control unit 22 of the aerosol generation device 1 turns on the switch Q2 (FIG. 10: S5). This step is the same as S5 of FIG.
  • control unit 22 starts a timer and starts counting the elapsed time t (FIG. 10: S11).
  • the control unit 22 determines whether the elapsed time t is equal to or longer than the determination period (FIG. 10: S12). If the elapsed time t is not longer than the determination period (S12: No), the control unit 22 counts the elapsed time (FIG. 10: S21). In this step, a difference ⁇ t in elapsed time from the timer activation or the previous processing of S21 is added to t.
  • control unit 22 detects a current value I HTR flowing through the load 33 (FIG. 10: S6).
  • the process of this step is the same as S6 of FIG.
  • the control unit 22 determines whether the calculated current value I HTR is smaller than a predetermined threshold value Thre1 (FIG. 10: S7). This step is similar to S7 of FIG. If the current value I HTR is greater than or equal to the threshold value Thre1 (S7: No), the process returns to S12.
  • the control unit 22 adds 1 to the counter for counting the number of determination periods in which the depletion is detected (FIG. 10: S22). ).
  • the control unit 22 determines whether the counter exceeds a predetermined value (threshold) (S23). When it is determined that the counter has exceeded the predetermined value (S23: Yes), the control unit 22 determines that the depletion of the aerosol source is detected, and performs a predetermined process (FIG. 10: S8). This step is the same as S8 in FIG.
  • the control unit 22 determines whether the power feeding sequence has ended (FIG. 10: S31). If the power supply sequence has not elapsed (S31: No), the control unit 22 updates the elapsed time t and returns to the process of S31.
  • the control unit 22 updates the determination period (FIG. 10: S32).
  • an elapsed time t at which it is determined that the current value I HTR is smaller than the threshold Thre1 in S7 is set as a new determination period. That is, based on the time in which the measured value indicates a value less than the threshold value in the previous feeding sequence, the determination period in the subsequent feeding sequence is adjusted. In other words, the length of the determination period in the later feed sequence is adjusted based on the measured values in the previous feed sequence. It can also be said that the length of the determination period in the future feed sequence is adjusted based on the measured values in the current feed sequence.
  • the control unit 22 determines whether the power supply sequence has ended (FIG. 10: S13). If the power supply sequence has not ended (S13: No), the control unit 22 continues the power supply until the power supply sequence ends.
  • the determination period has elapsed, and the state in which the power supply sequence has not elapsed is after the period p2 has elapsed and before the period p1 has elapsed in the period shown on the right of FIG.
  • control unit 22 sets the length of the determination period to be equal to the length of the power feeding sequence (FIG. 10: S14).
  • control unit 22 resets the counter (FIG. 10: S15). That is, in the determination period defined along with the power supply period, the current value I HTR does not indicate a value less than the threshold value Thre1, so the counter for counting the number of consecutive determination periods in which the exhaustion is detected is reset. ing. Alternatively, without resetting the counter, when the number of determination periods in which the exhaustion is detected exceeds a predetermined threshold, it may be determined as abnormal.
  • control unit 22 turns off the switch Q2 (FIG. 10: S9). This step is the same as S9 in FIG.
  • variable determination period shown in FIGS. 8 and 9 can be realized.
  • the control unit 22 causes the remaining amount detection path to function during a period in which the user does not suction the aerosol generation device 1, and estimates the remaining amount of the aerosol source.
  • the aerosol is released from the mouth during a period when the user is not inhaling. That is, the amount of evaporation of the aerosol source by the load 33 during the period in which the switch Q2 is closed is preferably as small as possible.
  • the control unit 22 can accurately detect the change of the remaining amount. That is, it is desirable that the measurement value of the remaining amount sensor 34 is increased in resolution as it largely changes according to the remaining amount of the aerosol source. Based on these viewpoints, the resistance value of the shunt resistor will be described below.
  • FIG. 11 is a diagram schematically illustrating energy consumed in the storage unit, the supply unit, and the load.
  • Q 1 is the calorific value of the wick of the supply unit 32
  • Q 2 is the calorific value of the coil of the load 33
  • Q 3 is the heat required for the temperature rise of the aerosol source of the liquid
  • Q 4 is the state change of the aerosol source from liquid to gas heat required to
  • Q 5 represents the heat generation of the air by radiation.
  • the energy Q consumed is the sum of Q 1 to Q 5 .
  • the heat capacity C (J / K) of the object is the product of the mass m (g) of the object and the specific heat c (J / g ⁇ K). Further, the heat quantity Q (J / K) for changing the temperature of the object by T (K) can be expressed as m ⁇ C ⁇ T. Therefore, the energy C consumed, when the temperature T HTR load 33 is lower than the boiling point T b of the aerosol source, can be represented schematically by the following equation (6).
  • m 1 is the mass of the wick of the supply unit 32
  • C 1 is the specific heat of the wick of the supply unit 32
  • m 2 is the mass of the coil of the load 33
  • C 2 is the specific heat of the coil of the load 33
  • m 3 is the liquid aerosol
  • the source mass C 3 is the specific heat of the liquid aerosol source
  • T 0 is the initial value of the load 33 temperature.
  • Q (m 1 C 1 + m 2 C 2 + m 3 C 3 ) (T HTR- T 0 ) (6)
  • the energy C consumed, when the temperature T HTR load 33 is not less than the boiling point T b of the aerosol source, can be expressed by the following equation (7).
  • m 4 is the mass of the evaporation source of the liquid aerosol source
  • H 4 is the heat of evaporation of the liquid aerosol source.
  • Q (m 1 C 1 + m 2 C 2 ) (T HTR- T 0 ) + m 3 C 3 (T b- T 0 ) + m 4 H 4 ... (7)
  • the threshold E thre needs to satisfy the condition as shown in the following equation (8).
  • E thre ⁇ (m 1 C 1 + m 2 C 2 + m 3 C 3 ) (T b- T 0 ) (8)
  • FIG. 12 is a graph schematically showing the relationship between energy (electric energy) consumed by the load 33 and the amount of aerosol generated.
  • the horizontal axis of FIG. 12 shows energy, and the vertical axis shows TPM (Total Particle Matter: amount of substance forming aerosol).
  • TPM Total Particle Matter: amount of substance forming aerosol.
  • the vertical axis in FIG. 12 may not necessarily be the amount of aerosol generated by the load 33.
  • it may be the amount of aerosol generated from evaporation of the aerosol source.
  • it may be the amount of aerosol emitted from the mouthpiece.
  • the energy E HTR consumed by the load 33 can be expressed by the following equation (9).
  • W HTR is the work rate of the load 33
  • t Q2_ON is the time (s) during which the switch Q2 is on.
  • the switch Q2 needs to be turned on only for a certain period of time to measure the current value of the shunt resistor.
  • E HTR W HTR ⁇ t Q2 _ON (9)
  • Equation (10) when the equation (9) is deformed using the current value I Q2 flowing through the remaining amount detection path, the resistance value R HTR (T HTR ) that changes according to the temperature T HTR of the load 33, and the measurement voltage V meas of the shunt resistance , Equation (10) below.
  • resistance value R shunt of shunt resistance is a value which satisfies a formula (12), since an aerosol will not be generated in the amount estimating process, it is desirable.
  • the resistance value of the shunt resistor is preferably as low as several tens of milliohms.
  • the lower limit of the resistance value of the shunt resistance as described above is determined from the viewpoint of suppressing the generation of the aerosol.
  • the lower limit value is preferably a value larger than the resistance value of the load 33, for example, about several ohms.
  • the adjustment resistance may be added in series with the shunt resistor in order to increase the overall resistance without increasing the resistance value of the shunt resistor. In this case, the voltage across the adjusting resistor to be added may not be measured.
  • FIG. 13 is an example of a graph showing the relationship between the remaining amount Quantity of aerosol and the resistance value of the load 33.
  • the horizontal axis indicates the remaining amount of the aerosol source
  • the vertical axis indicates the resistance value determined according to the temperature of the load 33.
  • R HTR T Depletion
  • R HTR T RT
  • the accuracy of estimation of the remaining amount of the aerosol source is improved by appropriately setting the measurement range of the voltage and current, and hence the resistance value and temperature of the load 33 with respect to the resolution of the control unit 22 including the number of bits. .
  • the difference ⁇ I Q2 _ON obtained by subtracting the current value I Q2 _ON (T Depletion ) from the current value I Q2 _ON (T RT ) can be expressed by the following equation (15).
  • the resistance value R shunt of the shunt resistor is determined such that the difference ⁇ I Q2 _ON becomes larger than the desired threshold value ⁇ I thre .
  • a difference ⁇ I Q2 _ON between the current value I Q2 _ON (T RT ) flowing through the load 33 at room temperature and the current value I Q2 _ON (T Depletion ) flowing through the load 33 when the aerosol source is depleted The resistance value R shunt was set so as to have a size that can be detected. Instead of this, for example, the difference between the current value flowing to the load 33 in the vicinity of the boiling point of the aerosol source and the current value flowing to the load 33 when the aerosol source is depleted is such that the control unit 22 can detect it.
  • the resistance value R shunt may be set to In general, the smaller the temperature difference corresponding to the current difference that can be detected by the control unit 22, the better the estimation accuracy for the remaining amount of the aerosol source.
  • the resolution Resolution of the control unit 22 can be expressed by the following equation (18).
  • control unit 22 can detect the value represented by the following equation (20) and its integral multiple as the voltage difference over the range of 0 to ⁇ V Q 2 _ON .
  • control unit 22 sets the value represented by the following equation (21) and the integer multiple thereof to the temperature of the load 33 in the case where the remaining amount of the aerosol source is exhausted from room temperature. It can be detected as temperature.
  • the control unit 22 depletes the remaining amount of the aerosol source, which is the temperature at the time of non-control by the control unit 22 and at the start of control.
  • the temperature of the case needs to be at least distinguishable. That is, it is necessary that the measurement value of the remaining amount sensor 34 at room temperature and the measured value of the remaining amount sensor 34 at the temperature when the remaining amount of the aerosol source is depleted have a significant difference that allows the control unit 22 to distinguish. is there.
  • the resolution for the temperature of the load 33 of the control unit 22 needs to be equal to or less than the difference between the temperature when the remaining amount of the aerosol source is depleted and the room temperature.
  • the control unit 22 can distinguish the boiling point of the aerosol source and the temperature when the remaining amount of the aerosol source is depleted. That is, the measurement value of the remaining amount sensor 34 at the boiling point of the aerosol source and the measurement value of the remaining amount sensor 34 at the temperature when the remaining amount of the aerosol source is depleted have a significant difference that allows the control unit 22 to distinguish. Is preferred. In other words, the resolution for the temperature of the load 33 of the control unit 22 is preferably equal to or less than the difference between the temperature when the remaining amount of the aerosol source is depleted and the boiling point of the aerosol source.
  • the control unit 22 does not Preferably, the boiling point of the aerosol source can be distinguished from room temperature, which is the temperature at control and start of control. That is, it is preferable that the measurement value of the remaining amount sensor 34 at room temperature and the measurement value of the remaining amount sensor at the boiling point of the aerosol source have a significant difference that allows the control unit 22 to distinguish.
  • the resolution for the temperature of the load 33 of the control unit 22 is preferably equal to or less than the difference between the boiling point of the aerosol source and the room temperature.
  • the resolution for the temperature of the load 33 of the control unit 22 is 10 ° C. or less. More preferably, the temperature is 5 ° C. or less. Still more preferably, the temperature is 1 ° C. or less. Also, if it is intended to accurately distinguish between when the remaining amount of the aerosol source is depleted and when the remaining amount of the aerosol source is actually depleted, the resolution for the temperature of the load 33 of the control unit 22 is the aerosol source Preferably, it is a divisor of the difference between the temperature and room temperature when the remaining amount of H is depleted.
  • the control unit 22 can detect the first condition in which the amount of aerosol generated by the load 33 becomes equal to or less than the predetermined threshold and the decrease in the remaining amount of the aerosol source based on the output value of the remaining amount sensor 34
  • the resistance value of the shunt resistor may be determined so as to satisfy at least one of the second condition, and it is more preferable if the resistance value satisfies both conditions. Further, it may be a value closer to the maximum value satisfying the second condition among the minimum value satisfying the first condition and the maximum value satisfying the second condition. In this way, the resolution of residual amount detection can be improved as much as possible while reducing the generation of aerosol during measurement. As a result, since the remaining amount of the aerosol source can be estimated not only with high accuracy but also in a short period, the generation of aerosol during measurement can be further reduced.
  • both the first condition and the second condition relate to the responsiveness of the change of the current value flowing to the load 33 which is the measured value of the remaining amount sensor 34 with respect to the change of the temperature of the load 33.
  • the load 33 is dominant in the combined resistance of the shunt resistor 341 and the load 33 connected in series. That is, since the resistance value R shunt of the shunt resistor is a small value, the second condition is easily satisfied, but the first condition is hardly satisfied.
  • the shunt resistance 341 is dominant in the combined resistance of the shunt resistor 341 and the load 33 connected in series. That is, since the resistance value R shunt of the shunt resistor is a large value, the first condition is easily satisfied, but the second condition is hardly satisfied.
  • the responsiveness of the change in the value of the current flowing through the load 33 to the change in the temperature of the load 33 needs to be equal to or less than the predetermined upper limit.
  • the responsiveness of the change in the value of the current flowing through the load 33 to the change in the temperature of the load 33 needs to be equal to or greater than a predetermined lower limit.
  • the responsiveness of the change of the current value flowing to the load 33 to the change of the temperature of the load 33 needs to belong to the range defined by the predetermined upper limit and lower limit There is.
  • FIG. 14 is a view showing a modified example of the circuit included in the aerosol generation device 1.
  • the remaining amount detection path doubles as an aerosol generation path. That is, the voltage conversion unit 211, the switch Q2, the remaining amount sensor 34, and the load 33 are connected in series. Then, the generation of the aerosol and the estimation of the remaining amount are performed in one path. Even with such a configuration, the remaining amount can be estimated.
  • FIG. 15 is a view showing another modification of the circuit included in the aerosol generation device 1.
  • a voltage conversion unit 212 which is a switching regulator is provided instead of the linear regulator.
  • the voltage conversion unit 212 is a boost converter, and includes an inductor L1, a diode D1, a switch Q4, and capacitors C1 and C2 that function as smoothing capacitors.
  • the voltage conversion unit 212 is provided before branching from the power supply 21 to the aerosol generation path and the remaining amount detection path. Therefore, when the control unit 22 controls the opening and closing of the switch Q4 of the voltage conversion unit 212, voltages of different magnitudes can be output to the aerosol generation path and the remaining amount detection path.
  • the switching regulator may be provided at the same position as the linear regulator in FIG.
  • the power loss when functioning the aerosol generation path with less restrictions on the applied voltage may be controlled to be smaller than the power loss in the case of causing the detection path to function. This can suppress waste of the storage amount of the power supply 21.
  • the control unit 22 controls the remaining amount detection path so that the current flowing through the load 33 is smaller than the aerosol generation path. This makes it possible to suppress the generation of the aerosol source in the load 33 while operating the remaining amount detection path to estimate the remaining amount of the aerosol source.
  • the switching regulator may be operated in the “direct connection mode” (also referred to as “direct connection state”) in which the switching of the low side switch Q4 is stopped and kept on. . That is, the duty ratio of the switch Q4 may be 100%. Losses caused by switching the switching regulator include conduction loss and transition loss and switching loss associated with switching. However, by operating the switching regulator in the direct connection mode, the loss in the switching regulator can be made to be only the conduction loss, so that the utilization efficiency of the storage amount of the power supply 21 is increased. In addition, the switching regulator may be operated in the direct connection mode only in part while the aerosol generation path is functioning.
  • the switching regulator when the storage amount of the power supply 21 is sufficient and the output voltage thereof is high, the switching regulator is operated in the direct connection mode. On the other hand, when the storage amount of the power supply 21 decreases and the output voltage thereof is low, switching of the switching regulator may be performed. Even with such a configuration, the remaining amount can be estimated, and the loss can be reduced more than when a linear regulator is used. Note that instead of the step-up type, a step-down or step-up / down converter may be used.
  • the subject to which the aerosol generating device heats up may be a flavor source of liquid including nicotine and other additive materials.
  • the user aspirates the generated aerosol without passing through the added component holding unit. Even when such a flavor source is used, the remaining amount can be accurately estimated by the above-described aerosol generating device.
  • control unit 22 controls not to turn on the switches Q1 and Q2 simultaneously. That is, control is performed so that the aerosol generation path and the remaining amount detection path do not function at the same time. Furthermore, when switching the open / close state of the switches Q1 and Q2, a dead time may be provided in which both are turned off. In this way, current flow in the two paths can be suppressed. On the other hand, it is preferable that the dead time be short so as not to lower the temperature of the load 33 as much as possible in the dead time.
  • the remaining amount estimation process is performed once for one puff performed by the user.
  • one remaining amount estimation process may be alternately performed on a plurality of puffs instead of one.
  • the remaining amount estimation process may be started after a predetermined number of puffs. That is, the frequency of energization may be smaller in the remaining amount detection path than in the aerosol generation path. In this way, excessive residual amount estimation processing is suppressed and executed only at appropriate timing, so that the utilization efficiency of the storage amount of the power supply 21 is improved.
  • Aerosol generation device 2 Main body 21: Power supply 211: Power supply circuit 212: Power supply circuit 22: Control unit 23: Suction sensor 3: Aerosol source holding unit 31: Reservoir 32: Supply unit 33: Load 34: Remaining amount sensor 341 Shunt resistance 342: voltmeter 4: additive component holder 41: flavor component 51: first node 52: second node

Abstract

エアロゾル生成装置は、電源と、温度に応じて電気抵抗値が変化し、電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、負荷へ流れる電流値に応じた測定値を出力するセンサと、電源から負荷への給電を制御し、電源から負荷への給電を行う給電シーケンスに時間軸において内包される判定期間内に、測定値が閾値未満の値を示した場合に、異常と判定する判定動作を行う制御部とを含み、制御部は、測定値に基づき判定期間の長さを調整する。

Description

エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム
 本発明は、エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラムに関する。
 いわゆる電子シガレットやネブライザー(吸入器)のように、エアロゾル源となる液体又は固体を、ヒータやアクチュエータなどの電源からの給電により動作する負荷によって霧化(エアロゾル化)し、使用者に吸引させるエアロゾル生成装置(電子気化装置)が知られている。
 例えば、電子気化装置において吸入可能な蒸気を生成するシステムが提案されている(例えば、特許文献1)。本技術では、エアロゾル源を霧化するヒータに相当するコイルへの電力を監視することにより気化が生じているかどうかを判断する。コイルを調整温度に保持するために必要な電力が低下する場合、通常の気化を生じさせるための流体芯に十分な液体が無いことを示すとされている。
 また、エアロゾル源を内包する又はエアロゾル源に相当するエアロゾル形成基材を加熱するように構成された加熱要素の温度を、目標温度に維持するために必要な、加熱要素に供給される電力又はエネルギを閾値と比較することで、過熱要素に近接するエアロゾル形成基材の存在を検出するエアロゾル発生装置が提案されている(例えば、特許文献2)。
特表2017-501805号公報 特表2015-507476号公報 特表2005-525131号公報 特表2011-515093号公報 特表2013-509160号公報 特表2015-531600号公報 特表2014-501105号公報 特表2014-501106号公報 特表2014-501107号公報 国際公開第2017/021550号 特開2000-041654号公報 特開平3-232481号公報 国際公開第2012/027350号 国際公開第1996/039879号 国際公開第2017/021550号
 一般的なエアロゾル生成装置においてエアロゾルを生成する際は、ヒータの温度がエアロゾル源の沸点近傍になるように、電源からヒータへの給電を制御する。エアロゾル源の残量が充分に残っており且つエアロゾル生成量を制御している場合には、この電源からヒータへ給電される電力は一定値又は連続的な変化を示す。換言すれば、エアロゾル源の残量が充分に残っており、且つヒータ温度が目標温度又は目標温度域に維持させるようなフィードバック制御を行っている場合には、この電源からヒータへ給電される電力は一定値又は連続的な変化を示す。
 エアロゾル源の残量は、エアロゾル生成装置の様々な制御に用いる重要な変数である。一例として、エアロゾル源の残量を検出しない、又は十分な精度で検出できない場合、既にエアロゾル源が枯渇しているにも関わらず、電源からヒータへの給電が継続され、電源の蓄電量を浪費してしまう虞がある。
 そこで、特許文献2において提案されたエアロゾル発生装置では、このヒータの温度を維持するための電力に基づいて、エアロゾル源が十分に存在するかを判断する。しかしながら、電力の計測にあたっては、複数のセンサが用いられることが一般的であり、これらのセンサの誤差を正確に較正するか、誤差を考慮した制御を構築しない限り、計測された電力に基づいて、エアロゾル源の残量又はその枯渇を正確に推定することは困難であった。
 エアロゾル源の残量を検知する別手法としては、ヒータの温度や、特許文献3,4におけるヒータの電気抵抗値を用いたものが提案されている。これらはエアロゾル源の残量が充分に残っている場合と、枯渇している場合とで異なる値を示すことが知られている。しかし、いずれも専用のセンサや複数のセンサを必要とするものであるため、同様にエアロゾル源の残量又はその枯渇を正確に推定することは困難であった。
 そこで、本発明は、エアロゾル源の残量又はその枯渇の推定の精度を向上させたエアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラムを提供することを目的とする。
 本発明に係るエアロゾル生成装置は、電源と、温度に応じて電気抵抗値が変化し、電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、負荷へ流れる電流値に応じた測定値を出力するセンサと、電源から負荷への給電を制御し、電源から負荷への給電を行う給電シーケンスに時間軸において内包される判定期間内に、測定値が閾値未満の値を示した場合に、異常と判定する判定動作を行う制御部とを含み、制御部は、測定値に基づき判定期間の長さを調整する。
 このようにすれば、測定値に基づき判定期間を変更することにより、判定動作における基準を調整することができ、常に一定の基準を用いる場合と比べて判定の精度を向上させ得る。すなわち、例えば、エアロゾル生成装置が推定するエアロゾル源の残量の精度を向上させることができる。
 また、給電シーケンスは複数回行われ、制御部は、前の給電シーケンス(以下、先行給電シーケンス)における測定値に基づき、時間軸において先行給電シーケンスより後の給電シーケンス(以下、後行給電シーケンス)における判定期間の長さを調整するようにしてもよい。このようにすれば、1回の測定値だけでなく、複数の測定値の時系列的な変化に基づいて判定期間を変更させることができる。従って、エアロゾル生成装置の状態を推定した判定期間を用いるため、判定の精度を向上させ得る。
 また、制御部は、先行給電シーケンスにおける、測定値が閾値未満となった時間に基づき、後行給電シーケンスにおける判定期間を調整するようにしてもよい。例えばこのように、前回の給電期間における測定値の変化に基づいて今回の判定期間を調整したり、今回の給電期間における測定値の変化に基づいて次回の判定期間を調整したりする。
 また、制御部は、先行給電シーケンスにおける測定値が閾値未満となった時間と電源から負荷への給電を継続した時間との短い方に基づき、後行給電シーケンスにおける判定期間を調整するようにしてもよい。
 また、制御部は、測定値が閾値未満となった判定期間の数が既定数を超えた場合に、電源から負荷への給電を停止するようにしてもよい。また、前記制御部は、判定期間内に前記測定値が前記閾値未満となった給電シーケンスの数が既定数を超えない場合に、前記電源から前記負荷への給電を継続するようにしてもよい。また、制御部は、連続する既定数以上の判定期間内に測定値が閾値未満となった場合に、電源から負荷への給電を停止するようにしてもよい。また、制御部は、連続する既定数未満の判定期間内に測定値が閾値未満となった場合に、電源から前記負荷への給電を継続するようにしてもよい。既定数の設定により、既定数を設定しなかった場合と比べて誤判定を低減することができるようになる。
 また、電源と負荷とを電気的に接続する給電回路を含み、給電回路は、並列に接続される第1給電路と第2給電路とを備え、制御部は、第1給電路と第2給電路の一方を選択的に機能させ、電源から負荷へ給電される電力が、第1給電路を機能させている場合よりも小さくなるよう第2給電路を制御すると共に、第2給電路を機能させている間に判定動作を実行させるようにしてもよい。このようにすれば、制御部によって、第1給電路によるエアロゾル生成においては電力損失を低減させ、第2給電路による判定動作においては、電源からの電圧低下の影響を低減させることができる。従って、第1給電路と第2給電路の役割を兼ねる単一の給電路のみを備えた場合と比べて、電源の蓄えた電力量の利用効率が向上する。
 また、電源と負荷とを電気的に接続する給電回路を含み、給電回路は並列に接続される第1給電路と第2給電路とを備え、第2給電路は、第1給電路より小さな電流が流れるように構成され、制御部は、第1給電路と第2給電路の一方を選択的に機能させると共に、第2給電路を機能させている間に、判定動作を行うようにしてもよい。このような構成によって、第1給電路によるエアロゾル生成においては電力損失を低減させ、第2給電路による判定動作においては、電源からの電圧低下の影響を低減させるようにしてもよい。従って、第1給電路と第2給電路の役割を兼ねる単一の給電路のみを備えた場合と比べて、電源の蓄えた電力量の利用効率が向上する。
 また、自装置の端部に設けられ、且つエアロゾルを放出する吸口端を含み、制御部は、第2給電路を機能させている間は、吸口端からエアロゾルが放出されないように、第2給電路を制御するようにしてもよい。また、制御部は、第1給電路と第2給電路のうち第1給電路を機能させている場合のみ、負荷がエアロゾルを生成するように給電回路を制御するようにしてもよい。このように、判定動作においてエアロゾルの生成を低減させるようにしてもよい。
 また、制御部は、第1給電路を機能させた後に、第2給電路を機能させるようにしてもよい。このようにすれば、エアロゾルの生成直後というエアロゾル源が枯渇し易い状態において判定を行うことができ、判定の精度を簡便に向上させることができる。
 また、他の側面に係るエアロゾル生成装置は、電源と、温度に応じて電気抵抗値が変化し、電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、負荷へ流れる電流値に応じた測定値を出力するセンサと、センサが測定値を出力可能な態様で電源から負荷へ給電を行う給電シーケンスと、判定期間内に測定値が第1閾値未満の値を示した場合に異常判定を実行可能な制御部とを含み、判定期間は、給電シーケンスよりも短い。また、制御部は、測定値に基づき推定したエアロゾル源又は香味源が枯渇する可能性が、第2閾値以上の場合のみ、判定期間を給電シーケンスより短くするようにしてもよい。
 このように判定期間を短く設定することにより判定動作における基準を調整することができ、基準を調整しなかった場合と比べて判定の精度を向上させ得る。すなわち、例えば、エアロゾル生成装置が推定するエアロゾル源の残量の精度を向上させることができる。
 また、他の側面に係るエアロゾル生成装置は、電源と、温度に応じて電気抵抗値が変化し、電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、負荷へ流れる電流値に応じた測定値を出力するセンサと、電源から負荷への給電を行う給電シーケンスを複数回制御する制御部とを含み、制御部は、前の給電シーケンスにおける測定値に基づき、時間軸において前の給電シーケンスより後の給電シーケンスの長さを決定するようにしてもよい。
 このように前の給電シーケンスにおける測定値に基づき、後の判定期間の長さを変更することにより、複数の期間における測定値の変化に基づいて判定することができると共に、判定動作における基準を調整することができ、判定の精度を向上させ得る。すなわち、エアロゾル生成装置が推定するエアロゾル源の残量の精度を向上させることができる。
 また、他の側面に係るエアロゾル生成装置は、電源と、温度に応じて電気抵抗値が変化し、電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、エアロゾル源又は香味源の残量に影響される測定値を出力するセンサと、電源から負荷への給電を制御し、電源から負荷への給電を行う給電シーケンスに時間軸において内包される判定期間内に、測定値が閾値未満の値を示した場合、異常と判定する判定動作を行う制御部とを含み、制御部は、測定値に基づき推定される、エアロゾル源又は香味源が枯渇する可能性が高いほど、判定期間を短く設定するようにしてもよい。
 このようにすれば、エアロゾル源又は香味源が枯渇する可能性に基づいて判定期間の長さを適切に設定することができ、判定の精度を向上させ得る。すなわち、エアロゾル生成装置が推定するエアロゾル源の残量の精度を向上させることができる。
 また、他の側面に係るエアロゾル生成装置は、電源と温度に応じて電気抵抗値が変化し、電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、負荷へ流れる電流値に応じた測定値を出力するセンサと、電源から負荷への給電を行う給電シーケンスを複数回制御する制御部とを含み、制御部は、今回の給電シーケンスにおける測定値に基づき、時間軸において今回より後の給電シーケンスの長さを決定するようにしてもよい。
 このように、過去の給電シーケンスにおける測定値に基づき今回の給電シーケンスの長さを決定するほか、今回の給電シーケンスにおける測定値に基づき次回以降の給電シーケンスの長さを決定するようにしてもよい。
 なお、課題を解決するための手段に記載の内容は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。また、課題を解決するための手段の内容は、コンピュータ、プロセッサ又は電気回路等を含む装置若しくは複数の装置を含むシステム、装置が実行する方法、又は装置に実行させるプログラムとして提供することができる。該プログラムはネットワーク上で実行されるようにすることも可能である。また、当該プログラムを保持する記録媒体を提供するようにしてもよい。
 本発明によれば、エアロゾル源の残量又はその枯渇の推定の精度を向上させたエアロゾル生成装置、エアロゾル生成装置の制御方法、エアロゾル源又は香味源の残量の推定方法、及びこれらの方法をプロセッサに実行させるためのプログラムを提供することができる。
図1は、エアロゾル生成装置の外観の一例を示す斜視図である。 図2は、エアロゾル生成装置の一例を示す分解図である。 図3は、エアロゾル生成装置の内部構造の一例を示す概略図である。 図4は、エアロゾル生成装置の回路構成の一例を示す回路図である。 図5は、貯留部に貯留されているエアロゾル源の量を推定する処理を説明するためのブロック図である。 図6は、残量推定処理の一例を示す処理フロー図である。 図7は、使用者がエアロゾル生成装置を使用する状態の一例を示すタイミングチャートである。 図8は、判定期間の長さの決め方の一例を説明するための図である。 図9は、負荷を流れる電流値の変化の他の例を示す図である。 図10は、判定期間の設定を行う処理の一例を示す処理フロー図である。 図11は、貯留部、供給部及び負荷において消費されるエネルギーを模式的に表す図である。 図12は、負荷において消費されるエネルギーと生成されるエアロゾル量との関係を模式的に示すグラフである。 図13は、エアロゾルの残量と、負荷の抵抗値との関係を示すグラフの一例である。 図14は、エアロゾル生成装置が備える回路の変形例を示す図である。 図15は、エアロゾル生成装置が備える回路の他の変形例を示す図である。
 本発明に係るエアロゾル生成装置の実施形態について、図面に基づいて説明する。本実施形態に記載されている構成要素の寸法、材質、形状、それらの相対的な配置等は一例である。また、処理の順序も一例であり、本発明の課題や技術的思想を逸脱しない範囲で可能な限り入れ替えたり並列に実行したりすることができる。したがって、特に限定的な説明がない限り、発明の技術的範囲は以下の例のみには限定されない。
<実施形態>
 図1は、エアロゾル生成装置の外観の一例を示す斜視図である。図2は、エアロゾル生成装置の一例を示す分解図である。エアロゾル生成装置1は、電子シガレットやネブライザー等であり、使用者の吸引に応じてエアロゾルを生成し、使用者に提供する。なお、使用者が行う1回の連続した吸引を「パフ」と呼ぶものとする。また、本実施形態では、エアロゾル生成装置1は、生成したエアロゾルに対し、香味等の成分を添加して使用者の口腔内に放出する。
 図1及び図2に示すように、エアロゾル生成装置1は、本体2と、エアロゾル源保持部3と、添加成分保持部4とを備える。本体2は、電力を供給すると共に装置全体の動作を制御する。エアロゾル源保持部3は、霧化させてエアロゾルを生成するためのエアロゾル源を保持する。添加成分保持部4は、香味やニコチン等の成分を保持する。使用者は、添加成分保持部4側の端部である吸口を咥え、香味等が添加されたエアロゾルを吸引することができる。
 エアロゾル生成装置1は、本体2、エアロゾル源保持部3及び添加成分保持部4を、使用者等が組み立てることによって形成される。本実施形態では、本体2、エアロゾル源保持部3及び添加成分保持部4は、それぞれ径が所定の大きさである円柱状、円錐台状等であり、本体2、エアロゾル源保持部3、添加成分保持部4の順に結合させることができる。本体2とエアロゾル源保持部3とは、例えば、それぞれの端部に設けられた雄ねじ部分と雌ねじ部分とが螺合することにより結合される。また、エアロゾル源保持部3と添加成分保持部4とは、例えば、エアロゾル源保持部3の一端に設けられた筒状の部分に、側面にテーパが付けられた添加成分保持部4を嵌め込むことにより結合される。また、エアロゾル源保持部3及び添加成分保持部4は、使い捨ての交換部品であってもよい。
<内部構成>
 図3は、エアロゾル生成装置1の内部の一例を示す概略図である。本体2は、電源21と、制御部22と、吸引センサ23とを備える。制御部22は、電源21及び吸引センサ23とそれぞれ電気的に接続されている。電源21は、二次電池等であり、エアロゾル生成装置1が備える電気回路に電力を供給する。制御部22は、マイクロコントローラ(MCU:Micro-Control Unit)等のプロセッサであり、エアロゾル生成装置1が備える電気回路の動作を制御する。また、吸引センサ23は、気圧センサや流量センサ等である。使用者がエアロゾル生成装置1の吸口から吸引すると、吸引センサ23は、エアロゾル生成装置1の内部に生じる負圧や気体の流量に応じた値を出力する。すなわち、制御部22は、吸引センサ23の出力値に基づいて吸引を検知することができる。
 エアロゾル生成装置1のエアロゾル源保持部3は、貯留部31と、供給部32と、負荷33と、残量センサ34とを備える。貯留部31は、加熱により霧化する液体状のエアロゾル源を貯留する容器である。なお、エアロゾル源は、例えばグリセリンやプロピレングリコールのような、ポリオール系の材料である。なお、エアロゾル源は、さらにニコチン液、水、香料等を含む混合液(「香味源」とも呼ぶ)であってもよい。貯留部31には、このようなエアロゾル源が予め貯留されているものとする。なお、エアロゾル源は貯留部31を必要としない固体であってもよい。
 供給部32は、例えばガラス繊維のような繊維材料を撚って形成されるウィックを含む。供給部32は、貯留部31と接続される。また、供給部32は負荷33と接続され、又は供給部32の少なくとも一部が負荷33の近傍に配置される。エアロゾル源は毛細管現象によりウィックに浸透し、負荷33による加熱によってエアロゾル源を霧化できる部分まで移動する。換言すれば、供給部32は、貯留部31からエアロゾル源を吸い上げ、負荷33又はその近傍へ運ぶ。なお、ガラス繊維に代えて多孔質状のセラミックをウィックに用いてもよい。
 負荷33は、例えばコイル状のヒータであり、電流が流れることで発熱する。また、例えば負荷33は正温度係数(PTC:Positive Temperature Coefficient)特性を有し、その抵抗値が発熱温度にほぼ正比例する。なお、負荷33は必ずしも正温度係数特性を有している必要はなく、その抵抗値と発熱温度に相関があるものであればよい。一例として、負荷33は負温度係数(NTC:Negative Temperature Coefficient)特性を有していてもよい。なお、負荷33はウィックの外部に巻かれていてもよいし、逆に負荷33の周囲をウィックが覆うような構成であってもよい。負荷33への給電は、制御部22によって制御される。供給部32によって貯留部31から負荷33へエアロゾル源が供給されると、負荷33の熱によりエアロゾル源が蒸発し、エアロゾルが生成される。また、制御部22は、吸引センサ23の出力値に基づいて使用者による吸引動作が検知された場合に、負荷33への給電を行い、エアロゾルを生成させる。また、貯留部31に貯留されたエアロゾル源の残量が十分である場合、負荷33へも十分な量のエアロゾル源が供給され、負荷33における発熱はエアロゾル源に輸送されるため、換言すれば負荷33における発熱はエアロゾル源の昇温及び気化に用いられるため、負荷33の温度は予め設計された所定の温度を超えることはほぼない。一方、貯留部31に貯留されたエアロゾル源が枯渇すると、負荷33へのエアロゾル源の時間当たりの供給量が低下する。その結果、負荷33における発熱はエアロゾル源に輸送されないため、換言すれば負荷33における発熱はエアロゾル源の昇温及び気化に用いられないため、負荷33が過熱し、これに伴い負荷33の抵抗値も上昇する。
 残量センサ34は、負荷33の温度に基づいて貯留部31に貯留されたエアロゾル源の残量を推定するためのセンシングデータを出力する。例えば、残量センサ34は、負荷33と直列に接続された電流測定用の抵抗器(シャント抵抗)と、抵抗器と並列に接続され、抵抗器の電圧値を測定する測定装置とを含む。なお、抵抗器は、その抵抗値が温度によってほぼ変化しない予め定められた一定の値である。よって、既知の抵抗値と測定された電圧値に基づいて、抵抗器に流れる電流値が求められる。
 なお、上述したシャント抵抗を用いた測定装置に代えて、ホール素子を用いた測定装置を用いてもよい。ホール素子は、負荷33と直列の位置に設けられる。すなわち、負荷33と直列に接続された導線の周囲に、ホール素子を備えるギャップコアが配置される。そして、ホール素子は、自身を貫流する電流によって発生する磁界を検出する。ホール素子を用いる場合、「自身を貫流する電流」とは、ギャップコアの中央に配置され、ホール素子とは接しない導線を流れる電流であり、その電流値は負荷33を流れる電流と同じになる。また、本実施形態において残量センサ34は、抵抗器に流れる電流値を出力した。これに代えて、抵抗器の両端に掛かる電圧値や、電流値や電圧値そのものの値ではなく、これに所定の演算を施した値を用いてもよい。これら抵抗器に流れる電流値に代えて用いることができる測定値は、抵抗器に流れる電流値に応じてその値が変わる値である。すなわち、残量センサ34は、抵抗器に流れる電流値に応じた測定値を出力すればよい。抵抗器に流れる電流値に代えてこれらの測定値を用いても、本発明の技術的思想に包含されることはもちろんである。
 エアロゾル生成装置1の添加成分保持部4は、内部にたばこの葉の刻や、メンソール等の香味成分41を保持する。また、添加成分保持部4は、吸口側及びエアロゾル源保持部3と結合される部分に通気孔を備え、使用者が吸口から吸引すると添加成分保持部4の内部に負圧が生じ、エアロゾル源保持部3において発生したエアロゾルが吸引されると共に、添加成分保持部4の内部においてニコチンや香味等の成分がエアロゾルに添加され、使用者の口腔内に放出される。
 なお、図3に示した内部構成は一例である。エアロゾル源保持部3は、円柱の側面に沿って設けられ円形の断面の中央に沿って空洞を有するトーラス状であってもよい。この場合、中央の空洞に供給部32や負荷33が配置されるようにしてもよい。また、使用者に対し装置の状態を出力するために、LED(Light Emitting Diode)やバイブレータ等の出力部をさらに備えていてもよい。
<回路構成>
 図4は、エアロゾル生成装置内の回路構成のうち、エアロゾル源の残量の検知、及び負荷への給電の制御に関わる部分の一例を示す回路図である。エアロゾル生成装置1は、電源21と、制御部22と、電圧変換部211と、スイッチ(スイッチング素子)Q1及びQ2と、負荷33と、残量センサ34とを備える。電源21と負荷33とを接続する、スイッチQ1及びQ2並びに電圧変換部211を含む部分を、本発明に係る「給電回路」とも呼ぶ。例えば、電源21及び制御部22は、図1~3の本体2に設けられ、電圧変換部211、スイッチQ1及び22、負荷33並びに残量センサ34は、図1~3のエアロゾル源保持部3に設けられる。また、本体2とエアロゾル源保持部3とを結合することにより、内部の構成要素が電気的に接続され、図4に示すような回路が形成される。なお、例えば電圧変換部211やスイッチQ1及びQ2、残量センサ34の少なくとも一部を本体2に設けるようにしてもよい。エアロゾル源保持部3や添加成分保持部4を使い捨ての交換部品として構成した場合、これらに含まれる構成品が少なければ少ないほど、交換部品のコストを下げられる。
 電源21は、各構成要素と直接的又は間接的に電気接続され、回路に電力を供給する。制御部22は、スイッチQ1及びQ2、残量センサ34と接続される。また、制御部22は、残量センサ34の出力値を取得し、貯留部31に残っているエアロゾル源の推定値を算出したり、算出した推定値や吸引センサ23の出力値等に基づいてスイッチQ1及びQ2の開閉を制御したりする。
 スイッチQ1及びQ2は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)のような半導体スイッチ等である。また、スイッチQ1は、一端が電源21と接続され、他端が負荷33と接続されている。そして、スイッチQ1を閉じることにより、負荷33に給電し、エアロゾルを生成させることができる。例えば、制御部22は、使用者による吸引動作を検知した場合に、スイッチQ1を閉じる。なお、スイッチQ1及び負荷33を通過する経路を「エアロゾル生成経路」及び「第1給電路」とも呼ぶものとする。
 また、スイッチQ2は、一端が電圧変換部211を介して電源21と接続され、他端が残量センサ34を経由して負荷33と接続されている。そして、スイッチQ2を閉じることにより、残量センサ34の出力値を得ることができる。なお、スイッチQ2、残量センサ34、及び負荷33を通過し、残量センサ34が所定の測定値を出力する経路を、「残量検出経路」及び本発明に係る「第2給電路」とも呼ぶものとする。なお、残量センサ34にホール素子を用いる場合は、残量センサ34はスイッチQ2及び負荷33に接続する必要は無く、スイッチQ2と負荷33の間における所定の測定値を出力できるように設けてあればよい。換言すれば、ホール素子内をスイッチQ2と負荷33を結ぶ導線が通るように構成すればよい。
 このように、図4に示す回路は、電源21からエアロゾル生成経路と残量検出経路とに分岐する第1ノード51と、エアロゾル生成経路と残量検出経路とが合流し、負荷33に接続される第2ノード52とを備えている。
 電圧変換部211は、電源21の出力する電圧を変換して負荷33へ出力することができる。具体的には、図4に示すLDO(Low Drop-Out)レギュレータ等のような電圧レギュレータであり、一定の電圧を出力する。電圧変換部211は、一端が電源21と接続され、他端はスイッチQ2と接続されている。また、電圧変換部211は、スイッチQ3と、抵抗器R1及びR2と、キャパシタC1及びC2と、コンパレータCompと基準電圧VREFを出力する定電圧源を含む。なお、図4に示すLDOレギュレータを用いる場合、その出力電圧Voutは以下の式(1)で求められる。
out=R2/(R1+R2)×VREF   ・・・(1)
 スイッチQ3は、半導体スイッチ等であり、コンパレータCompの出力に応じて開閉される。また、スイッチQ3の一端は電源21と接続され、スイッチQ3の開閉のデューティ比によって出力電圧が変更される。スイッチQ3の出力電圧は、直列に接続された抵抗器R1及びR2によって分圧され、コンパレータCompの一方の入力端子に印加される。また、コンパレータCompの他方の入力端子には、基準電圧VREFが印加される。そして、基準電圧VREFとスイッチQ3の出力電圧との比較結果を示す信号が出力される。このように、スイッチQ3へ印加される電圧値が変動しても、所定値以上であれば、コンパレータCompからのフィードバックを受けて、スイッチQ3の出力電圧を一定にすることができる。コンパレータComp及びスイッチQ3を、本発明に係る「電圧変換部」とも呼ぶ。
 なお、キャパシタC1は、その一端が、電圧変換部211内における電源21側の端部に接続され、他端はグラウンドに接続されている。キャパシタC1は電力を蓄積するとともに、サージ電圧から回路を保護する。キャパシタC2は、その一端がスイッチQ3の出力端子に接続されており、出力電圧を平滑化する。
 二次電池のような電源を利用する場合、充電率の低下に伴い電源電圧も低下する。本実施形態に係る電圧変換部211によれば、電源電圧がある程度変動する場合であっても、定電圧を供給することができる。
 残量センサ34は、シャント抵抗341と、電圧計342とを含む。シャント抵抗341の一端は、スイッチQ2を介して電圧変換部211に接続されている。また、シャント抵抗341の他端は、負荷33に接続されている。すなわち、シャント抵抗341は、負荷33と直列に接続されている。また、電圧計342は、シャント抵抗341と並列に接続されており、シャント抵抗341における電圧降下量を測定することができる。また、電圧計342は、制御部22とも接続されており、測定したシャント抵抗341における電圧降下量を制御部22へ出力する。
<残量推定処理>
 図5は、貯留部31に貯留されているエアロゾル源の量を推定する処理を説明するためのブロック図である。なお、電圧変換部211が出力する電圧Voutは、定数であるものとする。また、シャント抵抗341の抵抗値Rshuntは既知の定数である。よって、シャント抵抗341の両端電圧Vshuntを用いて、シャント抵抗341に流れる電流値Ishuntは以下の式(2)で求められる。
shunt=Vshunt/Rshunt   ・・・(2)
 なお、シャント抵抗341と直列に接続された負荷33に流れる電流値IHTRは、Ishuntと同一である。シャント抵抗341は、負荷33と直列に接続されており、負荷を流れる電流値に応じた値が測定される。
 ここで、電圧変換部211の出力電圧Voutは、負荷33の抵抗値RHTRを用いると、次の式(3)で表すことができる。
out=Ishunt×(Rshunt+RHTR)   ・・・(3)
 式(3)を変形すると、負荷33の抵抗値RHTRは、以下の式(4)で表すことができる。
HTR=Vout/Ishunt-Rshunt   ・・・(4)
 また、負荷33は、前述した正温度係数(PTC)特性を有しており、図5に示すように負荷33の抵抗値RHTRは負荷33の温度THTRにほぼ正比例する。したがって、負荷33の抵抗値RHTRに基づいて負荷33の温度THTRを算出することができる。本実施形態では、負荷33の抵抗値RHTRと温度THTRとの関係を示す情報を、例えばテーブルに予め記憶させておくものとする。従って、専用の温度センサを用いずに、負荷33の温度THTRを推定することができる。なお、負荷33が負の温度係数特性(NTC)を有している場合も、抵抗値RHTRと温度THTRとの関係を示す情報に基づいて、負荷33の温度THTRを推定することができる。
 また、本実施形態では、負荷33によって周囲のエアロゾル源が蒸発させられた場合であっても、貯留部31に十分な量のエアロゾル源が貯留されているときは、供給部32を介して負荷33へエアロゾル源が供給され続ける。したがって、貯留部31におけるエアロゾル源の残量が所定量以上であれば、負荷33の温度は、通常はエアロゾル源の沸点を超えて大幅に上昇することはない。しかしながら、貯留部31におけるエアロゾル源の残量が減少すると、これに伴い、供給部32を介して負荷33へ供給されるエアロゾル源の量も減少し、負荷33の温度はエアロゾル源の沸点を超えてさらに上昇することになる。このようなエアロゾル源の残量と負荷33の温度との関係を示す情報は、実験などによって予めわかっているものとする。そして、当該情報と、算出された負荷33の温度THTRとに基づいて、貯留部31が保持しているエアロゾル源の残量Quantityを推定することができる。なお、残量は、貯留部31の容量に対する残量の割合として求めるようにしてもよい。
 また、エアロゾル源の残量と負荷33の温度との間には相関関係があるため、予め定められた残量の閾値に対応する負荷33の温度の閾値を用いて、負荷33の温度が温度の閾値を超えた場合に、貯留部31のエアロゾル源が枯渇したと判断することができる。さらに、負荷33の抵抗値と温度との間にも対応関係があるため、負荷33の抵抗値が、上述した温度の閾値に対応する抵抗値の閾値を超えた場合に、貯留部31のエアロゾル源が枯渇したと判断することもできる。また、上述した式(4)の変数はシャント抵抗341を流れる電流値Ishuntのみであるため、上述した抵抗値の閾値に対応する電流値の閾値も、一意に定まる。ここで、シャント抵抗341を流れる電流値Ishuntとは、負荷33を流れる電流値IHTRと同一である。したがって、負荷33を流れる電流値IHTRが、予め定められた電流値の閾値未満の値を示した場合に、貯留部31のエアロゾル源が枯渇したと判断することもできる。すなわち、負荷33に流す電流値等の測定値について、例えばエアロゾル源が充分に残っている状態における目標値又は目標範囲を定め、目標値又は目標範囲を含む既定の範囲に測定値が属するか否かによって、エアロゾル源の残量が充分であるか判断することができる。既定の範囲は、例えば上述した閾値を用いて定めることができる。
 以上のように、本実施形態によれば、負荷33の抵抗値Rshuntを、シャント抵抗341を流れる電流の値Ishuntという1つの測定値を用いて算出することができる。なお、シャント抵抗341の電流値Ishuntは、式(2)に示したように、シャント抵抗341の両端電圧Vshuntを測定することで求めることができる。ここで、一般的に、センサが出力する測定値にはオフセット誤差、ゲイン誤差、ヒステリシス誤差、リニアリティ誤差といった様々な誤差が含まれる。本実施形態では、定電圧を出力する電圧変換部211を用いることにより、貯留部31が保持しているエアロゾル源の残量Quantity又は貯留部31のエアロゾル源が枯渇したか否かを推定するにあたって、測定値を代入すべき変数を1つにしている。したがって、例えば複数の変数に異なるセンサの出力値を代入することによって負荷の抵抗値等を算出するような手法よりも、算出される負荷33の抵抗値Rshuntの精度は向上する。その結果、負荷33の抵抗値Rshuntに基づいて推定されるエアロゾル源の残量も、精度が向上する。
 図6は、残量推定処理の一例を示す処理フロー図である。図7は、使用者がエアロゾル生成装置を使用する状態の一例を示すタイミングチャートである。図7は、矢印の方向が時間t(s)の経過を示し、グラフはそれぞれ、スイッチQ1及びQ2の開閉、負荷33を流れる電流の値IHTR、算出される負荷33の温度THTR、エアロゾル源の残量Quantityの変化を示している。なお、閾値Thre1及びThre2は、エアロゾル源の枯渇を検知するための所定の閾値である。エアロゾル生成装置1は、使用者がエアロゾル生成装置1を使用する際に、残量の推定を実行し、エアロゾル源の減少を検知した場合には所定の処理を行う。
 エアロゾル生成装置1の制御部22は、吸引センサ23の出力に基づいて、使用者が吸引動作を行ったか判断する(図6:S1)。本ステップでは、制御部22は、吸引センサ23の出力に基づいて、負圧の発生や流量の変化等を検知した場合、使用者の吸引を検知したと判断する。吸引を検知しなかった場合(S1:No)、S1の処理を繰り返す。なお、負圧や流量の変化を0ではない閾値と比較することで、使用者の吸引を検知してもよい。
 一方、吸引を検知した場合(S1:Yes)、制御部22は、スイッチQ1をパルス幅制御(PWM,Pulse Width Modulation)する(図6:S2)。例えば、図7の時刻t1において吸引が検知されたものとする。時刻t1の後、制御部22は、所定の周期でスイッチQ1を開閉させる。また、スイッチQ1の開閉に伴い、負荷33には電流が流れ、負荷33の温度THTRはエアロゾル源の沸点程度まで上昇する。また、エアロゾル源は、負荷33の温度によって加熱され、蒸発し、エアロゾル源の残量Quantityは減少する。なお、ステップS2でスイッチQ1を制御する際は、PWM制御に代えて、パルス周波数制御(PFM, Pulse Frequency Modulation)を用いてもよい。
 また、制御部22は、吸引センサ23の出力に基づいて、使用者が吸引動作を終了したか判断する(図6:S3)。本ステップにおいては、制御部22は、吸引センサ23の出力に基づいて、負圧の発生や流量の変化等が検知されなくなった場合、使用者が吸引を終了したと判断する。吸引が終了していない場合(S2:No)、制御部22はS2の処理を繰り返す。なお、負圧や流量の変化を0ではない閾値と比較することで、使用者の吸引の終了を検知してもよい。または、ステップS1において使用者の吸引を検知してから所定時間が経過した場合、ステップS3の判断によらず、ステップS4に進んでもよい。
 一方、吸引が終了した場合(S3:Yes)、制御部22はスイッチQ1のPWM制御を停止する(図6:S4)。例えば、図7の時刻t2において吸引が終了したと判断されたものとする。時刻t2の後、スイッチQ1は開いた状態(OFF)になり、負荷33への給電が停止される。また、負荷33へは供給部32を介して貯留部31からエアロゾル源が供給され、負荷33の温度THTRは放熱によって次第に低下する。そして、負荷33の温度THTRの低下によりエアロゾル源の蒸発が停止し、残量Quantityの減少も停止する。
 以上のように、スイッチQ1がオンになることで、図6において点線の角丸長方形で囲われたS2~S4では、図4のエアロゾル生成経路に電流が流れる。
 その後、制御部22は、スイッチQ2を所定の期間継続して閉じる(図6:S5)。スイッチQ2がオンになることで、図6において点線の角丸長方形で囲われたS5~S10では、図4の残量検出経路に電流が流れる。図7の時刻t3において、スイッチQ2は、閉じた状態(ON)になっている。残量検出経路においては、負荷33と直列にシャント抵抗341が接続されている。よって、シャント抵抗341が追加された分、エアロゾル生成経路よりも残量検出経路の方が、経路上の抵抗値は大きくなり、負荷33を流れる電流値IHTRは低くなっている。
 また、スイッチQ2を閉じた状態において、制御部22は、残量センサ34から測定値を取得し、シャント抵抗341を流れる電流値を検出する(図6:S6)。本ステップでは、例えば電圧計342によって測定されたシャント抵抗341の両端電圧を用いて、上述した式(2)により、シャント抵抗341の電流値Ishuntが算出される。なお、シャント抵抗341の電流値Ishuntは、負荷33を流れる電流値IHTRと同じである。
 スイッチQ2を閉じた状態において、制御部22は、負荷33を流れる電流値が予め定められた電流の閾値未満の値を示したか否か判断する(図6:S7)。すなわち、制御部22は、測定値が、目標値又は目標範囲を含む既定の範囲に属するか判断する。ここで、電流の閾値(図7:Thre1)は、貯留部31のエアロゾル源が枯渇したと判断すべき、予め定められたエアロゾル源の残量の閾値(図7:Thre2)に対応する値である。すなわち、負荷33を流れる電流値IHTRが閾値Thre1未満の値を示した場合、エアロゾル源の残量は閾値Thre2未満の値となったものと判断することができる。
 スイッチQ2が閉じられた所定の期間において、電流値IHTRが閾値Thre1未満の値を示した場合(S7:Yes)、制御部22はエアロゾル源の枯渇を検知し、所定の処理を行う(図6:S8)。S6で測定される電圧値及びこれに基づいて求められる電流値が所定の閾値よりも小さい場合、エアロゾル源の残量が少なくなっているため、S6で測定される電圧値及びこれに基づいて求められる電流値がさらに減少するように本ステップでは制御する。例えば、制御部22は、例えば、スイッチQ1又はスイッチQ2の動作を停止させたり、図示していない電力ヒューズを用いて負荷33への給電を切断したりして、エアロゾル生成装置1の動作を停止させてもよい。
 なお、図7の時刻t3~t4のように、エアロゾル源の残量が十分である場合には、電流値IHTRは閾値Thre1よりも大きくなる。
 S8の後、又はスイッチQ2が閉じられた所定の期間にわたり、電流値IHTRが閾値Thre1以上である場合(S7:No)、制御部22はスイッチQ2を開く(図6:S9)。図7のt4においては、所定の期間が経過し、電流値IHTRが閾値Thre1以上であったため、スイッチQ2がオフになっている。なお、スイッチQ2を閉じる所定の期間(図7の時刻t3~t4に相当)は、S2~S4においてスイッチQ1を閉じる期間(図7の時刻t1~t2に相当)よりも短い。また、S7において、測定値が既定の範囲に属すると判断された場合は、その後に吸引を検知した場合(S1:Yes)におけるスイッチQ1の開閉(S2)において、例えばスイッチングのデューティ比を調整することにより、S6において算出される電流値(測定値)が目標値又は目標範囲に収束するように制御する。ここで、測定値が既定の範囲に属する場合において、測定値を目標値又は目標範囲に収束させるための給電回路の制御(本発明に係る「第1制御モード」とも呼ぶ)よりも、測定値が既定の範囲に属しない場合において、負荷33へ流す電流量を減少させるための給電回路の制御(本発明に係る「第2制御モード」とも呼ぶ)の方が、測定値の変化量が大きくなるように制御される。
 以上で、残量推定処理を終了する。その後、S1の処理に戻り、使用者による吸引動作を検知した場合には図6の処理を再度実行する。
 図7の時刻t5においては、使用者の吸引動作を検知し(図6:S1:Yes)、スイッチQ1のPWM制御が開始されている。また、図7の時刻t6においては、使用者の吸引動作が終了したと判断され(図6:S3:Yes)、スイッチQ1のPWM制御が停止されている。そして、図7の時刻t7においてスイッチQ2がオンにされ(図6:S5)、シャント抵抗の電流値が算出される(図6:S6)。その後、図7の時刻t7以降に示すように、エアロゾル源の残量Quantityが閾値Thre2未満となり、負荷33の温度THTRが上昇している。そして、負荷33を流れる電流値IHTRが低下し、時刻t8において、制御部22は、電流値IHTRが閾値Thre2未満の値を示したことを検知する(図6:S7:Yes)。この場合、エアロゾル源の枯渇によりエアロゾルの生成ができないことがわかるため、制御部22は、例えば時刻t8以降において使用者の吸引を検知してもスイッチQ1の開閉を行わないようにする。図7の例では、その後、時刻t9において所定期間が経過し、スイッチQ2がオフにされている(図6:S9)。なお、電流値IHTRが閾値Thre2未満の値を示した時刻t8において、制御部22はスイッチQ2をオフにしてもよい。
 以上のように、本実施形態では、電圧を変換する電圧変換部211を設けることにより、エアロゾル源の残量又はその枯渇の推定にあたり、制御に用いる変数に混入する誤差が低減され、例えばエアロゾル源の残量に応じた制御の精度を向上させることができる。
<判定期間>
 上述の実施形態では、残量判定処理において、制御部22は、スイッチQ2を所定の期間、継続してオンにして、残量センサ34の測定値を取得していた。なお、スイッチQ2を閉じる期間を、残量センサ34及び負荷33へ給電するための「給電シーケンス」と呼ぶものとする。ここで、エアロゾル源の残量の判定を行うために、残量を判定するための「判定期間」を用いるようにしてもよい。判定期間は、例えば給電シーケンスに時間軸において内包され、その長さは可変とする。
 図8は、判定期間の長さの決め方の一例を説明するための図である。図8のグラフは、横軸が時間tの経過を示し、縦軸が負荷33を流れる電流値IHTRを示している。また、図8の例では、便宜上、スイッチQ1の開閉に伴う電流値IHTRを省略し、スイッチQ2が閉じられた給電シーケンスにおいて負荷33を流れる電流値IHTRのみを示している。
 図8の期間p1は通常時の給電シーケンスであり、左に示す電流値IHTRは、エアロゾル源の残量が十分であるときの模式的なプロファイルである。初期的には、判定期間は給電シーケンス(p1)と同一であるものとする。左に示す例では、通電に伴い負荷33の温度THTRが上昇し、これに伴う負荷33の抵抗負荷33の抵抗値RHTRの増加によって、電流値IHTRは漸減するものの、閾値Thre1未満の値を示さない。このような場合、判定期間は変更されない。
 中央に示す電流値IHTRは、判定期間(p1)内に電流値IHTRが閾値Thre1未満の値を示した場合の例を表している。ここで、当該給電シーケンスの開始から電流値IHTRが閾値Thre1未満の値を示すまでの期間p2を、後の給電シーケンスに内包される判定期間の長さとする。すなわち、前の給電シーケンスにおける、電流値IHTRが閾値Thre1未満の値を示した時間に基づき、後の給電シーケンスにおける判定期間を調整する。換言すれば、エアロゾル源が枯渇する可能性が高いほど、判定期間を短く設定する。また、給電シーケンスの長さを基準として、給電シーケンス(判定期間)内に電流値IHTRが閾値Thre1未満になった場合、エアロゾル源が枯渇する可能性が閾値(本発明に係る「第2の閾値」とも呼ぶ)以上になったと判断するようにしてもよい。換言すれば、エアロゾル源が枯渇する可能性が閾値以上の場合のみ、判定期間を給電シーケンスよりも短くするといえる。
 右に示す電流値IHTRは、判定期間(p2)内に電流値IHTRが閾値Thre1未満の値を示した場合の例を表している。エアロゾル生成装置1の使用中は、貯留部31に保持されているエアロゾル源の量は減少する一方である。したがって、エアロゾル源が枯渇すると、通常、給電の開始から電流値IHTRが閾値Thre1未満の値を示すまでの期間は短くなる一方であるといえる。図8の例では、上述のように変更される判定期間内において電流値IHTRが閾値Thre1未満の値を示すケースが、繰り返される判定期間において連続して既定数を超えて発生した場合に、エアロゾル源が枯渇した(すなわち、異常)と判断するものとする。なお、エアロゾル源が枯渇した場合には、図8に示すように残量検知回路への給電を停止するようにしてもよい。
 図9は、負荷を流れる電流値の変化の他の例を示す図である。図9に示す左と中央の電流値IHTRの変化は、図8と同一である。図9の右に示す電流値IHTRは、エアロゾル源の残量が十分であるときのプロファイルと同じであり、判定期間(p2)内に電流値IHTRは閾値Thre1未満の値を示していない。ここで、図3に示したようなエアロゾル生成装置1においては、その構造上、使用者の吸引の仕方によっては、貯留部31から供給部32へのエアロゾル源の供給は、毛細管現象により行われるため、これを制御部22等によって制御することは困難である。使用者が1回のパフで想定されるよりも長時間吸引した場合や、想定される通常の間隔よりも短い間隔で吸引を行った場合、負荷33の周囲から一時的に通常時よりもエアロゾル源の量が減少する可能性がある。このような場合、図9の中央に示すように、判定期間内に電流値IHTRが閾値Thre1未満の値を示す可能性がある。その後、負使用者が異なる吸引の仕方をすれば、図9の右に示すように判定期間内に電流値IHTRが閾値Thre1未満の値を示さない。よって、図9の例では、判定期間内において電流値IHTRが閾値Thre1未満の値を示すケースが、繰り返される判定期間において連続して既定数を超えていないため、貯留部31が貯留したエアロゾル源は枯渇していないと判断される。
 以上のような判定期間を採用することで、エアロゾル源が枯渇したか否かの判断の精度をさらに向上させることができる。すなわち、判定期間を変更することにより判定動作における基準を調整することができ、判定の精度を向上させ得る。
<判定処理の変形例>
 図10は、判定期間の設定を行う処理の一例を示す処理フロー図である。本変形例では、制御部22は、図6に示した残量推定処理のうち、S5~S9の処理に代えて、図10の判定処理を実行する。
 まず、エアロゾル生成装置1の制御部22は、スイッチQ2をオンにする(図10:S5)。本ステップは、図6のS5と同じである。
 また、制御部22は、タイマを起動し、経過時間tのカウントを開始する(図10:S11)。
 そして、制御部22は、経過時間tが判定期間以上であるか判断する(図10:S12)。経過時間tが判定期間以上でない場合(S12:No)、制御部22は、経過時間のカウントを行う(図10:S21)。本ステップでは、タイマ起動又は前回のS21の処理からの経過時間の差分Δtをtに加算する。
 また、制御部22は、負荷33を流れる電流値IHTRを検出する(図10:S6)。本ステップの処理は、図6のS6と同じである。
 そして、制御部22は、算出した電流値IHTRが所定の閾値Thre1よりも小さいか判断する(図10:S7)。本ステップは、図6のS7と同様である。電流値IHTRが閾値Thre1以上である場合(S7:No)、S12の処理に戻る。
 一方、電流値IHTRが閾値Thre1よりも小さい場合(S7:Yes)、制御部22は、枯渇が検知された判定期間の数を計数するためのカウンタに、1を加算する(図10:S22)。
 そして、制御部22は、カウンタが既定値(閾値)を超えたか判断する(S23)。カウンタが既定値を超えたと判断された場合(S23:Yes)、制御部22は、エアロゾル源の枯渇を検知したと判断し、所定の処理を行う(図10:S8)。本ステップは、図6のS8と同じである。
 一方、カウンタは既定値を超えていないと判断された場合(S23:No)、制御部22は、給電シーケンスが終了したか判断する(図10:S31)。給電シーケンスが経過していない場合(S31:No)、制御部22は経過時間tを更新してS31の処理に戻る。
 一方、給電シーケンスが終了したと判断された場合(S31:Yes)、制御部22は、判定期間を更新する(図10:S32)。本ステップでは、S7において電流値IHTRが閾値Thre1よりも小さいと判断された時点の経過時間tを、新たな判定期間として設定する。すなわち、前の給電シーケンスにおける、測定値が閾値未満の値を示す時間に基づき、後の給電シーケンスにおける判定期間を調整する。換言すれば、前の給電シーケンスにおける測定値に基づき、後の給電シーケンスにおける判定期間の長さを調整する。また、現在の給電シーケンスにおける測定値に基づき、将来の給電シーケンスにおける判定期間の長さを調整するともいえる。
 また、S12において、経過時間tが判定期間以上であると判断された場合(S12:Yes)、制御部22は、給電シーケンスが終了したか判断する(図10:S13)。給電シーケンスが終了していない場合(S13:No)、制御部22は、給電シーケンスが終了するまで給電を継続する。判定期間が経過し、給電シーケンスが経過していない状態とは、図9の右に示す期間において、期間p2が経過した後、且つ期間p1が経過する前である。
 一方、給電シーケンスが終了したと判断された場合(S13:Yes)、制御部22は、判定期間の長さを給電シーケンスの長さと同一に設定する(図10:S14)。
 また、制御部22は、カウンタをリセットする(図10:S15)。すなわち、当該給電期間に伴い規定される判定期間においては、電流値IHTRが閾値Thre1未満の値を示さなかったため、枯渇が検知された判定期間が連続する数を計数するためのカウンタをリセットしている。なお、カウンタをリセットせずに、枯渇が検知された判定期間の数が所定の閾値を超えた場合に異常と判断するようにしてもよい。
 S15、S8、又はS32の後、制御部22はスイッチQ2をオフにする(図10:S9)。本ステップは、図6のS9と同じである。
 以上のような処理によって、図8及び図9に示した可変の判定期間を実現することができる。
<シャント抵抗>
 制御部22は、使用者がエアロゾル生成装置1を吸引していない期間に残量検出経路を機能させ、エアロゾル源の残量を推定する。しかしながら、使用者が吸引していない期間に吸口からエアロゾルが放出されることは好ましくない。すなわち、スイッチQ2を閉じている期間に負荷33がエアロゾル源を蒸発させる量は、少ないほど望ましい。
 一方、エアロゾル源の残量がわずかになった場合において、制御部22は、残量の変化を精度よく検知できることが好ましい。すなわち、残量センサ34の測定値は、エアロゾル源の残量に応じて大きく変化するほど分解能が高まるため、望ましい。これらの観点に基づいて、以下、シャント抵抗の抵抗値について説明する。
 図11は、貯留部、供給部及び負荷において消費されるエネルギーを模式的に表す図である。Qは供給部32のウィックの発熱量、Qは負荷33のコイルの発熱量、Qは液体のエアロゾル源の温度上昇に要する熱量、Qは液体から気体へのエアロゾル源の状態変化に要する熱量、Qは輻射による空気の発熱等を表す。消費されるエネルギーQは、Q~Qの和である。
 また、物体の熱容量C(J/K)は物体の質量m(g)と比熱c(J/g・K)との積である。また、物体の温度をT(K)変化させるための熱量Q(J/K)は、m×C×Tと表すことができる。したがって、消費されるエネルギーCは、負荷33の温度THTRがエアロゾル源の沸点Tより低い場合、次の式(6)で模式的に表すことができる。なお、mは供給部32のウィックの質量、Cは供給部32のウィックの比熱、mは負荷33のコイルの質量、Cは負荷33のコイルの比熱、mは液体のエアロゾル源の質量、Cは液体のエアロゾル源の比熱、Tは負荷33の温度の初期値である。
Q=(m+m+m)(THTR-T)   ・・・(6)
 また、消費されるエネルギーCは、負荷33の温度THTRがエアロゾル源の沸点T以上である場合、次の式(7)で表すことができる。なお、mは液体であるエアロゾル源のうち蒸発する分の質量、Hは液体であるエアロゾル源の蒸発熱である。
Q=(m+m)(THTR-T)+m(T-T)+m 
                            ・・・(7)
 したがって、蒸発に由来したエアロゾルを生成させないためには、閾値Ethreは、次の式(8)に示すような条件を満たす必要がある。
thre<(m+m+m)(T-T)   ・・・(8)
 図12は、負荷33において消費されるエネルギー(電力量)と生成されるエアロゾル量との関係を模式的に示すグラフである。図12の横軸はエネルギーを示し、縦軸はTPM(Total Particle Matter:エアロゾルを形成する物質の量)を示す。図12に示すように、負荷33において消費されるエネルギーが所定の閾値Ethreを超えると、エアロゾルの生成が開始され、さらに消費されるエネルギーにほぼ正比例して、生成されるエアロゾルの量も増加する。なお、図12の縦軸は必ずしも負荷33によって生成されるエアロゾル量でなくてもよい。例えば、エアロゾル源の蒸発に由来して生成されるエアロゾル量でもよい。または、吸口から放出されるエアロゾル量であってもよい。
 ここで、負荷33で消費されるエネルギーEHTRは、次の式(9)で表すことができる。なお、WHTRは負荷33の仕事率、tQ2_ONはスイッチQ2をオンにしている時間(s)である。なお、スイッチQ2は、シャント抵抗の電流値を測定するためにある程度の時間だけオンにする必要がある。
HTR=WHTR×tQ2_ON   ・・・(9)
 また、残量検出経路を流れる電流値IQ2、負荷33の温度THTRに応じて変化する抵抗値RHTR(THTR)、シャント抵抗の測定電圧Vmeasを用いて式(9)を変形すると、以下の式(10)になる。
Figure JPOXMLDOC01-appb-M000001
 したがって、次の式(11)で表されるように、負荷33において消費されるエネルギーEHTRが、図12の閾値Ethreより小さければ、エアロゾルは生成されない。
Figure JPOXMLDOC01-appb-M000002
 これを変形すると、次の式(12)のようになる。すなわち、シャント抵抗の抵抗値Rshuntは、式(12)を満たすような値であれば、残量推定処理においてエアロゾルが生成されないため、好ましい。
Figure JPOXMLDOC01-appb-M000003
 一般的に、シャント抵抗を追加する回路への影響を小さくするため、シャント抵抗の抵抗値は、数10mΩ程度の低い値が好ましい。しかし、本実施形態においては、エアロゾルの生成を抑制するという観点から上述のようなシャント抵抗の抵抗値の下限が定まる。下限値は、負荷33の抵抗値よりも大きい、例えば数Ω程度の値であることが好ましい。このように、電源から抵抗器へ給電される給電シーケンスにおいて、負荷が生成するエアロゾル量が所定の閾値以下となる第1条件を満たすようにシャント抵抗の抵抗値を設定することが好ましい。
 なお、シャント抵抗の抵抗値を大きくせず、シャント抵抗と直列に、全体の抵抗値を増大させるために追加する調整用抵抗器をさらに備えるようにしてもよい。この場合、追加する調整用抵抗器については両端電圧を測定しないようにしてもよい。
 図13は、エアロゾルの残量Quantityと、負荷33の抵抗値との関係を示すグラフの一例である。図13のグラフは、横軸がエアロゾル源の残量を示し、縦軸が負荷33の温度に応じて定まる抵抗値を示す。また、RHTR(TDepletion)は、エアロゾル源の残量が枯渇した場合の抵抗値である。RHTR(TR.T.)は、室温における抵抗値である。ここで、ビット数を含む制御部22の分解能に対し、電圧や電流、ひいては負荷33の抵抗値や温度の測定レンジを適切に設定することにより、エアロゾル源の残量の推定の精度が向上する。一方、負荷33の抵抗値であるRHTR(TDepletion)とRHTR(TR.T.)との差が大きいほど、エアロゾル源の残量に応じて変動する幅が大きくなる。換言すれば、制御部22の分解能や測定レンジとは別に、負荷33の温度に応じて変化する抵抗値の変動幅を大きくすることでも、制御部22が算出する残量の推定値の精度が向上するといえる。
 また、エアロゾル源の残量が枯渇した場合の負荷33の抵抗値RHTR(TDepletion)を用いて、当該時点に残量センサ34の出力値に基づいて検知される電流値IQ2_ON(TDepletion)を次の式(13)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 同様に、室温における負荷33の抵抗値RHTR(TR.T.)を用いて、当該時点に残量センサ34の出力値に基づいて検知される電流値IQ2_ON(TR.T.)を、次の式(14)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 そして、電流値IQ2_ON(TR.T.)から電流値IQ2_ON(TDepletion)を減じた差分ΔIQ2_ONは、次の式(15)で表すことができる。
Figure JPOXMLDOC01-appb-M000006
 式(15)からわかるように、Rshuntを大きくすると電流値IQ2_ON(TR.T.)と電流値IQ2_ON(TDepletion)との差分ΔIQ2_ONは小さくなり、エアロゾル源の残量を正確に推定することができない。したがって、式(16)に示すように、差分ΔIQ2_ONが所望の閾値ΔIthreよりも大きくなるようにシャント抵抗の抵抗値Rshuntを決定するものとする。
Figure JPOXMLDOC01-appb-M000007
 式(16)を抵抗値Rshuntについて解けば、残量の推定値の分解能が十分に大きくなるために、抵抗値Rshuntが満たすべき条件は、所望の閾値ΔIthreを用いて次の式(17)で表される。したがって、式(17)を満たすように抵抗値Rshuntを設定すればよい。
Figure JPOXMLDOC01-appb-M000008
 本実施形態においては、室温において負荷33に流れる電流値IQ2_ON(TR.T.)と、エアロゾル源が枯渇した場合において負荷33に流れる電流値IQ2_ON(TDepletion)の差分ΔIQ2_ONが、制御部22が検知できる程度の大きさになるように、抵抗値Rshuntを設定した。これに代えて、例えばエアロゾル源の沸点近傍において負荷33に流れる電流値と、エアロゾル源が枯渇した場合において負荷33に流れる電流値の差分が、制御部22が検知できる程度の大きさになるように、抵抗値Rshuntを設定してもよい。一般的に、制御部22が検知できる電流差に対応する温度差が小さいほど、エアロゾル源の残量に対する推定精度は向上する。
 ここで、制御部22の分解能及び負荷33の抵抗値を含む残量検出回路の設定が、エアロゾル源の残量に対する推定精度に及ぼす影響についてさらに詳述する。制御部22にnビットのマイクロコントローラを用い、基準電圧としてVREFを印加する場合、制御部22の分解能Resolutionは、次の式(18)で表すことができる。
Figure JPOXMLDOC01-appb-M000009
 また、負荷33が室温である場合に電圧計342が検出する値と、エアロゾル源の残量が枯渇した場合に電圧計342が検出する値の差分ΔVQ2_ONは、式(15)に基づき、次の式(19)で表すことができる。
Figure JPOXMLDOC01-appb-M000010
 従って、式(18),(19)より、制御部22は、0~ΔVQ2_ONの範囲に亘って、次の式(20)で表される値及びその整数倍を電圧差として検知できる。
Figure JPOXMLDOC01-appb-M000011
 さらに式(20)より、制御部22は、室温からエアロゾル源の残量が枯渇した場合における負荷33の温度に亘って、次の式(21)で表される値及びその整数倍をヒータの温度として検知できる。
Figure JPOXMLDOC01-appb-M000012
 一例として、式(21)における変数を変化させた場合における、制御部22の負荷33の温度に対する分解能を、次の表1に示す。
Figure JPOXMLDOC01-appb-T000013
 表1から明らかなように、各変数の値を調整することで、制御部22の負荷33の温度に対する分解能は大きく変動する傾向にある。エアロゾル源の残量が枯渇しているか否かを判断するためには、制御部22は、制御部22による非制御時及び制御開始時の温度である室温と、エアロゾル源の残量が枯渇した場合の温度を最低限区別できる必要がある。すなわち、室温における残量センサ34の測定値と、エアロゾル源の残量が枯渇した場合の温度における残量センサ34の測定値が、制御部22が区別できる程度の有意差を持っている必要がある。換言すれば、制御部22の負荷33の温度に対する分解能は、エアロゾル源の残量が枯渇した場合の温度と室温の差分以下の必要がある。
 前述したように、エアロゾル源の残量が充分にある場合は、負荷33の温度はエアロゾル源の沸点近傍に維持される。エアロゾル源の残量が枯渇しているかより正確に判断するためには、制御部22は、このエアロゾル源の沸点とエアロゾル源の残量が枯渇した場合の温度を区別できることが好ましい。すなわち、エアロゾル源の沸点における残量センサ34の測定値と、エアロゾル源の残量が枯渇した場合の温度における残量センサ34の測定値が、制御部22が区別できる程度の有意差を持っていることが好ましい。換言すれば、制御部22の負荷33の温度に対する分解能は、エアロゾル源の残量が枯渇した場合の温度とエアロゾル源の沸点の差分以下であることが好ましい。
 さらに、残量センサ34の測定値を、エアロゾル源の残量が枯渇しているか否かの判断のみではなく、負荷33の温度センサとしても用いる場合は、制御部22は、制御部22における非制御時及び制御開始時の温度である室温と、エアロゾル源の沸点を区別できることが好ましい。すなわち、室温における残量センサ34の測定値と、エアロゾル源の沸点における残量センサの測定値が、制御部22が区別できる程度の有意差を持っていることが好ましい。換言すれば、制御部22の負荷33の温度に対する分解能は、エアロゾル源の沸点と室温の差分以下であることが好ましい。
 より高精度に負荷33の温度センサとして用いようとすると、制御部22の負荷33の温度に対する分解能は、10℃以下であることが好ましい。より好ましくは5℃以下であることが好ましい。さらにより好ましくは1℃以下であることが好ましい。また、エアロゾル源の残量が枯渇しつつある場合と、実際にエアロゾル源の残量が枯渇した場合を正確に区別しようとするならば、制御部22の負荷33の温度に対する分解能は、エアロゾル源の残量が枯渇した場合の温度と室温の差分の約数であることが好ましい。
 なお、表1から明らかなように制御部22のビット数を向上させることで、換言すれば制御部22を高性能化することで、制御部22の負荷33の温度に対する分解能は容易に向上する。しかし、制御部22を高性能化しようとすると、コスト,重量,サイズなどの増大を招来してしまう。
 以上のように、負荷33が生成するエアロゾルの量が所定の閾値以下となる第1条件と、エアロゾル源の残量の減少を残量センサ34の出力値に基づいて制御部22が検知可能になるという第2条件との少なくともいずれかを満たすようにシャント抵抗の抵抗値を決めるようにしてもよく、両者を満たすような抵抗値であればさらに好ましい。また、第1条件を満たす最小値と第2条件を満たす最大値のうち、第2条件を満たす最大値により近い値であってもよい。このようにすれば、測定中におけるエアロゾルの生成を低減させつつも、残量検知の分解能をできる限り向上させることができる。その結果として、エアロゾル源の残量を高精度のみならず短期間に推定できるため、測定中におけるエアロゾルの生成をさらに低減できる。
 また、第1条件と第2条件は、いずれも負荷33の温度の変化に対する残量センサ34の測定値である負荷33に流れる電流値の変化の応答性に関するものであるといえる。負荷33の温度の変化に対する負荷33に流れる電流値の変化の応答性が強い場合は、直列につないだシャント抵抗341と負荷33の合成抵抗において、負荷33が支配的な場合である。つまり、シャント抵抗の抵抗値Rshuntは小さい値であるため、第2条件は満たしやすくなるものの、第1条件は満たしにくくなる。
 一方、負荷33の温度の変化に対する負荷33に流れる電流値の変化の応答性が弱い場合は、直列につないだシャント抵抗341と負荷33の合成抵抗において、シャント抵抗341が支配的な場合である。つまり、シャント抵抗の抵抗値Rshuntは大きい値であるため、第1条件は満たしやすくなるものの、第2条件は満たしにくくなる。
 すなわち第1条件を満たすためには、負荷33の温度の変化に対する負荷33に流れる電流値の変化の応答性が既定の上限以下である必要がある。一方の第2条件を満たすためには、負荷33の温度の変化に対する負荷33に流れる電流値の変化の応答性が既定の下限以上である必要がある。そして、第1条件と第2条件の双方を満たすためには、負荷33の温度の変化に対する負荷33に流れる電流値の変化の応答性が、既定の上限と下限で定義される範囲に属する必要がある。
<回路の変形例1>
 図14は、エアロゾル生成装置1が備える回路の変形例を示す図である。図14の例では、残量検出経路がエアロゾル生成経路を兼ねている。すなわち、電圧変換部211、スイッチQ2、残量センサ34、負荷33が直列に接続されている。そして、エアロゾルの生成と、残量の推定とを1つの経路で行う。このような構成であっても、残量の推定を行うことができる。
<回路の変形例2>
 図15は、エアロゾル生成装置1が備える回路の他の変形例を示す図である。図15の例では、リニアレギュレータに代えてスイッチングレギュレータである電圧変換部212を備える。一例として電圧変換部212は、昇圧型のコンバータであり、インダクタL1と、ダイオードD1と、スイッチQ4と、平滑コンデンサとして機能するキャパシタC1及びC2とを備える。電圧変換部212は、電源21からエアロゾル生成経路と残量検出経路とに分岐する前に設けられている。よって、制御部22が電圧変換部212のスイッチQ4の開閉を制御することにより、エアロゾル生成経路と残量検出経路とにそれぞれ異なる大きさの電圧を出力することができる。なお、リニアレギュレータに代えてスイッチングレギュレータを用いる場合でも、図14におけるリニアレギュレータと同様の位置にスイッチングレギュレータを設けてもよい。
 またエアロゾル源の残量を検出するために、経路全体に一定電圧を印加する必要がある残量検出回路に比べ、印加電圧に対する制約が少ないエアロゾル生成経路を機能させる場合の電力損失が、残量検出経路を機能させる場合の電力損失より小さくなるように、電圧変換部212を制御するようにしてもよい。これによって電源21の蓄電量の浪費を抑制できる。また、制御部22は、エアロゾル生成経路よりも残量検知経路の方が、負荷33を流れる電流が小さくなるように制御する。これにより残量検知経路を機能させてエアロゾル源の残量を推定している間に、負荷33におけるエアロゾル源の生成を抑制できる。
 またエアロゾル生成経路を機能させる間においては、スイッチングレギュレータは、ローサイド・スイッチQ4のスイッチングを停止して、オン状態にし続ける「直結モード」(「直結状態」とも呼ぶ)で動作させるようにしてもよい。すなわち、スイッチQ4のデューティ比を100%にしてもよい。スイッチングレギュレータをスイッチングさせた場合の損失としては、導通損に加え、スイッチングに伴う遷移損やスイッチング損が挙げられる。しかし、直結モードでスイッチングレギュレータを動作させることで、スイッチングレギュレータにおける損失を導通損のみにすることができるため、電源21の蓄電量の利用効率が上がる。また、エアロゾル生成経路を機能させている間の一部においてのみ、スイッチングレギュレータを直結モードで動作させてもよい。一例として、電源21の蓄電量が充分にあり、その出力電圧が高い場合には、スイッチングレギュレータを直結モードで動作させる。一方、電源21の蓄電量が少なくなり、その出力電圧が低い場合には、スイッチングレギュレータのスイッチングを行ってもよい。このような構成であっても、残量の推定を行うことができると共に、リニアレギュレータを用いる場合よりも損失を低減することができる。なお、昇圧型に代えて、降圧型または昇降圧型のコンバータを用いてもよい。
<その他>
 エアロゾル生成装置が過熱する対象は、ニコチンやその他の添加材料を含む液体の香味源であってもよい。この場合、添加成分保持部を通過させずに、生成されたエアロゾルを使用者が吸引する。このような香味源を利用する場合も、上述のエアロゾル生成装置によれば残量を精度よく推定できる。
 また、制御部22は、スイッチQ1及びQ2を同時にオンにしないように制御する。すなわち、エアロゾル生成経路と残量検出経路とが同時に機能しないように制御する。さらに、スイッチQ1及びQ2の開閉状態を切り替える際には、両者がオフになったデッドタイムを設けるようにしてもよい。このようにすれば、2つの経路に電流が流れることを抑制できる。一方、デッドタイムにおいて負荷33の温度をできる限り低下させないよう、デッドタイムは短いことが好ましい。
 図6に示した処理においては、使用者が行う1回のパフに対して残量推定処理を1回、行うものとして説明した。しかしながら、1回ずつでなく複数回のパフに対して1回の残量推定処理を交互に行うようにしてもよい。また、エアロゾル源保持部3の交換後はエアロゾル源の残量は十分であるため、所定の回数のパフの後に、残量推定処理を開始するようにしてもよい。すなわち、エアロゾル生成経路よりも残量検知経路の方が通電の頻度が小さくなるようにしてもよい。このようにすれば、過度な残量推定処理が抑制され、適切なタイミングにおいてのみ実行されるため、電源21の蓄電量の利用効率が向上する。
1  :エアロゾル生成装置
2  :本体
21 :電源
211:給電回路
212:給電回路
22 :制御部
23 :吸引センサ
3  :エアロゾル源保持部
31 :貯留部
32 :供給部
33 :負荷
34 :残量センサ
341:シャント抵抗
342:電圧計
4  :添加成分保持部
41 :香味成分
51 :第1ノード
52 :第2ノード

Claims (24)

  1.  電源と、
     温度に応じて電気抵抗値が変化し、前記電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、
     前記負荷へ流れる電流値に応じた測定値を出力するセンサと、
     前記電源から前記負荷への給電を制御し、前記電源から前記負荷への給電を行う給電シーケンスに時間軸において内包される判定期間内に、前記測定値が閾値未満の値を示した場合に、異常と判定する判定動作を行う制御部と、を含み、
     前記制御部は、前記測定値に基づき前記判定期間の長さを調整する
     エアロゾル生成装置。
  2.  前記給電シーケンスは複数回行われ、
     前記制御部は、前の前記給電シーケンス(以下、先行給電シーケンス)における前記測定値に基づき、時間軸において前記先行給電シーケンスより後の前記給電シーケンス(以下、後行給電シーケンス)における前記判定期間の長さを調整する
     請求項1に記載のエアロゾル生成装置。
  3.  前記制御部は、前記先行給電シーケンスにおける、前記測定値が前記閾値未満となった時間に基づき、前記後行給電シーケンスにおける前記判定期間を調整する
     請求項2に記載のエアロゾル生成装置。
  4.  前記制御部は、前記先行給電シーケンスにおける前記測定値が前記閾値未満となった時間と前記電源から前記負荷への給電を継続した時間との短い方に基づき、前記後行給電シーケンスにおける前記判定期間を調整する
     請求項2に記載のエアロゾル生成装置。
  5.  前記制御部は、前記測定値が前記閾値未満となった前記判定期間の数が既定数を超えた場合に、前記電源から前記負荷への給電を停止する
     請求項1から4のいずれか1項に記載のエアロゾル生成装置。
  6.  前記制御部は、前記測定値が前記閾値未満となった判定期間の数が既定数を超えない場合に、前記電源から前記負荷への給電を継続する
     請求項1から5のいずれか1項に記載のエアロゾル生成装置。
  7.  前記制御部は、連続する既定数以上の前記判定期間内に前記測定値が前記閾値未満となった場合に、前記電源から前記負荷への給電を停止する
     請求項1から4のいずれか1項に記載のエアロゾル生成装置。
  8.  前記制御部は、連続する既定数未満の前記判定期間内に前記測定値が前記閾値未満となった場合に、前記電源から前記負荷への給電を継続する
     請求項1から4,7のいずれか1項に記載のエアロゾル生成装置。
  9.  前記電源と前記負荷とを電気的に接続する給電回路を含み、
     前記給電回路は、並列に接続される第1給電路と第2給電路とを備え、
     前記制御部は、
     前記第1給電路と前記第2給電路の一方を選択的に機能させ、
     前記電源から前記負荷へ給電される電力が、前記第1給電路を機能させている場合よりも小さくなるよう前記第2給電路を制御すると共に、前記第2給電路を機能させている間に前記判定動作を実行する
     請求項1から8のいずれか1項に記載のエアロゾル生成装置。
  10.  前記電源と前記負荷とを電気的に接続する給電回路を含み、
     前記給電回路は並列に接続される第1給電路と第2給電路とを備え、
     前記第2給電路は、前記第1給電路より小さな電流が流れるように構成され、
     前記制御部は、
     前記第1給電路と前記第2給電路の一方を選択的に機能させると共に
     前記第2給電路を機能させている間に、前記判定動作を行う
     請求項1から8のいずれか1項に記載のエアロゾル生成装置。
  11.  自装置の端部に設けられ、且つエアロゾルを放出する吸口端を含み、
     前記制御部は、前記第2給電路を機能させている間は、前記吸口端からエアロゾルが放出されないように、前記第2給電路を制御する
     請求項9又は10に記載のエアロゾル生成装置。
  12.  前記制御部は、前記第1給電路と前記第2給電路のうち前記第1給電路を機能させている場合のみ、前記負荷がエアロゾルを生成するように前記給電回路を制御する
     請求項9から11のいずれか1項に記載のエアロゾル生成装置。
  13.  前記制御部は、前記第1給電路を機能させた後に、前記第2給電路を機能させる
     請求項9から12のいずれか1項に記載のエアロゾル生成装置。
  14.  エアロゾル生成装置の制御方法であって、
     電源からの給電によりエアロゾル源を霧化又は香味源を加熱し、温度に応じて電気抵抗値が変化する負荷への給電を制御し、
     前記負荷へ流れる電流値に応じた測定値を出力するセンサから前記測定値を取得し、前記電源から前記負荷への給電を行う給電シーケンスに時間軸において内容される判定期間内に、前記測定値が閾値未満の値を示した場合に、異常と判定する判定動作を行い、
     前記測定値に基づき前記判定期間の長さを調整する、
     エアロゾル生成装置の制御方法。
  15.  電源と、
     温度に応じて電気抵抗値が変化し、前記電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、
     前記負荷へ流れる電流値に応じた測定値を出力するセンサと、
     前記センサが前記測定値を出力可能な態様で前記電源から前記負荷へ給電を行う給電シーケンスと、判定期間内に前記測定値が第1閾値未満の値を示した場合に異常判定を実行可能な制御部と、を含み、
     前記判定期間は、前記給電シーケンスよりも短い
     エアロゾル生成装置。
  16.  前記制御部は、
    前記測定値に基づき推定した前記エアロゾル源又は前記香味源が枯渇する可能性が、第2閾値以上の場合のみ、前記判定期間を前記給電シーケンスより短くする
    請求項15に記載のエアロゾル生成装置。
  17.  エアロゾル生成装置の制御方法であって、
     電源からの給電によりエアロゾル源を霧化又は香味源を加熱し、温度に応じて電気抵抗値が変化する負荷へ流れる電流値に応じた測定値をセンサから取得し、
     前記センサが前記測定値を出力可能な態様で前記電源から前記負荷へ給電を行う給電シーケンスを実行し、
    判定期間内に前記測定値が閾値未満の値を示した場合に異常と判定し、
     前記判定期間は、前記給電シーケンスよりも短い
     エアロゾル生成装置の制御方法。
  18.  電源と、
     温度に応じて電気抵抗値が変化し、前記電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、
     前記負荷へ流れる電流値に応じた測定値を出力するセンサと、
     前記電源から前記負荷への給電を行う給電シーケンスを複数回制御する制御部と、を含み、
     前記制御部は、前の前記給電シーケンスにおける前記測定値に基づき、時間軸において前記前の給電シーケンスより後の前記給電シーケンスの長さを決定する
     エアロゾル生成装置。
  19.  エアロゾル生成装置の制御方法であって、
     電源からの給電によりエアロゾル源を霧化又は香味源を加熱し、温度に応じて電気抵抗値が変化する負荷へ流れる電流値に応じた測定値をセンサから取得し、
     前記電源から前記負荷への給電を行う給電シーケンスを複数回制御すると共に、前の前記給電シーケンスにおける前記測定値に基づき、時間軸において前記前の給電シーケンスより後の前記給電シーケンスの長さを決定する
     エアロゾル生成装置の制御方法。
  20.  電源と、
     温度に応じて電気抵抗値が変化し、前記電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、
     前記エアロゾル源又は前記香味源の残量に影響される測定値を出力するセンサと、
     前記電源から前記負荷への給電を制御し、前記電源から前記負荷への給電を行う給電シーケンスに時間軸において内包される判定期間内に、前記測定値が閾値未満の値を示した場合、異常と判定する判定動作を行う制御部と、を含み、
     前記制御部は、前記測定値に基づき推定される、前記エアロゾル源又は前記香味源が枯渇する可能性が高いほど、前記判定期間を短く設定する
     エアロゾル生成装置。
  21.  エアロゾル生成装置の制御方法であって、
     温度に応じて電気抵抗値が変化する負荷に対する電源からの給電により加熱されるエアロゾル源又は香味源の残量に影響される測定値をセンサから取得し、
     前記電源から前記負荷への給電を制御し、前記電源から前記負荷への給電を行う給電シーケンスに時間軸において内包される判定期間内に、前記測定値が閾値未満の値を示した場合、異常と判定する判定動作を行い、
     前記測定値に基づき推定される、前記エアロゾル源又は前記香味源が枯渇する可能性が高いほど、前記判定期間を短く設定する
     エアロゾル生成装置の制御方法。
  22.  電源と
     温度に応じて電気抵抗値が変化し、前記電源からの給電によりエアロゾル源を霧化又は香味源を加熱する負荷と、
     前記負荷へ流れる電流値に応じた測定値を出力するセンサと、
     前記電源から前記負荷への給電を行う給電シーケンスを複数回制御する制御部と、を含み、
     前記制御部は、今回の前記給電シーケンスにおける前記測定値に基づき、時間軸において今回より後の前記給電シーケンスの長さを決定する
     エアロゾル生成装置。
  23.  エアロゾル生成装置の制御方法であって、
     電源からの給電によりエアロゾル源を霧化又は香味源を加熱し、温度に応じて電気抵抗値が変化する負荷へ流れる電流値に応じた測定値をセンサから取得し、
     前記電源から前記負荷への給電を行う給電シーケンスを複数回制御すると共に、今回の前記給電シーケンスにおける前記測定値に基づき、時間軸において今回より後の前記給電シーケンスの長さを決定する
     エアロゾル生成装置の制御方法。
  24.  請求項14、17、19、21又は23に記載のエアロゾル生成装置の制御方法をプロセッサに実行させるためのプログラム。
PCT/JP2017/038393 2017-10-24 2017-10-24 エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム WO2019082281A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019549723A JP6892929B2 (ja) 2017-10-24 2017-10-24 エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム
CN201780096070.3A CN111246759B (zh) 2017-10-24 2017-10-24 气溶胶生成装置、气溶胶生成装置的控制方法
PCT/JP2017/038393 WO2019082281A1 (ja) 2017-10-24 2017-10-24 エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム
EP17930120.5A EP3701820A4 (en) 2017-10-24 2017-10-24 AEROSOL GENERATION DEVICE, AEROSOL GENERATION DEVICE CONTROL PROCESS, AND A PROGRAM DESIGNED TO MAKE A PROCESSOR PERFORM THIS PROCESS
EP22156735.7A EP4014767A3 (en) 2017-10-24 2017-10-24 Aerosol generating apparatus, method for controlling aerosol generating apparatus, and program for causing processor to execute the method
US16/850,012 US11627763B2 (en) 2017-10-24 2020-04-16 Aerosol generating apparatus and method for controlling aerosol generating apparatus
JP2021066032A JP6889345B1 (ja) 2017-10-24 2021-04-08 エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム
JP2021090532A JP7184962B2 (ja) 2017-10-24 2021-05-28 エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム
JP2022186584A JP7430235B2 (ja) 2017-10-24 2022-11-22 エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038393 WO2019082281A1 (ja) 2017-10-24 2017-10-24 エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/850,012 Continuation US11627763B2 (en) 2017-10-24 2020-04-16 Aerosol generating apparatus and method for controlling aerosol generating apparatus

Publications (1)

Publication Number Publication Date
WO2019082281A1 true WO2019082281A1 (ja) 2019-05-02

Family

ID=66246811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038393 WO2019082281A1 (ja) 2017-10-24 2017-10-24 エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム

Country Status (5)

Country Link
US (1) US11627763B2 (ja)
EP (2) EP3701820A4 (ja)
JP (4) JP6892929B2 (ja)
CN (1) CN111246759B (ja)
WO (1) WO2019082281A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019180909A1 (ja) * 2018-03-23 2021-02-12 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
CN112716055A (zh) * 2019-10-28 2021-04-30 日本烟草产业株式会社 气溶胶吸入器和气溶胶吸入器的控制设备
CN112971209A (zh) * 2019-12-12 2021-06-18 上海新型烟草制品研究院有限公司 一种电子烟控制系统、电子烟以及电子烟控制方法
EP3876768A4 (en) * 2020-01-16 2021-12-22 KT & G Corporation AEROSOL GENERATION DEVICE
US20220218039A1 (en) * 2019-05-22 2022-07-14 Hauni Maschinenbau Gmbh Method for regulating the vaporisation of a vaporiser in an inhaler
WO2022239359A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207265866U (zh) * 2017-08-21 2018-04-20 卓尔悦欧洲控股有限公司 升压电路、电池装置和电子烟
WO2019082281A1 (ja) * 2017-10-24 2019-05-02 日本たばこ産業株式会社 エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム
JP6864141B1 (ja) * 2020-07-09 2021-04-28 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
DE102021126845B3 (de) 2021-10-15 2023-01-12 Dicodes Gmbh Energieversorgungsvorrichtung, E-Zigarette und Verfahren zum Erzeugen einer elektrischen Leistung
WO2023089763A1 (ja) * 2021-11-19 2023-05-25 日本たばこ産業株式会社 エアロゾル生成装置の回路ユニット、エアロゾル生成装置及びプログラム
WO2023089759A1 (ja) * 2021-11-19 2023-05-25 日本たばこ産業株式会社 エアロゾル生成装置の回路ユニット、エアロゾル生成装置及びプログラム

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232481A (ja) 1989-12-01 1991-10-16 Philip Morris Prod Inc フレーバ送出物品
JPH0839879A (ja) 1994-08-03 1996-02-13 Fujitsu Ltd 印刷装置
JP2000041654A (ja) 1998-08-04 2000-02-15 Japan Tobacco Inc 電気式香味生成物品加熱制御装置
JP2005525131A (ja) 2001-07-31 2005-08-25 クリサリス テクノロジーズ インコーポレイテッド 蒸発した液体を発生するための方法及び装置
JP2011515093A (ja) 2008-03-25 2011-05-19 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電気式エーロゾル発生システムにおいて煙成分の形成を制御する方法
JP2012027350A (ja) 2010-07-27 2012-02-09 Olympus Corp プリズム光学系、プリズム光学系を用いた画像表示装置及びプリズム光学系を用いた撮像装置
JP2013509160A (ja) 2009-10-29 2013-03-14 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 加熱器が改善された電気加熱式喫煙システム
JP2014501106A (ja) 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 消耗品を無効化する手段を備えたエアロゾル生成システム
JP2014501107A (ja) 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 液体気質の消費を取り扱う手段を有するエアロゾル生成システム
JP2014501105A (ja) 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 液体基質の減少判定手段を有するエアロゾル生成システム
JP2014512207A (ja) * 2011-04-22 2014-05-22 チョン・コーポレーション 薬剤送達システム
JP2015507476A (ja) 2011-12-30 2015-03-12 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生装置内のエアロゾル形成基材の検出
JP2015531600A (ja) 2012-09-11 2015-11-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電気ヒーターを制御して温度を制限する装置および方法
US20170006917A1 (en) * 2015-07-07 2017-01-12 Altria Client Services Inc. E-vapor device including capsule containing pre-vapor formulation
JP2017501805A (ja) 2013-12-23 2017-01-19 パックス ラブズ, インク. 気化装置のシステムおよび方法
JP2017021550A (ja) 2015-07-10 2017-01-26 富士ゼロックス株式会社 情報処理装置及び情報処理プログラム

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726421A (en) 1991-03-11 1998-03-10 Philip Morris Incorporated Protective and cigarette ejection system for an electrical smoking system
JP2005255078A (ja) 2004-03-15 2005-09-22 Yazaki Corp 車両用ヒータ制御装置
EP3508083B1 (en) 2010-08-24 2021-07-14 JT International S.A. Inhalation device including substance usage controls
KR102029510B1 (ko) * 2011-10-27 2019-10-07 필립모리스 프로덕츠 에스.에이. 향상된 에어로졸 생산을 가진 에어로졸 발생시스템
US10031183B2 (en) * 2013-03-07 2018-07-24 Rai Strategic Holdings, Inc. Spent cartridge detection method and system for an electronic smoking article
US9423152B2 (en) 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
US20140338685A1 (en) 2013-05-20 2014-11-20 Sis Resources, Ltd. Burning prediction and communications for an electronic cigarette
US11202470B2 (en) * 2013-05-22 2021-12-21 Njoy, Inc. Compositions, devices, and methods for nicotine aerosol delivery
US10058129B2 (en) * 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US9549573B2 (en) * 2013-12-23 2017-01-24 Pax Labs, Inc. Vaporization device systems and methods
US10193364B2 (en) * 2014-04-25 2019-01-29 Shenzhen Kimsen Technology Co., Ltd Electronic cigarette and method for reminding charging therein
JP6099056B2 (ja) 2014-07-04 2017-03-22 学校法人加計学園 ガスセンサ及びガスセンサアレイ
WO2016075746A1 (ja) * 2014-11-10 2016-05-19 日本たばこ産業株式会社 非燃焼型香味吸引器及び制御方法
JP6330054B2 (ja) * 2014-11-10 2018-05-23 日本たばこ産業株式会社 カートリッジ及び非燃焼型香味吸引器
WO2016075747A1 (ja) * 2014-11-10 2016-05-19 日本たばこ産業株式会社 非燃焼型香味吸引器及びパッケージ
CN108834396B (zh) * 2015-01-26 2022-03-25 佛山市新芯微电子有限公司 电子烟设备及其电路
US10524505B2 (en) 2015-08-06 2020-01-07 Altria Client Services Llc. Method for measuring a vapor precursor level in a cartomizer of an electronic vaping device and/or an electronic vaping device configured to perform the method
US10582726B2 (en) 2015-10-21 2020-03-10 Rai Strategic Holdings, Inc. Induction charging for an aerosol delivery device
US10918134B2 (en) 2015-10-21 2021-02-16 Rai Strategic Holdings, Inc. Power supply for an aerosol delivery device
US20170112194A1 (en) 2015-10-21 2017-04-27 Rai Strategic Holdings, Inc. Rechargeable lithium-ion capacitor for an aerosol delivery device
US10575561B2 (en) 2015-11-17 2020-03-03 Altria Client Services Llc Cartridge for an aerosol-generating system with customizable identification resistance
EP3419443A4 (en) * 2016-02-11 2019-11-20 Juul Labs, Inc. SAFE MOUNTING OF CARTRIDGES FOR EVAPORATOR DEVICES
WO2017147560A1 (en) * 2016-02-25 2017-08-31 Pax Labs, Inc. Vaporization device control systems and methods
US10349674B2 (en) 2017-07-17 2019-07-16 Rai Strategic Holdings, Inc. No-heat, no-burn smoking article
JP6694119B2 (ja) * 2017-10-18 2020-05-13 日本たばこ産業株式会社 吸引成分生成装置、吸引成分生成装置を制御する方法、及びプログラム
WO2019082281A1 (ja) * 2017-10-24 2019-05-02 日本たばこ産業株式会社 エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム
US20200138111A1 (en) * 2018-11-02 2020-05-07 Avail Vapor, LLC System and method for micro-vaporizer use authorization
WO2021062053A2 (en) * 2019-09-25 2021-04-01 Juul Labs, Inc. Vapor prediction model for a vaporizer device
WO2021108638A1 (en) * 2019-11-26 2021-06-03 Juul Labs, Inc. Vaporizer device with responsive inhalation detection
US11666101B2 (en) * 2020-07-15 2023-06-06 Altria Client Services Llc Heating engine control circuits and non-nicotine electronic vaping devices including the same
JP6882585B1 (ja) * 2020-09-07 2021-06-02 日本たばこ産業株式会社 吸引器用コントローラ
JP6865879B1 (ja) * 2020-09-07 2021-04-28 日本たばこ産業株式会社 エアロゾル発生システム、吸引器用コントローラ、および電源装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232481A (ja) 1989-12-01 1991-10-16 Philip Morris Prod Inc フレーバ送出物品
JPH0839879A (ja) 1994-08-03 1996-02-13 Fujitsu Ltd 印刷装置
JP2000041654A (ja) 1998-08-04 2000-02-15 Japan Tobacco Inc 電気式香味生成物品加熱制御装置
JP2005525131A (ja) 2001-07-31 2005-08-25 クリサリス テクノロジーズ インコーポレイテッド 蒸発した液体を発生するための方法及び装置
JP2011515093A (ja) 2008-03-25 2011-05-19 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電気式エーロゾル発生システムにおいて煙成分の形成を制御する方法
JP2013509160A (ja) 2009-10-29 2013-03-14 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 加熱器が改善された電気加熱式喫煙システム
JP2012027350A (ja) 2010-07-27 2012-02-09 Olympus Corp プリズム光学系、プリズム光学系を用いた画像表示装置及びプリズム光学系を用いた撮像装置
JP2014501107A (ja) 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 液体気質の消費を取り扱う手段を有するエアロゾル生成システム
JP2014501106A (ja) 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 消耗品を無効化する手段を備えたエアロゾル生成システム
JP2014501105A (ja) 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 液体基質の減少判定手段を有するエアロゾル生成システム
JP2014512207A (ja) * 2011-04-22 2014-05-22 チョン・コーポレーション 薬剤送達システム
JP2015507476A (ja) 2011-12-30 2015-03-12 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生装置内のエアロゾル形成基材の検出
JP2015531600A (ja) 2012-09-11 2015-11-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電気ヒーターを制御して温度を制限する装置および方法
JP2017501805A (ja) 2013-12-23 2017-01-19 パックス ラブズ, インク. 気化装置のシステムおよび方法
US20170006917A1 (en) * 2015-07-07 2017-01-12 Altria Client Services Inc. E-vapor device including capsule containing pre-vapor formulation
JP2017021550A (ja) 2015-07-10 2017-01-26 富士ゼロックス株式会社 情報処理装置及び情報処理プログラム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019180909A1 (ja) * 2018-03-23 2021-02-12 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
US20220218039A1 (en) * 2019-05-22 2022-07-14 Hauni Maschinenbau Gmbh Method for regulating the vaporisation of a vaporiser in an inhaler
CN112716055A (zh) * 2019-10-28 2021-04-30 日本烟草产业株式会社 气溶胶吸入器和气溶胶吸入器的控制设备
CN112716055B (zh) * 2019-10-28 2022-04-19 日本烟草产业株式会社 气溶胶吸入器和气溶胶吸入器的控制设备
CN112971209A (zh) * 2019-12-12 2021-06-18 上海新型烟草制品研究院有限公司 一种电子烟控制系统、电子烟以及电子烟控制方法
EP3876768A4 (en) * 2020-01-16 2021-12-22 KT & G Corporation AEROSOL GENERATION DEVICE
WO2022239359A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
JP7467768B2 (ja) 2021-05-10 2024-04-15 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット

Also Published As

Publication number Publication date
EP3701820A1 (en) 2020-09-02
EP3701820A4 (en) 2021-06-30
JP2021151244A (ja) 2021-09-30
US11627763B2 (en) 2023-04-18
JPWO2019082281A1 (ja) 2020-11-19
CN111246759B (zh) 2023-09-26
JP7184962B2 (ja) 2022-12-06
EP4014767A3 (en) 2022-08-31
US20200237012A1 (en) 2020-07-30
JP2023018071A (ja) 2023-02-07
CN111246759A (zh) 2020-06-05
JP7430235B2 (ja) 2024-02-09
EP4014767A2 (en) 2022-06-22
JP6892929B2 (ja) 2021-06-23
JP6889345B1 (ja) 2021-06-18
JP2021118698A (ja) 2021-08-12

Similar Documents

Publication Publication Date Title
JP6936414B2 (ja) エアロゾル生成装置
JP6889345B1 (ja) エアロゾル生成装置、エアロゾル生成装置の制御方法及び当該方法をプロセッサに実行させるためのプログラム
JP6905073B2 (ja) エアロゾル生成装置、エアロゾル生成装置の制御方法、及びこれらの方法をプロセッサに実行させるためのプログラムラム
JPWO2019146063A1 (ja) エアロゾル生成装置並びにこれを動作させる方法及びプログラム
TWI772332B (zh) 霧氣產生裝置
JP7300482B2 (ja) エアロゾル生成装置
EA044769B1 (ru) Аэрозоль-генерирующее устройство
TW201916818A (zh) 霧氣產生裝置、霧氣產生裝置的控制方法及使處理器實行此方法的程式
TW201916817A (zh) 霧氣產生裝置、霧氣產生裝置的控制方法、霧氣源或香味源之殘餘量的推測方法及使處理器實行此等方法的程式
EA040068B1 (ru) Аэрозоль-генерирующее устройство
EA044895B1 (ru) Аэрозольное устройство и способ и программа для управления таким устройством

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549723

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017930120

Country of ref document: EP

Effective date: 20200525