WO2019077931A1 - Method for manufacturing electrode, electrode, and cell - Google Patents

Method for manufacturing electrode, electrode, and cell Download PDF

Info

Publication number
WO2019077931A1
WO2019077931A1 PCT/JP2018/034760 JP2018034760W WO2019077931A1 WO 2019077931 A1 WO2019077931 A1 WO 2019077931A1 JP 2018034760 W JP2018034760 W JP 2018034760W WO 2019077931 A1 WO2019077931 A1 WO 2019077931A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
electrode active
layer
material layer
Prior art date
Application number
PCT/JP2018/034760
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 昌弘
政則 平井
大 綾
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2019549163A priority Critical patent/JPWO2019077931A1/en
Priority to CN201880065936.9A priority patent/CN111201646B/en
Publication of WO2019077931A1 publication Critical patent/WO2019077931A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of manufacturing an electrode, an electrode and a battery.
  • An electrode used in a lithium ion battery is generally mainly composed of an electrode active material layer and a current collector layer.
  • Such an electrode can be produced by applying and drying an electrode slurry containing an electrode active material on the surface of a current collector layer such as aluminum foil or copper foil.
  • an intermittent coating method is known as a method of applying the electrode slurry to the surface of the current collector layer.
  • the intermittent coating method is a method of alternately forming a coated portion and a non-coated portion of the electrode slurry in the longitudinal direction of the strip-shaped current collector layer.
  • the non-applied part of the electrode slurry is used, for example, as a tab for connecting to a terminal.
  • Examples of the technique related to the intermittent coating method of the electrode include those described in Patent Document 1 (Japanese Patent Application Laid-Open No. 11-260354).
  • Patent Document 1 discloses a battery active material, a binder, and an organic solvent in producing a battery using an electrode having a current collector and an active material layer intermittently formed on the current collector.
  • a step of continuously applying a paint containing the above onto the current collector to form an active material layer a step of forming a non-solidified region in a portion corresponding to the intermittent portion of the active material layer, and
  • a method of manufacturing a battery comprising the steps of: removing a solidified region to form an intermittent portion in the active material layer.
  • the electrode produced by using the intermittent coating method is likely to generate burrs in the subsequent cutting process.
  • This invention is made in view of the said situation, and provides the manufacturing method of the electrode which can suppress generation
  • the present inventors diligently studied the factors that cause burrs in the cutting process. As a result, it was found that in the electrode produced using the intermittent coating method, tailing of the concavo-convex structure is easily generated at the coating end, and burrs are easily generated at the cut portion of the concavo-convex structure. The present inventors have further studied based on the above findings. As a result, by providing a protective layer on the said uneven
  • the present invention was devised based on such knowledge. That is, according to the present invention, the following method for producing an electrode, an electrode and a battery are provided.
  • a method of manufacturing an electrode comprising a current collector layer and an electrode active material layer, A step of preparing a laminate including the current collector layer and an electrode active material layer provided on at least one surface of the current collector layer and including at least one side having a planar shape of a concavo-convex structure (A) When, Cutting the laminate to a predetermined size to obtain the electrode (B); Including In the method of manufacturing an electrode, the laminate further includes a protective layer formed to cover an intersection of the planned cutting site of the laminate in the step (B) and the one side on which the uneven structure is formed. Provided.
  • a current collector layer An electrode active material layer provided on at least one surface of the current collector layer, and at least one side of which has a planar shape of a concavo-convex structure; A protective layer formed to cover the end of the one side including the uneven structure; An electrode comprising the
  • a battery comprising the above electrode is provided.
  • FIG. 1 is a top view which shows an example of a structure of the laminated body 150 of embodiment which concerns on this invention.
  • FIG. 2 is a plan view showing an example of the configuration of the electrode 100 according to the embodiment of the present invention.
  • the method of manufacturing the electrode 100 is a method of manufacturing an electrode including the current collector layer 101 and the electrode active material layer 103, and at least two steps of the following step (A) and step (B) It contains.
  • the laminate 150 is a portion to be cut 150A of the laminate 150 in the step (B) and the concavo-convex structure 103B. It further includes a protective layer 105 formed so as to cover an intersection point X of the formed side 103A.
  • the electrode 100 according to the present embodiment is provided on at least one of the current collector layer 101 and the current collector layer 101, and at least one side 103A is a plane of the concavo-convex structure 103B.
  • the electrode 100 according to the present embodiment is not particularly limited, and is, for example, an electrode (positive electrode or negative electrode) for a lithium ion battery such as a lithium ion primary battery or a lithium ion secondary battery.
  • the electrode produced by using the intermittent coating method is likely to generate burrs in the subsequent cutting process.
  • the present inventors diligently studied the factors that cause burrs in the cutting process.
  • tailing of the concavo-convex structure is easily generated at the coating end, and burrs are easily generated at the cut portion of the concavo-convex structure.
  • burrs are likely to occur at the cut portion of the concavo-convex structure is not clear, but the following reasons can be considered.
  • the tail portion of the concavo-convex structure has a small proportion of the electrode active material layer, a load is easily applied by a high-pressure press, and electrode active material particles constituting the electrode active material layer bite deeply into the current collector layer. Therefore, the thickness of the current collector layer in the tailing portion is thin, and the strength of the current collector layer in the tailing portion is weak, so the electrode active material layer in the tailing portion is easily detached it is conceivable that. As a result, it is considered that burrs in which the convex portions of the uneven structure of the tailing portion are dropped are likely to come out at the time of cutting.
  • the burr generated in the electrode can be a factor of the battery failure, it is necessary to suppress the generation of the burr.
  • the present inventors have further studied based on the above findings.
  • generation of burrs in the cutting process is provided by providing the protective layer 105 so as to cover the intersection point X of the planned cutting site 150A of the laminate 150 in the step (B) and the side 103A on which the uneven structure 103B is formed.
  • the protective layer 105 is provided on the intersection point X of the planned cutting site 150A of the laminate 150 and the side 103A on which the concavo-convex structure 103B is formed.
  • the generation of burrs in the step (B) can be effectively suppressed.
  • the electrode active material layer 103 contains an electrode active material, and optionally contains a binder resin, a conductive auxiliary agent, a thickener and the like.
  • the electrode active material contained in the electrode active material layer 103 according to the present embodiment is appropriately selected according to the application.
  • a positive electrode active material is used, and when manufacturing a negative electrode, a negative electrode active material is used.
  • the positive electrode active material is not particularly limited as long as it is a normal positive electrode active material that can be used for the positive electrode of a lithium ion battery.
  • the olivine-type lithium phosphorus oxide is, for example, at least one member of the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus and oxygen. These compounds may be obtained by partially replacing some elements with other elements in order to improve their properties.
  • These positive electrode active materials have large capacity in addition to high action potential and large energy density.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the negative electrode active material is not particularly limited as long as it is a common negative electrode active material that can be used for the negative electrode of a lithium ion battery.
  • carbon materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated carbon, hard carbon, soft carbon; lithium metal materials such as lithium metal and lithium alloy; metal materials such as silicon and tin; polyacene, polyacetylene, Conductive polymer materials such as polypyrrole can be mentioned.
  • carbon materials are preferable, and particularly graphitic materials such as natural graphite and artificial graphite are preferable.
  • the negative electrode active material may be used singly or in combination of two or more.
  • the average particle diameter of the electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, from the viewpoint of suppressing side reactions during charge and discharge to suppress a decrease in charge and discharge efficiency. From the smoothness of the surface, etc., 100 ⁇ m or less is preferable, and 50 ⁇ m or less is more preferable.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the content of the electrode active material is preferably 85 parts by mass or more and 99.8 parts by mass or less, based on 100 parts by mass of the whole of the electrode active material layer 103.
  • the binder resin contained in the electrode active material layer 103 according to the present embodiment is appropriately selected according to the application.
  • a fluorine-based binder resin that can be dissolved in a solvent, an aqueous binder that can be dispersed in water, or the like can be used.
  • the fluorine-based binder resin is not particularly limited as long as it can be formed into an electrode and has sufficient electrochemical stability, and examples thereof include polyvinylidene fluoride resins and fluororubbers. These fluorine-based binder resins may be used alone or in combination of two or more. Among these, polyvinylidene fluoride resins are preferable.
  • the fluorine-based binder resin can be used, for example, by dissolving it in a solvent such as N-methyl-pyrrolidone (NMP).
  • NMP N-methyl-pyrrolidone
  • the aqueous binder is not particularly limited as long as it can be formed into an electrode and has sufficient electrochemical stability.
  • polytetrafluoroethylene resin, polyacrylic acid resin, styrene butadiene rubber, Polyimide resin etc. are mentioned. These aqueous binders may be used alone or in combination of two or more. Among these, styrene butadiene rubber is preferable.
  • the aqueous binder refers to one that can be dispersed in water to form an aqueous emulsion solution. When using a water-based binder, a thickener can be further used.
  • the thickener is not particularly limited, but, for example, cellulose polymers such as carboxymethylcellulose, methylcellulose and hydroxypropylcellulose and ammonium salts thereof and alkali metal salts; polycarboxylic acids; polyethylene oxide; polyvinylpyrrolidone; sodium polyacrylate and the like And water-soluble polymers such as polyvinyl alcohol; and the like.
  • the content of the binder resin is preferably 0.1 parts by mass or more and 10.0 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer 103.
  • the balance of the coating property of an electrode slurry, the binding property of a binder, and battery characteristics as the content of binder resin is in the said range is much more excellent.
  • the ratio of an electrode active material becomes large as content of binder resin is below the said upper limit, and since the capacity
  • the conductive support agent contained in the electrode active material layer 103 according to the present embodiment is not particularly limited as long as it improves the conductivity of the electrode, but, for example, carbon black, ketjen black, acetylene black, natural graphite, artificial Graphite, carbon fiber and the like can be mentioned. These conductive aids may be used alone or in combination of two or more.
  • content of a conductive support agent is 0.1 mass part or more and 5.0 mass parts or less, when the whole of the electrode active material layer 103 is 100 mass parts.
  • the balance of the coating property of an electrode slurry, the binding property of a binder, and the battery characteristic as the content of a conductive support agent is in the said range is much more excellent.
  • the ratio of an electrode active material becomes large as content of a conductive support agent is below the said upper limit, and the capacity
  • the content of the conductive aid to be not less than the above lower limit value, since the conductivity of the electrode becomes better.
  • the content of the electrode active material is preferably 85 parts by mass or more and 99.8 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer 103 according to the present embodiment.
  • the content of the binder resin is preferably 0.1 parts by mass or more and 10.0 parts by mass or less.
  • the content of the conductive aid is preferably 0.1 parts by mass or more and 5.0 parts by mass or less.
  • the density of the electrode active material layer 103 is not particularly limited, but in the case where the electrode active material layer 103 is a positive electrode active material layer, for example, it is preferably 2.0 g / cm 3 or more and 4.0 g / cm 3 or less. more preferably .4g / cm 3 or more 3.8 g / cm 3 or less, and more preferably not more than 2.8 g / cm 3 or more 3.6 g / cm 3.
  • the electrode active material layer 103 is a negative electrode active material layer, for example, it is preferably 1.2 g / cm 3 or more and 2.0 g / cm 3 or less, and 1.3 g / cm 3 or more and 1.9 g / cm 3 It is more preferably 3 or less, further preferably 1.4 g / cm 3 or more and 1.8 g / cm 3 or less.
  • the density of the electrode active material layer 103 is in the above range, the discharge capacity at the time of use at a high discharge rate is improved, which is preferable.
  • the electrode active material particles constituting the electrode active material layer 103 bite deeper into the current collector layer 101, so the thickness of the current collector layer 101 in the tailing portion is thinner. Also, since the strength of the current collector layer 101 is weakened, the generation of burrs in the cutting step tends to occur easily. However, according to the method of manufacturing the electrode 100 according to the present embodiment, even if the density of the electrode active material layer 103 is high, the generation of burrs in the cutting step can be effectively suppressed.
  • the density of the positive electrode active material layer is 3.0 g / cm 3 or more
  • the density is preferably 3.2 g / cm 3 or more, more preferably 3.3 g / cm 3 or more, and the density of the negative electrode active material layer is preferably 1.5 g / cm 3 or more. More preferably, it is 1.6 g / cm 3 or more.
  • the density of the positive electrode active material layer is 4.0 g / cm 3 or less, more preferably 3.8 g / cm 3 or less, More preferably, the density is 3.6 g / cm 3 or less, and the density of the negative electrode active material layer is preferably 2.0 g / cm 3 or less, more preferably 1.9 g / cm 3 or less, and 1 More preferably, it is at most 8 g / cm 3 .
  • the thickness of the electrode active material layer 103 is not particularly limited, and can be appropriately set according to the desired characteristics. For example, it can be set thick in terms of energy density, and can be set thin in terms of output characteristics.
  • the thickness (thickness of one side) of the electrode active material layer 103 can be appropriately set, for example, in the range of 10 ⁇ m to 250 ⁇ m, preferably 20 ⁇ m to 200 ⁇ m, and more preferably 30 ⁇ m to 150 ⁇ m.
  • the current collector layer 101 according to the present embodiment is not particularly limited, but aluminum, stainless steel, nickel, titanium, an alloy of these, or the like can be used as the positive electrode current collector layer.
  • As the shape, foil, flat form, mesh form etc. are mentioned, for example.
  • an aluminum foil can be suitably used.
  • copper, stainless steel, nickel, titanium or an alloy of these can be used.
  • As the shape, foil, flat form, mesh form is mentioned.
  • copper foil can be suitably used.
  • the thickness of the positive electrode current collector layer is not particularly limited, but is, for example, 1 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the negative electrode current collector layer is not particularly limited, and is, for example, 1 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the current collector layer 101 is thinner, the strength of the current collector layer 101 in the tailing portion is weaker, and thus burrs tend to occur in the cutting process.
  • the method of manufacturing the electrode 100 according to the present embodiment even if the thickness of the current collector layer 101 is thin, generation of burrs in the cutting process can be effectively suppressed.
  • the positive electrode current collector layer A thickness of less than 25 ⁇ m is preferable, less than 20 ⁇ m is more preferable, and less than 18 ⁇ m is particularly preferable, and less than 15 ⁇ m is preferable, less than 12 ⁇ m is more preferable, and less than 10 ⁇ m is particularly preferable.
  • Step (A) First, a laminate 150 including the current collector layer 101 and the electrode active material layer 103 provided on at least one surface of the current collector layer 101 and at least one side 103A including the planar shape of the concavo-convex structure 103B is obtained.
  • the layered product 150 further includes a protective layer 105 formed so as to cover the intersection point X of the planned cutting site 150A of the layered product 150 in the step (B) and the side 103A on which the concavo-convex structure 103B is formed.
  • Such a laminate 150 is, for example, a current collector by drying while intermittently applying an electrode slurry for forming the electrode active material layer 103 in the longitudinal direction of the strip-shaped current collector layer 101.
  • the step (A2) of forming the protective layer 105 so as to cover the above.
  • the concavo-convex structure 103B is formed, for example, by tailing of the coating end portion in the step (A1).
  • the manufacturing method of the laminated body 150 is demonstrated.
  • an electrode slurry is prepared.
  • the electrode slurry can be prepared by mixing an electrode active material, and as necessary, a binder resin, a conductive auxiliary agent, and a thickener.
  • the compounding ratio of the electrode active material, the binder resin, and the conductive additive is the same as the content ratio of the electrode active material, the binder resin, and the conductive additive in the electrode active material layer 103, and thus the description thereof is omitted here.
  • the electrode slurry is obtained by dispersing or dissolving an electrode active material, and as necessary, a binder resin, a conductive auxiliary agent, and a thickener in a solvent.
  • the mixing procedure of each component is not particularly limited.
  • an electrode slurry can be prepared by adding binder resin and a solvent and wet mixing.
  • a mixer to be used known ones such as a ball mill and a planetary mixer can be used, and it is not particularly limited.
  • a solvent used for the electrode slurry an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water can be used.
  • the obtained electrode slurry is dried while intermittently applied in the longitudinal direction of the strip current collector layer 101, and the solvent is removed, whereby the electrode active on at least one surface of the current collector layer 101 is obtained.
  • the material layer 103 is formed intermittently.
  • a generally known method can be used as a method of applying the electrode slurry on the current collector layer 101.
  • a generally known method can be used.
  • reverse roll method, direct roll method, doctor blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method, squeeze method and the like can be mentioned.
  • the doctor blade method, the knife method and the extrusion method are preferable in that it is possible to obtain a good surface state of the coating layer according to the physical properties such as viscosity and the like of the electrode slurry and the drying property.
  • the electrode slurry may be applied to only one side or both sides of the current collector layer 101. In the case of coating on both sides of the current collector layer 101, one side may be sequentially applied, or both sides may be applied simultaneously. In addition, it may be applied to the surface of the current collector layer 101 continuously or intermittently.
  • the thickness, length, and width of the coating layer can be appropriately determined according to the size of the battery.
  • the method for drying the electrode slurry applied on the current collector layer 101 is not particularly limited.
  • the electrode slurry is indirectly applied from the current collector layer 101 side or the electrode active material layer 103 side already dried using a heating roll.
  • a method of heating the electrode slurry indirectly by applying hot air and drying the electrode slurry may, for example, be mentioned.
  • the electrode active material layer 103 formed over the current collector layer 101 may be pressed together with the current collector layer 101.
  • a roll press is preferable from the viewpoint of being able to increase the linear pressure and improving the adhesion between the electrode active material layer 103 and the current collector layer 101.
  • the adhesion between the electrode active material layer 103 and the current collector layer 101 can be improved, and the density of the electrode active material layer 103 can be improved.
  • the protective layer 105 is formed so as to cover the intersection point X of the planned cutting site 150A of the laminate 150 and the side 103A where the concavo-convex structure 103B is formed.
  • the protective layer 105 may be formed so as to cover the whole of the concavo-convex structure 103B, but from the viewpoint of productivity, as shown in FIG. 1, it is preferable to form only in the vicinity of the intersection point X.
  • the protective layer 105 is not particularly limited as long as it has a strength that can reinforce the area of the intersection point X and can prevent the falling off of the concavo-convex structure 103B at the time of cutting the laminated body 150.
  • Examples thereof include resin layers such as a curable resin layer and a thermosetting resin layer, and an ink layer formed of an ink.
  • thermoplastic resin for forming the thermoplastic resin layer is not particularly limited.
  • (meth) acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; polyolefin resins such as polypropylene and polyethylene; polycarbonate resin;
  • vinyl chloride resins polyethylene terephthalate (PET); acrylonitrile-butadiene-styrene resin (ABS resin); acrylonitrile-styrene-acrylate resins; and fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene.
  • the thermoplastic resin may be used alone or in combination of two or more.
  • the ionizing radiation curable resin for forming the ionizing radiation curable resin layer is not particularly limited, and examples thereof include unsaturated polyester resins, acrylate resins, methacrylate resins, silicone resins and the like.
  • the ionizing radiation curable resin may be used alone or in combination of two or more.
  • the ionizing radiation curable resin is a resin that is cured by irradiation with ionizing radiation.
  • the ionizing radiation used for curing the ionizing radiation curable resin layer is not particularly limited, and acts on the ionizing radiation curable resin, the photo radical polymerization initiator added to the ionizing radiation curable resin layer, the sensitizer, etc.
  • ionizing radiation having sufficient energy to ionize (radicalize) these and to initiate radical polymerization reaction.
  • electromagnetic waves such as visible light, ultraviolet light, X-rays, and ⁇ -rays
  • charged particle beams such as electron beams, ⁇ -rays and ⁇ -rays, etc.
  • Ultraviolet rays and electron beams are preferred from the viewpoint of simplicity and the like.
  • thermosetting resin for forming the thermosetting resin layer is not particularly limited, and examples thereof include melamine resins, phenol resins, urea resins, epoxy resins, amino alkyd resins, urethane resins and polyester resins. Silicone resin etc. are mentioned.
  • a thermosetting resin may be used individually by 1 type, and may be used combining 2 or more types.
  • the ink for forming the ink layer is not particularly limited as long as it can form an ink layer having a strength capable of reinforcing the area of the intersection point X and preventing the falling off of the concavo-convex structure 103B when the laminate 150 is cut.
  • the ink can be selected appropriately.
  • the thickness of the protective layer 105 is not particularly limited as long as it can reinforce the area of the intersection point X and can prevent the falling off of the concavo-convex structure 103B at the time of cutting the laminate 150, for example, 1 ⁇ m to 50 ⁇ m. Preferably, it is 3 ⁇ m or more and 30 ⁇ m or less.
  • the protective layer 105 can be formed, for example, by applying a resin composition or an ink for forming a resin layer or an ink layer in the vicinity of the intersection point X, and then drying and / or curing.
  • the coating method of the resin composition and the ink is not particularly limited.
  • the gravure coating method, die coating method, lip coating method, knife coating method, air knife coating method, spray coating method, flow coating method, roll coating method, dip coating method Coating methods such as a coating method and an inkjet method can be used. These methods may be used alone or in combination.
  • the inkjet method is preferable in that the protective layer 105 can be continuously formed only in the vicinity of the intersection point X.
  • the laminate 150 can be cut into a predetermined size to obtain the electrode 100.
  • the method to cut out the electrode 100 from the laminated body 150 is not specifically limited, For example, it cut
  • the electrode 100 for a battery can be obtained by punching out to a predetermined size according to the application.
  • the method for cutting the laminate 150 is not particularly limited, and the laminate 150 can be cut using, for example, a blade made of metal or the like.
  • FIG. 3 is a schematic view showing an example of the configuration of the stacked battery 50 according to the embodiment of the present invention.
  • the battery according to the present embodiment includes the electrode 100 according to the present embodiment.
  • Stacked battery 50 includes battery elements in which positive electrode 1 and negative electrode 6 are alternately stacked in multiple layers with separator 20 interposed therebetween, and these battery elements are a flexible film together with an electrolyte (not shown). It is housed in a 30 container.
  • the positive electrode terminal 11 and the negative electrode terminal 16 are electrically connected to the battery element, and a part or all of the positive electrode terminal 11 and the negative electrode terminal 16 are drawn out of the flexible film 30. .
  • the positive electrode 1 is provided with the coated part (positive electrode active material layer 2) and the uncoated part of the positive electrode active material on the front and back of the positive electrode collector layer 3, and the negative electrode 6 is on the front and back of the negative electrode collector layer 8.
  • the coated part of the negative electrode active material (negative electrode active material layer 7) and the uncoated part are provided.
  • the uncoated portion of the positive electrode active material in the positive electrode current collector layer 3 is used as a positive electrode tab 10 for connecting to the positive electrode terminal 11, and the uncoated portion of the negative electrode active material in the negative electrode current collector layer 8 is connected to the negative electrode terminal 16.
  • the negative electrode tab 5 of FIG. The positive electrode tabs 10 are assembled on the positive electrode terminal 11 and connected together by ultrasonic welding etc. together with the positive electrode terminal 11, and the negative electrode tabs 5 are assembled on the negative electrode terminal 16 connected together by ultrasonic welding etc. together with the negative electrode terminal 16. Be done.
  • one end of the positive electrode terminal 11 is drawn out of the flexible film 30, and one end of the negative electrode terminal 16 is also drawn out of the flexible film 30.
  • an insulating member can be formed at the boundary 4 between the coated part (positive electrode active material layer 2) and the non-coated part of the positive electrode active material, and the insulating member is not only the boundary 4 but also the positive electrode tab. 10 and near the boundary between the positive electrode active material.
  • an insulating member can be formed on the boundary portion 9 between the coated portion (negative electrode active material layer 7) and the non-coated portion of the negative electrode active material as required, and the boundary between both the negative electrode tab 5 and the negative electrode active material It can be formed near the part.
  • the outer dimension of the negative electrode active material layer 7 is larger than the outer dimension of the positive electrode active material layer 2 and smaller than the outer dimension of the separator 20.
  • Non-aqueous electrolyte containing lithium salt The non-aqueous electrolytic solution containing a lithium salt used in the present embodiment can be appropriately selected from known ones depending on the type of electrode active material, the use of the lithium ion battery, and the like.
  • lithium salt for example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB Examples include (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, and lower fatty acid carboxylate lithium.
  • the solvent for dissolving the lithium salt is not particularly limited as long as it is generally used as a liquid for dissolving the electrolyte, and ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), carbonates such as vinylene carbonate (VC); lactones such as ⁇ -butyrolactone and ⁇ -valerolactone; trimethoxymethane Ethers such as 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, etc.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbon
  • Sulfoxides such as dimethylsulfoxide, etc. 1,3-Dioxolane, 4-methyl-1,3-dioxola
  • Nitrogenous solvents such as acetonitrile, nitromethane, formamide and dimethylformamide; methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate and the like; organic acid esters such as phosphoric acid triester And diglymes; triglymes; sulfolanes such as sulfolane and methyl sulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; and sultones such as 1,3-propane sultone, 1,4-butane sultone and naphtha sultone. . These may be used singly or in combination of two or more.
  • a well-known member can be used for a container in this embodiment, and it is preferable to use the flexible film 30 from a viewpoint of weight reduction of a battery.
  • the flexible film 30 can use what provided the resin layer in front and back of the metal layer used as a base material.
  • the metal layer can be selected to have a barrier property to prevent leakage of the electrolytic solution and entry of moisture from the outside, and aluminum, stainless steel, etc. can be used.
  • a heat-sealable resin layer such as modified polyolefin is provided on at least one surface of the metal layer, and the heat-sealable resin layers of the flexible film 30 are opposed to each other through the battery element to make the battery element
  • the sheath is formed by heat-sealing the periphery of the part to be stored.
  • a resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body opposite to the surface on which the heat-fusible resin layer is formed.
  • the positive electrode terminal 11 may be made of aluminum or an aluminum alloy
  • the negative electrode terminal 16 may be copper or a copper alloy, or those plated with nickel.
  • Each terminal is drawn to the outside of the container, but a heat fusible resin can be provided in advance in a portion located at a portion of the respective terminal where the periphery of the package is heat welded.
  • Insulating member In the case of forming the insulating member at the boundary portions 4 and 9 between the coated portion and the non-coated portion of the active material, polyimide, glass fiber, polyester, polypropylene or those containing these in the structure can be used. Heat can be applied to these members to weld them to the boundaries 4 and 9, or a gel-like resin can be applied to the boundaries 4 and 9 and dried to form an insulating member.
  • the separator 20 according to the present embodiment preferably includes a resin layer containing a heat resistant resin as a main component.
  • the resin layer is formed of a heat resistant resin which is a main component.
  • the term "main component" means that the proportion in the resin layer is 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more, and 100% by mass. It means that you may.
  • the resin layer constituting the separator 20 according to the present embodiment may be a single layer or two or more layers.
  • Examples of the heat resistant resin forming the above resin layer include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, polycarbonate, polyester carbonate, aliphatic polyamide, all Aromatic polyamide, semiaromatic polyamide, wholly aromatic polyester, polyphenylene sulfide, polyparaphenylene benzobisoxazole, polyimide, polyarylate, polyetherimide, polyamideimide, polyacetal, polyetheretherketone, polysulfone, polyethersulfone, One or more selected from fluorine resins, polyether nitriles, modified polyphenylene ethers and the like can be mentioned.
  • polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, aliphatic polyamide, wholly aromatic polyamide, semiaromatic polyamide and all aromatic from the viewpoint of excellent balance of heat resistance, mechanical strength, stretchability, price and the like.
  • Family of polyesters one or more selected from polyethylene terephthalates, polybutylene terephthalates, aliphatic polyamides, wholly aromatic polyamides and semiaromatic polyamides are more preferred, and polyethylene terephthalates are preferred.
  • One or more selected from wholly aromatic polyamides are more preferable, and polyethylene terephthalate is more preferable.
  • the resin layer which comprises the separator 20 which concerns on this embodiment is a porous resin layer.
  • the fine pores of the porous resin layer can be blocked to block the flow of the current, thereby avoiding the thermal runaway of the battery. be able to.
  • the porosity of the porous resin layer is preferably 20% to 80%, more preferably 30% to 70%, and still more preferably 40% to 60%. Is particularly preferred.
  • porosity (%)
  • Ws basis weight (g / m 2 )
  • ds true density (g / cm 3 )
  • t film thickness ( ⁇ m).
  • the planar shape of the separator 20 according to the present embodiment is not particularly limited, and can be appropriately selected according to the shapes of the electrode and the current collector, and can be, for example, rectangular.
  • the thickness of the separator 20 according to the present embodiment is preferably 5 ⁇ m or more and 50 ⁇ m or less from the viewpoint of the balance between mechanical strength and lithium ion conductivity.

Abstract

The present invention provides a method for manufacturing an electrode (100) which includes a current collector layer (101) and an electrode active material layer (103), wherein: the method comprises a step (A) of preparing a laminate (150) that includes the current collector layer (101) and the electrode active material layer (103) provided on at least one surface of the current collector layer (101) with at least one side (103A) having a planar shape with an uneven structure (103B), and a step (B) for obtaining the electrode (100) by cutting the laminate (150) to a prescribed size; and the laminate (150) further includes a protective layer (105) that is formed to cover a point X of intersection between a line (150A) along which the laminate (150) is to be cut in the step (B) and the side (103A) where the uneven structure (103B) is formed.

Description

電極の製造方法、電極および電池Method of manufacturing electrode, electrode and battery
 本発明は、電極の製造方法、電極および電池に関する。 The present invention relates to a method of manufacturing an electrode, an electrode and a battery.
 リチウムイオン電池に用いられる電極は、一般的に、電極活物質層と集電体層から主に構成されている。このような電極は、アルミニウム箔や銅箔等の集電体層の表面に、電極活物質を含む電極スラリーを塗布して乾燥することにより作製することができる。
 ここで、集電体層の表面に電極スラリーを塗布する方法としては、間欠塗工法が知られている。間欠塗工法は、帯状の集電体層の長手方向に、電極スラリーの塗布部と非塗布部とを交互に形成していく方法である。電極スラリーの非塗布部は、例えば、端子と接続するためのタブとして用いられる。
An electrode used in a lithium ion battery is generally mainly composed of an electrode active material layer and a current collector layer. Such an electrode can be produced by applying and drying an electrode slurry containing an electrode active material on the surface of a current collector layer such as aluminum foil or copper foil.
Here, as a method of applying the electrode slurry to the surface of the current collector layer, an intermittent coating method is known. The intermittent coating method is a method of alternately forming a coated portion and a non-coated portion of the electrode slurry in the longitudinal direction of the strip-shaped current collector layer. The non-applied part of the electrode slurry is used, for example, as a tab for connecting to a terminal.
 電極の間欠塗工法に関する技術としては、例えば、特許文献1(特開平11-260354号公報)に記載のものが挙げられる。 Examples of the technique related to the intermittent coating method of the electrode include those described in Patent Document 1 (Japanese Patent Application Laid-Open No. 11-260354).
 特許文献1には、集電体と、上記集電体上に間欠的に形成された活物質層とを有する電極を用いて電池を製造するにあたり、電池用活物質、結着剤および有機溶剤を含有する塗料を、上記集電体上に連続的に塗布して活物質層を形成する工程と、上記活物質層の間欠部に対応する部分に非固化領域を形成する工程と、上記非固化領域を除去して上記活物質層に間欠部を形成する工程とを有することを特徴とする電池の製造方法が記載されている。 Patent Document 1 discloses a battery active material, a binder, and an organic solvent in producing a battery using an electrode having a current collector and an active material layer intermittently formed on the current collector. A step of continuously applying a paint containing the above onto the current collector to form an active material layer, a step of forming a non-solidified region in a portion corresponding to the intermittent portion of the active material layer, and There is described a method of manufacturing a battery, comprising the steps of: removing a solidified region to form an intermittent portion in the active material layer.
特開平11-260354号公報Japanese Patent Application Laid-Open No. 11-260354
 本発明者らの検討によれば、間欠塗工法を用いて作製した電極は、その後の切断工程においてバリが発生しやすいことが明らかになった。
 本発明は上記事情に鑑みてなされたものであり、バリの発生を抑制できる電極の製造方法を提供するものである。
According to the study of the present inventors, it was revealed that the electrode produced by using the intermittent coating method is likely to generate burrs in the subsequent cutting process.
This invention is made in view of the said situation, and provides the manufacturing method of the electrode which can suppress generation | occurrence | production of a burr | flash.
 本発明者らは、切断工程においてバリが発生してしまう要因について鋭意検討した。その結果、間欠塗工法を用いて作製した電極は、塗工終端部に凹凸構造の尾引きが発生しやすく、その凹凸構造の切断部位でバリが発生しやすいことを知見した。
 本発明者らは、上記知見をもとにさらに検討を重ねた。その結果、電極の切断予定部位における上記凹凸構造上に保護層を設けることによって、バリの発生を抑制できることを見出して本発明を完成させた。
The present inventors diligently studied the factors that cause burrs in the cutting process. As a result, it was found that in the electrode produced using the intermittent coating method, tailing of the concavo-convex structure is easily generated at the coating end, and burrs are easily generated at the cut portion of the concavo-convex structure.
The present inventors have further studied based on the above findings. As a result, by providing a protective layer on the said uneven | corrugated structure in the cutting plan site | part of an electrode, it discovers that generation | occurrence | production of a burr | flash can be suppressed and completed this invention.
 本発明はこのような知見に基づいて発案されたものである。
 すなわち、本発明によれば、以下に示す電極の製造方法、電極および電池が提供される。
The present invention was devised based on such knowledge.
That is, according to the present invention, the following method for producing an electrode, an electrode and a battery are provided.
 本発明によれば、
 集電体層と電極活物質層とを備える電極の製造方法であって、
 上記集電体層と、上記集電体層の少なくとも一方の面に設けられ、かつ、少なくとも一辺が凹凸構造の平面形状を含む電極活物質層と、を備える積層体を準備する工程(A)と、
 上記積層体を所定の大きさに切断して上記電極を得る工程(B)と、
を含み、
 上記積層体は、上記工程(B)における上記積層体の切断予定部位と、上記凹凸構造が形成された上記一辺と、の交点を覆うように形成された保護層をさらに備える電極の製造方法が提供される。
According to the invention
A method of manufacturing an electrode comprising a current collector layer and an electrode active material layer,
A step of preparing a laminate including the current collector layer and an electrode active material layer provided on at least one surface of the current collector layer and including at least one side having a planar shape of a concavo-convex structure (A) When,
Cutting the laminate to a predetermined size to obtain the electrode (B);
Including
In the method of manufacturing an electrode, the laminate further includes a protective layer formed to cover an intersection of the planned cutting site of the laminate in the step (B) and the one side on which the uneven structure is formed. Provided.
 また、本発明によれば、
 集電体層と、
 上記集電体層の少なくとも一方の面に設けられ、かつ、少なくとも一辺が凹凸構造の平面形状を含む電極活物質層と、
 上記凹凸構造を含む上記一辺の端部を覆うように形成された保護層と、
を備える電極が提供される。
Moreover, according to the present invention,
A current collector layer,
An electrode active material layer provided on at least one surface of the current collector layer, and at least one side of which has a planar shape of a concavo-convex structure;
A protective layer formed to cover the end of the one side including the uneven structure;
An electrode comprising the
 さらに、本発明によれば、
 上記電極を備える電池が提供される。
Furthermore, according to the invention,
A battery comprising the above electrode is provided.
 本発明によれば、バリの発生が抑制された電極を提供することができる。 According to the present invention, it is possible to provide an electrode in which the occurrence of burrs is suppressed.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The objects described above, and other objects, features and advantages will become more apparent from the preferred embodiments described below and the following drawings associated therewith.
本発明に係る実施形態の積層体の構成の一例を示す平面図である。It is a top view showing an example of composition of a layered product of an embodiment concerning the present invention. 本発明に係る実施形態の電極の構成の一例を示す平面図である。It is a top view showing an example of composition of an electrode of an embodiment concerning the present invention. 本発明に係る実施形態の積層型電池の構成の一例を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows an example of a structure of the laminated type battery of embodiment which concerns on this invention.
 以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。また、数値範囲の「A~B」は特に断りがなければ、A以上B以下を表す。 Hereinafter, embodiments of the present invention will be described using the drawings. In all the drawings, the same components are denoted by the same reference numerals, and the description thereof is appropriately omitted. Also, the figure is a schematic view and does not match the actual dimensional ratio. Further, “A to B” in the numerical range represents A or more and B or less unless otherwise specified.
<電極および電極の製造方法>
 以下、本実施形態に係る電極100および電極100の製造方法について説明する。
 図1は、本発明に係る実施形態の積層体150の構成の一例を示す平面図である。図2は、本発明に係る実施形態の電極100の構成の一例を示す平面図である。
<Manufacturing method of electrode and electrode>
Hereinafter, the manufacturing method of the electrode 100 and the electrode 100 according to the present embodiment will be described.
FIG. 1: is a top view which shows an example of a structure of the laminated body 150 of embodiment which concerns on this invention. FIG. 2 is a plan view showing an example of the configuration of the electrode 100 according to the embodiment of the present invention.
 本実施形態に係る電極100の製造方法は、集電体層101と電極活物質層103とを備える電極の製造方法であり、以下の工程(A)および工程(B)の2つの工程を少なくとも含んでいる。
(A)集電体層101と、集電体層101の少なくとも一方の面に設けられ、かつ、少なくとも一辺103Aが凹凸構造103Bの平面形状を含む電極活物質層103と、を備える積層体150を準備する工程
(B)積層体150を所定の大きさに切断して電極100を得る工程
 そして、積層体150は、工程(B)における積層体150の切断予定部位150Aと、凹凸構造103Bが形成された一辺103Aと、の交点Xを覆うように形成された保護層105をさらに備える。
The method of manufacturing the electrode 100 according to the present embodiment is a method of manufacturing an electrode including the current collector layer 101 and the electrode active material layer 103, and at least two steps of the following step (A) and step (B) It contains.
(A) A stacked body 150 including the current collector layer 101 and an electrode active material layer 103 provided on at least one surface of the current collector layer 101 and at least one side 103A including the planar shape of the concavo-convex structure 103B. Step of preparing (B) step of cutting the laminate 150 to a predetermined size to obtain the electrode 100 Then, the laminate 150 is a portion to be cut 150A of the laminate 150 in the step (B) and the concavo-convex structure 103B. It further includes a protective layer 105 formed so as to cover an intersection point X of the formed side 103A.
 また、本実施形態に係る電極100は、図2に示すように、集電体層101と、集電体層101の少なくとも一方の面に設けられ、かつ、少なくとも一辺103Aが凹凸構造103Bの平面形状を含む電極活物質層103と、凹凸構造103Bを含む一辺103Aの端部を覆うように形成された保護層105と、を備える。 Further, as shown in FIG. 2, the electrode 100 according to the present embodiment is provided on at least one of the current collector layer 101 and the current collector layer 101, and at least one side 103A is a plane of the concavo-convex structure 103B. An electrode active material layer 103 including a shape, and a protective layer 105 formed to cover an end of one side 103A including the concavo-convex structure 103B.
 ここで、本実施形態に係る電極100は特に限定されないが、例えば、リチウムイオン一次電池やリチウムイオン二次電池等のリチウムイオン電池用電極(正極や負極)である。 Here, the electrode 100 according to the present embodiment is not particularly limited, and is, for example, an electrode (positive electrode or negative electrode) for a lithium ion battery such as a lithium ion primary battery or a lithium ion secondary battery.
 前述したように、本発明者らの検討によれば、間欠塗工法を用いて作製した電極は、その後の切断工程においてバリが発生しやすいことが明らかになった。
 本発明者らは、切断工程においてバリが発生してしまう要因について鋭意検討した。その結果、間欠塗工法を用いて作製した電極は、塗工終端部に凹凸構造の尾引きが発生しやすく、その凹凸構造の切断部位でバリが発生しやすいことを知見した。
 ここで、凹凸構造の切断部位でバリが発生しやすい理由は明らかではないが、以下の理由が考えられる。まず、凹凸構造の尾引き部は電極活物質層の割合が少ないため高圧プレスによって負荷がかかりやすく、電極活物質層を構成する電極活物質粒子が集電体層により深く食い込んでいる。そのため、尾引き部における集電体層の厚みが薄くなり、かつ、尾引き部における集電体層の強度が弱くなっているため、尾引き部における電極活物質層が脱落しやすくなっていると考えられる。その結果、切断時に、尾引き部の凹凸構造の凸部が脱落したバリが出やすいと考えられる。ここで、電極に発生したバリは、電池の不具合の要因になりえるため、バリの発生は抑制する必要がある。
 本発明者らは、上記知見をもとにさらに検討を重ねた。その結果、工程(B)における積層体150の切断予定部位150Aと、凹凸構造103Bが形成された一辺103Aと、の交点Xを覆うように保護層105を設けることによって、切断工程におけるバリの発生を効果的に抑制できることを見出した。
 すなわち、本実施形態に係る電極100の製造方法によれば、積層体150の切断予定部位150Aと凹凸構造103Bが形成された一辺103Aとの交点X上に、保護層105を設けることにより、上記工程(B)におけるバリの発生を効果的に抑制することができる。
 以上のように、本実施形態に係る電極100の製造方法によれば、バリの発生が抑制された電極を提供することができる。
As described above, according to the study of the present inventors, it was revealed that the electrode produced by using the intermittent coating method is likely to generate burrs in the subsequent cutting process.
The present inventors diligently studied the factors that cause burrs in the cutting process. As a result, it was found that in the electrode produced using the intermittent coating method, tailing of the concavo-convex structure is easily generated at the coating end, and burrs are easily generated at the cut portion of the concavo-convex structure.
Here, the reason why burrs are likely to occur at the cut portion of the concavo-convex structure is not clear, but the following reasons can be considered. First, since the tail portion of the concavo-convex structure has a small proportion of the electrode active material layer, a load is easily applied by a high-pressure press, and electrode active material particles constituting the electrode active material layer bite deeply into the current collector layer. Therefore, the thickness of the current collector layer in the tailing portion is thin, and the strength of the current collector layer in the tailing portion is weak, so the electrode active material layer in the tailing portion is easily detached it is conceivable that. As a result, it is considered that burrs in which the convex portions of the uneven structure of the tailing portion are dropped are likely to come out at the time of cutting. Here, since the burr generated in the electrode can be a factor of the battery failure, it is necessary to suppress the generation of the burr.
The present inventors have further studied based on the above findings. As a result, generation of burrs in the cutting process is provided by providing the protective layer 105 so as to cover the intersection point X of the planned cutting site 150A of the laminate 150 in the step (B) and the side 103A on which the uneven structure 103B is formed. Was found to be effectively suppressed.
That is, according to the method of manufacturing the electrode 100 according to the present embodiment, the protective layer 105 is provided on the intersection point X of the planned cutting site 150A of the laminate 150 and the side 103A on which the concavo-convex structure 103B is formed. The generation of burrs in the step (B) can be effectively suppressed.
As described above, according to the method of manufacturing the electrode 100 according to the present embodiment, it is possible to provide an electrode in which the generation of burrs is suppressed.
 以下、電極100の構成および電極100の製造方法における各工程について詳細に説明する。 Hereinafter, the configuration of the electrode 100 and each step in the method of manufacturing the electrode 100 will be described in detail.
 はじめに、本実施形態に係る電極活物質層103を構成する各成分について説明する。
 電極活物質層103は、電極活物質を含み、必要に応じてバインダー樹脂、導電助剤、増粘剤等を含む。
First, each component which comprises the electrode active material layer 103 which concerns on this embodiment is demonstrated.
The electrode active material layer 103 contains an electrode active material, and optionally contains a binder resin, a conductive auxiliary agent, a thickener and the like.
 本実施形態に係る電極活物質層103に含まれる電極活物質は用途に応じて適宜選択される。正極を作製するときは正極活物質を使用し、負極を作製するときは負極活物質を使用する。 The electrode active material contained in the electrode active material layer 103 according to the present embodiment is appropriately selected according to the application. When manufacturing a positive electrode, a positive electrode active material is used, and when manufacturing a negative electrode, a negative electrode active material is used.
 正極活物質としてはリチウムイオン電池の正極に使用可能な通常の正極活物質であれば特に限定されない。例えば、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物等のリチウムと遷移金属との複合酸化物;TiS、FeS、MoS等の遷移金属硫化物;MnO、V、V13、TiO等の遷移金属酸化物、オリビン型リチウムリン酸化物等が挙げられる。
 オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb、およびFeよりなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。
The positive electrode active material is not particularly limited as long as it is a normal positive electrode active material that can be used for the positive electrode of a lithium ion battery. For example, lithium-nickel composite oxide, lithium-cobalt composite oxide, lithium-manganese composite oxide, lithium-nickel-manganese composite oxide, lithium-nickel-cobalt composite oxide, lithium-nickel-aluminum composite oxide, Lithium and transition such as lithium-nickel-cobalt-aluminum composite oxide, lithium-nickel-manganese-cobalt composite oxide, lithium-nickel-manganese-aluminum composite oxide, lithium-nickel-cobalt-manganese-aluminum composite oxide Composite oxides with metals; Transition metal sulfides such as TiS 2 , FeS, MoS 2 etc .; Transition metal oxides such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 etc., olivine type lithium phosphorus oxide etc. It can be mentioned.
The olivine-type lithium phosphorus oxide is, for example, at least one member of the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus and oxygen. These compounds may be obtained by partially replacing some elements with other elements in order to improve their properties.
 これらの中でも、オリビン型リチウム鉄リン酸化物、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物が好ましい。これらの正極活物質は作用電位が高いことに加えて容量も大きく、大きなエネルギー密度を有する。
 正極活物質は、一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
Among these, olivine-type lithium iron phosphate, lithium-nickel complex oxide, lithium-cobalt complex oxide, lithium-manganese complex oxide, lithium-nickel-manganese complex oxide, lithium-nickel-cobalt complex oxide , Lithium-nickel-aluminum complex oxide, lithium-nickel-cobalt-aluminum complex oxide, lithium-nickel-manganese-cobalt complex oxide, lithium-nickel-manganese-aluminum complex oxide, lithium-nickel-cobalt-manganese Aluminum complex oxides are preferred. These positive electrode active materials have large capacity in addition to high action potential and large energy density.
The positive electrode active material may be used alone or in combination of two or more.
 負極活物質としては、リチウムイオン電池の負極に使用可能な通常の負極活物質であれば特に限定されない。例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素材料;リチウム金属、リチウム合金等のリチウム系金属材料;シリコン、スズ等の金属材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー材料等が挙げられる。これらの中でも炭素材料が好ましく、特に天然黒鉛や人造黒鉛等の黒鉛質材料が好ましい。
 負極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
The negative electrode active material is not particularly limited as long as it is a common negative electrode active material that can be used for the negative electrode of a lithium ion battery. For example, carbon materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated carbon, hard carbon, soft carbon; lithium metal materials such as lithium metal and lithium alloy; metal materials such as silicon and tin; polyacene, polyacetylene, Conductive polymer materials such as polypyrrole can be mentioned. Among these, carbon materials are preferable, and particularly graphitic materials such as natural graphite and artificial graphite are preferable.
The negative electrode active material may be used singly or in combination of two or more.
 電極活物質の平均粒子径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、入出力特性や電極作製上の観点(電極表面の平滑性等)から、100μm以下が好ましく、50μm以下がより好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。 The average particle diameter of the electrode active material is preferably 1 μm or more, more preferably 2 μm or more, from the viewpoint of suppressing side reactions during charge and discharge to suppress a decrease in charge and discharge efficiency. From the smoothness of the surface, etc., 100 μm or less is preferable, and 50 μm or less is more preferable. Here, the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
 電極活物質の含有量は、電極活物質層103の全体を100質量部としたとき、85質量部以上99.8質量部以下であることが好ましい。 The content of the electrode active material is preferably 85 parts by mass or more and 99.8 parts by mass or less, based on 100 parts by mass of the whole of the electrode active material layer 103.
 本実施形態に係る電極活物質層103に含まれるバインダー樹脂は用途に応じて適宜選択される。例えば、溶媒に溶解可能なフッ素系バインダー樹脂や、水に分散可能な水系バインダー等を使用することができる。 The binder resin contained in the electrode active material layer 103 according to the present embodiment is appropriately selected according to the application. For example, a fluorine-based binder resin that can be dissolved in a solvent, an aqueous binder that can be dispersed in water, or the like can be used.
 フッ素系バインダー樹脂としては電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリフッ化ビニリデン系樹脂、フッ素ゴム等が挙げられる。これらのフッ素系バインダー樹脂は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、ポリフッ化ビニリデン系樹脂が好ましい。フッ素系バインダー樹脂は、例えば、N-メチル-ピロリドン(NMP)等の溶媒に溶解させて使用することができる。 The fluorine-based binder resin is not particularly limited as long as it can be formed into an electrode and has sufficient electrochemical stability, and examples thereof include polyvinylidene fluoride resins and fluororubbers. These fluorine-based binder resins may be used alone or in combination of two or more. Among these, polyvinylidene fluoride resins are preferable. The fluorine-based binder resin can be used, for example, by dissolving it in a solvent such as N-methyl-pyrrolidone (NMP).
 水系バインダーとしては電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリテトラフルオロエチレン系樹脂、ポリアクリル酸系樹脂、スチレン・ブタジエン系ゴム、ポリイミド系樹脂等が挙げられる。これらの水系バインダーは一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、スチレン・ブタジエン系ゴムが好ましい。
 なお、本実施形態において、水系バインダーとは、水に分散し、エマルジョン水溶液を形成できるものをいう。
 水系バインダーを使用する場合は、さらに増粘剤を使用することができる。増粘剤としては特に限定されないが、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;ポリカルボン酸;ポリエチレンオキシド;ポリビニルピロリドン;ポリアクリル酸ナトリウム等のポリアクリル酸塩;ポリビニルアルコール;等の水溶性ポリマー等が挙げられる。
The aqueous binder is not particularly limited as long as it can be formed into an electrode and has sufficient electrochemical stability. For example, polytetrafluoroethylene resin, polyacrylic acid resin, styrene butadiene rubber, Polyimide resin etc. are mentioned. These aqueous binders may be used alone or in combination of two or more. Among these, styrene butadiene rubber is preferable.
In the present embodiment, the aqueous binder refers to one that can be dispersed in water to form an aqueous emulsion solution.
When using a water-based binder, a thickener can be further used. The thickener is not particularly limited, but, for example, cellulose polymers such as carboxymethylcellulose, methylcellulose and hydroxypropylcellulose and ammonium salts thereof and alkali metal salts; polycarboxylic acids; polyethylene oxide; polyvinylpyrrolidone; sodium polyacrylate and the like And water-soluble polymers such as polyvinyl alcohol; and the like.
 バインダー樹脂の含有量は、電極活物質層103の全体を100質量部としたとき、0.1質量部以上10.0質量部以下であることが好ましい。バインダー樹脂の含有量が上記範囲内であると、電極スラリーの塗工性、バインダーの結着性および電池特性のバランスがより一層優れる。
 また、バインダー樹脂の含有量が上記上限値以下であると、電極活物質の割合が大きくなり、電極質量当たりの容量が大きくなるため好ましい。バインダー樹脂の含有量が上記下限値以上であると、電極剥離が抑制されるため好ましい。
The content of the binder resin is preferably 0.1 parts by mass or more and 10.0 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer 103. The balance of the coating property of an electrode slurry, the binding property of a binder, and battery characteristics as the content of binder resin is in the said range is much more excellent.
Moreover, the ratio of an electrode active material becomes large as content of binder resin is below the said upper limit, and since the capacity | capacitance per electrode mass becomes large, it is preferable. It is preferable in order that electrode peeling may be suppressed as content of binder resin is more than the said lower limit.
 本実施形態に係る電極活物質層103に含まれる導電助剤としては電極の導電性を向上させるものであれば特に限定されないが、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人工黒鉛、炭素繊維等が挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The conductive support agent contained in the electrode active material layer 103 according to the present embodiment is not particularly limited as long as it improves the conductivity of the electrode, but, for example, carbon black, ketjen black, acetylene black, natural graphite, artificial Graphite, carbon fiber and the like can be mentioned. These conductive aids may be used alone or in combination of two or more.
 導電助剤の含有量は、電極活物質層103の全体を100質量部としたとき、0.1質量部以上5.0質量部以下であることが好ましい。導電助剤の含有量が上記範囲内であると、電極スラリーの塗工性、バインダーの結着性および電池特性のバランスがより一層優れる。
 また、導電助剤の含有量が上記上限値以下であると、電極活物質の割合が大きくなり、電極質量当たりの容量が大きくなるため好ましい。導電助剤の含有量が上記下限値以上であると、電極の導電性がより良好になるため好ましい。
It is preferable that content of a conductive support agent is 0.1 mass part or more and 5.0 mass parts or less, when the whole of the electrode active material layer 103 is 100 mass parts. The balance of the coating property of an electrode slurry, the binding property of a binder, and the battery characteristic as the content of a conductive support agent is in the said range is much more excellent.
Moreover, since the ratio of an electrode active material becomes large as content of a conductive support agent is below the said upper limit, and the capacity | capacitance per electrode mass becomes large, it is preferable. It is preferable for the content of the conductive aid to be not less than the above lower limit value, since the conductivity of the electrode becomes better.
 本実施形態に係る電極活物質層103は、電極活物質層103の全体を100質量部としたとき、電極活物質の含有量は好ましくは85質量部以上99.8質量部以下である。また、バインダー樹脂の含有量は好ましくは0.1質量部以上10.0質量部以下である。また、導電助剤の含有量は好ましくは0.1質量部以上5.0質量部以下である。
 電極活物質層103を構成する各成分の含有量が上記範囲内であると、電極100の取扱い性と、得られるリチウムイオン電池の電池特性のバランスが特に優れる。
The content of the electrode active material is preferably 85 parts by mass or more and 99.8 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer 103 according to the present embodiment. The content of the binder resin is preferably 0.1 parts by mass or more and 10.0 parts by mass or less. The content of the conductive aid is preferably 0.1 parts by mass or more and 5.0 parts by mass or less.
The balance of the handling property of the electrode 100 and the battery characteristic of the lithium ion battery obtained as the content of each component which comprises the electrode active material layer 103 is in the said range is especially excellent.
 電極活物質層103の密度は特に限定されないが、電極活物質層103が正極活物質層の場合は、例えば、2.0g/cm以上4.0g/cm以下であることが好ましく、2.4g/cm以上3.8g/cm以下であることがより好ましく、2.8g/cm以上3.6g/cm以下であることがさらに好ましい。また、電極活物質層103が負極活物質層の場合は、例えば、1.2g/cm以上2.0g/cm以下であることが好ましく、1.3g/cm以上1.9g/cm以下であることがより好ましく、1.4g/cm以上1.8g/cm以下であることがさらに好ましい。
 電極活物質層103の密度を上記範囲内とすると、高放電レートでの使用時における放電容量が向上するため好ましい。
The density of the electrode active material layer 103 is not particularly limited, but in the case where the electrode active material layer 103 is a positive electrode active material layer, for example, it is preferably 2.0 g / cm 3 or more and 4.0 g / cm 3 or less. more preferably .4g / cm 3 or more 3.8 g / cm 3 or less, and more preferably not more than 2.8 g / cm 3 or more 3.6 g / cm 3. When the electrode active material layer 103 is a negative electrode active material layer, for example, it is preferably 1.2 g / cm 3 or more and 2.0 g / cm 3 or less, and 1.3 g / cm 3 or more and 1.9 g / cm 3 It is more preferably 3 or less, further preferably 1.4 g / cm 3 or more and 1.8 g / cm 3 or less.
When the density of the electrode active material layer 103 is in the above range, the discharge capacity at the time of use at a high discharge rate is improved, which is preferable.
 ここで、電極活物質層103の密度が高いほど、電極活物質層103を構成する電極活物質粒子が集電体層101により深く食い込むため、尾引き部の集電体層101の厚みが薄くなり、かつ、集電体層101の強度が弱くなるため、切断工程におけるバリの発生が起きやすくなる傾向にある。しかし、本実施形態に係る電極100の製造方法によれば、電極活物質層103の密度が高くても、切断工程におけるバリの発生を効果的に抑制することができる。
 そのため、電極100のバリの発生を効果的に抑制しつつ、得られるリチウムイオン電池のエネルギー密度をより一層向上させる観点から、正極活物質層の密度は3.0g/cm以上であることが好ましく、3.2g/cm以上であることがより好ましく、3.3g/cm以上であることが特に好ましく、負極活物質層の密度は1.5g/cm以上であることが好ましく、1.6g/cm以上であることがより好ましい。また、高温でのサイクル特性の悪化をより抑制する観点から、正極活物質層の密度は4.0g/cm以下であることが好ましく、3.8g/cm以下であることがより好ましく、3.6g/cm以下であることがさらに好ましく、そして負極活物質層の密度は2.0g/cm以下であることが好ましく、1.9g/cm以下であることがより好ましく、1.8g/cm以下であることがさらに好ましい。
Here, as the density of the electrode active material layer 103 is higher, the electrode active material particles constituting the electrode active material layer 103 bite deeper into the current collector layer 101, so the thickness of the current collector layer 101 in the tailing portion is thinner. Also, since the strength of the current collector layer 101 is weakened, the generation of burrs in the cutting step tends to occur easily. However, according to the method of manufacturing the electrode 100 according to the present embodiment, even if the density of the electrode active material layer 103 is high, the generation of burrs in the cutting step can be effectively suppressed.
Therefore, from the viewpoint of further improving the energy density of the obtained lithium ion battery while effectively suppressing the generation of burrs of the electrode 100, the density of the positive electrode active material layer is 3.0 g / cm 3 or more The density is preferably 3.2 g / cm 3 or more, more preferably 3.3 g / cm 3 or more, and the density of the negative electrode active material layer is preferably 1.5 g / cm 3 or more. More preferably, it is 1.6 g / cm 3 or more. Further, from a more suppressing the deterioration of the cycle characteristics at high temperatures, it is preferable that the density of the positive electrode active material layer is 4.0 g / cm 3 or less, more preferably 3.8 g / cm 3 or less, More preferably, the density is 3.6 g / cm 3 or less, and the density of the negative electrode active material layer is preferably 2.0 g / cm 3 or less, more preferably 1.9 g / cm 3 or less, and 1 More preferably, it is at most 8 g / cm 3 .
 電極活物質層103の厚みは特に限定されるものではなく、所望の特性に応じて適宜設定することができる。例えば、エネルギー密度の観点からは厚く設定することができ、また出力特性の観点からは薄く設定することができる。電極活物質層103の厚み(片面の厚み)は、例えば、10μm以上250μm以下の範囲で適宜設定でき、20μm以上200μm以下が好ましく、30μm以上150μm以下がより好ましい。 The thickness of the electrode active material layer 103 is not particularly limited, and can be appropriately set according to the desired characteristics. For example, it can be set thick in terms of energy density, and can be set thin in terms of output characteristics. The thickness (thickness of one side) of the electrode active material layer 103 can be appropriately set, for example, in the range of 10 μm to 250 μm, preferably 20 μm to 200 μm, and more preferably 30 μm to 150 μm.
 本実施形態に係る集電体層101としては特に限定されないが、正極集電体層としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。その形状としては、例えば、箔、平板状、メッシュ状等が挙げられる。特にアルミニウム箔を好適に用いることができる。
 また、負極集電体層8としては、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。その形状としては、箔、平板状、メッシュ状が挙げられる。特に銅箔を好適に用いることができる。
The current collector layer 101 according to the present embodiment is not particularly limited, but aluminum, stainless steel, nickel, titanium, an alloy of these, or the like can be used as the positive electrode current collector layer. As the shape, foil, flat form, mesh form etc. are mentioned, for example. In particular, an aluminum foil can be suitably used.
Moreover, as the negative electrode collector layer 8, copper, stainless steel, nickel, titanium or an alloy of these can be used. As the shape, foil, flat form, mesh form is mentioned. Particularly, copper foil can be suitably used.
 正極集電体層の厚みは特に限定されないが、例えば1μm以上30μm以下である。また、負極集電体層の厚みは特に限定されないが、例えば1μm以上20μm以下である。
 ここで、集電体層101の厚みが薄いほど、尾引き部の集電体層101の強度が弱くなるため、切断工程におけるバリの発生が起きやすい傾向にある。しかし、本実施形態に係る電極100の製造方法によれば、集電体層101の厚みが薄くても、切断工程におけるバリの発生を効果的に抑制することができる。
 そのため、電極100のバリの発生を効果的に抑制しつつ、得られるリチウムイオン電池における集電体層101の割合を減らし、リチウムイオン電池をより高エネルギー密度化する観点から、正極集電体層の厚みは25μm未満が好ましく、20μm未満がより好ましく、18μm未満が特に好ましく、そして負極集電体層8の厚みは15μm未満が好ましく、12μm未満がより好ましく、10μm未満が特に好ましい。
The thickness of the positive electrode current collector layer is not particularly limited, but is, for example, 1 μm or more and 30 μm or less. The thickness of the negative electrode current collector layer is not particularly limited, and is, for example, 1 μm or more and 20 μm or less.
Here, as the thickness of the current collector layer 101 is thinner, the strength of the current collector layer 101 in the tailing portion is weaker, and thus burrs tend to occur in the cutting process. However, according to the method of manufacturing the electrode 100 according to the present embodiment, even if the thickness of the current collector layer 101 is thin, generation of burrs in the cutting process can be effectively suppressed.
Therefore, from the viewpoint of reducing the proportion of the current collector layer 101 in the obtained lithium ion battery and effectively increasing the energy density of the lithium ion battery while effectively suppressing the generation of burrs of the electrode 100, the positive electrode current collector layer A thickness of less than 25 μm is preferable, less than 20 μm is more preferable, and less than 18 μm is particularly preferable, and less than 15 μm is preferable, less than 12 μm is more preferable, and less than 10 μm is particularly preferable.
(工程(A))
 はじめに、集電体層101と、集電体層101の少なくとも一方の面に設けられ、かつ、少なくとも一辺103Aが凹凸構造103Bの平面形状を含む電極活物質層103と、を備える積層体150を準備する。積層体150は、工程(B)における積層体150の切断予定部位150Aと、凹凸構造103Bが形成された一辺103Aと、の交点Xを覆うように形成された保護層105をさらに備える。
(Step (A))
First, a laminate 150 including the current collector layer 101 and the electrode active material layer 103 provided on at least one surface of the current collector layer 101 and at least one side 103A including the planar shape of the concavo-convex structure 103B is obtained. prepare. The layered product 150 further includes a protective layer 105 formed so as to cover the intersection point X of the planned cutting site 150A of the layered product 150 in the step (B) and the side 103A on which the concavo-convex structure 103B is formed.
 このような積層体150は、例えば、電極活物質層103を形成するための電極スラリーを、帯状の集電体層101の長手方向に間欠的に塗工しながら乾燥することによって、集電体層101の少なくとも一方の面上に電極活物質層103を間欠的に形成する工程(A1)と、積層体150の切断予定部位150Aと、凹凸構造103Bが形成された一辺103Aと、の交点Xを覆うように保護層105を形成する工程(A2)と、をおこなうことによって作製することができる。
 ここで、凹凸構造103Bは、例えば、上記工程(A1)における塗工終端部の尾引きによって形成される。
 以下、積層体150の製造方法について説明する。
Such a laminate 150 is, for example, a current collector by drying while intermittently applying an electrode slurry for forming the electrode active material layer 103 in the longitudinal direction of the strip-shaped current collector layer 101. A cross point X between the step (A1) of intermittently forming the electrode active material layer 103 on at least one surface of the layer 101, the cutting target portion 150A of the laminate 150, and the side 103A on which the concavo-convex structure 103B is formed. And the step (A2) of forming the protective layer 105 so as to cover the above.
Here, the concavo-convex structure 103B is formed, for example, by tailing of the coating end portion in the step (A1).
Hereinafter, the manufacturing method of the laminated body 150 is demonstrated.
 はじめに、電極スラリーを調製する。
 電極スラリーは、電極活物質と、必要に応じてバインダー樹脂と、導電助剤と、増粘剤と、を混合することにより調製することができる。電極活物質、バインダー樹脂、および導電助剤の配合比率は電極活物質層103中の電極活物質、バインダー樹脂、および導電助剤の含有比率と同じため、ここでは説明を省略する。
First, an electrode slurry is prepared.
The electrode slurry can be prepared by mixing an electrode active material, and as necessary, a binder resin, a conductive auxiliary agent, and a thickener. The compounding ratio of the electrode active material, the binder resin, and the conductive additive is the same as the content ratio of the electrode active material, the binder resin, and the conductive additive in the electrode active material layer 103, and thus the description thereof is omitted here.
 電極スラリーは、電極活物質と、必要に応じてバインダー樹脂と、導電助剤と、増粘剤と、を溶媒に分散または溶解させたものである。
 各成分の混合手順は特に限定されないが、例えば、電極活物質と導電助剤とを乾式混合した後に、バインダー樹脂および溶媒を添加して湿式混合することにより電極スラリーを調製することができる。
 このとき、用いられる混合機としては、ボールミルやプラネタリーミキサー等の公知のものが使用でき、特に限定されない。
 電極スラリーに用いる溶媒としては、N-メチル-2-ピロリドン(NMP)等の有機溶媒や、水を用いることができる。
The electrode slurry is obtained by dispersing or dissolving an electrode active material, and as necessary, a binder resin, a conductive auxiliary agent, and a thickener in a solvent.
The mixing procedure of each component is not particularly limited. For example, after dry mixing of the electrode active material and the conductive auxiliary, an electrode slurry can be prepared by adding binder resin and a solvent and wet mixing.
At this time, as a mixer to be used, known ones such as a ball mill and a planetary mixer can be used, and it is not particularly limited.
As a solvent used for the electrode slurry, an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water can be used.
 次いで、得られた電極スラリーを帯状の集電体層101の長手方向に間欠的に塗工しながら乾燥し、溶媒を除去することによって、集電体層101の少なくとも一方の面上に電極活物質層103を間欠的に形成する。 Next, the obtained electrode slurry is dried while intermittently applied in the longitudinal direction of the strip current collector layer 101, and the solvent is removed, whereby the electrode active on at least one surface of the current collector layer 101 is obtained. The material layer 103 is formed intermittently.
 電極スラリーを集電体層101上に塗布する方法は、一般的に公知の方法を用いることができる。例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法等を挙げることができる。これらの中でも、電極スラリーの粘性等の物性および乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ドクターブレード法、ナイフ法、エクストルージョン法が好ましい。 As a method of applying the electrode slurry on the current collector layer 101, a generally known method can be used. For example, reverse roll method, direct roll method, doctor blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method, squeeze method and the like can be mentioned. Among them, the doctor blade method, the knife method and the extrusion method are preferable in that it is possible to obtain a good surface state of the coating layer according to the physical properties such as viscosity and the like of the electrode slurry and the drying property.
 電極スラリーは、集電体層101の片面のみに塗布しても両面に塗布してもよい。集電体層101の両面に塗布する場合は、片面ずつ逐次でも、両面同時に塗布してもよい。また、集電体層101の表面に連続で、あるいは、間欠で塗布してもよい。塗布層の厚さや長さ、幅は、電池の大きさに応じて、適宜決定することができる。 The electrode slurry may be applied to only one side or both sides of the current collector layer 101. In the case of coating on both sides of the current collector layer 101, one side may be sequentially applied, or both sides may be applied simultaneously. In addition, it may be applied to the surface of the current collector layer 101 continuously or intermittently. The thickness, length, and width of the coating layer can be appropriately determined according to the size of the battery.
 集電体層101上に塗布した電極スラリーの乾燥方法としては特に限定されないが、例えば、加熱ロールを用いて集電体層101側または既に乾燥した電極活物質層103側から電極スラリーを間接的に加熱し、電極スラリーを乾燥させる方法;赤外線、遠赤外線・近赤外線のヒーター等の電磁波を用いて電極スラリーを乾燥させる方法;集電体層101側または既に乾燥した電極活物質層103側から熱風を当てて電極スラリーを間接的に加熱し、電極スラリーを乾燥させる方法等が挙げられる。 The method for drying the electrode slurry applied on the current collector layer 101 is not particularly limited. For example, the electrode slurry is indirectly applied from the current collector layer 101 side or the electrode active material layer 103 side already dried using a heating roll. Method of heating the electrode slurry and drying the electrode slurry; drying the electrode slurry using electromagnetic waves such as infrared, far infrared and near infrared heaters; from the side of the current collector layer 101 or from the side of the already dried electrode active material layer 103 A method of heating the electrode slurry indirectly by applying hot air and drying the electrode slurry may, for example, be mentioned.
 次いで、集電体層101上に形成した電極活物質層103を集電体層101とともにプレスしてもよい。プレスの方法としては線圧を高くすることができ、電極活物質層103と集電体層101との密着性を向上させることができる観点からロールプレスが好ましい。こうすることにより、電極活物質層103と集電体層101との密着性が向上するとともに、電極活物質層103の密度を向上させることができる。 Then, the electrode active material layer 103 formed over the current collector layer 101 may be pressed together with the current collector layer 101. As a method of pressing, a roll press is preferable from the viewpoint of being able to increase the linear pressure and improving the adhesion between the electrode active material layer 103 and the current collector layer 101. Thus, the adhesion between the electrode active material layer 103 and the current collector layer 101 can be improved, and the density of the electrode active material layer 103 can be improved.
 次いで、積層体150の切断予定部位150Aと、凹凸構造103Bが形成された一辺103Aと、の交点Xを覆うように保護層105を形成する。
 ここで、保護層105は凹凸構造103Bの全体を覆うように形成させてもよいが、生産性の観点から、図1に示すように、上記交点Xの近傍のみに形成させることが好ましい。
Next, the protective layer 105 is formed so as to cover the intersection point X of the planned cutting site 150A of the laminate 150 and the side 103A where the concavo-convex structure 103B is formed.
Here, the protective layer 105 may be formed so as to cover the whole of the concavo-convex structure 103B, but from the viewpoint of productivity, as shown in FIG. 1, it is preferable to form only in the vicinity of the intersection point X.
 保護層105としては、上記交点Xの領域を補強し、積層体150の切断時に凹凸構造103Bの脱落を防止できる強度を有するものであれば特に限定されないが、例えば、熱可塑性樹脂層、電離放射線硬化型樹脂層および熱硬化性樹脂層等の樹脂層や、インクにより形成されたインク層等が挙げられる。 The protective layer 105 is not particularly limited as long as it has a strength that can reinforce the area of the intersection point X and can prevent the falling off of the concavo-convex structure 103B at the time of cutting the laminated body 150. Examples thereof include resin layers such as a curable resin layer and a thermosetting resin layer, and an ink layer formed of an ink.
 熱可塑性樹脂層を形成する熱可塑性樹脂としては特に限定されないが、例えば、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート等の(メタ)アクリル樹脂;ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂;ポリカーボネート樹脂;塩化ビニル系樹脂;ポリエチレンテレフタラート(PET);アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂);アクリロニトリル-スチレン-アクリル酸エステル樹脂;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂等が挙げられる。熱可塑性樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The thermoplastic resin for forming the thermoplastic resin layer is not particularly limited. For example, (meth) acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; polyolefin resins such as polypropylene and polyethylene; polycarbonate resin; Examples include vinyl chloride resins; polyethylene terephthalate (PET); acrylonitrile-butadiene-styrene resin (ABS resin); acrylonitrile-styrene-acrylate resins; and fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene. The thermoplastic resin may be used alone or in combination of two or more.
 電離放射線硬化型樹脂層を形成する電離放射線硬化型樹脂としては特に限定されないが、例えば、不飽和ポリエステル系樹脂、アクリレート系樹脂、メタクリレート系樹脂、シリコーン系樹脂等が挙げられる。電離放射線硬化型樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 ここで、電離放射線硬化型樹脂とは、電離放射線を照射することにより硬化する樹脂である。電離放射線硬化型樹脂層の硬化に用いる電離放射線は特に限定されず、電離放射線硬化型樹脂や、電離放射線硬化型樹脂層に添加された光ラジカル重合開始剤や、増感剤等に作用してこれらを電離(ラジカル化)させ、ラジカル重合反応を開始せしめるに十分なエネルギーを有する電離放射線を用いることが可能である。例えば、可視光線、紫外線、X線、γ線等の電磁波や、電子線、α線、β線等の荷電粒子線等を用いることができ、感度や硬化能力、照射装置(光源・線源)の簡便性等の観点から、紫外線および電子線が好ましい。
The ionizing radiation curable resin for forming the ionizing radiation curable resin layer is not particularly limited, and examples thereof include unsaturated polyester resins, acrylate resins, methacrylate resins, silicone resins and the like. The ionizing radiation curable resin may be used alone or in combination of two or more.
Here, the ionizing radiation curable resin is a resin that is cured by irradiation with ionizing radiation. The ionizing radiation used for curing the ionizing radiation curable resin layer is not particularly limited, and acts on the ionizing radiation curable resin, the photo radical polymerization initiator added to the ionizing radiation curable resin layer, the sensitizer, etc. It is possible to use ionizing radiation having sufficient energy to ionize (radicalize) these and to initiate radical polymerization reaction. For example, electromagnetic waves such as visible light, ultraviolet light, X-rays, and γ-rays, charged particle beams such as electron beams, α-rays and β-rays, etc. can be used, sensitivity, curing ability, irradiation device (light source, radiation source) Ultraviolet rays and electron beams are preferred from the viewpoint of simplicity and the like.
 熱硬化性樹脂層を形成する熱硬化性樹脂としては特に限定されないが、例えば、メラミン系樹脂、フェノール系樹脂、尿素系樹脂、エポキシ系樹脂、アミノアルキド系樹脂、ウレタン系樹脂、ポリエステル系樹脂、シリコーン系樹脂等が挙げられる。熱硬化性樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The thermosetting resin for forming the thermosetting resin layer is not particularly limited, and examples thereof include melamine resins, phenol resins, urea resins, epoxy resins, amino alkyd resins, urethane resins and polyester resins. Silicone resin etc. are mentioned. A thermosetting resin may be used individually by 1 type, and may be used combining 2 or more types.
 インク層を形成するインクとしては、上記交点Xの領域を補強し、積層体150の切断時に凹凸構造103Bの脱落を防止できる強度を有するインク層を形成できるものであれば特に限定されず、公知のインクから適宜選択することができる。 The ink for forming the ink layer is not particularly limited as long as it can form an ink layer having a strength capable of reinforcing the area of the intersection point X and preventing the falling off of the concavo-convex structure 103B when the laminate 150 is cut. The ink can be selected appropriately.
 保護層105の厚さは上記交点Xの領域を補強し、積層体150の切断時に凹凸構造103Bの脱落を防止できる厚さであれば特に限定されないが、例えば、1μm以上50μm以下であることが好ましく、3μm以上30μm以下であることがより好ましい。 The thickness of the protective layer 105 is not particularly limited as long as it can reinforce the area of the intersection point X and can prevent the falling off of the concavo-convex structure 103B at the time of cutting the laminate 150, for example, 1 μm to 50 μm. Preferably, it is 3 μm or more and 30 μm or less.
 保護層105は、例えば、樹脂層やインク層を形成するための樹脂組成物やインクを上記交点Xの近傍に塗布し、次いで、乾燥および/または硬化させることによって形成することができる。
 樹脂組成物やインクの塗工方法は特に限定されないが、例えば、グラビアコート法、ダイコート法、リップコート法、ナイフコート法、エアーナイフコート法、スプレーコート法、フローコート法、ロールコート法、ディップコート法、インクジェット法等の塗工方法を用いることができる。これらの方法は単独で用いてもよいし、組み合わせて用いてもよい。これらの中でも、上記交点Xの近傍のみに保護層105を連続的に形成できる点から、インクジェット法が好ましい。
The protective layer 105 can be formed, for example, by applying a resin composition or an ink for forming a resin layer or an ink layer in the vicinity of the intersection point X, and then drying and / or curing.
The coating method of the resin composition and the ink is not particularly limited. For example, the gravure coating method, die coating method, lip coating method, knife coating method, air knife coating method, spray coating method, flow coating method, roll coating method, dip coating method Coating methods such as a coating method and an inkjet method can be used. These methods may be used alone or in combination. Among these, the inkjet method is preferable in that the protective layer 105 can be continuously formed only in the vicinity of the intersection point X.
(工程(B))
 つづいて、積層体150を所定の大きさに切断して電極100を得ることができる。積層体150から電極100を切り出す方法は特に限定されないが、例えば、積層体150の長手方向と平行に切断し、所定幅の複数の電極100を切り出す方法が挙げられる。さらに用途に応じて所定の寸法に打ち抜いて、電池用の電極100を得ることができる。
 ここで、積層体150の切断方法は特に限定されず、例えば金属等からなる刃を用いて積層体150を切断することができる。
(Step (B))
Subsequently, the laminate 150 can be cut into a predetermined size to obtain the electrode 100. Although the method to cut out the electrode 100 from the laminated body 150 is not specifically limited, For example, it cut | disconnects in parallel with the longitudinal direction of the laminated body 150, and the method of cutting out the several electrode 100 of predetermined width is mentioned. Further, the electrode 100 for a battery can be obtained by punching out to a predetermined size according to the application.
Here, the method for cutting the laminate 150 is not particularly limited, and the laminate 150 can be cut using, for example, a blade made of metal or the like.
<電池>
 図3は、本発明に係る実施形態の積層型電池50の構成の一例を示す概略図である。
 本実施形態に係る電池は、本実施形態に係る電極100を備える。以下、本実施形態に係る電池について、電池がリチウムイオン電池の積層型電池50である場合を代表例として説明する。
 積層型電池50は、正極1と負極6とが、セパレータ20を介して交互に複数層積層された電池要素を備えており、これらの電池要素は電解液(図示せず)とともに可撓性フィルム30からなる容器に収納されている。電池要素には正極端子11および負極端子16が電気的に接続されており、正極端子11および負極端子16の一部または全部が可撓性フィルム30の外部に引き出されている構成になっている。
<Battery>
FIG. 3 is a schematic view showing an example of the configuration of the stacked battery 50 according to the embodiment of the present invention.
The battery according to the present embodiment includes the electrode 100 according to the present embodiment. Hereinafter, as a battery according to the present embodiment, a case where the battery is a laminated battery 50 of a lithium ion battery will be described as a representative example.
Stacked battery 50 includes battery elements in which positive electrode 1 and negative electrode 6 are alternately stacked in multiple layers with separator 20 interposed therebetween, and these battery elements are a flexible film together with an electrolyte (not shown). It is housed in a 30 container. The positive electrode terminal 11 and the negative electrode terminal 16 are electrically connected to the battery element, and a part or all of the positive electrode terminal 11 and the negative electrode terminal 16 are drawn out of the flexible film 30. .
 正極1には正極集電体層3の表裏に、正極活物質の塗布部(正極活物質層2)と未塗布部がそれぞれ設けられており、負極6には負極集電体層8の表裏に、負極活物質の塗布部(負極活物質層7)と未塗布部が設けられている。 The positive electrode 1 is provided with the coated part (positive electrode active material layer 2) and the uncoated part of the positive electrode active material on the front and back of the positive electrode collector layer 3, and the negative electrode 6 is on the front and back of the negative electrode collector layer 8. In addition, the coated part of the negative electrode active material (negative electrode active material layer 7) and the uncoated part are provided.
 正極集電体層3における正極活物質の未塗布部を正極端子11と接続するための正極タブ10とし、負極集電体層8における負極活物質の未塗布部を負極端子16と接続するための負極タブ5とする。
 正極タブ10同士は正極端子11上にまとめられ、正極端子11とともに超音波溶接等で互いに接続され、負極タブ5同士は負極端子16上にまとめられ、負極端子16とともに超音波溶接等で互いに接続される。そのうえで、正極端子11の一端は可撓性フィルム30の外部に引き出され、負極端子16の一端も可撓性フィルム30の外部に引き出されている。
The uncoated portion of the positive electrode active material in the positive electrode current collector layer 3 is used as a positive electrode tab 10 for connecting to the positive electrode terminal 11, and the uncoated portion of the negative electrode active material in the negative electrode current collector layer 8 is connected to the negative electrode terminal 16. The negative electrode tab 5 of FIG.
The positive electrode tabs 10 are assembled on the positive electrode terminal 11 and connected together by ultrasonic welding etc. together with the positive electrode terminal 11, and the negative electrode tabs 5 are assembled on the negative electrode terminal 16 connected together by ultrasonic welding etc. together with the negative electrode terminal 16. Be done. In addition, one end of the positive electrode terminal 11 is drawn out of the flexible film 30, and one end of the negative electrode terminal 16 is also drawn out of the flexible film 30.
 正極活物質の塗布部(正極活物質層2)と未塗布部の境界部4には、必要に応じて絶縁部材を形成することができ、当該絶縁部材は境界部4だけでなく、正極タブ10と正極活物質の双方の境界部付近に形成することができる。 If necessary, an insulating member can be formed at the boundary 4 between the coated part (positive electrode active material layer 2) and the non-coated part of the positive electrode active material, and the insulating member is not only the boundary 4 but also the positive electrode tab. 10 and near the boundary between the positive electrode active material.
 負極活物質の塗布部(負極活物質層7)と未塗布部の境界部9にも同様に、必要に応じて絶縁部材を形成することができ、負極タブ5と負極活物質の双方の境界部付近に形成することができる。 Similarly, an insulating member can be formed on the boundary portion 9 between the coated portion (negative electrode active material layer 7) and the non-coated portion of the negative electrode active material as required, and the boundary between both the negative electrode tab 5 and the negative electrode active material It can be formed near the part.
 通常、負極活物質層7の外形寸法は正極活物質層2の外形寸法よりも大きく、セパレータ20の外形寸法よりも小さい。 Usually, the outer dimension of the negative electrode active material layer 7 is larger than the outer dimension of the positive electrode active material layer 2 and smaller than the outer dimension of the separator 20.
(リチウム塩を含有する非水電解液)
 本実施形態に用いるリチウム塩を含有する非水電解液は、電極活物質の種類やリチウムイオン電池の用途等に応じて公知のものの中から適宜選択することができる。
(Non-aqueous electrolyte containing lithium salt)
The non-aqueous electrolytic solution containing a lithium salt used in the present embodiment can be appropriately selected from known ones depending on the type of electrode active material, the use of the lithium ion battery, and the like.
 具体的なリチウム塩の例としては、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等を挙げることができる。 Specific examples of the lithium salt, for example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB Examples include (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, and lower fatty acid carboxylate lithium.
 リチウム塩を溶解する溶媒としては、電解質を溶解させる液体として通常用いられるものであれば特に限定されるものではなく、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC),ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素溶媒;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらは、一種単独で使用してもよいし、二種以上を組み合わせて使用してもよい。 The solvent for dissolving the lithium salt is not particularly limited as long as it is generally used as a liquid for dissolving the electrolyte, and ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), carbonates such as vinylene carbonate (VC); lactones such as γ-butyrolactone and γ-valerolactone; trimethoxymethane Ethers such as 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, etc. Sulfoxides such as dimethylsulfoxide, etc. 1,3-Dioxolane, 4-methyl-1,3-dioxola Nitrogenous solvents such as acetonitrile, nitromethane, formamide and dimethylformamide; methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate and the like; organic acid esters such as phosphoric acid triester And diglymes; triglymes; sulfolanes such as sulfolane and methyl sulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; and sultones such as 1,3-propane sultone, 1,4-butane sultone and naphtha sultone. . These may be used singly or in combination of two or more.
(容器)
 本実施形態において容器には公知の部材を用いることができ、電池の軽量化の観点からは可撓性フィルム30を用いることが好ましい。可撓性フィルム30は、基材となる金属層の表裏面に樹脂層が設けられたものを用いることができる。金属層には電解液の漏出や外部からの水分の侵入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼等を用いることができる。金属層の少なくとも一方の面には変性ポリオレフィン等の熱融着性の樹脂層が設けられ、可撓性フィルム30の熱融着性の樹脂層同士を電池要素を介して対向させ、電池要素を収納する部分の周囲を熱融着することで外装体を形成する。熱融着性の樹脂層が形成された面と反対側の面となる外装体表面にはナイロンフィルム、ポリエステルフィルム等の樹脂層を設けることができる。
(container)
A well-known member can be used for a container in this embodiment, and it is preferable to use the flexible film 30 from a viewpoint of weight reduction of a battery. The flexible film 30 can use what provided the resin layer in front and back of the metal layer used as a base material. The metal layer can be selected to have a barrier property to prevent leakage of the electrolytic solution and entry of moisture from the outside, and aluminum, stainless steel, etc. can be used. A heat-sealable resin layer such as modified polyolefin is provided on at least one surface of the metal layer, and the heat-sealable resin layers of the flexible film 30 are opposed to each other through the battery element to make the battery element The sheath is formed by heat-sealing the periphery of the part to be stored. A resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body opposite to the surface on which the heat-fusible resin layer is formed.
(端子)
 本実施形態において、正極端子11にはアルミニウムやアルミニウム合金で構成されたもの、負極端子16には銅や銅合金あるいはそれらにニッケルメッキを施したもの等を用いることができる。それぞれの端子は容器の外部に引き出されるが、それぞれの端子における外装体の周囲を熱溶着する部分に位置する箇所には熱融着性の樹脂をあらかじめ設けることができる。
(Terminal)
In the present embodiment, the positive electrode terminal 11 may be made of aluminum or an aluminum alloy, and the negative electrode terminal 16 may be copper or a copper alloy, or those plated with nickel. Each terminal is drawn to the outside of the container, but a heat fusible resin can be provided in advance in a portion located at a portion of the respective terminal where the periphery of the package is heat welded.
(絶縁部材)
 活物質の塗布部と未塗布部の境界部4、9に絶縁部材を形成する場合には、ポリイミド、ガラス繊維、ポリエステル、ポリプロピレンあるいはこれらを構成中に含むものを用いることができる。これらの部材に熱を加えて境界部4、9に溶着させるか、または、ゲル状の樹脂を境界部4、9に塗布、乾燥させることで絶縁部材を形成することができる。
(Insulation member)
In the case of forming the insulating member at the boundary portions 4 and 9 between the coated portion and the non-coated portion of the active material, polyimide, glass fiber, polyester, polypropylene or those containing these in the structure can be used. Heat can be applied to these members to weld them to the boundaries 4 and 9, or a gel-like resin can be applied to the boundaries 4 and 9 and dried to form an insulating member.
(セパレータ)
 本実施形態に係るセパレータ20は、耐熱性樹脂を主成分として含む樹脂層を備えることが好ましい。
 ここで、上記樹脂層は主成分である耐熱性樹脂により形成されている。ここで、「主成分」とは、樹脂層中における割合が50質量%以上であることをいい、好ましくは70質量%以上であり、さらに好ましくは90質量%以上であり、100質量%であってもよいことを意味する。
 本実施形態に係るセパレータ20を構成する樹脂層は、単層であっても、二種以上の層であってもよい。
(Separator)
The separator 20 according to the present embodiment preferably includes a resin layer containing a heat resistant resin as a main component.
Here, the resin layer is formed of a heat resistant resin which is a main component. Here, the term "main component" means that the proportion in the resin layer is 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more, and 100% by mass. It means that you may.
The resin layer constituting the separator 20 according to the present embodiment may be a single layer or two or more layers.
 上記樹脂層を形成する耐熱性樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ-m-フェニレンテレフタレート、ポリ-p-フェニレンイソフタレート、ポリカーボネート、ポリエステルカーボネート、脂肪族ポリアミド、全芳香族ポリアミド、半芳香族ポリアミド、全芳香族ポリエステル、ポリフェニレンサルファイド、ポリパラフェニレンベンゾビスオキサゾール、ポリイミド、ポリアリレート、ポリエーテルイミド、ポリアミドイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホン、フッ素系樹脂、ポリエーテルニトリル、変性ポリフェニレンエーテル等から選択される一種または二種以上を挙げることができる。 Examples of the heat resistant resin forming the above resin layer include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, polycarbonate, polyester carbonate, aliphatic polyamide, all Aromatic polyamide, semiaromatic polyamide, wholly aromatic polyester, polyphenylene sulfide, polyparaphenylene benzobisoxazole, polyimide, polyarylate, polyetherimide, polyamideimide, polyacetal, polyetheretherketone, polysulfone, polyethersulfone, One or more selected from fluorine resins, polyether nitriles, modified polyphenylene ethers and the like can be mentioned.
 これらの中でも、耐熱性や機械的強度、伸縮性、価格等のバランスに優れる観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、脂肪族ポリアミド、全芳香族ポリアミド、半芳香族ポリアミドおよび全芳香族ポリエステルから選択される一種または二種以上が好ましく、ポリエチレンテレフタレート、ポリブチレンテレフタレート、脂肪族ポリアミド、全芳香族ポリアミドおよび半芳香族ポリアミドから選択される一種または二種以上がより好ましく、ポリエチレンテレフタレートおよび全芳香族ポリアミドから選択される一種または二種以上がさらに好ましく、ポリエチレンテレフタレートがより好ましい。 Among them, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, aliphatic polyamide, wholly aromatic polyamide, semiaromatic polyamide and all aromatic from the viewpoint of excellent balance of heat resistance, mechanical strength, stretchability, price and the like. Family of polyesters, one or more selected from polyethylene terephthalates, polybutylene terephthalates, aliphatic polyamides, wholly aromatic polyamides and semiaromatic polyamides are more preferred, and polyethylene terephthalates are preferred. One or more selected from wholly aromatic polyamides are more preferable, and polyethylene terephthalate is more preferable.
 本実施形態に係るセパレータ20を構成する樹脂層は多孔性樹脂層であることが好ましい。これにより、リチウムイオン電池に異常電流が発生し、電池の温度が上昇した場合等に多孔性樹脂層の微細孔が閉塞して電流の流れを遮断することができ、電池の熱暴走を回避することができる。 It is preferable that the resin layer which comprises the separator 20 which concerns on this embodiment is a porous resin layer. Thereby, when an abnormal current occurs in the lithium ion battery and the temperature of the battery rises, etc., the fine pores of the porous resin layer can be blocked to block the flow of the current, thereby avoiding the thermal runaway of the battery. be able to.
 上記多孔性樹脂層の空孔率は、機械的強度およびリチウムイオン伝導性のバランスの観点から、20%以上80%以下が好ましく、30%以上70%以下がより好ましく、40%以上60%以下が特に好ましい。
 空孔率は、下記式から求めることができる。
 ε={1-Ws/(ds・t)}×100
 ここで、ε:空孔率(%)、Ws:目付(g/m)、ds:真密度(g/cm)、t:膜厚(μm)である。
From the viewpoint of the balance between mechanical strength and lithium ion conductivity, the porosity of the porous resin layer is preferably 20% to 80%, more preferably 30% to 70%, and still more preferably 40% to 60%. Is particularly preferred.
The porosity can be determined from the following equation.
ε = {1-Ws / (ds · t)} × 100
Here, ε: porosity (%), Ws: basis weight (g / m 2 ), ds: true density (g / cm 3 ), t: film thickness (μm).
 本実施形態に係るセパレータ20の平面形状は、特に限定されず、電極や集電体の形状に合わせて適宜選択することが可能であり、例えば、矩形とすることができる。 The planar shape of the separator 20 according to the present embodiment is not particularly limited, and can be appropriately selected according to the shapes of the electrode and the current collector, and can be, for example, rectangular.
 本実施形態に係るセパレータ20の厚みは、機械的強度およびリチウムイオン伝導性のバランスの観点から、好ましくは5μm以上50μm以下である。 The thickness of the separator 20 according to the present embodiment is preferably 5 μm or more and 50 μm or less from the viewpoint of the balance between mechanical strength and lithium ion conductivity.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
As mentioned above, although embodiment of this invention was described, these are the illustrations of this invention, and various structures other than the above can also be employ | adopted.
Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
 この出願は、2017年10月19日に出願された日本出願特願2017-202717号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-202717 filed Oct. 19, 2017, the entire disclosure of which is incorporated herein.

Claims (12)

  1.  集電体層と電極活物質層とを備える電極の製造方法であって、
     前記集電体層と、前記集電体層の少なくとも一方の面に設けられ、かつ、少なくとも一辺が凹凸構造の平面形状を含む電極活物質層と、を備える積層体を準備する工程(A)と、
     前記積層体を所定の大きさに切断して前記電極を得る工程(B)と、
    を含み、
     前記積層体は、前記工程(B)における前記積層体の切断予定部位と、前記凹凸構造が形成された前記一辺と、の交点を覆うように形成された保護層をさらに備える電極の製造方法。
    A method of manufacturing an electrode comprising a current collector layer and an electrode active material layer,
    Step of preparing a laminate including the current collector layer, and an electrode active material layer provided on at least one surface of the current collector layer, and at least one side of which includes a planar shape of a concavo-convex structure (A) When,
    Cutting the laminate into a predetermined size to obtain the electrode (B);
    Including
    The method for manufacturing an electrode, the laminate further including a protective layer formed to cover an intersection of a planned cutting site of the laminate in the step (B) and the one side on which the uneven structure is formed.
  2.  請求項1に記載の電極の製造方法において、
     前記工程(A)は、前記電極活物質層を形成するための電極スラリーを、帯状の前記集電体層の長手方向に間欠的に塗工しながら乾燥することによって、前記集電体層の少なくとも一方の面上に前記電極活物質層を間欠的に形成する工程(A1)を含む電極の製造方法。
    In the method of manufacturing an electrode according to claim 1,
    In the step (A), the electrode slurry for forming the electrode active material layer is dried while being intermittently applied in the longitudinal direction of the strip-like current collector layer, thereby forming the electrode collector layer. The manufacturing method of the electrode including the process (A1) which forms the said electrode active material layer intermittently on at least one surface.
  3.  請求項1に記載の電極の製造方法において、
     前記凹凸構造は、前記工程(A1)における塗工終端部の尾引きによって形成される構造である電極の製造方法。
    In the method of manufacturing an electrode according to claim 1,
    The method for manufacturing an electrode, wherein the concavo-convex structure is a structure formed by tailing a coating end portion in the step (A1).
  4.  請求項1乃至3のいずれか一項に記載の電極の製造方法において、
     前記集電体層が正極集電体層の場合、前記集電体層の厚みが25μm未満であり、
     前記集電体層が負極集電体層の場合、前記集電体層の厚みが15μm未満である電極の製造方法。
    In the method of manufacturing an electrode according to any one of claims 1 to 3,
    When the current collector layer is a positive electrode current collector layer, the thickness of the current collector layer is less than 25 μm,
    The manufacturing method of the electrode whose thickness of the said collector layer is less than 15 micrometers when the said collector layer is a negative electrode collector layer.
  5.  請求項1乃至4のいずれか一項に記載の電極の製造方法において、
     前記電極活物質層が正極活物質層の場合、前記電極活物質層の密度が3.0g/cm以上であり、
     前記電極活物質層が負極活物質層の場合、前記電極活物質層の密度が1.5g/cm以上である電極の製造方法。
    In the method of manufacturing an electrode according to any one of claims 1 to 4,
    When the electrode active material layer is a positive electrode active material layer, the density of the electrode active material layer is 3.0 g / cm 3 or more,
    When the said electrode active material layer is a negative electrode active material layer, the manufacturing method of the electrode whose density of the said electrode active material layer is 1.5 g / cm < 3 > or more.
  6.  請求項1乃至5のいずれか一項に記載の電極の製造方法において、
     前記電極がリチウムイオン電池用電極である電極の製造方法。
    In the method of manufacturing an electrode according to any one of claims 1 to 5,
    The manufacturing method of the electrode whose said electrode is an electrode for lithium ion batteries.
  7.  集電体層と、
     前記集電体層の少なくとも一方の面に設けられ、かつ、少なくとも一辺が凹凸構造の平面形状を含む電極活物質層と、
     前記凹凸構造を含む前記一辺の端部を覆うように形成された保護層と、
    を備える電極。
    A current collector layer,
    An electrode active material layer provided on at least one surface of the current collector layer, and at least one side of which has a planar shape of a concavo-convex structure;
    A protective layer formed to cover the end of the side including the concavo-convex structure;
    An electrode comprising:
  8.  請求項7に記載の電極において、
     前記集電体層が正極集電体層の場合、前記集電体層の厚みが25μm未満であり、
     前記集電体層が負極集電体層の場合、前記集電体層の厚みが15μm未満である電極。
    In the electrode according to claim 7,
    When the current collector layer is a positive electrode current collector layer, the thickness of the current collector layer is less than 25 μm,
    When the said collector layer is a negative electrode collector layer, the electrode whose thickness of the said collector layer is less than 15 micrometers.
  9.  請求項7または8に記載の電極において、
     前記電極活物質層が正極活物質層の場合、前記電極活物質層の密度が3.0g/cm以上であり、
     前記電極活物質層が負極活物質層の場合、前記電極活物質層の密度が1.5g/cm以上である電極。
    The electrode according to claim 7 or 8
    When the electrode active material layer is a positive electrode active material layer, the density of the electrode active material layer is 3.0 g / cm 3 or more,
    When the said electrode active material layer is a negative electrode active material layer, the electrode whose density of the said electrode active material layer is 1.5 g / cm < 3 > or more.
  10.  請求項7乃至9のいずれか一項に記載の電極において、
     リチウムイオン電池用電極である電極。
    The electrode according to any one of claims 7 to 9,
    An electrode that is an electrode for lithium ion batteries.
  11.  請求項7乃至10のいずれか一項に記載の電極を備える電池。 A battery comprising the electrode according to any one of claims 7 to 10.
  12.  請求項11に記載の電極を備える電池において、
     リチウムイオン電池である電池。
    In a battery comprising the electrode according to claim 11,
    A battery that is a lithium ion battery.
PCT/JP2018/034760 2017-10-19 2018-09-20 Method for manufacturing electrode, electrode, and cell WO2019077931A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019549163A JPWO2019077931A1 (en) 2017-10-19 2018-09-20 Electrode manufacturing method, electrodes and batteries
CN201880065936.9A CN111201646B (en) 2017-10-19 2018-09-20 Electrode manufacturing method, electrode and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017202717 2017-10-19
JP2017-202717 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019077931A1 true WO2019077931A1 (en) 2019-04-25

Family

ID=66174398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034760 WO2019077931A1 (en) 2017-10-19 2018-09-20 Method for manufacturing electrode, electrode, and cell

Country Status (3)

Country Link
JP (1) JPWO2019077931A1 (en)
CN (1) CN111201646B (en)
WO (1) WO2019077931A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145061A1 (en) * 2020-01-17 2021-07-22 パナソニックIpマネジメント株式会社 Coating method and coating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172827A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Clearance determination method of gang edge cutting device, cutting method by gang edge cutting device, and gang edge cutting device
JP2016081742A (en) * 2014-10-17 2016-05-16 株式会社豊田自動織機 Manufacturing method of electrode
JP2017147247A (en) * 2017-06-06 2017-08-24 日本電気株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using the same
WO2017158961A1 (en) * 2016-03-18 2017-09-21 Necエナジーデバイス株式会社 Positive electrode mixture for secondary batteries, manufacturing method for positive electrodes for secondary batteries, and manufacturing method for secondary batteries

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658255B (en) * 2012-05-10 2013-10-30 深圳市浩能科技有限公司 Intermittent extrusion coater
CN105244470A (en) * 2015-09-11 2016-01-13 合肥国轩高科动力能源有限公司 Positive plate of high-safety lithium-ion laminated battery and preparation method of positive plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172827A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Clearance determination method of gang edge cutting device, cutting method by gang edge cutting device, and gang edge cutting device
JP2016081742A (en) * 2014-10-17 2016-05-16 株式会社豊田自動織機 Manufacturing method of electrode
WO2017158961A1 (en) * 2016-03-18 2017-09-21 Necエナジーデバイス株式会社 Positive electrode mixture for secondary batteries, manufacturing method for positive electrodes for secondary batteries, and manufacturing method for secondary batteries
JP2017147247A (en) * 2017-06-06 2017-08-24 日本電気株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145061A1 (en) * 2020-01-17 2021-07-22 パナソニックIpマネジメント株式会社 Coating method and coating device

Also Published As

Publication number Publication date
JPWO2019077931A1 (en) 2020-11-05
CN111201646B (en) 2023-07-18
CN111201646A (en) 2020-05-26

Similar Documents

Publication Publication Date Title
JP7144433B2 (en) METHOD FOR MANUFACTURING COLLECTOR ELECTRODE SHEET
JP7372045B2 (en) Positive electrode for lithium ion secondary batteries, positive electrode sheet for lithium ion secondary batteries, and manufacturing method thereof
JP2006260892A (en) Electrode plate for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using the above electrode plate
EP3425702B1 (en) Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP7281944B2 (en) Positive electrode for lithium ion secondary battery, positive electrode sheet for lithium ion secondary battery, and manufacturing method thereof
JP2019145378A (en) Compressing device, current collector electrode sheet manufacturing method, current collector electrode sheet, and battery
WO2019077931A1 (en) Method for manufacturing electrode, electrode, and cell
WO2019111616A1 (en) Current collector electrode sheet, method of manufacturing same, battery, and method of manufacturing same
JP7064709B2 (en) Negative negative for lithium ion secondary battery and lithium ion secondary battery
JP6962231B2 (en) Non-aqueous electrolyte secondary battery
WO2019082575A1 (en) Current collector electrode sheet manufacturing method, compression roller, current collector electrode sheet, and battery
JP2019169346A (en) Lithium ion secondary battery
JP2015222685A (en) Electrode for secondary battery
JPWO2018155240A1 (en) Positive electrode for lithium ion battery and lithium ion battery
JP2006024375A (en) Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2020167000A (en) Electrode and nonaqueous electrolyte secondary battery
JP2020091944A (en) Manufacturing method of collector electrode sheet, collector electrode sheet, and battery
WO2017056585A1 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
WO2021010185A1 (en) Positive electrode and lithium ion secondary battery
JP7243380B2 (en) Electrodes and non-aqueous electrolyte secondary batteries
JP2008226555A (en) Nonaqueous electrolyte battery
JP6926588B2 (en) Current collector for lithium secondary battery and lithium secondary battery
WO2020116080A1 (en) Collector electrode sheet and battery
CN112753111A (en) Electrode for lithium ion secondary battery, method for producing same, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868532

Country of ref document: EP

Kind code of ref document: A1