WO2019080391A1 - 一种门机结构 - Google Patents

一种门机结构 Download PDF

Info

Publication number
WO2019080391A1
WO2019080391A1 PCT/CN2018/074251 CN2018074251W WO2019080391A1 WO 2019080391 A1 WO2019080391 A1 WO 2019080391A1 CN 2018074251 W CN2018074251 W CN 2018074251W WO 2019080391 A1 WO2019080391 A1 WO 2019080391A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
transmission
magnetic pole
transmission structure
worm
Prior art date
Application number
PCT/CN2018/074251
Other languages
English (en)
French (fr)
Inventor
邵文英
Original Assignee
邵文英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邵文英 filed Critical 邵文英
Priority to AU2018356896A priority Critical patent/AU2018356896A1/en
Publication of WO2019080391A1 publication Critical patent/WO2019080391A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions

Definitions

  • the invention relates to the field of door machines, in particular to a door machine structure.
  • the door machine is an important component in the electric door. It is used to drive the door of the electric door to open and close.
  • the door machine includes a limit structure.
  • the limit structure of the door machine is used to control the door to the upper limit and The lower limit automatically stops.
  • mechanical limit structures or electronic limit structures are usually used in door machines.
  • the mechanical limit structure is to set two mechanical limit switches in the door machine, and the two mechanical limit switches are used to realize the limit, but the mechanical limit structure is troublesome to install, and the soft stop and the current impact are not serious. It will seriously affect the service life of electric doors and has been phased out.
  • the electronic limit structure can solve this shortcoming of the mechanical limit structure.
  • the electronic limit structure is realized by setting an encoder in the door machine, and the upper limit and the lower limit can be recognized in advance by the count value of the encoder. To achieve soft start and soft stop, the encoders in the electronic limit structure are mainly divided into two types: incremental encoder and absolute encoder. Incremental encoders include Hall-type incremental encoders and photoelectric incremental encoders.
  • This type of encoder will stop working in the event of sudden power failure, sudden separation of the motor clutch, and manual door opening and closing operations.
  • the position and the original memory position are deviated, they cannot be automatically retrieved, which is prone to errors, low reliability, and narrow application range. Therefore, the more commonly used is an absolute value encoder, the absolute value encoder has a photoelectric absolute value encoder and a multi-Hall combined absolute value encoder, etc., the memory of this type of encoder can always be synchronized with the position of the door body. High reliability and wide application range.
  • the structure of the conventional absolute encoder is more complicated and difficult to implement, and the cost is high. At the same time, some absolute encoders may have low resolution or poor contact during use, which may affect the use effect or service life.
  • a door machine structure for driving a door body comprising: a drive motor, a transmission structure and an angle sensor, the transmission structure is connected with an output shaft of the drive motor, and the transmission structure is also connected with the rotating magnetic pole of the angle sensor, The rotating magnetic pole rotates synchronously with the output shaft of the driving motor under the transmission of the transmission structure, and the transmission ratio of the transmission structure matches the maximum stroke of the door body and the working angle range of the rotating magnetic pole of the angle sensor, and the maximum stroke of the door body is the door body.
  • the running stroke between the upper limit position and the lower limit position, the working angle range of the rotating magnetic pole is within the maximum rotation range of the rotating magnetic pole, and the working angle range of the rotating magnetic pole is the range of the rotating angle of the rotating magnetic pole during the operation of the door body;
  • the upper limit position is the maximum position that the door body can reach when the door body is driven by the door machine
  • the lower limit position is the maximum position that the door body can reach when the door body is driven under the driving of the door machine.
  • the door machine further comprises a drive chuck, wherein the drive chuck is provided with a ring of internal teeth of the chuck, the output shaft of the drive motor is connected with a motor gear, the motor gear is coupled with the internal teeth of the chuck, and the transmission structure includes a transmission.
  • the gear, the transmission gear is meshed with the internal teeth of the chuck, and the transmission structure is connected to the output shaft of the drive motor through the drive chuck.
  • the transmission structure is a worm and worm gear structure, and the transmission structure further comprises a worm and a worm wheel.
  • the rotating magnetic pole of the angle sensor is connected with the central shaft of the worm wheel, the worm is meshed with the worm wheel, and one end of the worm is fixed on the output shaft of the driving motor.
  • the transmission structure is a worm and worm gear structure, and the transmission structure further comprises a worm and a worm wheel.
  • the rotating magnetic pole of the angle sensor is connected with the central shaft of the worm wheel, the worm is meshed with the worm wheel, and one end of the worm is fixed on the central axis of the transmission gear.
  • the worm wheel comprises a worm wheel body and a first overrunning clutch slider, the worm wheel body is meshed with the worm, the worm wheel body is fixed with the first overrunning clutch slider, and the first overrunning clutch slider and the worm wheel body are The frictional surface is included, and the rotating magnetic pole of the angle sensor is fixed on the central axis of the first overrunning clutch slider and rotates synchronously with the first overrunning clutch slider.
  • the transmission structure is a gear transmission structure
  • the gear transmission structure includes a first gear and a second gear
  • the first gear and the second gear are directly or indirectly coupled together
  • the first gear is fixed on the output shaft of the drive motor and Rotating in synchronism with the output shaft of the drive motor, the rotational magnetic pole of the angle sensor is fixed to the central axis of the second gear.
  • the transmission structure is a gear transmission structure
  • the gear transmission structure includes a first gear and a second gear
  • the first gear and the second gear are directly or indirectly coupled together
  • the first gear is connected to the central axis of the transmission gear
  • the angle The rotating magnetic pole of the sensor is fixed to the central axis of the second gear.
  • the first gear comprises a gear body and a second overrunning clutch slider
  • the gear body is fixed with the second overrunning clutch slider
  • the friction surface is included between the gear body and the second overrunning clutch slider
  • the body and the second gear are directly or indirectly coupled together, and the second overrunning clutch slider is fixed to the output shaft of the drive motor or to the central shaft of the transmission gear.
  • the door machine disclosed in the present application adopts an angle sensor to realize an electronic limit, and a soft stop can be realized.
  • the angle sensor since the angle sensor is always synchronized with the door machine and the door body, even if there is a power outage or the like, the rotation angle sensed by the angle sensor is always synchronized with the door body after the power is re-powered, and the limit can be accurately performed.
  • the angle sensor is non-contact, with long service life, high precision and wide application temperature.
  • FIG. 1 is a structural view of a door machine disclosed in the present application.
  • FIG 2 is another structural view of the door machine disclosed in the present application.
  • FIG 3 is another structural view of the door machine disclosed in the present application.
  • FIG. 4 is a block diagram of still another structure of the door machine disclosed in the present application.
  • Figure 5 is a schematic view showing the connection of the gear body and the second overrunning clutch slider in the door machine.
  • the present application discloses a door machine structure for driving the door body of the electric door to open and close.
  • the manner in which the door machine drives the door body to open and close includes, but is not limited to, driving the door body vertically.
  • the door machine includes a limit structure, the limit structure is an electronic limit structure, or a mechanical and electronic hybrid limit structure, please refer to the explosion diagram shown in FIG. 1 to FIG. 4, the door machine includes at least Drive motor 10, transmission structure 20 and angle sensor 30.
  • the transmission structure 20 is a variety of transmission structures such as a worm gear structure, a gear transmission structure, and a planetary reducer structure.
  • the structure of the transmission structure 20 is different, and/or the structure of the door machine is different when the transmission structure 20 is different from the output shaft 11 of the drive motor:
  • the transmission structure 20 is a worm worm gear structure, and the transmission structure 20 includes at least a worm 21 and a worm wheel 22, and the worm 21 and the worm wheel 22 are engaged.
  • the transmission structure 20 is connected to the output shaft of the drive motor 10 mainly in the following two ways:
  • the transmission structure 20 is directly connected to the output shaft 11 of the drive motor, specifically, the end of the worm 21 in the transmission structure 20 is fixed to the output of the drive motor.
  • the output shaft 11 of the drive motor rotates to drive the transmission structure 20 connected thereto to rotate synchronously.
  • the door machine further includes a drive chuck 40, and the transmission structure 20 is connected to the output shaft of the drive motor through the drive chuck 40 (not shown in FIG. 2
  • the output shaft of the drive motor is shown.
  • the drive chuck 40 is provided with a ring of internal teeth 41.
  • the output shaft of the drive motor is connected with a motor gear 12, and the motor gear 12 is coupled with the internal teeth 41 of the chuck.
  • the transmission structure 20 further includes a transmission gear 25 that meshes with the internal teeth 41 of the chuck, and one end of the worm 21 is also fixed on the central shaft of the transmission gear 25.
  • the drive motor 10 is working.
  • the output shaft of the drive motor 10 drives the motor gear 12 to rotate
  • the motor gear 12 drives the drive chuck 40 to rotate synchronously
  • the drive chuck 40 drives the transmission gear 25 to drive the entire transmission structure 20 to rotate synchronously.
  • the transmission structure 20 is a gear transmission structure, and the transmission structure 20 includes at least a first gear 26 and a second gear 27, a first gear 26 and a second gear. 27: Directly engaging the teeth to realize the first-stage transmission, or the first gear 26 and the second gear 27 are indirectly meshed together by a plurality of other gears to realize multi-stage gear transmission, so that the transmission structure has a suitable transmission ratio, such as 3 and 4 show schematic views of the first gear 26 and the second gear 27 being directly toothed together.
  • the transmission structure 20 is connected to the output shaft 11 of the drive motor 10 mainly in the following two ways:
  • the transmission structure 20 is directly connected to the output shaft 11 of the drive motor 10, specifically, the first gear 26 in the transmission structure 20 is fixed to the drive motor 10.
  • the output shaft 11 of the drive motor rotates, and the first gear 26 is driven to drive the entire transmission structure 20 to rotate synchronously.
  • FIG. 4 further includes a drive chuck 40, and the transmission structure 20 is connected to the output shaft of the drive motor 10 through the drive chuck 40 (in FIG. 4
  • the output shaft of the drive motor 10 is not shown.
  • the drive chuck 40 is provided with a ring of internal teeth 41.
  • the output shaft of the drive motor 10 is connected with a motor gear 12, a motor gear 12 and a chuck inner tooth 41.
  • the gearing is also included in the transmission structure 20, and the transmission gear 25 is meshed with the internal teeth 41 of the chuck.
  • the first gear 26 of the transmission structure 20 is connected to the central axis of the transmission gear 25.
  • the output shaft of the drive motor 10 drives the motor gear 12 to rotate, and the motor gear 12 drives the drive chuck 40 to rotate synchronously.
  • the chuck 40 drives the transmission gear 25 to drive the entire transmission structure 20 to rotate synchronously.
  • the angle sensor 30 is used to implement an electronic limit function.
  • the angle sensor 30 can be a Hall angle sensor or any other angle sensor.
  • the transmission structure 20 is connected to the rotating magnetic pole of the angle sensor 30. Specifically, when the transmission structure 20 is a worm gear structure. When the rotating magnetic pole of the angle sensor 30 is connected to the central axis of the worm wheel 22, as shown in FIGS. 1 and 2; when the transmission structure 20 is a gear transmission structure, the rotating magnetic pole of the angle sensor 30 is connected to the central axis of the second gear 27. , as shown in Figure 3 and Figure 4.
  • the rotating magnetic pole of the angle sensor 30 is always rotated synchronously with the output shaft of the driving motor 10 under the transmission of the transmission structure 20, so that the position of the rotating magnetic pole is always synchronized with the position of the door body driven by the door machine, and the door body is driven by the door machine.
  • the rotating magnetic pole of the angle sensor 30 has a maximum rotation range, and the maximum rotation range represents a range of angles that the angle sensor can measure.
  • the maximum rotation range is an inherent property of the angle sensor, which is usually determined by the model of the angle sensor, such as a common single.
  • the maximum rotation range of the circle angle sensor is 0 to 360 degrees
  • the maximum rotation range of the multi-mode angle sensor may be 0 to 180 degrees
  • the maximum rotation range of the multi-turn angle sensor may be 0 to 720 degrees, which is not limited in this application.
  • the rotating magnetic pole of the angle sensor 30 needs to operate within the maximum rotation range, so it is necessary to properly configure the transmission ratio of the transmission structure 20 so that the angle of rotation of the rotating magnetic pole during the operation of the door body is In the maximum range of rotation, the gear ratio is usually large, such as a gear ratio of 45:1 or 40:1.
  • the specific ratio of the transmission ratio can be configured according to actual needs, and the transmission ratio of the transmission structure 20 is matched with the maximum stroke of the door body and the working angle range of the rotating magnetic pole of the angle sensor 30, and the actual configured transmission ratio makes the door body run upward.
  • the rotating magnetic pole rotates to the lower limit of the working angle range, and when the door body runs to the lower limit position, the rotating magnetic pole rotates to the upper limit of the working angle range; or, the configured gear ratio causes the door body to run to the upper limit position, the rotating magnetic pole Rotate to the upper limit of the working angle range, and when the door body moves to the lower limit position, the rotating magnetic pole rotates to the lower limit of the working angle range.
  • the upper and lower limits of the rotating magnetic pole are within the maximum rotation range of the rotating magnetic pole, and the angular range between the upper and lower limits is the working angle range of the rotating magnetic pole.
  • the maximum rotating range of the rotating magnetic pole is 0 to 360 degrees, you can set the working angle range of the rotating magnetic pole to 0 to 270 degrees, within the maximum rotation range.
  • the transmission structure 20 of the present application further includes an overrunning clutch slider.
  • the worm wheel 22 includes a worm wheel body 23 and a first overrunning clutch slider 24, the worm wheel body 23 is engaged with the worm 21, and the worm wheel body 23 and the first overrunning clutch slider 24 is fixed together, and the first overrunning clutch slider 24 and the worm wheel body 23 include a friction surface with serrations.
  • the rotating magnetic pole On the central axis of the body 23, the rotating magnetic pole is fixed on the central axis of the first overrunning clutch slider 24, so that the rotating magnetic pole is not directly driven by the worm wheel body 23, but the worm wheel body 23 drives the first super
  • the limited clutch slider 24 rotates synchronously, and then the first overrunning clutch slider 24 drives the rotating magnetic pole to rotate synchronously.
  • the first gear 26 includes a gear body 28 and a second overrunning clutch slider 29, a schematic view of which can be referred to FIG. 5, and the gear body 28 and the second overrunning clutch slider 29 are fixed.
  • the frictional surface is included between the gear body 28 and the second overrunning clutch slide 29, and the gear body 28 and the second gear 27 are directly or indirectly meshed together while the second overrunning clutch slider 29 is fixed to the drive.
  • the output shaft 11 of the motor 10 is on the shaft.
  • the first gear 26 also includes a gear body 28 and a second overrunning clutch slider 29, the gear body 28 being fixed to the second overrunning clutch slider 29, and the gear body 28 A friction surface is included between the second overrunning clutch slider 29, and the gear body 28 and the second gear 27 are directly or indirectly coupled together.
  • the overrunning clutch slider is arranged such that when the first or lower limit of the door exceeds the upper and lower limits of the rotation of the rotating magnetic pole during the first installation, the first overrunning clutch slider 24 or the second overrunning clutch slider 29 slips, so that the rotating magnetic pole The upper and lower limits are not exceeded, and the angle sensor 30 is not damaged, and the angle sensor 30 is adaptively operated in synchronization with the door body.
  • the actual door machine also includes other components than the above-mentioned components, which are indispensable parts of the door machine, and the present application applies to these components. Do not repeat them one by one.
  • the limit setting is performed, and the door body drives the door body to slide up and down in the vertical direction, and the maximum rotation range and the working angle range of the rotating magnetic pole of the angle sensor 30 are both 0 to 360 degrees.
  • the rotating magnetic pole is rotated to 360 degrees, and when the door body is moved to the lower limit position, the rotating magnetic pole is rotated to 0 degree as an example.
  • the limit setting is completed, the user can perform normal door opening and closing operations. During the normal door opening process of the door body, the user can control the door machine to drive the door body to rise and fall through the remote controller and the wall switch, and the door body is at the upper limit and the lower limit.
  • the angle sensor 30 When running between the positions, the angle sensor 30 senses a rotation angle corresponding to the position of the door body. When the angle sensor 30 senses that the rotation angle reaches 0 degrees, the door machine recognizes the lower limit position in advance to control the drive motor 10 to stop driving. When the sense of the rotation angle reaches 360 degrees, the upper limit position is recognized in advance to control the drive motor 10 to stop driving, achieving a soft stop.
  • the angle sensor 30 is always synchronized with the door machine and the door body, even if there is a power outage or the like, the rotation angle sensed by the angle sensor 30 is always synchronized with the door body position after re-powering, and the limit can still be accurately performed;
  • the angle sensor is non-contact type, has a long service life, a simple structure and a wide application temperature.

Landscapes

  • Power-Operated Mechanisms For Wings (AREA)

Abstract

一种门机结构,其包括驱动马达(10)、传动结构(20)和角度传感器(30)。该门机可以实现软停止,同时在停电等情况下不会丢失同步位置,可靠性更高,且使用寿命较长、精度较高。

Description

一种门机结构 技术领域
本发明涉及门机领域,尤其是一种门机结构。
背景技术
门机是电动门中的重要组成部件,其用于驱动电动门的门体开启和关闭,门机中都包括限位结构,门机的限位结构用于控制门体在运行到上限位以及下限位时自动停止。目前门机中通常采用机械式限位结构或电子式限位结构。
机械式限位结构是在门机中设置两个机械限位开关,通过这两个机械限位开关来实现限位,但机械式限位结构安装麻烦,且无法实现软停止、电流冲击比较严重,会严重影响电动门的使用寿命,已经被逐步淘汰。电子式限位结构可以解决机械式限位结构的这一缺点,电子式限位结构是通过在门机中设置编码器来实现的,通过编码器的计数值可以提前识别上限位和下限位从而实现软启动和软停止,电子式限位结构中的编码器主要分为增量型编码器和绝对值编码器两类。增量型编码器有霍尔式增量型编码器以及光电式增量型编码器等,该类型编码器在突然停电、马达离合器突然分离以及人工开关门操作等情况下会停止工作,门的位置和原记忆位置出现偏差时无法自动找回,容易出现错误,可靠性较低,应用范围较窄。因此更为常用的是绝对值编码器,绝对值编码器有光电式绝对值编码器以及多霍尔组合式绝对值编码器等,该类型编码器的记忆始终可以和门体的位置实现同步,可靠性较高,应用范围较广。
技术问题
常规的绝对值编码器的结构较复杂不易实现、成本较高,同时某些绝对值编码器在使用过程中会出现分辨率低或接触不良的情况,影响使用效果或使用寿命。
技术解决方案
一种门机结构,该门机用于驱动门体,该门机包括:驱动马达、传动结构和角度传感器,传动结构与驱动马达的输出轴相连,传动结构还与角度传感器的旋转磁极相连,旋转磁极在传动结构的传动作用下与驱动马达的输出轴同步转动,传动结构的传动比与门体的最大行程和角度传感器的旋转磁极的工作角度范围相匹配,门体的最大行程是门体的上限位与下限位之间的运行行程,旋转磁极的工作角度范围在旋转磁极的最大旋转范围内,旋转磁极的工作角度范围是旋转磁极在门体的运行过程中的旋转角度范围;
其中,上限位是门体在门机的驱动下打开时最大所能达到的位置,下限位是门体在门机的驱动下关闭时最大所能达到的位置。
优选的,门机还包括传动卡盘,传动卡盘内设置有一圈卡盘内齿,驱动马达的输出轴上连接有马达齿轮,马达齿轮与卡盘内齿相齿合,传动结构中包括传动齿轮,传动齿轮与卡盘内齿相齿合,传动结构通过传动卡盘与驱动马达的输出轴相连。
优选的,传动结构为蜗杆蜗轮结构,传动结构中还包括蜗杆和蜗轮,角度传感器的旋转磁极与蜗轮的中心轴相连,蜗杆与蜗轮相齿合,蜗杆的一端固定在驱动马达的输出轴上。
优选的,传动结构为蜗杆蜗轮结构,传动结构中还包括蜗杆和蜗轮,角度传感器的旋转磁极与蜗轮的中心轴相连,蜗杆与蜗轮相齿合,蜗杆的一端固定在传动齿轮的中心轴上。
优选的,蜗轮包括蜗轮本体和第一超限离合器滑块,蜗轮本体与蜗杆相齿合,蜗轮本体与第一超限离合器滑块固定在一起,且第一超限离合器滑块与蜗轮本体之间包括摩擦面,角度传感器的旋转磁极固定在第一超限离合器滑块的中心轴上并与第一超限离合器滑块同步转动。
优选的,传动结构为齿轮传动结构,齿轮传动结构包括第一齿轮和第二齿轮,第一齿轮和第二齿轮直接或间接地齿合在一起,第一齿轮固定在驱动马达的输出轴上并与驱动马达的输出轴同步转动,角度传感器的旋转磁极固定在第二齿轮的中心轴上。
优选的,传动结构为齿轮传动结构,齿轮传动结构包括第一齿轮和第二齿轮,第一齿轮和第二齿轮直接或间接地齿合在一起,第一齿轮与传动齿轮的中心轴相连,角度传感器的旋转磁极固定在第二齿轮的中心轴上。
优选的,第一齿轮包括齿轮本体和第二超限离合器滑块,齿轮本体与第二超限离合器滑块固定在一起,且齿轮本体与第二超限离合器滑块之间包括摩擦面,齿轮本体和第二齿轮直接或间接地齿合在一起,第二超限离合器滑块固定在驱动马达的输出轴上或者与传动齿轮的中心轴相连。
有益效果
本申请公开的门机采用角度传感器来实现电子式限位,可以实现软停止。同时,由于角度传感器始终与门机和门体同步,因此即使出现停电等情况,在重新得电后角度传感器所感应的旋转角度始终与门体同步,仍然可以准确进行限位。另外,相比于现有的电子式限位所采用的编码器,角度传感器是非接触式的,使用寿命长、精度高、适用温度也较广。
附图说明
图1是本申请公开的门机的一种结构图。
图2是本申请公开的门机的另一种结构图。
图3是本申请公开的门机的另一种结构图。
图4是本申请公开的门机的又一种结构图。
图5是门机中的齿轮本体与第二超限离合器滑块的连接示意图。
本发明的实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
本申请公开了一种门机结构,该门机用于驱动电动门的门体开启和关闭,在本申请中,门机驱动门体开启和关闭的方式包括但不限于:驱动门体沿垂直方向上下滑动/平开/翻摆/伸缩等,以及驱动门体沿水平方向左右滑动/平开/翻摆/伸缩等,本申请对此不做限定。该门机中包括限位结构,其限位结构是电子式限位结构,或者是机械式和电子式混合限位结构,请参考图1-图4示出的爆炸图,该门机至少包括:驱动马达10、传动结构20和角度传感器30。
可选的,传动结构20为蜗杆蜗轮结构、齿轮传动结构以及行星减速机结构等各类传动结构。传动结构20的结构不同,和/或,传动结构20与驱动马达的输出轴11的连接方式不同时,门机的结构也不同:
一、在第一种情况中,请参考图1和图2,传动结构20为蜗杆蜗轮结构,则传动结构20中至少包括蜗杆21和蜗轮22,蜗杆21与蜗轮22相齿合。在这种情况中,传动结构20与驱动马达10的输出轴相连主要包括以下两种方式:
1、在第一种实现方式中,请参考图1所示的爆炸图,传动结构20直接连接驱动马达的输出轴11,具体为将传动结构20中的蜗杆21的一端固定在驱动马达的输出轴11上,则驱动马达10在工作时,驱动马达的输出轴11转动,带动与其相连的传动结构20同步转动。
2、在第二种实现方式中,请参考图2所示的爆炸图,该门机中还包括传动卡盘40,传动结构20通过传动卡盘40连接驱动马达的输出轴(图2中未示出驱动马达的输出轴),具体为:传动卡盘40内设置有一圈卡盘内齿41,驱动马达的输出轴上连接有马达齿轮12,马达齿轮12与卡盘内齿41相齿合。传动结构20中还包括传动齿轮25,传动齿轮25与卡盘内齿41相齿合,蜗杆21的一端还固定在传动齿轮25的中心轴上,在这种连接方式中,驱动马达10在工作时,驱动马达10的输出轴带动马达齿轮12转动,马达齿轮12带动传动卡盘40同步转动,传动卡盘40通过带动传动齿轮25来带动整个传动结构20同步转动。
二、在第二种情况中,请参考图3和图4,传动结构20为齿轮传动结构,则传动结构20中至少包括第一齿轮26和第二齿轮27,第一齿轮26和第二齿轮27直接齿合在一起实现一级传动,或者,第一齿轮26和第二齿轮27通过其他若干个齿轮间接地齿合在一起实现多级齿轮传动,从而使得传动结构有合适的传动比,如图3和图4示出了第一齿轮26和第二齿轮27直接齿合在一起的示意图。在这种情况中,传动结构20与驱动马达10的输出轴11相连主要包括以下两种方式:
1、在第一种实现方式中,请参考图3所示的爆炸图,传动结构20直接连接驱动马达10的输出轴11,具体为将传动结构20中的第一齿轮26固定在驱动马达10的输出轴11上,则驱动马达10在工作时,驱动马达的输出轴11转动,通过带动第一齿轮26来带动整个传动结构20同步转动。
2、在第二种实现方式中,请参考图4所示的爆炸图,该门机中还包括传动卡盘40,传动结构20通过传动卡盘40连接驱动马达10的输出轴(图4中未示出驱动马达10的输出轴),具体为:传动卡盘40内设置有一圈卡盘内齿41,驱动马达10的输出轴上连接有马达齿轮12,马达齿轮12与卡盘内齿41相齿合,传动结构20中也包括传动齿轮25,传动齿轮25与卡盘内齿41相齿合。传动结构20中的第一齿轮26与传动齿轮25的中心轴相连,则驱动马达10在工作时,驱动马达10的输出轴带动马达齿轮12转动,马达齿轮12带动传动卡盘40同步转动,传动卡盘40通过带动传动齿轮25来带动整个传动结构20同步转动。
角度传感器30用于实现电子式限位功能,角度传感器30可以是霍尔角度传感器或任意其他角度传感器,传动结构20与角度传感器30的旋转磁极相连,具体为:当传动结构20为蜗轮蜗杆结构时,角度传感器30的旋转磁极与蜗轮22的中心轴相连,如图1和图2所示;当传动结构20为齿轮传动结构时,角度传感器30的旋转磁极与第二齿轮27的中心轴相连,如图3和图4所示。角度传感器30的旋转磁极在传动结构20的传动作用下始终与驱动马达10的输出轴同步转动,使得旋转磁极的位置始终与门机驱动的门体的位置相同步,门体在门机的驱动下打开时最多达到上限位、在门机的驱动下关闭时最多达到下限位,因此门体运行的最大行程即为上限位与下限位之间的运行行程。但角度传感器30的旋转磁极存在一个最大旋转范围,最大旋转范围表示角度传感器所能测量的角度的范围,最大旋转范围是角度传感器的固有属性,通常由角度传感器的型号来决定,比如常见的单圈角度传感器的最大旋转范围为0~360度,多模角度传感器的最大旋转范围可以是0~180度,多圈角度传感器的最大旋转范围可以是0~720度,本申请对此不做限定。为了保证角度传感器30的正常工作,角度传感器30的旋转磁极需要在该最大旋转范围内工作,因此需要合理配置传动结构20的传动比,使得旋转磁极在门体运行的过程中所旋转的角度在该最大旋转范围内,该传动比通常较大,比如实际会采用45:1或者40:1之类的传动比。具体的传动比的比值可以根据实际需要进行配置,传动结构20的传动比与门体的最大行程和角度传感器30的旋转磁极的工作角度范围相匹配,实际所配置的传动比使得门体运行至上限位时,旋转磁极旋转到工作角度范围的下限,门体运行至下限位时,旋转磁极旋转到工作角度范围的上限;或者,所配置的传动比使得门体运行至上限位时,旋转磁极旋转到工作角度范围的上限,门体运行至下限位时,旋转磁极旋转至工作角度范围的下限。旋转磁极所能旋转的上下限在旋转磁极的最大旋转范围内,上限与下限之间的角度范围即为旋转磁极的工作角度范围,比如在使用单圈角度传感器时,旋转磁极的最大旋转范围为0~360度,则可以将旋转磁极的工作角度范围设置为0~270度,在最大旋转范围内。
如上所述,由于旋转磁极的旋转角度存在上下限,因此为了避免在首次安装时,门体上限或下限超出旋转磁极的上下限度,本申请的传动结构20中还包括超限离合器滑块,在图1和图2示出的蜗轮蜗杆结构中,蜗轮22包括蜗轮本体23和第一超限离合器滑块24,蜗轮本体23与蜗杆21相齿合,蜗轮本体23与第一超限离合器滑块24固定在一起,且第一超限离合器滑块24与蜗轮本体23之间包括带细齿的摩擦面,在将旋转磁极与蜗轮22的中心轴相连时,并不是直接将旋转磁极固定在蜗轮本体23的中心轴上,而是将旋转磁极固定在第一超限离合器滑块24的中心轴上,使得并不是由蜗轮本体23直接带动旋转磁极同步转动,而是蜗轮本体23带动第一超限离合器滑块24同步转动,再由第一超限离合器滑块24带动旋转磁极同步转动。在图3示出的齿轮传动结构中,第一齿轮26包括齿轮本体28和第二超限离合器滑块29,其示意图可以参考图5,齿轮本体28与第二超限离合器滑块29固定在一起,且齿轮本体28与第二超限离合器滑块29之间包括摩擦面,齿轮本体28和第二齿轮27直接或间接地齿合在一起,同时第二超限离合器滑块29固定在驱动马达10的输出轴11上。在图4示出的齿轮传动结构中,第一齿轮26也包括齿轮本体28和第二超限离合器滑块29,齿轮本体28与第二超限离合器滑块29固定在一起,且齿轮本体28与第二超限离合器滑块29之间包括摩擦面,齿轮本体28和第二齿轮27直接或间接地齿合在一起,在将第一齿轮26与传动齿轮25的中心轴相连时,并不是将齿轮本体28与传动齿轮25相连,而是将第二超限离合器滑块29与传动齿轮25的中心轴固定在一起,使得并不是由传动齿轮25直接带动齿轮本体28以及第二齿轮27和旋转磁极转动,而是传动齿轮25带动第二超限离合器滑块29同步转动,再由第二超限离合器滑块29带动齿轮本体28从而带动第二齿轮27以及旋转磁极同步转动。超限离合器滑块的设置使得在首次安装时,若门体上限或下限超出旋转磁极旋转的上下限,则第一超限离合器滑块24或第二超限离合器滑块29打滑,使得旋转磁极不会超过上下限,不至于损坏角度传感器30,同时让角度传感器30自适应的与门体同步工作。
另外需要说明的是,如图1-图4所示,实际门机中还包括除上述各个部件之外的其他部件,这些部件都是组成门机的不可或缺的部分,本申请对这些部件不作一一赘述。
本申请公开的门机结构的工作原理为:
在将门机中的各个结构安装在一起后,进行限位设置,以门机驱动门体沿垂直方向上下滑动,角度传感器30的旋转磁极的最大旋转范围和工作角度范围均为0~360度,且门体运行至上限位时,旋转磁极旋转到360度,当门体运行至下限位时,旋转磁极旋转至0度为例。限位设置完成之后,用户可以进行正常开关门操作,在门体的正常开关门过程中,用户可以通过遥控器和墙面开关控制门机驱动门体上升和下降,门体在上限位与下限位之间运行时,角度传感器30感应到与门体的位置所对应的旋转角度,当角度传感器30感应到旋转角度到达0度时,门机提前识别到下限位从而控制驱动马达10停止驱动,当感应到旋转角度到达360度时,提前识别到上限位从而控制驱动马达10停止驱动,实现软停止。同时,由于角度传感器30始终与门机和门体同步,因此即使出现停电等情况,在重新得电后角度传感器30所感应的旋转角度始终与门体位置同步,仍然可以准确进行限位;另外,相比于接触式的应用型编码器,角度传感器是非接触式的,使用寿命长,结构更简洁,适用温度也较广。
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (8)

  1. 一种门机结构,其特征在于,所述门机用于驱动门体,所述门机包括:驱动马达、传动结构和角度传感器,所述传动结构与所述驱动马达的输出轴相连,所述传动结构还与所述角度传感器的旋转磁极相连,所述旋转磁极在所述传动结构的传动作用下与所述驱动马达的输出轴同步转动,所述传动结构的传动比与所述门体的最大行程和所述角度传感器的旋转磁极的工作角度范围相匹配,所述门体的最大行程是所述门体的上限位与下限位之间的运行行程,所述旋转磁极的工作角度范围在所述旋转磁极的最大旋转范围内,所述旋转磁极的工作角度范围是所述旋转磁极在所述门体的运行过程中的旋转角度范围;
    其中,所述上限位是所述门体在所述门机的驱动下打开时最大所能达到的位置,所述下限位是所述门体在所述门机的驱动下关闭时最大所能达到的位置。
  2. 根据权利要求1所述的门机结构,其特征在于,所述门机还包括传动卡盘,所述传动卡盘内设置有一圈卡盘内齿,所述驱动马达的输出轴上连接有马达齿轮,所述马达齿轮与所述卡盘内齿相齿合,所述传动结构中包括传动齿轮,所述传动齿轮与所述卡盘内齿相齿合,所述传动结构通过所述传动卡盘与所述驱动马达的输出轴相连。
  3. 根据权利要求1所述的门机结构,其特征在于,所述传动结构为蜗杆蜗轮结构,所述传动结构中还包括蜗杆和蜗轮,所述角度传感器的旋转磁极与所述蜗轮的中心轴相连,所述蜗杆与所述蜗轮相齿合,所述蜗杆的一端固定在所述驱动马达的输出轴上。
  4. 根据权利要求2所述的门机结构,其特征在于,所述传动结构为蜗杆蜗轮结构,所述传动结构中还包括蜗杆和蜗轮,所述角度传感器的旋转磁极与所述蜗轮的中心轴相连,所述蜗杆与所述蜗轮相齿合,所述蜗杆的一端固定在所述传动齿轮的中心轴上。
  5. 根据权利要求3或4所述的门机结构,其特征在于,所述蜗轮包括蜗轮本体和第一超限离合器滑块,所述蜗轮本体与所述蜗杆相齿合,所述蜗轮本体与所述第一超限离合器滑块固定在一起,且所述第一超限离合器滑块与所述蜗轮本体之间包括摩擦面,所述角度传感器的旋转磁极固定在所述第一超限离合器滑块的中心轴上并与所述第一超限离合器滑块同步转动。
  6. 根据权利要求1所述的门机结构,其特征在于,所述传动结构为齿轮传动结构,所述齿轮传动结构包括第一齿轮和第二齿轮,所述第一齿轮和所述第二齿轮直接或间接地齿合在一起,所述第一齿轮固定在所述驱动马达的输出轴上并与所述驱动马达的输出轴同步转动,所述角度传感器的旋转磁极固定在所述第二齿轮的中心轴上。
  7. 根据权利要求2所述的门机结构,其特征在于,所述传动结构为齿轮传动结构,所述齿轮传动结构包括第一齿轮和第二齿轮,所述第一齿轮和所述第二齿轮直接或间接地齿合在一起,所述第一齿轮与所述传动齿轮的中心轴相连,所述角度传感器的旋转磁极固定在所述第二齿轮的中心轴上。
  8. 根据权利要求6或7所述的门机结构,其特征在于,所述第一齿轮包括齿轮本体和第二超限离合器滑块,所述齿轮本体与所述第二超限离合器滑块固定在一起,且所述齿轮本体与所述第二超限离合器滑块之间包括摩擦面,所述齿轮本体和所述第二齿轮直接或间接地齿合在一起,所述第二超限离合器滑块固定在所述驱动马达的输出轴上或者与所述传动齿轮的中心轴相连。
PCT/CN2018/074251 2017-10-27 2018-01-26 一种门机结构 WO2019080391A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018356896A AU2018356896A1 (en) 2017-10-27 2018-01-26 Electronic gate machine structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721406384.2 2017-10-27
CN201721406384.2U CN207348658U (zh) 2017-10-27 2017-10-27 一种门机结构

Publications (1)

Publication Number Publication Date
WO2019080391A1 true WO2019080391A1 (zh) 2019-05-02

Family

ID=62353130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074251 WO2019080391A1 (zh) 2017-10-27 2018-01-26 一种门机结构

Country Status (4)

Country Link
CN (1) CN207348658U (zh)
AU (1) AU2018356896A1 (zh)
TW (2) TWI692572B (zh)
WO (1) WO2019080391A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021076074A1 (en) * 2019-10-16 2021-04-22 İki̇zler Kalip Pres Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Motorized reducer with electromechanical limit adjustment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109577847B (zh) * 2018-12-14 2020-12-15 福建安麟智能科技股份有限公司 一种电动卷帘门的限位设置方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060124250A1 (en) * 2004-12-15 2006-06-15 Hsieh Chung H Engaging/disengaging fail-safe door closing device for rolling fire door and door machine having same
CN202596411U (zh) * 2012-05-08 2012-12-12 江西百胜门控设备有限公司 一种用于开门机的电子限位装置
CN105113904A (zh) * 2014-04-15 2015-12-02 盖慈有限公司 门驱动装置
CN204920596U (zh) * 2015-08-07 2015-12-30 江西百胜门控设备有限公司 一种采用编码器限位的平移门机
CN206409098U (zh) * 2017-01-22 2017-08-15 佛山市顺德区容桂霍斯车库门有限公司 一种电动开门机门体位置检测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006010188U1 (de) * 2005-12-28 2007-05-10 Marantec Antriebs- Und Steuerungstechnik Gmbh & Co. Kg Torantrieb
AU2012244079B2 (en) * 2011-10-21 2016-04-21 Automatic Technology (Australia) Pty Ltd Door Operator
CH706425A1 (de) * 2012-04-23 2013-10-31 Gilgen Door Systems Ag Drehantrieb für mindestens einen Flügel, insbesondere eine Türe oder ein Fenster.
CN204609599U (zh) * 2015-01-20 2015-09-02 福州安拓智能科技有限责任公司 平开门机双向钩锁定机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060124250A1 (en) * 2004-12-15 2006-06-15 Hsieh Chung H Engaging/disengaging fail-safe door closing device for rolling fire door and door machine having same
CN202596411U (zh) * 2012-05-08 2012-12-12 江西百胜门控设备有限公司 一种用于开门机的电子限位装置
CN105113904A (zh) * 2014-04-15 2015-12-02 盖慈有限公司 门驱动装置
CN204920596U (zh) * 2015-08-07 2015-12-30 江西百胜门控设备有限公司 一种采用编码器限位的平移门机
CN206409098U (zh) * 2017-01-22 2017-08-15 佛山市顺德区容桂霍斯车库门有限公司 一种电动开门机门体位置检测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021076074A1 (en) * 2019-10-16 2021-04-22 İki̇zler Kalip Pres Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Motorized reducer with electromechanical limit adjustment

Also Published As

Publication number Publication date
CN207348658U (zh) 2018-05-11
TWM579675U (zh) 2019-06-21
TWI692572B (zh) 2020-05-01
AU2018356896A1 (en) 2020-02-13
TW201923211A (zh) 2019-06-16

Similar Documents

Publication Publication Date Title
CN201738723U (zh) 一种智能电控防护密闭门
WO2019080391A1 (zh) 一种门机结构
CN204960630U (zh) 双门开关系统及车辆和机器人
JPH0686894B2 (ja) 非常時駆動装置
WO2019223542A1 (zh) 制冷设备、门体总成及其控制方法
CN205531934U (zh) 一种窗户开关器及设有该窗户开关器的智能窗户
CN105484610A (zh) 一种窗户开关器及设有该窗户开关器的智能窗户
CN203082327U (zh) 电动阀门的传感装置
CN204920596U (zh) 一种采用编码器限位的平移门机
HRP20080572T3 (en) Fitting transmission for a window, a door or the like, and method for actuating the transmission
CN213025860U (zh) 一种应用于卷闸门电机上的行程开关结构
CN207092729U (zh) 门锁锁舌传动装置
CN103163805B (zh) 电动汽车充电桩充电端口的安全防护装置
CN211230184U (zh) 一种一体化速通门机芯
CN204321706U (zh) 自动换刀系统及其动力传动装置与减速机
CN204130370U (zh) 大角度输出电动机操动机构
CN219888857U (zh) 一种虹膜式电动调节阀
CN208666855U (zh) 一种电梯圆弧形的门机
CN202252284U (zh) 新型电动阀门减速机构
CN207598093U (zh) 自动门窗机驱动装置、自动门窗机及门窗
CN220977925U (zh) 一种能够实现开启多角度门叶的钢坝
CN203905784U (zh) 一种内藏驱动式可自由调节控制的卷闸门
CN206361240U (zh) 一种用于转矩控制的运动转换机构
CN221921897U (zh) 双向带微动开关的位齿控制的减速箱
CN103953276B (zh) 一种内藏驱动式可自由调节控制的卷闸门

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018356896

Country of ref document: AU

Date of ref document: 20180126

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871209

Country of ref document: EP

Kind code of ref document: A1