WO2019080103A1 - 碳化硅铝基复合结构件及碳化硅增强预制件的制备方法 - Google Patents

碳化硅铝基复合结构件及碳化硅增强预制件的制备方法

Info

Publication number
WO2019080103A1
WO2019080103A1 PCT/CN2017/108062 CN2017108062W WO2019080103A1 WO 2019080103 A1 WO2019080103 A1 WO 2019080103A1 CN 2017108062 W CN2017108062 W CN 2017108062W WO 2019080103 A1 WO2019080103 A1 WO 2019080103A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
aluminum
carbide particles
structural member
particles
Prior art date
Application number
PCT/CN2017/108062
Other languages
English (en)
French (fr)
Inventor
庄后荣
曾俊
袁亮亮
Original Assignee
深圳市大富科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大富科技股份有限公司 filed Critical 深圳市大富科技股份有限公司
Priority to PCT/CN2017/108062 priority Critical patent/WO2019080103A1/zh
Priority to CN201780036309.8A priority patent/CN109311766A/zh
Publication of WO2019080103A1 publication Critical patent/WO2019080103A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Definitions

  • the present application relates to the field of composite materials, and in particular, to a method for preparing a silicon carbide aluminum-based composite structural member and a silicon carbide-reinforced preform.
  • High-performance lightweight structural materials play an important strategic role in economic and national defense construction.
  • lightweight structural materials as matrix are mainly composed of Al, Mg and Ti alloys.
  • the reinforcement materials mainly include silicon carbide SiC and Al 2 O 3 . , BC 4 , TiB 2, etc.
  • silicon carbide aluminum AlSiC composite structural parts are widely used in aerospace, electronic packaging, optical instruments, sports equipment and other fields for their excellent thermophysical properties and mechanical properties.
  • the AlSiC composite structural member is prepared by mixing SiC powder with a paraffin-based binder to form a uniform feed, and the feed is granulated and then injection-molded on an injection molding machine to obtain a SiC preform. And then pre-sintered at a temperature of 1000 to 1150 ° C after solvent and thermal degreasing, and finally, the molten solution of the Al alloy is infiltrated into the SiC skeleton by a pressureless infiltration method at a temperature of 1100 to 1200 ° C in a N 2 atmosphere, thereby A SiC/Al composite part with a high volume fraction is obtained.
  • the inventors of the present application found in the long-term development process that in the above method, when powder injection molding is used to prepare complex parts, it is required that the injected powder has good fluidity, a large amount of organic binder needs to be added, and the binder is removed.
  • the process is the most difficult part of the whole process, the degreasing time is long, and a large amount of exhaust gas generated during degreasing causes pollution to the environment.
  • the powder particle size is generally 0.5-20 um, which is suitable for the powder injection molding process.
  • the technical problem mainly solved by the present application is to provide a preparation method of a silicon carbide aluminum-based composite structural member and a preparation method of the silicon carbide reinforced preform, which can prepare a complex part or provide technical support thereof, and the powder is Plasticity requirements are not high.
  • a technical solution adopted by the present application is to provide a method for preparing a silicon carbide aluminum-based composite structural member, the method comprising: providing at least two silicon carbide particles having different average particle sizes; The silicon carbide particles with different average particle sizes are uniformly mixed; the binder is added to the uniformly mixed silicon carbide particles for kneading, and is formed by cold isostatic pressing technology. Forming a silicon carbide reinforced preform; forming the aluminum silicate-containing melt and the silicon carbide reinforced preform into the SiC-aluminum-based composite structural member by a pressureless infiltration method.
  • another technical solution adopted by the present application is to provide a method for preparing a silicon carbide reinforced preform, the method comprising: providing at least two silicon carbide particles having different average particle sizes; The silicon carbide particles of different average particle sizes are uniformly mixed; the binder is added to the uniformly mixed silicon carbide particles for kneading, and is formed by cold isostatic pressing technology to form the silicon carbide reinforced preform.
  • the beneficial effects of the present application are: different from the prior art, in the preparation method of the silicon carbide aluminum-based composite structural member of the present application, at least two silicon carbide particles of different average particle sizes are provided; the predetermined average particle size of the predetermined ratio is The silicon carbide particles are uniformly mixed; the binder is added to the uniformly mixed silicon carbide particles for kneading, and is formed by cold isostatic pressing technology to form a silicon carbide reinforced preform; and the pressureless infiltration method is adopted. The aluminum-containing melt and the silicon carbide-reinforced preform are formed into the silicon carbide-aluminum-based composite structural member.
  • the particles and the particles can be filled with each other, so that the silicon carbide preform can obtain sufficient strength; and by cold isostatic pressing technology, a large complicated shape structural member can be obtained.
  • the mold is cheap, the obtained preform has uniform density and high strength; the pressure infiltration of the SiC preform is liquid-phase aluminized, and the high-strength AlSiC structural member can be obtained, and the process equipment is simple.
  • FIG. 1 is a flow chart of an embodiment of a method for preparing a silicon carbide aluminum-based composite structural member of the present application
  • FIG. 2 is a flow chart of another embodiment of a method for preparing a silicon carbide aluminum-based composite structural member of the present application
  • FIG. 3 is a flow chart of an embodiment of a method for preparing a silicon carbide reinforced preform of the present application.
  • the lightweight of the car body is not simply to reduce the weight of the car, but to reduce the car body quality as much as possible while ensuring the strength and safety of the car body, while ensuring that the manufacturing cost of the car body is within a reasonable range.
  • the composite material has a low density (about 1/3 of aluminum alloy), high specific strength, impact resistance, good fracture toughness, good vibration and sound insulation performance, good design, corrosion resistance, etc. Industrial attention. See Table 1, Table 1 is a comparison of weight loss and relative cost after replacement of lightweight materials.
  • High-performance lightweight structural materials play an important strategic role in economic and national defense construction.
  • lightweight structural materials as matrix are mainly composed of three alloys of Al, Mg and Ti.
  • the reinforcement materials mainly include SiC, Al 2 O 3 and BC. 4 , TiB 2, etc.
  • the density of Mg alloy is lower than that of aluminum.
  • the composite material prepared from it has great potential in aerospace and automotive applications, but its high temperature stability is poor and it is difficult to be used as a key component.
  • Ti alloy matrix composites It has good oxidation resistance and high temperature mechanical properties, but its preparation cost is high and processing is difficult, which limits its wide use: the aluminum alloy is light in weight, the base alloy has a wide selection range, high strength, high toughness, heat resistance and corrosion resistance.
  • Aluminum is easy to recycle, can be recycled, and has good heat treatment properties. Therefore, aluminum alloy has become a widely used matrix material and has become the mainstream of current development and research work. Both pure aluminum and aluminum alloy can be used as the base metal, and the aluminum alloy base mainly has Al-Cu-Mg, Al-Mg-Si and Al-Zn-Mg alloys.
  • the reinforcing materials SiC has high strength, high hardness, good thermal stability and relatively low price, and has been widely used in reinforcing materials.
  • AlSiC composite structural parts are widely used in aerospace, electronic packaging, optical instruments, sports equipment and other fields for their excellent thermophysical properties and mechanical properties.
  • automotive industry it is mainly used in high-temperature brake pads, cylinder pistons, bearing bushes and other high-temperature service fields.
  • Silicon carbide particles still have high modulus and strength under high temperature conditions, so SiC-reinforced aluminum-based composite materials are added. It has better high temperature performance than the original aluminum alloy, and significantly increases the specific strength and specific modulus of the parts, greatly reducing the weight of the parts.
  • the SiC-based preform is first prepared, and then the AlSiC material is composited.
  • the AlSiC composite structural member is prepared.
  • the powder injection molding technology is adopted, and when the powder injection molding is used to prepare the complicated parts, the injection powder is required to have good fluidity, and a large amount of organic viscosity is required.
  • the process of removing the binder and the binder is the most difficult part in the whole process.
  • the degreasing time is long, and a large amount of exhaust gas generated during degreasing causes pollution to the environment.
  • the powder particle size is generally 0.5 to 20 um, which is suitable for the powder injection molding process.
  • injection molding can only produce smaller-sized devices. For automotive body preparation applications, injection molding methods cannot obtain SiC preforms that meet the requirements.
  • the present application selects at least two silicon carbide particles of different average particle sizes, and the particles and the particles can be filled with each other, so that the silicon carbide preform can obtain sufficient strength; and the molding can be carried out by cold isostatic pressing technology.
  • the structural parts of the complex shape, and the mold is cheap, the obtained preform has uniform density and high strength; the pressure infiltration of the SiC preform is liquid-phase aluminized, and the high-strength AlSiC structural member can be obtained, and the process equipment is simple.
  • FIG. 1 is a flow chart of an embodiment of a method for preparing a silicon carbide aluminum-based composite structural member according to the present application, the method comprising:
  • Step S101 providing at least two silicon carbide particles of different average particle sizes.
  • silicon carbide particles have different geometric shapes.
  • the silicon carbide particles have irregular geometric shapes, are multi-faceted, and some particles have sharp sharp corners.
  • the preparation of SiC preforms from an average particle size of SiC particles is liable to cause incomplete filling between the particles, resulting in insufficient strength of the preforms.
  • the strength of the AlSiC composite structural members is insufficient to be used as a structural member of the vehicle body.
  • two or more silicon carbide particles having different average particle sizes are selected, such that SiC particles of different sizes and SiC particles can be filled with each other, so that the SiC preform obtains sufficient strength.
  • the silicon carbide particles have an average particle size ranging from 3 to 150 um, for example, a silicon carbide particle having an average particle size of 3 um, a silicon carbide particle having an average particle size of 50 um, and an average particle size of a silicon carbide particle.
  • a silicon carbide particle has an average particle size of 150 um, and the like.
  • the average particle size of two or more kinds of silicon carbide particles is selected such as the strength requirement and the plasticity requirement of the material.
  • Step S102 mixing silicon carbide particles of different average particle sizes in a predetermined ratio uniformly.
  • a predetermined ratio of two or more different average particle size silicon carbide particles is determined, and then a predetermined proportion of silicon carbide particles of different average particle sizes are uniformly mixed.
  • Step S103 adding a binder to the uniformly-mixed silicon carbide particles for kneading, and molding by cold isostatic pressing technology to form a silicon carbide-reinforced preform.
  • the adhesive refers to a substance capable of bonding and bonding the surfaces of homogenous or heterogeneous objects together.
  • the adhesive includes but is not limited to: paraffin wax or a base material (for example, a particle size of 170 to 190 mesh) a composition of a mixture of silicon carbide and ferric oxide), an auxiliary material (for example, Guangxi white clay having a particle size of 310 to 330 mesh), or a binder containing a paraffin main component, or a commercial special binder for silicon carbide. ,and many more.
  • the mixture is kneaded by adding a binder to the uniformly mixed silicon carbide particles, wherein the kneading time is 4 to 12 hours, for example, 4 hours, 7 hours, 9 hours, 12 hours, and the like.
  • the mixing time is different, the strength of the obtained preforms is also different, and the strength of the final AlSiC composite structural member is also different. According to the actual application, the mixing time is too short or too long, which is not suitable.
  • the adhesive is a conventionally used paraffin wax, which is inexpensive and cost effective.
  • the paraffin is added in an amount of from 1% to 5% of the total amount of the silicon carbide particles after mixing, for example, 1%, 2%, 3%, 4%, 5%, and the like.
  • Isostatic pressing technology is an ultra-high pressure state in which the products in a closed high-pressure vessel are equalized in all directions. Advanced technology for forming ultra-high pressure hydraulics.
  • Cold Isostatic Pressing is a material used to coat rubber molds at room temperature, usually with rubber or plastic. It is mainly used for molding powder materials for further sintering, forging or heat. The isostatic pressing process provides a blank.
  • cold isostatic pressing technology has the following characteristics:
  • the working pressure is low; second, the density of the formed product is high; third, the density of the compact is uniform.
  • the pressure of the isostatically pressurized fluid medium is equal in all directions; the envelope is substantially consistent with the compression of the powder, and the powder and the sheath have no relative motion, the frictional resistance between them is small, and the pressure is only slightly decreased, therefore,
  • the density of the green body is uniform; fourthly, because the density is uniform, the aspect ratio can be unrestricted, which is favorable for producing a rod-shaped, tubular thin and long product; fifth, it is not necessary to add a lubricant to the powder, thereby reducing
  • the pollution of the product simplifies the manufacturing process; sixth, the product has excellent performance, short production cycle and wide application range.
  • the pressure for molding by cold isostatic pressing is 50 to 200 MPa
  • the mold used is a rubber mold.
  • the molding technology is suitable for preparing large and complex shaped structural parts, and the obtained preform has uniform density, and the sintered sample has good shrinkage consistency and near net shape.
  • the size of the rubber mold is such that the size of the sintered silicon carbide reinforced preform is slightly smaller than the size of the final product, so that the subsequent processing of the final product is facilitated, for example, the directional dimension of the sintered silicon carbide reinforced preform is larger than the final product.
  • the size is small 0.1% - 2%.
  • the present application adopts a rubber mold, and the powder is filled and pressed by cold isostatic pressing.
  • the rubber mold is not limited by the complexity of the shape of the product, and the cost is low, and the cold is cold.
  • the isostatic pressing makes the SiC blank force uniform, the green density is uniform, deformation is not easy to occur during sintering, and the net shape of the reinforcement can be achieved. Therefore, in general, by cold isostatic pressing technology, a large and complicated structural member can be obtained, and the mold is inexpensive, and the obtained preform has uniform density and high strength.
  • pre-sintering is also needed to degrease, that is, it also includes:
  • Step S105 pre-sintering the silicon carbide reinforced preform.
  • the pre-sintering temperature is 550 to 700 ° C, and the holding time is 0.5 h to 4 h. In this way, on the one hand, the added paraffin can be eliminated and on the other hand the strength of the preform can be maintained.
  • Step S104 The aluminum-containing melt and the silicon carbide reinforced preform are made into a silicon carbide aluminum-based composite structural member by a pressureless infiltration method.
  • the pressureless infiltration process is: adding the SiC preform directly into the molten liquid containing aluminum, and uniformly dispersing the SiC preform in the molten liquid by stirring in a certain manner and a certain speed, and finally compounding into a particle reinforced metal matrix composite material.
  • the melt can then be cast into ingots, castings, and the like.
  • the method has the advantages of simple process equipment, high production efficiency, low manufacturing cost, and is suitable for various matrix and reinforcement particles, can manufacture various complicated shapes and is easy to realize industrialization, is very competitive, and is suitable for The main method of production on an industrial scale.
  • the temperature is 0.5 to 2 h
  • the slag is removed by degassing to obtain an aluminum alloy melt
  • the prepared SiC preform is prepared (for example, The SiC body preform is placed in the aluminum alloy melt for 4-8 hours to obtain the AlSiC composite structure (for example, the SiC body preform is placed, and the AlSiC composite automobile body structure is finally prepared).
  • the silicon carbide aluminum based composite structural member is used in automotive body structural members.
  • the low density of AlSiC composite structural parts can replace nearly two-thirds of the weight of low-carbon steel plates, and has high specific strength and specific modulus, high strength, high toughness, wear resistance, corrosion resistance, fatigue resistance, etc.
  • the row also enhances the safety and service life of the body.
  • FIG. 3 is a flow chart of an embodiment of a method for preparing a silicon carbide reinforced preform according to the present application, the method comprising:
  • Step S201 providing at least two silicon carbide particles of different average particle sizes.
  • Step S202 mixing silicon carbide particles of different average particle sizes in a predetermined ratio uniformly.
  • Step S203 adding a binder to the uniformly-mixed silicon carbide particles for kneading, and molding by cold isostatic pressing technology to form a silicon carbide-reinforced preform.
  • the silicon carbide particles have an average particle size ranging from 3 to 150 um.
  • the adhesive is paraffin wax.
  • the amount of paraffin added is from 1% to 5% of the total amount of the silicon carbide particles after being uniformly mixed.
  • the time for adding the binder to the uniformly mixed silicon carbide particles for kneading is 4 to 12 hours.
  • the pressure by the cold isostatic pressing technology is 50-200 MPa
  • the mold used is a rubber mold
  • the size of the rubber mold is such that the size of the sintered silicon carbide-reinforced preform is slightly smaller than the size of the final product.
  • At least two silicon carbide particles having different average particle sizes are selected, and the particles and the particles can be filled with each other, so that the silicon carbide preform can obtain sufficient strength; and by cold isostatic pressing technology, large complex shapes can be obtained. Structural parts, and the mold is cheap, and the obtained preform has a uniform density. High strength; in this way, technical support can be provided for the preparation of AlSiC composite structural parts.
  • the B-pillar of the car body is prepared by using the AlSiC composite structural member as an example.
  • the traditional B-pillar cross-section shape is more complicated, and it is welded by multiple pieces of stamped steel plate.
  • the B-pillar Excluding the interior and the outer cover, the B-pillar is generally divided into an inner plate, a reinforcing plate and an outer plate from the inside to the outside, and basically belongs to a closed thin-walled beam structure, and The upper and lower joints are connected to the top side sill and the door frame by welding.
  • the reinforcing plate structure is usually a small assembly, and the seat belt and the door are installed through the B-pillar.
  • the position of the lock and other accessories is required to be relatively rigid, it is necessary to install a corresponding reinforcing plate.
  • the excessive reinforcing plate is not only disadvantageous to the weight reduction of the vehicle body, but also complicates the design of the vehicle body and the assembly of the entire vehicle.
  • the B-pillar structure of the inner and outer plates is still adopted, and the upper and lower joints of the B-pillar are respectively formed on the inner and outer plates, and are integrally formed in the production process, and are realized by the following process steps.
  • Rubber mold design According to the plan of integrally forming the B-pillar and the upper and lower joints, the net-formed SiC reinforcement preform is slightly smaller than the final product size after sintering, which is convenient for final machining.
  • SiC particles and 3 wt% paraffin (3% of the total amount of SiC particles) were kneaded in a ratio of 1 : 1 with an average particle size range of 4.0 um and 30.0 um, and the kneading time was 4 h. A granulated powder is obtained.
  • the granulated powder obtained in the step 2 is filled into a rubber mold to ensure uniform filling of the powder and uniform density of looseness, and is formed by cold isostatic pressing under a pressure of 100 MPa.
  • the SiC green body of the step 3 is pre-sintered at a sintering temperature of 700 ° C for 4 hours to volatilize the paraffin, and at the same time, a SiC reinforcement preform having a porous structure having a certain strength is obtained.
  • the aluminum alloy is melted and heated to 750 ° C and then thermostated for 1 h, degassed to remove slag, and the aluminum alloy melt is obtained, and then the SiC preform is placed in an aluminum alloy to be melted. The liquid is impregnated to obtain an AlSiC composite automobile body structure.
  • the product obtained in the step 5 is further processed. According to the product design, only the aluminum alloy portion other than AlSiC needs to be removed by machining according to the final size.
  • the front side member of the car body is prepared by using an AlSiC composite structural member as an example.
  • thin-walled members stamped from low-carbon steel sheets are widely used and can be welded to other members through flanges. They are the main energy absorbing members in the collision of vehicles, including the front longitudinal beam and the body side of the automobile. In the surrounding parts such as the surrounding floor and the floor, the cross section of the front side of the conventional automobile is a thin-walled rectangular structure. When a car has a frontal collision, it mainly absorbs the kinetic energy of the collision by the plastic deformation of the front part of the vehicle body. The main role is the front longitudinal beam.
  • the aluminum SiC composite structural member Compared with the low carbon steel material of the traditional front sill of the automobile, the aluminum SiC composite structural member has higher yield strength and energy absorbing ability, and at the same time achieves the purpose of greatly reducing weight.
  • Rubber mold design According to the design of the front section of the slot section, the net-formed SiC reinforcement preform is slightly smaller than the final product size after sintering, which is convenient for final machining.
  • the granulated powder obtained in the step 2 is filled into a rubber mold to ensure uniform filling of the powder and uniform bulk density, and is formed by cold isostatic pressing under a pressure of 150 MPa.
  • the SiC green body of the step 3 is pre-sintered at a sintering temperature of 700 ° C for 4 hours to volatilize the paraffin, and at the same time, a SiC reinforcement preform having a porous structure having a certain strength is obtained.
  • the aluminum alloy is melted and heated to 750 ° C and then thermostated for 1 h, degassed to remove slag, and the aluminum alloy melt is obtained, and then the SiC preform is placed in an aluminum alloy to be melted. The liquid is impregnated to obtain an AlSiC composite automobile body structure.
  • the product obtained in the step 5 is further processed. According to the product design, only the aluminum alloy portion other than AlSiC needs to be removed by machining according to the final size.
  • the above specific embodiment is a silicon carbide aluminum-based composite structural member for use in an automobile body structural member.
  • the low density of AlSiC composite structural parts can replace nearly two-thirds of the weight of low-carbon steel plates, and has high specific strength and specific modulus, high strength, high toughness, wear resistance, corrosion resistance, fatigue resistance, etc.
  • the row also enhances the safety and service life of the body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种碳化硅铝基复合结构件及碳化硅增强预制件的制备方法,该方法包括:提供至少两种不同平均粒度的碳化硅颗粒;将预定比例的所述不同平均粒度的碳化硅颗粒混合均匀;向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼,并通过冷等静压技术进行成型,以制成碳化硅增强预制件;通过无压浸渗方法,使含铝的熔化液和所述碳化硅增强预制件制成所述碳化硅铝基复合结构件。通过这种方式能够制备得到复杂零件或者为其提供技术支持,且对粉体的可塑性要求不高。

Description

碳化硅铝基复合结构件及碳化硅增强预制件的制备方法 【技术领域】
本申请涉及复合材料技术领域,尤其涉及一种碳化硅铝基复合结构件及碳化硅增强预制件的制备方法。
【背景技术】
高性能轻质结构材料在经济与国防建设中占有重要的战略地位,其中作为基体的轻质结构材料主要有Al、Mg、Ti三种合金,增强体材料主要有碳化硅SiC、Al2O3、BC4、TiB2等。目前碳化硅铝AlSiC复合结构件以其优异的热物理性能和机械力学性能,广泛应用于航空航天、电子封装、光学仪器、运动器材等领域。
在一现有技术中,AlSiC复合结构件的制备方法是:采用SiC粉末与石蜡基粘结剂混合成均匀的喂料,喂料经制粒后在注射成形机上注射成形,所得SiC预成形坯,然后经过溶剂和热脱脂后在1000~1150℃温度下预烧结,最后通过无压熔渗方法在1100~1200℃温度下、N2气氛中将Al合金熔融的溶液渗透到SiC骨架中,从而获得具有高体积分数的SiC/Al复合材料零件。
但是,本申请的发明人在长期的研发过程中发现,上述方法中,粉末注射成型制备复杂零件时,要求注射粉末具有良好的流动性,需要加入大量有机粘结剂,粘结剂的脱除过程是整个工艺中最困难的环节,脱脂时间长,脱脂时生成的大量废气对环境造成污染,同时粉末粒度一般在0.5~20um才适合粉末注射成型工艺要求。
【申请内容】
本申请主要解决的技术问题是提供一种碳化硅铝基复合结构件的制备方法和一种碳化硅增强预制件的制备方法,能够制备得到复杂零件或者为其提供技术支持,且对粉体的可塑性要求不高。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种碳化硅铝基复合结构件的制备方法,所述方法包括:提供至少两种不同平均粒度的碳化硅颗粒;将预定比例的所述不同平均粒度的碳化硅颗粒混合均匀;向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼,并通过冷等静压技术进行成型,以制 成碳化硅增强预制件;通过无压浸渗方法,使含铝的熔化液和所述碳化硅增强预制件制成所述碳化硅铝基复合结构件。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种碳化硅增强预制件的制备方法,所述方法包括:提供至少两种不同平均粒度的碳化硅颗粒;将预定比例的所述不同平均粒度的碳化硅颗粒混合均匀;向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼,并通过冷等静压技术进行成型,以制成所述碳化硅增强预制件。
本申请的有益效果是:区别于现有技术的情况,本申请碳化硅铝基复合结构件的制备方法中,提供至少两种不同平均粒度的碳化硅颗粒;将预定比例的所述不同平均粒度的碳化硅颗粒混合均匀;向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼,并通过冷等静压技术进行成型,以制成碳化硅增强预制件;通过无压浸渗方法,使含铝的熔化液和所述碳化硅增强预制件制成所述碳化硅铝基复合结构件。由于选择至少两种不同粒度的碳化硅颗粒,颗粒与颗粒之间可以互相填充,使得碳化硅预制件得到足够的强度;而通过冷等静压技术进行成型,能得到大的复杂形状的结构件,而且模具便宜,得到的预制件密度均匀,强度高;无压浸渗对SiC预制件进行液相渗铝,可以得到高强度的AlSiC结构件,且工艺设备简单。
【附图说明】
图1是本申请碳化硅铝基复合结构件的制备方法一实施方式的流程图;
图2是本申请碳化硅铝基复合结构件的制备方法另一实施方式的流程图;
图3是本申请碳化硅增强预制件的制备方法一实施方式的流程图。
【具体实施方式】
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,均属于本发明保护的范围。
在详细介绍本申请之前,先介绍一下与本申请相关的现有技术的情况。
汽车轻量化作为降低原油消耗和尾气排放的重要手段,已被广泛关注,研 究表明,汽车自重每降低10%,可降低油耗6%~8%,减少CO2排放13%,且当汽车自重降低时,其起步加速性能会更好,制动时的制动距离也会显著缩短。汽车车身占整车的30%~60%,汽车运行过程中约70%的燃料是消耗在车身质量上,使得车身成为汽车轻量化的关键。此外,车身减轻后,汽车的动力系统的功耗也会降低,从而有利于降低发动机和减速箱的尺寸,实现整车的进一步减重,因此车身减重对于汽车轻量化举足轻重。
汽车车身轻量化并非简单的将汽车重量减轻,而是在保证车身强度和安全的前提下,尽可能地降低汽车车身质量,同时保证汽车车身的制造成本在合理的范围内,目前主要有三种手段:(1)使用轻量化机构,以车身零件的强度和刚度要求为约束,优化设计方法,对零件的机构进行优化设计;(2)使用轻量化材料,通过大量使用轻质、高强度材料实现车身大幅减重;(3)使用轻量化结构材料,采用特种加工工艺制成的、具有轻量化结构特征的、车使用毛坯材料;(4)使用多材料混合车身,采用高性能轻质材料可以有效轻量化车身,但成本仍然较高,综合考虑成本与轻量化效果,德国学者提出“多材料轻量化结构”。其中,通过使用轻量化材料来降低汽车自重已经得到汽车工业的普遍关注,成为车身轻量化的主流技术,主要使用高强钢板、轻金属材料、复合材料替代普通钢材以及采用多材料混合车身结构。其中复合材料因为密度低(铝合金的1/3左右),比强度高、耐撞击、抗断裂韧度好、减振隔音性能好、可设计行好、耐腐蚀等一系列有点,已经得到汽车工业的重视。参见表1,表1是轻质材料替代后的减重效果和相对成本对比。
表1轻质材料替代的减重效果和相对成本对比
Figure PCTCN2017108062-appb-000001
高性能轻质结构材料在经济与国防建设中占有重要的战略地位,其中作为基体的轻质结构材料主要有Al、Mg、Ti三种合金,增强体材料主要有SiC、 Al2O3、BC4、TiB2等。Mg合金的密度比铝低,以其为基体制备的复合材料在航空航天和汽车工业应用中有很大的潜力,但其高温稳定性较差,很难用做关键部件;Ti合金基复合材料具有很好的抗氧化性和高温力学性能,但其制备成本高、加工困难,限制了其广泛使用:而铝合金质量轻、基体合金选择范围广、高强、高韧、耐热、耐蚀,铝材易回收,可循环利用,可热处理性好等优点,所以铝合金成为一种广泛应用的基体材料,成为当前该类材料发展和研究工作的主流。纯铝和铝合金都可用作基体金属,铝合金基体主要有Al-Cu-Mg、Al-Mg-Si和Al-Zn-Mg合金。增强体材料中SiC的强度高、硬度高、热稳定性好、价格相对便宜,在增强体材料中得到了较为广泛的应用。
目前AlSiC复合结构件以其优异的热物理性能和机械力学性能,广泛应用于航空航天、电子封装、光学仪器、运动器材等领域。在汽车工业领域,目前主要应用于高性能刹车片、气缸活塞、轴承轴瓦等高温服役领域,碳化硅颗粒在高温条件依然具有较高的模量以及强度,所以添加了碳化硅增强铝基复合材料比原铝合金高温性能更好,同时显著提升了零部件的比强度和比模量,大大减轻了零件重量。
对于AlSiC复合结构件,首先要制备SiC基预制件,然后进行AlSiC材料复合。现有技术中,制备AlSiC复合结构件,在SiC基预制件过程中,采用的是粉末注射成型技术,而粉末注射成型制备复杂零件时,要求注射粉末具有良好的流动性,需要加入大量有机粘结剂,粘结剂的脱除过程是整个工艺中最困难的环节,脱脂时间长,脱脂时生成的大量废气对环境造成污染,同时粉末粒度一般在0.5~20um才适合粉末注射成型工艺要求,且注射成型法只能制得尺寸较小的器件,对于汽车车身制备应用,注射成型方法无法得到满足要求的SiC预制件。
针对上述问题,本申请选择至少两种不同平均粒度的碳化硅颗粒,颗粒与颗粒之间可以互相填充,使得碳化硅预制件得到足够的强度;而通过冷等静压技术进行成型,能得到大的复杂形状的结构件,而且模具便宜,得到的预制件密度均匀,强度高;无压浸渗对SiC预制件进行液相渗铝,可以得到高强度的AlSiC结构件,且工艺设备简单。
下面结合附图和实施方式对本申请进行详细说明。
参见图1,图1是本申请碳化硅铝基复合结构件的制备方法一实施方式的流程图,该方法包括:
步骤S101:提供至少两种不同平均粒度的碳化硅颗粒。
不同粒度的碳化硅颗粒,其几何形状也不同,通常碳化硅颗粒的几何形状不规则,为多面形,有些颗粒还有很尖锐的尖角。用一种平均粒度的SiC颗粒制备SiC预制件,容易造成颗粒之间填充不完整,导致预制件强度不够,最后使得AlSiC复合结构件的强度不够,无法作为车身结构件。本实施方式选择两种以上的不同平均粒度的碳化硅颗粒,这样使得不同尺寸的SiC颗粒与SiC颗粒之间可以互相填充,使得SiC预制件得到足够的强度。
在一实施方式中,碳化硅颗粒的平均粒度范围为3~150um,例如:一种碳化硅颗粒的平均粒度为3um,一种碳化硅颗粒的平均粒度为50um,一种碳化硅颗粒的平均粒度为100um,一种碳化硅颗粒的平均粒度为150um,等等。一般来说,当颗粒粒度较小时,颗粒间距较小,复合材料的强度会提高;当颗粒粒度较大时,颗粒间距较大,复合材料的塑性会提高;因此,在实际应用中,根据复合材料的强度要求和塑性要求等选择两种以上的碳化硅颗粒的平均粒度。
步骤S102:将预定比例的不同平均粒度的碳化硅颗粒混合均匀。
根据实际需求,确定两种以上的不同平均粒度的碳化硅颗粒的预定比例,然后将预定比例的不同平均粒度的碳化硅颗粒混合均匀。
步骤S103:向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼,并通过冷等静压技术进行成型,以制成碳化硅增强预制件。
粘接剂是指能够将同质或异质物体表面粘接连接在一起的物质,在本实施方式中,粘接剂包括但不限于:石蜡,或者基料(例如:粒度为170~190目的碳化硅和三氧化二铁的混合物)、辅料(例如:粒度为310~330目的广西白泥)等的组合物,或者包括以石蜡主成分的粘结剂,或者商用的碳化硅专用粘结剂,等等。
向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼,其中,混炼的时间为4~12h,例如:4h、7h、9h、12h,等等。混炼的时间不同,得到的预制件的强度也不同,对最终的AlSiC复合结构件的强度也不一样,根据实际的应用,混炼的时间过短或者过长,不太合适。
在一实施方式中,粘接剂为常规使用的石蜡,石蜡便宜,节约成本。其中,石蜡的加入量为混合均匀后的碳化硅颗粒的总量的1%~5%,例如:1%、2%、3%、4%、5%,等等。
等静压技术是一种利用密闭高压容器内制品在各向均等的超高压压力状态 下成型的超高压液压先进技术。冷等静压技术(Cold Isostatic Pressing,CIP)是在常温下,通常用橡胶或塑料作包套模具材料,以液体为压力介质,主要用于粉体材料成型,为进一步烧结、煅造或热等静压工序提供坯体。
与常规成型技术相比,冷等静压技术具有以下特点:
第一、工作压力低;第二、成型的制品密度高;第三、压坯的密度均匀一致。等静压流体介质传递压力,在各方向上相等;包套与粉料受压缩大体一致,粉料与包套无相对运动,它们之间的摩擦阻力很少,压力只有轻微地下降,因此,坯体密度是均匀的;第四、因为密度均匀,制作长径比可不受限制,有利于生产棒状、管状细而长的产品;第五、可以不需要在粉料中添加润滑剂,既减少对制品的污染,又简化制造工序;第六、制品的性能优异,生产周期短,应用范围广。
在一实施方式中,通过冷等静压技术进行成型的压力为50~200MPa,使用的模具为橡胶模具。该成型技术适合制备大的复杂形状的结构件,得到的预制件密度均匀,烧结出来的样品收缩一致性好,近净成型。其中,橡胶模具的尺寸使得烧结后的碳化硅增强预制件的尺寸略小于最终产品的尺寸,这样便于最终产品的后续加工处理,例如使得烧结后的碳化硅增强预制件的各向尺寸比最终产品的尺寸小0.1%-2%。
为了克服干粉模压受压机限制、模具制造复杂的缺点,本申请采用橡胶模具,粉料填充后使用冷等静压方式压制成型,橡胶模具不受产品形状复杂程度限制,且成本低廉,而冷等静压使SiC坯体受力均匀,生坯密度均匀,烧结时不易发生形变,同时可以实现增强体净成型。因此,总体来说,通过冷等静压技术进行成型,能得到大的复杂形状的结构件,而且模具便宜,得到的预制件密度均匀,强度高。
结合参见图2,如果粘接剂采用石蜡,则步骤S103之后,还需要预烧结,以脱脂,即还包括:
步骤S105:对碳化硅增强预制件进行预烧结。
具体来说,在一实施方式中,进行预烧结的温度为550~700℃,保温时间为0.5h~4h。通过这种方式,一方面可以排除掉加入的石蜡,另一方面还可以保持预制件的强度。
步骤S104:通过无压浸渗方法,使含铝的熔化液和碳化硅增强预制件制成碳化硅铝基复合结构件。
无压浸渗工艺是:将SiC预制件直接加入到含铝的熔化液中,通过一定方式与一定速度的搅拌,使SiC预制件均匀分散在熔化液中,最后复合成颗粒增强金属基复合材料熔体,然后可浇铸成锭坯、铸件等。该方法的优点是:工艺设备简单、生产效率高、制造成本低、适用于多种基体和增强体颗粒,可制造各种形状复杂的零件并便于实现工业化,非常具有竞争力,是一种适合于工业规模生产的主要方法。
在一实施方式中,将含铝的铝合金熔化并加热至720℃~780℃后,恒温0.5~2h,除气去渣,得铝合金熔化液,然后将已制备的SiC预制件(例如,SiC车身预制件)置于铝合金熔化液中浸渗4~8h,得到AlSiC复合结构件(例如:放入的是SiC车身预制件,最后制备的是AlSiC复合汽车车身结构件)。
在一实施方式中,碳化硅铝基复合结构件用于汽车车身结构件。AlSiC复合结构件的密度低,替代低碳钢板,可以减重近三分之二,同时具有高的比强度和比模量,高强、高韧、耐磨、耐蚀、耐疲劳等,节能减排的同时更增强了车身的安全性能和使用寿命。
参见图3,图3是本申请碳化硅增强预制件的制备方法一实施方式的流程图,该方法包括:
步骤S201:提供至少两种不同平均粒度的碳化硅颗粒。
步骤S202:将预定比例的不同平均粒度的碳化硅颗粒混合均匀。
步骤S203:向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼,并通过冷等静压技术进行成型,以制成碳化硅增强预制件。
其中,碳化硅颗粒的平均粒度范围为3~150um。
其中,粘接剂为石蜡。
其中,石蜡的加入量为混合均匀后的碳化硅颗粒的总量的1%~5%。
其中,向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼的时间为4~12h。
其中,通过冷等静压技术进行成型的压力为50~200MPa,使用的模具为橡胶模具,橡胶模具的尺寸使得烧结后的碳化硅增强预制件的尺寸略小于最终产品的尺寸。
相关内容的详细说明,请参见上述方法部分,在此不再赘叙。
本实施方式选择至少两种不同平均粒度的碳化硅颗粒,颗粒与颗粒之间可以互相填充,使得碳化硅预制件得到足够的强度;而通过冷等静压技术进行成型,能得到大的复杂形状的结构件,而且模具便宜,得到的预制件密度均匀, 强度高;通过这种方式,能够为制备AlSiC复合结构件提供技术支持。
下面以具体的实施例来说明碳化硅铝基复合结构件的制备。
实施例1:
本实施例以AlSiC复合结构件制备轿车车身B柱为例说明。
传统B柱截面形状比较复杂,由多件冲压钢板焊接而成,除去内饰与外覆件,B柱一般由内到外分为内板、加强板、外板,基本属于闭口薄壁梁结构,与上下接头通过焊接方式将B柱与顶盖侧梁及门框进行连接。要保证B柱具有足够的强度,甚至需要构建“外板-加强板-局部加强板-内板”的结构模式,而且加强板结构通常是一个小总成,通过B柱上安装安全带与门锁等附件的位置所需刚度较大,则需要安装相应的加强板,过多的加强板不仅不利于车身轻量化,且使车身设计和整车装配复杂化。
本实例依然采用内、外板B柱结构,同时将B柱的上下接头分别于内、外板形成构件,在生产过程中一体成型,并通过以下工艺步骤实现。
(1)橡胶模具设计:按照B柱与上下接头一体成型的规划,净成型的SiC增强体预制件烧结后略小于最终产品尺寸,方便最终机加工。
(2)以平均粒度范围为4.0um和30.0um两种SiC颗粒,按照11比例将SiC颗粒、3wt%石蜡(SiC颗粒的总量的3%)进行混炼,混炼时间为4h,得到造粒粉。
(3)将步骤2所得的造粒粉填充至橡胶模具内,保证粉料填充均匀、松装密度一致,在100MPa的压力下使用冷等静压压制成型。
(4)将步骤3的SiC生坯进行预烧结,烧结温度700℃,保温4小时,将石蜡挥发掉,同时得到有一定强度的多孔结构的SiC增强体预制件。
(5)采用6063铝合金为铝基原料,将铝合金熔化并加热至750℃后恒温1h,除气去渣,得铝合金熔化液,然后将所述SiC预制件置于放入铝合金熔化液中浸渗,得到AlSiC复合汽车车身结构件。
(6)将步骤5所得产品进一步加工,按产品设计,只需要将AlSiC以外的铝合金部分按最终尺寸通过机加工去掉即可。
实施例2:
本实施例以AlSiC复合结构件制备轿车车身前纵梁为例说明。
在汽车结构中,由低碳钢板冲压而成的薄壁构件被广泛采用,可以经过翻边与其他构件焊接在一起,是车辆碰撞时的主要吸能构件,包括汽车的前纵梁、车身侧围、地板等许部位,传统的汽车前纵梁横切面是薄壁矩形结构。汽车发生正面碰撞时,主要是由车身前部的塑性形变来吸收碰撞动能,其中起主要作用的是前纵梁。
相较于传统汽车前纵梁的低碳钢材质,铝碳化硅复合结构件具有更高的屈服强度和吸能能力,同时达到大幅度减重的目的。综合考虑吸能能力、碰撞减速度、位移侵入量,并方便于橡胶模具填粉和压制成型,本实例选用槽型截面汽车前纵梁进行制备,并通过以下工艺步骤实现。
(1)橡胶模具设计:按照槽型截面汽车前纵梁设计,净成型的SiC增强体预制件烧结后略小于最终产品尺寸,方便最终机加工。
(2)以平均粒度为4.0um、16um、30.0um、70.0um四种SiC颗粒、四种颗粒按照1∶2∶1∶1与3wt%的石蜡混炼机中进行混炼,得到造粒粉,混炼时间为4h。
(3)将步骤2所得的造粒粉填充至橡胶模具内,保证粉料填充均匀、松装密度一致,在150MPa的压力下使用冷等静压压制成型。
(4)将步骤3的SiC生坯进行预烧结,烧结温度700℃,保温4小时,将石蜡挥发掉,同时得到有一定强度的多孔结构的SiC增强体预制件。
(5)采用6063铝合金为铝基原料,将铝合金熔化并加热至750℃后恒温1h,除气去渣,得铝合金熔化液,然后将所述SiC预制件置于放入铝合金熔化液中浸渗,得到AlSiC复合汽车车身结构件。
(6)将步骤5所得产品进一步加工,按产品设计,只需要将AlSiC以外的铝合金部分按最终尺寸通过机加工去掉即可。
上述具体的实施例,是碳化硅铝基复合结构件用于汽车车身结构件。AlSiC复合结构件的密度低,替代低碳钢板,可以减重近三分之二,同时具有高的比强度和比模量,高强、高韧、耐磨、耐蚀、耐疲劳等,节能减排的同时更增强了车身的安全性能和使用寿命。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围。

Claims (16)

  1. 一种碳化硅铝基复合结构件的制备方法,其中,所述方法包括:
    提供至少两种不同平均粒度的碳化硅颗粒;
    将预定比例的所述不同平均粒度的碳化硅颗粒混合均匀;
    向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼,并通过冷等静压技术进行成型,以制成碳化硅增强预制件;
    通过无压浸渗方法,使含铝的熔化液和所述碳化硅增强预制件制成所述碳化硅铝基复合结构件。
  2. 根据权利要求1所述的制备方法,其中,所述碳化硅颗粒的平均粒度范围为3~150um。
  3. 根据权利要求1所述的制备方法,其中,所述粘接剂为石蜡。
  4. 根据权利要求3所述的制备方法,其中,所述石蜡的加入量为所述混合均匀后的碳化硅颗粒的总量的1%~5%。
  5. 根据权利要求3所述的制备方法,其中,所述通过无压浸渗方法,使含铝的熔化液和所述碳化硅增强预制件制成所述碳化硅铝基复合结构件之前,包括:
    对所述碳化硅增强预制件进行预烧结。
  6. 根据权利要求5所述的制备方法,其中,所述对所述碳化硅增强预制件进行预烧结的温度为550~700℃,保温时间为0.5h~4h。
  7. 根据权利要求1所述的制备方法,其中,所述向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼的时间为4~12h。
  8. 根据权利要求1所述的制备方法,其中,所述通过冷等静压技术进行成型的压力为50~200MPa,使用的模具为橡胶模具,所述橡胶模具的尺寸使得烧结后的碳化硅增强预制件的尺寸略小于最终产品的尺寸。
  9. 根据权利要求1所述的制备方法,其中,所述通过无压浸渗方法中,浸渗的时间为4~8h。
  10. 根据权利要求1所述的制备方法,其中,所述碳化硅铝基复合结构件用于汽车车身结构件。
  11. 一种碳化硅增强预制件的制备方法,其中,所述方法包括:
    提供至少两种不同平均粒度的碳化硅颗粒;
    将预定比例的所述不同平均粒度的碳化硅颗粒混合均匀;
    向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼,并通过冷等静压技术进行成型,以制成所述碳化硅增强预制件。
  12. 根据权利要求11所述的制备方法,其中,所述碳化硅颗粒的平均粒度范围为3~150um。
  13. 根据权利要求11所述的制备方法,其中,所述粘接剂为石蜡。
  14. 根据权利要求13所述的制备方法,其中,所述石蜡的加入量为所述混合均匀后的碳化硅颗粒的总量的1%~5%。
  15. 根据权利要求11所述的制备方法,其中,所述向混合均匀后的碳化硅颗粒中添加粘接剂进行混炼的时间为4~12h。
  16. 根据权利要求11所述的制备方法,其中,所述通过冷等静压技术进行成型的压力为50~200MPa,使用的模具为橡胶模具,所述橡胶模具的尺寸使得烧结后的碳化硅增强预制件的尺寸略小于最终产品的尺寸。
PCT/CN2017/108062 2017-10-27 2017-10-27 碳化硅铝基复合结构件及碳化硅增强预制件的制备方法 WO2019080103A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/108062 WO2019080103A1 (zh) 2017-10-27 2017-10-27 碳化硅铝基复合结构件及碳化硅增强预制件的制备方法
CN201780036309.8A CN109311766A (zh) 2017-10-27 2017-10-27 碳化硅铝基复合结构件及碳化硅增强预制件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/108062 WO2019080103A1 (zh) 2017-10-27 2017-10-27 碳化硅铝基复合结构件及碳化硅增强预制件的制备方法

Publications (1)

Publication Number Publication Date
WO2019080103A1 true WO2019080103A1 (zh) 2019-05-02

Family

ID=65225736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108062 WO2019080103A1 (zh) 2017-10-27 2017-10-27 碳化硅铝基复合结构件及碳化硅增强预制件的制备方法

Country Status (2)

Country Link
CN (1) CN109311766A (zh)
WO (1) WO2019080103A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221352A (ja) * 1989-02-23 1990-09-04 Fuji Dies Kk 摺動・摩擦部用部材
WO2002077304A1 (en) * 2001-03-26 2002-10-03 Kabushiki Kaisha Toyota Jidoshokki Heat dissipation member for electronic apparatus and method for producing the same
CN102628137A (zh) * 2012-04-24 2012-08-08 南昌航空大学 一种制备碳化硅颗粒增强铝基复合材料的方法
CN103240400A (zh) * 2013-04-26 2013-08-14 华南理工大学 一种中高体分碳化硅铝基复合材料的制备方法及其装置
CN103602869A (zh) * 2013-11-18 2014-02-26 湖南金马铝业有限责任公司 粉末冶金法制备高体分碳化硅铝基复合材料的工艺方法
CN105884367A (zh) * 2016-04-18 2016-08-24 湖南浩威特科技发展有限公司 碳化硅预制件废料的回收方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221352A (ja) * 1989-02-23 1990-09-04 Fuji Dies Kk 摺動・摩擦部用部材
WO2002077304A1 (en) * 2001-03-26 2002-10-03 Kabushiki Kaisha Toyota Jidoshokki Heat dissipation member for electronic apparatus and method for producing the same
CN102628137A (zh) * 2012-04-24 2012-08-08 南昌航空大学 一种制备碳化硅颗粒增强铝基复合材料的方法
CN103240400A (zh) * 2013-04-26 2013-08-14 华南理工大学 一种中高体分碳化硅铝基复合材料的制备方法及其装置
CN103602869A (zh) * 2013-11-18 2014-02-26 湖南金马铝业有限责任公司 粉末冶金法制备高体分碳化硅铝基复合材料的工艺方法
CN105884367A (zh) * 2016-04-18 2016-08-24 湖南浩威特科技发展有限公司 碳化硅预制件废料的回收方法

Also Published As

Publication number Publication date
CN109311766A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
CN102225461B (zh) 一种陶瓷颗粒选择性增强铝基复合材料的制备方法
Chandel et al. A review on recent developments of aluminum-based hybrid composites for automotive applications
CN104235237B (zh) 碳化硅泡沫陶瓷/铝合金复合材料制动盘及制备方法
CN100485067C (zh) 采用TiB2颗粒的高强塑性铝基复合材料的制备方法
CN109321767B (zh) 一种复合强化法制备混杂颗粒增强铝基复合材料的方法
CN1318167C (zh) 一种基于选区激光烧结的颗粒增强金属基复合材料的近净成形制备方法
WO2019080100A1 (zh) 碳化硅铝基复合结构件及碳化硅增强预制件的制备方法
CN102102156B (zh) 一种多相颗粒增强的粉末冶金钛基复合材料及其制备方法
CN104878238A (zh) 纳米颗粒弥散化的超细晶金属基纳米复合材料的制备方法
CN103031452A (zh) 一种碳化硅颗粒增强镁基复合材料及制备方法
CN1297363C (zh) 制备高体积分数碳化硅颗粒增强铝基复合材料零件方法
CN109881059A (zh) 镁基复合材料发动机活塞及其制备方法
Krishna et al. Research significance, applications and fabrication of hybrid metal matrix composites
CN103725909B (zh) 一种粉末液相模锻制备铝合金的方法
WO2019080106A1 (zh) 碳化硅铝基复合结构件及碳化硅增强预制件的制备方法
CN114150175A (zh) 一种利用粉末注射成形技术制备Al-Zn-Mg-Cu系铝合金的方法
CN104711496A (zh) 碳纳米管增强镁、铝基复合材料及其制备方法
WO2019080103A1 (zh) 碳化硅铝基复合结构件及碳化硅增强预制件的制备方法
Tian et al. Preparation and forming technology of particle reinforced aluminum matrix composites
CN110079710B (zh) 一种原位纳米TiC颗粒增强Al-Si基复合材料及其制备方法
CN102899517B (zh) 原位SiC-TiC颗粒混合增强铝基复合材料及其制备工艺
JPH0625386B2 (ja) アルミニウム合金粉末及びその焼結体の製造方法
CN107541620A (zh) 汽车活塞用颗粒增强铝基复合材料及其制备方法
CN114292126A (zh) 一种多孔陶瓷局部增强复合材料汽车刹车片的制备方法
Babu et al. Mechanical and tribological properties of magnesium composites–A review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929973

Country of ref document: EP

Kind code of ref document: A1