WO2019080282A1 - 卫星通信收发机双工系统及前端馈源系统 - Google Patents

卫星通信收发机双工系统及前端馈源系统

Info

Publication number
WO2019080282A1
WO2019080282A1 PCT/CN2017/115696 CN2017115696W WO2019080282A1 WO 2019080282 A1 WO2019080282 A1 WO 2019080282A1 CN 2017115696 W CN2017115696 W CN 2017115696W WO 2019080282 A1 WO2019080282 A1 WO 2019080282A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
port
switch
waveguide duplexer
transmit
Prior art date
Application number
PCT/CN2017/115696
Other languages
English (en)
French (fr)
Inventor
贾鹏程
Original Assignee
广州程星通信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州程星通信科技有限公司 filed Critical 广州程星通信科技有限公司
Publication of WO2019080282A1 publication Critical patent/WO2019080282A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a satellite communication transceiver duplex system and a front end feed system.
  • Satellite communication is more flexible, comprehensive coverage, and not The characteristics influenced by geographical conditions and natural disasters have been applied and developed.
  • the dual circularly polarized antenna has a wave that can receive arbitrary polarization and its radiation wave. Other characteristics can be received by an arbitrarily polarized antenna, which is increasingly being valued and plays an important role.
  • the current dual circularly polarized antenna when switching the polarization direction of the received radiation wave or switching the polarization direction of the emitted radiation wave, it is necessary to remove the double circularly polarized antenna for manual adjustment, and then reinstall and use, which is cumbersome to operate. low efficiency.
  • an object of the present invention is to provide a satellite communication transceiver duplex system and a front end feed system.
  • a satellite communication transceiver duplex system comprising a first waveguide duplexer, a second waveguide duplexer and a switch, the first waveguide duplexer and the second waveguide duplexer being connected to a circular polarizer, The circular polarizer is connected to an antenna;
  • the switch is switched between a first position and a second position to connect a transmit link of one of the first waveguide duplexer and the second waveguide duplexer to a transmit port of the radio frequency link, and
  • the receive link of the other waveguide duplexer is connected to the receive port of the radio link.
  • first load the second load, and the third load are further included;
  • the transmit link of the first waveguide duplexer When the switch is in the first position, the transmit link of the first waveguide duplexer is connected to the transmit port of the radio frequency link through a switch, the receive link is connected to the third load, and the second waveguide is duplexed.
  • the transmit link of the device is connected to the first load, and the receive link is connected to the receive port of the radio link through the switch.
  • the transmit link of the second waveguide duplexer When the switch is in the second position, the transmit link of the second waveguide duplexer is connected to the transmit port of the radio frequency link through the switch, and the receive link is connected to the third load, the first waveguide duplex The transmit link of the device is connected to the second load, and the receive link is connected to the receive port of the radio link through a switch.
  • the switch is provided with a first output port, a second output port, a first RF channel, a second RF channel, and a third RF channel;
  • the switch When the switch is in the first position, the switch connects the transmit link of the first waveguide duplexer to the transmit port of the radio frequency link through the first radio frequency channel, and the receive chain of the second waveguide duplexer The road is connected to the receiving port of the radio frequency link through the second output port;
  • the switch When the switch is in the second position, the switch connects the transmit link of the second waveguide duplexer to the transmit port of the radio frequency link through the first RF channel, and the receive chain of the first waveguide duplexer The road is connected to the receiving port of the radio link through the first output port.
  • the circular polarizer employs a spacer circular polarizer.
  • the antenna uses a ripple horn antenna.
  • the common port of the circular polarizer is connected to the antenna, and the first polarization port of the circular polarizer is connected to the transceiver common end of the first waveguide duplexer, and the second polarization port and the second waveguide pair are The transceiver is connected to the common terminal.
  • a satellite communication transceiver front-end feed system comprising an antenna, a circular polarizer, a first waveguide duplexer, a second waveguide duplexer, and a diverter switch, the antenna being coupled to a circular polarizer, the circular polarizer Connected to the first waveguide duplexer and the second waveguide duplexer, respectively;
  • the switch is switched between a first position and a second position to connect a transmit link of one of the first waveguide duplexer and the second waveguide duplexer to a transmit port of the radio frequency link, and
  • the receive link of the other waveguide duplexer is connected to the receive port of the radio link.
  • first load the second load, and the third load are further included;
  • the transmit link of the first waveguide duplexer When the switch is in the first position, the transmit link of the first waveguide duplexer is connected to the transmit port of the radio frequency link through a switch, the receive link is connected to the third load, and the second waveguide is duplexed.
  • the transmit link of the device is connected to the first load, and the receive link is connected to the receive port of the radio link through the switch.
  • the transmit link of the second waveguide duplexer When the switch is in the second position, the transmit link of the second waveguide duplexer is connected to the transmit port of the radio frequency link through the switch, and the receive link is connected to the third load, the first waveguide duplex The transmit link of the device is connected to the second load, and the receive link is connected to the receive port of the radio link through a switch.
  • the switch is provided with a first output port, a second output port, a first RF channel, a second RF channel, and a third RF channel;
  • the switch When the switch is in the first position, the switch connects the transmit link of the first waveguide duplexer to the transmit port of the radio frequency link through the first radio frequency channel, and the receive chain of the second waveguide duplexer The road is connected to the receiving port of the radio frequency link through the second output port;
  • the switch When the switch is in the second position, the switch connects the transmit link of the second waveguide duplexer to the transmit port of the radio frequency link through the first RF channel, and the receive chain of the first waveguide duplexer The road is connected to the receiving port of the radio link through the first output port.
  • the common port of the circular polarizer is connected to the antenna, and the first polarization port of the circular polarizer is connected to the transceiver common end of the first waveguide duplexer, and the second polarization port and the second waveguide pair are The transceiver is connected to the common terminal.
  • the invention has the beneficial effects that the invention can realize the left-hand circularly polarized transmission signal, the right-hand circularly-polarized reception signal and the right-hand circularly-polarized emission signal of the satellite communication by switching the first switch and the second position of the switch.
  • the switching of the left-hand circularly polarized receiving signal realizes the automatic switching of the satellite circular double-polarized polarization receiving and transmitting radiation waves, and has the advantages of excellent structure, simple operation, high efficiency and convenience.
  • FIG. 1 is a schematic structural view of a switch when the switch is in a first switching position
  • FIG. 2 is a schematic view showing the structure of the switch in the second switching position in the present invention.
  • this embodiment provides a satellite communication transceiver duplex system, including a first waveguide duplexer, a second waveguide duplexer, and a changeover switch 101, the first waveguide duplexer and the first The two waveguide duplexers are connected to a circular polarizer 102, the circular polarizer 102 is connected to an antenna 103;
  • the switch 101 is switched between the first position and the second position to connect the transmit link of one of the first waveguide duplexer and the second waveguide duplexer to the transmit port 7 of the radio frequency link,
  • the receive link of the other waveguide duplexer is connected to the receive port 8 of the radio frequency link.
  • the switch 101 is switched between the first position and the second position.
  • the structure of the present invention is as shown in FIG. 1.
  • the structure of the present invention is as shown in FIG. 1.
  • first load 201, the second load 202, and the third load 203 are further included;
  • the transmit link of the first waveguide duplexer is connected to the transmit port 7 of the radio frequency link through the switch 101, and the receive link is connected to the third port.
  • a load 203 the transmit link of the second waveguide duplexer is connected to the first load 201, and the receive link is connected to the receive port 8 of the radio frequency link through the switch 101;
  • the transmit link of the second waveguide duplexer is connected to the transmit port 7 of the radio frequency link through the switch 101, and the receive link is connected to the third.
  • the load 203, the transmit link of the first waveguide duplexer is connected to the second load 202, and the receive link is connected to the receive port 8 of the radio frequency link via the switch 101.
  • the switch 101 is provided with a first output port 301, a second output port 302, a first RF channel 303, a second RF channel 304, and a third RF channel 305;
  • the switch 101 When the switch 101 is in the first position, the switch 101 connects the transmit link of the first waveguide duplexer to the transmit port 7 of the radio frequency link through the first RF channel 303, and duplexes the second waveguide
  • the receiving link of the device is connected to the receiving port 8 of the radio frequency link through the second output port 302; at this time, the receiving link of the first waveguide duplexer is connected to the third load 203 through the third RF channel 305, the second waveguide
  • the transmit link of the duplexer, the second RF channel 304 is connected to the first load 201;
  • the switch 101 When the switch 101 is in the second position, the switch 101 connects the transmit link of the second waveguide duplexer to the transmit port 7 of the radio frequency link through the first RF channel 303, and duplexes the first waveguide.
  • the receiving link of the device is connected to the receiving port 8 of the radio frequency link through the first output port 301; at this time, the transmitting link of the first waveguide duplexer is connected to the second load 202 through the second RF channel 304, the second waveguide
  • the receive link of the duplexer, the third RF channel 305, is coupled to the third load 203.
  • the circular polarizer 102 employs a spacer circular polarizer 102.
  • the antenna 103 employs a ripple horn antenna 103.
  • the common port of the circular polarizer 102 is connected to the antenna 103, and the first polarization port of the circular polarizer 102 is connected to the transceiver common end 1 of the first waveguide duplexer.
  • the polarized port is connected to the transceiver common terminal 2 of the second waveguide duplexer.
  • Fig. 1 and Fig. 2 only the structure diagram of the scheme is given.
  • the transmit link and the receive link of the waveguide duplexer can be realized by multi-layer wiring, and in addition, the transmit port 7 of the radio frequency link is The position shown in Fig. 1 is actually connected at the position of port 7 of Fig. 1 through the underlying wiring.
  • reference numeral 3 denotes a transmission port 7 of a transmission link of a first waveguide duplexer
  • reference numeral 5 denotes a reception port of a reception link of the first waveguide duplexer
  • reference numeral 4 denotes a second
  • reference numeral 6 denotes the receiving port of the receiving link of the second waveguide duplexer
  • the transmitting port 7 and the receiving port are corresponding transmitting links and receiving links and The specific link port of the switch 101, for example, in FIG.
  • the port 3 is connected to the transmit port 7 of the radio link, and the port 6 is connected to the receive port 8 of the radio link, thereby implementing the first
  • the transmit link of the waveguide duplexer is connected to the transmit port 7 of the radio frequency link, and the receive link of the second waveguide duplexer is connected to the receive port of the radio link via the second output port 302 so that the radio link generates the transmit
  • the signal is fed from port 7 to port 3, and then reaches the circular polarizer 102 through the transceiver common terminal 1 of the first waveguide duplexer. At this time, the transmitted signal is a left-hand circularly polarized transmission signal.
  • the right circularly polarized received signal input from the antenna 103 is input from the transmitting and receiving common terminal 2 of the second waveguide duplexer to the receiving link of the second waveguide duplexer, and is input to the second output of the changeover switch 101 via the port 6.
  • the interface 302 is in turn input to the receiving port 8 of the radio frequency link. That is, when the switch 101 is in the position of FIG. 1, the duplex system operates in the left-hand circularly polarized transmission signal and the right-hand circularly-polarized received signal.
  • the duplex system operates in the right-hand circularly polarized transmit signal and the left-hand circularly-polarized receive signal.
  • the working mode of the duplex system is related to the installation position of the circular polarizer 102.
  • the circular polarizer 102 can have two installation modes of 0 degree and 180 degree, and the two installation modes may cause the duplex system to be The way of working has reversed. In Fig. 1 and Fig. 2, only the case where the mounting positions of the circular polarizers 102 are the same is considered.
  • the duplex system in FIG. 1 is the aforementioned left-hand circularly-polarized emission signal, and the right-hand circularly-polarized reception signal works, and the position of the switch 101 is switched to In the second position, it can be switched to a right-handed circularly polarized transmit signal, and the left-handed circularly polarized receive signal operates in a manner.
  • the installation position of the circular polarizer 102 is 180 degrees, the working mode of the duplex system corresponding to FIG. 1 is a right-hand circularly-polarized emission signal, and the left-hand circularly polarized reception signal, and the switching switch 101 is switched at this time.
  • the duplex system can realize automatic switching of dual circular polarization reception and transmission of satellite communication.
  • the present invention can realize the left-hand circularly polarized transmission signal, the right-hand circularly-polarized reception signal, and the right-hand circularly-polarized emission signal, and the left-handed circular pole of the satellite communication by switching the first switch and the second position of the switch 101, respectively.
  • the switching of the received signal realizes the automatic switching of the dual circular polarization reception and the transmission radiation wave of the satellite communication, and has the advantages of excellent structure, simple operation, high efficiency and convenience.
  • the embodiment provides a satellite communication transceiver front-end feeding system, including an antenna 103, a circular polarizer 102, a first waveguide duplexer, a second waveguide duplexer, and a changeover switch 101.
  • the antenna 103 is connected to a circular polarizer 102, and the circular polarizer 102 is respectively connected to a first waveguide duplexer and a second waveguide duplexer;
  • the switch 101 is switched between the first position and the second position to connect the transmit link of one of the first waveguide duplexer and the second waveguide duplexer to the transmit port 7 of the radio frequency link,
  • the receive link of the other waveguide duplexer is connected to the receive port 8 of the radio frequency link.
  • first load 201, the second load 202, and the third load 203 are further included;
  • the transmit link of the first waveguide duplexer is connected to the transmit port 7 of the radio frequency link through the switch 101, and the receive link is connected to the third load 203.
  • the transmit link of the two-wavelength duplexer is connected to the first load 201, and the receive link is connected to the receive port 8 of the radio frequency link through the switch 101;
  • the transmit link of the second waveguide duplexer is connected to the transmit port 7 of the radio frequency link through the switch 101, and the receive link is connected to the third load 203.
  • the transmit link of a waveguide duplexer is connected to the second load 202, and the receive link is connected to the receive port 8 of the radio frequency link via the switch 101.
  • the switch 101 is provided with a first output port 301, a second output port 302, a first RF channel 303, a second RF channel 304, and a third RF channel 305;
  • the switch 101 When the switch 101 is in the first position, the switch 101 connects the transmit link of the first waveguide duplexer to the transmit port 7 of the radio frequency link through the first RF channel 303, and duplexes the second waveguide
  • the receiving link of the device is connected to the receiving port 8 of the radio frequency link through the second output port 302;
  • the switch 101 When the switch 101 is in the second position, the switch 101 connects the transmit link of the second waveguide duplexer to the transmit port 7 of the radio frequency link through the first RF channel 303, and duplexes the first waveguide.
  • the receiving link of the device is connected to the receiving port 8 of the radio frequency link through the first output port 301.
  • the common port of the circular polarizer 102 is connected to the antenna 103, and the first polarization port of the circular polarizer 102 is connected to the transceiver common end 1 of the first waveguide duplexer.
  • the polarized port is connected to the transceiver common terminal 2 of the second waveguide duplexer.
  • the structure of the circular polarizer and the antenna is added on the basis of the first embodiment.
  • the present embodiment has any combination structure of the first embodiment, and has the corresponding functions and beneficial effects of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)

Abstract

本发明公开了一种卫星通信收发机双工系统及前端馈源系统,该卫星通信收发机双工系统包括第一波导双工器、第二波导双工器和切换开关,所述第一波导双工器和第二波导双工器均连接至一圆极化器,述圆极化器连接至一天线;切换开关在第一位置和第二位置切换,从而将第一波导双工器和第二波导双工器其中一波导双工器的发射链路连接至射频链路的发射端口,并将另一波导双工器的接收链路连接至射频链路的接收端口,本发明通过切换开关在第一位置和第二位置的切换,可以实现卫星通信双圆极化接收、发送辐射波的自动切换,结构优良,操作简单,高效而便捷,可广泛应用于卫星通信行业中。

Description

卫星通信收发机双工系统及前端馈源系统
技术领域
本发明涉及通信技术领域,特别是涉及卫星通信收发机双工系统及前端馈源系统。
背景技术
随着现代通信技术的发展,通信系统与通信能力不断进步,为满足任何时候、任何地点、任何情况下都能够良好地进行通信,卫星通信以其更强的灵活性、全面的覆盖范围、不受地理条件及自然灾害影响的特点得到应用和发展。
在现代无线电卫星通信系统中,以往单纯的线极化天线已经很难满足人们对大通信容量和高通信质量的需求,双圆极化天线具有可接收任意极化的来波、且其辐射波可由任意极化的天线接收等特性,其越来越被重视并发挥着重要的作用。但是目前的双圆极化天线,在切换接收辐射波的极化方向或者切换发射辐射波的极化方向时,需要拆下双圆极化天线进行手动调节后,再重新安装使用,操作繁琐,效率低下。
发明内容
为了解决上述的技术问题,本发明的目的是提供卫星通信收发机双工系统及前端馈源系统。
本发明解决其技术问题所采用的技术方案是:
卫星通信收发机双工系统,包括第一波导双工器、第二波导双工器和切换开关,所述第一波导双工器和第二波导双工器均连接至一圆极化器,所述圆极化器连接至一天线;
所述切换开关在第一位置和第二位置切换,从而将第一波导双工器和第二波导双工器其中一波导双工器的发射链路连接至射频链路的发射端口,并将另一波导双工器的接收链路连接至射频链路的接收端口。
进一步,还包括第一负载、第二负载和第三负载;
所述切换开关处于第一位置时,所述第一波导双工器的发射链路通过切换开关连接至射频链路的发射端口,接收链路连接至第三负载,所述第二波导双工器的发射链路连接至第一负载,接收链路通过切换开关连接至射频链路的接收端口;
所述切换开关处于第二位置时,所述第二波导双工器的发射链路通过切换开关连接至射频链路的发射端口,接收链路连接至第三负载,所述第一波导双工器的发射链路连接至第二负载,接收链路通过切换开关连接至射频链路的接收端口。
进一步,所述切换开关设有第一输出端口、第二输出端口、第一射频通道、第二射频通道和第三射频通道;
所述切换开关处于第一位置时,所述切换开关通过第一射频通道将第一波导双工器的发射链路连接至射频链路的发射端口,并将第二波导双工器的接收链路通过第二输出端口连接至射频链路的接收端口;
所述切换开关处于第二位置时,所述切换开关通过第一射频通道将第二波导双工器的发射链路连接至射频链路的发射端口,并将第一波导双工器的接收链路通过第一输出端口连接至射频链路的接收端口。
进一步,所述圆极化器采用隔板圆极化器。
进一步,所述天线采用波纹喇叭天线。
进一步,所述圆极化器的公共端口与天线连接,所述圆极化器的第一极化端口与第一波导双工器的收发共用端连接,第二极化端口与第二波导双工器的收发共用端连接。
卫星通信收发机前端馈源系统,包括天线、圆极化器、第一波导双工器、第二波导双工器和切换开关,所述天线与圆极化器连接,所述圆极化器分别与第一波导双工器和第二波导双工器连接;
所述切换开关在第一位置和第二位置切换,从而将第一波导双工器和第二波导双工器其中一波导双工器的发射链路连接至射频链路的发射端口,并将另一波导双工器的接收链路连接至射频链路的接收端口。
进一步,还包括第一负载、第二负载和第三负载;
所述切换开关处于第一位置时,所述第一波导双工器的发射链路通过切换开关连接至射频链路的发射端口,接收链路连接至第三负载,所述第二波导双工器的发射链路连接至第一负载,接收链路通过切换开关连接至射频链路的接收端口;
所述切换开关处于第二位置时,所述第二波导双工器的发射链路通过切换开关连接至射频链路的发射端口,接收链路连接至第三负载,所述第一波导双工器的发射链路连接至第二负载,接收链路通过切换开关连接至射频链路的接收端口。
进一步,所述切换开关设有第一输出端口、第二输出端口、第一射频通道、第二射频通道和第三射频通道;
所述切换开关处于第一位置时,所述切换开关通过第一射频通道将第一波导双工器的发射链路连接至射频链路的发射端口,并将第二波导双工器的接收链路通过第二输出端口连接至射频链路的接收端口;
所述切换开关处于第二位置时,所述切换开关通过第一射频通道将第二波导双工器的发射链路连接至射频链路的发射端口,并将第一波导双工器的接收链路通过第一输出端口连接至射频链路的接收端口。
进一步,所述圆极化器的公共端口与天线连接,所述圆极化器的第一极化端口与第一波导双工器的收发共用端连接,第二极化端口与第二波导双工器的收发共用端连接。
本发明的有益效果是:本发明通过切换开关在第一位置和第二位置的切换,可以分别实现卫星通信左旋圆极化发射信号、右旋圆极化接收信号以及右旋圆极化发射信号、左旋圆极化接收信号的切换,实现卫星通信双圆极化接收、发送辐射波的自动切换,结构优良,操作简单,高效而便捷。
附图说明
图1是本发明中切换开关处于第一切换位置时的结构示意图;
图2是本发明中切换开关处于第二切换位置时的结构示意图。
具体实施方式
实施例一
参照图1和图2,本实施例提供一种卫星通信收发机双工系统,包括第一波导双工器、第二波导双工器和切换开关101,所述第一波导双工器和第二波导双工器均连接至一圆极化器102,所述圆极化器102连接至一天线103;
所述切换开关101在第一位置和第二位置切换,从而将第一波导双工器和第二波导双工器其中一波导双工器的发射链路连接至射频链路的发射端口7,并将另一波导双工器的接收链路连接至射频链路的接收端口8。
切换开关101在第一位置和第二位置切换,当切换到第一位置时,本发明的结构如图1所示,当切换到第二位置时,本发明的结构如图2所示。
进一步作为优选的实施方式,还包括第一负载201、第二负载202和第三负载203;
如图1所示,所述切换开关101处于第一位置时,所述第一波导双工器的发射链路通过切换开关101连接至射频链路的发射端口7,接收链路连接至第三负载203,所述第二波导双工器的发射链路连接至第一负载201,接收链路通过切换开关101连接至射频链路的接收端口8;
如图2所示,所述切换开关101处于第二位置时,所述第二波导双工器的发射链路通过切换开关101连接至射频链路的发射端口7,接收链路连接至第三负载203,所述第一波导双工器的发射链路连接至第二负载202,接收链路通过切换开关101连接至射频链路的接收端口8。
进一步作为优选的实施方式,所述切换开关101设有第一输出端口301、第二输出端口302、第一射频通道303、第二射频通道304和第三射频通道305;
所述切换开关101处于第一位置时,所述切换开关101通过第一射频通道303将第一波导双工器的发射链路连接至射频链路的发射端口7,并将第二波导双工器的接收链路通过第二输出端口302连接至射频链路的接收端口8;此时,第一波导双工器的接收链路通过第三射频通道305连接至第三负载203,第二波导双工器的发射链路第二射频通道304连接至第一负载201;
所述切换开关101处于第二位置时,所述切换开关101通过第一射频通道303将第二波导双工器的发射链路连接至射频链路的发射端口7,并将第一波导双工器的接收链路通过第一输出端口301连接至射频链路的接收端口8;此时,第一波导双工器的发射链路通过第二射频通道304连接至第二负载202,第二波导双工器的接收链路第三射频通道305连接至第三负载203。
进一步作为优选的实施方式,所述圆极化器102采用隔板圆极化器102。
进一步作为优选的实施方式,所述天线103采用波纹喇叭天线103。
进一步作为优选的实施方式,所述圆极化器102的公共端口与天线103连接,所述圆极化器102的第一极化端口与第一波导双工器的收发共用端1连接,第二极化端口与第二波导双工器的收发共用端2连接。
图1和图2中,只是给出了本方案的结构示意图,实际实现中,波导双工器的发射链路、接收链路可通过多层布线实现,另外,射频链路的发射端口7虽然在图1的位置做了示意,实际上是在图1端口7的位置通过底层布线实现连接的。
图1中,附图标记3表示第一波导双工器的发射链路的发射端口7,附图标记5表示第一波导双工器的接收链路的接收端口,附图标记4表示第二波导双工器的发射链路的发射端口7,附图标记6表示第二波导双工器的接收链路的接收端口,这些发射端口7、接收端口是对应的发射链路、接收链路与切换开关101的具体链接端口,例如图1中,切换开关101处于第一位置时,端口3与射频链路的发射端口7连接,端口6与射频链路的接收端口8连接,从而实现第一波导双工器的发射链路连接至射频链路的发射端口7,第二波导双工器的接收链路通过第二输出端口302连接至射频链路的接收端口,使得射频链路产生的发射信号从端口7馈入到端口3,再通过第一波导双工器的收发共用端1到达圆极化器102,此时发射信号为左旋圆极化发射信号。同时,从天线103输入的右旋圆极化接收信号从第二波导双工器的收发共用端2输入第二波导双工器的接收链路,经端口6输入到切换开关101的第二输出接口302,进而输入到射频链路的接收端口8。即切换开关101处于图1位置时,本双工系统的工作方式为左旋圆极化发射信号,右旋圆极化接收信号。
同理,当切换开关101处于图2所示位置时,本双工系统的工作方式为右旋圆极化发射信号,左旋圆极化接收信号。
需要注意,本双工系统的工作方式与圆极化器102的安装位置有关,圆极化器102可以有0度和180度两种安装方式,这两种安装方式会导致本双工系统的工作方式出现反转。图1和图2中,只考虑圆极化器102的安装位置相同的情况。
例如,假设圆极化器102的安装位置为0度时,图1中本双工系统为前述的左旋圆极化发射信号,右旋圆极化接收信号的工作方式,切换开关101位置切换到第二位置时,可以切换为右旋圆极化发射信号,左旋圆极化接收信号的工作方式。反之,当圆极化器102的安装位置为180度时,本双工系统与图1对应的工作方式为右旋圆极化发射信号,左旋圆极化接收信号,此时切换开关101位置切换到第二位置时,可以切换为左旋圆极化发射信号,右旋圆极化接收信号的工作方式。由此可见,不管圆极化器102的安装位置如何,本双工系统均可以实现卫星通信双圆极化接收、发射的自动切换。
因此,本发明通过切换开关101在第一位置和第二位置的切换,可以分别实现卫星通信左旋圆极化发射信号、右旋圆极化接收信号以及右旋圆极化发射信号、左旋圆极化接收信号的切换,实现卫星通信双圆极化接收、发送辐射波的自动切换,结构优良,操作简单,高效而便捷。
实施例二
参照图1和图2,本实施例提供一种卫星通信收发机前端馈源系统,包括天线103、圆极化器102、第一波导双工器、第二波导双工器和切换开关101,所述天线103与圆极化器102连接,所述圆极化器102分别与第一波导双工器和第二波导双工器连接;
所述切换开关101在第一位置和第二位置切换,从而将第一波导双工器和第二波导双工器其中一波导双工器的发射链路连接至射频链路的发射端口7,并将另一波导双工器的接收链路连接至射频链路的接收端口8。
进一步作为优选的实施方式,还包括第一负载201、第二负载202和第三负载203;
所述切换开关101处于第一位置时,所述第一波导双工器的发射链路通过切换开关101连接至射频链路的发射端口7,接收链路连接至第三负载203,所述第二波导双工器的发射链路连接至第一负载201,接收链路通过切换开关101连接至射频链路的接收端口8;
所述切换开关101处于第二位置时,所述第二波导双工器的发射链路通过切换开关101连接至射频链路的发射端口7,接收链路连接至第三负载203,所述第一波导双工器的发射链路连接至第二负载202,接收链路通过切换开关101连接至射频链路的接收端口8。
进一步作为优选的实施方式,所述切换开关101设有第一输出端口301、第二输出端口302、第一射频通道303、第二射频通道304和第三射频通道305;
所述切换开关101处于第一位置时,所述切换开关101通过第一射频通道303将第一波导双工器的发射链路连接至射频链路的发射端口7,并将第二波导双工器的接收链路通过第二输出端口302连接至射频链路的接收端口8;
所述切换开关101处于第二位置时,所述切换开关101通过第一射频通道303将第二波导双工器的发射链路连接至射频链路的发射端口7,并将第一波导双工器的接收链路通过第一输出端口301连接至射频链路的接收端口8。
进一步作为优选的实施方式,所述圆极化器102的公共端口与天线103连接,所述圆极化器102的第一极化端口与第一波导双工器的收发共用端1连接,第二极化端口与第二波导双工器的收发共用端2连接。
本实施例是在实施例一的基础上,增加圆极化器和天线的结构,本实施例具备实施例一的任意组合结构,具备该系统相应的功能和有益效果。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 卫星通信收发机双工系统,其特征在于,包括第一波导双工器、第二波导双工器和切换开关,所述第一波导双工器和第二波导双工器均连接至一圆极化器,所述圆极化器连接至一天线;
    所述切换开关在第一位置和第二位置切换,从而将第一波导双工器和第二波导双工器其中一波导双工器的发射链路连接至射频链路的发射端口,并将另一波导双工器的接收链路连接至射频链路的接收端口。
  2. 根据权利要求1所述的卫星通信收发机双工系统,其特征在于,还包括第一负载、第二负载和第三负载;
    所述切换开关处于第一位置时,所述第一波导双工器的发射链路通过切换开关连接至射频链路的发射端口,接收链路连接至第三负载,所述第二波导双工器的发射链路连接至第一负载,接收链路通过切换开关连接至射频链路的接收端口;
    所述切换开关处于第二位置时,所述第二波导双工器的发射链路通过切换开关连接至射频链路的发射端口,接收链路连接至第三负载,所述第一波导双工器的发射链路连接至第二负载,接收链路通过切换开关连接至射频链路的接收端口。
  3. 根据权利要求1所述的卫星通信收发机双工系统,其特征在于,所述切换开关设有第一输出端口、第二输出端口、第一射频通道、第二射频通道和第三射频通道;
    所述切换开关处于第一位置时,所述切换开关通过第一射频通道将第一波导双工器的发射链路连接至射频链路的发射端口,并将第二波导双工器的接收链路通过第二输出端口连接至射频链路的接收端口;
    所述切换开关处于第二位置时,所述切换开关通过第一射频通道将第二波导双工器的发射链路连接至射频链路的发射端口,并将第一波导双工器的接收链路通过第一输出端口连接至射频链路的接收端口。
  4. 根据权利要求1所述的卫星通信收发机双工系统,其特征在于,所述圆极化器采用隔板圆极化器。
  5. 根据权利要求1所述的卫星通信收发机双工系统,其特征在于,所述天线采用波纹喇叭天线。
  6. 根据权利要求1所述的卫星通信收发机双工系统,其特征在于,所述圆极化器的公共端口与天线连接,所述圆极化器的第一极化端口与第一波导双工器的收发共用端连接,第二极化端口与第二波导双工器的收发共用端连接。
  7. 卫星通信收发机前端馈源系统,其特征在于,包括天线、圆极化器、第一波导双工器、第二波导双工器和切换开关,所述天线与圆极化器连接,所述圆极化器分别与第一波导双工器和第二波导双工器连接;
    所述切换开关在第一位置和第二位置切换,从而将第一波导双工器和第二波导双工器其中一波导双工器的发射链路连接至射频链路的发射端口,并将另一波导双工器的接收链路连接至射频链路的接收端口。
  8. 根据权利要求7所述的卫星通信收发机前端馈源系统,其特征在于,还包括第一负载、第二负载和第三负载;
    所述切换开关处于第一位置时,所述第一波导双工器的发射链路通过切换开关连接至射频链路的发射端口,接收链路连接至第三负载,所述第二波导双工器的发射链路连接至第一负载,接收链路通过切换开关连接至射频链路的接收端口;
    所述切换开关处于第二位置时,所述第二波导双工器的发射链路通过切换开关连接至射频链路的发射端口,接收链路连接至第三负载,所述第一波导双工器的发射链路连接至第二负载,接收链路通过切换开关连接至射频链路的接收端口。
  9. 根据权利要求7所述的卫星通信收发机前端馈源系统,其特征在于,所述切换开关设有第一输出端口、第二输出端口、第一射频通道、第二射频通道和第三射频通道;
    所述切换开关处于第一位置时,所述切换开关通过第一射频通道将第一波导双工器的发射链路连接至射频链路的发射端口,并将第二波导双工器的接收链路通过第二输出端口连接至射频链路的接收端口;
    所述切换开关处于第二位置时,所述切换开关通过第一射频通道将第二波导双工器的发射链路连接至射频链路的发射端口,并将第一波导双工器的接收链路通过第一输出端口连接至射频链路的接收端口。
  10. 根据权利要求7所述的卫星通信收发机前端馈源系统,其特征在于,所述圆极化器的公共端口与天线连接,所述圆极化器的第一极化端口与第一波导双工器的收发共用端连接,第二极化端口与第二波导双工器的收发共用端连接。
PCT/CN2017/115696 2017-10-24 2017-12-12 卫星通信收发机双工系统及前端馈源系统 WO2019080282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711002679.8A CN107733463B (zh) 2017-10-24 2017-10-24 卫星通信收发机双工系统及前端馈源系统
CN201711002679.8 2017-10-24

Publications (1)

Publication Number Publication Date
WO2019080282A1 true WO2019080282A1 (zh) 2019-05-02

Family

ID=61213621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115696 WO2019080282A1 (zh) 2017-10-24 2017-12-12 卫星通信收发机双工系统及前端馈源系统

Country Status (2)

Country Link
CN (1) CN107733463B (zh)
WO (1) WO2019080282A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425404A (zh) * 2022-09-02 2022-12-02 中国船舶集团有限公司第七二三研究所 一种前端高度集成的馈线结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737014A (zh) * 2018-06-21 2018-11-02 西安胡门网络技术有限公司 便携式反无人机设备
CN109904622A (zh) * 2019-03-13 2019-06-18 睿高(广州)通信技术有限公司 信号极化切换装置、方法、存储介质及计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2093587A2 (de) * 2008-02-25 2009-08-26 RST Raumfahrt Systemtechnik GmbH Dual-Frequenzband Dual-Polarisations-SAR
CN204316501U (zh) * 2015-01-08 2015-05-06 河北神舟卫星通信股份有限公司 一种全极化卫星通信地球站
CN105450252A (zh) * 2015-12-17 2016-03-30 中国电子科技集团公司第五十四研究所 一种模式可重构s频段收发射频组件
CN105449362A (zh) * 2015-12-17 2016-03-30 中国电子科技集团公司第五十四研究所 一种双星双波束s频段卫星通信相控阵天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139135A1 (en) * 2005-12-20 2007-06-21 Xytrans, Inc. Waveguide diplexer
AU2010315822A1 (en) * 2009-11-06 2012-06-21 Viasat, Inc. Electromechanical polarization switch
CN103296487B (zh) * 2013-05-23 2015-04-15 京信通信技术(广州)有限公司 多极化天线系统及其所采用的极化转换网络
WO2016004001A1 (en) * 2014-06-30 2016-01-07 Viasat, Inc. Systems and methods for polarization control
CN207382311U (zh) * 2017-10-24 2018-05-18 广州程星通信科技有限公司 卫星通信收发机双工系统及前端馈源系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2093587A2 (de) * 2008-02-25 2009-08-26 RST Raumfahrt Systemtechnik GmbH Dual-Frequenzband Dual-Polarisations-SAR
CN204316501U (zh) * 2015-01-08 2015-05-06 河北神舟卫星通信股份有限公司 一种全极化卫星通信地球站
CN105450252A (zh) * 2015-12-17 2016-03-30 中国电子科技集团公司第五十四研究所 一种模式可重构s频段收发射频组件
CN105449362A (zh) * 2015-12-17 2016-03-30 中国电子科技集团公司第五十四研究所 一种双星双波束s频段卫星通信相控阵天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425404A (zh) * 2022-09-02 2022-12-02 中国船舶集团有限公司第七二三研究所 一种前端高度集成的馈线结构
CN115425404B (zh) * 2022-09-02 2024-05-07 中国船舶集团有限公司第七二三研究所 一种前端高度集成的馈线结构

Also Published As

Publication number Publication date
CN107733463B (zh) 2023-07-04
CN107733463A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2019080282A1 (zh) 卫星通信收发机双工系统及前端馈源系统
US9160395B2 (en) Method and terminal device for automatically tuning impedance matching of multi-frequency band antenna
JP5206689B2 (ja) バイパス回路付増幅回路とこれを用いた電子機器
US20060009164A1 (en) Radio frequency switching circuit
US8614594B2 (en) Downconverter, downconverter IC, and method for controlling the downconverter
TWI653845B (zh) 電子裝置及其天線及用該電子裝置接收或發射信號的方法
WO1998056060A1 (fr) Commutateur a deux frequences, dispositif utilisant une antenne a deux frequences commune, et equipement de radiocommunication mobile pour deux bandes de frequence, utilisant ledit dispositif
TWI692214B (zh) 射頻收發前端電路
US9544010B2 (en) RF front-end module
JP2006173754A (ja) 高周波スイッチ
JP5335963B2 (ja) Rfアンテナスイッチ回路、高周波アンテナ部品及び移動通信機器
TW201631747A (zh) 高頻半導體積體電路
JP2013090037A (ja) 高周波信号増幅器
KR102041655B1 (ko) 고주파 스위치
DE60234723D1 (de) Sende-empfangs-schalter mit hochleistungsschutz
WO2014071582A1 (zh) 一种多输入多输出微波系统的天线调整方法及装置
JP2012134672A (ja) 高周波スイッチ
WO2017113369A1 (zh) 一种信号传输电路及调谐天线
CN113178705B (zh) 极化天线及电子设备
KR20110060735A (ko) 고주파 변압기를 이용한 다중 대역 전력증폭기
JP3258791B2 (ja) 通信装置
KR101175905B1 (ko) Rf 안테나 스위치 회로, 고주파 안테나 부품 및 이동통신기기
KR101175898B1 (ko) Rf 안테나 스위치 회로, 고주파 안테나 부품 및 이동통신기기
KR20150073274A (ko) 고주파 스위치
JP2011030110A (ja) 半導体装置およびそれを用いた高周波スイッチ並びに高周波モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929941

Country of ref document: EP

Kind code of ref document: A1