WO2011034052A1 - Vehicle electronic control device - Google Patents

Vehicle electronic control device Download PDF

Info

Publication number
WO2011034052A1
WO2011034052A1 PCT/JP2010/065822 JP2010065822W WO2011034052A1 WO 2011034052 A1 WO2011034052 A1 WO 2011034052A1 JP 2010065822 W JP2010065822 W JP 2010065822W WO 2011034052 A1 WO2011034052 A1 WO 2011034052A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcomputer
self
diagnosis
output
signal
Prior art date
Application number
PCT/JP2010/065822
Other languages
French (fr)
Japanese (ja)
Inventor
池上裕介
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Priority to US13/496,605 priority Critical patent/US9547569B2/en
Priority to EP10817165.3A priority patent/EP2479672B1/en
Publication of WO2011034052A1 publication Critical patent/WO2011034052A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2205Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested
    • G06F11/2236Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested to test CPU or processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/0736Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in functional embedded systems, i.e. in a data processing system designed as a combination of hardware and software dedicated to performing a certain function
    • G06F11/0739Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in functional embedded systems, i.e. in a data processing system designed as a combination of hardware and software dedicated to performing a certain function in a data processing system embedded in automotive or aircraft systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/079Root cause analysis, i.e. error or fault diagnosis

Definitions

  • the present invention relates to a vehicular electronic control device, and more particularly to a vehicular electronic control device that diagnoses a microcomputer.
  • a target command value is obtained in a microcomputer, and various devices related to an engine or the like are driven based on the target command value. It has been proposed to monitor the operation of the microcomputer.
  • a homework signal 20 is transmitted from the monitoring circuit 2 to the microcomputer 1, and the microcomputer 1 performs a self-function check calculation according to the content of the homework signal 20, and the calculation result is sent to the monitoring circuit 2 as an answer signal 10.
  • the monitoring circuit 2 monitors whether the microcomputer is operating normally by comparing the content of the answer signal 10 transmitted from the microcomputer 1 with the correct answer.
  • transmission / reception of the homework signal 20 and the answer signal 10 is performed by serial communication.
  • the sub-microcomputer (hereinafter referred to as sub-microcomputer as appropriate) in the monitoring system is not used only for monitoring the operation of the main microcomputer (hereinafter referred to as main microcomputer as appropriate).
  • main microcomputer main microcomputer
  • the main microcomputer executes complicated arithmetic processing on data necessary for controlling various devices
  • the main microcomputer supports the arithmetic processing of the main microcomputer.
  • the present invention has been made through the above-described studies, and an object thereof is to provide a vehicle electronic control device capable of diagnosing a microcomputer quickly and reliably.
  • the present invention provides a vehicle electronic control device comprising a first microcomputer and a second microcomputer capable of transmitting and receiving signals between the first microcomputer.
  • a vehicle electronic control device comprising a first microcomputer and a second microcomputer capable of transmitting and receiving signals between the first microcomputer.
  • one microcomputer outputs a voltage signal representing a high level voltage and a low level voltage to the other microcomputer, and the other microcomputer Detecting a high time when the voltage of the voltage signal is at the high level and executing a self-diagnosis according to the detected high time, outputting the result of the self-diagnosis to the one microcomputer, Based on the result of the self-diagnosis, the microcomputer uses the other microcomputer.
  • the first feature to the diagnosis data.
  • the present invention has a second feature that the voltage signal is a PWM signal.
  • the other microcomputer is configured such that the one microcomputer is based on at least one of the high time and the period of the PWM signal input from the one microcomputer.
  • the third feature is that the computer is diagnosed.
  • the other microcomputer outputs the self-diagnosis result to the one microcomputer as a PWM signal
  • the one microcomputer A fourth feature is that the other microcomputer is diagnosed based on at least one of a high time and a period of the PWM signal.
  • the other microcomputer outputs the self-diagnosis result to the one microcomputer via serial communication.
  • the other microcomputer performs diagnosis of the one microcomputer, and the other microcomputer by the one microcomputer. If one of the diagnosis of the first microcomputer and the diagnosis of the one microcomputer by the other microcomputer is negative, the operation of the control target of the vehicle electronic control device is prohibited.
  • the microcomputer is diagnosed mainly using the PWM signal instead of the serial communication, so that the microcomputer can be diagnosed quickly and reliably.
  • FIG. 1 is a block diagram showing the configuration of the vehicle electronic control device according to this embodiment.
  • an electronic control unit (ECU: Electronic Control Unit) 1 for a vehicle in the present embodiment is a device for controlling the operation of an electronic throttle motor M, and includes a main microcomputer 2, a sub-microcomputer 3, An AND circuit (AND circuit) 4, a relay drive circuit 5, a relay 6, a motor drive circuit 7, and a monitoring circuit 8 are provided, and electric power necessary for the operation is supplied from the battery 9 via the ignition switch SW.
  • the control target of the electronic control device 1 is not limited to the electronic throttle motor M, but includes other loads that can operate in the vehicle.
  • the main microcomputer 2 is a microcomputer including a CPU (Central Processing Unit) 2a.
  • the CPU 2a operates in accordance with a control program stored in a memory (not shown) of the main microcomputer 2 to control the entire operation of the electronic control unit 1 and diagnoses the operation of the sub microcomputer 3. It is free.
  • the sub-microcomputer 3 is a microcomputer including a CPU 3a.
  • the CPU 3a can support the processing of the main microcomputer 2 according to the control signal from the main microcomputer 2 by operating according to the control program stored in the memory (not shown) of the sub-microcomputer 3, and the main microcomputer 2.
  • the operation of the microcomputer 2 can be diagnosed.
  • the main microcomputer 2 and the sub microcomputer 3 can also transmit and receive signals SI1, SI2, and SI3, which will be described later in detail.
  • the two input terminals of the AND circuit 4 are connected to the outputs of the main microcomputer 2 and the sub-microcomputer 3, respectively, and the output terminals are connected to the relay drive circuit 5.
  • the AND circuit 4 When both the relay drive control signal SI4 output from the main microcomputer 2 and the relay drive control signal SI5 output from the sub-microcomputer 3 are at a high level, the AND circuit 4 outputs a high level relay drive signal SI6. Output to the relay drive circuit 5.
  • the AND circuit 4 When at least one of the relay drive control signal SI4 output from the main microcomputer 2 and the relay drive control signal SI5 output from the sub-microcomputer 3 is at a low level, the AND circuit 4 The drive signal SI6 is output to the relay drive circuit 5.
  • the relay drive circuit 5 switches the relay 6 from the off state to the on state, thereby reducing the power of the battery 9. This is supplied to the motor drive circuit 7.
  • the relay drive circuit 5 switches the relay 6 from the on state to the off state, thereby The supply of power to the motor drive circuit 7 is stopped.
  • the motor drive circuit 7 controls the drive of the electronic throttle motor M using the power of the battery 9 in accordance with a control signal from the main microcomputer 2 when the relay 6 is in an on state.
  • the monitoring circuit 8 performs a time measuring operation while monitoring whether the main microcomputer 2 is operating using the pulse signal WDT output in relation to the operation of the main microcomputer 2, and stops or stops the pulse signal WDT.
  • the main microcomputer 2 and the sub microcomputer 3 are reset by sending a reset signal SI7 to the main microcomputer 2 and the sub microcomputer 3.
  • the monitoring process in the electronic control device 1 is a mutual monitoring process that the CPU 2a in the main microcomputer 2 and the CPU 3a in the sub-microcomputer 3 execute in cooperation.
  • the sub microcomputer 3 monitors and diagnoses the main microcomputer 2 and the main microcomputer 2 performs self diagnosis and also diagnoses the sub microcomputer as an example will be described. .
  • a PWM (Pulse Width Modulation) signal is representatively applied and described as a voltage signal used for the mutual monitoring process.
  • the PWM signal has a low level voltage and a high level voltage that is switched from the low level voltage to a predetermined on-time, and a predetermined high time during which the high level voltage is maintained.
  • a general voltage signal having a high level voltage and a low level voltage is applicable.
  • the predetermined high time during which the high level voltage is maintained is the output width of the voltage signal
  • the cycle in which the high level voltage appears is the output cycle of the voltage signal. is there.
  • FIG. 2 is a sequence chart showing an operation sequence of a mutual monitoring process performed between the main microcomputer and the sub-microcomputer of the vehicle electronic control device in the present embodiment.
  • the sub-microcomputer 3 outputs a PWM signal SI1 indicating a self-diagnosis command to the main microcomputer 2 to the main microcomputer 2 as a self-diagnosis command signal (self-diagnosis command output processing). .
  • the main microcomputer 2 diagnoses whether the output width and output cycle of the PWM signal SI1 input from the sub-microcomputer 3 are appropriate, and the output width and output cycle of the PWM signal SI1 are not appropriate. If it is determined, the sub-microcomputer 3 is determined to be abnormal (diagnostic) (self-diagnosis command appropriate determination process). Thus, when the main microcomputer 2 determines that the sub-microcomputer 3 is abnormal, the relay 6 is turned off by switching the relay drive control signal SI4 to the AND circuit 4 to a low level.
  • the main microcomputer 2 determines that the output width and output cycle of the PWM signal SI1 input from the sub-microcomputer 3 are appropriate, the PWM signal SI1 is appropriate as a self-diagnosis command from the sub-microcomputer 3 Therefore, the main microcomputer 2 performs a self-diagnosis (self-check) corresponding to the output width of the PWM signal SI1 (self-diagnosis process).
  • the main microcomputer 2 outputs the PWM signal SI2 indicating the self-diagnosis result to the sub-microcomputer 3 as a self-diagnosis result signal based on the self-diagnosis result of the self-diagnosis process (self-diagnosis result output process).
  • the sub-microcomputer 3 monitors the PWM signal SI2 output from the main microcomputer 2, and diagnoses whether or not the self-diagnosis result of the main microcomputer 2 indicated by the input PWM signal SI2 is appropriate. (Appropriate diagnosis process). Then, the sub-microcomputer 3 outputs a pass / fail result as to whether or not the self-diagnosis result in the main microcomputer 2 is appropriate to the main microcomputer 2 as an appropriate diagnosis result signal SI3 (appropriate diagnosis result output processing). A series of mutual monitoring is performed by the process. Thereafter, such a series of mutual monitoring processes are repeatedly performed at a predetermined cycle.
  • the sub-microcomputer 3 determines that the self-diagnosis result in the main microcomputer 2 is not appropriate, the sub-microcomputer 3 determines that the main microcomputer 2 is abnormal, and the relay drive control signal SI5 to the AND circuit 4 is determined. Is switched to a low level to turn off the relay 6.
  • the self-diagnosis process in the main microcomputer 2 is not limited to one type of self-diagnosis process, and a plurality of types of self-diagnosis processes may be executed.
  • the sub-microcomputer 3 may sequentially issue a plurality of types of self-diagnosis commands, or may randomly issue commands.
  • the sub-microcomputer 3 may previously set PWM signals having different output widths corresponding to the plurality of types of self-diagnosis commands.
  • the main microcomputer 2 can output self-diagnosis results respectively corresponding to a plurality of types of self-diagnosis commands to the sub-microcomputer 3.
  • the main microcomputer 2 determines whether or not it is appropriate for at least one of the output width and output cycle of the PWM signal as the self-diagnosis command signal input from the sub-microcomputer 3. May be performed. Further, the main microcomputer 2 may perform self-diagnosis corresponding to at least one of the output width and output cycle of the PWM signal as the self-diagnosis command signal input from the sub-microcomputer 3. The sub-microcomputer 3 may determine whether or not it is appropriate for at least one of the output width and output period of the PWM signal as the self-diagnosis result signal input from the main microcomputer 2.
  • the main microcomputer 2 and the sub-microcomputer 3 are interchanged so that the main microcomputer 2
  • the self-diagnosis instruction output process, the appropriate diagnosis process, and the appropriate diagnosis result output process for the microcomputer 3 are executed, and the sub-microcomputer 3 can also execute the self-diagnosis instruction appropriateness determination process, the self-diagnosis process, and the self-diagnosis result output process.
  • FIG. 3 is a flowchart showing the flow of processing when the sub-microcomputer of the vehicle electronic control device in this embodiment monitors and diagnoses the operation of the main microcomputer
  • FIG. 4 mainly corresponds to the processing shown in FIG. It is a timing chart.
  • the horizontal axis represents time t
  • the vertical axis represents voltage for each output (signal)
  • each determination step is schematically shown as a rectangular block.
  • step S1 when the sub-microcomputer 3 monitors and diagnoses the main microcomputer 2 in response to the ignition switch SW being switched from the OFF state to the ON state, the sub-microcomputer is started in step S1.
  • 3 CPU 3a outputs a PWM signal SI1 which is a self-diagnosis command signal to the CPU 2a of the main microcomputer 2.
  • the self-diagnosis command signal SI1 is switched from the low level to the high level and has a predetermined pulse width which is an output width indicating the length of the high time. It is output as a PWM signal.
  • the CPU 3a advances the processing to the next step S2.
  • step S2 the CPU 3a of the sub-microcomputer 3 inputs from the main microcomputer 2 a PWM signal SI2 that is a self-diagnosis result signal indicating a self-diagnosis result obtained by the main microcomputer 2 based on the output width of the self-diagnosis command signal SI1. Judge whether it has been done.
  • the PWM signal is output at time T1 shown in FIG. 4D, and the process of determining whether or not the PWM signal has been input starts from time T2 shown in FIG. 4C. If it is determined that the output of the PWM signal SI2 itself has not been made, the CPU 3a advances the process to step S3. On the other hand, when determining that the PWM signal SI2 is output, the CPU 3a advances the process to step S5.
  • each step after step S3 and each step after step S5 are also performed continuously after the determination step in step S2, and typically start at time T2 and start at time T3. This is schematically illustrated by the rectangular block in FIG.
  • step S3 when it is determined that the output of the PWM signal SI2 that is the self-diagnosis result signal is not made, the CPU 3a of the sub-microcomputer 3 outputs the self-diagnosis command signal SI1 to the main microcomputer 2 and then the predetermined process It is determined whether or not time (for example, time T2 shown in FIG. 4) has elapsed. If the predetermined time has not elapsed as a result of the determination, the CPU 3a returns the process to step S2. On the other hand, if the predetermined time has elapsed as a result of the determination, the CPU 3a advances the process to the next step S4.
  • time T2 time
  • step S4 the CPU 3a of the sub-microcomputer 3 determines that an event such as the disconnection of the wiring connecting the main microcomputer 2 and the sub-microcomputer 3 has occurred, and ANDs the relay drive control signal SI5 at the low level.
  • the AND circuit 4 correspondingly outputs a low level relay drive signal SI 6 to the relay drive circuit 5.
  • the relay drive circuit 5 to which the low-level relay drive signal SI6 is input switches the relay 6 to the OFF state, whereby the supply of power from the battery 9 to the motor drive circuit 7 is stopped, and the electronic throttle motor M Driving is prohibited. Thereby, the process of step S4 is completed and this series of processes are complete
  • step S5 when it is determined that the output of the PWM signal SI2 that is the self-diagnosis result signal has been made, the CPU 3a of the sub-microcomputer 3 outputs the output width and output of the self-diagnosis result signal SI2 output from the main microcomputer 2. It is determined whether or not the cycle matches the preset output width and output cycle. Specifically, the sub microcomputer 3 stores the output width of the self-diagnosis command signal SI1 output to the main microcomputer 2 in the memory, and the CPU 3a, based on the output width of the self-diagnosis command signal SI1, The output width and output period of the self-diagnosis result signal SI2 to be output from the main microcomputer 2 are calculated and obtained.
  • the CPU 3a determines that the output width and the output cycle of the self-diagnosis result signal SI2 that the main microcomputer 2 outputs as the result of the self-diagnosis is proper should be output from the main microcomputer 2 originally. It is determined whether or not the output width and output cycle of the diagnosis result signal are actually coincident with each other, thereby determining whether or not the self-diagnosis result output from the main microcomputer 2 is appropriate. As a result of the determination, when the self-diagnosis result output from the main microcomputer 2 is not appropriate, the CPU 3a advances the process to step S8. On the other hand, when the self-diagnosis result output from the main microcomputer 2 is appropriate, the CPU 3a advances the process to step S6.
  • step S6 when it is determined that the self-diagnosis result output from the main microcomputer 2 is appropriate, the CPU 3a of the sub-microcomputer 3 makes a positive determination that the main microcomputer 2 does not have a defect, A proper diagnosis result signal SI3 indicating that no malfunction has occurred is output to the main microcomputer 2, and a PWM signal SI1 to be output to the main microcomputer 2 as a self-diagnosis command signal is prepared in the next processing.
  • the CPU 3a switches the appropriate diagnosis result signal SI3 from the low level to the high level at time T3. Then, the CPU 3a returns the process to the first step S1, and, as shown in FIG.
  • the CPU 3a switches the self-diagnosis command signal from the low level to the high level at time T4, and outputs a PWM signal having a predetermined width.
  • the PWM signal SI2 which is a self-diagnosis result signal of the main microcomputer 2
  • Whether or not it is input to the CPU 3a within (time)) is determined in a determination process schematically shown as a rectangular block starting from time T6 indicated by C in FIG.
  • step S8 when it is determined that the self-diagnosis result output from the main microcomputer 2 is not appropriate, the CPU 3a of the sub-microcomputer 3 is negative if the main microcomputer 2 is defective in this process. Judgment is made, and the count value N of the program counter that counts the number of times that the process of step S8 has been executed, that is, the number of times that the main microcomputer 2 has been found to be defective, is incremented by one. Thereby, the process of step S8 is completed and the CPU 3a advances the process to the next step S9. Such a program counter is built in the CPU 3a.
  • step S9 the number of times N that the CPU 3a of the sub-microcomputer 3 determines that a failure has occurred in the main microcomputer 2 by determining whether or not the count value N of the program counter is greater than or equal to a predetermined value N0. Is determined to be greater than or equal to a predetermined value N0.
  • the CPU 3a advances the process to step S10.
  • the CPU 3a advances the process to step S11.
  • step S10 in the case where the number N of times when it is determined that a problem has occurred in the main microcomputer 2 is less than the predetermined value N0, the CPU 3a of the sub-microcomputer 3 indicates that the problem has occurred in the main microcomputer 2.
  • a diagnostic result signal SI3 is output to the main microcomputer 2, and a PWM signal SI1 to be output as a self-diagnosis command signal to the main microcomputer 2 in the next processing is prepared.
  • the output width and output cycle of the PWM signal SI2 which is a self-diagnosis result signal from the CPU 2a to the CPU 3a at time T5 in FIG. 4D, are incorrect, and the count value of the counter becomes less than the predetermined value N0.
  • the CPU 3a switches the appropriate diagnosis result signal from the high level to the low level at time T7 as shown in FIG. 4B. Then, the CPU 3a returns the process to the first step S1.
  • step S11 in the case where the number N of times when it is determined that a failure has occurred in the main microcomputer 2 is equal to or greater than the predetermined value N0, the CPU 3a of the sub-microcomputer 3 determines a failure confirmation that a failure has occurred in the main microcomputer 2. Then, the low-level relay drive control signal SI5 is output to the AND circuit 4, and the AND circuit 4 correspondingly outputs the low-level relay drive signal SI6 to the relay drive circuit 5. Then, the relay drive circuit 5 to which the low-level relay drive signal SI6 is input switches the relay 6 to the OFF state, whereby the supply of power from the battery 9 to the motor drive circuit 7 is stopped, and the electronic throttle motor M Driving is prohibited. Thereby, the process of step S11 is completed and this series of processes are complete
  • the main microcomputer 2 when there is a surplus in processing and communication when the control of the electronic throttle motor M is not executed or when the above-described processing according to the request of the sub-microcomputer 3 is not executed, the main microcomputer 2
  • the CPU 2a of 2 performs a self-check by performing a predetermined calculation corresponding to the PWM signal input as a self-diagnosis command output from the CPU 3a of the sub-microcomputer 3 or a signal by serial communication, and the self-diagnosis result is expressed as a specific numerical value. It is also possible to output a command to the CPU 2a of the sub-microcomputer 3 by serial communication.
  • the main microcomputer 2 performs self-diagnosis and also diagnoses the sub-microcomputer with reference to FIG.
  • FIG. 5 is a flowchart showing a flow of processing executed by the main microcomputer along with processing when the sub-microcomputer of the vehicle electronic control device according to the present embodiment monitors and diagnoses the operation of the main microcomputer.
  • step S111 when the CPU 2a of the main microcomputer 2 starts the process when the sub-microcomputer 3 monitors and diagnoses the operation of the main microcomputer 2, the CPU 3a of the sub-microcomputer 3 starts in step S111.
  • the output width of the PWM signal SI1 which is a self-diagnosis command signal output from the. If the CPU 2a determines that the output of the PWM signal SI1 itself has not been made, the process proceeds to step S112. On the other hand, if the CPU 2a determines that the PWM signal SI1 has been output, the process proceeds to step S114.
  • the CPU 2a detects the PWM signal SI1 to be input and determines whether or not the self-diagnosis command signal is output in the determination process starting from time T0 'indicated by E in FIG.
  • each step after step S112 and each step after step S114 are also performed continuously after the determination step in step S111, and typically start at time T0 ′ and start at time T1. This is schematically shown by the rectangular block in E of FIG.
  • step S112 when it is determined that the output of the PWM signal SI1 as the self-diagnosis command signal is not made, the CPU 2a of the main microcomputer 2 performs a predetermined time (for example, at the time T0 ′ shown in FIG. 3). It is determined whether or not elapses. If the predetermined time has not elapsed as a result of the determination, the CPU 2a returns the process to the first step S111. On the other hand, if it is determined that the predetermined time has elapsed, the CPU 2a advances the processing to the next step S113.
  • a predetermined time for example, at the time T0 ′ shown in FIG. 3
  • step S113 the CPU 2a of the main microcomputer 2 determines that an event such as the disconnection of the wiring connecting the main microcomputer 2 and the sub-microcomputer 3 has occurred, and ANDs the low-level relay drive control signal S14.
  • the AND circuit 4 correspondingly outputs a low level relay drive signal SI 6 to the relay drive circuit 5.
  • the relay drive circuit 5 to which the low-level relay drive signal SI6 is input switches the relay 6 to the OFF state, whereby the supply of power from the battery 9 to the motor drive circuit 7 is stopped, and the electronic throttle motor M Driving is prohibited. Thereby, the process of step S113 is completed and this series of processes are complete
  • step S114 when it is determined that the output of the PWM signal SI1 that is a self-diagnosis command signal has been made, the CPU 2a of the main microcomputer 2 determines whether or not the current process is the first process. As a result of the determination, if the current process is the first time, the CPU 2a advances the process to step S116. On the other hand, if the current process is not the first time, the CPU 2a advances the process to step S115.
  • step S115 when it is determined that this process is not the first time, the CPU 2a of the main microcomputer 2 determines whether the previous appropriate diagnosis result signal SI3 output from the sub-microcomputer 3 is at a high level or a low level. Make a decision.
  • the information on the voltage level of the previous appropriate diagnosis result signal SI3 is stored in the memory of the main microcomputer 2 in the previous process performed before time T0 in FIG. If the appropriate diagnosis result signal SI3 from the sub-microcomputer 3 is at a high level, the CPU 2a determines that the previous self-diagnosis result of the main microcomputer 2 is appropriate, and advances the process to S116. On the other hand, if the appropriate diagnosis result signal SI3 is at a low level, the CPU 2a determines that the previous self-diagnosis result is not appropriate, and advances the process to S120.
  • step S116 when the appropriate diagnosis result output from the sub-microcomputer 3 is appropriate, the CPU 2a of the main microcomputer 2 determines the output width and output cycle of the PWM signal SI1 that is a self-diagnosis command signal output from the sub-microcomputer 3. It is determined whether or not the output width and the output cycle set in advance coincide with each other.
  • the main microcomputer 2 stores a predetermined output width and a predetermined output period of a PWM signal, which is a self-diagnosis command signal that the sub-microcomputer 3 should output to the main microcomputer 2, in the memory, and the CPU 2a It is determined whether or not the output width and output cycle of the self-diagnosis command signal SI1 actually output from the sub-microcomputer 3 match the predetermined output width and predetermined output cycle. As a result of the determination, if the output width and output cycle of the self-diagnosis command signal SI1 output from the sub-microcomputer 3 do not match the predetermined output width and predetermined output cycle, the CPU 2a advances the process to step S120. On the other hand, when the output width and output cycle of the self-diagnosis command signal SI1 output from the sub-microcomputer 3 match the predetermined output width and the predetermined output cycle, the CPU 2a advances the process to step S117.
  • a PWM signal which is a self-diagnosis command signal that the sub-microcomputer 3 should output to the main microcomputer
  • step S117 when the output width and output cycle of the self-diagnosis command signal SI1 output from the sub-microcomputer 3 coincide with the predetermined output width and predetermined output cycle, the CPU 2a of the main microcomputer 2 further A predetermined calculation corresponding to the PWM signal SI1 input as a self-diagnosis command output from the CPU 3a is performed to perform self-check (self-diagnosis), and the process proceeds to the next step S118.
  • the predetermined calculation in the self-check include a calculation performed by a predetermined calculation expression stored in the memory of the main microcomputer 2 based on the output width of the input PWM signal SI1.
  • step S118 the CPU 2a of the main microcomputer 2 outputs a self-diagnosis result signal indicating the result of the self-check to the sub-microcomputer 3 as the PWM signal SI2.
  • the CPU 2a outputs the PWM signal SI2 as a self-diagnosis result signal at time T1. Then, the CPU 2a returns the process to the first step S111.
  • step S120 When it is determined that the appropriate diagnosis result signal SI3 output from the sub-microcomputer 3 is not appropriate, and the output width and output cycle of the self-diagnosis command signal SI1 output from the sub-microcomputer 3 are equal to the predetermined output width and the predetermined output cycle.
  • the CPU 2a increments the count value N of the program counter that counts the number of times of executing the process of step 120 by one. Thereby, the process of step S120 is completed, and the CPU 2a advances the process to the next step S121.
  • Such a program counter is built in the CPU 2a.
  • step S121 the CPU 2a of the main microcomputer 2 determines whether or not the count value N of the program counter is equal to or greater than a predetermined value N0. As a result of the determination, if the count value N of the program counter is less than the predetermined value N0, the CPU 2a returns the process to the first step S111. On the other hand, when the count value N of the program counter is equal to or greater than the predetermined value N0, the CPU 2a advances the process to the next step S122.
  • step S122 in the case where the count value N of the program counter is equal to or greater than the predetermined value N0, the CPU 2a of the main microcomputer 2 finally makes a negative determination that a problem has occurred in the main microcomputer 2, and the low level relay
  • the drive control signal SI4 is output to the AND circuit 4, and the AND circuit 4 correspondingly outputs a low level relay drive signal SI6 to the relay drive circuit 5.
  • the relay drive circuit 5 to which the low-level relay drive signal SI6 is input switches the relay 6 to the OFF state, whereby the supply of power from the battery 9 to the motor drive circuit 7 is stopped, and the electronic throttle motor M Driving is prohibited. Thereby, the process of step S122 is completed and this series of processes are complete
  • the relay drive circuit 5 switches power supply from the battery 9 to the motor drive circuit 7 by switching the relay 6 to the OFF state, and prohibits driving of the electronic throttle motor M.
  • the microcomputer is diagnosed mainly using the PWM signal instead of the serial communication, so that the microcomputer can be diagnosed quickly and reliably.
  • the present invention is not limited to the above-described embodiments in terms of the type, arrangement, number, etc. of the constituent elements, and deviates from the gist of the invention, such as appropriately replacing the constituent elements with those having the same effects. Of course, it can be appropriately changed within the range not to be.
  • the diagnosis of the microcomputer is performed mainly using the PWM signal instead of the serial communication. Therefore, the vehicle electronic control device capable of diagnosing the microcomputer quickly and surely is provided. It is expected that it can be widely applied to electronic control devices such as vehicles because of its universal universal character.

Abstract

Disclosed is a vehicle electronic control device equipped with a first microcomputer (2, 3), and a second microcomputer (3, 2) that is able to transmit and receive signals with the first microcomputer; wherein one microcomputer (2, 3) from among the first microcomputer and the second microcomputer outputs a PWM signal to the other microcomputer (3, 2), the other microcomputer detects the on-time of the PWM signal, performs a self-diagnosis corresponding to the detected on-time, and outputs the self-diagnosis results to the one microcomputer, and the one microcomputer diagnoses the other microcomputer on the basis of the self-diagnosis results.

Description

車両用電子制御装置Electronic control device for vehicle
 本発明は、車両用電子制御装置に関し、特に、マイクロコンピュータについて診断を行う車両用電子制御装置に関する。 The present invention relates to a vehicular electronic control device, and more particularly to a vehicular electronic control device that diagnoses a microcomputer.
  近年、車両用の電子制御装置(ECU:Electronic Control Unit)においては、車両における電子制御の高度化とも相まって、電子制御装置が備えるマイクロコンピュータ(以降、適宜マイコンという)の重要性が、より高まってきている。 In recent years, in an electronic control unit (ECU) for a vehicle, the importance of a microcomputer (hereinafter referred to as a microcomputer as appropriate) included in the electronic control unit has been increased along with the advancement of electronic control in a vehicle. ing.
 例えば、車両用の電子制御装置では、マイコン内で目標指令値を求めて、この目標指令値に基づいて、エンジン等に関する種々のデバイスを駆動しているため、かかるデバイスの動作を保証すべく、マイコンの動作を監視することが提案されるようになってきている。 For example, in an electronic control device for a vehicle, a target command value is obtained in a microcomputer, and various devices related to an engine or the like are driven based on the target command value. It has been proposed to monitor the operation of the microcomputer.
 特許文献1においては、監視回路2から宿題信号20をマイコン1へ送信し、マイコン1では宿題信号20の内容に応じた自己機能チェック演算を行い、その演算結果を解答信号10として監視回路2へ返信する。そして、監視回路2では、マイコン1から送信のあった解答信号10の内容と正答とを比較することでマイコンが正常に動作しているか否かの監視をする。ここで、宿題信号20及び解答信号10の送受信はシリアル通信で行われている。 In Patent Document 1, a homework signal 20 is transmitted from the monitoring circuit 2 to the microcomputer 1, and the microcomputer 1 performs a self-function check calculation according to the content of the homework signal 20, and the calculation result is sent to the monitoring circuit 2 as an answer signal 10. Send back. The monitoring circuit 2 monitors whether the microcomputer is operating normally by comparing the content of the answer signal 10 transmitted from the microcomputer 1 with the correct answer. Here, transmission / reception of the homework signal 20 and the answer signal 10 is performed by serial communication.
特開2004-259137号公報JP 2004-259137 A
 しかしながら、本発明者の検討によれば、監視系におけるサブマイクロコンピュータ(以降、適宜サブマイコンという)は、メインマイクロコンピュータ(以降、適宜メインマイコンという)の動作の監視のみに使用されるというものではなく、メインマイコンが種々のデバイスの制御に必要なデータについての複雑な演算処理を実行する際には、メインマイコンの演算処理を支援するものでもある。 However, according to the study of the present inventor, the sub-microcomputer (hereinafter referred to as sub-microcomputer as appropriate) in the monitoring system is not used only for monitoring the operation of the main microcomputer (hereinafter referred to as main microcomputer as appropriate). In addition, when the main microcomputer executes complicated arithmetic processing on data necessary for controlling various devices, the main microcomputer supports the arithmetic processing of the main microcomputer.
 このため、特許文献1の構成の如く、宿題信号20及び解答信号10の送信をシリアル通信により行ったのでは、複雑な演算処理に関係するメインマイコンとサブマイコンとのデータ通信が優先され、メインマイコンの動作を監視するためのデータ通信が後回しにされて、メインマイコンの診断を迅速に行い得ない傾向も考えられる。 For this reason, when the homework signal 20 and the answer signal 10 are transmitted by serial communication as in the configuration of Patent Document 1, priority is given to data communication between the main microcomputer and the sub-microcomputer related to complicated arithmetic processing. There may be a tendency that data communication for monitoring the operation of the microcomputer is postponed and the main microcomputer cannot be diagnosed quickly.
 本発明は、以上のような検討を経てなされたもので、マイクロコンピュータを迅速かつ確実に診断できる車両用電子制御装置を提供することを目的とする。 The present invention has been made through the above-described studies, and an object thereof is to provide a vehicle electronic control device capable of diagnosing a microcomputer quickly and reliably.
 以上の目的を達成すべく、本発明は、第1のマイクロコンピュータと、前記第1のマイクロコンピュータとの間で信号の送受信が自在な第2のマイクロコンピュータと、を備える車両用電子制御装置であって、前記第1のマイクロコンピュータ及び前記第2のマイクロコンピュータのうち、一方のマイクロコンピュータが他方のマイクロコンピュータにハイレベル及びローレベルの電圧を呈する電圧信号を出力し、前記他方のマイクロコンピュータが前記電圧信号の前記電圧が前記ハイレベルにあるハイ時間を検出すると共に検出した前記ハイ時間に応じた自己診断を実行し、前記自己診断の結果を前記一方のマイクロコンピュータに出力し、前記一方のマイクロコンピュータが前記自己診断の結果に基づいて前記他方のマイクロコンピュータの診断をすることを第1の特徴とする。 In order to achieve the above object, the present invention provides a vehicle electronic control device comprising a first microcomputer and a second microcomputer capable of transmitting and receiving signals between the first microcomputer. Of the first microcomputer and the second microcomputer, one microcomputer outputs a voltage signal representing a high level voltage and a low level voltage to the other microcomputer, and the other microcomputer Detecting a high time when the voltage of the voltage signal is at the high level and executing a self-diagnosis according to the detected high time, outputting the result of the self-diagnosis to the one microcomputer, Based on the result of the self-diagnosis, the microcomputer uses the other microcomputer. The first feature to the diagnosis data.
 また本発明は、かかる第1の特徴に加えて、前記電圧信号が、PWM信号であることを第2の特徴とする。 Further, in addition to the first feature, the present invention has a second feature that the voltage signal is a PWM signal.
 また本発明は、かかる第2の特徴に加えて、前記他方のマイクロコンピュータは、前記一方のマイクロコンピュータから入力された前記PWM信号の前記ハイ時間及び周期の少なくとも1つに基づいて前記一方のマイクロコンピュータの診断をすることを第3の特徴とする。 According to the present invention, in addition to the second feature, the other microcomputer is configured such that the one microcomputer is based on at least one of the high time and the period of the PWM signal input from the one microcomputer. The third feature is that the computer is diagnosed.
 また本発明は、かかる第1から第3のいずれかの特徴に加えて、前記他方のマイクロコンピュータが前記自己診断の結果を前記一方のマイクロコンピュータにPWM信号として出力し、前記一方のマイクロコンピュータはPWM信号のハイ時間及び周期の少なくとも1つに基づいて前記他方のマイクロコンピュータの診断をすることを第4の特徴とする。 According to the present invention, in addition to any one of the first to third features, the other microcomputer outputs the self-diagnosis result to the one microcomputer as a PWM signal, and the one microcomputer A fourth feature is that the other microcomputer is diagnosed based on at least one of a high time and a period of the PWM signal.
 また本発明は、かかる第1又は第2の特徴に加えて、前記他方のマイクロコンピュータは、前記自己診断の結果を前記一方のマイクロコンピュータに更にシリアル通信を介して出力することを第5の特徴とする。 According to the present invention, in addition to the first or second feature, the other microcomputer outputs the self-diagnosis result to the one microcomputer via serial communication. And
 また本発明は、かかる第1から第5のいずれかの特徴に加えて、更に、前記他方のマイクロコンピュータが、前記一方のマイクロコンピュータの診断を行い、前記一方のマイクロコンピュータによる前記他方のマイクロコンピュータの診断及び前記他方のマイクロコンピュータによる前記一方のマイクロコンピュータの診断の一方が否定的である場合は、前記車両用電子制御装置の制御対象の動作を禁止することを第6の特徴とする。 Further, according to the present invention, in addition to any of the first to fifth features, the other microcomputer performs diagnosis of the one microcomputer, and the other microcomputer by the one microcomputer. If one of the diagnosis of the first microcomputer and the diagnosis of the one microcomputer by the other microcomputer is negative, the operation of the control target of the vehicle electronic control device is prohibited.
 以上の本発明に係る車両用電子制御装置によれば、シリアル通信ではなくPWM信号を主として利用しマイクロコンピュータの診断が行われるので、マイクロコンピュータを迅速かつ確実に診断することができる。 According to the above-described vehicle electronic control device according to the present invention, the microcomputer is diagnosed mainly using the PWM signal instead of the serial communication, so that the microcomputer can be diagnosed quickly and reliably.
本発明の実施形態における車両用電子制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electronic controller for vehicles in embodiment of this invention. 本実施形態における車両用電子制御装置のメインマイコンとサブマイコンとの間で行われる相互監視処理の動作シーケンスを示すシーケンスチャートである。It is a sequence chart which shows the operation | movement sequence of the mutual monitoring process performed between the main microcomputer and submicrocomputer of the vehicle electronic control apparatus in this embodiment. 本実施形態における車両用電子制御装置のサブマイコンがメインマイコンの動作を監視して診断する際の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process at the time of the submicrocomputer of the electronic controller for vehicles in this embodiment monitoring and diagnosing the operation | movement of a main microcomputer. 図3に示す処理に主として対応したタイミングチャートである。4 is a timing chart mainly corresponding to the processing shown in FIG. 3. 本実施形態における車両用電子制御装置のサブマイコンがメインマイコンの動作を監視して診断する際の処理に伴って、メインマイコンが実行する処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process which a main microcomputer performs with the process at the time of the submicrocomputer of the electronic controller for vehicles in this embodiment monitoring and diagnosing the operation | movement of a main microcomputer.
 以下、図面を適宜参照して、本発明の実施形態における車両用電子制御装置につき、詳細に説明する。 Hereinafter, an electronic control device for a vehicle according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
 図1は、本実施形態における車両用電子制御装置の構成を示すブロック図である。 FIG. 1 is a block diagram showing the configuration of the vehicle electronic control device according to this embodiment.
 図1に示すように、本実施形態における車両用の電子制御装置(ECU:Electronic Control Unit)1は、電子スロットルモータMの動作を制御するための装置であり、メインマイコン2、サブマイコン3、AND回路(アンド回路)4、リレー駆動回路5、リレー6、モータ駆動回路7及び監視回路8を備え、イグニッションスイッチSWを介して、バッテリ9から動作に必要な電力が供給される。なお、電子制御装置1の制御対象は、もちろん電子スロットルモータMに限定されるものではなく、車両内で動作自在な他の負荷をも含むものである。 As shown in FIG. 1, an electronic control unit (ECU: Electronic Control Unit) 1 for a vehicle in the present embodiment is a device for controlling the operation of an electronic throttle motor M, and includes a main microcomputer 2, a sub-microcomputer 3, An AND circuit (AND circuit) 4, a relay drive circuit 5, a relay 6, a motor drive circuit 7, and a monitoring circuit 8 are provided, and electric power necessary for the operation is supplied from the battery 9 via the ignition switch SW. It should be noted that the control target of the electronic control device 1 is not limited to the electronic throttle motor M, but includes other loads that can operate in the vehicle.
 メインマイコン2は、CPU(Central Processing Unit)2aを含むマイクロコンピュータである。ここで、CPU2aは、メインマイコン2の図示を省略するメモリ内に記憶されている制御プログラムに従って動作することにより、電子制御装置1全体の動作を制御自在であると共に、サブマイコン3の動作を診断自在である。 The main microcomputer 2 is a microcomputer including a CPU (Central Processing Unit) 2a. Here, the CPU 2a operates in accordance with a control program stored in a memory (not shown) of the main microcomputer 2 to control the entire operation of the electronic control unit 1 and diagnoses the operation of the sub microcomputer 3. It is free.
 サブマイコン3は、CPU3aを含むマイクロコンピュータである。ここで、CPU3aは、サブマイコン3の図示を省略するメモリ内に記憶されている制御プログラムに従って動作することにより、メインマイコン2からの制御信号に従ってメインマイコン2の処理を支援自在であると共に、メインマイコン2の動作を診断自在である。なお、メインマイコン2及びサブマイコン3は、詳細は後述する信号SI1、SI2及びSI3をも送受信自在である。 The sub-microcomputer 3 is a microcomputer including a CPU 3a. Here, the CPU 3a can support the processing of the main microcomputer 2 according to the control signal from the main microcomputer 2 by operating according to the control program stored in the memory (not shown) of the sub-microcomputer 3, and the main microcomputer 2. The operation of the microcomputer 2 can be diagnosed. The main microcomputer 2 and the sub microcomputer 3 can also transmit and receive signals SI1, SI2, and SI3, which will be described later in detail.
 AND回路4の2つの入力端子は、各々メインマイコン2及びサブマイコン3の出力に接続されると共に、その出力端子はリレー駆動回路5に接続されている。AND回路4は、メインマイコン2から出力されるリレー駆動制御信号SI4とサブマイコン3から出力されるリレー駆動制御信号SI5との双方がハイレベルである場合には、ハイレベルのリレー駆動信号SI6をリレー駆動回路5に出力する。一方で、メインマイコン2から出力されるリレー駆動制御信号SI4とサブマイコン3から出力されるリレー駆動制御信号SI5との少なくとも一方がローレベルである場合には、AND回路4は、ローレベルのリレー駆動信号SI6をリレー駆動回路5に出力する。 The two input terminals of the AND circuit 4 are connected to the outputs of the main microcomputer 2 and the sub-microcomputer 3, respectively, and the output terminals are connected to the relay drive circuit 5. When both the relay drive control signal SI4 output from the main microcomputer 2 and the relay drive control signal SI5 output from the sub-microcomputer 3 are at a high level, the AND circuit 4 outputs a high level relay drive signal SI6. Output to the relay drive circuit 5. On the other hand, when at least one of the relay drive control signal SI4 output from the main microcomputer 2 and the relay drive control signal SI5 output from the sub-microcomputer 3 is at a low level, the AND circuit 4 The drive signal SI6 is output to the relay drive circuit 5.
 リレー駆動回路5は、AND回路4から出力されるリレー駆動信号SI6のレベルがローレベルからハイレベルに切り替わった場合には、リレー6をオフ状態からオン状態に切り替えることにより、バッテリ9の電力をモータ駆動回路7に供給する。一方で、AND回路4から出力されるリレー駆動信号SI6のレベルがハイレベルからローレベルに切り替わった場合には、リレー駆動回路5は、リレー6をオン状態からオフ状態に切り替えることにより、バッテリ9からモータ駆動回路7への電力の供給を停止する。 When the level of the relay drive signal SI6 output from the AND circuit 4 is switched from the low level to the high level, the relay drive circuit 5 switches the relay 6 from the off state to the on state, thereby reducing the power of the battery 9. This is supplied to the motor drive circuit 7. On the other hand, when the level of the relay drive signal SI6 output from the AND circuit 4 is switched from the high level to the low level, the relay drive circuit 5 switches the relay 6 from the on state to the off state, thereby The supply of power to the motor drive circuit 7 is stopped.
 モータ駆動回路7は、リレー6がオン状態であるときに、メインマイコン2からの制御信号に従って、バッテリ9の電力を利用して電子スロットルモータMの駆動を制御する。 The motor drive circuit 7 controls the drive of the electronic throttle motor M using the power of the battery 9 in accordance with a control signal from the main microcomputer 2 when the relay 6 is in an on state.
 監視回路8は、メインマイコン2の動作に関連して出力されるパルス信号WDTを利用してメインマイコン2が動作しているか否かを監視しながら計時動作を行い、そのパルス信号WDTに停止又は遅延が生じた場合に、メインマイコン2とサブマイコン3とへリセット信号SI7を送出することで、メインマイコン2及びサブマイコン3のリセットを行う。 The monitoring circuit 8 performs a time measuring operation while monitoring whether the main microcomputer 2 is operating using the pulse signal WDT output in relation to the operation of the main microcomputer 2, and stops or stops the pulse signal WDT. When a delay occurs, the main microcomputer 2 and the sub microcomputer 3 are reset by sending a reset signal SI7 to the main microcomputer 2 and the sub microcomputer 3.
 次に、以上の構成の車両用の電子制御装置1における監視処理につき、更に図2から図6をも参照して、詳細に説明する。かかる電子制御装置1における監視処理は、メインマイコン2におけるCPU2aとサブマイコン3におけるCPU3aが、協働して実行する相互監視処理である。以下、サブマイコン3がメインマイコン2を監視して診断し、これに伴ってメインマイコン2が自己診断をすると共にサブマイコンをも診断する場合を例に挙げ、かかる処理につき説明を進めることにする。 Next, the monitoring process in the vehicle electronic control device 1 having the above-described configuration will be described in detail with reference to FIGS. The monitoring process in the electronic control device 1 is a mutual monitoring process that the CPU 2a in the main microcomputer 2 and the CPU 3a in the sub-microcomputer 3 execute in cooperation. Hereinafter, a case where the sub microcomputer 3 monitors and diagnoses the main microcomputer 2 and the main microcomputer 2 performs self diagnosis and also diagnoses the sub microcomputer as an example will be described. .
 ここで、本実施形態においては、相互監視処理に用いられる電圧信号として、PWM(Pulse Width Modulation)信号を代表的に適用して説明する。かかるPWM信号は、ローレベルの電圧と、ローレベルの電圧から所定のオン時間になるように切り替えられるハイレベルの電圧と、を有するものであり、ハイレベルの電圧が維持される所定のハイ時間はPWM信号の出力幅に相当し、ハイレベルの電圧が出現する周期はPWM信号の出力周期に相当する。もちろん、かかる電圧信号としては、一般的なハイレベルの電圧及びローレベルの電圧を有する電圧信号が適用可能である。かかる一般的な電圧信号の場合には、ハイレベルの電圧が維持される所定のハイ時間が、電圧信号の出力幅であって、ハイレベルの電圧が出現する周期が、電圧信号の出力周期である。 Here, in the present embodiment, a PWM (Pulse Width Modulation) signal is representatively applied and described as a voltage signal used for the mutual monitoring process. The PWM signal has a low level voltage and a high level voltage that is switched from the low level voltage to a predetermined on-time, and a predetermined high time during which the high level voltage is maintained. Corresponds to the output width of the PWM signal, and the period in which the high level voltage appears corresponds to the output period of the PWM signal. Of course, as such a voltage signal, a general voltage signal having a high level voltage and a low level voltage is applicable. In the case of such a general voltage signal, the predetermined high time during which the high level voltage is maintained is the output width of the voltage signal, and the cycle in which the high level voltage appears is the output cycle of the voltage signal. is there.
 最初に、メインマイコン2とサブマイコン3との間の相互監視処理の全体的な流れについて、更に図2をも参照して説明する。 First, the overall flow of the mutual monitoring process between the main microcomputer 2 and the sub-microcomputer 3 will be described with reference to FIG.
 図2は、本実施形態における車両用電子制御装置のメインマイコンとサブマイコンとの間で行われる相互監視処理の動作シーケンスを示すシーケンスチャートである。 FIG. 2 is a sequence chart showing an operation sequence of a mutual monitoring process performed between the main microcomputer and the sub-microcomputer of the vehicle electronic control device in the present embodiment.
 図2に示すように、まず、サブマイコン3は、メインマイコン2に対しての自己診断の命令を示すPWM信号SI1を、自己診断命令信号としてメインマイコン2に出力する(自己診断命令出力処理)。 As shown in FIG. 2, first, the sub-microcomputer 3 outputs a PWM signal SI1 indicating a self-diagnosis command to the main microcomputer 2 to the main microcomputer 2 as a self-diagnosis command signal (self-diagnosis command output processing). .
 ついで、メインマイコン2は、サブマイコン3から入力されたPWM信号SI1の出力幅及び出力周期が適正なものであるか否かの診断を行い、かかるPWM信号SI1の出力幅及び出力周期が適正でないと判断した場合には、サブマイコン3が異常であると判断(診断)する(自己診断命令適正判断処理)。このように、メインマイコン2が、サブマイコン3が異常であると判断した場合には、AND回路4へのリレー駆動制御信号SI4をローレベルに切換えることで、リレー6をオフする。一方で、メインマイコン2が、サブマイコン3から入力されたPWM信号SI1の出力幅及び出力周期が適正であると判断した場合には、かかるPWM信号SI1がサブマイコン3からの自己診断命令として適正に利用自在であるから、メインマイコン2は、そのPWM信号SI1の出力幅に対応する自己診断(セルフチェック)を行う(自己診断処理)。 Next, the main microcomputer 2 diagnoses whether the output width and output cycle of the PWM signal SI1 input from the sub-microcomputer 3 are appropriate, and the output width and output cycle of the PWM signal SI1 are not appropriate. If it is determined, the sub-microcomputer 3 is determined to be abnormal (diagnostic) (self-diagnosis command appropriate determination process). Thus, when the main microcomputer 2 determines that the sub-microcomputer 3 is abnormal, the relay 6 is turned off by switching the relay drive control signal SI4 to the AND circuit 4 to a low level. On the other hand, when the main microcomputer 2 determines that the output width and output cycle of the PWM signal SI1 input from the sub-microcomputer 3 are appropriate, the PWM signal SI1 is appropriate as a self-diagnosis command from the sub-microcomputer 3 Therefore, the main microcomputer 2 performs a self-diagnosis (self-check) corresponding to the output width of the PWM signal SI1 (self-diagnosis process).
 そして、メインマイコン2は、その自己診断処理による自己診断結果に基づき、自己診断結果を示すPWM信号SI2を、自己診断結果信号としてサブマイコン3へ出力する(自己診断結果出力処理)。 The main microcomputer 2 outputs the PWM signal SI2 indicating the self-diagnosis result to the sub-microcomputer 3 as a self-diagnosis result signal based on the self-diagnosis result of the self-diagnosis process (self-diagnosis result output process).
 ついで、サブマイコン3は、メインマイコン2から出力されるPWM信号SI2の監視を行い、入力されたPWM信号SI2が示すメインマイコン2の自己診断結果が適正なものであるか否かの診断を行う(適正診断処理)。そして、サブマイコン3は、メインマイコン2における自己診断結果が適正であるか否かについての良否結果を、適正診断結果信号SI3としてメインマイコン2に出力し(適正診断結果出力処理)、このような工程により一連の相互監視が行われる。そして以降は、かかる一連の相互監視処理が、所定の周期で繰り返して行われることになる。なお、サブマイコン3がメインマイコン2における自己診断結果を適正でないと判断した場合には、サブマイコン3が、メインマイコン2が異常であると判断して、AND回路4へのリレー駆動制御信号SI5をローレベルに切換えることで、リレー6をオフする。 Next, the sub-microcomputer 3 monitors the PWM signal SI2 output from the main microcomputer 2, and diagnoses whether or not the self-diagnosis result of the main microcomputer 2 indicated by the input PWM signal SI2 is appropriate. (Appropriate diagnosis process). Then, the sub-microcomputer 3 outputs a pass / fail result as to whether or not the self-diagnosis result in the main microcomputer 2 is appropriate to the main microcomputer 2 as an appropriate diagnosis result signal SI3 (appropriate diagnosis result output processing). A series of mutual monitoring is performed by the process. Thereafter, such a series of mutual monitoring processes are repeatedly performed at a predetermined cycle. If the sub-microcomputer 3 determines that the self-diagnosis result in the main microcomputer 2 is not appropriate, the sub-microcomputer 3 determines that the main microcomputer 2 is abnormal, and the relay drive control signal SI5 to the AND circuit 4 is determined. Is switched to a low level to turn off the relay 6.
 なお、以上の相互監視処理において、メインマイコン2における自己診断処理は、1種類の自己診断処理に限定はされず、複数種類の自己診断処理を実行してもよい。かかる場合には、サブマイコン3は、複数種類の自己診断命令を順次命令してもよいし、またランダムに命令してもよい。また、かかる複数種類の自己診断命令としては、サブマイコン3が、複数種類の自己診断命令に各々対応して出力幅が異なるようなPWM信号を予め設定しておいてもよい。また、かかる場合、メインマイコン2は、複数種類の自己診断命令に各々対応する自己診断結果をサブマイコン3へ出力自在である。 In the above mutual monitoring process, the self-diagnosis process in the main microcomputer 2 is not limited to one type of self-diagnosis process, and a plurality of types of self-diagnosis processes may be executed. In such a case, the sub-microcomputer 3 may sequentially issue a plurality of types of self-diagnosis commands, or may randomly issue commands. In addition, as such a plurality of types of self-diagnosis commands, the sub-microcomputer 3 may previously set PWM signals having different output widths corresponding to the plurality of types of self-diagnosis commands. In such a case, the main microcomputer 2 can output self-diagnosis results respectively corresponding to a plurality of types of self-diagnosis commands to the sub-microcomputer 3.
 また、以上の相互監視処理において、メインマイコン2は、サブマイコン3から入力された自己診断命令信号としてのPWM信号の出力幅及び出力周期の少なくとも1つについて適正なものであるか否かの判断を行ってもよい。また、メインマイコン2は、サブマイコン3から入力された自己診断命令信号としてのPWM信号の出力幅及び出力周期の少なくとも1つに対応する自己診断を行ってもよい。また、サブマイコン3は、メインマイコン2から入力された自己診断結果信号としてのPWM信号の出力幅及び出力周期の少なくとも1つについて適正なものであるか否かの判断を行ってもよい。 In the above mutual monitoring processing, the main microcomputer 2 determines whether or not it is appropriate for at least one of the output width and output cycle of the PWM signal as the self-diagnosis command signal input from the sub-microcomputer 3. May be performed. Further, the main microcomputer 2 may perform self-diagnosis corresponding to at least one of the output width and output cycle of the PWM signal as the self-diagnosis command signal input from the sub-microcomputer 3. The sub-microcomputer 3 may determine whether or not it is appropriate for at least one of the output width and output period of the PWM signal as the self-diagnosis result signal input from the main microcomputer 2.
 また、以上の相互監視処理において、メインマイコン2やサブマイコン3の処理能力等に余裕がある場合には、メインマイコン2の処理とサブマイコン3の処理とを入れ替えて、メインマイコン2が、サブマイコン3に対する自己診断命令出力処理、適正診断処理及び適正診断結果出力処理を実行し、サブマイコン3が、自己診断命令適正判断処理、自己診断処理及び自己診断結果出力処理を実行することもできる。 In the above mutual monitoring process, if there is a margin in the processing capacity of the main microcomputer 2 and the sub-microcomputer 3, the main microcomputer 2 and the sub-microcomputer 3 are interchanged so that the main microcomputer 2 The self-diagnosis instruction output process, the appropriate diagnosis process, and the appropriate diagnosis result output process for the microcomputer 3 are executed, and the sub-microcomputer 3 can also execute the self-diagnosis instruction appropriateness determination process, the self-diagnosis process, and the self-diagnosis result output process.
 次に、以上の図2示すメインマイコン2とサブマイコン3との間の相互監視処理につき、1種類の自己診断処理を採用し、1パルスのPWM信号の出力幅や出力周期を適宜利用した場合を例にしてより詳細に説明する。 Next, for the mutual monitoring process between the main microcomputer 2 and the sub-microcomputer 3 shown in FIG. 2, when one kind of self-diagnosis process is adopted and the output width and output cycle of one-pulse PWM signal are appropriately used This will be described in detail with reference to FIG.
 まず、サブマイコン3がメインマイコン2を監視して診断する場合における処理について、更に図3及び図4をも参照して説明する。 First, processing when the sub-microcomputer 3 monitors and diagnoses the main microcomputer 2 will be described with reference to FIGS.
 図3は、本実施形態における車両用電子制御装置のサブマイコンがメインマイコンの動作を監視して診断する際の処理の流れを示すフローチャートであり、図4は、図3に示す処理に主として対応したタイミングチャートである。なお、図4中、横軸は、時間tであり、縦軸は、各出力(信号)に関しては電圧であり、また、各判断工程は、矩形ブロックとして模式的に示す。 FIG. 3 is a flowchart showing the flow of processing when the sub-microcomputer of the vehicle electronic control device in this embodiment monitors and diagnoses the operation of the main microcomputer, and FIG. 4 mainly corresponds to the processing shown in FIG. It is a timing chart. In FIG. 4, the horizontal axis represents time t, the vertical axis represents voltage for each output (signal), and each determination step is schematically shown as a rectangular block.
 図3に示すように、イグニッションスイッチSWがオフ状態からオン状態に切り替えられること等に対応して、サブマイコン3がメインマイコン2を監視して診断する処理が開始すると、ステップS1で、サブマイコン3のCPU3aが、メインマイコン2のCPU2aに自己診断命令信号であるPWM信号SI1を出力する。ここで、図4のAに示すように、時刻T0で、かかる自己診断命令信号SI1がローレベルからハイレベルに切り替えられてハイ時間の長さを示す出力幅である所定のパルス幅を有したPWM信号として出力されている。そして、CPU3aは、処理を次のステップS2に進める。 As shown in FIG. 3, when the sub-microcomputer 3 monitors and diagnoses the main microcomputer 2 in response to the ignition switch SW being switched from the OFF state to the ON state, the sub-microcomputer is started in step S1. 3 CPU 3a outputs a PWM signal SI1 which is a self-diagnosis command signal to the CPU 2a of the main microcomputer 2. Here, as shown in FIG. 4A, at time T0, the self-diagnosis command signal SI1 is switched from the low level to the high level and has a predetermined pulse width which is an output width indicating the length of the high time. It is output as a PWM signal. Then, the CPU 3a advances the processing to the next step S2.
 ステップS2では、サブマイコン3のCPU3aが、メインマイコン2が自己診断命令信号SI1の出力幅に基づき演算して得た自己診断結果を示す自己診断結果信号であるPWM信号SI2がメインマイコン2から入力されてきたか否かを判断する。ここで、かかるPWM信号は、図4のDに示す時刻T1で出力され、それが入力されてきたか否かの判断工程は、図4のCに示す時刻T2から始まる。そして、かかるPWM信号SI2の出力自体がなされていないと判断した場合には、CPU3aは、処理をステップS3に進める。一方で、かかるPWM信号SI2が出力されたと判断した場合には、CPU3aは、処理をステップS5に進める。なお、図4のCにおいて、ステップS3以降の各工程及びステップS5以降の各工程も、ステップS2の判断工程に連続して行われるものであり、典型的には時刻T2で開始され時刻T3で終了する図4のCにおける矩形ブロックで模式的に示される。 In step S2, the CPU 3a of the sub-microcomputer 3 inputs from the main microcomputer 2 a PWM signal SI2 that is a self-diagnosis result signal indicating a self-diagnosis result obtained by the main microcomputer 2 based on the output width of the self-diagnosis command signal SI1. Judge whether it has been done. Here, the PWM signal is output at time T1 shown in FIG. 4D, and the process of determining whether or not the PWM signal has been input starts from time T2 shown in FIG. 4C. If it is determined that the output of the PWM signal SI2 itself has not been made, the CPU 3a advances the process to step S3. On the other hand, when determining that the PWM signal SI2 is output, the CPU 3a advances the process to step S5. In FIG. 4C, each step after step S3 and each step after step S5 are also performed continuously after the determination step in step S2, and typically start at time T2 and start at time T3. This is schematically illustrated by the rectangular block in FIG.
 自己診断結果信号であるPWM信号SI2の出力自体がなされていないと判断された場合におけるステップS3の処理では、サブマイコン3のCPU3aが、メインマイコン2に自己診断命令信号SI1を出力してから所定時間(例えば、図4に示す時刻T2の時点)が経過したか否かを判断する。判断の結果、かかる所定時間が経過していない場合には、CPU3aは、処理をステップS2に戻す。一方で、判断の結果、かかる所定時間が経過した場合には、CPU3aは、処理を次のステップS4に進める。 In the process of step S3 when it is determined that the output of the PWM signal SI2 that is the self-diagnosis result signal is not made, the CPU 3a of the sub-microcomputer 3 outputs the self-diagnosis command signal SI1 to the main microcomputer 2 and then the predetermined process It is determined whether or not time (for example, time T2 shown in FIG. 4) has elapsed. If the predetermined time has not elapsed as a result of the determination, the CPU 3a returns the process to step S2. On the other hand, if the predetermined time has elapsed as a result of the determination, the CPU 3a advances the process to the next step S4.
 ステップS4では、サブマイコン3のCPU3aが、メインマイコン2とサブマイコン3とを繋ぐ配線が断線している等の事象が発生していると判断して、ローレベルのリレー駆動制御信号SI5をAND回路4に出力すると共に、AND回路4は、対応してローレベルのリレー駆動信号SI6をリレー駆動回路5に出力する。そして、ローレベルのリレー駆動信号SI6が入力されたリレー駆動回路5は、リレー6をオフ状態に切り替えることにより、バッテリ9からモータ駆動回路7への電力の供給が停止され、電子スロットルモータMの駆動が禁止される。これにより、ステップS4の処理は完了し、今回の一連の処理は終了する。 In step S4, the CPU 3a of the sub-microcomputer 3 determines that an event such as the disconnection of the wiring connecting the main microcomputer 2 and the sub-microcomputer 3 has occurred, and ANDs the relay drive control signal SI5 at the low level. In addition to outputting to the circuit 4, the AND circuit 4 correspondingly outputs a low level relay drive signal SI 6 to the relay drive circuit 5. Then, the relay drive circuit 5 to which the low-level relay drive signal SI6 is input switches the relay 6 to the OFF state, whereby the supply of power from the battery 9 to the motor drive circuit 7 is stopped, and the electronic throttle motor M Driving is prohibited. Thereby, the process of step S4 is completed and this series of processes are complete | finished.
 自己診断結果信号であるPWM信号SI2の出力自体はなされていると判断された場合におけるステップS5では、サブマイコン3のCPU3aが、メインマイコン2から出力された自己診断結果信号SI2の出力幅及び出力周期が予め設定されている出力幅及び出力周期と一致しているか否かを判断する。具体的には、サブマイコン3が、メインマイコン2に出力した自己診断命令信号SI1の出力幅をそのメモリ内に記憶しており、CPU3aは、かかる自己診断命令信号SI1の出力幅に基づいて、メインマイコン2から出力されてくるべき自己診断結果信号SI2の出力幅及び出力周期を演算して求める。そして、CPU3aは、メインマイコン2が自己診断の結果が適正であったとして出力してきた自己診断結果信号SI2の出力幅及び出力周期が、メインマイコン2から本来出力されてくるべきものとされる自己診断結果信号の出力幅及び出力周期に実際に一致しているか否かを判断し、これによりメインマイコン2から出力された自己診断結果が適正であるか否か判断する。判断の結果、メインマイコン2から出力された自己診断結果が適正でない場合には、CPU3aは、処理をステップS8に進める。一方で、メインマイコン2から出力された自己診断結果が適正である場合には、CPU3aは、処理をステップS6に進める。 In step S5 when it is determined that the output of the PWM signal SI2 that is the self-diagnosis result signal has been made, the CPU 3a of the sub-microcomputer 3 outputs the output width and output of the self-diagnosis result signal SI2 output from the main microcomputer 2. It is determined whether or not the cycle matches the preset output width and output cycle. Specifically, the sub microcomputer 3 stores the output width of the self-diagnosis command signal SI1 output to the main microcomputer 2 in the memory, and the CPU 3a, based on the output width of the self-diagnosis command signal SI1, The output width and output period of the self-diagnosis result signal SI2 to be output from the main microcomputer 2 are calculated and obtained. Then, the CPU 3a determines that the output width and the output cycle of the self-diagnosis result signal SI2 that the main microcomputer 2 outputs as the result of the self-diagnosis is proper should be output from the main microcomputer 2 originally. It is determined whether or not the output width and output cycle of the diagnosis result signal are actually coincident with each other, thereby determining whether or not the self-diagnosis result output from the main microcomputer 2 is appropriate. As a result of the determination, when the self-diagnosis result output from the main microcomputer 2 is not appropriate, the CPU 3a advances the process to step S8. On the other hand, when the self-diagnosis result output from the main microcomputer 2 is appropriate, the CPU 3a advances the process to step S6.
 メインマイコン2から出力された自己診断結果が適正であると判断された場合におけるステップS6では、サブマイコン3のCPU3aが、メインマイコン2に不具合が発生していないと肯定的な判断をして、不具合が発生していない旨を示す適正診断結果信号SI3をメインマイコン2に出力すると共に、次回の処理においてメインマイコン2に自己診断命令信号として出力すべきPWM信号SI1を準備する。ここで、CPU3aは、図4のBに示すように、時刻T3で、適正診断結果信号SI3をローレベルからハイレベルに切り替えている。そして、CPU3aは、処理を最初のステップS1へ戻して、図4のAに示すように、CPU3aは、時刻T4で、自己診断命令信号をローレベルからハイレベルに切り替えて所定の幅のPWM信号SI1として出力すると共に、メインマイコン2の自己診断結果信号であるPWM信号SI2が、図4のDに示す時刻T5で出力されたか否か、更には所定時間(例えば、図4に示す時刻T6の時点)内にCPU3aに入力されたか否かを、図4のCで示す時刻T6から始まる矩形ブロックとして模式的に示される判断工程で判断していくことになる。 In step S6 when it is determined that the self-diagnosis result output from the main microcomputer 2 is appropriate, the CPU 3a of the sub-microcomputer 3 makes a positive determination that the main microcomputer 2 does not have a defect, A proper diagnosis result signal SI3 indicating that no malfunction has occurred is output to the main microcomputer 2, and a PWM signal SI1 to be output to the main microcomputer 2 as a self-diagnosis command signal is prepared in the next processing. Here, as shown in FIG. 4B, the CPU 3a switches the appropriate diagnosis result signal SI3 from the low level to the high level at time T3. Then, the CPU 3a returns the process to the first step S1, and, as shown in FIG. 4A, the CPU 3a switches the self-diagnosis command signal from the low level to the high level at time T4, and outputs a PWM signal having a predetermined width. In addition to being output as SI1, whether or not the PWM signal SI2, which is a self-diagnosis result signal of the main microcomputer 2, was output at time T5 shown in FIG. 4D, and further for a predetermined time (for example, at time T6 shown in FIG. 4). Whether or not it is input to the CPU 3a within (time)) is determined in a determination process schematically shown as a rectangular block starting from time T6 indicated by C in FIG.
 メインマイコン2から出力された自己診断結果が適正でないと判断された場合におけるステップS8の処理では、サブマイコン3のCPU3aが、今回の処理ではメインマイコン2に不具合が発生していると否定的な判断をし、ステップS8の処理を実行した回数、つまりメインマイコン2に不具合が発生していると判断した回数を計数するプログラムカウンタの計数値Nを1つ増数する。これにより、ステップS8の処理は完了し、CPU3aは、処理を次のステップS9に進める。なお、かかるプログラムカウンタは、CPU3aに内蔵される。 In the process of step S8 when it is determined that the self-diagnosis result output from the main microcomputer 2 is not appropriate, the CPU 3a of the sub-microcomputer 3 is negative if the main microcomputer 2 is defective in this process. Judgment is made, and the count value N of the program counter that counts the number of times that the process of step S8 has been executed, that is, the number of times that the main microcomputer 2 has been found to be defective, is incremented by one. Thereby, the process of step S8 is completed and the CPU 3a advances the process to the next step S9. Such a program counter is built in the CPU 3a.
 ステップS9の処理では、サブマイコン3のCPU3aが、プログラムカウンタの計数値Nが所定値N0以上であるか否かを判断することにより、メインマイコン2に不具合が発生していると判断した回数Nが所定値N0以上であるか否かを判断する。判断の結果、メインマイコン2に不具合が発生していると判断された回数Nが所定値N0未満である場合には、CPU3aが、処理をステップS10に進める。一方、メインマイコン2に不具合が発生していると判断された回数Nが所定値N0以上である場合には、CPU3aが、処理をステップS11に進める。 In the process of step S9, the number of times N that the CPU 3a of the sub-microcomputer 3 determines that a failure has occurred in the main microcomputer 2 by determining whether or not the count value N of the program counter is greater than or equal to a predetermined value N0. Is determined to be greater than or equal to a predetermined value N0. As a result of the determination, if the number N of times when it is determined that a problem has occurred in the main microcomputer 2 is less than the predetermined value N0, the CPU 3a advances the process to step S10. On the other hand, when the number N of times when it is determined that a problem has occurred in the main microcomputer 2 is equal to or greater than the predetermined value N0, the CPU 3a advances the process to step S11.
 メインマイコン2に不具合が発生していると判断された回数Nが所定値N0未満である場合におけるステップS10では、サブマイコン3のCPU3aが、メインマイコン2に不具合が発生している旨を示す適正診断結果信号SI3をメインマイコン2に出力すると共に、次回の処理においてメインマイコン2に自己診断命令信号として出力すべきPWM信号SI1を準備する。ここで、例えば、図4のDの時刻T5におけるCPU2aからCPU3aに対する自己診断結果信号であるPWM信号SI2の出力幅及び出力周期が間違っていて、かつカウンタの計数値が所定値N0未満となった場合を一点鎖線で示すとすれば、CPU3aは、図4のBに示すように、時刻T7で、適正診断結果信号をハイレベルからローレベルに切り替えている。そして、CPU3aは、処理を最初のステップS1に戻す。 In step S10 in the case where the number N of times when it is determined that a problem has occurred in the main microcomputer 2 is less than the predetermined value N0, the CPU 3a of the sub-microcomputer 3 indicates that the problem has occurred in the main microcomputer 2. A diagnostic result signal SI3 is output to the main microcomputer 2, and a PWM signal SI1 to be output as a self-diagnosis command signal to the main microcomputer 2 in the next processing is prepared. Here, for example, the output width and output cycle of the PWM signal SI2, which is a self-diagnosis result signal from the CPU 2a to the CPU 3a at time T5 in FIG. 4D, are incorrect, and the count value of the counter becomes less than the predetermined value N0. If the case is indicated by an alternate long and short dash line, the CPU 3a switches the appropriate diagnosis result signal from the high level to the low level at time T7 as shown in FIG. 4B. Then, the CPU 3a returns the process to the first step S1.
 メインマイコン2に不具合が発生していると判断された回数Nが所定値N0以上である場合におけるステップS11では、サブマイコン3のCPU3aが、メインマイコン2に不具合が発生したとする故障確定判断をして、ローレベルのリレー駆動制御信号SI5をAND回路4に出力すると共に、AND回路4は、対応してローレベルのリレー駆動信号SI6をリレー駆動回路5に出力する。そして、ローレベルのリレー駆動信号SI6が入力されたリレー駆動回路5は、リレー6をオフ状態に切り替えることにより、バッテリ9からモータ駆動回路7への電力の供給が停止され、電子スロットルモータMの駆動が禁止される。これにより、ステップS11の処理は完了し、今回の一連の処理は終了する。 In step S11 in the case where the number N of times when it is determined that a failure has occurred in the main microcomputer 2 is equal to or greater than the predetermined value N0, the CPU 3a of the sub-microcomputer 3 determines a failure confirmation that a failure has occurred in the main microcomputer 2. Then, the low-level relay drive control signal SI5 is output to the AND circuit 4, and the AND circuit 4 correspondingly outputs the low-level relay drive signal SI6 to the relay drive circuit 5. Then, the relay drive circuit 5 to which the low-level relay drive signal SI6 is input switches the relay 6 to the OFF state, whereby the supply of power from the battery 9 to the motor drive circuit 7 is stopped, and the electronic throttle motor M Driving is prohibited. Thereby, the process of step S11 is completed and this series of processes are complete | finished.
 なお、メインマイコン2において、電子スロットルモータMの制御を実行していないときやサブマイコン3の要求による以上の処理を実行していないとき等における処理や通信に余力がある場合には、メインマイコン2のCPU2aは、サブマイコン3のCPU3aから自己診断命令出力として入力されたPWM信号やシリアル通信による信号に対応した所定の演算を行ってセルフチェックを行い、その自己診断結果をその具体的な数値等の内容と共に、シリアル通信によりサブマイコン3のCPU2aにコマンド出力することも可能である。 In the main microcomputer 2, when there is a surplus in processing and communication when the control of the electronic throttle motor M is not executed or when the above-described processing according to the request of the sub-microcomputer 3 is not executed, the main microcomputer 2 The CPU 2a of 2 performs a self-check by performing a predetermined calculation corresponding to the PWM signal input as a self-diagnosis command output from the CPU 3a of the sub-microcomputer 3 or a signal by serial communication, and the self-diagnosis result is expressed as a specific numerical value. It is also possible to output a command to the CPU 2a of the sub-microcomputer 3 by serial communication.
 次に、サブマイコン3がメインマイコン2を監視して診断する場合において、メインマイコン2が自己診断をすると共に、サブマイコンをも診断する処理について、更に図5をも参照して説明する。 Next, when the sub-microcomputer 3 monitors and diagnoses the main microcomputer 2, the main microcomputer 2 performs self-diagnosis and also diagnoses the sub-microcomputer with reference to FIG.
 図5は、本実施形態における車両用電子制御装置のサブマイコンがメインマイコンの動作を監視して診断する際の処理に伴って、メインマイコンが実行する処理の流れを示すフローチャートである。 FIG. 5 is a flowchart showing a flow of processing executed by the main microcomputer along with processing when the sub-microcomputer of the vehicle electronic control device according to the present embodiment monitors and diagnoses the operation of the main microcomputer.
 図5に示すように、サブマイコン3がメインマイコン2の動作を監視して診断する際の処理に伴って、メインマイコン2のCPU2aが、処理を開始すると、ステップS111で、サブマイコン3のCPU3aから出力された自己診断命令信号であるPWM信号SI1の出力幅を検出する。ここで、CPU2aが、かかるPWM信号SI1の出力自体がなされていないと判断した場合には、処理をステップS112に進める。一方で、CPU2aが、かかるPWM信号SI1が出力されたと判断した場合には、処理をステップS114に進める。ここで、CPU2aは、図4のEで示す時刻T0’から始まる判断工程で、入力されるべきPWM信号SI1を検出して、自己診断命令信号が出力されたか否か判断している。なお、図4のEにおいて、ステップS112以降の各工程及びステップS114以降の各工程も、ステップS111の判断工程に連続して行われるものであり、典型的には時刻T0’で開始され時刻T1で終了する図4のEにおける矩形ブロックで模式的に示される。 As shown in FIG. 5, when the CPU 2a of the main microcomputer 2 starts the process when the sub-microcomputer 3 monitors and diagnoses the operation of the main microcomputer 2, the CPU 3a of the sub-microcomputer 3 starts in step S111. The output width of the PWM signal SI1, which is a self-diagnosis command signal output from the. If the CPU 2a determines that the output of the PWM signal SI1 itself has not been made, the process proceeds to step S112. On the other hand, if the CPU 2a determines that the PWM signal SI1 has been output, the process proceeds to step S114. Here, the CPU 2a detects the PWM signal SI1 to be input and determines whether or not the self-diagnosis command signal is output in the determination process starting from time T0 'indicated by E in FIG. In FIG. 4E, each step after step S112 and each step after step S114 are also performed continuously after the determination step in step S111, and typically start at time T0 ′ and start at time T1. This is schematically shown by the rectangular block in E of FIG.
 自己診断命令信号であるPWM信号SI1の出力自体がなされていないと判断された場合におけるステップS112の処理では、メインマイコン2のCPU2aが、所定時間(例えば、図3に示す時刻T0’の時点)が経過したか否かを判断する。判断の結果、かかる所定時間が経過していない場合には、CPU2aは処理を最初のステップS111に戻す。一方で、判断の結果、かかる所定時間が経過した場合には、CPU2aは、処理を次のステップS113に進める。 In the process of step S112 when it is determined that the output of the PWM signal SI1 as the self-diagnosis command signal is not made, the CPU 2a of the main microcomputer 2 performs a predetermined time (for example, at the time T0 ′ shown in FIG. 3). It is determined whether or not elapses. If the predetermined time has not elapsed as a result of the determination, the CPU 2a returns the process to the first step S111. On the other hand, if it is determined that the predetermined time has elapsed, the CPU 2a advances the processing to the next step S113.
 ステップS113では、メインマイコン2のCPU2aが、メインマイコン2とサブマイコン3とを繋ぐ配線が断線している等の事象が発生していると判断して、ローレベルのリレー駆動制御信号S14をAND回路4に出力すると共に、AND回路4は、対応してローレベルのリレー駆動信号SI6をリレー駆動回路5に出力する。そして、ローレベルのリレー駆動信号SI6が入力されたリレー駆動回路5は、リレー6をオフ状態に切り替えることにより、バッテリ9からモータ駆動回路7への電力の供給が停止され、電子スロットルモータMの駆動が禁止される。これにより、ステップS113の処理は完了し、今回の一連の処理は終了する。 In step S113, the CPU 2a of the main microcomputer 2 determines that an event such as the disconnection of the wiring connecting the main microcomputer 2 and the sub-microcomputer 3 has occurred, and ANDs the low-level relay drive control signal S14. In addition to outputting to the circuit 4, the AND circuit 4 correspondingly outputs a low level relay drive signal SI 6 to the relay drive circuit 5. Then, the relay drive circuit 5 to which the low-level relay drive signal SI6 is input switches the relay 6 to the OFF state, whereby the supply of power from the battery 9 to the motor drive circuit 7 is stopped, and the electronic throttle motor M Driving is prohibited. Thereby, the process of step S113 is completed and this series of processes are complete | finished.
 自己診断命令信号であるPWM信号SI1の出力自体はなされていると判断された場合におけるステップS114では、メインマイコン2のCPU2aが、今回の処理が初回の処理であるか否かの判断を行う。判断の結果、今回の処理が初回である場合には、CPU2aは、処理をステップS116へ進める。一方で、今回の処理が初回でない場合には、CPU2aは、処理をステップS115へ進める。 In step S114 when it is determined that the output of the PWM signal SI1 that is a self-diagnosis command signal has been made, the CPU 2a of the main microcomputer 2 determines whether or not the current process is the first process. As a result of the determination, if the current process is the first time, the CPU 2a advances the process to step S116. On the other hand, if the current process is not the first time, the CPU 2a advances the process to step S115.
 今回の処理が初回でないと判断された場合におけるステップS115では、メインマイコン2のCPU2aが、サブマイコン3から出力された前回の適正診断結果信号SI3がハイレベルであるかか又はローレベルであるかの判断を行う。かかる前回の適正診断結果信号SI3の電圧レベルの情報は、図4では、時刻T0以前に行われた前回の処理においてメインマイコン2のメモリ内に記憶されている。そして、サブマイコン3からの適正診断結果信号SI3がハイレベルであれば、CPU2aは、前回のメインマイコン2の自己診断結果が適正だったと判断し、処理をS116へ進める。一方で、適正診断結果信号SI3がローレベルであった場合には、CPU2aは、前回の自己診断結果が適正ではなかったと判断し、処理をS120へ進める。 In step S115 when it is determined that this process is not the first time, the CPU 2a of the main microcomputer 2 determines whether the previous appropriate diagnosis result signal SI3 output from the sub-microcomputer 3 is at a high level or a low level. Make a decision. The information on the voltage level of the previous appropriate diagnosis result signal SI3 is stored in the memory of the main microcomputer 2 in the previous process performed before time T0 in FIG. If the appropriate diagnosis result signal SI3 from the sub-microcomputer 3 is at a high level, the CPU 2a determines that the previous self-diagnosis result of the main microcomputer 2 is appropriate, and advances the process to S116. On the other hand, if the appropriate diagnosis result signal SI3 is at a low level, the CPU 2a determines that the previous self-diagnosis result is not appropriate, and advances the process to S120.
 サブマイコン3から出力された適正診断結果が適正だった場合におけるステップS116では、メインマイコン2のCPU2aが、サブマイコン3から出力された自己診断命令信号であるPWM信号SI1の出力幅及び出力周期が予め設定されている出力幅及び出力周期と一致しているか否かを判断する。具体的には、メインマイコン2が、サブマイコン3がメインマイコン2に出力すべき自己診断命令信号であるPWM信号の所定出力幅及び所定出力周期をそのメモリ内に記憶しており、CPU2aは、サブマイコン3から実際に出力された自己診断命令信号SI1の出力幅及び出力周期が、かかる所定出力幅及び所定出力周期に一致しているか否かを判断する。判断の結果、サブマイコン3から出力された自己診断命令信号SI1の出力幅及び出力周期が所定出力幅及び所定出力周期に一致していない場合には、CPU2aは、処理をステップS120に進める。一方で、サブマイコン3から出力された自己診断命令信号SI1の出力幅及び出力周期が所定出力幅及び所定出力周期に一致している場合には、CPU2aは、処理をステップS117に進める。 In step S116 when the appropriate diagnosis result output from the sub-microcomputer 3 is appropriate, the CPU 2a of the main microcomputer 2 determines the output width and output cycle of the PWM signal SI1 that is a self-diagnosis command signal output from the sub-microcomputer 3. It is determined whether or not the output width and the output cycle set in advance coincide with each other. Specifically, the main microcomputer 2 stores a predetermined output width and a predetermined output period of a PWM signal, which is a self-diagnosis command signal that the sub-microcomputer 3 should output to the main microcomputer 2, in the memory, and the CPU 2a It is determined whether or not the output width and output cycle of the self-diagnosis command signal SI1 actually output from the sub-microcomputer 3 match the predetermined output width and predetermined output cycle. As a result of the determination, if the output width and output cycle of the self-diagnosis command signal SI1 output from the sub-microcomputer 3 do not match the predetermined output width and predetermined output cycle, the CPU 2a advances the process to step S120. On the other hand, when the output width and output cycle of the self-diagnosis command signal SI1 output from the sub-microcomputer 3 match the predetermined output width and the predetermined output cycle, the CPU 2a advances the process to step S117.
 サブマイコン3から出力された自己診断命令信号SI1の出力幅及び出力周期が所定出力幅及び所定出力周期に一致している場合におけるステップS117では、更に、メインマイコン2のCPU2aが、サブマイコン3のCPU3aから自己診断命令出力として入力されたPWM信号SI1に対応した所定の演算を行ってセルフチェック(自己診断)を行い、処理を次のステップS118に進める。かかるセルフチェックにおける所定の演算としては、入力されたPWM信号SI1の出力幅に基づき、メインマイコン2のメモり内に記憶された所定の演算式により行われる演算が挙げられる。 In step S117 when the output width and output cycle of the self-diagnosis command signal SI1 output from the sub-microcomputer 3 coincide with the predetermined output width and predetermined output cycle, the CPU 2a of the main microcomputer 2 further A predetermined calculation corresponding to the PWM signal SI1 input as a self-diagnosis command output from the CPU 3a is performed to perform self-check (self-diagnosis), and the process proceeds to the next step S118. Examples of the predetermined calculation in the self-check include a calculation performed by a predetermined calculation expression stored in the memory of the main microcomputer 2 based on the output width of the input PWM signal SI1.
 ステップS118では、メインマイコン2のCPU2aは、セルフチェックの結果を示す自己診断結果信号をPWM信号SI2としてサブマイコン3に出力する。ここで、CPU2aは、図4の(D)に示すように、時刻T1で、自己診断結果信号としてPWM信号SI2を出力している。そして、CPU2aは、処理を最初のステップS111に戻す。 In step S118, the CPU 2a of the main microcomputer 2 outputs a self-diagnosis result signal indicating the result of the self-check to the sub-microcomputer 3 as the PWM signal SI2. Here, as shown in FIG. 4D, the CPU 2a outputs the PWM signal SI2 as a self-diagnosis result signal at time T1. Then, the CPU 2a returns the process to the first step S111.
 サブマイコン3から出力された適正診断結果信号SI3が適正でないと判断された場合、及びサブマイコン3から出力された自己診断命令信号SI1の出力幅及び出力周期が所定出力幅及び所定出力周期に一致していないと判断された場合におけるステップS120の処理では、CPU2aは、ステップ120の処理を実行した回数を計数するプログラムカウンタの計数値Nを1つ増数する。これにより、ステップS120の処理は完了し、CPU2aは、処理を次のステップS121に進める。なお、かかるプログラムカウンタは、CPU2aに内蔵される。 When it is determined that the appropriate diagnosis result signal SI3 output from the sub-microcomputer 3 is not appropriate, and the output width and output cycle of the self-diagnosis command signal SI1 output from the sub-microcomputer 3 are equal to the predetermined output width and the predetermined output cycle. In the process of step S120 when it is determined that it has not been performed, the CPU 2a increments the count value N of the program counter that counts the number of times of executing the process of step 120 by one. Thereby, the process of step S120 is completed, and the CPU 2a advances the process to the next step S121. Such a program counter is built in the CPU 2a.
 ステップS121の処理では、メインマイコン2のCPU2aが、プログラムカウンタの計数値Nが所定値N0以上であるか否かを判断する。判断の結果、プログラムカウンタの計数値Nが所定値N0未満である場合には、CPU2aが、処理を最初のステップS111に戻す。一方で、プログラムカウンタの計数値Nが所定値N0以上である場合には、CPU2aが、処理を次のステップS122に進める。 In step S121, the CPU 2a of the main microcomputer 2 determines whether or not the count value N of the program counter is equal to or greater than a predetermined value N0. As a result of the determination, if the count value N of the program counter is less than the predetermined value N0, the CPU 2a returns the process to the first step S111. On the other hand, when the count value N of the program counter is equal to or greater than the predetermined value N0, the CPU 2a advances the process to the next step S122.
 プログラムカウンタの計数値Nが所定値N0以上である場合におけるステップS122では、メインマイコン2のCPU2aが、メインマイコン2に不具合が発生したと最終的に否定的な判断をして、ローレベルのリレー駆動制御信号SI4をAND回路4に出力すると共に、AND回路4は、対応してローレベルのリレー駆動信号SI6をリレー駆動回路5に出力する。そして、ローレベルのリレー駆動信号SI6が入力されたリレー駆動回路5は、リレー6をオフ状態に切り替えることにより、バッテリ9からモータ駆動回路7への電力の供給が停止され、電子スロットルモータMの駆動が禁止される。これにより、ステップS122の処理は完了し、今回の一連の処理は終了する。なお、前述したサブマイコン3がメインマイコン2を監視し診断する処理におけるAND回路4に対するローレベルのリレー駆動制御信号SI5及びここで説明したメインマイコン2の処理におけるAND回路4に対するローレベルの駆動制御信号SI4の少なくとも1つがAND回路4に入力されれば、AND回路4は、対応してローレベルのリレー駆動信号SI6をリレー駆動回路5に出力し、ローレベルのリレー駆動信号SI6が入力されたリレー駆動回路5は、リレー6をオフ状態に切り替えることにより、バッテリ9からモータ駆動回路7への電力の供給が停止され、電子スロットルモータMの駆動が禁止されるものである。 In step S122 in the case where the count value N of the program counter is equal to or greater than the predetermined value N0, the CPU 2a of the main microcomputer 2 finally makes a negative determination that a problem has occurred in the main microcomputer 2, and the low level relay The drive control signal SI4 is output to the AND circuit 4, and the AND circuit 4 correspondingly outputs a low level relay drive signal SI6 to the relay drive circuit 5. Then, the relay drive circuit 5 to which the low-level relay drive signal SI6 is input switches the relay 6 to the OFF state, whereby the supply of power from the battery 9 to the motor drive circuit 7 is stopped, and the electronic throttle motor M Driving is prohibited. Thereby, the process of step S122 is completed and this series of processes are complete | finished. Note that the low-level relay drive control signal SI5 for the AND circuit 4 in the process of monitoring and diagnosing the main microcomputer 2 by the sub-microcomputer 3 described above, and the low-level drive control for the AND circuit 4 in the process of the main microcomputer 2 described here. If at least one of the signals SI4 is input to the AND circuit 4, the AND circuit 4 correspondingly outputs a low level relay drive signal SI6 to the relay drive circuit 5, and the low level relay drive signal SI6 is input. The relay drive circuit 5 switches power supply from the battery 9 to the motor drive circuit 7 by switching the relay 6 to the OFF state, and prohibits driving of the electronic throttle motor M.
 以上の本実施形態の車両用電子制御装置の構成によれば、シリアル通信ではなくPWM信号を主として利用しマイクロコンピュータの診断が行われるので、マイクロコンピュータを迅速かつ確実に診断することができる。 According to the configuration of the vehicle electronic control device of the present embodiment described above, the microcomputer is diagnosed mainly using the PWM signal instead of the serial communication, so that the microcomputer can be diagnosed quickly and reliably.
 なお、本発明は、構成要素の種類、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。 It should be noted that the present invention is not limited to the above-described embodiments in terms of the type, arrangement, number, etc. of the constituent elements, and deviates from the gist of the invention, such as appropriately replacing the constituent elements with those having the same effects. Of course, it can be appropriately changed within the range not to be.
 以上のように、本発明においては、シリアル通信ではなくPWM信号を主として利用しマイクロコンピュータの診断が行われるので、マイクロコンピュータを迅速かつ確実に診断することができる車両用電子制御装置を提供することができるものであり、その汎用普遍的な性格から車両等の電子制御装置に広範に適用され得るものと期待される。 As described above, in the present invention, the diagnosis of the microcomputer is performed mainly using the PWM signal instead of the serial communication. Therefore, the vehicle electronic control device capable of diagnosing the microcomputer quickly and surely is provided. It is expected that it can be widely applied to electronic control devices such as vehicles because of its universal universal character.

Claims (6)

  1.  第1のマイクロコンピュータと、前記第1のマイクロコンピュータとの間で信号の送受信が自在な第2のマイクロコンピュータと、を備える車両用電子制御装置であって、
     前記第1のマイクロコンピュータ及び前記第2のマイクロコンピュータのうち、一方のマイクロコンピュータが他方のマイクロコンピュータにハイレベル及びローレベルの電圧を呈する電圧信号を出力し、前記他方のマイクロコンピュータが前記電圧信号の前記電圧が前記ハイレベルにあるハイ時間を検出すると共に検出した前記ハイ時間に応じた自己診断を実行し、前記自己診断の結果を前記一方のマイクロコンピュータに出力し、前記一方のマイクロコンピュータが前記自己診断の結果に基づいて前記他方のマイクロコンピュータの診断をする車両用電子制御装置。
    A vehicle electronic control device comprising: a first microcomputer; and a second microcomputer capable of transmitting and receiving signals between the first microcomputer,
    Of the first microcomputer and the second microcomputer, one microcomputer outputs a voltage signal representing a high level and a low level voltage to the other microcomputer, and the other microcomputer outputs the voltage signal. Detecting a high time during which the voltage is at the high level and executing a self-diagnosis according to the detected high time, and outputting the result of the self-diagnosis to the one microcomputer, wherein the one microcomputer An electronic control unit for a vehicle that diagnoses the other microcomputer based on the result of the self-diagnosis.
  2.  前記電圧信号が、PWM信号であることを特徴とする請求項1に記載の車両用電子制御装置。 The vehicle electronic control device according to claim 1, wherein the voltage signal is a PWM signal.
  3.  前記他方のマイクロコンピュータは、前記一方のマイクロコンピュータから入力された前記PWM信号の前記ハイ時間及び周期の少なくとも1つに基づいて前記一方のマイクロコンピュータの診断をすることを特徴とする請求項2に記載の車両用電子制御装置。 3. The other microcomputer performs diagnosis of the one microcomputer based on at least one of the high time and the period of the PWM signal input from the one microcomputer. The electronic control apparatus for vehicles as described.
  4.  前記他方のマイクロコンピュータが前記自己診断の結果を前記一方のマイクロコンピュータにPWM信号として出力し、前記一方のマイクロコンピュータはPWM信号のハイ時間及び周期の少なくとも1つに基づいて前記他方のマイクロコンピュータの診断をすることを特徴とする請求項1に記載の車両用電子制御装置。 The other microcomputer outputs the result of the self-diagnosis to the one microcomputer as a PWM signal, and the one microcomputer detects the other microcomputer based on at least one of a high time and a period of the PWM signal. 2. The vehicle electronic control device according to claim 1, wherein diagnosis is performed.
  5.  前記他方のマイクロコンピュータは、前記自己診断の結果を前記一方のマイクロコンピュータに更にシリアル通信を介して出力することを特徴とする請求項1に記載の車両用電子制御装置。 2. The vehicle electronic control device according to claim 1, wherein the other microcomputer further outputs the result of the self-diagnosis to the one microcomputer via serial communication.
  6.  更に、前記他方のマイクロコンピュータが、前記一方のマイクロコンピュータの診断を行い、前記一方のマイクロコンピュータによる前記他方のマイクロコンピュータの診断及び前記他方のマイクロコンピュータによる前記一方のマイクロコンピュータの診断の一方が否定的である場合は、前記車両用電子制御装置の制御対象の動作を禁止する請求項1に記載の車両用電子制御装置。 Further, the other microcomputer diagnoses the one microcomputer, and one of the diagnosis of the other microcomputer by the one microcomputer and the diagnosis of the one microcomputer by the other microcomputer is denied. The vehicular electronic control device according to claim 1, wherein the operation of the control target of the vehicular electronic control device is prohibited when it is a target.
PCT/JP2010/065822 2009-09-17 2010-09-14 Vehicle electronic control device WO2011034052A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/496,605 US9547569B2 (en) 2009-09-17 2010-09-14 Electronic control unit for vehicle
EP10817165.3A EP2479672B1 (en) 2009-09-17 2010-09-14 Vehicle electronic control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009215249A JP5582748B2 (en) 2009-09-17 2009-09-17 Electronic control device for vehicle
JP2009-215249 2009-09-17

Publications (1)

Publication Number Publication Date
WO2011034052A1 true WO2011034052A1 (en) 2011-03-24

Family

ID=43758655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065822 WO2011034052A1 (en) 2009-09-17 2010-09-14 Vehicle electronic control device

Country Status (4)

Country Link
US (1) US9547569B2 (en)
EP (1) EP2479672B1 (en)
JP (1) JP5582748B2 (en)
WO (1) WO2011034052A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081239B2 (en) * 2013-03-13 2017-02-15 日立オートモティブシステムズ株式会社 Control device abnormality monitoring apparatus and abnormality monitoring method
KR101630156B1 (en) * 2014-09-25 2016-06-15 현대자동차주식회사 interface device, Vehicle having the same and method for controlling the same
JP6302852B2 (en) * 2015-01-30 2018-03-28 日立オートモティブシステムズ株式会社 Electronic control device for vehicle
JP6926324B2 (en) * 2018-04-18 2021-08-25 日立Astemo株式会社 Electronic control device
KR20200090514A (en) * 2019-01-21 2020-07-29 주식회사 엘지화학 Battery Manager System, Electronic Control Unit, and Communication method between Battery Manager System and Electronic Control Unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147070A (en) * 2003-11-19 2005-06-09 Hitachi Ltd Control device for motor-driven throttle valve
JP2009033909A (en) * 2007-07-30 2009-02-12 Hitachi Ltd Power converter in set parallel configuration and elevator system using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299435A (en) * 1986-06-19 1987-12-26 Isuzu Motors Ltd Control device for vehicle with malfunction detecting device
JPH04316136A (en) * 1991-04-16 1992-11-06 Nec Corp Reset circuit for semiconductor integrated circuit
JP3524936B2 (en) * 1992-01-15 2004-05-10 キャタピラー インコーポレイテッド Redundant control device for hydraulically driven vehicles
JPH06119210A (en) * 1992-10-08 1994-04-28 Sumitomo Electric Ind Ltd Watch dog mutual monitoring circuit for microcomputer
DE19643410B4 (en) * 1996-10-21 2005-08-25 Robert Bosch Gmbh A method of decoding a digital signal and using it in a bus system
JP3152200B2 (en) * 1998-02-06 2001-04-03 株式会社豊田自動織機製作所 Solenoid valve control device for industrial vehicles
US7040435B1 (en) * 1999-11-17 2006-05-09 Vehicle Enhancement Systems Inc. Method for data communication between a vehicle and a remote terminal
US6564131B2 (en) * 2001-08-01 2003-05-13 Delphi Technologies, Inc. Four-wheel steering algorithm with functional and diagnostic states and modes
JP2004259137A (en) 2003-02-27 2004-09-16 Denso Corp Electronic control device
JP2007028411A (en) * 2005-07-20 2007-02-01 Nissan Motor Co Ltd Network diagnosis apparatus and method
US20080033609A1 (en) * 2006-08-04 2008-02-07 Ramin Razavi Automotive diagnostic and tuning system
DE102007034251B4 (en) * 2007-07-23 2013-12-05 Continental Automotive Gmbh Fault analysis method for a lambda probe, engine control for an internal combustion engine for carrying out the failure analysis method and program memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147070A (en) * 2003-11-19 2005-06-09 Hitachi Ltd Control device for motor-driven throttle valve
JP2009033909A (en) * 2007-07-30 2009-02-12 Hitachi Ltd Power converter in set parallel configuration and elevator system using the same

Also Published As

Publication number Publication date
EP2479672A4 (en) 2016-10-12
JP2011065402A (en) 2011-03-31
JP5582748B2 (en) 2014-09-03
EP2479672B1 (en) 2019-05-08
US9547569B2 (en) 2017-01-17
EP2479672A1 (en) 2012-07-25
US20120173071A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5598499B2 (en) Battery monitoring device
JP5853099B2 (en) Battery control device
US9251632B2 (en) Vehicle diagnostic system
WO2011034052A1 (en) Vehicle electronic control device
US11936005B2 (en) Power supply device
US11820444B2 (en) Control device for vehicle-mounted equipment
US20110130900A1 (en) Actuation System for a Drive Unit of a Motor Vehicle
US11897342B2 (en) Electronic control apparatus
KR101039926B1 (en) Control system for fault diagnosis in vehicle
JP6344302B2 (en) Battery controller
KR101713572B1 (en) The automobile
JP2015112962A (en) Information processing apparatus
JP2021013135A (en) Electronic control device for vehicle
JP4747683B2 (en) On-vehicle electronic control system, fault diagnosis method thereof, and on-vehicle electronic control device
JP2016091162A (en) Electronic control device
WO2022201596A1 (en) In-vehicle control device
JP6793861B1 (en) Abnormality diagnosis system and abnormality diagnosis method
US20230168637A1 (en) Electronic control apparatus
JPH11117800A (en) On-vehicle controller and fault diagnosis method using it
EP4299387A1 (en) Power system
JP6647188B2 (en) Transmission control device
JP5970563B2 (en) Battery control device
JP2019075048A (en) Communication device
JP2018079737A (en) Electronic controller and diagnosis method for the same
CN111016831A (en) Vehicle energy control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13496605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010817165

Country of ref document: EP