WO2019080080A1 - 双向隔离型数字dcdc电源及控制方法 - Google Patents

双向隔离型数字dcdc电源及控制方法

Info

Publication number
WO2019080080A1
WO2019080080A1 PCT/CN2017/107953 CN2017107953W WO2019080080A1 WO 2019080080 A1 WO2019080080 A1 WO 2019080080A1 CN 2017107953 W CN2017107953 W CN 2017107953W WO 2019080080 A1 WO2019080080 A1 WO 2019080080A1
Authority
WO
WIPO (PCT)
Prior art keywords
output voltage
input side
power supply
voltage
digital
Prior art date
Application number
PCT/CN2017/107953
Other languages
English (en)
French (fr)
Inventor
邓向钖
刘鹏飞
唐疑军
刘晓红
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to PCT/CN2017/107953 priority Critical patent/WO2019080080A1/zh
Priority to CN201780014603.9A priority patent/CN109075715B/zh
Publication of WO2019080080A1 publication Critical patent/WO2019080080A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter

Definitions

  • the present application relates to the field of power electronics, and in particular to a bidirectional isolated digital DCDC power supply and control method.
  • DCDC is a newly developed miniaturized power switch module that uses microelectronics technology to assemble a small surface mount integrated circuit and microelectronic components.
  • digital DCDC power supplies have been widely used as power supply devices for powering various electronic devices that require DC power supply.
  • the digital power converts the feedback variables of all analog control loops into digital quantities and uses these digital quantities to calculate the control response.
  • the difference between digital power and analog power is mainly in the digital control and power management and communication of the Pulse Width Modulation (PWM) feedback loop.
  • PWM Pulse Width Modulation
  • the traditional two-way isolated digital DCDC power supply structure is shown in Figure 1.
  • a digital signal processor (DSP) is usually placed on the output side, and the DSP is shared with the output side.
  • DSP digital signal processor
  • the DSP can participate in the feedback operation by collecting the output voltage of the output side through the voltage dividing resistor, and the non-spaced pulse width modulator adjusts the output voltage of the output side according to the feedback coefficient of the DSP output.
  • the DSP needs to sample the input side voltage to participate in the feedback operation. Since the DSP is isolated from the input side circuit, the resistance sampling cannot be directly used, and the voltage of the input side circuit needs to be added with the corresponding isolation sampling circuit to sample.
  • a linear optocoupler or an isolated analog-to-digital converter For example, a linear optocoupler or an isolated analog-to-digital converter.
  • the performance of the isolated linear sampling circuit is greatly affected by temperature and humidity, and the stability and accuracy of the direct sampling of the resistance cannot be achieved, which affects the stability and accuracy of the power supply, and the cost is relatively high.
  • the first aspect of the present application provides a bidirectional isolated digital DCDC power supply, where the power supply includes An input side, an output side isolated from the input side, a feedback circuit coupled to the input side and an isolated pulse width modulator, a photocoupler coupled to the feedback circuit, and the optocoupler and the isolation a digital signal processor connected to the pulse width modulator;
  • the feedback circuit is configured to acquire an output voltage error of the input side
  • the optocoupler for transmitting the output voltage error to the digital signal processor
  • the digital signal processor is configured to obtain a voltage feedback parameter according to the output voltage error
  • the isolated pulse width modulator is configured to adjust an output voltage of the input side according to the voltage feedback parameter.
  • the feedback circuit includes an RC filter circuit and an operational amplifier, and an inverting input end and an output end of the operational amplifier are connected to the RC filter circuit.
  • the inverting input terminal of the operational amplifier inputs an output voltage of the input side, and the non-inverting input terminal inputs the reference voltage;
  • the RC filter circuit is configured to adjust an output voltage of the input side according to the output voltage error
  • the operational amplifier is configured to acquire the output voltage error according to an output voltage of the input side and a reference voltage.
  • the RC filter circuit includes a first isolation resistor, a first capacitor, and a second capacitor, where A first isolation resistor is coupled in series with the first capacitor, and the second capacitor is coupled in parallel with the first isolation resistor and the first capacitor in series.
  • an anode of the photocoupler is coupled to a second isolation resistor, an emitter of the photocoupler is grounded, and a collector of the photocoupler A third isolation resistor is connected, the second isolation resistor is connected to the input voltage terminal of the input side, and the third isolation resistor is connected to the input voltage terminal of the output side.
  • the power supply further includes a field effect transistor coupled to the isolated pulse width modulator and the input side;
  • the pulse width modulator is specifically configured to drive the field effect transistor to adjust an output voltage of the input side according to the voltage feedback parameter.
  • the type of the optocoupler For PC817.
  • the second aspect of the present application provides a method for controlling a bidirectional isolated digital DCDC power supply, including:
  • the output voltage of the input side is adjusted according to the voltage feedback parameter by an isolated pulse width modulator.
  • the feedback circuit includes an RC filter circuit and an operational amplifier, and the obtaining, by the feedback circuit, an output voltage error on the input side includes:
  • the output voltage error is obtained by the operational amplifier according to an output voltage of the input side and a reference voltage.
  • the RC filter circuit includes a first isolation resistor, a first capacitor, and a second capacitor.
  • the performing the isolation pulse width modulation Adjusting the output voltage of the input side according to the voltage feedback parameter includes:
  • the pulse width modulator drives the field effect transistor to adjust an output voltage of the input side according to the voltage feedback parameter.
  • a feedback circuit is used instead of the isolated sampling circuit in the conventional technology, thereby reducing the cost and the complexity of the power supply circuit.
  • the digital signal processor obtains the voltage feedback parameter according to the output voltage error transmitted by the optocoupler, which reduces the computational complexity of the digital signal processor to some extent.
  • the isolated pulse width modulator adjusts the output voltage of the input side according to the voltage feedback parameter, thereby achieving constant voltage output and improving the reliability of the power supply.
  • FIG. 1 is a schematic structural view of a bidirectional isolated digital DCDC power supply in a conventional technology
  • FIG. 2 is a schematic structural diagram of a bidirectional isolated digital DCDC power supply provided in an embodiment of the present application
  • FIG. 3 is a circuit diagram of a feedback circuit and a photocoupler in a bidirectional isolated digital DCDC power supply provided in an embodiment of the present application;
  • FIG. 4 is a flowchart of a method for controlling a bidirectional isolated digital DCDC power supply according to an embodiment of the present application.
  • bidirectional isolated digital DCDC power supply is not limited to the bidirectional digital DCDC power supply application, and can be applied to all of the isolated multi-directional, multi-channel digital DCDC power supplies.
  • the bidirectional isolated digital DCDC power supply includes an input side 102, an output side 104 isolated from the input side 102, and an input side 102.
  • a digital signal processor 110 is connected to the non-isolated pulse width modulator 103 and the voltage dividing resistor 105.
  • the digital signal processor 110 is shared with the output side 104; the feedback circuit 106, the photocoupler 108, the digital signal processor 110, and the isolated pulse width modulator 112 are used to adjust the output voltage on the input side; the voltage dividing resistor 105, non The isolated pulse width modulator 103 and the digital signal processor 110 are used to regulate the output voltage on the output side.
  • the feedback circuit 106 is configured to acquire an output voltage error of the input side 102; the photocoupler 108 is configured to transmit an output voltage error to the digital signal processor 110.
  • the output voltage error of the input side 102 is obtained by the feedback circuit 106, and the output voltage error is sent to the digital signal processor 110 through the photocoupler 108, and the digital signal processor 110 can calculate the voltage feedback parameter of the input side 102 by the output voltage error.
  • the sampling of the output voltage of the input side 102 is difficult, and the accuracy of the voltage feedback parameter is improved, thereby improving the stability of the DCDC power supply.
  • FIG. 3 is a circuit diagram of the feedback circuit 106 and the photocoupler 108 in the bidirectional isolated digital DCDC power supply shown in FIG. 2. As shown in Figure 3, where:
  • the feedback circuit 106 includes an RC filter circuit and an operational amplifier.
  • the inverting input terminal and the output terminal of the operational amplifier are connected to the RC filter circuit.
  • the RC filter circuit is configured to adjust an output voltage of the input side according to the output voltage error; and an operational amplifier is configured to acquire the output voltage error according to an output voltage of the input side and a reference voltage.
  • the voltage value of the reference voltage is a fixed value, and optionally, the reference voltage is 2.5V;
  • the inverting input terminal of the operational amplifier inputs the output voltage of the input side 102, and the input of the positive phase input terminal is the reference voltage;
  • the output voltage and the reference voltage of the input side 102 can obtain an output voltage error;
  • the RC filter circuit includes a first isolation resistor R1, a first capacitor C1, and a second capacitor C2, wherein the first isolation resistor R1 is connected in series with the first capacitor C1, The second capacitor C2 is connected in parallel with the first isolation resistor R1 and the first capacitor C1 connected in series.
  • the output voltage of the input side of the operational amplifier is connected to the input voltage of the input side and the reference voltage of the non-inverting input terminal is connected, the reference voltage and the output voltage are compared to determine the output voltage error, and a feedback loop is formed with the feedback circuit, thereby achieving constant voltage output and improving the reliability of the power supply. Sex.
  • the cathode of the photocoupler 108 is connected to the output end of the feedback circuit, the anode is connected to the second isolation resistor R2, the emitter is grounded, the collector is connected to the third isolation resistor R3, and the output terminal is connected to the digital signal processor 110.
  • the digital signal processor can calculate the voltage feedback parameter according to the output voltage error sent by the optocoupler. Compared with the output voltage sampling on the input side of the conventional technology, the sampling difficulty is low, and the accuracy of the voltage feedback parameter is improved, thereby improving the DCDC. Power supply stability.
  • the second isolation resistor R2 and the third isolation resistor R3 are used to generate current limiting and voltage limiting to maintain the stability of the first input voltage U1 and the second input voltage U2.
  • the type of the photocoupler 108 is PC817.
  • PC817 optocoupler is widely used in computer terminals, thyristor system equipment, measuring instruments, photocopying machines, automatic ticket sales, household appliances and other circuits to signal transmission, so that the front end is completely isolated from the load, the purpose is to increase security, Reduce circuit interference and simplify circuit design.
  • the digital signal processor 110 is configured to obtain a voltage feedback parameter according to the output voltage error.
  • the feedback circuit 106 is used to replace the isolated sampling circuit in the conventional technology, and the output voltage error is transmitted through the photocoupler 108, thereby reducing the cost and complexity of the power supply circuit.
  • the digital signal processor 110 calculates the voltage feedback parameter by outputting the voltage error, which reduces the computational complexity of the digital signal processor 110 to a certain extent, improves the accuracy of the voltage feedback parameter, and improves the stability of the DCDC power supply.
  • the isolated pulse width modulator 112 is configured to adjust the output voltage of the input side according to the voltage feedback parameter.
  • the non-isolated pulse width modulator 103 and the isolated pulse width modulator 112 modulate the transistor base or field effect transistor according to a change in the corresponding load (alias: metal-oxide-semiconductor (MOS))
  • MOS metal-oxide-semiconductor
  • the bias of the gate is used to change the on-time of the transistor or MOS transistor, thereby realizing the change of the output of the switching regulator power supply. This way, the output voltage of the power supply can be kept constant when the operating conditions change, which is a very effective technique for controlling the analog circuit by using the digital signal of the microprocessor.
  • the power supply further includes a field effect transistor connected to the isolation pulse width modulator 112 and the input side 102; the isolation pulse width modulator 112 is specifically configured to drive the field effect according to the voltage feedback parameter.
  • the transistor adjusts the output voltage of the input side to keep the voltage of the input side 102 constant, improving the reliability of the power supply.
  • the digital signal processor 110 is further configured to receive the output side 104 collected by the voltage dividing resistor 105.
  • the output voltage is calculated, and the voltage feedback parameter of the output side 104 is calculated according to the output voltage.
  • the non-isolated pulse width modulator 103 is driven to adjust the voltage of the output side 104 according to the voltage feedback parameter of the output side 104 to stabilize the voltage of the output side 104.
  • FIG. 4 is a schematic flowchart of a method for controlling a bidirectional isolated digital DCDC power supply. Specifically, as shown in FIG. 4, the foregoing method includes:
  • Step S402 Acquire an output voltage error on the input side through a feedback circuit.
  • the feedback circuit includes an RC filter circuit and an operational amplifier
  • the obtaining an output voltage error on the input side through the feedback circuit includes: adjusting, by the RC filter circuit, the input side according to the output voltage error Output voltage; the output voltage error is obtained by the operational amplifier according to an output voltage of the input side and a reference voltage.
  • the RC filter circuit includes a first isolation resistor, a first capacitor, and a second capacitor.
  • Step S404 The output voltage error is sent to the digital signal processor through the photocoupler.
  • Step S406 Acquire a voltage feedback parameter according to the output voltage error by the digital signal processor.
  • Step S408 Adjust the output voltage of the input side according to the voltage feedback parameter by the isolation pulse width modulator.
  • the adjusting the output voltage of the input side according to the voltage feedback parameter by the isolation pulse width modulator comprises: the pulse width modulator driving the field effect transistor to adjust the field effect transistor according to the voltage feedback parameter The output voltage on the input side.
  • a feedback circuit is used instead of the isolated sampling circuit in the conventional technology, thereby reducing the cost and the complexity of the power supply circuit.
  • the digital signal processor obtains the voltage feedback parameter according to the output voltage error transmitted by the optocoupler, which reduces the computational complexity of the digital signal processor to some extent.
  • the isolated pulse width modulator adjusts the output voltage of the input side according to the voltage feedback parameter, thereby achieving constant voltage output and improving the reliability of the power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种双向隔离型数字DCDC电源及控制方法,所述电源包括输入侧(102)、与所述输入侧(102)隔离的输出侧(104)、与所述输入侧(102)连接的反馈电路(106)和隔离脉冲宽度调制器(112)、与所述反馈电路(106)连接的光电耦合器(108)、与所述光电耦合器(108)和所述隔离脉冲宽度调制器(112)连接的数字信号处理器(110);所述反馈电路(106),用于获取所述输入侧(102)的输出电压误差;所述光电耦合器(108),用于将所述输出电压误差发送给所述数字信号处理器(110);所述数字信号处理器(110),用于根据所述输出电压误差获取电压反馈参数;所述隔离脉冲宽度调制器(112),用于根据所述电压反馈参数调整所述输入侧(102)的输出电压,从而提高了电源的可靠性。

Description

双向隔离型数字DCDC电源及控制方法 技术领域
本申请涉及电力电子技术领域,特别是涉及一种双向隔离型数字DCDC电源及控制方法。
背景技术
DCDC是一种新研制的小型化电源开关模块,它是采用微电子技术,把小型表面安装集成电路与微型电子元器件组装成一体而构成。目前,数字DCDC电源作为一种供电装置已被广泛应用于为各种需直流供电的电子设备供电。数字电源将所有模拟控制回路的反馈变量转换成数字量,并利用这些数字量计算控制响应。数字电源与模拟电源的区别主要在于脉冲宽度调制(Pulse Width Modulation,PWM)反馈回路的数字控制和电源管理与通信。
传统的双向隔离数字DCDC电源结构如图1所示。通常将数字信号处理器(Digital Signal Process,DSP)置于输出侧,DSP与输出侧共地。当输入侧能量向输出侧流动时,DSP可通过分压电阻采集输出侧的输出电压参与反馈运算,非隔脉冲宽度调制器根据DSP输出的反馈系数调整输出侧的输出电压。当输出侧能量向输入侧流动时,DSP需要采样输入侧电压参与反馈运算,由于DSP与输入侧电路隔离,不能直接使用电阻采样,导致输入侧电路的电压需要外加相应的隔离采样电路才能采样,例如线性光耦或隔离模数转换器等。且隔离线性采样电路的性能受温度、湿度的影响较大,无法达到电阻直接采样的稳定度和精度,影响电源的稳定性和精度,成本也相对较高。
申请内容
基于此,为了解决上述传统技术中输入侧的电压无法直接使用分压电阻采样造成的输入侧的电压反馈参数难以计算,从而导致电源电压不稳的技术问题,特提供了一种双向隔离型数字DCDC电源。
本申请第一方面提供了一种双向隔离型数字DCDC电源,所述电源包括 输入侧、与所述输入侧隔离的输出侧、与所述输入侧连接的反馈电路和隔离脉冲宽度调制器、与所述反馈电路连接的光电耦合器、与所述光电耦合器和所述隔离脉冲宽度调制器连接的数字信号处理器;
所述反馈电路,用于获取所述输入侧的输出电压误差;
所述光电耦合器,用于将所述输出电压误差发送给所述数字信号处理器;
所述数字信号处理器,用于根据所述输出电压误差获取电压反馈参数;
所述隔离脉冲宽度调制器,用于根据所述电压反馈参数调整所述输入侧的输出电压。
结合第一方面,在第一方面的第一种可能的实现方式中,所述反馈电路包括RC滤波电路和运算放大器,所述运算放大器的反相输入端和输出端与所述RC滤波电路连接,所述运算放大器的反相输入端输入所述输入侧的输出电压,正相输入端输入所述参考电压;
所述RC滤波电路,用于根据所述输出电压误差调整所述输入侧的输出电压;
所述运算放大器,用于根据所述输入侧的输出电压和参考电压获取所述输出电压误差。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述RC滤波电路包括第一隔离电阻、第一电容和第二电容,其中,所述第一隔离电阻与所述第一电容串联,所述第二电容与所述串联的第一隔离电阻和第一电容并联。
结合第一方面,在第一方面的第三种可能的实现方式中,所述光电耦合器的阳极连接第二隔离电阻,所述光电耦合器的发射极接地,所述光电耦合器的集电极连接第三隔离电阻,所述第二隔离电阻连接所述输入侧的输入电压端,所述第三隔离电阻连接所述输出侧的输入电压端。
结合第一方面,在第一方面的第四种可能的实现方式中,所述电源还包括与所述隔离脉冲宽度调制器和所述输入侧连接的场效应晶体管;
所述脉冲宽度调制器具体用于根据所述电压反馈参数驱动所述场效应晶体管调整所述输入侧的输出电压。
结合第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可 能的实现方式、第一方面的第三种可能的实现方式或第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述光电耦合器的型号为PC817。
此外,本申请第二方面提供了一种双向隔离型数字DCDC电源的控制方法,包括:
通过反馈电路获取输入侧的输出电压误差;
通过光电耦合器将所述输出电压误差发送给所述数字信号处理器;
通过数字信号处理器根据所述输出电压误差获取电压反馈参数;
通过隔离脉冲宽度调制器根据所述电压反馈参数调整所述输入侧的输出电压。
结合第二方面,在第二方面的第一种可能的实现方式中,所述反馈电路包括RC滤波电路和运算放大器,所述通过反馈电路获取输入侧的输出电压误差包括:
通过所述RC滤波电路根据所述输出电压误差调整所述输入侧的输出电压;
通过所述运算放大器根据所述输入侧的输出电压和参考电压获取所述输出电压误差。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述RC滤波电路包括第一隔离电阻、第一电容和第二电容。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述通过隔离脉冲宽度调制器根据所述电压反馈参数调整所述输入侧的输出电压包括:
所述脉冲宽度调制器根据所述电压反馈参数驱动场效应晶体管调整所述输入侧的输出电压。
实施本申请实施例,将具有如下有益效果:
采用了上述的双向隔离型数字DCDC电源及控制方法之后,采用反馈电路代替传统技术中的隔离采样电路,降低了成本和电源电路的复杂度。数字信号处理器根据光电耦合器传输的输出电压误差获取电压反馈参数,在一定程度上减少了数字信号处理器的计算复杂度。隔离脉冲宽度调制器根据电压反馈参数调整输入侧的输出电压,从而实现恒压输出,提高电源的可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为传统技术中的双向隔离型数字DCDC电源的结构示意图;
图2为本申请实施例中提供的一种双向隔离型数字DCDC电源的结构示意图;
图3为本申请实施例中提供的一种双向隔离型数字DCDC电源中反馈电路和光电耦合器的电路图;
图4为本申请实施例中提供的一种双向隔离型数字DCDC电源的控制方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了解决上述传统技术中输入侧的电压无法直接使用分压电阻采样造成的输入侧的电压反馈参数难以计算,从而导致电源电压不稳的技术问题,特提供了一种双向隔离型数字DCDC电源。
需要说明的是,该双向隔离型数字DCDC电源并不局限于双向数字DCDC电源应用,在所有使用隔离型多向、多路数字DCDC电源皆可应用。
参见图2,为本申请提出的一种双向隔离型数字DCDC电源的结构示意图,上述双向隔离型数字DCDC电源包括:输入侧102、与输入侧102隔离的输出侧104、与输入侧102连接的反馈电路106和隔离脉冲宽度调制器112、与反馈电路106连接的光电耦合器108、与输出侧104连接的非隔离脉冲宽度调制器103和分压电阻105、以及与光电耦合器108、隔离脉冲宽度调制器112、 非隔离脉冲宽度调制器103和分压电阻105连接的数字信号处理器110。
其中,数字信号处理器110与输出侧104共地;反馈电路106、光电耦合器108、数字信号处理器110和隔离脉冲宽度调制器112用于调节输入侧的输出电压;分压电阻105、非隔离脉冲宽度调制器103和数字信号处理器110用于调节输出侧的输出电压。
在本实施例中,反馈电路106用于获取所述输入侧102的输出电压误差;光电耦合器108用于将输出电压误差发送给数字信号处理器110。
通过反馈电路106获取输入侧102的输出电压误差,并通过光电耦合器108将输出电压误差发送给数字信号处理器110,数字信号处理器110可通过输出电压误差计算输入侧102的电压反馈参数,相较于传统技术中获取输入侧102的输出电压采样难度低,提高了电压反馈参数的准确性,从而提高DCDC电源的稳定性。
具体的,请参照图3,图3为图2所示双向隔离型数字DCDC电源中反馈电路106和光电耦合器108的电路图。如图3所示,其中:
上述反馈电路106包括:RC滤波电路和运算放大器,运算放大器的反相输入端和输出端与RC滤波电路连接。RC滤波电路用于根据所述输出电压误差调整所述输入侧的输出电压;运算放大器用于根据所述输入侧的输出电压和参考电压获取所述输出电压误差。
其中,参考电压的电压值为固定值,可选的,参考电压为2.5V;运算放大器的反相输入端输入的是输入侧102的输出电压,正相输入端输入的是参考电压;通过比较输入侧102的输出电压和参考电压可获取输出电压误差;RC滤波电路包括第一隔离电阻R1、第一电容C1和第二电容C2,其中,第一隔离电阻R1与第一电容C1串联,第二电容C2与串联的第一隔离电阻R1和第一电容C1并联。
通过运算放大器的反相输入端连接输入侧的输出电压和正相输入端连接参考电压,比较参考电压和输出电压确定输出电压误差,与反馈电路形成反馈环,从而实现恒压输出,提高电源的可靠性。
光电耦合器108的阴极与反馈电路的输出端连接,阳极连接第二隔离电阻R2,发射极接地,集电极连接第三隔离电阻R3,输出端与数字信号处理器110 连接,则数字信号处理器可根据光电耦合器发送的输出电压误差计算电压反馈参数,相较于传统技术中采集输入侧的输出电压采样难度低,提高了电压反馈参数的准确性,从而提高DCDC电源的稳定性。
其中,第二隔离电阻R2和第三隔离电阻R3用于产生限流和限压,以保持第一输入电压U1和第二输入电压U2的稳定性。
可选的,光电耦合器108的型号为PC817。PC817光电耦合器广泛用在电脑终端机,可控硅系统设备,测量仪器,影印机,自动售票,家用电器等电路之间的信号传输,使之前端与负载完全隔离,目的在于增加安全性,减小电路干扰,简化电路设计。
在本实施例中,数字信号处理器110用于根据所述输出电压误差获取电压反馈参数。
采用反馈电路106代替传统技术中的隔离采样电路,并通过光电耦合器108传输输出电压误差,降低了成本和电源电路的复杂度。且数字信号处理器110通过输出电压误差计算电压反馈参数,在一定程度上减少了数字信号处理器110的计算复杂度,提高了电压反馈参数的准确性,从而提高DCDC电源的稳定性。
在本实施例中,隔离脉冲宽度调制器112用于根据所述电压反馈参数调整所述输入侧的输出电压。
可选的,非隔离脉冲宽度调制器103和隔离脉冲宽度调制器112根据相应载荷的变化来调制晶体管基极或场效应管(别名:金属-绝缘体-半导体(metal-oxide-semiconductor,MOS))栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
可选的,所述电源还包括与所述隔离脉冲宽度调制器112和所述输入侧102连接的场效应晶体管;隔离脉冲宽度调制器112具体用于根据所述电压反馈参数驱动所述场效应晶体管调整所述输入侧的输出电压,以使输入侧102的电压保持恒定,提高电源的可靠性。
可选的,数字信号处理器110还用于接收分压电阻105采集的输出侧104 的输出电压,并根据输出电压计算输出侧104的电压反馈参数,驱动非隔离脉冲宽度调制器103根据输出侧104的电压反馈参数调整输出侧104的电压,以使输出侧104的电压稳定。
与图2所示的实施例一致,请参照图4,图4为双向隔离型数字DCDC电源的控制方法的流程示意图。具体的,如图4所示,上述方法包括:
步骤S402:通过反馈电路获取输入侧的输出电压误差。
在其中一个实施例中,所述反馈电路包括RC滤波电路和运算放大器,所述通过反馈电路获取输入侧的输出电压误差包括:通过所述RC滤波电路根据所述输出电压误差调整所述输入侧的输出电压;通过所述运算放大器根据所述输入侧的输出电压和参考电压获取所述输出电压误差。
在其中一个实施例中,所述RC滤波电路包括第一隔离电阻、第一电容和第二电容。
步骤S404:通过光电耦合器将输出电压误差发送给数字信号处理器。
步骤S406:通过数字信号处理器根据输出电压误差获取电压反馈参数。
步骤S408:通过隔离脉冲宽度调制器根据电压反馈参数调整输入侧的输出电压。
在其中一个实施例中,所述通过隔离脉冲宽度调制器根据所述电压反馈参数调整所述输入侧的输出电压包括:所述脉冲宽度调制器根据所述电压反馈参数驱动场效应晶体管调整所述输入侧的输出电压。
综上所述,实施本申请实施例,将具有如下有益效果:
采用了上述的双向隔离型数字DCDC电源及控制方法之后,采用反馈电路代替传统技术中的隔离采样电路,降低了成本和电源电路的复杂度。数字信号处理器根据光电耦合器传输的输出电压误差获取电压反馈参数,在一定程度上减少了数字信号处理器的计算复杂度。隔离脉冲宽度调制器根据电压反馈参数调整输入侧的输出电压,从而实现恒压输出,提高电源的可靠性。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种双向隔离型数字DCDC电源,其特征在于,所述电源包括输入侧、与所述输入侧隔离的输出侧、与所述输入侧连接的反馈电路和隔离脉冲宽度调制器、与所述反馈电路连接的光电耦合器、与所述光电耦合器和所述隔离脉冲宽度调制器连接的数字信号处理器;
    所述反馈电路,用于获取所述输入侧的输出电压误差;
    所述光电耦合器,用于将所述输出电压误差发送给所述数字信号处理器;
    所述数字信号处理器,用于根据所述输出电压误差获取电压反馈参数;
    所述隔离脉冲宽度调制器,用于根据所述电压反馈参数调整所述输入侧的输出电压。
  2. 根据权利要求1所述的双向隔离型数字DCDC电源,其特征在于,所述反馈电路包括RC滤波电路和运算放大器,所述运算放大器的反相输入端和输出端与所述RC滤波电路连接,所述运算放大器的反相输入端输入所述输入侧的输出电压,正相输入端输入所述参考电压;
    所述RC滤波电路,用于根据所述输出电压误差调整所述输入侧的输出电压;
    所述运算放大器,用于根据所述输入侧的输出电压和参考电压获取所述输出电压误差。
  3. 根据权利要求2所述的双向隔离型数字DCDC电源,其特征在于,所述RC滤波电路包括第一隔离电阻、第一电容和第二电容,其中,所述第一隔离电阻与所述第一电容串联,所述第二电容与所述串联的第一隔离电阻和第一电容并联。
  4. 根据权利要求1所述的双向隔离型数字DCDC电源,其特征在于,所述光电耦合器的阳极连接第二隔离电阻,所述光电耦合器的发射极接地,所述 光电耦合器的集电极连接第三隔离电阻,所述第二隔离电阻连接所述输入侧的输入电压端,所述第三隔离电阻连接所述输出侧的输入电压端。
  5. 根据权利要求1所述的双向隔离型数字DCDC电源,其特征在于,所述双向隔离型数字DCDC电源还包括与所述隔离脉冲宽度调制器和所述输入侧连接的场效应晶体管;
    所述脉冲宽度调制器具体用于根据所述电压反馈参数驱动所述场效应晶体管调整所述输入侧的输出电压。
  6. 根据权利要求1~5任一项所述的双向隔离型数字DCDC电源,其特征在于,所述光电耦合器的型号为PC817。
  7. 一种双向隔离型数字DCDC电源控制方法,其特征在于,所述方法基于前述权利要求1至6任一项的双向隔离型数字DCDC电源,所述方法包括:
    通过反馈电路获取输入侧的输出电压误差;
    通过光电耦合器将所述输出电压误差发送给所述数字信号处理器;
    通过数字信号处理器根据所述输出电压误差获取电压反馈参数;
    通过隔离脉冲宽度调制器根据所述电压反馈参数调整所述输入侧的输出电压。
  8. 根据权利要求7所述的双向隔离型数字DCDC电源控制方法,其特征在于,所述反馈电路包括RC滤波电路和运算放大器,所述通过反馈电路获取输入侧的输出电压误差包括:
    通过所述RC滤波电路根据所述输出电压误差调整所述输入侧的输出电压;
    通过所述运算放大器根据所述输入侧的输出电压和参考电压获取所述输出电压误差。
  9. 根据权利要求8所述的双向隔离型数字DCDC电源控制方法,其特征在于,所述RC滤波电路包括第一隔离电阻、第一电容和第二电容。
  10. 根据权利要求6-9任一项所述的双向隔离型数字DCDC电源控制方法,其特征在于,所述通过隔离脉冲宽度调制器根据所述电压反馈参数调整所述输入侧的输出电压包括:
    所述脉冲宽度调制器根据所述电压反馈参数驱动场效应晶体管调整所述输入侧的输出电压。
PCT/CN2017/107953 2017-10-27 2017-10-27 双向隔离型数字dcdc电源及控制方法 WO2019080080A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/107953 WO2019080080A1 (zh) 2017-10-27 2017-10-27 双向隔离型数字dcdc电源及控制方法
CN201780014603.9A CN109075715B (zh) 2017-10-27 2017-10-27 双向隔离型数字dcdc电源及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/107953 WO2019080080A1 (zh) 2017-10-27 2017-10-27 双向隔离型数字dcdc电源及控制方法

Publications (1)

Publication Number Publication Date
WO2019080080A1 true WO2019080080A1 (zh) 2019-05-02

Family

ID=64812357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107953 WO2019080080A1 (zh) 2017-10-27 2017-10-27 双向隔离型数字dcdc电源及控制方法

Country Status (2)

Country Link
CN (1) CN109075715B (zh)
WO (1) WO2019080080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115453957A (zh) * 2022-11-10 2022-12-09 浙江国利信安科技有限公司 数字量输入采集系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5862044A (en) * 1996-12-02 1999-01-19 Yokogawa Electric Corporation Switching power supply unit
CN1713500A (zh) * 2004-06-14 2005-12-28 厦门华侨电子企业有限公司 可调控输出电压的开关电源
CN2888736Y (zh) * 2006-03-17 2007-04-11 崇贸科技股份有限公司 具有用于轻负载操作的节能电路的软切换式功率转换器
CN202696485U (zh) * 2012-05-17 2013-01-23 深圳市欣振声电子有限公司 一种超低待机功耗的电源适配器
CN102931849A (zh) * 2012-11-26 2013-02-13 宁德时代新能源科技有限公司 双向dc/dc变换装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868731B (zh) * 2014-02-21 2017-09-29 东莞钜威动力技术有限公司 双向隔离dc‑dc变换器
CN207518480U (zh) * 2017-10-27 2018-06-19 深圳欣锐科技股份有限公司 双向隔离型数字dcdc电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5862044A (en) * 1996-12-02 1999-01-19 Yokogawa Electric Corporation Switching power supply unit
CN1713500A (zh) * 2004-06-14 2005-12-28 厦门华侨电子企业有限公司 可调控输出电压的开关电源
CN2888736Y (zh) * 2006-03-17 2007-04-11 崇贸科技股份有限公司 具有用于轻负载操作的节能电路的软切换式功率转换器
CN202696485U (zh) * 2012-05-17 2013-01-23 深圳市欣振声电子有限公司 一种超低待机功耗的电源适配器
CN102931849A (zh) * 2012-11-26 2013-02-13 宁德时代新能源科技有限公司 双向dc/dc变换装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115453957A (zh) * 2022-11-10 2022-12-09 浙江国利信安科技有限公司 数字量输入采集系统
CN115453957B (zh) * 2022-11-10 2023-02-17 浙江国利信安科技有限公司 数字量输入采集系统

Also Published As

Publication number Publication date
CN109075715B (zh) 2021-09-28
CN109075715A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
US8878499B2 (en) Power factor correction boost converter and frequency switching modulation method thereof
EP3471254A1 (en) Duty cycle based current estimation in buck converter
CN101030729B (zh) 用于功率变换与调节的装置
WO2016082395A1 (zh) 功率控制方法及装置
CN103703867B (zh) 用于使用晶体管饱和控制将电压供应到电力负载的电压供应设备和方法
CN203788154U (zh) 一种多路输出dc/dc二次电源系统
US9548667B2 (en) Constant on-time (COT) control in isolated converter
TW201417466A (zh) 具初級側回授控制之返馳式電壓轉換器及其電壓控制方法
TW201013357A (en) Power regulators, electronic systems, and methods for converting input voltage to output voltage
WO2020155799A1 (zh) 一种电流控制电路及其控制方法
US9577542B2 (en) Constant on-time (COT) control in isolated converter
CN103702460B (zh) 一种简易小功率可控加热电路
CN108900082B (zh) 开关电源变换系统
WO2019080080A1 (zh) 双向隔离型数字dcdc电源及控制方法
TW201427254A (zh) 直流對直流轉換器、時間產生電路及其操作方法
JP6563648B2 (ja) 絶縁型のdc/dcコンバータ、1次側コントローラ、同期整流コントローラ、それを用いた電源装置、電源アダプタおよび電子機器
Chang et al. Highly integrated ZVS flyback converter ICs with pulse transformer to optimize USB power delivery for fast-charging mobile devices
CN111355379B (zh) 一种控制电路、控制方法、芯片及反激式变换器
CN113242036B (zh) 一种ctr可调的方法、光耦电路及装置
TW201228197A (en) Resonant converter circuit
CN112583275B (zh) 一种反激式多路输出供电系统及其控制电路和供电方法
CN207518480U (zh) 双向隔离型数字dcdc电源
CN110233572B (zh) 一种恒压源和恒压输出方法
CN108307566B (zh) 一种led光通信电源驱动系统
CN211239963U (zh) 一种背光控制电路、电视机和智能平板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929972

Country of ref document: EP

Kind code of ref document: A1