WO2019082273A1 - Determination device, determination system and determination method - Google Patents

Determination device, determination system and determination method

Info

Publication number
WO2019082273A1
WO2019082273A1 PCT/JP2017/038360 JP2017038360W WO2019082273A1 WO 2019082273 A1 WO2019082273 A1 WO 2019082273A1 JP 2017038360 W JP2017038360 W JP 2017038360W WO 2019082273 A1 WO2019082273 A1 WO 2019082273A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection information
detection
input
circuit
determination
Prior art date
Application number
PCT/JP2017/038360
Other languages
French (fr)
Japanese (ja)
Inventor
山口 泰生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/038360 priority Critical patent/WO2019082273A1/en
Priority to JP2019549717A priority patent/JP6956797B2/en
Publication of WO2019082273A1 publication Critical patent/WO2019082273A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/173Eliminating or reducing the effect of unwanted signals, e.g. due to vibrations or electrical noise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a determination device that determines whether an input circuit for inputting an external signal from an external device is in a normal state, a determination system using the determination device, and a determination method performed by the determination device.
  • Patent Document 1 in an electronic control system of a vehicle, an input circuit for inputting an input signal detects an internal circuit as an input circuit, and an edge detection circuit for detecting that the voltage level of the input signal changes from low level to high level; Disclosed is a method to increase the fault tolerance of the system and the possibility that the input circuit detects the input signal by adopting a dual configuration with a level detection circuit that detects that the voltage level of the input signal is at the high level. doing.
  • An object of the present invention is to solve the above-mentioned problems, and an object thereof is to provide a determination apparatus that determines whether an input circuit for inputting a signal from an external signal is in a normal state.
  • the present invention is a determination device that determines whether an input circuit that detects an external signal input from an external device by a plurality of internal circuits is in a normal state based on a plurality of pieces of detection information output from the input circuit, The determination device distinguishes and inputs each of the plurality of detection information, and separately indicates that the plurality of detection information corresponding to each of the plurality of detection information indicates that each of the plurality of detection information is detected.
  • the plurality of detection information items corresponding to each of the plurality of detection information within a predetermined time It is determined whether all become invalid or valid, and if all of the plurality of detection information becomes invalid from valid within a predetermined time, it is determined that the input circuit is in a normal state, and a plurality of Detection A determination device and a determining unit and the input circuit is not in a normal state when all of the broadcast is not effective from the disabled.
  • the determination device is configured to determine whether the input circuit for inputting the external signal from the external device is in a normal state based on detection information when the external circuit is detected by the input circuit. Therefore, when the input circuit is in an abnormal state, an effect of preventing the electronic control system from malfunctioning can be obtained.
  • FIG. 1 is a device configuration diagram showing a configuration of devices included in an electronic control system of a vehicle according to a first embodiment of the present invention. It is a block block diagram which shows the functional block of the drive control part which inputs the command signal from a vehicle control part.
  • FIG. 7 is a timing chart showing processing of an edge detection circuit and a level detection circuit when an external signal is input.
  • FIG. 7 is a timing chart showing processing of an edge detection circuit, a level detection circuit, a detection unit, and a determination unit when an external signal is input.
  • FIG. 7 is a timing chart showing processing of the edge detection circuit, the level detection circuit, the detection unit, and the determination unit when the edge detection circuit of the input circuit is in an abnormal state.
  • FIG. 7 is a timing chart showing processing of an edge detection circuit and a level detection circuit when an external signal is input.
  • FIG. 13 is a timing chart showing processing of the edge detection circuit, the level detection circuit, the detection unit, and the determination unit when the level detection circuit of the input circuit is in an abnormal state.
  • FIG. 13 is another timing chart showing processing of the edge detection circuit, the level detection circuit, the detection unit and the determination unit when the edge detection circuit of the input circuit is in an abnormal state.
  • FIG. 17 is another timing chart showing processing of the edge detection circuit, the level detection circuit, the detection unit and the determination unit when the level detection circuit of the input circuit is in an abnormal state.
  • It is a flowchart figure showing processing of a judgment system. It is a block block diagram which shows the functional block of a drive control part at the time of setting the internal circuit of an input circuit as triple construction.
  • FIG. 13 is a timing chart showing processing of the edge detection circuit, the level detection circuit, the detection unit, and the determination unit when the level detection circuit of the input circuit is in an abnormal state.
  • FIG. 13 is a timing chart showing processing of an edge detection circuit, a level detection circuit, a detection unit, and a determination unit in a case where the internal circuit of the input circuit is in a triple configuration. It is a block block diagram which shows the functional block of the drive control part as a modification of a determination system. It is a timing chart showing processing in a modification of a judgment system.
  • FIG. 10 is a device configuration diagram showing a configuration of a device included in an electronic control system for an electric drive vehicle according to a second embodiment of the present invention. It is a block block diagram which shows the functional block of the drive control part which inputs the command signal from a vehicle control part. It is a flowchart figure which shows the process which performs a normal operation mode and a test mode in an electronic control system. It is a block block diagram which shows the functional block of the drive control part as another modification of a determination system.
  • FIG. 1 is a device configuration diagram showing a configuration of devices included in an electronic control system 101 of a vehicle 100 according to a first embodiment of the present invention.
  • the vehicle 100 is, for example, a car such as a passenger car, a bus, and a truck, and is a transportation means for transporting a person or a thing.
  • the electronic control system 101 of the vehicle 100 is an electronic control system 101 for the vehicle 100.
  • the electronic control system 101 may have all the functions installed in the vehicle 100 or may not have all the functions installed in the vehicle 100, and some functions may be provided outside via a network or the like. Control may be performed on the vehicle 100. In the example of FIG. 1, the electronic control system 101 has all functions installed in the vehicle 100.
  • the vehicle 100 includes an engine 102, a transmission mechanism 103, wheels 104, a generator 106, a battery 105, a brake system 107, a braking mechanism 108, a speed detection unit 109, a drive control unit 110, and a vehicle control unit 111. It consists of And the electronic control system 101 points out the electrical component which remove
  • solid arrows indicate signal paths, and dashed dotted arrows indicate power supply paths.
  • the engine 102 is an internal combustion engine that generates power by burning a fuel such as gasoline or light oil, for example, and serves as a power source for driving the vehicle 100.
  • the power generated by the engine 102 is transmitted to the wheels 104 as a driving force of the vehicle 100 through the transmission mechanism 103.
  • the battery 105 is a secondary battery capable of storing, charging and discharging, and serves as a power source of each device of the vehicle 100.
  • the generator 106 is a power generation device that generates power by using the motive power of the engine 102 via the transmission mechanism 103. By charging the battery 105 with the power generated by the generator 106 while the vehicle 100 is traveling, each device of the vehicle 100 can continue the operation during traveling for a long time using the battery 105 as a power source.
  • the brake system 107 is a system for braking the vehicle 100.
  • the brake system 107 brakes the vehicle 100 by applying a braking force in a direction in which the rotation of the wheel 104 is suppressed via the braking mechanism 108.
  • the speed detection unit 109 is a device for detecting the traveling speed of the vehicle 100.
  • the drive control unit 110 manages the operating states of the engine 102 and the brake system 107, and receives a command signal from the vehicle control unit 111 to control the engine 102 and the brake system 107, thereby driving or braking the vehicle 100. Is a device that controls the running state.
  • the vehicle control unit 111 acquires information on the operation states of the engine 102 and the brake system 107 managed by the drive control unit 110 and the traveling speed detected by the speed detection unit 109, and responds to the situation while the vehicle 100 is traveling. Is a device that controls the drive control unit 110 to maintain an optimal running state. Further, the vehicle control unit 111 manages and controls each device of the vehicle 100. For example, when the vehicle control unit 111 manages information on the storage amount of the battery 105 and determines that it is necessary to increase the storage amount of the battery 105, the vehicle control unit 111 transmits the wheel 104 to the drive control unit 110. The engine 102 and the generator 106 are controlled to operate without transmitting power to them.
  • FIG. 2 is a block diagram showing a functional block of the drive control unit 110 which receives a command signal from the vehicle control unit 111.
  • the drive control unit 110 includes a microcomputer 201, an input circuit 202, and a communication circuit 203.
  • the microcomputer 201 is a microcontroller (Microcontroller) mounted on the in-vehicle apparatus, and for example, the drive control unit 110 controls the engine 102 and the brake system 107 in response to an input of a command signal from the vehicle control unit 111. Execute the process of
  • the input circuit 202 is a circuit that detects an input of a command signal from the vehicle control unit 111, and outputs detection information indicating that the command signal has been detected to the microcomputer 201.
  • detection information output from the input circuit 202 to the microcomputer 201 is treated as a signal.
  • a device external to the input circuit 202 is defined as an external device.
  • the communication circuit 203 is a circuit serving as a communication line for the drive control unit 110 to communicate with the vehicle control unit 111.
  • the communication line for example, an in-vehicle LAN such as CAN (Controller Area Network) (registered trademark), LIN (Local Interconnect Network), or CXPI (Clock Extension Peripheral Interface) (registered trademark) can be used.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • CXPI Chip Extension Peripheral Interface
  • the microcomputer 201 includes a determination device 204, an operation unit 205, a timer 206, a RAM 207, a ROM 208, and an interface circuit 209.
  • the respective devices in the microcomputer 201 can exchange information with each other through the signal transmission path L.
  • the determination device 204 includes a detection unit 210, a determination unit 211, and a notification unit 212, and determines whether the input circuit 202 is in a normal state based on a signal of detection information input from the input circuit 202.
  • Terminal P in FIG. 2 is a terminal for inputting a signal of detection information from the input circuit 202 to the microcomputer 201.
  • the microcomputer 201 inputs a signal of the input detection information to the determination device 204 via the terminal P.
  • the microcomputer 201 may input a signal of detection information to the determination device 204 and to each device in the microcomputer 201 via the terminal P and the signal transmission path L, or the microcomputer 201 via the determination device 204. It may be input to each device within.
  • the detection unit 210 separately inputs the plurality of pieces of detection information output from the input circuit 202. Then, the detection unit 210 individually makes the logic of the detection information corresponding to the detected detection information and the detection information corresponding to the detection information valid, in order to indicate that the input detection information is detected.
  • the logic of the detection information handled by the detection unit 210 is defined as information represented by two values, such as valid and invalid or ON and OFF.
  • the determination unit 211 determines whether all of the plurality of pieces of detection information are valid within a predetermined time. . Then, when determining that all the detection information is valid within a predetermined time, the determining unit 211 determines that the input circuit 202 is in the normal state. In addition, when determining that all the detection information is not valid within the predetermined time, the determining unit 211 determines that the input circuit 202 is not in the normal state, that is, in the abnormal state.
  • the determination unit 211 As a method for the determination unit 211 to confirm the validity of the detection information, when the detection unit 210 validates the detection information, a signal of the detection information is output to the determination unit 211, or the determination unit 211 outputs each signal. It is conceivable to periodically check the detection information.
  • the notification unit 212 When the notification unit 212 confirms the determination result of the determination unit 211, the notification unit 212 notifies the outside of the determination result.
  • the destination to which the notification unit 212 notifies is, for example, the operation unit 205 that executes a predetermined process corresponding to the input command signal according to the content of the determination result, or communication is possible via the interface circuit 209 It is an external device.
  • Arithmetic unit 205 executes a program stored in advance in ROM 208 using RAM 207 capable of temporary storage, or predetermined information corresponding to detection information output based on a command signal input circuit 202 receives from vehicle control unit 111. Execute processing
  • the timer 206 is an apparatus for counting and managing time shared in the microcomputer 201.
  • the interface circuit 209 is a circuit serving as an interface for connecting the microcomputer 201 to the communication circuit 203.
  • the input circuit 202 has an edge detection circuit 213 and a level detection circuit 214 as internal circuits in a duplex configuration, branches the input command signal, and simultaneously inputs it to the edge detection circuit 213 and the level detection circuit 214.
  • the input circuit 202 and the determination device 204 may be disposed in the same device, may be disposed in different adjacent devices, or may be disposed across a plurality of other devices without being adjacent to each other. It may be done.
  • FIG. 2 is an example, and does not depend on the arrangement of the input circuit 202 and the determination device 204 in the electronic control system 101, but the normality of the input circuit 202 based on detection information input from the input circuit 202 by the determination device 204. It can be regarded as a judgment system for judging a state or an abnormal state.
  • a system in which the input circuit 202 and the determination device 204 are combined is defined as a determination system 215.
  • the determination system 215 is shown by a dashed frame in FIG.
  • the determination device 204 can be disposed outside the microcomputer 201 of the drive control unit 110, or the input circuit 202 can be disposed in the microcomputer 201 of the drive control unit 110.
  • the microcomputer 201 can check the determination result of the determination device 204, so that the microcomputer 201 receives a command signal from the vehicle control unit 111 and outputs a predetermined signal. It can be determined whether to execute the process.
  • a signal that the input circuit 202 inputs from an external device external to the input circuit 202 is defined as an external signal IN, such as a command signal input from the vehicle control unit 111 described above.
  • FIG. 3 is a timing chart showing processing of the edge detection circuit 213 and the level detection circuit 214 when the external signal IN is input.
  • the vertical axis represents the logic of each signal.
  • the logic of the signal is indicated as valid or invalid as well as the logic of the information described above.
  • the logic of such a signal is indicated by a binary value of high level state or low level state of voltage level. That is, the logic of each signal is defined as valid when the voltage level of the signal is high, and defined as invalid when low. Unless otherwise stated, the initial value of the logic of the signal is invalidated.
  • the horizontal axis represents the passage of time, and time proceeds in the direction of the arrow.
  • the edge detection circuit 213 detects that the voltage level of the external signal IN has changed from the low level state to the high level state, as a feature of the input external signal IN.
  • the change at this time is called an edge of the external signal IN.
  • the edge detection circuit 213 changes the voltage level of the signal from the low level state to the high level state, and outputs an edge detection signal D1.
  • the edge detection signal D1 is detection information indicating that the edge detection circuit 213 has detected an edge of the external signal IN.
  • the level detection circuit 214 detects that the voltage level of the external signal IN is in the high level state as a feature of the input external signal IN. Then, the level detection circuit 214 changes the voltage level of the signal from the low level state to the high level state, and outputs the level detection signal D2.
  • the level detection signal D2 is detection information indicating that the level detection circuit 214 has detected a high level state at the voltage level of the external signal IN.
  • the edge detection circuit 213 is referred to as a first detection circuit.
  • a feature of the external signal IN detected by the first detection circuit is a first feature.
  • the first feature of the external signal IN is that the voltage level of the external signal IN changes from the low level state to the high level state.
  • the level detection circuit 214 is a second detection circuit.
  • the feature of the external signal IN detected by the second detection circuit is a second feature.
  • the second feature of the external signal IN is that the voltage level of the external signal IN is in the high level state.
  • the edge detection signal D1 output when the edge detection circuit 213 detects the first feature is set as first detection information.
  • the level detection signal D2 output when the level detection circuit 214 detects the second feature is used as second detection information.
  • the time is appropriately set according to, for example, a specification of a change in voltage level of the input external signal IN, a frequency or timing of inputting the external signal IN, or the like.
  • timings that are substantially simultaneous are shown as being shifted, such as time T1 and time T2.
  • the time T1 is set earlier than the time T2, but even if the time T2 is earlier than the time T1, the times T1 and T2 may be simultaneous.
  • FIG. 4 is a timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the external signal IN is input.
  • the vertical axis represents the logic of each signal and each flag.
  • the logic of each signal is the same as in FIG.
  • the logic of the flag is indicated as valid or invalid as in the logic of the information described above.
  • the logic of such a flag is indicated by a binary value of ON or OFF. That is, the logic of each flag is defined as valid when the flag is ON, and defined as invalid when the flag is OFF. Note that, unless otherwise stated, the initial value of the logic of the flag is invalidated.
  • the horizontal axis is the same as that in FIG.
  • the edge detection signal D1, the level detection signal D2, the time T1 and the time T2 in FIG. 4 are the same as those in FIG.
  • the detection unit 210 detects that the input circuit 202 has detected the edge of the external signal IN. In order to indicate detection at this time, the detection unit 210 sets the edge detection flag F1 from OFF to ON.
  • the detection unit 210 detects that the input circuit 202 has detected the high level state of the external signal IN. In order to indicate detection at this time, the detection unit 210 sets the level detection flag F2 from OFF to ON.
  • the detection unit 210 handles a plurality of pieces of detection information corresponding to each of a plurality of pieces of detection information to be input. Then, an edge detection flag F1 indicating that the detection unit 210 detects the edge detection signal D1 is set as first detection information, and a level detection flag F2 indicating that the level detection signal D2 is detected is set as second detection information. .
  • the determination unit 211 sets the waiting time Tw and monitors that the waiting time Tw elapses.
  • the waiting time Tw is the above-described predetermined time, and is a time for the determination unit 211 to determine whether all of the plurality of pieces of detection information are valid.
  • the determination unit 211 confirms that the level detection flag F2 has become ON at time T4 before the waiting time Tw has elapsed. At this time, the determination unit 211 determines that the input circuit 202 is in the normal state because all the flags become valid within the waiting time Tw.
  • the determination unit 211 sets the normal determination flag F3 from OFF to ON, and indicates the determination result of the determination process.
  • the detection unit 210 is set in advance so that all detection information output from the input circuit 202 can be recognized and processed. Further, the determination unit 211 is set in advance so that all detection information handled by the detection unit 210 can be recognized and processed.
  • timings that are substantially simultaneous are shown being shifted, such as times T3 and T4.
  • time T3 is earlier than time T4, time T3 may be earlier than time T3, or time T3 may be simultaneous with time T4. That is, the determination unit 211 performs setting and monitoring of the waiting time Tw when it is confirmed that at least one piece of detection information has become valid. Then, the determination unit 211 determines whether all the detection information becomes valid within the waiting time Tw, and determines whether the input circuit 202 is in the normal state.
  • Information on the logic of each of the edge detection flag F1, the level detection flag F2, and the normality determination flag F3 shown in FIG. 4 may be output as a signal whose voltage level changes to the high level state or the low level state. , And may be written in a predetermined storage area of the RAM 207 as information indicating ON or OFF.
  • the determination unit 211 confirms that the edge detection flag F1 and the level detection flag F2 are ON, the notification by the notification unit 212 is completed, or a combination of these time may be considered.
  • FIG. 5 is a timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the edge detection circuit 213 of the input circuit 202 is in an abnormal state.
  • the vertical and horizontal axes are the same as in FIG.
  • An abnormal state of the edge detection circuit 213 refers to, for example, a disconnection at a point where it is detected in the edge detection circuit 213 that the voltage level of the input external signal IN has changed from low level to high level, or an edge detection signal.
  • the voltage level of the terminal that outputs D1 is stuck at a low level, or some abnormality has occurred, and the edge detection signal D1 is not normally output with the input of the external signal IN.
  • the edge detection circuit 213 in the abnormal state does not output the edge detection signal D1 despite the fact that the external signal IN is input. Therefore, the detection unit 210 does not set the edge detection flag F1 to ON.
  • the level detection circuit 214 in the normal state detects that the voltage level of the external signal IN is in the high level state, and detects the level.
  • the signal D2 is output. Therefore, the detection unit 210 sets the level detection flag F2 to ON at time T8.
  • the determination unit 211 When determining that the level detection flag F2 is turned on at time T8, the determination unit 211 sets a waiting time Tw and performs monitoring. However, the determination unit 211 does not confirm that the edge detection flag F1 is turned on before the waiting time Tw elapses. As a result, the determination unit 211 determines that the input circuit 202 is in an abnormal state at time T9 when the waiting time Tw has elapsed.
  • the determination unit 211 sets the abnormality determination flag F4 from OFF to ON, and indicates the determination result of the determination process.
  • the determination device 204 indicates that the input circuit 202 is in the normal state by the validity of the normal judgment flag F3 and indicates that the input circuit 202 is in the abnormal state by the validity of the abnormality judgment flag F4.
  • the possibility that the electronic control system 101 recognizes the abnormality of the input circuit 202 can be increased more than before.
  • FIG. 6 is a timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the level detection circuit 214 of the input circuit 202 is in an abnormal state.
  • the vertical and horizontal axes are the same as in FIG.
  • An abnormal state of the level detection circuit 214 refers to, for example, disconnection of a wire at a point where the level of the voltage level of the input external signal IN is detected in the level detection circuit 214 or a voltage at a terminal for outputting the level detection signal D2.
  • the level is stuck at the low level or some abnormality occurs, and the level detection signal D2 is not normally output with the input of the external signal IN.
  • the level detection circuit 214 in the abnormal state does not output the level detection signal D2 despite the input of the external signal IN. Therefore, the detection unit 210 does not set the level detection flag F2 to ON.
  • the edge detection circuit 213 in the normal state detects that the voltage level of the external signal IN has changed from low level to high level, An edge detection signal D1 is output. Therefore, the detection unit 210 sets the edge detection flag F1 to ON at time T11.
  • the determination unit 211 When determining that the edge detection flag F1 is turned on at time T11, the determination unit 211 sets a waiting time Tw and performs monitoring. However, the determination unit 211 does not confirm that the level detection flag F2 is turned on before the waiting time Tw elapses. As a result, the determination unit 211 determines that the input circuit 202 is in an abnormal state at time T12 when the waiting time Tw has elapsed, and sets the abnormality determination flag F4 to ON.
  • FIG. 7 is another timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the edge detection circuit 213 of the input circuit 202 is in an abnormal state.
  • the vertical and horizontal axes are the same as in FIG.
  • the voltage level of the terminal for outputting the edge detection signal D1 temporarily becomes high due to the phenomenon of oscillation of parts in the circuit and noise superposition on the wiring. This indicates that a certain abnormality has occurred, such as sticking to the signal, and a signal corresponding to the edge detection signal D1 is abnormally output.
  • the edge detection circuit 213 in an abnormal state outputs a signal corresponding to the edge detection signal D1 at time T13, even though the external signal IN is not input. Therefore, the detection unit 210 sets the edge detection flag F1 to ON at time T14.
  • the level detection circuit 214 in the normal state since the level detection circuit 214 in the normal state does not receive the external signal IN, it does not output the level detection signal D2.
  • the determination unit 211 When determining that the edge detection flag F1 is turned on at time T14, the determination unit 211 sets a waiting time Tw and performs monitoring. However, the determination unit 211 does not confirm that the level detection flag F2 is turned on before the waiting time Tw elapses. As a result, the determination unit 211 determines that the input circuit 202 is in an abnormal state at time T15 when the waiting time Tw has elapsed, and sets the abnormality determination flag F4 to ON.
  • FIG. 8 is another timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the level detection circuit 214 of the input circuit 202 is in an abnormal state.
  • the vertical and horizontal axes are the same as in FIG.
  • the voltage level of the terminal for outputting the level detection signal D2 temporarily becomes high due to the phenomenon of oscillation of parts in the circuit and noise superposition on the wiring. In this state, there is an abnormality such as sticking to the sensor, and a signal corresponding to the level detection signal D2 is output abnormally.
  • the level detection circuit 214 in an abnormal state outputs a signal corresponding to the level detection signal D2 at time T16, even though the external signal IN is not input. Therefore, the detection unit 210 sets the level detection flag F2 to ON at time T17.
  • the edge detection circuit 213 in the normal state since the edge detection circuit 213 in the normal state does not receive the external signal IN, it does not output the edge detection signal D1.
  • the determination unit 211 When determining that the level detection flag F2 is turned on at time T17, the determination unit 211 sets a waiting time Tw and performs monitoring. However, the determination unit 211 does not confirm that the edge detection flag F1 is turned on before the waiting time Tw elapses. As a result, the determination unit 211 determines that the input circuit 202 is in an abnormal state at time T18 when the waiting time Tw has elapsed, and sets the abnormality determination flag F4 to ON.
  • the time of the notification in the notification part 212 being completed can be considered, for example.
  • the input circuit 202 and the determination device 204 may be disposed across a plurality of other devices as described above, and therefore one of the signals of the detection information output from the other device is the input circuit 202. It is also conceivable to convert the part and output it to the determination device 204. In such a case, it is possible that the signal of the detection information output from the input circuit 202 and the signal of the detection information input by the determination device 204 do not become the same signal.
  • the information that needs to be transmitted from the input circuit 202 to the determination device 204 is information indicating whether the internal circuit of the input circuit 202 has detected the external signal IN, and the information on valid or invalid logic is described. It is information. This information is defined as detection information.
  • FIG. 9 is a flowchart showing the process of the determination system 215. In the flowchart of FIG. 9, the process starts when the determination system 215 receives an external signal IN from an external device.
  • the edge detection circuit 213 and the level detection circuit 214 of the input circuit 202 receive the external signal IN. Then, it progresses to process S902.
  • the edge detection circuit 213 detects an edge of the external signal IN and outputs detection information.
  • the edge is a feature of the external signal IN in which the voltage level of the signal changes from low level to high level. Further, as a feature of the external signal IN, the level detection circuit 214 detects that the voltage level of the external signal IN is in the high level state, and outputs detection information. Then, it progresses to process S903a.
  • Processing S 903 a and processing S 903 b indicate loop processing in the determination system 215. In the loop process, when the process proceeds to the process S 903 b, the process returns to the process S 903 a.
  • step S904 the detection unit 210 of the determination device 204 determines whether at least one of the plurality of pieces of detection information input from the input circuit 202 has been detected. If at least one piece of detection information is detected, the process proceeds to processing S905. If none of the detection information is detected, the process proceeds to step S 913.
  • the detection unit 210 makes the detection information corresponding to the detected detection information valid to invalid. Then, it progresses to process S906.
  • process S906 the determination unit 211 of the determination apparatus 204 confirms the detection information that has become invalid from valid in process S905. Then, it progresses to process S907.
  • the determination unit 211 determines whether or not the waiting time Tw is being monitored. If monitoring is in progress, the process proceeds to step S909. If the monitoring is not in progress, the process proceeds to step S908.
  • processing S908 the determination unit 211 sets the waiting time Tw and starts monitoring. Thereafter, the process proceeds to step S909.
  • processing S909 the determination unit 211 determines whether all the detection information processed by the detection unit 210 has become valid. If all the detection information is valid, the process proceeds to processing S910. If all the detection information is not valid, the process proceeds to processing S914.
  • the determination unit 211 determines that the input circuit 202 is in the normal state. Then, it progresses to process S911.
  • the notification unit 212 In processing S911, the notification unit 212 notifies the determination result of the determination unit 211. Then, it progresses to process S910.
  • the detection unit 210 resets the detection information to invalid, and the determination unit 211 resets the determination result to invalid. Thereafter, the process ends.
  • processing S913 the determination unit 211 determines whether or not the waiting time Tw is being monitored. If monitoring is in progress, the process proceeds to step S914. If the monitoring is not in progress, the process proceeds to processing S 903 b.
  • processing S914 the determination unit 211 determines whether or not the waiting time Tw being monitored has elapsed. If the waiting time Tw has elapsed, the process proceeds to step S915. If the waiting time Tw has not elapsed, the process proceeds to step S 903 b.
  • the determination unit 211 determines that the input circuit 202 is in an abnormal state. Then, it progresses to process S911.
  • the internal circuit of the input circuit 202 is duplicated and each edge individually detects an edge and a high level state which is a feature of the external signal IN and outputs detection information.
  • the features of the external signal IN detected by the internal circuit of the input circuit 202 are not limited to the edge and high level states.
  • the internal circuit of the input circuit 202 may detect a feature of the external signal IN which is different from the edge and high level state, and output detection information.
  • the internal circuit of the input circuit 202 may be configured to be three or more multiplexed, and each circuit may individually detect the feature of the external signal IN and output detection information.
  • FIG. 10 is a block diagram showing functional blocks of the drive control unit 110 in the case where the internal circuit of the input circuit 202 has a triple configuration.
  • the input circuit 202 has an internal circuit in a triple configuration of an edge detection circuit 213, a level detection circuit 214, and a pattern detection circuit 1001.
  • the other configuration is the same as that shown in FIG.
  • the pattern detection circuit 1001 detects the type of the external signal IN as a feature of the external signal IN, and outputs detection information corresponding to the type.
  • FIG. 11 is a timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the internal circuit of the input circuit 202 has a triple configuration.
  • the input external signals IN1 and IN2 include type information K.
  • the type information K includes a pattern consisting of a low level state and a high level state of voltage levels corresponding to the types of the plurality of external signals IN.
  • the input circuit 202 detects an edge, a high level state, and a type of the external signal IN, and outputs an edge detection signal D1, a level detection signal D2, and a pattern detection signal D3.
  • the edge detection signal D1, the level detection signal D2, and the pattern detection signal D3 are detection information.
  • the pattern detection signal D3 corresponds to the pattern of the voltage level in the type information K of the external signal IN, and the contents are different as the pattern detection signals D3a and D3b.
  • the pattern detection circuit 1001 detects the patterns of the external signals IN1 and IN2 different in type from each other, and outputs a pattern detection signal D3a and a pattern detection signal D3b.
  • the pattern detection signal D3a and the pattern detection signal D3b are a pattern detection signal D3.
  • the detection unit 210 corresponds to each of the three detection information input from the input circuit 202, that is, the edge detection signal D1, the level detection signal D2, and the pattern detection signal D3.
  • Each of the edge detection flag F1, the level detection flag F2 and the pattern detection flag F5 is changed from OFF to ON. Further, when determining that all the flags become invalid from valid within the waiting time Tw, the determining unit 211 determines that the input circuit 202 is in the normal state.
  • the pattern detection circuit 1001 is referred to as a third detection circuit.
  • the feature of the external signal IN detected by the pattern detection circuit 1001 is the third feature.
  • the pattern detection signal D3 output from the pattern detection circuit 1001 is used as third detection information.
  • detection information indicating that the detection unit 210 has detected the pattern detection signal D3 is set as third detection information.
  • the microcomputer 201 of the drive control unit 110 distinguishes the external signal IN having a plurality of types based on the input pattern detection signal D3, and responds. It becomes possible to execute predetermined processing. That is, the microcomputer 201 of the drive control unit 110 can be executed while discriminating a plurality of predetermined processes.
  • an interval time Ti is provided so that the detection device 204 detects and outputs the detection information output from the plurality of external signals IN which are continuously input by the input circuit 202 in a row. think of. That is, the interval time Ti is a time for the detection unit 210 and the determination unit 211 to perform processing based on a plurality of pieces of detection information corresponding to the same external signal IN.
  • the determination unit 211 sets the interval time Ti1 after the determination processing, or sets the interval time Ti2 after the waiting time Tw has elapsed, so that the detection unit 210 and the determination unit 211 are external. It is possible to distinguish a set of detection information output with the input of the signal IN. After the determination process in the determination unit 211 is the time when the normality determination flag F3 or the abnormality determination flag F4 becomes valid.
  • any two of the first feature, the second feature, and the third feature described above are detected and detection information is output. Also good.
  • the first and third features are detected to output first and third detection information
  • the second and third features are detected and second and third detection information and Output third detection information.
  • the input circuit 202 inputs an external signal IN in which the voltage level of the signal is maintained at high level or low level according to the control content.
  • the microcomputer 201 determines whether the voltage level of the input external signal IN is high level or low level, and executes predetermined processing corresponding to each voltage level.
  • FIG. 12 is a block diagram showing functional blocks of the drive control unit 110 as a modification of the determination system 215.
  • the input circuit 202 has an internal circuit in a triple configuration of an edge detection circuit 1201, a high level detection circuit 1202 and a low level detection circuit 1203.
  • the determination device 204 includes a detection unit 1204 different from that of FIG. 2. The other configuration is the same as that shown in FIG.
  • FIG. 13 is a timing chart showing processing in a modification of the determination system 215.
  • the edge detection circuit 1201 of the input circuit 202 outputs an edge detection signal D4 upon detecting the change from the low level to the high level and the change from the high level to the low level of the voltage level of the external signal IN. Further, when detecting that the voltage level of the external signal IN is at the high level, the high level detection circuit 1202 outputs the high level detection signal D5. The low level detection circuit 1203 outputs a low level detection signal D6 when detecting that the voltage level of the external signal IN is at a low level.
  • the detection unit 1204 of the determination device 204 turns the edge detection flag F6 from invalid to valid.
  • the detection unit 1204 receives the high level detection signal D5 or the low level detection signal D6 from the input circuit 202, the detection unit 1204 turns the level detection flag F7 from invalid to valid.
  • the determination unit 211 of the determination device 204 determines whether the edge detection flag F6 and the level detection flag F7 become valid or invalid within the waiting time Tw, as in FIGS. Determine if is in a normal state.
  • the detection unit 1204 can also associate one piece of detection information with a plurality of pieces of detection information output from the input circuit 202.
  • the edge detection circuit 1201 of the input circuit 202 is a fourth detection circuit
  • the high level detection circuit 1202 is a fifth detection circuit
  • the low level detection circuit 1203 is a sixth detection circuit.
  • the edge detection signal D4 output from the edge detection circuit 1201 is used as fourth detection information
  • the high level detection signal D5 output from the high level detection circuit 1202 is used as fifth detection information
  • the low level detection circuit 1203 is output.
  • the low level detection signal D6 is used as sixth detection information.
  • the edge detection flag F6 corresponding to the edge detection signal D4 is set as fourth detection information
  • the level detection flag F7 corresponding to the high level detection signal D5 or the low level detection signal D6 is set as fifth detection information.
  • the input circuit 202 inputs an external signal IN in which the voltage level of the signal is maintained at high level or low level according to the control content, and the microcomputer 201 inputs high level or low level of the voltage level of the input external signal IN. It is the same as that of the above-mentioned modification in that it judges whether it is a level and executes a predetermined process corresponding to each voltage level.
  • the input circuit 202 has an internal circuit in a quadruple configuration of a high level edge detection circuit 1701, a low level edge detection circuit 1702, a high level voltage detection circuit 1703, and a low level voltage detection circuit 1704.
  • the other configuration is the same as that shown in FIG.
  • the high level edge detection circuit 1701 of the input circuit 202 detects a change from low level to high level of the voltage level of the external signal IN
  • the high level edge detection circuit 1701 outputs a high level edge detection signal D7.
  • the low level edge detection circuit 1702 of the input circuit 202 detects a change from high level to low level of the voltage level of the external signal IN
  • it outputs a low level edge detection signal D8.
  • the high level voltage detection circuit 1703 outputs the high level voltage detection signal D9.
  • the low level voltage detection circuit 1704 outputs a low level voltage detection signal D10 when detecting that the voltage level of the external signal IN is at a low level.
  • the detection unit 1705 of the determination device 204 turns the high level edge detection flag F8 from OFF to ON. Also, when the low level edge detection signal D8 is input from the input circuit 202, the detection unit 1705 of the determination device 204 turns the low level edge detection flag F9 from OFF to ON. Further, when the detection unit 1705 receives the high level voltage detection signal D9 from the input circuit 202, the detection unit 1705 turns the high level voltage detection flag F10 from OFF to ON. When the detection unit 1705 receives the low level voltage detection signal D10 from the input circuit 202, the detection unit 1705 turns the low level voltage detection flag F11 from OFF to ON.
  • the determination unit 1706 of the determination device 204 confirms that at least one of the high level edge detection flag F8 and the high level voltage detection flag F10 is turned on, the high level edge detection flag F8 and the high level voltage detection flag F10 are detected. It is determined whether or not both are switched from OFF to ON within the waiting time Tw to determine whether the input circuit 202 is in a normal state.
  • the determination unit 1706 of the determination device 204 confirms that at least one of the low level edge detection flag F9 and the low level voltage detection flag F11 is turned on, the low level edge detection flag F9 and the low level voltage detection flag F11 are detected. It is determined whether or not both are switched from OFF to ON within the waiting time Tw to determine whether the input circuit 202 is in a normal state.
  • the determination unit 1706 associates in advance at least two or more of the plurality of pieces of detection information, and determines whether all pieces of detection information associated within the waiting time Tw are valid, to thereby determine the input circuit 202. It is also possible to determine if is normal.
  • any of the internal circuits in the multiplexed configuration of the input circuit 202 detects, for example, a plurality of voltage levels of high level, middle level and low level, as a feature of the external signal IN. At this time, even if the internal circuit that has detected a plurality of voltage levels outputs detection information corresponding to each voltage level, the detection unit 210 corresponds to each detection information in the same manner as described above.
  • the determination unit 211 can determine the normal state of the input circuit 202 by making the detected information from invalid to valid.
  • the detection unit 210 arbitrarily associates the plurality of detection information input from the input circuit 202 with the plurality of detection information based on the setting in advance, and the input detection The detection information corresponding to the information is invalidated to be valid, and the determination unit 211 is configured to distinguish the grouping of the detection information to be monitored in the waiting time Tw. Therefore, the determination unit 211 is flexible according to the specifications of the electronic control system 101 and the input circuit 202. It is possible to execute the determination processing of the normal state of the input circuit 202.
  • the determination system 215 it is also possible to apply the determination system 215 not only to signal input between the drive control unit 110 and the vehicle control unit 111 but also to signal input between other devices.
  • the determination device 204 multiplexes in the input circuit 202 whether or not the input circuit 202 receiving the external signal IN from the external device is in a normal state. Since the determination is made based on the detection information output from the internal circuit described above, an effect of preventing the electronic control system 101 from executing a predetermined process can be obtained when the input circuit 202 is in an abnormal state.
  • the electronic control system 101 determines that the input circuit 202 is in a normal state and executes predetermined processing, so that the reliability in the operation of the electronic control system 101 is guaranteed more than ever before.
  • the input circuit 202 has the internal circuit in a multiplexed configuration, so that the accuracy when the input circuit 202 detects the external signal IN can be improved. As a result, an effect of enhancing the noise resistance of the input circuit 202 can be obtained.
  • the input circuit 202 is configured to detect a pattern in the type information K of the external signal IN as a feature of the external signal IN, and output detection information corresponding to the detected pattern. Therefore, even if a plurality of types of external signals IN are input to the input circuit 202, the electronic control system 1401 can execute the plurality of predetermined processes corresponding to the plurality of types of external signals IN while discriminating them. .
  • the determination unit 211 provides the interval time Ti so that the determination device 204 can collectively process the detection information obtained by detecting the same external signal IN in the input circuit 202. Since this is done, even if the input circuit 202 is made to input external signals IN of a plurality of types, it is possible to prevent the determination device 204 from processing the external signals IN of a plurality of types together. As a result, even in the case where the electronic control system 101 handles the plurality of external signals IN successively, it is possible to obtain the effect that each predetermined process corresponding to the plurality of external signals IN can be reliably executed.
  • the detection unit 1204 of the determination device 204 detects the high level detection signal D5 and the low level detection signal D6 input from the input circuit 202 in correspondence with the level detection flag F7 and detects the detection information. Therefore, even when the external signal IN to be input is a signal that switches and controls the voltage level at both the high level and the low level, the determination unit 211 of the determination device 204 It is possible to perform the determination process of the normal state.
  • the determination system 215 always determines whether the input circuit 202 is in the normal state.
  • the electronic control system 1401 of the electric drive vehicle 1400 is provided with a normal operation mode and a test mode, and the determination system 1501 makes a determination only in the test mode. The other respects are the same as in the first embodiment.
  • FIG. 14 is a device configuration diagram showing a configuration of devices included in the electronic control system 1401 for the electric drive vehicle 1400 according to the second embodiment of the present invention.
  • the description of the parts in common with the configuration shown in FIG. 1 of the first embodiment will be omitted.
  • electrically driven vehicle 1400 further includes a motor 1402 and a power split mechanism 1403 as compared with vehicle 100 of the first embodiment. Then, the electronic control system 1401 indicates an electrical component in which the wheel 104 is removed from the configuration of the vehicle 100.
  • the motor 1402 is a motor such as an AC motor that generates power by using the power supplied from the battery 105 under the control of the drive control unit 1405.
  • the motive power generated by the motor 1402 is transmitted to the wheels 104 as a driving force of the electrically driven vehicle 1400 via the power split mechanism 1403.
  • the power split mechanism 1403 is a device that includes mechanisms such as a planetary gear and a clutch, and integrates or distributes the power input from the engine 102 and the motor 1402 and outputs it. Power split device 1403 outputs rotational power to wheels 104 only with power from engine 102 based on control from drive control unit 1405, or combines power of engine 102 and motor 1402 to wheels 104. The rotational force can be output or switched.
  • the electronic control system 1401 of the electric drive vehicle 1400 reduces or stops the output of the engine 102, for example, to suppress the exhaust gas discharged from the electric drive vehicle 1400, and instead raises the output of the motor 1402, It is possible to suppress the generation of exhaust gas caused by the output of the engine 102.
  • the vehicle control unit 1404 and the drive control unit 1405 of the electric drive vehicle 1400 perform the switching control of the power of the engine 102 and the motor 1402 described above based on the traveling state of the vehicle and the operation by the passenger's intention. Therefore, the vehicle control unit 1404 and the drive control unit 1405 shown in FIG. 14 of the second embodiment execute more control than the vehicle control unit 111 and the drive control unit 110 of the vehicle 100 according to the first embodiment. As a result, the electronic control system 1401 of the electric drive vehicle 1400 consumes more power from the battery 105.
  • the electronic control system 1401 of the electric drive vehicle 1400 is considered to consume more electric power than the vehicle 100 without motor drive, particularly during traveling. Therefore, it is desirable for the electronic control system 1401 to efficiently use the power supplied from the battery 105 by reducing the processing of the devices constituting the system while securing the reliability of the operation.
  • the electronic control system 1401 is provided with a normal operation mode and a test mode. Then, the electronic control system 1401 switches between the normal operation mode and the test mode, and causes the determination device 204 to execute the determination process of the normal state of the input circuit 202 only in the test mode. By doing this, the electronic control system 1401 can reduce the number of processes without constantly performing the process of determining the normal state of the input circuit 202, and can ensure the reliability of the operation.
  • the reliability in functional safety of a vehicle is standardized, for example, by defining a mechanism for detecting a failure in the functional safety standard ISO26262.
  • the reliability of the operation of the electronic control system 1401 is set by setting the frequency at which the electronic control system 1401 executes the test mode based on the standard of ASIL (Automotive Safety Integrity Level) according to ISO26262. Is guaranteed.
  • ASIL Automotive Safety Integrity Level
  • switching between the normal operation mode and the test mode is abbreviated as mode switching.
  • the normal operation mode is defined as a first mode
  • the test mode is defined as a second mode.
  • mode switching control is performed by the vehicle control unit 1404 or the drive control unit 1405.
  • the vehicle control unit 111 instructs the drive control unit 110 to switch to the test mode.
  • the drive control unit 110 instructs the vehicle control unit 111 to switch to the test mode, and urges the output of a test signal.
  • FIG. 15 is a block diagram showing a functional block of drive control unit 1405 which receives a command signal from vehicle control unit 1404.
  • the determination system 1501 further includes a switching unit 1502.
  • the description of the portions common to the functional blocks shown in FIG. 2 of the first embodiment will be omitted.
  • the switching unit 1502 is provided between the input circuit 202 and the determination device 204. Then, in accordance with the mode switching instruction to the normal operation mode or the test mode, the switching unit 1502 switches whether to input the detection information input from the input circuit 202 to the determination device 204. The mode switching at this time is performed by the vehicle control unit 1404 or the drive control unit 1405 executing a mode switching instruction.
  • the switching unit 1502 does not input the plurality of pieces of detection information input from the input circuit 202 to the determination device 204 in the normal operation mode. Further, in the test mode, the switching unit 1502 inputs the plurality of pieces of detection information input from the input circuit 202 to the determination device 204.
  • the determination system 1501 performs the determination process of the normal state of the input circuit 202 without depending on the arrangement of each configuration. That is, the switching unit 1502 may be disposed either inside or outside the microcomputer 201, and exchanges information with the drive control unit 1405 or an external device via the signal transmission path L or the communication circuit 203. .
  • a plurality of pieces of detection information not input to the determination device 204 by the switching unit 1502 can be input to the device inside the microcomputer 201 through the signal transmission path L or the communication circuit 203.
  • the microcomputer 201 can execute predetermined processing based on the detection information.
  • the switching unit 1502 inputs detection information to the determination device 204, and the microcomputer 201 performs predetermined processing based on the determination result of the determination processing of the determination device 204. It can be done.
  • the determination device 204 since the determination device 204 performs the determination process only in the test mode, the determination device 204 does not receive the detection information and perform the determination process in the normal operation mode. As a result, power consumption of the drive control unit 110 can be suppressed. Furthermore, since the determination device 204 may operate only in the test mode, power consumption can be further suppressed by stopping the determination device 204 in the normal operation mode.
  • suppressing the power consumption in the determination system 1501 enables the electronic control system 1401 to use the power stored in the battery 105 more efficiently than the first embodiment.
  • FIG. 16 is a flowchart showing the process of executing the normal operation mode and the test mode in the electronic control system 1401.
  • the vehicle control unit 1404 activates the drive control unit 1405 and then instructs the drive control unit 1405 to switch to the test mode. Then, based on the determination result of the determination system 1501, the vehicle control unit 1404 instructs the drive control unit 1405 to switch to the normal operation mode or notifies the outside of an abnormal state.
  • the process of the determination system 1501 shown in the flowchart of FIG. 9 in the first embodiment is defined as a predefined process S1606.
  • the vehicle control unit 1404 activates the drive control unit 1405. Then, it progresses to process S1602.
  • the vehicle control unit 1404 determines whether the drive control unit 1405 is in the activated state. If the drive control unit 1405 is in the activated state, the process advances to step S1603. If the drive control unit 1405 is not in the activated state, the process advances to step S1611.
  • step S1603 the vehicle control unit 1404 instructs the drive control unit 1405 to switch to the test mode. Then, it progresses to process S1604.
  • processing S1604 the switching unit 1502 of the drive control unit 1405 and the microcomputer 201 switch to the test mode.
  • the microcomputer 201 activates the determination device 204 which is in the stopped state. Then, it progresses to process S1605.
  • the vehicle control unit 1404 In processing S1605, the vehicle control unit 1404 outputs a test signal to the drive control unit 1405. Then, it progresses to process S1606.
  • step S1606 the determination system 1501 performs the determination process. Thereafter, the process proceeds to step S1607.
  • the vehicle control unit 1404 confirms the determination result of the determination system 1501, and determines whether the input circuit 202 is in a normal state. If the input circuit 202 is in the normal state, the process proceeds to step S1608. If the input circuit 202 is not in the normal state, the process advances to step S1609.
  • step S1608 the vehicle control unit 1404 instructs the drive control unit 1405 to switch to the normal operation mode. Thereafter, the process proceeds to step S1609.
  • processing S1609 the switching unit 1502 of the drive control unit 1405 and the microcomputer 201 switch to the normal operation mode.
  • the microcomputer 201 stops the operation of the determination device 204 when the switching to the normal operation mode is performed. Thereafter, the process ends.
  • step S1610 the drive control unit 1405 notifies the vehicle control unit 1404 that the input circuit 202 is in an abnormal state. Thereafter, the process ends.
  • the vehicle control unit 1404 determines whether or not the start-up time which is the reference required for starting the drive control unit 1405 has elapsed. If the activation time has elapsed, the process proceeds to step S1612. If the activation time has not elapsed, the process proceeds to processing S1602.
  • step S1612 the vehicle control unit 1404 notifies the outside that the drive control unit 1405 is in an abnormal state. Thereafter, the process ends.
  • the execution of the test mode in the electronic control system 1401 is not limited to the start of the system as described above, for example, when the rider of the electrically driven vehicle 1400 operates the shift lever to the parking position or pulls the side brakes.
  • the test mode may be executed at a timing when the electrically driven vehicle 1400 is in a stopped state and can not be expected to be driven immediately.
  • the configuration of the determination system 215 of the first embodiment may be applied to the second embodiment or the like, and may be arbitrarily combined in the first and second embodiments.
  • the electronic control system 1401 is provided with the normal operation mode and the test mode, and the determination system 1501 determines the normal state of the input circuit 202 in the test mode. Therefore, if it is determined that the input circuit 202 is in the normal state in the test mode, then at least one of the internal circuits of the input circuit 202 detects the external signal IN as in the prior art in the normal operation mode. It is also possible to judge that the distortion is due to the distortion of the external signal IN, not the abnormality of the internal circuit. As a result, it is possible to continue the operation while guaranteeing the reliability of the electronic control system 1401.
  • the determination system 1501 of the second embodiment executes the test mode according to the standard of ISO 26262, thereby ensuring the reliability of the operation of the electronic control system 1401.
  • the determination system 1501 includes the switching unit 1502, so that the determination process of the determination system 1501 is executed only in the test mode in response to the input of the external signal IN. Sometimes it is possible not to run it. As a result, since the power consumption of the determination device 204 can be suppressed in the normal operation mode, the electronic control system 1401 can use the power stored in the battery 105 more efficiently than the first embodiment. become able to do.
  • Reference Signs List 100 vehicle 101, 1401 electronic control system 102 engine 103 transmission mechanism 104 wheel 105 battery 106 generator 107 brake system 108 braking mechanism 109 speed detection unit 110, 1405 drive control unit 111, 1404 vehicle control unit 201 microcomputer 202 input circuit 203 communication circuit 204 Judgment device 215, 1501 Judgment system 1400 Electric drive vehicle 1402 Motor 1403 Power split mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Logic Circuits (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

According to the present invention, a sensing unit (210) of a determination device (204) receives a plurality of pieces of detection information from an input circuit (202) and changes a plurality of pieces of sensing information, which indicate that the plurality of pieces of detection information are detected, from invalid to valid. When at least one of the plurality of pieces of sensing information is changed from invalid to valid, a determination unit (211) of the determination device (204) determines whether the input circuit (202) is in a normal state by determining whether all the plurality of pieces of sensing information are changed to valid from invalid within a waiting time (Tw).

Description

判定装置、判定システム及び判定方法Judgment apparatus, judgment system and judgment method
 本発明は、外部装置からの外部信号を入力する入力回路が正常状態にあるかどうかを判定する判定装置、当該判定装置が用いられた判定システム、及び、当該判定装置で行われる判定方法に関する。 The present invention relates to a determination device that determines whether an input circuit for inputting an external signal from an external device is in a normal state, a determination system using the determination device, and a determination method performed by the determination device.
 近年、自動車分野において、車両の搭乗者や車両周辺にいる人への安全性を向上させるために、車両を制御する電子制御システムに搭載する装置や部品の使用時における耐故障性を高め、それにより電子制御システムの信頼性を向上させる取り組みがなされている。 In recent years, in the field of automobiles, in order to improve the safety to the occupants of the vehicle and the people around the vehicle, the fault resistance at the time of use of the devices and parts mounted on the electronic control system for controlling the vehicle is enhanced. Efforts have been made to improve the reliability of electronic control systems.
 従来技術として特許文献1では、車両の電子制御システムにおいて、入力信号を入力する入力回路が内部回路を、入力信号の電圧レベルがローレベルからハイレベルに変化したことを検出するエッジ検出回路と、入力信号の電圧レベルがハイレベルにあることを検出するレベル検出回路との2重化構成とすることで、システムの耐故障性と、入力回路が入力信号を検出する可能性とを高める手法について開示している。 In Patent Document 1 as a prior art, in an electronic control system of a vehicle, an input circuit for inputting an input signal detects an internal circuit as an input circuit, and an edge detection circuit for detecting that the voltage level of the input signal changes from low level to high level; Disclosed is a method to increase the fault tolerance of the system and the possibility that the input circuit detects the input signal by adopting a dual configuration with a level detection circuit that detects that the voltage level of the input signal is at the high level. doing.
特開2016-119016Patent application
 しかしながら、特許文献1の手法では、入力回路において2重化構成とした内部回路の一方の回路に、例えば、正常時に出力する信号と誤検知される電圧を生じるなど、何らかの異常が発生した場合に、電子制御システムが誤動作してしまう虞がある。 However, in the method of Patent Document 1, when any abnormality occurs, such as a voltage erroneously detected as a signal to be output at normal time occurs in one circuit of the internal circuit having a duplex configuration in the input circuit, for example. The electronic control system may malfunction.
 本発明は、上記のような問題を解決するためのものであり、外部信号からの信号を入力する入力回路が正常状態にあるかどうかを判定する判定装置を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems, and an object thereof is to provide a determination apparatus that determines whether an input circuit for inputting a signal from an external signal is in a normal state.
 本発明は、外部装置から入力した外部信号を複数の内部回路で検出する入力回路が正常状態にあるかどうかを、入力回路から出力される複数の検出情報に基づき判定する判定装置であって、判定装置は、複数の検出情報の各々を区別して入力するとともに、複数の検出情報の各々を検知したことを示す、複数の検出情報の各々と対応した複数の検知情報を個別に無効から有効とする処理を行う検知部と、検知部での処理により、複数の検知情報のうち少なくとも1つが無効から有効となると、所定の時間内に、複数の検出情報の各々と対応した複数の検知情報の全てが無効から有効となるかどうかを判断し、所定の時間内に複数の検知情報の全てが無効から有効となる場合に入力回路が正常状態にあると判定し、所定の時間内に複数の検知情報の全てが無効から有効とならない場合に入力回路が正常状態にないと判定する判定部と、を備えた判定装置である。 The present invention is a determination device that determines whether an input circuit that detects an external signal input from an external device by a plurality of internal circuits is in a normal state based on a plurality of pieces of detection information output from the input circuit, The determination device distinguishes and inputs each of the plurality of detection information, and separately indicates that the plurality of detection information corresponding to each of the plurality of detection information indicates that each of the plurality of detection information is detected. When at least one of the plurality of pieces of detection information becomes invalid from being invalidated by the detection unit performing the processing and the processing by the detection unit, the plurality of detection information items corresponding to each of the plurality of detection information within a predetermined time It is determined whether all become invalid or valid, and if all of the plurality of detection information becomes invalid from valid within a predetermined time, it is determined that the input circuit is in a normal state, and a plurality of Detection A determination device and a determining unit and the input circuit is not in a normal state when all of the broadcast is not effective from the disabled.
 本発明によれば、判定装置が、外部装置からの外部信号を入力する入力回路が正常状態にあるかどうかを、入力回路で外部信号を検出したときの検出情報に基づき判定するように構成したので、入力回路が異常状態にある場合に、電子制御システムが誤動作してしまうことを防止させる効果が得られる。 According to the present invention, the determination device is configured to determine whether the input circuit for inputting the external signal from the external device is in a normal state based on detection information when the external circuit is detected by the input circuit. Therefore, when the input circuit is in an abnormal state, an effect of preventing the electronic control system from malfunctioning can be obtained.
本発明の実施の形態1における、車両の電子制御システムに含まれる装置の構成を示す装置構成図である。FIG. 1 is a device configuration diagram showing a configuration of devices included in an electronic control system of a vehicle according to a first embodiment of the present invention. 車両制御部からの指令信号を入力する駆動制御部の機能ブロックを示すブロック構成図である。It is a block block diagram which shows the functional block of the drive control part which inputs the command signal from a vehicle control part. 外部信号が入力されたときのエッジ検出回路及びレベル検出回路の処理を示すタイミング図である。FIG. 7 is a timing chart showing processing of an edge detection circuit and a level detection circuit when an external signal is input. 外部信号が入力されたときのエッジ検出回路、レベル検出回路、検知部及び判定部の処理を示すタイミング図である。FIG. 7 is a timing chart showing processing of an edge detection circuit, a level detection circuit, a detection unit, and a determination unit when an external signal is input. 入力回路のエッジ検出回路が異常状態にある場合の、エッジ検出回路、レベル検出回路、検知部及び判定部の処理を示すタイミング図である。FIG. 7 is a timing chart showing processing of the edge detection circuit, the level detection circuit, the detection unit, and the determination unit when the edge detection circuit of the input circuit is in an abnormal state. 入力回路のレベル検出回路が異常状態にある場合の、エッジ検出回路、レベル検出回路、検知部及び判定部の処理を示すタイミング図である。FIG. 13 is a timing chart showing processing of the edge detection circuit, the level detection circuit, the detection unit, and the determination unit when the level detection circuit of the input circuit is in an abnormal state. 入力回路のエッジ検出回路が異常状態にある場合の、エッジ検出回路、レベル検出回路、検知部及び判定部の処理を示す別のタイミング図である。FIG. 13 is another timing chart showing processing of the edge detection circuit, the level detection circuit, the detection unit and the determination unit when the edge detection circuit of the input circuit is in an abnormal state. 入力回路のレベル検出回路が異常状態にある場合の、エッジ検出回路、レベル検出回路、検知部及び判定部の処理を示す別のタイミング図である。FIG. 17 is another timing chart showing processing of the edge detection circuit, the level detection circuit, the detection unit and the determination unit when the level detection circuit of the input circuit is in an abnormal state. 判定システムの処理を示すフローチャート図である。It is a flowchart figure showing processing of a judgment system. 入力回路の内部回路を3重化構成とした場合の駆動制御部の機能ブロックを示すブロック構成図である。It is a block block diagram which shows the functional block of a drive control part at the time of setting the internal circuit of an input circuit as triple construction. 入力回路の内部回路を3重化構成とした場合の、エッジ検出回路、レベル検出回路、検知部及び判定部の処理を示すタイミング図である。FIG. 13 is a timing chart showing processing of an edge detection circuit, a level detection circuit, a detection unit, and a determination unit in a case where the internal circuit of the input circuit is in a triple configuration. 判定システムの変形例としての駆動制御部の機能ブロックを示すブロック構成図である。It is a block block diagram which shows the functional block of the drive control part as a modification of a determination system. 判定システムの変形例における処理を示すタイミング図である。It is a timing chart showing processing in a modification of a judgment system. 本発明の実施の形態2における、電気駆動車両向けの電子制御システムに含まれる装置の構成を示す装置構成図である。FIG. 10 is a device configuration diagram showing a configuration of a device included in an electronic control system for an electric drive vehicle according to a second embodiment of the present invention. 車両制御部からの指令信号を入力する駆動制御部の機能ブロックを示すブロック構成図である。It is a block block diagram which shows the functional block of the drive control part which inputs the command signal from a vehicle control part. 電子制御システムにおいて通常動作モード及びテストモードを実行する処理を示すフローチャート図である。It is a flowchart figure which shows the process which performs a normal operation mode and a test mode in an electronic control system. 判定システムの別の変形例としての駆動制御部の機能ブロックを示すブロック構成図である。It is a block block diagram which shows the functional block of the drive control part as another modification of a determination system.
 実施の形態1.
 図1は、本発明の実施の形態1における、車両100の電子制御システム101に含まれる装置の構成を示す装置構成図である。車両100とは、例えば、乗用車、バス及びトラック等の自動車であり、人又は物を輸送するための輸送手段である。
Embodiment 1
FIG. 1 is a device configuration diagram showing a configuration of devices included in an electronic control system 101 of a vehicle 100 according to a first embodiment of the present invention. The vehicle 100 is, for example, a car such as a passenger car, a bus, and a truck, and is a transportation means for transporting a person or a thing.
 車両100の電子制御システム101とは、車両100向け電子制御システム101のことである。電子制御システム101は、車両100内に全ての機能が搭載されても良いし、車両100内に全ての機能が搭載されておらず、一部の機能が外部に置かれてネットワーク等を介して車両100に対し制御を行うものであっても良い。
 なお、図1の例では、電子制御システム101は、車両100内に全ての機能が搭載されるものとする。
The electronic control system 101 of the vehicle 100 is an electronic control system 101 for the vehicle 100. The electronic control system 101 may have all the functions installed in the vehicle 100 or may not have all the functions installed in the vehicle 100, and some functions may be provided outside via a network or the like. Control may be performed on the vehicle 100.
In the example of FIG. 1, the electronic control system 101 has all functions installed in the vehicle 100.
 図1に示すように、車両100は、エンジン102、伝動機構103、車輪104、発電機106、バッテリ105、ブレーキシステム107、制動機構108、速度検出部109、駆動制御部110及び車両制御部111で構成される。
 そして、電子制御システム101は、車両100の構成から車輪104を除いた電装品を指す。
 また、図1において実線矢印は信号経路を示し、一点破線矢印は電力の供給経路を示す。
As shown in FIG. 1, the vehicle 100 includes an engine 102, a transmission mechanism 103, wheels 104, a generator 106, a battery 105, a brake system 107, a braking mechanism 108, a speed detection unit 109, a drive control unit 110, and a vehicle control unit 111. It consists of
And the electronic control system 101 points out the electrical component which remove | eliminated the wheel 104 from the structure of the vehicle 100. FIG.
Further, in FIG. 1, solid arrows indicate signal paths, and dashed dotted arrows indicate power supply paths.
 エンジン102は、例えば、ガソリン又は軽油等の燃料を燃焼させることで動力を発生する内燃機関であり、車両100を駆動させるための動力源となる。エンジン102で発生した動力は、伝動機構103を介すことにより、車両100の駆動力として車輪104に伝えられる。 The engine 102 is an internal combustion engine that generates power by burning a fuel such as gasoline or light oil, for example, and serves as a power source for driving the vehicle 100. The power generated by the engine 102 is transmitted to the wheels 104 as a driving force of the vehicle 100 through the transmission mechanism 103.
 バッテリ105は、蓄電、充電及び放電が可能な二次電池であり、車両100の各装置の電力源となる。 The battery 105 is a secondary battery capable of storing, charging and discharging, and serves as a power source of each device of the vehicle 100.
 発電機106は、伝動機構103を介してエンジン102の動力を利用し、発電を行う発電装置である。車両100の走行中に発電機106が発電した電力をバッテリ105に充電することで、車両100の各装置はバッテリ105を電力源として長時間、走行中の動作を継続することが可能となる。 The generator 106 is a power generation device that generates power by using the motive power of the engine 102 via the transmission mechanism 103. By charging the battery 105 with the power generated by the generator 106 while the vehicle 100 is traveling, each device of the vehicle 100 can continue the operation during traveling for a long time using the battery 105 as a power source.
 ブレーキシステム107は、車両100を制動するためのシステムである。ブレーキシステム107は、制動機構108を介して車輪104の回転を抑止する向きに制動力を掛けることにより、車両100を制動する。 The brake system 107 is a system for braking the vehicle 100. The brake system 107 brakes the vehicle 100 by applying a braking force in a direction in which the rotation of the wheel 104 is suppressed via the braking mechanism 108.
 速度検出部109は、車両100の走行速度を検出するための装置である。 The speed detection unit 109 is a device for detecting the traveling speed of the vehicle 100.
 駆動制御部110は、エンジン102及びブレーキシステム107の動作状態を管理するとともに、車両制御部111からの指令信号を入力してエンジン102及びブレーキシステム107を制御することにより、車両100を駆動又は制動させて走行状態を制御する装置である。 The drive control unit 110 manages the operating states of the engine 102 and the brake system 107, and receives a command signal from the vehicle control unit 111 to control the engine 102 and the brake system 107, thereby driving or braking the vehicle 100. Is a device that controls the running state.
 車両制御部111は、駆動制御部110が管理するエンジン102及びブレーキシステム107の動作状態に関する情報と、速度検出部109が検出する走行速度とを取得して、車両100が走行中の状況に応じて最適な走行状態を維持するように駆動制御部110を制御する装置である。
 また、車両制御部111は、車両100の各装置の管理及び制御を行う。例えば、車両制御部111がバッテリ105の蓄電量の情報を管理しており、バッテリ105の蓄電量を増やす必要があると判断した場合に、車両制御部111は駆動制御部110に対して車輪104に動力を伝えずにエンジン102及び発電機106を動作させるよう制御を行う。
The vehicle control unit 111 acquires information on the operation states of the engine 102 and the brake system 107 managed by the drive control unit 110 and the traveling speed detected by the speed detection unit 109, and responds to the situation while the vehicle 100 is traveling. Is a device that controls the drive control unit 110 to maintain an optimal running state.
Further, the vehicle control unit 111 manages and controls each device of the vehicle 100. For example, when the vehicle control unit 111 manages information on the storage amount of the battery 105 and determines that it is necessary to increase the storage amount of the battery 105, the vehicle control unit 111 transmits the wheel 104 to the drive control unit 110. The engine 102 and the generator 106 are controlled to operate without transmitting power to them.
 図2は、車両制御部111からの指令信号を入力する駆動制御部110の機能ブロックを示すブロック構成図である。駆動制御部110は、マイコン201、入力回路202及び通信回路203で構成される。 FIG. 2 is a block diagram showing a functional block of the drive control unit 110 which receives a command signal from the vehicle control unit 111. As shown in FIG. The drive control unit 110 includes a microcomputer 201, an input circuit 202, and a communication circuit 203.
 マイコン201は、車載装置に搭載されるマイクロコントローラ(Microcontroller)であり、例えば、車両制御部111からの指令信号の入力に伴い、駆動制御部110においてエンジン102及びブレーキシステム107を制御するための所定の処理を実行する。 The microcomputer 201 is a microcontroller (Microcontroller) mounted on the in-vehicle apparatus, and for example, the drive control unit 110 controls the engine 102 and the brake system 107 in response to an input of a command signal from the vehicle control unit 111. Execute the process of
 入力回路202は、車両制御部111からの指令信号の入力を検出し、マイコン201に対し、指令信号を検出したことを示す検出情報を出力する回路である。
 実施の形態1では、入力回路202からマイコン201に出力される検出情報を信号として扱うものとする。また、入力回路202の外部にある装置を外部装置と定義する。
The input circuit 202 is a circuit that detects an input of a command signal from the vehicle control unit 111, and outputs detection information indicating that the command signal has been detected to the microcomputer 201.
In the first embodiment, detection information output from the input circuit 202 to the microcomputer 201 is treated as a signal. Further, a device external to the input circuit 202 is defined as an external device.
 通信回路203は、駆動制御部110が、車両制御部111との間で通信を行うための通信回線となる回路である。通信回線としては、例えば、CAN(Controller Area Network)(登録商標)、LIN(Local Interconnect Network)、または、CXPI(Clock Extension Peripheral Interface)(登録商標)等の車載LANを利用することが出来る。 The communication circuit 203 is a circuit serving as a communication line for the drive control unit 110 to communicate with the vehicle control unit 111. As the communication line, for example, an in-vehicle LAN such as CAN (Controller Area Network) (registered trademark), LIN (Local Interconnect Network), or CXPI (Clock Extension Peripheral Interface) (registered trademark) can be used.
 さらに、マイコン201は、判定装置204、演算部205、タイマ206、RAM207、ROM208及びインターフェース回路209を有する。マイコン201内部の各装置は、信号伝送路Lによって互いに情報のやり取りを行うことが出来るものとする。 Further, the microcomputer 201 includes a determination device 204, an operation unit 205, a timer 206, a RAM 207, a ROM 208, and an interface circuit 209. The respective devices in the microcomputer 201 can exchange information with each other through the signal transmission path L.
 判定装置204は、検知部210、判定部211及び通知部212を有しており、入力回路202から入力する検出情報の信号に基づき、入力回路202が正常状態にあるかどうかを判定する。
 図2の端子Pは、入力回路202からの検出情報の信号をマイコン201に入力するための端子である。マイコン201は、端子Pを介して、入力した検出情報の信号を判定装置204に入力する。
The determination device 204 includes a detection unit 210, a determination unit 211, and a notification unit 212, and determines whether the input circuit 202 is in a normal state based on a signal of detection information input from the input circuit 202.
Terminal P in FIG. 2 is a terminal for inputting a signal of detection information from the input circuit 202 to the microcomputer 201. The microcomputer 201 inputs a signal of the input detection information to the determination device 204 via the terminal P.
 マイコン201は、検出情報の信号を、判定装置204に入力するとともに端子P及び信号伝送路Lを介してマイコン201内の各装置に入力しても良いし、判定装置204を経由してマイコン201内の各装置に入力しても良い。 The microcomputer 201 may input a signal of detection information to the determination device 204 and to each device in the microcomputer 201 via the terminal P and the signal transmission path L, or the microcomputer 201 via the determination device 204. It may be input to each device within.
 検知部210は、入力回路202から出力された複数の検出情報をそれぞれ区別して入力する。そして、検知部210は、入力したそれぞれの検出情報を検知したことを示すために、検知した検出情報と対応する検知情報の論理を個別に無効から有効とする。 The detection unit 210 separately inputs the plurality of pieces of detection information output from the input circuit 202. Then, the detection unit 210 individually makes the logic of the detection information corresponding to the detected detection information and the detection information corresponding to the detection information valid, in order to indicate that the input detection information is detected.
 実施の形態1では、検知部210が扱う検知情報の論理を、有効と無効又はONとOFFのように、2値で示される情報と定義する。 In the first embodiment, the logic of the detection information handled by the detection unit 210 is defined as information represented by two values, such as valid and invalid or ON and OFF.
 判定部211は、検知部210の処理によって複数の検知情報のうち少なくとも1つが無効から有効となることを確認すると、所定の時間内に複数の検知情報の全てが有効となるかどうかを判断する。そして、判定部211は、所定の時間内に全ての検知情報が有効となったと判断した場合に、入力回路202が正常状態にあると判定する。また、判定部211は、所定の時間内に全ての検知情報が有効とならなかったと判断した場合に、入力回路202が正常状態にない、つまり異常状態にあると判定する。 When determining that at least one of the plurality of pieces of detection information becomes valid from being invalidated by the processing of the detection unit 210, the determination unit 211 determines whether all of the plurality of pieces of detection information are valid within a predetermined time. . Then, when determining that all the detection information is valid within a predetermined time, the determining unit 211 determines that the input circuit 202 is in the normal state. In addition, when determining that all the detection information is not valid within the predetermined time, the determining unit 211 determines that the input circuit 202 is not in the normal state, that is, in the abnormal state.
 判定部211が検知情報の有効を確認する方法としては、検知部210が検知情報を有効とするときに、判定部211に対して当該検知情報の信号を出力したり、判定部211が各々の検知情報を周期的に確認したりすることが考えられる。 As a method for the determination unit 211 to confirm the validity of the detection information, when the detection unit 210 validates the detection information, a signal of the detection information is output to the determination unit 211, or the determination unit 211 outputs each signal. It is conceivable to periodically check the detection information.
 検知部210と判定部211との情報のやり取りの詳細については後述する。 Details of exchange of information between the detection unit 210 and the determination unit 211 will be described later.
 通知部212は、判定部211での判定結果を確認すると、外部に判定結果の通知を行う。通知部212が通知を行う宛先は、判定結果の内容に応じて、例えば、入力した指令信号と対応した所定の処理を実行する演算部205であったり、インターフェース回路209を介して通信が可能な外部装置であったりする。 When the notification unit 212 confirms the determination result of the determination unit 211, the notification unit 212 notifies the outside of the determination result. The destination to which the notification unit 212 notifies is, for example, the operation unit 205 that executes a predetermined process corresponding to the input command signal according to the content of the determination result, or communication is possible via the interface circuit 209 It is an external device.
 演算部205は、一時記憶が可能なRAM207を用いてROM208に予め記憶されたプログラムを実行したり、入力回路202が車両制御部111から入力した指令信号に基づき出力する検知情報と対応した所定の処理を実行したりする。 Arithmetic unit 205 executes a program stored in advance in ROM 208 using RAM 207 capable of temporary storage, or predetermined information corresponding to detection information output based on a command signal input circuit 202 receives from vehicle control unit 111. Execute processing
 タイマ206は、マイコン201内で共有される、時間の計数及び管理を行う装置である。 The timer 206 is an apparatus for counting and managing time shared in the microcomputer 201.
 インターフェース回路209は、マイコン201を通信回路203に接続するためのインターフェースとなる回路である。 The interface circuit 209 is a circuit serving as an interface for connecting the microcomputer 201 to the communication circuit 203.
 入力回路202は、2重化構成の内部回路としてエッジ検出回路213及びレベル検出回路214を有し、入力した指令信号を分岐してエッジ検出回路213及びレベル検出回路214に同時に入力させる。 The input circuit 202 has an edge detection circuit 213 and a level detection circuit 214 as internal circuits in a duplex configuration, branches the input command signal, and simultaneously inputs it to the edge detection circuit 213 and the level detection circuit 214.
 なお、入力回路202及び判定装置204は、同一の装置内に配置されても良いし、隣接する異なる装置内に配置されても良いし、又は、隣接せずに複数の他装置を跨いで配置されても良い。 The input circuit 202 and the determination device 204 may be disposed in the same device, may be disposed in different adjacent devices, or may be disposed across a plurality of other devices without being adjacent to each other. It may be done.
 つまり、図2の構成は一例であって、電子制御システム101における入力回路202及び判定装置204の配置に依存せず、判定装置204が入力回路202から入力する検出情報に基づき入力回路202の正常状態又は異常状態を判定する判定システムと見做すことができる。 That is, the configuration of FIG. 2 is an example, and does not depend on the arrangement of the input circuit 202 and the determination device 204 in the electronic control system 101, but the normality of the input circuit 202 based on detection information input from the input circuit 202 by the determination device 204. It can be regarded as a judgment system for judging a state or an abnormal state.
 実施の形態1では、入力回路202及び判定装置204を併せたシステムを判定システム215と定義する。判定システム215は図2中の破線枠で示される。
 判定システム215は、例えば、判定装置204を駆動制御部110のマイコン201外に配置したり、入力回路202を駆動制御部110のマイコン201内に配置したりすることが可能である。
 判定装置204をマイコン201外に配置する場合には、マイコン201が判定装置204の判定結果を確認できるようにすることで、マイコン201は車両制御部111からの指令信号の入力に伴い、所定の処理を実行するかどうかを判断することができる。
In the first embodiment, a system in which the input circuit 202 and the determination device 204 are combined is defined as a determination system 215. The determination system 215 is shown by a dashed frame in FIG.
In the determination system 215, for example, the determination device 204 can be disposed outside the microcomputer 201 of the drive control unit 110, or the input circuit 202 can be disposed in the microcomputer 201 of the drive control unit 110.
When the determination device 204 is arranged outside the microcomputer 201, the microcomputer 201 can check the determination result of the determination device 204, so that the microcomputer 201 receives a command signal from the vehicle control unit 111 and outputs a predetermined signal. It can be determined whether to execute the process.
 入力回路202のエッジ検出回路213及びレベル検出回路214の処理について、図3を用いて説明する。
 ここで、実施の形態1では、上述の車両制御部111から入力する指令信号のように、入力回路202が入力回路202の外部にある外部装置から入力する信号を外部信号INと定義する。
The processes of the edge detection circuit 213 and the level detection circuit 214 of the input circuit 202 will be described with reference to FIG.
Here, in the first embodiment, a signal that the input circuit 202 inputs from an external device external to the input circuit 202 is defined as an external signal IN, such as a command signal input from the vehicle control unit 111 described above.
 図3は、外部信号INが入力されたときのエッジ検出回路213及びレベル検出回路214の処理を示すタイミング図である。 FIG. 3 is a timing chart showing processing of the edge detection circuit 213 and the level detection circuit 214 when the external signal IN is input.
 縦軸は各信号の論理を表す。信号の論理とは、上述した情報の論理と同様に、有効又は無効で示されるものとする。
 実施の形態1では、このような信号の論理を、電圧レベルのハイレベル状態又はローレベル状態の2値で示すこととする。つまり、各信号の論理を、信号の電圧レベルがハイレベル状態のときに有効とし、ローレベル状態のときに無効と定義する。なお、特に記載が無ければ、信号の論理の初期値を無効とする。
The vertical axis represents the logic of each signal. The logic of the signal is indicated as valid or invalid as well as the logic of the information described above.
In the first embodiment, the logic of such a signal is indicated by a binary value of high level state or low level state of voltage level. That is, the logic of each signal is defined as valid when the voltage level of the signal is high, and defined as invalid when low. Unless otherwise stated, the initial value of the logic of the signal is invalidated.
 また、横軸は時間の経過を表し、時間は矢印の向きに進むものとする。 Also, the horizontal axis represents the passage of time, and time proceeds in the direction of the arrow.
 図3の時間T1に示すように、エッジ検出回路213は、入力した外部信号INの特徴として、外部信号INの電圧レベルがローレベル状態からハイレベル状態に変化したことを検出する。このときの変化を外部信号INのエッジと呼ぶ。
 そして、エッジ検出回路213は、信号の電圧レベルをローレベル状態からハイレベル状態に変化させてエッジ検出信号D1を出力する。エッジ検出信号D1は、エッジ検出回路213が外部信号INのエッジを検出したことを示す検出情報である。
As shown at time T1 in FIG. 3, the edge detection circuit 213 detects that the voltage level of the external signal IN has changed from the low level state to the high level state, as a feature of the input external signal IN. The change at this time is called an edge of the external signal IN.
Then, the edge detection circuit 213 changes the voltage level of the signal from the low level state to the high level state, and outputs an edge detection signal D1. The edge detection signal D1 is detection information indicating that the edge detection circuit 213 has detected an edge of the external signal IN.
 また、図3の時間T2に示すように、レベル検出回路214は、入力した外部信号INの特徴として、外部信号INの電圧レベルがハイレベル状態にあることを検出する。
そして、レベル検出回路214は、信号の電圧レベルをローレベル状態からハイレベル状態に変化させてレベル検出信号D2を出力する。レベル検出信号D2は、レベル検出回路214が外部信号INの電圧レベルでのハイレベル状態を検出したことを示す検出情報である。
Further, as shown at time T2 in FIG. 3, the level detection circuit 214 detects that the voltage level of the external signal IN is in the high level state as a feature of the input external signal IN.
Then, the level detection circuit 214 changes the voltage level of the signal from the low level state to the high level state, and outputs the level detection signal D2. The level detection signal D2 is detection information indicating that the level detection circuit 214 has detected a high level state at the voltage level of the external signal IN.
 ここで、エッジ検出回路213を第1の検出回路とする。そして、第1の検出回路が検出する外部信号INの特徴を第1の特徴とする。上述の例では、外部信号INの第1の特徴とは、外部信号INの電圧レベルがローレベル状態からハイレベル状態に変化することである。
 また、レベル検出回路214を第2の検出回路とする。そして、第2の検出回路が検出する外部信号INの特徴を第2の特徴とする。上述の例では、外部信号INの第2の特徴とは、外部信号INの電圧レベルがハイレベル状態にあることである。
 また、入力回路202が出力する複数の検出情報のうち、エッジ検出回路213が第1の特徴を検出したときに出力するエッジ検出信号D1を第1の検出情報とする。そして、レベル検出回路214が第2の特徴を検出したときに出力するレベル検出信号D2を第2の検出情報とする。
Here, the edge detection circuit 213 is referred to as a first detection circuit. A feature of the external signal IN detected by the first detection circuit is a first feature. In the above example, the first feature of the external signal IN is that the voltage level of the external signal IN changes from the low level state to the high level state.
Further, the level detection circuit 214 is a second detection circuit. The feature of the external signal IN detected by the second detection circuit is a second feature. In the above-mentioned example, the second feature of the external signal IN is that the voltage level of the external signal IN is in the high level state.
Further, among the plurality of pieces of detection information output from the input circuit 202, the edge detection signal D1 output when the edge detection circuit 213 detects the first feature is set as first detection information. The level detection signal D2 output when the level detection circuit 214 detects the second feature is used as second detection information.
 なお、エッジ検出回路213がエッジ検出信号D1を有効としておく時間、及び、レベル検出回路214がレベル検出信号D2を有効としておく時間、つまり入力回路202が出力する各々の検出情報を有効に維持する時間は、例えば、入力する外部信号INの電圧レベルにおける変化の仕様や、外部信号INを入力する頻度又はタイミングなどに応じて適宜設定されるものとする。 The time for which the edge detection circuit 213 keeps the edge detection signal D1 valid and the time for which the level detection circuit 214 keeps the level detection signal D2 valid, that is, each detection information output from the input circuit 202 is kept valid. The time is appropriately set according to, for example, a specification of a change in voltage level of the input external signal IN, a frequency or timing of inputting the external signal IN, or the like.
 また、図3では、説明の便宜のため、例えば、時間T1と時間T2のように、実際にはほぼ同時であるタイミングをずらして示している。また、時間T1は時間T2より早い時間としているが、時間T2が時間T1より早い時間であっても、時間T1と時間T2とが同時であっても良い。 Further, in FIG. 3, for convenience of the description, for example, timings that are substantially simultaneous are shown as being shifted, such as time T1 and time T2. The time T1 is set earlier than the time T2, but even if the time T2 is earlier than the time T1, the times T1 and T2 may be simultaneous.
 次に、判定装置204での検知部210と判定部211との情報のやり取りを、図4を用いて説明する。 Next, exchange of information between the detection unit 210 and the determination unit 211 in the determination device 204 will be described using FIG.
 図4は、外部信号INが入力されたときのエッジ検出回路213、レベル検出回路214、検知部210及び判定部211の処理を示すタイミング図である。 FIG. 4 is a timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the external signal IN is input.
 縦軸は各信号及び各フラグの論理を表す。各信号の論理については図3と同様である。フラグの論理とは、上述した情報の論理と同様に、有効又は無効で示されるものとする。
 実施の形態1では、このようなフラグの論理を、ON又はOFFの2値で示すこととする。つまり、各フラグの論理を、フラグがONのときに有効とし、OFFのときに無効と定義する。なお、特に記載が無ければ、フラグの論理の初期値を無効とする。
The vertical axis represents the logic of each signal and each flag. The logic of each signal is the same as in FIG. The logic of the flag is indicated as valid or invalid as in the logic of the information described above.
In the first embodiment, the logic of such a flag is indicated by a binary value of ON or OFF. That is, the logic of each flag is defined as valid when the flag is ON, and defined as invalid when the flag is OFF. Note that, unless otherwise stated, the initial value of the logic of the flag is invalidated.
 また、横軸は図3と同様である。 The horizontal axis is the same as that in FIG.
 図4のエッジ検出信号D1、レベル検出信号D2、時間T1及び時間T2については、図3と同様である。 The edge detection signal D1, the level detection signal D2, the time T1 and the time T2 in FIG. 4 are the same as those in FIG.
 図4の時間T3に示すように、検知部210は、エッジ検出信号D1を入力すると、入力回路202が外部信号INのエッジを検出したことを検知する。このときの検知を示すため、検知部210はエッジ検知フラグF1をOFFからONにセットする。 As shown at time T3 in FIG. 4, when the edge detection signal D1 is input, the detection unit 210 detects that the input circuit 202 has detected the edge of the external signal IN. In order to indicate detection at this time, the detection unit 210 sets the edge detection flag F1 from OFF to ON.
 また、図4の時間T4に示すように、検知部210は、レベル検出信号D2を入力すると、入力回路202が外部信号INのハイレベル状態を検出したことを検知する。このときの検知を示すため、検知部210はレベル検知フラグF2をOFFからONにセットする。 Also, as shown at time T4 in FIG. 4, when the level detection signal D2 is input, the detection unit 210 detects that the input circuit 202 has detected the high level state of the external signal IN. In order to indicate detection at this time, the detection unit 210 sets the level detection flag F2 from OFF to ON.
 検知部210は、入力する複数の検出情報の各々と対応した複数の検知情報を扱う。そして、検知部210がエッジ検出信号D1を検知したことを示すエッジ検知フラグF1を第1の検知情報とし、レベル検出信号D2を検知したことを示すレベル検知フラグF2を第2の検知情報とする。 The detection unit 210 handles a plurality of pieces of detection information corresponding to each of a plurality of pieces of detection information to be input. Then, an edge detection flag F1 indicating that the detection unit 210 detects the edge detection signal D1 is set as first detection information, and a level detection flag F2 indicating that the level detection signal D2 is detected is set as second detection information. .
 また、図4に示すように、判定部211は、時間T3においてエッジ検知フラグF1がONとなったことを確認すると、待ち時間Twを設定するとともに、待ち時間Twが経過するのを監視する。ここで、待ち時間Twは上述した所定の時間であり、判定部211が複数の検知情報の全てが有効となるかどうかを判断するための時間である。 Further, as shown in FIG. 4, when determining that the edge detection flag F1 is turned ON at time T3, the determination unit 211 sets the waiting time Tw and monitors that the waiting time Tw elapses. Here, the waiting time Tw is the above-described predetermined time, and is a time for the determination unit 211 to determine whether all of the plurality of pieces of detection information are valid.
 そして、判定部211は、待ち時間Twが経過する前の時間T4においてレベル検知フラグF2がONとなったことを確認する。このとき、判定部211は、待ち時間Tw内に全てのフラグが有効となったので、入力回路202が正常状態にあると判定する。 Then, the determination unit 211 confirms that the level detection flag F2 has become ON at time T4 before the waiting time Tw has elapsed. At this time, the determination unit 211 determines that the input circuit 202 is in the normal state because all the flags become valid within the waiting time Tw.
 図4の時間T5に示すように、判定部211は、入力回路202が正常状態にあると判定した時点で、正常判定フラグF3をOFFからONにセットし、判定処理の判定結果を示す。 As shown at time T5 in FIG. 4, when it is determined that the input circuit 202 is in the normal state, the determination unit 211 sets the normal determination flag F3 from OFF to ON, and indicates the determination result of the determination process.
 ここまでの説明において、検知部210は、入力回路202が出力する全ての検出情報を認識して処理できるように予め設定されているものとする。また、判定部211は、検知部210が扱う全ての検知情報を認識して処理できるように予め設定されているものとする。 In the description so far, the detection unit 210 is set in advance so that all detection information output from the input circuit 202 can be recognized and processed. Further, the determination unit 211 is set in advance so that all detection information handled by the detection unit 210 can be recognized and processed.
 また、時間T1及びT2と同様に、図4では、説明の便宜のため、例えば、時間T3と時間T4のように、実際にはほぼ同時であるタイミングをずらして示している。
 また、時間T3は時間T4より早い時間としているが、時間T4が時間T3より早い時間であっても、時間T3と時間T4とが同時であっても良い。
 つまり、判定部211は、少なくとも1つの検知情報が有効となったことを確認した時点で、待ち時間Twの設定と監視を行う。そして、判定部211は、待ち時間Tw内に全ての検知情報が有効となるかどうかを判断して、入力回路202が正常状態にあるかどうかを判定する。
Further, as in the times T1 and T2, in FIG. 4, for convenience of the description, for example, timings that are substantially simultaneous are shown being shifted, such as times T3 and T4.
Although time T3 is earlier than time T4, time T3 may be earlier than time T3, or time T3 may be simultaneous with time T4.
That is, the determination unit 211 performs setting and monitoring of the waiting time Tw when it is confirmed that at least one piece of detection information has become valid. Then, the determination unit 211 determines whether all the detection information becomes valid within the waiting time Tw, and determines whether the input circuit 202 is in the normal state.
 なお、図4に示したエッジ検知フラグF1、レベル検知フラグF2及び正常判定フラグF3の各々の論理の情報は、電圧レベルがハイレベル状態又はローレベル状態に変化する信号として出力されても良いし、RAM207の所定の記憶領域にON又はOFFを示す情報として書き込まれても良い。 Information on the logic of each of the edge detection flag F1, the level detection flag F2, and the normality determination flag F3 shown in FIG. 4 may be output as a signal whose voltage level changes to the high level state or the low level state. , And may be written in a predetermined storage area of the RAM 207 as information indicating ON or OFF.
 また、判定装置204において、エッジ検知フラグF1、レベル検知フラグF2及び正常判定フラグF3をONからOFFにリセットするタイミングとしては、例えば、図4に示すように待ち時間Twが経過した時間T6の時点、判定部211がエッジ検知フラグF1及びレベル検知フラグF2のONを確認した時点、通知部212での通知が完了した時点、又は、これらの時点の組み合わせが考えられる。 Further, as the timing for resetting the edge detection flag F1, the level detection flag F2 and the normality determination flag F3 from ON to OFF in the determination device 204, for example, as shown in FIG. When the determination unit 211 confirms that the edge detection flag F1 and the level detection flag F2 are ON, the notification by the notification unit 212 is completed, or a combination of these time may be considered.
 次に、図5~8の例を用いて、入力回路202が異常状態にある場合の、エッジ検出回路213、レベル検出回路214、検知部210及び判定部211の処理について説明する。 Next, processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the input circuit 202 is in an abnormal state will be described using the examples of FIGS.
 図5は、入力回路202のエッジ検出回路213が異常状態にある場合の、エッジ検出回路213、レベル検出回路214、検知部210及び判定部211の処理を示すタイミング図である。縦軸と横軸は、図3と同様である。 FIG. 5 is a timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the edge detection circuit 213 of the input circuit 202 is in an abnormal state. The vertical and horizontal axes are the same as in FIG.
 エッジ検出回路213の異常状態とは、エッジ検出回路213において、例えば、入力した外部信号INの電圧レベルがローレベルからハイレベルに変化したことを検出する箇所の配線が切れていたり、エッジ検出信号D1を出力する端子の電圧レベルがローレベルに固着してしまったり、何らかの異常が発生しており、外部信号INの入力に伴いエッジ検出信号D1が正常に出力されない状態を指す。 An abnormal state of the edge detection circuit 213 refers to, for example, a disconnection at a point where it is detected in the edge detection circuit 213 that the voltage level of the input external signal IN has changed from low level to high level, or an edge detection signal. The voltage level of the terminal that outputs D1 is stuck at a low level, or some abnormality has occurred, and the edge detection signal D1 is not normally output with the input of the external signal IN.
 図5の期間E1に示すように、異常状態にあるエッジ検出回路213は、外部信号INを入力したにも関わらず、エッジ検出信号D1を出力しない。そのため、検知部210はエッジ検知フラグF1をONにセットしない。 As shown in period E1 of FIG. 5, the edge detection circuit 213 in the abnormal state does not output the edge detection signal D1 despite the fact that the external signal IN is input. Therefore, the detection unit 210 does not set the edge detection flag F1 to ON.
 一方で、図5の時間T7に示すように、正常状態にあるレベル検出回路214は、外部信号INを入力すると、外部信号INの電圧レベルがハイレベル状態にあることを検出して、レベル検出信号D2を出力する。そのため、検知部210は、時間T8においてレベル検知フラグF2をONにセットする。 On the other hand, as shown at time T7 in FIG. 5, when the external signal IN is input, the level detection circuit 214 in the normal state detects that the voltage level of the external signal IN is in the high level state, and detects the level. The signal D2 is output. Therefore, the detection unit 210 sets the level detection flag F2 to ON at time T8.
 判定部211は、時間T8においてレベル検知フラグF2がONとなったことを確認すると、待ち時間Twを設定して監視を行う。しかしながら、判定部211は、待ち時間Twが経過する前に、エッジ検知フラグF1がONとなることを確認することはない。その結果、判定部211は、待ち時間Twが経過した時間T9の時点で、入力回路202が異常状態にあると判定する。 When determining that the level detection flag F2 is turned on at time T8, the determination unit 211 sets a waiting time Tw and performs monitoring. However, the determination unit 211 does not confirm that the edge detection flag F1 is turned on before the waiting time Tw elapses. As a result, the determination unit 211 determines that the input circuit 202 is in an abnormal state at time T9 when the waiting time Tw has elapsed.
 図5の時間T9に示すように、判定部211は、入力回路202が異常状態にあると判定した時点で、異常判定フラグF4をOFFからONにセットし、判定処理の判定結果を示す。 As shown at time T9 in FIG. 5, when it is determined that the input circuit 202 is in the abnormal state, the determination unit 211 sets the abnormality determination flag F4 from OFF to ON, and indicates the determination result of the determination process.
 このように、判定装置204が、入力回路202が正常状態にあることを正常判定フラグF3の有効によって示し、入力回路202が異常状態にあることを異常判定フラグF4の有効によって示すようにしたので、入力回路202での外部信号INの入力時又は異常発生時に、電子制御システム101が入力回路202の異常を知る可能性を従来よりも高めることが出来るようになる。 Thus, the determination device 204 indicates that the input circuit 202 is in the normal state by the validity of the normal judgment flag F3 and indicates that the input circuit 202 is in the abnormal state by the validity of the abnormality judgment flag F4. When the external signal IN is input to the input circuit 202 or when an abnormality occurs, the possibility that the electronic control system 101 recognizes the abnormality of the input circuit 202 can be increased more than before.
 また、図6は、入力回路202のレベル検出回路214が異常状態にある場合の、エッジ検出回路213、レベル検出回路214、検知部210及び判定部211の処理を示すタイミング図である。縦軸と横軸は、図3と同様である。 6 is a timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the level detection circuit 214 of the input circuit 202 is in an abnormal state. The vertical and horizontal axes are the same as in FIG.
 レベル検出回路214の異常状態とは、レベル検出回路214において、例えば、入力した外部信号INの電圧レベルの大きさを検出する箇所の配線が切れていたり、レベル検出信号D2を出力する端子の電圧レベルがローレベルに固着してしまったり、何らかの異常が発生しており、外部信号INの入力に伴いレベル検出信号D2が正常に出力されない状態を指す。 An abnormal state of the level detection circuit 214 refers to, for example, disconnection of a wire at a point where the level of the voltage level of the input external signal IN is detected in the level detection circuit 214 or a voltage at a terminal for outputting the level detection signal D2. The level is stuck at the low level or some abnormality occurs, and the level detection signal D2 is not normally output with the input of the external signal IN.
 図6の期間E2に示すように、異常状態にあるレベル検出回路214は、外部信号INを入力したにも関わらず、レベル検出信号D2を出力しない。そのため、検知部210はレベル検知フラグF2をONにセットしない。 As shown in period E2 of FIG. 6, the level detection circuit 214 in the abnormal state does not output the level detection signal D2 despite the input of the external signal IN. Therefore, the detection unit 210 does not set the level detection flag F2 to ON.
 一方で、図6の時間T10に示すように、正常状態にあるエッジ検出回路213は、外部信号INを入力すると、外部信号INの電圧レベルがローレベルからハイレベルに変化したこと検出して、エッジ検出信号D1を出力する。そのため、検知部210は、時間T11においてエッジ検知フラグF1をONにセットする。 On the other hand, as shown at time T10 in FIG. 6, when the external signal IN is input, the edge detection circuit 213 in the normal state detects that the voltage level of the external signal IN has changed from low level to high level, An edge detection signal D1 is output. Therefore, the detection unit 210 sets the edge detection flag F1 to ON at time T11.
 判定部211は、時間T11においてエッジ検知フラグF1がONとなったことを確認すると、待ち時間Twを設定して監視を行う。しかしながら、判定部211は、待ち時間Twが経過する前に、レベル検知フラグF2がONとなることを確認することはない。その結果、判定部211は待ち時間Twが経過した時間T12の時点で入力回路202が異常状態にあると判定して、異常判定フラグF4をONにセットする。 When determining that the edge detection flag F1 is turned on at time T11, the determination unit 211 sets a waiting time Tw and performs monitoring. However, the determination unit 211 does not confirm that the level detection flag F2 is turned on before the waiting time Tw elapses. As a result, the determination unit 211 determines that the input circuit 202 is in an abnormal state at time T12 when the waiting time Tw has elapsed, and sets the abnormality determination flag F4 to ON.
 また、図7は、入力回路202のエッジ検出回路213が異常状態にある場合の、エッジ検出回路213、レベル検出回路214、検知部210及び判定部211の処理を示す別のタイミング図である。縦軸と横軸は、図3と同様である。 FIG. 7 is another timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the edge detection circuit 213 of the input circuit 202 is in an abnormal state. The vertical and horizontal axes are the same as in FIG.
 図7の例では、エッジ検出回路213において、例えば、回路内の部品の発振や配線上におけるノイズ重畳の現象に起因して、エッジ検出信号D1を出力する端子の電圧レベルが一時的にハイレベルに固着するなど、何らかの異常が発生しており、エッジ検出信号D1に相当する信号が異常に出力された状態を示す。 In the example of FIG. 7, in the edge detection circuit 213, for example, the voltage level of the terminal for outputting the edge detection signal D1 temporarily becomes high due to the phenomenon of oscillation of parts in the circuit and noise superposition on the wiring. This indicates that a certain abnormality has occurred, such as sticking to the signal, and a signal corresponding to the edge detection signal D1 is abnormally output.
 図7の期間E3に示すように、異常状態にあるエッジ検出回路213は、外部信号INを入力していないにも関わらず、時間T13においてエッジ検出信号D1に相当する信号を出力する。そのため、検知部210は、時間T14においてエッジ検知フラグF1をONにセットする。 As shown in period E3 of FIG. 7, the edge detection circuit 213 in an abnormal state outputs a signal corresponding to the edge detection signal D1 at time T13, even though the external signal IN is not input. Therefore, the detection unit 210 sets the edge detection flag F1 to ON at time T14.
 一方で、正常状態にあるレベル検出回路214は、外部信号INを入力しないので、レベル検出信号D2を出力しない。 On the other hand, since the level detection circuit 214 in the normal state does not receive the external signal IN, it does not output the level detection signal D2.
 判定部211は、時間T14においてエッジ検知フラグF1がONとなったことを確認すると、待ち時間Twを設定して監視を行う。しかしながら、判定部211は、待ち時間Twが経過する前に、レベル検知フラグF2がONとなることを確認することはない。その結果、判定部211は待ち時間Twが経過した時間T15の時点で入力回路202が異常状態にあると判定して、異常判定フラグF4をONにセットする。 When determining that the edge detection flag F1 is turned on at time T14, the determination unit 211 sets a waiting time Tw and performs monitoring. However, the determination unit 211 does not confirm that the level detection flag F2 is turned on before the waiting time Tw elapses. As a result, the determination unit 211 determines that the input circuit 202 is in an abnormal state at time T15 when the waiting time Tw has elapsed, and sets the abnormality determination flag F4 to ON.
 また、図8は、入力回路202のレベル検出回路214が異常状態にある場合の、エッジ検出回路213、レベル検出回路214、検知部210及び判定部211の処理を示す別のタイミング図である。縦軸と横軸は、図3と同様である。 FIG. 8 is another timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the level detection circuit 214 of the input circuit 202 is in an abnormal state. The vertical and horizontal axes are the same as in FIG.
 図8の例では、レベル検出回路214において、例えば、回路内の部品の発振や配線上におけるノイズ重畳の現象に起因して、レベル検出信号D2を出力する端子の電圧レベルが一時的にハイレベルに固着するなど、何らかの異常が発生しており、レベル検出信号D2に相当する信号が異常に出力された状態を示す。 In the example of FIG. 8, in the level detection circuit 214, for example, the voltage level of the terminal for outputting the level detection signal D2 temporarily becomes high due to the phenomenon of oscillation of parts in the circuit and noise superposition on the wiring. In this state, there is an abnormality such as sticking to the sensor, and a signal corresponding to the level detection signal D2 is output abnormally.
 図8の期間E4に示すように、異常状態にあるレベル検出回路214は、外部信号INを入力していないにも関わらず、時間T16においてレベル検出信号D2に相当する信号を出力する。そのため、検知部210は、時間T17においてレベル検知フラグF2をONにセットする。 As shown in period E4 of FIG. 8, the level detection circuit 214 in an abnormal state outputs a signal corresponding to the level detection signal D2 at time T16, even though the external signal IN is not input. Therefore, the detection unit 210 sets the level detection flag F2 to ON at time T17.
 一方で、正常状態にあるエッジ検出回路213は、外部信号INを入力しないので、エッジ検出信号D1を出力しない。 On the other hand, since the edge detection circuit 213 in the normal state does not receive the external signal IN, it does not output the edge detection signal D1.
 判定部211は、時間T17においてレベル検知フラグF2がONとなったことを確認すると、待ち時間Twを設定して監視を行う。しかしながら、判定部211は、待ち時間Twが経過する前に、エッジ検知フラグF1がONとなることを確認することはない。その結果、判定部211は待ち時間Twが経過した時間T18の時点で入力回路202が異常状態にあると判定して、異常判定フラグF4をONにセットする。 When determining that the level detection flag F2 is turned on at time T17, the determination unit 211 sets a waiting time Tw and performs monitoring. However, the determination unit 211 does not confirm that the edge detection flag F1 is turned on before the waiting time Tw elapses. As a result, the determination unit 211 determines that the input circuit 202 is in an abnormal state at time T18 when the waiting time Tw has elapsed, and sets the abnormality determination flag F4 to ON.
 なお、判定装置204において、異常判定フラグF4をONからOFFにリセットするタイミングとしては、例えば、通知部212での通知が完了した時点が考えられる。 In addition, as a timing which resets the abnormality determination flag F4 from ON to OFF in the determination apparatus 204, the time of the notification in the notification part 212 being completed can be considered, for example.
 ところで、判定システム215において入力回路202及び判定装置204は、上述したとおり、それぞれ複数の他装置を跨いで配置されても良いため、他装置が入力回路202から出力された検出情報の信号の一部を変換処理して判定装置204に出力することも考えられる。このような場合、入力回路202が出力する検出情報の信号と、判定装置204が入力する検出情報の信号とは同一の信号とならないことも考えられる。しかしながら、入力回路202から判定装置204に対して伝達する必要がある情報とは、入力回路202の内部回路が外部信号INを検出したかどうかを示す情報であって、有効又は無効の論理についての情報である。この情報を検出情報と定義する。 By the way, in the determination system 215, as described above, the input circuit 202 and the determination device 204 may be disposed across a plurality of other devices as described above, and therefore one of the signals of the detection information output from the other device is the input circuit 202. It is also conceivable to convert the part and output it to the determination device 204. In such a case, it is possible that the signal of the detection information output from the input circuit 202 and the signal of the detection information input by the determination device 204 do not become the same signal. However, the information that needs to be transmitted from the input circuit 202 to the determination device 204 is information indicating whether the internal circuit of the input circuit 202 has detected the external signal IN, and the information on valid or invalid logic is described. It is information. This information is defined as detection information.
 ここまでの判定システム215の動作を以下にまとめて説明する。 The operation of the determination system 215 up to this point will be summarized below.
 図9は、判定システム215の処理を示すフローチャート図である。図9のフローチャートでは、判定システム215が外部装置から外部信号INを入力するところから処理を開始する。 FIG. 9 is a flowchart showing the process of the determination system 215. In the flowchart of FIG. 9, the process starts when the determination system 215 receives an external signal IN from an external device.
 処理S901では、入力回路202のエッジ検出回路213及びレベル検出回路214が、外部信号INを入力する。その後、処理S902に進む。 In processing S901, the edge detection circuit 213 and the level detection circuit 214 of the input circuit 202 receive the external signal IN. Then, it progresses to process S902.
 処理S902では、エッジ検出回路213が、外部信号INのエッジを検出して、検出情報を出力する。エッジとは、信号の電圧レベルがローレベルからハイレベルに変化する外部信号INの特徴である。また、レベル検出回路214が、外部信号INの特徴として、外部信号INの電圧レベルがハイレベル状態にあることを検出して、検出情報を出力する。その後、処理S903aに進む。 In processing S902, the edge detection circuit 213 detects an edge of the external signal IN and outputs detection information. The edge is a feature of the external signal IN in which the voltage level of the signal changes from low level to high level. Further, as a feature of the external signal IN, the level detection circuit 214 detects that the voltage level of the external signal IN is in the high level state, and outputs detection information. Then, it progresses to process S903a.
 処理S903a及び処理S903bは、判定システム215でのループ処理を示す。ループ処理では、処理S903bまで処理が進むと処理S903aに処理を戻す。 Processing S 903 a and processing S 903 b indicate loop processing in the determination system 215. In the loop process, when the process proceeds to the process S 903 b, the process returns to the process S 903 a.
 処理S904では、判定装置204の検知部210が、入力回路202から入力する複数の検出情報のうち少なくとも1つを検知したかどうかを判定する。少なくとも1つの検出情報を検知した場合には、処理S905に進む。また、1つも検出情報を検知していない場合には、処理S913に進む。 In step S904, the detection unit 210 of the determination device 204 determines whether at least one of the plurality of pieces of detection information input from the input circuit 202 has been detected. If at least one piece of detection information is detected, the process proceeds to processing S905. If none of the detection information is detected, the process proceeds to step S 913.
 処理S905では、検知部210が、検知した検出情報と対応した検知情報を無効から有効とする。その後、処理S906に進む。 In processing S905, the detection unit 210 makes the detection information corresponding to the detected detection information valid to invalid. Then, it progresses to process S906.
 処理S906では、判定装置204の判定部211が、処理S905において無効から有効となった検知情報を確認する。その後、処理S907に進む。 In process S906, the determination unit 211 of the determination apparatus 204 confirms the detection information that has become invalid from valid in process S905. Then, it progresses to process S907.
 処理S907では、判定部211が、待ち時間Twを監視中であるかどうかを判定する。監視中であれば、処理S909に進む。また、監視中でなければ、処理S908に進む。 In processing S907, the determination unit 211 determines whether or not the waiting time Tw is being monitored. If monitoring is in progress, the process proceeds to step S909. If the monitoring is not in progress, the process proceeds to step S908.
 処理S908では、判定部211が、待ち時間Twを設定し、監視を開始する。その後、処理S909に進む。 In processing S908, the determination unit 211 sets the waiting time Tw and starts monitoring. Thereafter, the process proceeds to step S909.
 処理S909では、判定部211が、検知部210で処理する全ての検知情報が有効となったかどうかを判断する。全ての検知情報が有効であれば、処理S910に進む。また、全ての検知情報が有効でなければ、処理S914に進む。 In processing S909, the determination unit 211 determines whether all the detection information processed by the detection unit 210 has become valid. If all the detection information is valid, the process proceeds to processing S910. If all the detection information is not valid, the process proceeds to processing S914.
 処理S910では、判定部211が、入力回路202は正常状態にあると判定する。その後、処理S911に進む。 In processing S910, the determination unit 211 determines that the input circuit 202 is in the normal state. Then, it progresses to process S911.
 処理S911では、通知部212が、判定部211の判定結果を通知する。その後、処理S910に進む。 In processing S911, the notification unit 212 notifies the determination result of the determination unit 211. Then, it progresses to process S910.
 処理S912では、検知部210が検知情報を無効にリセットし、判定部211が判定結果を無効にリセットする。その後、処理を終了する。 In processing S912, the detection unit 210 resets the detection information to invalid, and the determination unit 211 resets the determination result to invalid. Thereafter, the process ends.
 処理S913では、判定部211が、待ち時間Twを監視中であるかどうかを判定する。監視中であれば、処理S914に進む。また、監視中でなければ、処理S903bに進む。 In processing S913, the determination unit 211 determines whether or not the waiting time Tw is being monitored. If monitoring is in progress, the process proceeds to step S914. If the monitoring is not in progress, the process proceeds to processing S 903 b.
 処理S914では、判定部211が、監視中の待ち時間Twが経過したかどうかを判定する。待ち時間Twが経過していれば、処理S915に進む。また、待ち時間Twが経過していなければ、処理S903bに進む。 In processing S914, the determination unit 211 determines whether or not the waiting time Tw being monitored has elapsed. If the waiting time Tw has elapsed, the process proceeds to step S915. If the waiting time Tw has not elapsed, the process proceeds to step S 903 b.
 処理S915では、判定部211が、入力回路202は異常状態にあると判定する。その後、処理S911に進む。 In processing S915, the determination unit 211 determines that the input circuit 202 is in an abnormal state. Then, it progresses to process S911.
 ここまでは、入力回路202の内部回路を2重化構成として、それぞれの回路において、外部信号INの特徴であるエッジとハイレベル状態とを個別に検出して検出情報をそれぞれ出力する例について説明した。しかし、入力回路202の内部回路が検出する外部信号INの特徴はエッジ及びハイレベル状態に限られない。入力回路202の内部回路は、エッジ及びハイレベル状態とは異なる外部信号INの特徴を検出して、検出情報を出力するようにしても良い。 Up to here, an example is described in which the internal circuit of the input circuit 202 is duplicated and each edge individually detects an edge and a high level state which is a feature of the external signal IN and outputs detection information. did. However, the features of the external signal IN detected by the internal circuit of the input circuit 202 are not limited to the edge and high level states. The internal circuit of the input circuit 202 may detect a feature of the external signal IN which is different from the edge and high level state, and output detection information.
 さらに、入力回路202の内部回路を3以上の多重化構成とし、各々の回路が外部信号INの特徴を個別に検出し検出情報を出力するようにしても良い。 Furthermore, the internal circuit of the input circuit 202 may be configured to be three or more multiplexed, and each circuit may individually detect the feature of the external signal IN and output detection information.
 図10は、入力回路202の内部回路を3重化構成とした場合の駆動制御部110の機能ブロックを示すブロック構成図である。
 図10に示すように、入力回路202は、内部回路をエッジ検出回路213、レベル検出回路214及びパターン検出回路1001の3重化構成としている。その他の構成については図2と同様である。
FIG. 10 is a block diagram showing functional blocks of the drive control unit 110 in the case where the internal circuit of the input circuit 202 has a triple configuration.
As shown in FIG. 10, the input circuit 202 has an internal circuit in a triple configuration of an edge detection circuit 213, a level detection circuit 214, and a pattern detection circuit 1001. The other configuration is the same as that shown in FIG.
 パターン検出回路1001は、入力する外部信号INの種別が複数ある場合に、外部信号INの特徴として外部信号INの種別を検出して、種別と対応した検出情報を出力する。 When there are a plurality of types of external signal IN to be input, the pattern detection circuit 1001 detects the type of the external signal IN as a feature of the external signal IN, and outputs detection information corresponding to the type.
 また、図11は、入力回路202の内部回路を3重化構成とした場合の、エッジ検出回路213、レベル検出回路214、検知部210及び判定部211の処理を示すタイミング図である。
 図11に示すように、入力した外部信号IN1及びIN2は、種別情報Kを含む。外部信号IN1及びIN2に示すとおり、種別情報Kには、複数ある外部信号INの種別と対応した、電圧レベルのローレベル状態及びハイレベル状態からなるパターンが含まれている。
FIG. 11 is a timing chart showing processing of the edge detection circuit 213, the level detection circuit 214, the detection unit 210, and the determination unit 211 when the internal circuit of the input circuit 202 has a triple configuration.
As shown in FIG. 11, the input external signals IN1 and IN2 include type information K. As indicated by the external signals IN1 and IN2, the type information K includes a pattern consisting of a low level state and a high level state of voltage levels corresponding to the types of the plurality of external signals IN.
 入力回路202は、外部信号INのエッジ、ハイレベル状態及び種別を検出して、エッジ検出信号D1、レベル検出信号D2及びパターン検出信号D3を出力する。エッジ検出信号D1、レベル検出信号D2及びパターン検出信号D3は検出情報である。 The input circuit 202 detects an edge, a high level state, and a type of the external signal IN, and outputs an edge detection signal D1, a level detection signal D2, and a pattern detection signal D3. The edge detection signal D1, the level detection signal D2, and the pattern detection signal D3 are detection information.
 パターン検出信号D3は、外部信号INの種別情報Kにおける電圧レベルのパターンと対応しており、パターン検出信号D3a及びD3bのように内容が異なる。 The pattern detection signal D3 corresponds to the pattern of the voltage level in the type information K of the external signal IN, and the contents are different as the pattern detection signals D3a and D3b.
 図11に示すとおり、パターン検出回路1001は、互いに種別が異なる外部信号IN1及びIN2のパターンをそれぞれ検出して、パターン検出信号D3a及びパターン検出信号D3bをそれぞれ出力する。パターン検出信号D3a及びパターン検出信号D3bはパターン検出信号D3である。 As shown in FIG. 11, the pattern detection circuit 1001 detects the patterns of the external signals IN1 and IN2 different in type from each other, and outputs a pattern detection signal D3a and a pattern detection signal D3b. The pattern detection signal D3a and the pattern detection signal D3b are a pattern detection signal D3.
 そして、検知部210は、図4~8の処理と同様にして、入力回路202から入力する3つの検出情報、つまりエッジ検出信号D1、レベル検出信号D2及びパターン検出信号D3の各々と対応してエッジ検知フラグF1、レベル検知フラグF2及びパターン検知フラグF5の各々をOFFからONとする。また、判定部211は、待ち時間Tw内に全てのフラグが無効から有効となったと判断すると、入力回路202が正常状態にあると判定する。 Then, in the same manner as the processing in FIGS. 4 to 8, the detection unit 210 corresponds to each of the three detection information input from the input circuit 202, that is, the edge detection signal D1, the level detection signal D2, and the pattern detection signal D3. Each of the edge detection flag F1, the level detection flag F2 and the pattern detection flag F5 is changed from OFF to ON. Further, when determining that all the flags become invalid from valid within the waiting time Tw, the determining unit 211 determines that the input circuit 202 is in the normal state.
 ここで、パターン検出回路1001を第3の検出回路とする。そして、パターン検出回路1001が検出する外部信号INの特徴を第3の特徴とする。そして、入力回路202が出力する複数の検出情報のうち、パターン検出回路1001が出力するパターン検出信号D3を第3の検出情報とする。そして、検知部210がパターン検出信号D3を検知したことを示す検知情報を第3の検知情報とする。 Here, the pattern detection circuit 1001 is referred to as a third detection circuit. The feature of the external signal IN detected by the pattern detection circuit 1001 is the third feature. Then, among the plurality of pieces of detection information output from the input circuit 202, the pattern detection signal D3 output from the pattern detection circuit 1001 is used as third detection information. Then, detection information indicating that the detection unit 210 has detected the pattern detection signal D3 is set as third detection information.
 このように、入力回路202において外部信号INの種別を検出することにより、駆動制御部110のマイコン201は、入力したパターン検出信号D3に基づき、種別が複数ある外部信号INを区別して、対応する所定の処理を実行することが出来るようになる。つまり、駆動制御部110のマイコン201は、複数ある所定の処理を区別しながら実行できるようになる。 As described above, by detecting the type of the external signal IN in the input circuit 202, the microcomputer 201 of the drive control unit 110 distinguishes the external signal IN having a plurality of types based on the input pattern detection signal D3, and responds. It becomes possible to execute predetermined processing. That is, the microcomputer 201 of the drive control unit 110 can be executed while discriminating a plurality of predetermined processes.
 また、入力回路202が立て続けに入力した複数の外部信号INを検出して出力した検出情報を、判定装置204が一緒くたに入力し混同して処理することがないように、間隔時間Tiを設けることを考える。つまり、間隔時間Tiとは、検知部210及び判定部211が、同一の外部信号INと対応した複数の検出情報に基づき処理を行えるようにするための時間である。 In addition, an interval time Ti is provided so that the detection device 204 detects and outputs the detection information output from the plurality of external signals IN which are continuously input by the input circuit 202 in a row. think of. That is, the interval time Ti is a time for the detection unit 210 and the determination unit 211 to perform processing based on a plurality of pieces of detection information corresponding to the same external signal IN.
 図11に示すように、判定部211が、判定処理の後に間隔時間Ti1を設定したり、待ち時間Twの経過後に間隔時間Ti2を設定したりすることで、検知部210及び判定部211は外部信号INの入力に伴い出力される検出情報のまとまりを区別できるようになる。判定部211での判定処理の後とは、正常判定フラグF3又は異常判定フラグF4が有効となった時点である。 As shown in FIG. 11, the determination unit 211 sets the interval time Ti1 after the determination processing, or sets the interval time Ti2 after the waiting time Tw has elapsed, so that the detection unit 210 and the determination unit 211 are external. It is possible to distinguish a set of detection information output with the input of the signal IN. After the determination process in the determination unit 211 is the time when the normality determination flag F3 or the abnormality determination flag F4 becomes valid.
 このことは、駆動制御部110のマイコン201が、複数種別ある指令信号を入力して複数の所定の処理を実行できるようにする効果もある。 This has the effect of enabling the microcomputer 201 of the drive control unit 110 to execute a plurality of predetermined processes by inputting a plurality of types of command signals.
 なお、入力回路202を2重化構成とした内部回路において、上述の第1の特徴、第2の特徴及び第3の特徴のうち何れか2つを検出して検出情報を出力するようにしても良い。例えば、第1の特徴及び第3の特徴を検出して第1の検出情報及び第3の検出情報を出力したり、第2の特徴及び第3の特徴を検出して第2の検出情報及び第3の検出情報を出力したりする。 In the internal circuit in which the input circuit 202 has a duplex configuration, any two of the first feature, the second feature, and the third feature described above are detected and detection information is output. Also good. For example, the first and third features are detected to output first and third detection information, and the second and third features are detected and second and third detection information and Output third detection information.
 さらに、判定システム215の変形例について説明する。
 入力回路202は、制御内容に応じて信号の電圧レベルがハイレベル又はローレベルに維持される外部信号INを入力する。マイコン201は、入力した外部信号INの電圧レベルがハイレベルであるかローレベルであるかを判断して、各々の電圧レベルと対応した所定の処理を実行する。
Further, a modification of the determination system 215 will be described.
The input circuit 202 inputs an external signal IN in which the voltage level of the signal is maintained at high level or low level according to the control content. The microcomputer 201 determines whether the voltage level of the input external signal IN is high level or low level, and executes predetermined processing corresponding to each voltage level.
 図12は、判定システム215の変形例としての駆動制御部110の機能ブロックを示すブロック構成図である。
 図12に示すように、入力回路202は、内部回路をエッジ検出回路1201、ハイレベル検出回路1202及びローレベル検出回路1203の3重化構成としている。
 また、図12に示すように、判定装置204は、図2とは異なる検知部1204を備える。
 その他の構成については図2と同様である。
FIG. 12 is a block diagram showing functional blocks of the drive control unit 110 as a modification of the determination system 215. As shown in FIG.
As shown in FIG. 12, the input circuit 202 has an internal circuit in a triple configuration of an edge detection circuit 1201, a high level detection circuit 1202 and a low level detection circuit 1203.
Further, as shown in FIG. 12, the determination device 204 includes a detection unit 1204 different from that of FIG. 2.
The other configuration is the same as that shown in FIG.
 図13は、判定システム215の変形例における処理を示すタイミング図である。 FIG. 13 is a timing chart showing processing in a modification of the determination system 215.
 入力回路202のエッジ検出回路1201は、外部信号INの電圧レベルのローレベルからハイレベルへの変化及びハイレベルからローレベルへの変化を検出すると、エッジ検出信号D4を出力する。
 また、ハイレベル検出回路1202は、外部信号INの電圧レベルがハイレベルにあることを検出すると、ハイレベル検出信号D5を出力する。
 また、ローレベル検出回路1203は、外部信号INの電圧レベルがローレベルにあることを検出すると、ローレベル検出信号D6を出力する。
The edge detection circuit 1201 of the input circuit 202 outputs an edge detection signal D4 upon detecting the change from the low level to the high level and the change from the high level to the low level of the voltage level of the external signal IN.
Further, when detecting that the voltage level of the external signal IN is at the high level, the high level detection circuit 1202 outputs the high level detection signal D5.
The low level detection circuit 1203 outputs a low level detection signal D6 when detecting that the voltage level of the external signal IN is at a low level.
 そして、判定装置204の検知部1204は、入力回路202からエッジ検出信号D4を入力すると、エッジ検知フラグF6を無効から有効とする。
 また、検知部1204は、入力回路202からハイレベル検出信号D5又はローレベル検出信号D6を入力すると、レベル検知フラグF7を無効から有効とする。
Then, when the edge detection signal D4 is input from the input circuit 202, the detection unit 1204 of the determination device 204 turns the edge detection flag F6 from invalid to valid.
When the detection unit 1204 receives the high level detection signal D5 or the low level detection signal D6 from the input circuit 202, the detection unit 1204 turns the level detection flag F7 from invalid to valid.
 そして、判定装置204の判定部211は、図4~8と同様にして、エッジ検知フラグF6及びレベル検知フラグF7が待ち時間Tw内に無効から有効となるかどうかを判断して、入力回路202が正常状態にあるかどうかを判定する。 Then, the determination unit 211 of the determination device 204 determines whether the edge detection flag F6 and the level detection flag F7 become valid or invalid within the waiting time Tw, as in FIGS. Determine if is in a normal state.
 このように、検知部1204は、入力回路202から出力される複数の検知情報に対して1つの検知情報を対応させることも可能である。 As described above, the detection unit 1204 can also associate one piece of detection information with a plurality of pieces of detection information output from the input circuit 202.
 ここで、入力回路202のエッジ検出回路1201を第4の検出回路とし、ハイレベル検出回路1202を第5の検出回路とし、ローレベル検出回路1203を第6の検出回路とする。そして、エッジ検出回路1201が出力するエッジ検出信号D4を第4の検出情報とし、ハイレベル検出回路1202が出力するハイレベル検出信号D5を第5の検出情報とし、ローレベル検出回路1203が出力するローレベル検出信号D6を第6の検出情報とする。そして、エッジ検出信号D4と対応したエッジ検知フラグF6を、第4の検知情報とし、ハイレベル検出信号D5又はローレベル検出信号D6と対応したレベル検知フラグF7を、第5の検知情報とする。 Here, the edge detection circuit 1201 of the input circuit 202 is a fourth detection circuit, the high level detection circuit 1202 is a fifth detection circuit, and the low level detection circuit 1203 is a sixth detection circuit. The edge detection signal D4 output from the edge detection circuit 1201 is used as fourth detection information, the high level detection signal D5 output from the high level detection circuit 1202 is used as fifth detection information, and the low level detection circuit 1203 is output. The low level detection signal D6 is used as sixth detection information. Then, the edge detection flag F6 corresponding to the edge detection signal D4 is set as fourth detection information, and the level detection flag F7 corresponding to the high level detection signal D5 or the low level detection signal D6 is set as fifth detection information.
 さらに、判定システム215の別の変形例について図17を用いて説明する。
 入力回路202が、制御内容に応じて信号の電圧レベルがハイレベル又はローレベルに維持される外部信号INを入力し、マイコン201が、入力した外部信号INの電圧レベルがハイレベルであるかローレベルであるかを判断して、各々の電圧レベルと対応した所定の処理を実行するところは、上述の変形例と同様である。
Furthermore, another modified example of the determination system 215 will be described with reference to FIG.
The input circuit 202 inputs an external signal IN in which the voltage level of the signal is maintained at high level or low level according to the control content, and the microcomputer 201 inputs high level or low level of the voltage level of the input external signal IN. It is the same as that of the above-mentioned modification in that it judges whether it is a level and executes a predetermined process corresponding to each voltage level.
 入力回路202は、内部回路を、ハイレベルエッジ検出回路1701、ローレベルエッジ検出回路1702、ハイレベル電圧検出回路1703及びローレベル電圧検出回路1704の4重化構成としている。
 その他の構成については図2と同様である。
The input circuit 202 has an internal circuit in a quadruple configuration of a high level edge detection circuit 1701, a low level edge detection circuit 1702, a high level voltage detection circuit 1703, and a low level voltage detection circuit 1704.
The other configuration is the same as that shown in FIG.
 入力回路202のハイレベルエッジ検出回路1701は、外部信号INの電圧レベルのローレベルからハイレベルへの変化を検出すると、ハイレベルエッジ検出信号D7を出力する。
 また、入力回路202のローレベルエッジ検出回路1702は、外部信号INの電圧レベルのハイレベルからローレベルへの変化を検出すると、ローレベルエッジ検出信号D8を出力する。
 また、ハイレベル電圧検出回路1703は、外部信号INの電圧レベルがハイレベルにあることを検出すると、ハイレベル電圧検出信号D9を出力する。
 また、ローレベル電圧検出回路1704は、外部信号INの電圧レベルがローレベルにあることを検出すると、ローレベル電圧検出信号D10を出力する。
When the high level edge detection circuit 1701 of the input circuit 202 detects a change from low level to high level of the voltage level of the external signal IN, the high level edge detection circuit 1701 outputs a high level edge detection signal D7.
When the low level edge detection circuit 1702 of the input circuit 202 detects a change from high level to low level of the voltage level of the external signal IN, it outputs a low level edge detection signal D8.
Further, when detecting that the voltage level of the external signal IN is at the high level, the high level voltage detection circuit 1703 outputs the high level voltage detection signal D9.
The low level voltage detection circuit 1704 outputs a low level voltage detection signal D10 when detecting that the voltage level of the external signal IN is at a low level.
 そして、判定装置204の検知部1705は、入力回路202からハイレベルエッジ検出信号D7を入力すると、ハイレベルエッジ検知フラグF8をOFFからONとする。
 また、判定装置204の検知部1705は、入力回路202からローレベルエッジ検出信号D8を入力すると、ローレベルエッジ検知フラグF9をOFFからONとする。
 また、検知部1705は、入力回路202からハイレベル電圧検出信号D9を入力すると、ハイレベル電圧検知フラグF10をOFFからONとする。
 また、検知部1705は、入力回路202からローレベル電圧検出信号D10を入力すると、ローレベル電圧検知フラグF11をOFFからONとする。
Then, when the high level edge detection signal D7 is input from the input circuit 202, the detection unit 1705 of the determination device 204 turns the high level edge detection flag F8 from OFF to ON.
Also, when the low level edge detection signal D8 is input from the input circuit 202, the detection unit 1705 of the determination device 204 turns the low level edge detection flag F9 from OFF to ON.
Further, when the detection unit 1705 receives the high level voltage detection signal D9 from the input circuit 202, the detection unit 1705 turns the high level voltage detection flag F10 from OFF to ON.
When the detection unit 1705 receives the low level voltage detection signal D10 from the input circuit 202, the detection unit 1705 turns the low level voltage detection flag F11 from OFF to ON.
 そして、判定装置204の判定部1706は、ハイレベルエッジ検知フラグF8及びハイレベル電圧検知フラグF10の少なくとも一方がONとなったことを確認すると、ハイレベルエッジ検知フラグF8及びハイレベル電圧検知フラグF10の双方が、待ち時間Tw内にOFFからONとなるかどうかを判断して、入力回路202が正常状態にあるかどうかを判定する。
 また、判定装置204の判定部1706は、ローレベルエッジ検知フラグF9及びローレベル電圧検知フラグF11の少なくとも一方がONとなったことを確認すると、ローレベルエッジ検知フラグF9及びローレベル電圧検知フラグF11の双方が、待ち時間Tw内にOFFからONとなるかどうかを判断して、入力回路202が正常状態にあるかどうかを判定する。
When the determination unit 1706 of the determination device 204 confirms that at least one of the high level edge detection flag F8 and the high level voltage detection flag F10 is turned on, the high level edge detection flag F8 and the high level voltage detection flag F10 are detected. It is determined whether or not both are switched from OFF to ON within the waiting time Tw to determine whether the input circuit 202 is in a normal state.
In addition, when the determination unit 1706 of the determination device 204 confirms that at least one of the low level edge detection flag F9 and the low level voltage detection flag F11 is turned on, the low level edge detection flag F9 and the low level voltage detection flag F11 are detected. It is determined whether or not both are switched from OFF to ON within the waiting time Tw to determine whether the input circuit 202 is in a normal state.
 このように、判定部1706は、複数の検知情報のうち少なくとも2以上のものを予め関連付けておき、待ち時間Tw内に関連付けた全ての検知情報が有効となるかどうかを判断して入力回路202が正常であるかどうかを判定することも可能である。 As described above, the determination unit 1706 associates in advance at least two or more of the plurality of pieces of detection information, and determines whether all pieces of detection information associated within the waiting time Tw are valid, to thereby determine the input circuit 202. It is also possible to determine if is normal.
 さらに、入力回路202の多重化構成とした内部回路の何れかが、外部信号INの特徴として、例えば、ハイレベル、ミドルレベル及びローレベルの複数の電圧レベルを検出することも考えられる。このとき、複数の電圧レベルを検出した内部回路が各々の電圧レベルと対応した検出情報を出力する場合であっても、検知部210は、上述した説明と同様にして、各々の検出情報と対応した検知情報を無効から有効とすることにより、判定部211は入力回路202の正常状態の判定を行うことが出来る。 Furthermore, it is also conceivable that any of the internal circuits in the multiplexed configuration of the input circuit 202 detects, for example, a plurality of voltage levels of high level, middle level and low level, as a feature of the external signal IN. At this time, even if the internal circuit that has detected a plurality of voltage levels outputs detection information corresponding to each voltage level, the detection unit 210 corresponds to each detection information in the same manner as described above. The determination unit 211 can determine the normal state of the input circuit 202 by making the detected information from invalid to valid.
 つまり、実施の形態1の判定装置204は、予めの設定に基づき、検知部210では入力回路202から入力する複数の検出情報と、複数の検知情報とを任意に対応付けするとともに、入力した検出情報と対応した検知情報を無効から有効とし、判定部211では待ち時間Tw内で監視する検知情報のまとまりを区別するように構成したので、電子制御システム101及び入力回路202の仕様に応じて柔軟に適応し、入力回路202の正常状態の判定処理を実行することが可能である。 That is, in the determination device 204 according to the first embodiment, the detection unit 210 arbitrarily associates the plurality of detection information input from the input circuit 202 with the plurality of detection information based on the setting in advance, and the input detection The detection information corresponding to the information is invalidated to be valid, and the determination unit 211 is configured to distinguish the grouping of the detection information to be monitored in the waiting time Tw. Therefore, the determination unit 211 is flexible according to the specifications of the electronic control system 101 and the input circuit 202. It is possible to execute the determination processing of the normal state of the input circuit 202.
 さらに、判定システム215を、駆動制御部110及び車両制御部111間の信号入力に限らず、他の装置間の信号入力に対して適用することも可能である。 Furthermore, it is also possible to apply the determination system 215 not only to signal input between the drive control unit 110 and the vehicle control unit 111 but also to signal input between other devices.
 以上に説明したように、実施の形態1によれば、判定装置204が、外部装置からの外部信号INを入力する入力回路202が正常状態にあるかどうかを、入力回路202内で多重化構成した内部回路が出力する検出情報に基づき判定するように構成したので、入力回路202が異常状態にある場合に、電子制御システム101が所定の処理を実行することを防止させる効果が得られる。 As described above, according to the first embodiment, in the input circuit 202, the determination device 204 multiplexes in the input circuit 202 whether or not the input circuit 202 receiving the external signal IN from the external device is in a normal state. Since the determination is made based on the detection information output from the internal circuit described above, an effect of preventing the electronic control system 101 from executing a predetermined process can be obtained when the input circuit 202 is in an abnormal state.
 つまり、入力回路202に発生した異常に起因して電子制御システム101が誤動作してしまうことを防止できる。 That is, it is possible to prevent the electronic control system 101 from malfunctioning due to an abnormality occurring in the input circuit 202.
 このことは、電子制御システム101は入力回路202が正常状態にあることを判断して所定の処理を実行するので、従来よりも電子制御システム101の動作における信頼性が保証されることになる。 This means that the electronic control system 101 determines that the input circuit 202 is in a normal state and executes predetermined processing, so that the reliability in the operation of the electronic control system 101 is guaranteed more than ever before.
 また、実施の形態1によれば、入力回路202が、内部回路を多重化構成としたことで、入力回路202が外部信号INを検出するときの精度を高めることが可能となる。その結果として、入力回路202のノイズ耐性を高める効果が得られる。 Further, according to the first embodiment, the input circuit 202 has the internal circuit in a multiplexed configuration, so that the accuracy when the input circuit 202 detects the external signal IN can be improved. As a result, an effect of enhancing the noise resistance of the input circuit 202 can be obtained.
 また、実施の形態1によれば、入力回路202が、外部信号INの特徴として外部信号INの種別情報Kでのパターンを検出し、検出したパターンと対応した検出情報を出力するように構成したので、入力回路202に複数の種別の外部信号INが入力されても、電子制御システム1401は複数の種別の外部信号INと対応した複数の所定の処理を区別しながら実行することが可能となる。 Further, according to the first embodiment, the input circuit 202 is configured to detect a pattern in the type information K of the external signal IN as a feature of the external signal IN, and output detection information corresponding to the detected pattern. Therefore, even if a plurality of types of external signals IN are input to the input circuit 202, the electronic control system 1401 can execute the plurality of predetermined processes corresponding to the plurality of types of external signals IN while discriminating them. .
 また、実施の形態1によれば、判定装置204が、入力回路202において同一の外部信号INを検出しした検出情報をまとめて処理できるようにするために、判定部211が間隔時間Tiを設けるようにしたので、入力回路202に複数の種別の外部信号INを入力させても、判定装置204が複数の種別の外部信号INを一緒くたに処理してしまうことを防ぐことが可能となる。その結果として、電子制御システム101が複数の外部信号INを連続して扱う場合においても、複数の外部信号INと対応したそれぞれの所定の処理を確実に実行できる効果が得られる。 Further, according to the first embodiment, the determination unit 211 provides the interval time Ti so that the determination device 204 can collectively process the detection information obtained by detecting the same external signal IN in the input circuit 202. Since this is done, even if the input circuit 202 is made to input external signals IN of a plurality of types, it is possible to prevent the determination device 204 from processing the external signals IN of a plurality of types together. As a result, even in the case where the electronic control system 101 handles the plurality of external signals IN successively, it is possible to obtain the effect that each predetermined process corresponding to the plurality of external signals IN can be reliably executed.
 また、実施の形態1によれば、判定装置204の検知部1204が、入力回路202から入力するハイレベル検出信号D5及びローレベル検出信号D6を、レベル検知フラグF7と対応させて検知し検知情報を出力するように構成したので、入力する外部信号INが電圧レベルをハイレベル及びローレベルの双方で切り替えて制御する信号の場合であっても、判定装置204の判定部211は入力回路202の正常状態の判定処理を行うことが可能となる。 Further, according to the first embodiment, the detection unit 1204 of the determination device 204 detects the high level detection signal D5 and the low level detection signal D6 input from the input circuit 202 in correspondence with the level detection flag F7 and detects the detection information. Therefore, even when the external signal IN to be input is a signal that switches and controls the voltage level at both the high level and the low level, the determination unit 211 of the determination device 204 It is possible to perform the determination process of the normal state.
 実施の形態2.
 実施の形態1では、判定システム215は、常時、入力回路202が正常状態にあるかどうかの判定を行った。実施の形態2では、電気駆動車両1400の電子制御システム1401において通常動作モード及びテストモードを設けて、テストモードの時のみ判定システム1501が判定を行う。それ以外は実施の形態1と同様である。
Second Embodiment
In the first embodiment, the determination system 215 always determines whether the input circuit 202 is in the normal state. In the second embodiment, the electronic control system 1401 of the electric drive vehicle 1400 is provided with a normal operation mode and a test mode, and the determination system 1501 makes a determination only in the test mode. The other respects are the same as in the first embodiment.
 図14は、本発明の実施の形態2における、電気駆動車両1400向けの電子制御システム1401に含まれる装置の構成を示す装置構成図である。図14において、実施の形態1の図1に示す構成と共通する部分については説明を省略する。 FIG. 14 is a device configuration diagram showing a configuration of devices included in the electronic control system 1401 for the electric drive vehicle 1400 according to the second embodiment of the present invention. In FIG. 14, the description of the parts in common with the configuration shown in FIG. 1 of the first embodiment will be omitted.
 図14に示すように、電気駆動車両1400は、実施の形態1の車両100と比べると、モータ1402及び動力分割機構1403をさらに備える。
 そして、電子制御システム1401は、車両100の構成から車輪104を除いた電装品を指す。
As shown in FIG. 14, electrically driven vehicle 1400 further includes a motor 1402 and a power split mechanism 1403 as compared with vehicle 100 of the first embodiment.
Then, the electronic control system 1401 indicates an electrical component in which the wheel 104 is removed from the configuration of the vehicle 100.
 モータ1402は、駆動制御部1405からの制御に基づき、バッテリ105から供給される電力を利用することにより動力を発生する、例えば交流モータなどの電動機である。モータ1402で発生した動力は、動力分割機構1403を介すことにより、電気駆動車両1400の駆動力として車輪104に伝えられる。 The motor 1402 is a motor such as an AC motor that generates power by using the power supplied from the battery 105 under the control of the drive control unit 1405. The motive power generated by the motor 1402 is transmitted to the wheels 104 as a driving force of the electrically driven vehicle 1400 via the power split mechanism 1403.
 動力分割機構1403は、プラネタリーギアやクラッチ等の機構を含み、エンジン102及びモータ1402から入力した動力を統合又は分配して出力する装置である。動力分割機構1403は、駆動制御部1405からの制御に基づき、エンジン102からの動力のみで車輪104への回転力を出力するか、エンジン102とモータ1402との動力を併用して車輪104への回転力を出力するか、何れかに切り替えることが出来る。 The power split mechanism 1403 is a device that includes mechanisms such as a planetary gear and a clutch, and integrates or distributes the power input from the engine 102 and the motor 1402 and outputs it. Power split device 1403 outputs rotational power to wheels 104 only with power from engine 102 based on control from drive control unit 1405, or combines power of engine 102 and motor 1402 to wheels 104. The rotational force can be output or switched.
 電気駆動車両1400の電子制御システム1401は、例えば、電気駆動車両1400から排出される排気ガスを抑えるために、エンジン102の出力を低下又は停止させ、代わりにモータ1402の出力を上昇させることで、エンジン102が出力することに起因する排気ガスの発生を抑制することができる。 The electronic control system 1401 of the electric drive vehicle 1400 reduces or stops the output of the engine 102, for example, to suppress the exhaust gas discharged from the electric drive vehicle 1400, and instead raises the output of the motor 1402, It is possible to suppress the generation of exhaust gas caused by the output of the engine 102.
 ところで、電気駆動車両1400の車両制御部1404及び駆動制御部1405は、上述したエンジン102及びモータ1402の動力の切り替え制御を、車両の走行状態や搭乗者の意思による操作に基づいて行う。そのため、実施の形態2の図14に示す車両制御部1404及び駆動制御部1405は、実施の形態1の車両100の車両制御部111及び駆動制御部110と比べると、より多くの制御を実行することとなるので、電気駆動車両1400の電子制御システム1401は、バッテリ105からより多くの電力を消費することになる。 By the way, the vehicle control unit 1404 and the drive control unit 1405 of the electric drive vehicle 1400 perform the switching control of the power of the engine 102 and the motor 1402 described above based on the traveling state of the vehicle and the operation by the passenger's intention. Therefore, the vehicle control unit 1404 and the drive control unit 1405 shown in FIG. 14 of the second embodiment execute more control than the vehicle control unit 111 and the drive control unit 110 of the vehicle 100 according to the first embodiment. As a result, the electronic control system 1401 of the electric drive vehicle 1400 consumes more power from the battery 105.
 図14に、電気駆動車両1400の電子制御システム1401と、実施の形態1の電子制御システム101とを比較した場合において、バッテリ105からの電力供給量の増加が見込まれる供給経路を二点破線矢印で示す。 When the electronic control system 1401 of the electric drive vehicle 1400 is compared with the electronic control system 101 of the first embodiment in FIG. Indicated.
 このように、電気駆動車両1400の電子制御システム1401は、特に走行時において、モータ駆動を伴わない車両100よりも多くの電力を消費すると考えられる。従って、電子制御システム1401は、動作の信頼性を確保しつつ、システムを構成する装置の処理を減らして、バッテリ105から供給される電力を効率的に利用することが望ましい。 As such, the electronic control system 1401 of the electric drive vehicle 1400 is considered to consume more electric power than the vehicle 100 without motor drive, particularly during traveling. Therefore, it is desirable for the electronic control system 1401 to efficiently use the power supplied from the battery 105 by reducing the processing of the devices constituting the system while securing the reliability of the operation.
 そこで、実施の形態2では、電子制御システム1401において通常動作モード及びテストモードを設ける。そして、電子制御システム1401は、通常動作モード及びテストモードの切り替えを行うとともに、テストモードの時のみ判定装置204に対し入力回路202の正常状態の判定処理を実行させる。このようにすることで、電子制御システム1401は、入力回路202の正常状態の判定処理を常時行うことなく処理を減らすことができるとともに、動作の信頼性を確保することができる。 Therefore, in the second embodiment, the electronic control system 1401 is provided with a normal operation mode and a test mode. Then, the electronic control system 1401 switches between the normal operation mode and the test mode, and causes the determination device 204 to execute the determination process of the normal state of the input circuit 202 only in the test mode. By doing this, the electronic control system 1401 can reduce the number of processes without constantly performing the process of determining the normal state of the input circuit 202, and can ensure the reliability of the operation.
 ところで、車両の機能安全における信頼性は、例えば、機能安全規格ISO26262において故障を検出する仕組みを規定するなどの標準化がなされている。 By the way, the reliability in functional safety of a vehicle is standardized, for example, by defining a mechanism for detecting a failure in the functional safety standard ISO26262.
 従って、ISO26262でのASIL(Automotive Safety Integrity Level、安全性要求レベル)の基準をもとに、電子制御システム1401がテストモードを実行する頻度を設定することにより、電子制御システム1401の動作に対する信頼性が保証される。 Therefore, the reliability of the operation of the electronic control system 1401 is set by setting the frequency at which the electronic control system 1401 executes the test mode based on the standard of ASIL (Automotive Safety Integrity Level) according to ISO26262. Is guaranteed.
 なお、実施の形態2では、通常動作モード及びテストモードの切り替えを、モード切り替えと略称する。また、通常動作モードを第1のモードとし、テストモードを第2のモードと定義する。 In the second embodiment, switching between the normal operation mode and the test mode is abbreviated as mode switching. Further, the normal operation mode is defined as a first mode, and the test mode is defined as a second mode.
 また、電子制御システム1401において、モード切り替え制御は車両制御部1404又は駆動制御部1405が行うものとする。 Further, in the electronic control system 1401, mode switching control is performed by the vehicle control unit 1404 or the drive control unit 1405.
 車両制御部1404がテストモードへの切り替え制御を行う場合には、車両制御部111は駆動制御部110に対してテストモードへの切り替えを指示する。また、駆動制御部110がテストモードへの切り替え制御を行う場合には、駆動制御部110は車両制御部111に対してテストモードへの切り替えを指示するとともに、テスト用信号の出力を促す。 When the vehicle control unit 1404 performs switching control to the test mode, the vehicle control unit 111 instructs the drive control unit 110 to switch to the test mode. In addition, when the drive control unit 110 performs switching control to the test mode, the drive control unit 110 instructs the vehicle control unit 111 to switch to the test mode, and urges the output of a test signal.
 図15は、車両制御部1404からの指令信号を入力する駆動制御部1405の機能ブロックを示すブロック構成図である。判定システム1501はさらに切替部1502を備える。図15において、実施の形態1の図2に示す機能ブロックと共通する部分については説明を省略する。 FIG. 15 is a block diagram showing a functional block of drive control unit 1405 which receives a command signal from vehicle control unit 1404. Referring to FIG. The determination system 1501 further includes a switching unit 1502. In FIG. 15, the description of the portions common to the functional blocks shown in FIG. 2 of the first embodiment will be omitted.
 切替部1502は、入力回路202と判定装置204との間に設けられる。そして、切替部1502は、通常動作モード又はテストモードへのモード切り替えの指示に従って、入力回路202から入力した検出情報を判定装置204に対し入力するかどうかを切り替える。
 このときのモード切り替えは、車両制御部1404又は駆動制御部1405がモード切り替え指示を実行することによって行われる。
The switching unit 1502 is provided between the input circuit 202 and the determination device 204. Then, in accordance with the mode switching instruction to the normal operation mode or the test mode, the switching unit 1502 switches whether to input the detection information input from the input circuit 202 to the determination device 204.
The mode switching at this time is performed by the vehicle control unit 1404 or the drive control unit 1405 executing a mode switching instruction.
 切替部1502は、通常動作モードの時には、入力回路202から入力した複数の検出情報を判定装置204に入力しない。また、切替部1502は、テストモードの時には、入力回路202から入力した複数の検出情報を判定装置204に入力する。 The switching unit 1502 does not input the plurality of pieces of detection information input from the input circuit 202 to the determination device 204 in the normal operation mode. Further, in the test mode, the switching unit 1502 inputs the plurality of pieces of detection information input from the input circuit 202 to the determination device 204.
 ここで、実施の形態1の判定システム215と同様に、判定システム1501は、各構成の配置に依存することなく、入力回路202の正常状態の判定処理を行う。つまり、切替部1502は、マイコン201の内部又は外部のどちらに配置されても良く、信号伝送路L又は通信回路203を介して、駆動制御部1405又は外部装置との間で情報のやり取りを行う。 Here, similarly to the determination system 215 of the first embodiment, the determination system 1501 performs the determination process of the normal state of the input circuit 202 without depending on the arrangement of each configuration. That is, the switching unit 1502 may be disposed either inside or outside the microcomputer 201, and exchanges information with the drive control unit 1405 or an external device via the signal transmission path L or the communication circuit 203. .
 そして、通常動作モードの時は、切替部1502が判定装置204に入力しなかった複数の検出情報を、信号伝送路L又は通信回路203を介してマイコン201内部の装置に入力することが出来るので、マイコン201は検出情報に基づいて所定の処理を実行することが出来る。 Then, in the normal operation mode, a plurality of pieces of detection information not input to the determination device 204 by the switching unit 1502 can be input to the device inside the microcomputer 201 through the signal transmission path L or the communication circuit 203. The microcomputer 201 can execute predetermined processing based on the detection information.
 一方で、テストモードの時は、実施の形態1と同様にして、切替部1502は判定装置204に検出情報を入力し、マイコン201は判定装置204の判定処理の判定結果に基づき所定の処理を実行することが出来る。 On the other hand, in the test mode, as in the first embodiment, the switching unit 1502 inputs detection information to the determination device 204, and the microcomputer 201 performs predetermined processing based on the determination result of the determination processing of the determination device 204. It can be done.
 つまり、テストモードの時のみ判定装置204が判定処理を行うので、通常動作モードの時には判定装置204は検出情報を入力して判定処理を行うことが無くなる。その結果、駆動制御部110の電力消費を抑えることができる。さらに、テストモードの時のみ判定装置204は動作すれば良いので、通常動作モードでは、判定装置204を停止しておくことで、より電力消費を抑えることが可能となる。 That is, since the determination device 204 performs the determination process only in the test mode, the determination device 204 does not receive the detection information and perform the determination process in the normal operation mode. As a result, power consumption of the drive control unit 110 can be suppressed. Furthermore, since the determination device 204 may operate only in the test mode, power consumption can be further suppressed by stopping the determination device 204 in the normal operation mode.
 このように、判定システム1501での電力消費を抑えることは、電子制御システム1401が、バッテリ105に蓄えられた電力を、実施の形態1よりも効率的に利用できるようになる。 As described above, suppressing the power consumption in the determination system 1501 enables the electronic control system 1401 to use the power stored in the battery 105 more efficiently than the first embodiment.
 次に、電子制御システム1401がモード切り替えを行いながら判定システム1501を実行させる動作について説明する。 Next, an operation of causing the electronic control system 1401 to execute the determination system 1501 while switching modes will be described.
 図16は、電子制御システム1401において通常動作モード及びテストモードを実行する処理を示すフローチャート図である。 FIG. 16 is a flowchart showing the process of executing the normal operation mode and the test mode in the electronic control system 1401.
 図16では、電子制御システム1401の起動に伴い、車両制御部1404が駆動制御部1405を起動させた後に、駆動制御部1405に対してテストモードへの切り替え指示を行う。そして、車両制御部1404は、判定システム1501での判定結果に基づき、駆動制御部1405に対して通常動作モードへの切り替え指示を行ったり、外部に対して異常状態の通知を行ったりする。 In FIG. 16, with the activation of the electronic control system 1401, the vehicle control unit 1404 activates the drive control unit 1405 and then instructs the drive control unit 1405 to switch to the test mode. Then, based on the determination result of the determination system 1501, the vehicle control unit 1404 instructs the drive control unit 1405 to switch to the normal operation mode or notifies the outside of an abnormal state.
 ここで、実施の形態1において図9のフローチャート図に示した判定システム1501の処理を、定義済みの処理S1606と定義する。 Here, the process of the determination system 1501 shown in the flowchart of FIG. 9 in the first embodiment is defined as a predefined process S1606.
 処理S1601では、車両制御部1404が、駆動制御部1405を起動させる。その後、処理S1602に進む。 In processing S1601, the vehicle control unit 1404 activates the drive control unit 1405. Then, it progresses to process S1602.
 処理S1602では、車両制御部1404が、駆動制御部1405が起動状態にあるかどうかを判定する。駆動制御部1405が起動状態にある場合は、処理S1603に進む。また、駆動制御部1405が起動状態にない場合は、処理S1611に進む。 In process S1602, the vehicle control unit 1404 determines whether the drive control unit 1405 is in the activated state. If the drive control unit 1405 is in the activated state, the process advances to step S1603. If the drive control unit 1405 is not in the activated state, the process advances to step S1611.
 処理S1603では、車両制御部1404が、駆動制御部1405に対して、テストモードへの切り替え指示を行う。その後、処理S1604に進む。 In step S1603, the vehicle control unit 1404 instructs the drive control unit 1405 to switch to the test mode. Then, it progresses to process S1604.
 処理S1604では、駆動制御部1405の切替部1502及びマイコン201が、テストモードへの切り替えを行う。マイコン201は、テストモードへの切り替えが行われると、停止状態にある判定装置204を起動させる。その後、処理S1605に進む。 In processing S1604, the switching unit 1502 of the drive control unit 1405 and the microcomputer 201 switch to the test mode. When the switching to the test mode is performed, the microcomputer 201 activates the determination device 204 which is in the stopped state. Then, it progresses to process S1605.
 処理S1605では、車両制御部1404が、駆動制御部1405に対して、テスト用信号を出力する。その後、処理S1606に進む。 In processing S1605, the vehicle control unit 1404 outputs a test signal to the drive control unit 1405. Then, it progresses to process S1606.
 定義済みの処理S1606では、判定システム1501が判定処理を行う。その後、処理S1607に進む。 In the process S1606, which has already been defined, the determination system 1501 performs the determination process. Thereafter, the process proceeds to step S1607.
 処理S1607では、車両制御部1404が、判定システム1501の判定結果を確認し、入力回路202が正常状態にあるかどうかを判定する。入力回路202が正常状態にある場合は、処理S1608に進む。また、入力回路202が正常状態にない場合は、処理S1609に進む。 In process S1607, the vehicle control unit 1404 confirms the determination result of the determination system 1501, and determines whether the input circuit 202 is in a normal state. If the input circuit 202 is in the normal state, the process proceeds to step S1608. If the input circuit 202 is not in the normal state, the process advances to step S1609.
 処理S1608では、車両制御部1404が、駆動制御部1405に対して、通常動作モードへの切り替え指示を行う。その後、処理S1609に進む。 In step S1608, the vehicle control unit 1404 instructs the drive control unit 1405 to switch to the normal operation mode. Thereafter, the process proceeds to step S1609.
 処理S1609では、駆動制御部1405の切替部1502及びマイコン201が、通常動作モードへの切り替えを行う。マイコン201は、通常動作モードへの切り替えが行われると、判定装置204の動作を停止させる。その後、処理を終了する。 In processing S1609, the switching unit 1502 of the drive control unit 1405 and the microcomputer 201 switch to the normal operation mode. The microcomputer 201 stops the operation of the determination device 204 when the switching to the normal operation mode is performed. Thereafter, the process ends.
 処理S1610では、駆動制御部1405が、車両制御部1404に対し、入力回路202は異常状態にあることを通知する。その後、処理を終了する。 In step S1610, the drive control unit 1405 notifies the vehicle control unit 1404 that the input circuit 202 is in an abnormal state. Thereafter, the process ends.
 処理S1611では、車両制御部1404が、駆動制御部1405の起動に要する基準である起動時間が経過したかどうかを判定する。起動時間が経過した場合は、処理S1612に進む。また、起動時間が経過していない場合は、処理S1602に進む。 In the process S1611, the vehicle control unit 1404 determines whether or not the start-up time which is the reference required for starting the drive control unit 1405 has elapsed. If the activation time has elapsed, the process proceeds to step S1612. If the activation time has not elapsed, the process proceeds to processing S1602.
 処理S1612では、車両制御部1404が、駆動制御部1405は異常状態にあることを外部に通知する。その後、処理を終了する。 In step S1612, the vehicle control unit 1404 notifies the outside that the drive control unit 1405 is in an abnormal state. Thereafter, the process ends.
 なお、電子制御システム1401でのテストモードの実行は、上述のようにシステムの起動時に限らず、例えば、電気駆動車両1400の搭乗者がシフトレバーをパーキングの位置に操作した時やサイドブレーキを引いた時など、電気駆動車両1400が停止状態にあって即座に駆動することが見込まれないタイミングで、テストモードを実行するようにしても良い。 The execution of the test mode in the electronic control system 1401 is not limited to the start of the system as described above, for example, when the rider of the electrically driven vehicle 1400 operates the shift lever to the parking position or pulls the side brakes. For example, the test mode may be executed at a timing when the electrically driven vehicle 1400 is in a stopped state and can not be expected to be driven immediately.
 また、実施の形態1の判定システム215の構成を実施の形態2に適用するなど、実施の形態1及び2において任意に組み合わせた構成としても良い。 In addition, the configuration of the determination system 215 of the first embodiment may be applied to the second embodiment or the like, and may be arbitrarily combined in the first and second embodiments.
 以上に説明したとおり、実施の形態2によれば、電子制御システム1401において通常動作モード及びテストモードを設けて、テストモードにおいて判定システム1501が入力回路202の正常状態を判定処理するように構成したので、テストモードにおいて入力回路202が正常状態にあると判定されたならば、通常動作モードにおいて、従来技術のように入力回路202の内部回路の少なくとも1つが外部信号INを検出した場合であっても、内部回路の異常ではなく外部信号INの歪みによるものと判断することが可能となる。その結果として、電子制御システム1401の信頼性を保証しつつ動作を継続させることが可能となる。 As described above, according to the second embodiment, the electronic control system 1401 is provided with the normal operation mode and the test mode, and the determination system 1501 determines the normal state of the input circuit 202 in the test mode. Therefore, if it is determined that the input circuit 202 is in the normal state in the test mode, then at least one of the internal circuits of the input circuit 202 detects the external signal IN as in the prior art in the normal operation mode. It is also possible to judge that the distortion is due to the distortion of the external signal IN, not the abnormality of the internal circuit. As a result, it is possible to continue the operation while guaranteeing the reliability of the electronic control system 1401.
 このことは、実施の形態2の判定システム1501がISO26262での基準に準じてテストモードを実行することにより、電子制御システム1401の動作に対する信頼性が保証されるためである。 This is because the determination system 1501 of the second embodiment executes the test mode according to the standard of ISO 26262, thereby ensuring the reliability of the operation of the electronic control system 1401.
 また、実施の形態2によれば、判定システム1501が切替部1502を備えたことで、外部信号INの入力に伴い、判定システム1501の判定処理をテストモードの時のみ実行させ、通常動作モードの時には実行させないようにすることが可能となる。その結果として、通常動作モードのときは判定装置204での電力消費を抑えられるため、電子制御システム1401は、バッテリ105に蓄えられた電力を、実施の形態1よりも効率的に利用することが出来るようになる。 Further, according to the second embodiment, the determination system 1501 includes the switching unit 1502, so that the determination process of the determination system 1501 is executed only in the test mode in response to the input of the external signal IN. Sometimes it is possible not to run it. As a result, since the power consumption of the determination device 204 can be suppressed in the normal operation mode, the electronic control system 1401 can use the power stored in the battery 105 more efficiently than the first embodiment. become able to do.
 100 車両
 101、1401 電子制御システム
 102 エンジン
 103 伝動機構
 104 車輪
 105 バッテリ
 106 発電機
 107 ブレーキシステム
 108 制動機構
 109 速度検出部
 110、1405 駆動制御部
 111、1404 車両制御部
 201 マイコン
 202 入力回路
 203 通信回路
 204 判定装置
 215、1501 判定システム
 1400 電気駆動車両
 1402 モータ
 1403 動力分割機構
Reference Signs List 100 vehicle 101, 1401 electronic control system 102 engine 103 transmission mechanism 104 wheel 105 battery 106 generator 107 brake system 108 braking mechanism 109 speed detection unit 110, 1405 drive control unit 111, 1404 vehicle control unit 201 microcomputer 202 input circuit 203 communication circuit 204 Judgment device 215, 1501 Judgment system 1400 Electric drive vehicle 1402 Motor 1403 Power split mechanism

Claims (9)

  1.  外部装置から入力した外部信号を複数の内部回路で検出する入力回路が正常状態にあるかどうかを、前記入力回路から出力される複数の検出情報に基づき判定する判定装置であって、
     前記判定装置は、
     前記複数の検出情報の各々を区別して入力するとともに、前記複数の検出情報の各々を検知したことを示す、前記複数の検出情報の各々と対応した複数の検知情報を個別に無効から有効とする処理を行う検知部と、
     前記検知部での処理により、前記複数の検知情報のうち少なくとも1つが無効から有効となると、所定の時間内に、前記複数の検出情報の各々と対応した前記複数の検知情報の全てが無効から有効となるかどうかを判断し、前記所定の時間内に前記複数の検知情報の全てが無効から有効となる場合に前記入力回路が正常状態にあると判定し、前記所定の時間内に前記複数の検知情報の全てが無効から有効とならない場合に前記入力回路が正常状態にないと判定する判定部と、
     を備えた判定装置。
    A determination device that determines whether an input circuit that detects an external signal input from an external device by a plurality of internal circuits is in a normal state based on a plurality of pieces of detection information output from the input circuit,
    The determination device is
    Each of the plurality of detection information is distinguished and input, and a plurality of detection information corresponding to each of the plurality of detection information indicating that each of the plurality of detection information has been detected is individually made invalid or valid. A detection unit that performs processing;
    When at least one of the plurality of pieces of detection information becomes invalid from processing by the detection unit, all of the plurality of pieces of detection information corresponding to each of the plurality of pieces of detection information are invalidated within a predetermined time. It is determined whether or not the input circuit becomes valid, and if all of the plurality of pieces of detection information become invalid to be valid within the predetermined time, it is determined that the input circuit is in a normal state, and the plurality of the plurality of detection information are within the predetermined time. A determination unit that determines that the input circuit is not in the normal state when all of the detection information in the group are not valid from invalidity;
    Judgment device equipped with
  2.  前記判定部は、前記入力回路が正常状態にあるかどうかの判定処理の後、又は、前記所定の時間の経過後に、同一の前記外部信号と対応した前記複数の検知情報を確認するための間隔時間を設定する、
     ことを特徴とする請求項1に記載の判定装置。
    The determination unit determines an interval for confirming the plurality of pieces of detection information corresponding to the same external signal after the determination process as to whether the input circuit is in the normal state or after the predetermined time has elapsed. Set the time,
    The determination apparatus according to claim 1, characterized in that:
  3.  請求項1又は2記載の判定装置及び入力回路を備え、
     前記入力回路から出力される前記複数の検出情報に基づき、前記外部信号と対応した所定の処理を実行する車両向け電子制御システムに用いられる判定システム。
    A determination device according to claim 1 or 2 and an input circuit,
    The determination system used for the electronic control system for vehicles which performs the predetermined | prescribed process corresponding to the said external signal based on the said some detection information output from the said input circuit.
  4.  前記入力回路は、前記内部回路として、
     前記外部装置から入力した前記外部信号において第1の特徴を検出するとともに、前記複数の検出情報のうちの第1の検出情報を出力する第1の検出回路、
     及び、前記外部装置から入力した前記外部信号において第2の特徴を検出するとともに、前記複数の検出情報のうちの第2の検出情報を出力する第2の検出回路、
     を有し、
     前記検知部は、
     前記第1の検出情報を入力すると、前記第1の検出情報と対応した第1の検知情報を無効から有効とし、
     前記第2の検出情報を入力すると、前記第2の検出情報と対応した第2の検知情報を無効から有効とする、
     ことを特徴とする請求項3に記載の判定システム。
    The input circuit is, as the internal circuit,
    A first detection circuit that detects a first feature in the external signal input from the external device and outputs first detection information of the plurality of detection information;
    And a second detection circuit that detects a second feature in the external signal input from the external device and outputs second detection information of the plurality of detection information,
    Have
    The detection unit is
    When the first detection information is input, the first detection information corresponding to the first detection information is made invalid to be valid,
    When the second detection information is input, the second detection information corresponding to the second detection information is made invalid to be valid.
    The determination system according to claim 3, characterized in that:
  5.  前記第1の検出回路は、前記第1の特徴として、前記外部信号の電圧レベルにおけるローレベルからハイレベルへの変化を検出し、
     前記第2の検出回路は、前記第2の特徴として、前記外部信号の電圧レベルにおけるハイレベルを検出する、
     ことを特徴とする請求項4に記載の判定システム。
    The first detection circuit detects a change from a low level to a high level in the voltage level of the external signal as the first feature,
    The second detection circuit detects a high level at a voltage level of the external signal as the second feature.
    The determination system according to claim 4, wherein
  6.  前記入力回路は、前記内部回路として、
     前記外部信号の電圧レベルにおけるローレベルからハイレベルへの変化を検出し、前記複数の検出情報のうちの第1の検出情報を出力する第1の検出回路、
     前記外部装置の電圧レベルにおけるハイレベルを検出し、前記複数の検出情報のうちの第2の検出情報を出力する第2の検出回路、
     及び、前記外部信号の電圧レベルにおけるローレベル及びハイレベルからなるパターンを検出し、前記複数の検出情報のうちの、前記パターンと対応する第3の検出情報を出力する第3の検出回路、
     のうち、少なくとも2つを有し、
     前記検知部は、
     前記入力回路が前記第1の検出回路を有する場合に、前記第1の検出情報を入力すると、前記複数の検知情報のうちの、前記第1の検出情報と対応した第1の検知情報を無効から有効とし、
     前記入力回路が前記第2の検出回路を有する場合に、前記第2の検出情報を入力すると、前記複数の検知情報のうちの、前記第2の検出情報と対応した第2の検知情報を無効から有効とし、
     前記入力回路が前記第3の検出回路を有する場合に、前記第3の検出情報を入力すると、前記複数の検知情報のうちの、前記第3の検出情報と対応した第3の検知情報を無効から有効とする、
     ことを特徴とする請求項3に記載の判定システム。
    The input circuit is, as the internal circuit,
    A first detection circuit that detects a change from low level to high level in voltage level of the external signal, and outputs first detection information of the plurality of detection information;
    A second detection circuit that detects a high level in the voltage level of the external device and outputs second detection information of the plurality of detection information;
    And a third detection circuit that detects a pattern consisting of low level and high level in voltage level of the external signal, and outputs third detection information corresponding to the pattern among the plurality of detection information,
    Have at least two of
    The detection unit is
    In the case where the input circuit includes the first detection circuit, when the first detection information is input, the first detection information corresponding to the first detection information among the plurality of detection information is invalidated. Effective from
    When the input circuit has the second detection circuit, when the second detection information is input, the second detection information corresponding to the second detection information among the plurality of detection information is invalidated. Effective from
    When the input circuit includes the third detection circuit, when the third detection information is input, the third detection information corresponding to the third detection information among the plurality of detection information is invalidated. Valid from,
    The determination system according to claim 3, characterized in that:
  7.  前記入力回路は、
     前記外部信号の電圧レベルにおけるローレベルからハイレベルへの変化又はハイレベルからローレベルへの変化を検出し、複数の検出情報として第4の検出情報を出力する第4の検出回路、
     前記外部信号の電圧レベルにおけるハイレベルを検出し、前記複数の検出情報として第5の検出情報を出力する第5の検出回路、
     及び、前記外部信号の電圧レベルにおけるローレベルを検出し、前記複数の検出情報として第6の検出情報を出力する第6の検出回路、
     を有し、
     前記検知部は、
     前記第4の検出情報を入力すると、前記第4の検出情報と対応した第4の検知情報を無効から有効とし、前記第5の検出情報又は前記第6の検出情報を入力すると、前記第5の検出情報又は前記第6の検出情報と対応した第5の検知情報を無効から有効とする、
     ことを特徴とする請求項3に記載の判定システム。
    The input circuit is
    A fourth detection circuit that detects a change from low level to high level or a change from high level to low level in voltage level of the external signal, and outputs fourth detection information as the plurality of detection information;
    A fifth detection circuit that detects a high level of the voltage level of the external signal and outputs fifth detection information as the plurality of detection information;
    And a sixth detection circuit that detects a low level of the voltage level of the external signal and outputs sixth detection information as the plurality of detection information.
    Have
    The detection unit is
    When the fourth detection information is input, the fourth detection information corresponding to the fourth detection information is made invalid to be valid, and when the fifth detection information or the sixth detection information is input, the fifth detection information is input. The fifth detection information corresponding to the first detection information or the sixth detection information from invalid to valid,
    The determination system according to claim 3, characterized in that:
  8.  前記判定システムは、
     前記入力回路が出力する前記複数の検出情報の各々を区別して入力する切替部をさらに備え、
     前記切替部は、
     外部から第1のモードへの切り替えを指示されると、前記入力回路から入力した前記複数の検出情報を前記判定装置に対して出力せず、
     外部から第2のモードへの切り替えを指示されると、前記入力回路から入力した前記複数の検出情報を前記判定装置に対して出力する、
     ことを特徴とする請求項3から7のいずれか1項に記載の判定システム。
    The judgment system
    And a switching unit configured to distinguish and input each of the plurality of pieces of detection information output from the input circuit.
    The switching unit is
    When instructed to switch to the first mode from the outside, the plurality of pieces of detection information input from the input circuit are not output to the determination device,
    When instructed to switch to the second mode from the outside, the plurality of pieces of detection information input from the input circuit are output to the determination device.
    The determination system according to any one of claims 3 to 7, characterized in that.
  9.  請求項1記載の入力回路から出力される前記複数の検出情報の各々を入力する入力工程と、
     前記入力工程で入力する前記複数の検出情報を個別に検知するとともに、複数の検知情報のうちから、検知した検出情報と対応する検知情報を無効から有効とする検知工程と、
     前記検知工程で前記複数の検知情報のうち少なくとも1つが無効から有効となると、所定の時間内に前記複数の検知情報の全てが有効となるかどうかを判断する判断工程と、
     前記判断工程での判断に基づき、前記入力回路が正常状態にあるかどうかを判定する判定工程と、
     を有する判定方法。
    An input step of inputting each of the plurality of pieces of detection information output from the input circuit according to claim 1;
    A detection step of individually detecting the plurality of pieces of detection information input in the input step, and making detection information corresponding to the detected detection information out of the plurality of pieces of detection information invalid or effective;
    A determination step of determining whether all of the plurality of pieces of detection information become valid within a predetermined time when at least one of the plurality of pieces of detection information becomes invalid from the plurality of pieces of detection information in the detection step;
    A determination step of determining whether the input circuit is in a normal state based on the determination in the determination step;
    Determination method having.
PCT/JP2017/038360 2017-10-24 2017-10-24 Determination device, determination system and determination method WO2019082273A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/038360 WO2019082273A1 (en) 2017-10-24 2017-10-24 Determination device, determination system and determination method
JP2019549717A JP6956797B2 (en) 2017-10-24 2017-10-24 Judgment device, judgment system and judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038360 WO2019082273A1 (en) 2017-10-24 2017-10-24 Determination device, determination system and determination method

Publications (1)

Publication Number Publication Date
WO2019082273A1 true WO2019082273A1 (en) 2019-05-02

Family

ID=66246282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038360 WO2019082273A1 (en) 2017-10-24 2017-10-24 Determination device, determination system and determination method

Country Status (2)

Country Link
JP (1) JP6956797B2 (en)
WO (1) WO2019082273A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05274166A (en) * 1991-07-27 1993-10-22 Robert Bosch Gmbh Device for controlling safety related device
JPH11117800A (en) * 1997-10-17 1999-04-27 Hitachi Ltd On-vehicle controller and fault diagnosis method using it
JP2000305603A (en) * 1999-04-19 2000-11-02 Mitsubishi Electric Corp Onboard electronic controller with self-monitoring function
JP2005114738A (en) * 2004-11-24 2005-04-28 Toyota Motor Corp Wheel speed sensing system
JP2007233573A (en) * 2006-02-28 2007-09-13 Fujitsu Ten Ltd Electronic controller
JP2009085142A (en) * 2007-10-01 2009-04-23 Hitachi Ltd Control system of electric actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05274166A (en) * 1991-07-27 1993-10-22 Robert Bosch Gmbh Device for controlling safety related device
JPH11117800A (en) * 1997-10-17 1999-04-27 Hitachi Ltd On-vehicle controller and fault diagnosis method using it
JP2000305603A (en) * 1999-04-19 2000-11-02 Mitsubishi Electric Corp Onboard electronic controller with self-monitoring function
JP2005114738A (en) * 2004-11-24 2005-04-28 Toyota Motor Corp Wheel speed sensing system
JP2007233573A (en) * 2006-02-28 2007-09-13 Fujitsu Ten Ltd Electronic controller
JP2009085142A (en) * 2007-10-01 2009-04-23 Hitachi Ltd Control system of electric actuator

Also Published As

Publication number Publication date
JPWO2019082273A1 (en) 2020-04-02
JP6956797B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP4600158B2 (en) Electronic control device for vehicle
KR100747303B1 (en) A control system for fail safety of hybrid vehicle
JP5283651B2 (en) Control device for vehicle
JP5980936B2 (en) Device for controlling the brake lamp of an automobile
CN107428297B (en) Vehicle control device and control method thereof
JP6116535B2 (en) Power supply box device for vehicles
JP2007263020A (en) Device for controlling start/stop of engine
CN108698630A (en) The calculating of fail safe for improving servo steering device and function structure system
CN114802168B (en) Parking brake control system and method
JP5546524B2 (en) Vehicle starter motor drive circuit
JPWO2018225352A1 (en) Vehicle control device and vehicle control system
KR20100062146A (en) Dual apparatus and method for ecu in automotive
JP2018061304A (en) Backup device for vehicle
JP4107268B2 (en) Engine start control device and method
JP2006083716A (en) Starter driving device
WO2011034052A1 (en) Vehicle electronic control device
JP6956797B2 (en) Judgment device, judgment system and judgment method
JP2008253048A (en) Vehicle start controller
JP2010112257A (en) Device and method for detecting switch failure
JP6127710B2 (en) Vehicle power supply control device
KR20100115965A (en) Control system for fault diagnosis in vehicle
JP2016031631A (en) Vehicle control device
JP2008044553A (en) Steering lock release determining device, steering lock release determining method, and system start control device
JP2011093377A (en) Power source control system and electronic device
JP2010258635A (en) Control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549717

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930009

Country of ref document: EP

Kind code of ref document: A1