WO2019082575A1 - Current collector electrode sheet manufacturing method, compression roller, current collector electrode sheet, and battery - Google Patents

Current collector electrode sheet manufacturing method, compression roller, current collector electrode sheet, and battery

Info

Publication number
WO2019082575A1
WO2019082575A1 PCT/JP2018/035351 JP2018035351W WO2019082575A1 WO 2019082575 A1 WO2019082575 A1 WO 2019082575A1 JP 2018035351 W JP2018035351 W JP 2018035351W WO 2019082575 A1 WO2019082575 A1 WO 2019082575A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode sheet
current collector
compression
collector electrode
region
Prior art date
Application number
PCT/JP2018/035351
Other languages
French (fr)
Japanese (ja)
Inventor
大 綾
真佑子 小山
金澤 進一
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2019549958A priority Critical patent/JPWO2019082575A1/en
Publication of WO2019082575A1 publication Critical patent/WO2019082575A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B3/00Presses characterised by the use of rotary pressing members, e.g. rollers, rings, discs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of manufacturing a current collector electrode sheet, a compression roller, a current collector electrode sheet, and a battery.
  • Such an electrode for a secondary battery is produced from an electrode sheet obtained by applying and drying a slurry containing an active material on a strip-like metal foil of aluminum, copper or the like.
  • the application method of the active material can be roughly divided into an intermittent coating method and a continuous coating method.
  • a coated region formed by applying a slurry such as an active material to a strip-shaped metal foil and a non-coated region not applied with the slurry are alternately arranged at predetermined intervals in the winding direction of the metal foil. It is a system to form.
  • the non-forming portion of the active material disposed at a predetermined interval is used as a site for taking out a lead-out tab for electrically connecting to the external terminal.
  • a slurry obtained by mixing or kneading the active material, the conductivity imparting agent, the binder, and the solvent, which are main components, is intermittently applied to one surface of the metal foil (hereinafter referred to as After the intermittent application is performed, the other side of the metal foil is intermittently applied again to apply slurry on both sides of the metal foil.
  • the metal foil with the slurry applied on both sides is pressure-formed by a compression roller. Then, it cut
  • a lithium-containing composite oxide is used as a positive electrode active material of a lithium ion secondary battery, and a large pressure is required when pressure molding an active material layer containing such metal oxide particles as a main component.
  • a positive electrode used for a secondary battery designed to have a high energy density it is necessary to compress the active material layer to a high density, and therefore, in the pressure forming, it is often formed by applying a higher pressure.
  • an electrode used in a secondary battery designed to have a high energy density tends to design a thin metal foil as a current collector.
  • a slurry tailing portion 14 is generated at the boundary between the coated region 11 and the non-coated region 12 when the slurry is intermittently applied to the coating end of the current collector electrode sheet. It's easy to do.
  • the strip-shaped electrode sheet 10 is compressed, processed and formed by a roll press along the winding direction Dx of the electrode roll, if such a tailing portion 14 is present, the tailing portion 14 at the application end has a winding direction (hereinafter referred to as Since the active material layer is only intermittently present in the direction Dy perpendicular to the longitudinal direction Dx, the active material layer is continuously present in the direction Dy perpendicular to the take-up direction Dx. Also, a large linear pressure will be applied.
  • the compression roller is moved up and down frequently, and the compression roller device.
  • the mechanism for adjusting the distance between the compression rolls based on the application end detector and the detection signal is provided, the apparatus configuration becomes complicated, and the maintenance becomes complicated.
  • An object of the present invention is to provide a method of manufacturing a current collector electrode sheet using the compression roller, a current collector electrode sheet, and a battery.
  • the collector electrode sheet of the present invention is A current collector electrode sheet in which an active material layer is formed on both sides in the longitudinal direction of a sheet-like metal foil, wherein the active material layer is a first coated region having a thick coating film, and the first coated region.
  • the thickness of the metal foil in the first application area after compression in the thickness direction of the metal foil is formed by the second application area having a thickness smaller than that of the application area; The thickness is thinner than the thickness of the metal foil in the two coated areas and the non-coated area.
  • the method for producing an electrode sheet of the present invention is The current collector electrode sheet in which the active material is coated on both sides of the sheet metal foil is compressed in the thickness direction of the current collector electrode sheet using a compression roller constituted by a pair of two compression rolls.
  • the current collector electrode sheet includes a coated region coated with a slurry containing the active material, and a non-coated region not coated with the slurry.
  • the application region of the current collector electrode sheet includes a first region, and a second region in which the thickness of the applied film formed is thinner than the first region.
  • the compression roller is placed in the first area. Contact and compress.
  • the compression roller of the present invention is It has a pair of compression rolls which continuously compress the current collector electrode sheet having the active material coated on both sides of the sheet metal foil in the thickness direction, Each of the compression rolls is installed so that its rotation axis is parallel to the lateral direction of the current collector electrode sheet, Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
  • the side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction. The distance between the side surfaces in the first range of the pair of compression rolls facing each other is shorter than the distance between the side surfaces in the second range of the pair of compression rolls facing each other.
  • the current collector electrode sheet of the present invention is manufactured using the method of manufacturing a current collector electrode sheet of the present invention.
  • the battery of the present invention is manufactured using the current collector electrode sheet of the present invention.
  • the present invention it is possible to provide a method of manufacturing a current collector electrode sheet, a compression roller, a current collector electrode sheet, and a battery capable of preventing the occurrence of defects in the manufacturing process without increasing the manufacturing cost.
  • FIG. 1 is a partial plan view showing a current collector electrode sheet 10 after double-sided application of an active material in a method of manufacturing a current collector electrode sheet according to an embodiment of the present invention.
  • the electrode sheet 10 has a configuration in which the application region 11 and the non-application region 12 of the slurry such as the active material are intermittently formed in the longitudinal direction Dx on both surfaces of the strip-like metal foil 9.
  • a tailing portion 14 is present at the side electrode portion due to the occurrence of slurry drag. That is, the current collector electrode sheet 10 intermittently applies the slurry on both surfaces of the metal foil 9 to form the tailing portion 14 at the boundary between the coated area 11 and the non-coated area 12.
  • an active material layer is not limited to what is apply
  • the active material layer may be formed by continuous stripe coating, for example, in addition to intermittent coating.
  • the electrode produced from the electrode sheet 10 according to the present embodiment is not particularly limited, but is, for example, an electrode (positive electrode or negative electrode) for a lithium ion battery such as a lithium ion primary battery or a lithium ion secondary battery.
  • the electrode active material layer contains an electrode active material, and as necessary, contains a binder resin, a conductive auxiliary agent, a thickener and the like.
  • a lithium metal composite oxide can be used as the electrode active material.
  • the electrode active material contained in the electrode active material layer according to the present embodiment is appropriately selected according to the application.
  • a positive electrode active material is used, and when manufacturing a negative electrode, a negative electrode active material is used.
  • the positive electrode active material is not particularly limited as long as it is a normal positive electrode active material that can be used for the positive electrode of a lithium ion battery.
  • the olivine-type lithium phosphorus oxide is, for example, at least one member of the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus and oxygen. These compounds may be obtained by partially replacing some elements with other elements in order to improve their properties.
  • These positive electrode active materials have large capacity in addition to high action potential and large energy density.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the negative electrode active material is not particularly limited as long as it is a common negative electrode active material that can be used for the negative electrode of a lithium ion battery.
  • carbon materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated carbon, hard carbon, soft carbon; lithium metal materials such as lithium metal and lithium alloy; metal materials such as silicon and tin; polyacene, polyacetylene, Conductive polymer materials such as polypyrrole can be mentioned.
  • carbon materials are preferable, and particularly graphitic materials such as natural graphite and artificial graphite are preferable.
  • the negative electrode active material may be used singly or in combination of two or more.
  • the average particle diameter of the electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, from the viewpoint of suppressing side reactions during charge and discharge to suppress a decrease in charge and discharge efficiency. From the smoothness of the surface, etc., 100 ⁇ m or less is preferable, and 50 ⁇ m or less is more preferable.
  • the average particle diameter means a particle diameter (median diameter: D50) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the content of the electrode active material is preferably 85 parts by mass or more and 99.8 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer.
  • the binder resin contained in the electrode active material layer according to the present embodiment is appropriately selected according to the application.
  • a fluorine-based binder resin that can be dissolved in a solvent, an aqueous binder that can be dispersed in water, or the like can be used.
  • the fluorine-based binder resin is not particularly limited as long as it can be formed into an electrode and has sufficient electrochemical stability, and examples thereof include polyvinylidene fluoride resins and fluororubbers. These fluorine-based binder resins may be used alone or in combination of two or more. Among these, polyvinylidene fluoride resins are preferable.
  • the fluorine-based binder resin can be used, for example, by dissolving it in a solvent such as N-methyl-pyrrolidone (NMP).
  • NMP N-methyl-pyrrolidone
  • the aqueous binder is not particularly limited as long as it can be formed into an electrode and has sufficient electrochemical stability.
  • polytetrafluoroethylene resin, polyacrylic acid resin, styrene butadiene rubber, Polyimide resin etc. are mentioned. These aqueous binders may be used alone or in combination of two or more. Among these, styrene butadiene rubber is preferable.
  • the aqueous binder refers to one that can be dispersed in water to form an aqueous emulsion solution. When using a water-based binder, a thickener can be further used.
  • the thickener is not particularly limited, but, for example, cellulose polymers such as carboxymethylcellulose, methylcellulose and hydroxypropylcellulose and ammonium salts thereof and alkali metal salts; polycarboxylic acids; polyethylene oxide; polyvinylpyrrolidone; sodium polyacrylate and the like And water-soluble polymers such as polyvinyl alcohol; and the like.
  • the content of the binder resin is preferably 0.1 parts by mass or more and 10.0 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer.
  • the balance of the coating property of an electrode slurry, the binding property of a binder, and battery characteristics as the content of binder resin is in the said range is much more excellent.
  • the ratio of an electrode active material becomes large as content of binder resin is below the said upper limit, and since the capacity
  • the conductive aid contained in the electrode active material layer according to the present embodiment is not particularly limited as long as it improves the conductivity of the electrode, but, for example, carbon black, ketjen black, acetylene black, natural graphite, artificial graphite And carbon fibers. These conductive aids may be used alone or in combination of two or more.
  • the content of the conductive additive is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer.
  • the balance of the coating property of an electrode slurry, the binding property of a binder, and the battery characteristic as the content of a conductive support agent is in the said range is much more excellent.
  • the ratio of an electrode active material becomes large as content of a conductive support agent is below the said upper limit, and the capacity
  • the content of the conductive aid to be not less than the above lower limit value, since the conductivity of the electrode becomes better.
  • the content of the electrode active material is preferably 85 parts by mass or more and 99.8 parts by mass or less, based on 100 parts by mass of the whole of the electrode active material layer according to the present embodiment.
  • the content of the binder resin is preferably 0.1 parts by mass or more and 10.0 parts by mass or less.
  • the content of the conductive aid is preferably 0.1 parts by mass or more and 5.0 parts by mass or less.
  • the density of the electrode active material layer is not particularly limited, but when the electrode active material layer is a positive electrode active material layer, for example, it is preferably 2.0 g / cm 3 or more and 4.0 g / cm 3 or less, and 2.4 g / more preferably cm 3 or more 3.8 g / cm 3 or less, and more preferably not more than 2.8 g / cm 3 or more 3.6 g / cm 3.
  • the electrode active material layer is a negative electrode active material layer, for example, it is preferably 1.2 g / cm 3 or more and 2.0 g / cm 3 or less, and 1.3 g / cm 3 or more and 1.9 g / cm 3 The following is more preferable, and 1.4 g / cm 3 or more and 1.8 g / cm 3 or less is more preferable.
  • the density of the electrode active material layer is in the above range, the discharge capacity at the time of use at a high discharge rate is improved, which is preferable.
  • the thickness of the electrode active material layer is not particularly limited, and can be appropriately set according to the desired characteristics. For example, it can be set thick in terms of energy density, and can be set thin in terms of output characteristics.
  • the thickness (thickness on one side) of the electrode active material layer can be appropriately set, for example, in the range of 10 ⁇ m to 250 ⁇ m, preferably 20 ⁇ m to 200 ⁇ m, and more preferably 30 ⁇ m to 150 ⁇ m.
  • the current collector layer (metal foil 9) according to the present embodiment is not particularly limited, but aluminum, stainless steel, nickel, titanium, an alloy of these, or the like can be used as the positive electrode current collector layer.
  • As the shape, foil, flat form, mesh form etc. are mentioned, for example.
  • an aluminum foil can be suitably used.
  • copper, stainless steel, nickel, titanium or an alloy thereof can be used as the negative electrode current collector layer.
  • As the shape, foil, flat form, mesh form is mentioned. Particularly, copper foil can be suitably used.
  • the thickness of the positive electrode current collector layer is not particularly limited, but is, for example, 1 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the negative electrode current collector layer is not particularly limited, and is, for example, 1 ⁇ m or more and 20 ⁇ m or less.
  • an electrode slurry is prepared.
  • An electrode slurry can be prepared by mixing an electrode active material, and as needed, a binder resin, a conductive aid, and a thickener.
  • the compounding ratio of the electrode active material, the binder resin, and the conductive auxiliary is the same as the content ratio of the electrode active material, the binder resin, and the conductive auxiliary in the electrode active material layer, and thus the description thereof is omitted here.
  • the electrode slurry is obtained by dispersing or dissolving an electrode active material, and as necessary, a binder resin, a conductive auxiliary agent, and a thickener in a solvent.
  • a binder resin for example, after dry-mixing an electrode active material and a conductive support agent, an electrode slurry can be prepared by adding a binder resin and a solvent and wet-mixing.
  • a mixer to be used known ones such as a ball mill and a planetary mixer can be used, and it is not particularly limited.
  • a solvent used for the electrode slurry an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water can be used.
  • NMP N-methyl-2-pyrrolidone
  • a method of applying the electrode slurry on the current collector layer generally known methods can be used.
  • reverse roll method, direct roll method, doctor blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method, squeeze method and the like can be mentioned.
  • the doctor blade method, the knife method and the extrusion method are preferable in that it is possible to obtain a good surface state of the coating layer according to the physical properties such as viscosity and the like of the electrode slurry and the drying property.
  • the method for drying the electrode slurry applied on the current collector layer is not particularly limited.
  • the electrode slurry is indirectly heated from the current collector layer side or the electrode active material layer side already dried using a heating roll.
  • Method of drying electrode slurry Method of drying electrode slurry using electromagnetic waves such as infrared, far infrared and near infrared heaters; hot air is applied from the current collector layer side or the already dried electrode active material layer side
  • FIG. 12 is a block diagram showing a configuration example of a manufacturing system 1 of the electrode sheet 10 according to the embodiment of the present invention.
  • the manufacturing system 1 includes a slurry application device 20, a compression device 40, and a cutting device 60. Furthermore, a control device that controls each device of the manufacturing system 1 may be provided.
  • FIG. 13 is a block diagram showing an example of a hardware configuration of a computer that implements each device of the electrode sheet manufacturing system according to the embodiment of the present invention.
  • the slurry application device 20, the compression device 40, and the cutting device 60 are each realized by at least one computer 100.
  • the computer 100 includes a central processing unit (CPU) 102, a memory 104, a program 110 for realizing each device loaded in the memory 104, a storage 105 for storing the program 110, an input / output (I / O) 106, and a network connection. Communication interface (I / F) 107.
  • the CPU 102 and each element are connected to one another via a bus 109, and the CPU 102 controls the entire computer 100.
  • the method of connecting the CPUs 102 and the like to each other is not limited to the bus connection.
  • Each function of each device can be realized by the CPU 102 reading the program 110 stored in the storage 105 to the memory 104 and executing it.
  • the slurry application device 20, the compression device 40, and the cutting device 60 are each realized by any combination of the hardware and software of the computer 100. And it is understood by those skilled in the art that there are various modifications in the implementation method and apparatus.
  • the program 110 may be recorded on a recording medium readable by the computer 100.
  • the recording medium is not particularly limited, and various forms can be considered.
  • the program may be loaded from the recording medium into the memory 104 of the computer 100, or may be downloaded to the computer 100 through the network and loaded into the memory 104.
  • a recording medium for recording the program 110 includes a medium that can be used by the non-transitory tangible computer 100, in which the program code readable by the computer 100 is embedded.
  • the computer 100 causes the computer 100 to execute a method of manufacturing the electrode sheet 10 for realizing each device.
  • FIG. 14 is a flowchart showing steps of a method of manufacturing the electrode sheet 10 according to the embodiment of the present invention.
  • the manufacturing method of electrode sheet 10 of an embodiment of the present invention contains an application process (S1), a compression process (S5), and a cutting process (S6).
  • the current collector electrode sheet 10 according to the embodiment of the present invention is manufactured by the manufacturing method shown in FIG.
  • FIG. 2 is a view showing a relationship between a plane and a cross section as viewed from the top surface of the current collector electrode sheet 10 after double-sided application according to the embodiment of the present invention.
  • 2 (a) is a top view of the electrode sheet 10 including a part of the application region 11 of the active material formed on the electrode sheet 10, and
  • FIG. 2 (b) is a line I- of FIG. 2 (a). It is sectional drawing of the electrode sheet 10 in which the application area
  • the end 16 of the region where the thickness of the application region 11 is constant is present on the central portion side in the longitudinal direction Dx of the application region 11 with respect to the electrode portion on the end 13 side of the application region 11.
  • the tail end portion 14 is a trailing portion 14 at the end 16 of the region where the thickness of the application region 11 is constant (t1), and the thickness t2 of the portion of the trailing portion 14 is thinner than t1. That is, the tailing portion 14 is located on the end 13 side of the application area 11, and the thickness t2 of the tailing portion 14 is thinner than the thickness t1 of the central portion in the longitudinal direction Dx of the application area 11. As shown in the figure, the thickness t2 of the tailing portion 14 gradually decreases from the start position of the tailing portion 14 toward the end of the longitudinal direction Dx.
  • FIG. 3 is a schematic view showing an outline of the compression device 40 of the electrode sheet 10 according to the embodiment of the present invention.
  • the electrode sheet 10 has tails 14 formed on the electrode portions on the end 13 side of the active material coated area 11, the non-coated area 12, and the coated area 11 on both sides of the metal foil 9 of FIG.
  • the pair of compression rolls 51 compresses.
  • the electrode sheet 10 is compressed when passing through the gap between the pair of compression rolls 51 and taken up in the longitudinal direction Dx.
  • FIG. 4 is a cross-sectional view of the compression roller 50 taken along line II-II in FIG.
  • the compression roller 50 is configured as a pair of upper and lower two rolls 51, and the upper and lower rolls 51 are formed symmetrically on both ends of the roll main body 52 and the roll main body 52 related to the compression of the active material application region 11. And an end portion 53.
  • the roll main body 52 has a curved barrel shape protruding from the both ends toward the center along the rotation axis A direction of the roll 51.
  • the distance between the side surfaces is continuously from the both end sides in the rotation axis A direction toward the center. short.
  • 5 and 6 show the relationship between the compression roller 50 and the electrode sheet 10 according to the embodiment of the present invention.
  • 5 and 6 are cross-sectional views of the compression roller 50 for II-II in FIG. 3 when viewed from the longitudinal direction of the electrode sheet 10, and in the compression step (S5 in FIG. 14) 11 shows a state in which 11 and the tailing portion 14 are compressed.
  • the electrode sheet 10 of FIG. 1 shall be beforehand cut
  • the compression roller 50 of the present embodiment has a pair of compression rolls 51 that continuously compress the current collector electrode sheet 10 in the thickness direction.
  • Each compression roll 51 is installed such that its rotation axis is parallel to the short direction of the current collector electrode sheet 10.
  • Each compression roll 51 has an end portion 53 having circular end surfaces at both ends in the rotation axis A direction, and a curved side surface extending between the end portions 53 at both ends.
  • the side surface of the compression roll 51 has a first range around each end of the compression roll 51 and a second range of a central portion in the rotation axis A direction of the compression roll 51.
  • the distance between the side faces is shorter.
  • the distance d3 between the central portions is smaller than the distance d4 between the recessed portion forming portions. Because it is short, the central portion (first range) is in contact with the electrode sheet 10, and the recess forming portion (second range) is not in contact with the electrode sheet 10.
  • the coated region 11 of the current collector electrode sheet 10 of the present embodiment includes a first region, and a second region (tail portion 14) in which the thickness of the formed coating film is thinner than the first region. including.
  • the distance (d3 in FIG. 6) between the side surfaces in the first range of the pair of compression rolls 51 is the number of the collector electrode sheet 10. The value is smaller than the value of thickness (t1) in the area 1 (application area 11) and is larger than the value of thickness (t2) of the second area (tail portion 14) of current collector electrode sheet 10 .
  • the distance between the side surfaces in the first range of the pair of compression rolls 51 (d3 in FIG. 6) is the thickness of the non-coated area 12 of the current collector electrode sheet 10, that is, the value of the thickness of the metal foil 9. Greater than.
  • the electrode sheet 10 is inserted between the upper and lower rolls 51 of the compression roller 50, and the roll bodies 52 of the pair of opposing rolls 51 compress the electrode sheet 10 from both sides.
  • the end portions 53 of the opposing roll 51 abuts while compressing the electrode sheet 10 in the thickness direction
  • the electrode sheet 10 can be compressed at a predetermined compression pressure. At this time, the distance between the central portions of the roll main body 52 of the roll 51 is d1, and the distance between the end portions 53 of the roll 51 is d2.
  • the end portions 53 of the rolls 51 are separated by the distance d2, but in order to compress the electrode sheet 10, the opposing rolls 51 are brought close to each other to shorten the distance d2. Finally, the electrode sheet 10 is compressed by bringing the end portions 53 into contact with each other.
  • the compression pressure applied to the electrode sheet 10 is not uniform between the central portion in the direction of the rotation axis A and the portion in the vicinity of the end portion 53, and the central portion of the roll body 52 is distorted. Will occur.
  • the application region 11 of the active material of the electrode sheet 10 passes between the two compression rollers 51 of the compression roller 50 configured as a pair of upper and lower rollers 51, thereby applying the active material application region 11. Is compressed.
  • the length L2 of the short direction Dy of the electrode sheet 10 of the upper and lower two rolls 51 is longer than the length L1 of the short direction Dy of the electrode sheet 10.
  • the distance d3 between the central portions of the roll main body 52 is the thickness of the application area 11 of the active material on both sides of the electrode sheet 10 after compression and the thickness of the metal foil 9. It is set to be smaller than the value.
  • the distance between the end portions 53 is set so that the end portions 53 of the two ends of the upper and lower rolls 51 do not contact in a state where the application region 11 of the active material of the electrode sheet 10 is compressed.
  • the trailing portion 14 is a roll It shows a state of passing between 51.
  • the distance d3 between the central parts of the roll bodies 52 of the opposing pair of rolls 51 is the electrode
  • the roll is made to be larger than the thickness including the tailing portion 14 on both sides of the sheet 10 and / or the thickness of the metal foil 9 corresponding to the non-coated area 12 where the coated area 11 is not formed.
  • the distance h of the height difference between the center plane of the main body 52 and the outer peripheral end of the end 53 is determined.
  • the current collector electrode sheet 10 having the active material coated on both sides of the sheet-like metal foil 9 is a pair of upper and lower two.
  • 14 includes a compression step (S5 in FIG. 14) of compressing the current-collector electrode sheet 10 in the thickness direction using the compression roller 50 configured by the compression roll.
  • the collector electrode sheet 10 includes an application region 11 to which a slurry containing an active material is applied, and a non-application region 12 to which no slurry is applied.
  • the application area 11 of the current collector electrode sheet 10 is a first area (an area of a thickness t1 from the application start position of the application area 11 to the end 16 in the longitudinal direction Dx) and the thickness of the formed coating And a second area (tail portion 14) thinner than the first area.
  • the compression step S5 in FIG. 14
  • the pair of rolls 51 successively compresses the current collector electrode sheet 10 in which the coated areas 11 and the non-coated areas 12 are alternately formed, the first area is compressed.
  • the roller 50 (roll 51) is brought into contact and compressed (FIGS. 5 and 16) (FIG. 6).
  • the compression roller 50 in the compression step (S5 in FIG. 14), when the compression roller 50 successively compresses the current collector electrode sheet 10 in which the coated regions 11 and the non-coated regions 12 are alternately formed, the first region Only the (application area 11) is compressed. Furthermore, in the compression process (S5 in FIG. 14), the compression roller 50 does not compress the area including the second area (tail portion 14) and the non-coated area 12.
  • the upper and lower rolls face each other before the tailing portion 14 of the electrode sheet 10 contacts the roll body 52. Since the end portions 53 of 51 are in contact with each other, the tailing portion 14 of the electrode sheet 10 does not contact the roll main body 52 of the roll 51 and is not pressurized. As described above, according to the present embodiment, since the electrode sheet 10 is not compressed in the tailing portion 14 and the non-coated region 12, a phenomenon in which the active material particles 70 bite into the metal foil 9 largely in the tailing portion 14 is described. It can prevent.
  • the compression step even if the electrode sheet 10 moves in the direction between the rolls 51, that is, the longitudinal direction Dx is set from the coating end side to the coating start end, the coating start end to the coating end side It may be set to be Further, in the compression step, after the compression of the electrode sheet 10 is started, the end portions 53 of the opposing pair of rolls 51 may be kept in contact until the compression of the electrode sheet 10 is completed.
  • FIG. 7 is a cross-sectional view of a current-collector electrode sheet after pressure-molding in the embodiment of the present invention.
  • the current collector electrode sheet 10 of this embodiment is a current collector electrode sheet in which an active material layer is formed on both sides in the longitudinal direction of the sheet-like metal foil 9, and the active material layer has a thickness of the coating film.
  • the first coating area 11 and the second coating area (tail portion 14) having a thinner coating film thickness than the first coating area 11, and are compressed in the thickness direction of the metal foil 9.
  • the thickness of the metal foil 9 in the subsequent first application area 11 is thinner than the thickness of the metal foil 9 in the second application area (tail portion 14) and the non-application area 12.
  • the roll main body 52 of the roll 51 is not in contact with the electrode sheet 10 even after the compression process, and no linear pressure is applied to the tailing portion 14. There is no bite. Therefore, the active material particles do not bite into the metal foil 9 at the tailing portion 14 to make the residual thickness of the foil thin, and it is possible to produce the electrode sheet 10 in which the occurrence of a crack does not occur.
  • the pressure-formed electrode sheet 10 is taken along the winding direction Dx of the foil of the electrode sheet 10, that is, the longitudinal direction 17 as shown in FIG.
  • the electrode sheet 10 is drawn out in one direction (in the figure, toward the left) while being wound up using a roller 90, and continuous by slit blades (not shown) installed on both the upper and lower surfaces of the electrode sheet 10. Cut into pieces.
  • the electrode sheet 10 can be cut into a predetermined size to obtain a plurality of electrodes.
  • the method of cutting out the electrode from the electrode sheet 10 is not particularly limited.
  • the electrode sheet 10 is cut parallel to the longitudinal direction of the electrode sheet 10 (cut along the longitudinal cutting scheduled line 17 in FIG. 1).
  • the method of cutting the electrode sheet 10 is not particularly limited.
  • the electrode sheet 10 can be cut using a blade made of metal or the like.
  • the sheet is broken or cracked at the end of the application region 11 of the active material in the compression process of the current collector electrode sheet 10 with a simple configuration and without increasing the manufacturing cost.
  • FIG. 8 is a schematic view of the cutting surface 80 seen from the top after cutting the electrode sheet 10 in the embodiment of the present invention.
  • the metal foil 9 is cut only in the flowing direction of the blade, and the metal foil 9 is not broken in the transverse direction Dy by the impact of the blade hitting. Therefore, as shown in FIG. 8, the cut surface 80 has a shape in which burrs of the active material layer do not occur.
  • FIG. 9 is a schematic view showing an outline of the compression roller 50 in which the end portions 53 are not formed at both ends of the roll main body 52 of each roll 51, which is a comparative embodiment of the present invention.
  • FIG. 10 shows a current collector electrode sheet after pressure molding using a compression roller 50 in which the end portions 53 are not formed at both ends of the roll main body 52 of each roll 51, which is a comparative embodiment of the present invention. 10 is a cross-sectional view of FIG.
  • the roll main body 52 contacts the tailing portion 14. Since the tailing portion 14 has only an intermittent active material layer in the flowing direction of the foil, that is, the direction Dy perpendicular to the winding direction Dx as shown in FIG. A linear pressure that is locally greater than the application region 11 of the active material in which the active material layer continuously exists in the direction Dy perpendicular to the taking direction Dx is applied. For this reason, as shown in the cross-sectional view of FIG. 10, in the tailing portion 14, the active material particles 70 bite into the metal foil 9, and the remaining thickness of the metal foil 9 becomes extremely thin.
  • the electrode sheet 10 is cut in the longitudinal direction Dx of the metal foil 9 along the planned longitudinal cutting line 17.
  • FIG. 11 is a comparative embodiment of the present invention, in which the pressure-collected current-collector electrode sheet 10 is cut using the compression roller 50 in which the end portions 53 are not formed at both ends of the compression roll main body 52 It is the model which looked at the cutting plane 80 from the upper surface.
  • the remaining thickness of the foil is thinner than the slurry coated area 11 and the non-slurry coated area 12, and the impact when the blade hits causes the blade to flow other than the flowing direction. It will break. For this reason, as shown in a cross-sectional view in FIG. 11, the slurry mixture layer dropped from the tailing portion 14 in the portion where the breakage occurs becomes the burrs 19.
  • burrs 19 When a battery is assembled using an electrode including burrs 19 generated in such a process, the burrs fall off during the assembly process or after the battery is completed, and a short circuit is caused to electrodes of different potentials. Defect rate increases. However, in the present embodiment, as described above, since such burrs 19 do not occur, the defective rate of the battery can be suppressed to a low level.
  • a battery can be manufactured using the electrode sheet 10 manufactured by the manufacturing method of the said embodiment.
  • the method for producing an electrode of the present invention forms an active material layer on a thin current collector such as a metal foil, and after drying, compresses and cuts it (S5 and S6 in FIG. 14) to produce an electrode. It is possible to carry out the assembly of an electrochemical device such as a battery in which the occurrence of burrs of the current collector which may occur is suppressed, and it is possible to provide an electrochemical device such as a battery having good characteristics.
  • FIG. 15 is a schematic view showing an example of the configuration of the battery 150 according to the embodiment of the present invention.
  • the battery which concerns on this embodiment is equipped with the electrode produced from the electrode sheet 10 demonstrated by the said embodiment.
  • the stacked battery 150 includes battery elements in which a positive electrode 121 and a negative electrode 126 are alternately stacked in a plurality of layers with the separator 120 in between, and these battery elements are a flexible film together with an electrolyte (not shown). It is housed in a container consisting of 140.
  • the positive electrode terminal 131 and the negative electrode terminal 136 are electrically connected to the battery element, and a part or all of the positive electrode terminal 131 and the negative electrode terminal 136 are drawn out of the flexible film 140. .
  • the coated portion (positive electrode active material layer 122) and uncoated portion of the positive electrode active material are provided on the front and back of the positive electrode collector layer 123 on the positive electrode 121, and the negative electrode 126 is provided on the front and back of the negative electrode collector layer 128.
  • the coated portion of the negative electrode active material (negative electrode active material layer 127) and the uncoated portion are provided.
  • the uncoated portion of the positive electrode active material in the positive electrode current collector layer 123 is used as the positive electrode tab 130 for connecting to the positive electrode terminal 131, and the uncoated portion of the negative electrode active material in the negative electrode current collector layer 128 is connected to the negative electrode terminal 136.
  • the negative electrode tab 125 of FIG. The positive electrode tabs 130 are assembled on the positive electrode terminal 131, and are connected together by ultrasonic welding etc. together with the positive electrode terminal 131, and the negative electrode tabs 125 are assembled together on the negative electrode terminal 136, and are connected together by ultrasonic welding etc. together with the negative electrode terminal 136. Be done.
  • one end of the positive electrode terminal 131 is drawn out of the flexible film 140, and one end of the negative electrode terminal 136 is also drawn out of the flexible film 140.
  • An insulating member can be formed as necessary at the boundary 124 between the coated part (coated area 11) (positive electrode active material layer 122) of the positive electrode active material and the non-coated part (non-coated area 12).
  • the member can be formed not only at the boundary 124 but also near the boundary between the positive electrode tab 130 and the positive electrode active material.
  • an insulating member can be formed on the boundary portion 129 between the coated portion (negative electrode active material layer 127) and the non-coated portion of the negative electrode active material as required, and the boundary between both the negative electrode tab 125 and the negative electrode active material It can be formed near the part.
  • the outer dimensions of the negative electrode active material layer 127 are larger than the outer dimensions of the positive electrode active material layer 122 and smaller than the outer dimensions of the separator 120.
  • Non-aqueous electrolyte containing lithium salt The non-aqueous electrolytic solution containing a lithium salt used in the present embodiment can be appropriately selected from known ones depending on the type of electrode active material, the use of the lithium ion battery, and the like.
  • lithium salt for example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB Examples include (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, and lower fatty acid carboxylate lithium.
  • the solvent for dissolving the lithium salt is not particularly limited as long as it is generally used as a liquid for dissolving the electrolyte, and ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), carbonates such as vinylene carbonate (VC); lactones such as ⁇ -butyrolactone and ⁇ -valerolactone; trimethoxymethane Ethers such as 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, etc.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbon
  • Sulfoxides such as dimethylsulfoxide, etc. 1,3-Dioxolane, 4-methyl-1,3-dioxola
  • Nitrogenous solvents such as acetonitrile, nitromethane, formamide and dimethylformamide; methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate and the like; organic acid esters such as phosphoric acid triester And diglymes; triglymes; sulfolanes such as sulfolane and methyl sulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; and sultones such as 1,3-propane sultone, 1,4-butane sultone and naphtha sultone. . These may be used singly or in combination of two or more.
  • a well-known member can be used for a container in this embodiment, and it is preferable to use the flexible film 140 from a viewpoint of weight reduction of a battery.
  • the flexible film 140 can use what provided the resin layer in front and back of the metal layer used as a base material.
  • the metal layer can be selected to have a barrier property to prevent leakage of the electrolytic solution and entry of moisture from the outside, and aluminum, stainless steel, etc. can be used.
  • a heat-sealable resin layer such as modified polyolefin is provided on at least one surface of the metal layer, and the heat-sealable resin layers of the flexible film 140 are opposed to each other through the battery element to make the battery element
  • the sheath is formed by heat-sealing the periphery of the part to be stored.
  • a resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body opposite to the surface on which the heat-fusible resin layer is formed.
  • the positive electrode terminal 131 can be made of aluminum or an aluminum alloy
  • the negative electrode terminal 136 can be made of copper or a copper alloy, or those plated with nickel.
  • Each terminal is drawn to the outside of the container, but a heat fusible resin can be provided in advance in a portion located at a portion of the respective terminal where the periphery of the package is heat welded.
  • Insulating member In the case of forming the insulating member at the boundary portions 124 and 129 of the coated portion and the non-coated portion of the active material, it is possible to use polyimide, glass fiber, polyester, polypropylene or those containing these in the structure. Heat can be applied to these members to weld them to the boundaries 124, 129, or a gel-like resin can be applied to the boundaries 124, 129 and dried to form an insulating member.
  • the separator 120 preferably includes a resin layer containing a heat resistant resin as a main component.
  • the resin layer is formed of a heat resistant resin which is a main component.
  • the "main component” means that the proportion in the resin layer is 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, and 100% by mass. It means that you may.
  • the resin layer constituting the separator 120 according to the present embodiment may be a single layer or two or more layers.
  • Examples of the heat resistant resin forming the above resin layer include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, polycarbonate, polyester carbonate, aliphatic polyamide, all Aromatic polyamide, semiaromatic polyamide, wholly aromatic polyester, polyphenylene sulfide, polyparaphenylene benzobisoxazole, polyimide, polyarylate, polyetherimide, polyamideimide, polyacetal, polyetheretherketone, polysulfone, polyethersulfone, One or more selected from fluorine resins, polyether nitriles, modified polyphenylene ethers and the like can be mentioned.
  • polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, aliphatic polyamide, wholly aromatic polyamide, semiaromatic polyamide and all aromatic from the viewpoint of excellent balance of heat resistance, mechanical strength, stretchability, price and the like.
  • Family of polyesters one or more selected from polyethylene terephthalates, polybutylene terephthalates, aliphatic polyamides, wholly aromatic polyamides and semiaromatic polyamides are more preferred, and polyethylene terephthalates are preferred.
  • One or more selected from wholly aromatic polyamides are more preferable, and polyethylene terephthalate is more preferable.
  • the resin layer which comprises the separator 120 which concerns on this embodiment is a porous resin layer.
  • the fine pores of the porous resin layer can be blocked to block the flow of the current, thereby avoiding the thermal runaway of the battery. be able to.
  • the porosity of the porous resin layer is preferably 20% to 80%, more preferably 30% to 70%, and still more preferably 40% to 60%. Is particularly preferred.
  • porosity (%)
  • Ws basis weight (g / m 2 )
  • ds true density (g / cm 3 )
  • t film thickness ( ⁇ m).
  • the planar shape of the separator 120 according to the present embodiment is not particularly limited, and can be appropriately selected according to the shapes of the electrode and the current collector, and can be, for example, rectangular.
  • the thickness of the separator 120 according to the present embodiment is preferably 5 ⁇ m or more and 50 ⁇ m or less from the viewpoint of the balance between mechanical strength and lithium ion conductivity.
  • a battery can be manufactured using the electrode sheet 10 manufactured by the manufacturing method of the above embodiment.
  • an active material layer is formed on a thin current collector such as a metal foil, and after drying, it is compressed and cut (S5 and S6 in FIG. 14) to produce an electrode.
  • Example 1 As a positive electrode active material, 50% cumulative diameter determined from the particle size distribution measurement value (D50) is 8 [mu] m, also 90% cumulative diameter (D90) is 12 ⁇ m, Li (Ni 0.6 Co 0.2 Mn 0.2) N-methyl pyrrolidone is added to a mixture of 94.8% by weight of O 2 , 2.5% by weight of a graphite material as a conductive aid, and 2.7% by weight of polyvinylidene fluoride as a binder and further mixed. The positive electrode slurry was prepared.
  • the coated area 11 and the non-coated area 12 are alternately formed in the winding direction of the foil on the 12 ⁇ m thick aluminum foil current collector foil surface moving on the backup roller.
  • the slurry containing the active material and the like applied to the aluminum foil was dried and solidified by a drying furnace which was intermittently applied.
  • each roll 51 has a concave portion formed by polishing from a cylindrical shape having circular end surfaces with a radius of 250 mm at both ends in the rotation axis direction and side surfaces (curved surfaces) with a length of 700 mm in the rotation axis direction.
  • a barrel-shaped roll main body 52 was produced.
  • the length L2 (FIG. 5) of the side surface of each roll 51 in the direction of the rotation axis A is longer than the length L1 (FIG. 5) of the electrode sheet 10 in the short side direction Dy.
  • the side of each roll 51 includes a non-polished area that is not polished and a polished area that is polished.
  • the non-abrasive area is included in the surface of the side surface in a range extending 45 mm from the end face side on both sides toward the center in the rotation axis A direction, and corresponds to the end 53.
  • the side surface (corresponding to the roll main body 52) of each roll 51 is polished.
  • the polishing amount is indicated by the depth toward the rotation axis A from the side surface.
  • the amount of polishing in the polishing region changes in accordance with the distance from the end of the non-polishing region on the side surface of the roll 51 toward the center in the rotation axis A direction.
  • the polishing amount monotonously decreases from the end of the non-polishing region on the side surface of the roll 51 toward the center in the rotation axis direction. That is, the amount of polishing is larger near the end (end portion 53) of the non-polishing region of the roll 51.
  • the central portion in the rotation axis A direction of the roll 51 has a polishing amount of 20.0 ⁇ m in depth, and in the range extending from the end of the non-polished area on the side of the roll 51 inward in the rotational axis A direction 4 mm each The depth is 9.6 ⁇ m deeper than the central portion of the roll 51.
  • the distance d3 between the center portions when the end portions 53 of the pair of upper and lower rolls 51 of the compression roller 50 abut is adjusted to be 130 ⁇ m. Then, in the compression step, the electrode sheet 10 having a width of 595 mm in the width direction, to which the slurry is intermittently applied using the compression device 40, passes between the opposing rolls 51 adjusted as described above. The electrode sheet 10 was pressed and compressed by moving it on the backup roller 90 at a rotational speed of 60 m / min.
  • the compression pressure was adjusted so that the linear pressure on the application area (application area 11) of the active material slurry was 1.8 t / cm, and the compression pressure of the upper and lower compression rolls 51 averaged 19 MPa. .
  • a part of the obtained electrode sheet 10 was extracted, the thickness of the single-sided active material layer (application region 11) was 62.6 ⁇ m, and the thickness of the entire sheet was 137.2 ⁇ m.
  • the maximum thickness of the tailing portion 14 may be regarded as the maximum particle diameter of the active material particles, and the maximum particle diameter obtained by measuring the active material particles used at this time by the microtrack method was 24 ⁇ m. From this, the maximum thickness of the electrode sheet 10 in the tailing portion 14 is determined to be 60 ⁇ m.
  • the roll-bending displacement becomes 10 ⁇ m per pair of compression rolls, so when the end portions 53 of both ends of the upper and lower compression rolls 51 abut, The distance d3 between the central portions of the pair of rolls 51 is 60 ⁇ m. Therefore, even if the region (second region) of the tailing portion 14 of the electrode sheet 10 passes between the compression rolls 51, the electrode sheet 10 and the upper and lower compression rolls 51 do not contact in the region of the tailing portion 14 It is configured.
  • the electrode sheet 10 compressed in the compression step (S5 in FIG. 14) is cut using the cutting device 50 including the shear blade at the upper portion and the gang blade at the lower portion.
  • the blade was inserted between the blades, installed so that the take-up tension was constant, and was cut by moving on the backup roller 90 at a constant speed. A part of the obtained cut sheet was extracted, and the presence or absence of a burr from the tailing portion 14 after the cutting step (S6 in FIG. 14) was confirmed.
  • a compression roller 50 which has been polished so that the amount of polishing monotonously decreases toward the central portion of the roll 51 without leaving non-polished regions at both end portions 53 of the respective rolls 51.
  • An electrode sheet 10 was produced using the same method as in Example 1 except for the above, and the presence or absence of burrs after cutting was confirmed.
  • Example 1 and Comparative Example 1 ten specimens were observed for each of the presence or absence of cracks after compression of the tail portion 14 and the occurrence of burrs after cutting, and the results are shown in Table 1. Ten samples were observed, and the case where the burr generation was 3 or less was regarded as a small generation amount, and the case where the burr generation was 4 or more samples as a large generation amount.
  • the thickness of the metal foil in the first application area after compression in the thickness direction of the metal foil is formed by the second application area having a thickness smaller than that of the application area;
  • the active material layer is intermittently formed on the both surfaces in the longitudinal direction of the metal foil, and the second application region is intermittently in the longitudinal direction of the metal foil.
  • a current collector electrode sheet which is formed at the longitudinal direction end of the formed application region. 3.
  • the current collector electrode sheet in which the active material is coated on both sides of the sheet metal foil is compressed in the thickness direction of the current collector electrode sheet using a compression roller constituted by a pair of two compression rolls. Including a compression step, The current collector electrode sheet includes a coated region coated with a slurry containing the active material, and a non-coated region not coated with the slurry.
  • the application region of the current collector electrode sheet includes a first region, and a second region in which the thickness of the applied film formed is thinner than the first region.
  • the compression step when the pair of compression rolls continuously compress the current collector electrode sheet in which the coated area and the non-coated area are alternately formed, the compression roll is placed in the first area.
  • the manufacturing method of a collector electrode sheet which makes it contact and compresses. 4. 3.
  • the method of producing a current collector electrode sheet according to In the compression step when the pair of compression rolls sequentially compress the current collector electrode sheet in which the coated area and the non-coated area are alternately formed, the second area and the non-coated area A method of producing a current collector electrode sheet, wherein the region containing the is not compressed. 5. 3. Or 4.
  • each of the compression rolls has a pair of compression rolls which continuously compress the current collector electrode sheet having the active material coated on both sides of the sheet metal foil in the thickness direction,
  • Each of the compression rolls is installed so that its rotation axis is parallel to the lateral direction of the current collector electrode sheet,
  • Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
  • the side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
  • a compression roller wherein a distance between the side surfaces in the second range of the pair of opposing compression rolls is shorter than a distance between the side surfaces in the first range of the pair of opposing opposing compression rolls.
  • the application region of the current collector electrode sheet to which the active material is applied includes a first region and a second region in which the thickness of the formed coating film is thinner than the first region.
  • the distance between the side surfaces in the first range of the pair of compression rolls when the ends of the opposing pair of compression rolls abut is the first area of the current collector electrode sheet.
  • a compression roller which is smaller than the thickness value of and larger than the thickness value of the second region of the current collector electrode sheet.
  • each of the compression rolls is installed so that its rotation axis is parallel to the short direction of the current collector electrode sheet,
  • Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
  • the side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
  • a collector electrode sheet wherein the distance between the side surfaces in the first range of the pair of compression rolls facing each other is shorter than the distance between the side surfaces in the second range of the pair of compression rolls facing each other Production method.
  • the application region of the current collector electrode sheet to which the slurry is applied includes a first region and a second region in which the thickness of the formed coating film is thinner than the first region,
  • Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
  • the side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
  • Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
  • the side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
  • the pair of opposing compression rolls are continuously coupled to each other from the boundary with the first range toward the central portion in the rotation axis direction of the compression rolls.

Abstract

A compression roller (50) comprises a pair of rolls (51) that continuously compress, in a thickness direction, a current collector electrode sheet in which an active material has been applied onto both surfaces of a sheet-like metallic foil (9). The rolls (51) are disposed such that the rotation axes thereof are parallel to the shorter dimension direction of the electrode sheet. Each roll (51) includes: end parts (53) having circular end surfaces at both ends in the rotation axis direction; and a side surface (roll body (52)) between the end parts (53). During compression of the electrode sheet, the side surface includes: a first range near both ends of the rolls (51); and a second range in the center portion in the rotation axis direction of the rolls (51). The distance between the side surfaces in the first range of the opposing pair of rolls (51) is shorter than the distance between the side surfaces in the second range of the opposing pair of rolls (51).

Description

集電体電極シートの製造方法、圧縮ローラ、集電体電極シート、および電池Method of manufacturing current collector electrode sheet, compression roller, current collector electrode sheet, and battery
 本発明は、集電体電極シートの製造方法、圧縮ローラ、集電体電極シート、および電池に関する。 The present invention relates to a method of manufacturing a current collector electrode sheet, a compression roller, a current collector electrode sheet, and a battery.
 近年、環境問題を踏まえ、電気自動車やハイブリッド自動車への関心が高まり、その駆動源である二次電池の高エネルギー密度化、高容量化への技術的要求が一段と高まっている。 In recent years, in view of environmental problems, interest in electric vehicles and hybrid vehicles has been increased, and technical demands for higher energy density and higher capacity of secondary batteries as driving sources thereof have been further increased.
 こうした二次電池用の電極は、アルミニウムや銅等の帯状の金属箔上に活物質を含むスラリを塗布・乾燥させた電極シートから作製される。活物質の塗布方法は、間欠塗工方式と連続塗工方式とに大別できる。 Such an electrode for a secondary battery is produced from an electrode sheet obtained by applying and drying a slurry containing an active material on a strip-like metal foil of aluminum, copper or the like. The application method of the active material can be roughly divided into an intermittent coating method and a continuous coating method.
 間欠塗工方式は、帯状の金属箔に、活物質等のスラリを塗布して形成する塗布領域とスラリを塗布しない非塗布領域とを、該金属箔の巻取方向に所定の間隔で交互に形成する方式である。所定の間隔で配置された活物質の非形成部は、外部端子と電気的に接続するための引き出しタブを取り出す部位として利用される。本発明に関連する電極シートの製造方法では、主材である活物質、導電付与剤、結合材、溶剤を混合または混錬したスラリを、金属箔の一方の面に間欠的に塗布(以下、間欠塗布と称する。)した後に、再度、金属箔上の反対側の他方の面にも間欠塗布して、金属箔の両面にスラリをそれぞれ塗布する。次に、両面にスラリが塗布された金属箔を圧縮ローラによって加圧成型する。その後、集電体として所望の外形寸法に切断し、集電体電極シートに電極端子部を形成している。 In the intermittent coating method, a coated region formed by applying a slurry such as an active material to a strip-shaped metal foil and a non-coated region not applied with the slurry are alternately arranged at predetermined intervals in the winding direction of the metal foil. It is a system to form. The non-forming portion of the active material disposed at a predetermined interval is used as a site for taking out a lead-out tab for electrically connecting to the external terminal. In the method of producing an electrode sheet according to the present invention, a slurry obtained by mixing or kneading the active material, the conductivity imparting agent, the binder, and the solvent, which are main components, is intermittently applied to one surface of the metal foil (hereinafter referred to as After the intermittent application is performed, the other side of the metal foil is intermittently applied again to apply slurry on both sides of the metal foil. Next, the metal foil with the slurry applied on both sides is pressure-formed by a compression roller. Then, it cut | disconnects to a desired external dimension as a collector, and the electrode terminal part is formed in the collector electrode sheet.
 ここで、リチウムイオン二次電池の正極活物質には、リチウム含有複合酸化物が用いられており、こうした金属酸化物粒子を主成分とする活物質層を加圧成型する場合、大きな圧力を必要とする。特に高エネルギー密度に設計された二次電池に用いる正極電極では、活物質層を高密度に圧縮する必要があるため、該加圧成型において、より大きな圧力をかけて成型されることが多い。 Here, a lithium-containing composite oxide is used as a positive electrode active material of a lithium ion secondary battery, and a large pressure is required when pressure molding an active material layer containing such metal oxide particles as a main component. I assume. In particular, in the case of a positive electrode used for a secondary battery designed to have a high energy density, it is necessary to compress the active material layer to a high density, and therefore, in the pressure forming, it is often formed by applying a higher pressure.
 また、高エネルギー密度に設計された二次電池に用いる電極は、集電体である金属箔の厚さを薄く設計する傾向にある。 In addition, an electrode used in a secondary battery designed to have a high energy density tends to design a thin metal foil as a current collector.
特開2012-216465号公報JP 2012-216465 A
 図17に示すように、前記の集電体電極シートの塗布終端部には、スラリを間欠塗布したときに、塗布領域11と非塗布領域12との境界に、スラリの尾引き部14が発生しやすい。帯状電極シート10を電極ロールの巻取方向Dxに沿って、ロールプレス機で圧縮加工成型する場合、こうした尾引き部14が存在すると、塗布終端の尾引き部14には巻取方向(以後、長手方向とも呼ぶ)Dxと垂直な方向Dyに活物質層が断続的にしか存在しないため、巻取方向Dxと垂直な方向Dyに活物質層が連続的に存在する塗布領域11の中央部分よりも大きな線圧がかかることになる。 As shown in FIG. 17, a slurry tailing portion 14 is generated at the boundary between the coated region 11 and the non-coated region 12 when the slurry is intermittently applied to the coating end of the current collector electrode sheet. It's easy to do. When the strip-shaped electrode sheet 10 is compressed, processed and formed by a roll press along the winding direction Dx of the electrode roll, if such a tailing portion 14 is present, the tailing portion 14 at the application end has a winding direction (hereinafter referred to as Since the active material layer is only intermittently present in the direction Dy perpendicular to the longitudinal direction Dx, the active material layer is continuously present in the direction Dy perpendicular to the take-up direction Dx. Also, a large linear pressure will be applied.
 このように大きな線圧の掛かる尾引き部分14では、活物質粒子が金属箔に大きく食い込む現象がしばしば発生する。この活物質粒子が金属箔に食い込んだ部分の金属箔の残肉量がきわめて薄くなっているため、図示しないが箔の破断のもととなるクラックが発生する。このクラックが発生した領域を、引き続き行う裁断工程で裁断すると、シート電極の切断面に活物質層の部分的に脱落したバリが発生する。発生したバリが、電極に付着すると、電池の組み立て時に短絡を発生させる原因になり、電池の不良率が高まるという問題が生じていた。 As described above, in the tailing portion 14 to which a large linear pressure is applied, a phenomenon that the active material particles bite into the metal foil often occurs. Since the residual thickness of the metal foil at the portion where the active material particles bite into the metal foil is extremely thin, cracks (not shown) which cause breakage of the foil occur. When the area where the crack is generated is cut in the subsequent cutting process, burrs which are partially dropped off of the active material layer are generated on the cut surface of the sheet electrode. When the generated burrs adhere to the electrodes, they cause a short circuit at the time of assembly of the battery, resulting in a problem that the defect rate of the battery is increased.
 このようにスラリを間欠塗布した集電体電極シートの圧縮加工をする際に、塗布領域11の端部の尾引き部14の部分で活物質粒子が金属箔に大きく食い込む現象を防ぐには、例えば特許文献1に示されるように、塗工端を検出し、前記検出情報に基づいて、油圧シリンダが軸箱に固定された、上下2つで以って一対となる圧縮ロールで構成される圧縮ローラにおける、前記2つの圧縮ロールの間の距離を調節することで、塗布領域11と、尾引き部14および非塗布領域12とで、集電体電極シート10に掛かる力を変化させることが考えられる。 In order to prevent the phenomenon that the active material particles bite into the metal foil largely at the tailing portion 14 at the end of the application region 11 when the current collector electrode sheet on which the slurry is intermittently applied in this way is compressed. For example, as shown in Patent Document 1, a coating end is detected, and a hydraulic cylinder is fixed to the axle box based on the detection information, and is configured by a pair of upper and lower compression rolls. In the compression roller, the force applied to the current collector electrode sheet 10 is changed between the coated area 11 and the tailing portion 14 and the non-coated area 12 by adjusting the distance between the two compression rolls. Conceivable.
 しかしながら、このように検出情報に基づいて前記圧縮ローラを構成する前記2つの圧縮ロールの間の距離を塗布領域11と、尾引き部4および非塗布領域12とで調節する方法を適用した場合、圧縮ローラに集電体電極シート10を送るバックアップローラの速度を一定以上に高速化すると、塗布端の検出信号に対して圧縮ローラの油圧シリンダの動きが追従できない。そのため、前記2つの圧縮ロールの距離が広い状態で集電体電極シートの塗布領域が前記2つの圧縮ロールの間を通過すると、所望の密度に塗布領域が圧縮されず、逆に、前記2つの圧縮ロールの距離が短い状態で集電体電極シートの尾引き部が前記2つの圧縮ロールの間を通過すると、活物質粒子が金属箔に食い込む現象を防止できないといった問題が生じる。 However, when the method of adjusting the distance between the two compression rollers constituting the compression roller based on the detection information in this manner between the application region 11 and the tailing portion 4 and the non-application region 12 is applied: If the speed of the backup roller for feeding the current collector electrode sheet 10 to the compression roller is increased to a certain speed or more, the movement of the hydraulic cylinder of the compression roller can not follow the detection signal of the application end. Therefore, when the application area of the current collector electrode sheet passes between the two compression rolls in a state where the distance between the two compression rolls is large, the application area is not compressed to a desired density, and conversely, the two When the tailing portion of the current collector electrode sheet passes between the two compression rolls in a state where the distance between the compression rolls is short, there arises a problem that the phenomenon that the active material particles bite into the metal foil can not be prevented.
 さらに、間欠塗布した集電体電極シートの圧縮加工をするためには、塗布領域と非塗布領域の境界が連続して多数存在するため、頻回に圧縮ロールを上下させることとなり、圧縮ローラ装置の耐久寿命が短くなる、塗布端検出器と検出信号を基に圧縮ロール間の距離を調整する機構を設けるため、装置構成が複雑になり、メンテナンスが煩雑になる等の問題も生じる。 Furthermore, in order to compress the intermittently applied current collector electrode sheet, since the boundaries between the coated area and the non-coated area continuously exist in large numbers, the compression roller is moved up and down frequently, and the compression roller device In addition, since the mechanism for adjusting the distance between the compression rolls based on the application end detector and the detection signal is provided, the apparatus configuration becomes complicated, and the maintenance becomes complicated.
 本発明は上述したような背景技術が有する課題を解決するためになされたものであり、装置構成を複雑にせずに、集電体電極シート10の製造工程における欠陥の発生を防止できる圧縮ローラ、前記圧縮ローラを用いた集電体電極シートの製造方法、集電体電極シート、および電池を提供することを目的とする。 The present invention has been made to solve the problems of the background art as described above, and it is possible to prevent the occurrence of defects in the manufacturing process of the current collector electrode sheet 10 without complicating the device configuration, An object of the present invention is to provide a method of manufacturing a current collector electrode sheet using the compression roller, a current collector electrode sheet, and a battery.
 本発明集電体電極シートは、
 シート状の金属箔の長手方向に、両面に活物質層が形成された集電体電極シートであって、前記活物質層は塗布膜の厚さの厚い第1の塗布領域と、前記第1の塗布領域よりも塗布膜の厚さの薄い第2の塗布領域とによって形成され、前記金属箔の厚さ方向に圧縮後の前記第1の塗布領域における前記金属箔の厚さが、前記第2の塗布領域および非塗布領域における前記金属箔の厚さよりも薄い。
The collector electrode sheet of the present invention is
A current collector electrode sheet in which an active material layer is formed on both sides in the longitudinal direction of a sheet-like metal foil, wherein the active material layer is a first coated region having a thick coating film, and the first coated region. The thickness of the metal foil in the first application area after compression in the thickness direction of the metal foil is formed by the second application area having a thickness smaller than that of the application area; The thickness is thinner than the thickness of the metal foil in the two coated areas and the non-coated area.
 本発明の電極シートの製造方法は、
 シート状の金属箔の両面に活物質が塗布された集電体電極シートを、2つの圧縮ロールを一対として構成される圧縮ローラを用いて、前記集電体電極シートの厚さ方向に圧縮する圧縮工程を含み、
 前記集電体電極シートは、前記活物質を含むスラリを塗布した塗布領域と、前記スラリを塗布しない非塗布領域とを含み、
 前記集電体電極シートの前記塗布領域は、第1の領域と、形成された塗布膜の厚さが前記第1の領域より薄い第2の領域とを含み、
 前記圧縮工程において、前記一対の圧縮ロールが、前記塗布領域と前記非塗布領域が交互に形成された前記集電体電極シートを連続して圧縮する際、前記第1の領域に前記圧縮ローラを接触させて圧縮する。
The method for producing an electrode sheet of the present invention is
The current collector electrode sheet in which the active material is coated on both sides of the sheet metal foil is compressed in the thickness direction of the current collector electrode sheet using a compression roller constituted by a pair of two compression rolls. Including a compression step,
The current collector electrode sheet includes a coated region coated with a slurry containing the active material, and a non-coated region not coated with the slurry.
The application region of the current collector electrode sheet includes a first region, and a second region in which the thickness of the applied film formed is thinner than the first region.
In the compression step, when the pair of compression rolls continuously compress the current collector electrode sheet in which the coated area and the non-coated area are alternately formed, the compression roller is placed in the first area. Contact and compress.
 本発明の圧縮ローラは、
 シート状の金属箔の両面に活物質が塗布された集電体電極シートを、その厚さ方向に連続的に圧縮する一対の圧縮ロールを有し、
 各前記圧縮ロールは、その回転軸が、前記集電体電極シートの短手方向と平行になるように設置され、
 各前記圧縮ロールは、前記回転軸方向の両端の円形の端面を有する端部と、前記両端の前記端部の間に延在する曲面状の側面とを有し、
 前記圧縮ロールの前記側面は、前記圧縮ロールの前記両端各々の周辺の第1の範囲と、前記圧縮ロールの前記回転軸方向の中央部分の第2の範囲とを含み、
 対向する前記一対の圧縮ロールの前記第1の範囲における前記側面同士の距離が、対向する前記一対の圧縮ロールの前記第2の範囲における前記側面同士の距離よりも短い。
The compression roller of the present invention is
It has a pair of compression rolls which continuously compress the current collector electrode sheet having the active material coated on both sides of the sheet metal foil in the thickness direction,
Each of the compression rolls is installed so that its rotation axis is parallel to the lateral direction of the current collector electrode sheet,
Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
The side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
The distance between the side surfaces in the first range of the pair of compression rolls facing each other is shorter than the distance between the side surfaces in the second range of the pair of compression rolls facing each other.
 本発明の集電体電極シートは、本発明の集電体電極シートの製造方法を用いて製造される。
 本発明の電池は、本発明の集電体電極シートを用いて製造される。
The current collector electrode sheet of the present invention is manufactured using the method of manufacturing a current collector electrode sheet of the present invention.
The battery of the present invention is manufactured using the current collector electrode sheet of the present invention.
 本発明によれば、製造コストの増大を招くことなく、製造工程における欠陥の発生を防止できる集電体電極シートの製造方法、圧縮ローラ、集電体電極シート、および電池を提供することができる。 According to the present invention, it is possible to provide a method of manufacturing a current collector electrode sheet, a compression roller, a current collector electrode sheet, and a battery capable of preventing the occurrence of defects in the manufacturing process without increasing the manufacturing cost. .
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The objects described above, and other objects, features and advantages will become more apparent from the preferred embodiments described below and the following drawings associated therewith.
本発明の実施形態における両面塗布後の集電体電極シートを示す平面図である。It is a top view which shows the collector electrode sheet after double-sided application in embodiment of this invention. 本発明の実施形態における両面塗布後の集電体電極シートの上面から見た平面と断面の関係を示す図である。It is a figure which shows the relationship of the plane and the cross section seen from the upper surface of the collector electrode sheet after double-sided application in embodiment of this invention. 本発明の実施形態に係る電極シートの圧縮装置の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the compression apparatus of the electrode sheet which concerns on embodiment of this invention. 本発明の実施形態に係る電極シート圧縮装置の圧縮ローラを、電極シートの長手方向から見た断面の模式図である。It is a schematic diagram of the cross section which looked at the compression roller of the electrode sheet compression apparatus which concerns on embodiment of this invention from the longitudinal direction of an electrode sheet. 本発明の実施形態に係る圧縮ローラを用いて、電極シートの活物質塗布領域を加圧圧縮する工程を模式的に示した図である。It is the figure which showed typically the process of pressure-compressing the active material application | coating area | region of an electrode sheet using the compression roller which concerns on embodiment of this invention. 本発明の実施形態に係る圧縮ローラと、電極シートのスラリ尾引き部の関係を模式的に示した図である。It is the figure which showed typically the relationship between the compression roller which concerns on embodiment of this invention, and the slurry tailing part of an electrode sheet. 本発明の実施形態に係る電極シートを圧縮した後の、断面の模式図である。It is a schematic diagram of a cross section after compressing the electrode sheet which concerns on embodiment of this invention. 本発明の実施形態に係る電極シートを裁断した後の、裁断面を上面から見た模式図である。It is the schematic diagram which looked at the cutting plane from the upper surface after cutting the electrode sheet which concerns on embodiment of this invention. 本発明の比較形態に係る圧縮ローラと、電極シートのスラリ尾引き部の関係を模式的に示した図である。It is the figure which showed typically the relationship between the compression roller which concerns on the comparison form of this invention, and the slurry tailing part of an electrode sheet. 本発明の比較形態に係る電極シートを圧縮した後の、断面の模式図である。It is a schematic diagram of a cross section after compressing the electrode sheet which concerns on the comparison form of this invention. 本発明の比較形態に係る電極シートを裁断した後の、裁断面を上面から見た模式図である。It is the schematic diagram which looked at the cutting plane from the upper surface after cutting the electrode sheet which concerns on the comparison form of this invention. 本発明の実施の形態に係る電極シートの製造システムの構成の一例を示すブロック図である。It is a block diagram showing an example of composition of a manufacturing system of an electrode sheet concerning an embodiment of the invention. 本発明の実施の形態に係る電極シートの製造システムの各装置を実現するコンピュータのハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of a computer which implement | achieves each apparatus of the manufacturing system of the electrode sheet which concerns on embodiment of this invention. 本発明の実施の形態に係る電極シートの製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the electrode sheet which concerns on embodiment of this invention. 本発明の実施の形態に係る電池の構成の一例を示す概略図である。It is a schematic diagram showing an example of composition of a battery concerning an embodiment of the invention. 本発明の実施形態に係る圧縮ローラを用いて、電極シートの活物質塗布領域を加圧圧縮する工程を模式的に示した図である。It is the figure which showed typically the process of pressure-compressing the active material application | coating area | region of an electrode sheet using the compression roller which concerns on embodiment of this invention. 間欠塗工方式により、活物質を塗布して作製された電極シートを示す平面図である。It is a top view which shows the electrode sheet produced by apply | coating an active material by an intermittent coating system.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and the description thereof will be appropriately omitted.
 図1は、本発明の実施形態に係る集電体電極シートの製造方法における活物質の両面塗布後の集電体電極シート10を示す部分平面図である。 FIG. 1 is a partial plan view showing a current collector electrode sheet 10 after double-sided application of an active material in a method of manufacturing a current collector electrode sheet according to an embodiment of the present invention.
 電極シート10は、帯状の金属箔9の両面に、活物質等のスラリの塗布領域11と非塗布領域12とが長手方向Dxに間欠的に形成された構成であり、塗布領域11の終端13側の電極部分には、スラリを引きずる状態が生じることで尾引き部14が存在する。つまり、集電体電極シート10は、スラリを金属箔9の両面に間欠的に塗布して、塗布領域11と、非塗布領域12の境界に、尾引き部14を形成する。なお、本発明の電極シート10において、活物質層は、間欠的に塗布されて形成されるものに限定されない。活物質層は、間欠塗工以外に、例えば、連続ストライプ塗工で形成されてもよい。 The electrode sheet 10 has a configuration in which the application region 11 and the non-application region 12 of the slurry such as the active material are intermittently formed in the longitudinal direction Dx on both surfaces of the strip-like metal foil 9. A tailing portion 14 is present at the side electrode portion due to the occurrence of slurry drag. That is, the current collector electrode sheet 10 intermittently applies the slurry on both surfaces of the metal foil 9 to form the tailing portion 14 at the boundary between the coated area 11 and the non-coated area 12. In addition, in the electrode sheet 10 of this invention, an active material layer is not limited to what is apply | coated intermittently and formed. The active material layer may be formed by continuous stripe coating, for example, in addition to intermittent coating.
 ここで、本実施形態に係る電極シート10から作製される電極は特に限定されないが、例えば、リチウムイオン一次電池やリチウムイオン二次電池等のリチウムイオン電池用電極(正極や負極)である。 Here, the electrode produced from the electrode sheet 10 according to the present embodiment is not particularly limited, but is, for example, an electrode (positive electrode or negative electrode) for a lithium ion battery such as a lithium ion primary battery or a lithium ion secondary battery.
 以下、電極の構成について詳細に説明する。 Hereinafter, the configuration of the electrode will be described in detail.
 はじめに、本実施形態に係るスラリの塗布領域11を形成する電極活物質層を構成する各成分について説明する。
 電極活物質層は、電極活物質を含み、必要に応じてバインダー樹脂、導電助剤、増粘剤等を含む。本実施形態において、電極活物質は、例えば、リチウム金属複合酸化物を用いることができる。
First, each component which comprises the electrode active material layer which forms the application area | region 11 of the slurry which concerns on this embodiment is demonstrated.
The electrode active material layer contains an electrode active material, and as necessary, contains a binder resin, a conductive auxiliary agent, a thickener and the like. In the present embodiment, for example, a lithium metal composite oxide can be used as the electrode active material.
 本実施形態に係る電極活物質層に含まれる電極活物質は用途に応じて適宜選択される。正極を作製するときは正極活物質を使用し、負極を作製するときは負極活物質を使用する。 The electrode active material contained in the electrode active material layer according to the present embodiment is appropriately selected according to the application. When manufacturing a positive electrode, a positive electrode active material is used, and when manufacturing a negative electrode, a negative electrode active material is used.
 正極活物質としてはリチウムイオン電池の正極に使用可能な通常の正極活物質であれば特に限定されない。例えば、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物等のリチウムと遷移金属との複合酸化物;TiS、FeS、MoS等の遷移金属硫化物;MnO、V、V13、TiO等の遷移金属酸化物、オリビン型リチウムリン酸化物等が挙げられる。
 オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb、およびFeよりなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。
The positive electrode active material is not particularly limited as long as it is a normal positive electrode active material that can be used for the positive electrode of a lithium ion battery. For example, lithium-nickel composite oxide, lithium-cobalt composite oxide, lithium-manganese composite oxide, lithium-nickel-manganese composite oxide, lithium-nickel-cobalt composite oxide, lithium-nickel-aluminum composite oxide, Lithium and transition such as lithium-nickel-cobalt-aluminum composite oxide, lithium-nickel-manganese-cobalt composite oxide, lithium-nickel-manganese-aluminum composite oxide, lithium-nickel-cobalt-manganese-aluminum composite oxide Composite oxides with metals; Transition metal sulfides such as TiS 2 , FeS, MoS 2 etc .; Transition metal oxides such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 etc., olivine type lithium phosphorus oxide etc. It can be mentioned.
The olivine-type lithium phosphorus oxide is, for example, at least one member of the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus and oxygen. These compounds may be obtained by partially replacing some elements with other elements in order to improve their properties.
 これらの中でも、オリビン型リチウム鉄リン酸化物、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物が好ましい。これらの正極活物質は作用電位が高いことに加えて容量も大きく、大きなエネルギー密度を有する。
 正極活物質は、一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
Among these, olivine-type lithium iron phosphate, lithium-nickel complex oxide, lithium-cobalt complex oxide, lithium-manganese complex oxide, lithium-nickel-manganese complex oxide, lithium-nickel-cobalt complex oxide , Lithium-nickel-aluminum complex oxide, lithium-nickel-cobalt-aluminum complex oxide, lithium-nickel-manganese-cobalt complex oxide, lithium-nickel-manganese-aluminum complex oxide, lithium-nickel-cobalt-manganese Aluminum complex oxides are preferred. These positive electrode active materials have large capacity in addition to high action potential and large energy density.
The positive electrode active material may be used alone or in combination of two or more.
 負極活物質としては、リチウムイオン電池の負極に使用可能な通常の負極活物質であれば特に限定されない。例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素材料;リチウム金属、リチウム合金等のリチウム系金属材料;シリコン、スズ等の金属材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー材料等が挙げられる。これらの中でも炭素材料が好ましく、特に天然黒鉛や人造黒鉛等の黒鉛質材料が好ましい。
 負極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
The negative electrode active material is not particularly limited as long as it is a common negative electrode active material that can be used for the negative electrode of a lithium ion battery. For example, carbon materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated carbon, hard carbon, soft carbon; lithium metal materials such as lithium metal and lithium alloy; metal materials such as silicon and tin; polyacene, polyacetylene, Conductive polymer materials such as polypyrrole can be mentioned. Among these, carbon materials are preferable, and particularly graphitic materials such as natural graphite and artificial graphite are preferable.
The negative electrode active material may be used singly or in combination of two or more.
 電極活物質の平均粒子径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、入出力特性や電極作製上の観点(電極表面の平滑性等)から、100μm以下が好ましく、50μm以下がより好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。 The average particle diameter of the electrode active material is preferably 1 μm or more, more preferably 2 μm or more, from the viewpoint of suppressing side reactions during charge and discharge to suppress a decrease in charge and discharge efficiency. From the smoothness of the surface, etc., 100 μm or less is preferable, and 50 μm or less is more preferable. Here, the average particle diameter means a particle diameter (median diameter: D50) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
 電極活物質の含有量は、電極活物質層の全体を100質量部としたとき、85質量部以上99.8質量部以下であることが好ましい。 The content of the electrode active material is preferably 85 parts by mass or more and 99.8 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer.
 本実施形態に係る電極活物質層に含まれるバインダー樹脂は用途に応じて適宜選択される。例えば、溶媒に溶解可能なフッ素系バインダー樹脂や、水に分散可能な水系バインダー等を使用することができる。 The binder resin contained in the electrode active material layer according to the present embodiment is appropriately selected according to the application. For example, a fluorine-based binder resin that can be dissolved in a solvent, an aqueous binder that can be dispersed in water, or the like can be used.
 フッ素系バインダー樹脂としては電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリフッ化ビニリデン系樹脂、フッ素ゴム等が挙げられる。これらのフッ素系バインダー樹脂は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、ポリフッ化ビニリデン系樹脂が好ましい。フッ素系バインダー樹脂は、例えば、N-メチル-ピロリドン(NMP)等の溶媒に溶解させて使用することができる。 The fluorine-based binder resin is not particularly limited as long as it can be formed into an electrode and has sufficient electrochemical stability, and examples thereof include polyvinylidene fluoride resins and fluororubbers. These fluorine-based binder resins may be used alone or in combination of two or more. Among these, polyvinylidene fluoride resins are preferable. The fluorine-based binder resin can be used, for example, by dissolving it in a solvent such as N-methyl-pyrrolidone (NMP).
 水系バインダーとしては電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリテトラフルオロエチレン系樹脂、ポリアクリル酸系樹脂、スチレン・ブタジエン系ゴム、ポリイミド系樹脂等が挙げられる。これらの水系バインダーは一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、スチレン・ブタジエン系ゴムが好ましい。
 なお、本実施形態において、水系バインダーとは、水に分散し、エマルジョン水溶液を形成できるものをいう。
 水系バインダーを使用する場合は、さらに増粘剤を使用することができる。増粘剤としては特に限定されないが、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;ポリカルボン酸;ポリエチレンオキシド;ポリビニルピロリドン;ポリアクリル酸ナトリウム等のポリアクリル酸塩;ポリビニルアルコール;等の水溶性ポリマー等が挙げられる。
The aqueous binder is not particularly limited as long as it can be formed into an electrode and has sufficient electrochemical stability. For example, polytetrafluoroethylene resin, polyacrylic acid resin, styrene butadiene rubber, Polyimide resin etc. are mentioned. These aqueous binders may be used alone or in combination of two or more. Among these, styrene butadiene rubber is preferable.
In the present embodiment, the aqueous binder refers to one that can be dispersed in water to form an aqueous emulsion solution.
When using a water-based binder, a thickener can be further used. The thickener is not particularly limited, but, for example, cellulose polymers such as carboxymethylcellulose, methylcellulose and hydroxypropylcellulose and ammonium salts thereof and alkali metal salts; polycarboxylic acids; polyethylene oxide; polyvinylpyrrolidone; sodium polyacrylate and the like And water-soluble polymers such as polyvinyl alcohol; and the like.
 バインダー樹脂の含有量は、電極活物質層の全体を100質量部としたとき、0.1質量部以上10.0質量部以下であることが好ましい。バインダー樹脂の含有量が上記範囲内であると、電極スラリの塗工性、バインダーの結着性および電池特性のバランスがより一層優れる。
 また、バインダー樹脂の含有量が上記上限値以下であると、電極活物質の割合が大きくなり、電極質量当たりの容量が大きくなるため好ましい。バインダー樹脂の含有量が上記下限値以上であると、電極剥離が抑制されるため好ましい。
The content of the binder resin is preferably 0.1 parts by mass or more and 10.0 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer. The balance of the coating property of an electrode slurry, the binding property of a binder, and battery characteristics as the content of binder resin is in the said range is much more excellent.
Moreover, the ratio of an electrode active material becomes large as content of binder resin is below the said upper limit, and since the capacity | capacitance per electrode mass becomes large, it is preferable. It is preferable in order that electrode peeling may be suppressed as content of binder resin is more than the said lower limit.
 本実施形態に係る電極活物質層に含まれる導電助剤としては電極の導電性を向上させるものであれば特に限定されないが、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人工黒鉛、炭素繊維等が挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The conductive aid contained in the electrode active material layer according to the present embodiment is not particularly limited as long as it improves the conductivity of the electrode, but, for example, carbon black, ketjen black, acetylene black, natural graphite, artificial graphite And carbon fibers. These conductive aids may be used alone or in combination of two or more.
 導電助剤の含有量は、電極活物質層の全体を100質量部としたとき、0.1質量部以上5.0質量部以下であることが好ましい。導電助剤の含有量が上記範囲内であると、電極スラリの塗工性、バインダーの結着性および電池特性のバランスがより一層優れる。
 また、導電助剤の含有量が上記上限値以下であると、電極活物質の割合が大きくなり、電極質量当たりの容量が大きくなるため好ましい。導電助剤の含有量が上記下限値以上であると、電極の導電性がより良好になるため好ましい。
The content of the conductive additive is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer. The balance of the coating property of an electrode slurry, the binding property of a binder, and the battery characteristic as the content of a conductive support agent is in the said range is much more excellent.
Moreover, since the ratio of an electrode active material becomes large as content of a conductive support agent is below the said upper limit, and the capacity | capacitance per electrode mass becomes large, it is preferable. It is preferable for the content of the conductive aid to be not less than the above lower limit value, since the conductivity of the electrode becomes better.
 本実施形態に係る電極活物質層は、電極活物質層の全体を100質量部としたとき、電極活物質の含有量は好ましくは85質量部以上99.8質量部以下である。また、バインダー樹脂の含有量は好ましくは0.1質量部以上10.0質量部以下である。また、導電助剤の含有量は好ましくは0.1質量部以上5.0質量部以下である。
 電極活物質層を構成する各成分の含有量が上記範囲内であると、リチウムイオン電池用電極の取扱い性と、得られるリチウムイオン電池の電池特性のバランスが特に優れる。
The content of the electrode active material is preferably 85 parts by mass or more and 99.8 parts by mass or less, based on 100 parts by mass of the whole of the electrode active material layer according to the present embodiment. The content of the binder resin is preferably 0.1 parts by mass or more and 10.0 parts by mass or less. The content of the conductive aid is preferably 0.1 parts by mass or more and 5.0 parts by mass or less.
The balance of the handling property of the electrode for lithium ion batteries and the battery characteristic of the lithium ion battery obtained as the content of each component which comprises an electrode active material layer is in the said range is especially excellent.
 電極活物質層の密度は特に限定されないが、電極活物質層が正極活物質層の場合は、例えば、2.0g/cm以上4.0g/cm以下であることが好ましく、2.4g/cm以上3.8g/cm以下であることがより好ましく、2.8g/cm以上3.6g/cm以下であることがさらに好ましい。また、電極活物質層が負極活物質層の場合は、例えば、1.2g/cm以上2.0g/cm以下であることが好ましく、1.3g/cm以上1.9g/cm以下であることがより好ましく、1.4g/cm以上1.8g/cm以下であることがさらに好ましい。
 電極活物質層の密度を上記範囲内とすると、高放電レートでの使用時における放電容量が向上するため好ましい。
The density of the electrode active material layer is not particularly limited, but when the electrode active material layer is a positive electrode active material layer, for example, it is preferably 2.0 g / cm 3 or more and 4.0 g / cm 3 or less, and 2.4 g / more preferably cm 3 or more 3.8 g / cm 3 or less, and more preferably not more than 2.8 g / cm 3 or more 3.6 g / cm 3. When the electrode active material layer is a negative electrode active material layer, for example, it is preferably 1.2 g / cm 3 or more and 2.0 g / cm 3 or less, and 1.3 g / cm 3 or more and 1.9 g / cm 3 The following is more preferable, and 1.4 g / cm 3 or more and 1.8 g / cm 3 or less is more preferable.
When the density of the electrode active material layer is in the above range, the discharge capacity at the time of use at a high discharge rate is improved, which is preferable.
 電極活物質層の厚みは特に限定されるものではなく、所望の特性に応じて適宜設定することができる。例えば、エネルギー密度の観点からは厚く設定することができ、また出力特性の観点からは薄く設定することができる。電極活物質層の厚み(片面の厚み)は、例えば、10μm以上250μm以下の範囲で適宜設定でき、20μm以上200μm以下が好ましく、30μm以上150μm以下がより好ましい。 The thickness of the electrode active material layer is not particularly limited, and can be appropriately set according to the desired characteristics. For example, it can be set thick in terms of energy density, and can be set thin in terms of output characteristics. The thickness (thickness on one side) of the electrode active material layer can be appropriately set, for example, in the range of 10 μm to 250 μm, preferably 20 μm to 200 μm, and more preferably 30 μm to 150 μm.
 本実施形態に係る集電体層(金属箔9)としては特に限定されないが、正極集電体層としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。その形状としては、例えば、箔、平板状、メッシュ状等が挙げられる。特にアルミニウム箔を好適に用いることができる。
 また、負極集電体層としては、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。その形状としては、箔、平板状、メッシュ状が挙げられる。特に銅箔を好適に用いることができる。
The current collector layer (metal foil 9) according to the present embodiment is not particularly limited, but aluminum, stainless steel, nickel, titanium, an alloy of these, or the like can be used as the positive electrode current collector layer. As the shape, foil, flat form, mesh form etc. are mentioned, for example. In particular, an aluminum foil can be suitably used.
In addition, copper, stainless steel, nickel, titanium or an alloy thereof can be used as the negative electrode current collector layer. As the shape, foil, flat form, mesh form is mentioned. Particularly, copper foil can be suitably used.
 正極集電体層の厚みは特に限定されないが、例えば1μm以上30μm以下である。また、負極集電体層の厚みは特に限定されないが、例えば1μm以上20μm以下である。 The thickness of the positive electrode current collector layer is not particularly limited, but is, for example, 1 μm or more and 30 μm or less. The thickness of the negative electrode current collector layer is not particularly limited, and is, for example, 1 μm or more and 20 μm or less.
 はじめに、電極スラリを調製する。
 電極スラリは、電極活物質と、必要に応じてバインダー樹脂と、導電助剤と、増粘剤と、を混合することにより調製することができる。電極活物質、バインダー樹脂、および導電助剤の配合比率は電極活物質層中の電極活物質、バインダー樹脂、および導電助剤の含有比率と同じため、ここでは説明を省略する。
First, an electrode slurry is prepared.
An electrode slurry can be prepared by mixing an electrode active material, and as needed, a binder resin, a conductive aid, and a thickener. The compounding ratio of the electrode active material, the binder resin, and the conductive auxiliary is the same as the content ratio of the electrode active material, the binder resin, and the conductive auxiliary in the electrode active material layer, and thus the description thereof is omitted here.
 電極スラリは、電極活物質と、必要に応じてバインダー樹脂と、導電助剤と、増粘剤と、を溶媒に分散または溶解させたものである。
 各成分の混合手順は特に限定されないが、例えば、電極活物質と導電助剤とを乾式混合した後に、バインダー樹脂および溶媒を添加して湿式混合することにより電極スラリを調製することができる。
 このとき、用いられる混合機としては、ボールミルやプラネタリーミキサー等の公知のものが使用でき、特に限定されない。
 電極スラリに用いる溶媒としては、N-メチル-2-ピロリドン(NMP)等の有機溶媒や、水を用いることができる。
The electrode slurry is obtained by dispersing or dissolving an electrode active material, and as necessary, a binder resin, a conductive auxiliary agent, and a thickener in a solvent.
Although the mixing procedure of each component is not specifically limited, For example, after dry-mixing an electrode active material and a conductive support agent, an electrode slurry can be prepared by adding a binder resin and a solvent and wet-mixing.
At this time, as a mixer to be used, known ones such as a ball mill and a planetary mixer can be used, and it is not particularly limited.
As a solvent used for the electrode slurry, an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water can be used.
 電極スラリを集電体層上に塗布する方法は、一般的に公知の方法を用いることができる。例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法等を挙げることができる。これらの中でも、電極スラリの粘性等の物性および乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ドクターブレード法、ナイフ法、エクストルージョン法が好ましい。 As a method of applying the electrode slurry on the current collector layer, generally known methods can be used. For example, reverse roll method, direct roll method, doctor blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method, squeeze method and the like can be mentioned. Among them, the doctor blade method, the knife method and the extrusion method are preferable in that it is possible to obtain a good surface state of the coating layer according to the physical properties such as viscosity and the like of the electrode slurry and the drying property.
 集電体層上に塗布した電極スラリの乾燥方法としては特に限定されないが、例えば、加熱ロールを用いて集電体層側または既に乾燥した電極活物質層側から電極スラリを間接的に加熱し、電極スラリを乾燥させる方法;赤外線、遠赤外線・近赤外線のヒーター等の電磁波を用いて電極スラリを乾燥させる方法;集電体層側または既に乾燥した電極活物質層側から熱風を当てて電極スラリを間接的に加熱し、電極スラリを乾燥させる方法等が挙げられる。 The method for drying the electrode slurry applied on the current collector layer is not particularly limited. For example, the electrode slurry is indirectly heated from the current collector layer side or the electrode active material layer side already dried using a heating roll. Method of drying electrode slurry; Method of drying electrode slurry using electromagnetic waves such as infrared, far infrared and near infrared heaters; hot air is applied from the current collector layer side or the already dried electrode active material layer side There is a method of indirectly heating the slurry and drying the electrode slurry.
 図12は、本発明の実施形態に係る電極シート10の製造システム1の構成例を示すブロック図である。
 製造システム1は、スラリ塗布装置20と、圧縮装置40と、裁断装置60と、を備える。さらに、製造システム1の各装置を制御する制御装置を備えてもよい。
FIG. 12 is a block diagram showing a configuration example of a manufacturing system 1 of the electrode sheet 10 according to the embodiment of the present invention.
The manufacturing system 1 includes a slurry application device 20, a compression device 40, and a cutting device 60. Furthermore, a control device that controls each device of the manufacturing system 1 may be provided.
 図13は、本発明の実施の形態に係る電極シートの製造システムの各装置を実現するコンピュータのハードウェア構成の一例を示すブロック図である。
 スラリ塗布装置20、圧縮装置40、および裁断装置60は、それぞれ少なくとも1つのコンピュータ100により実現される。コンピュータ100は、CPU(Central Processing Unit)102、メモリ104、メモリ104にロードされた各装置を実現するプログラム110、そのプログラム110を格納するストレージ105、I/O(Input Output)106、およびネットワーク接続用通信インタフェース(I/F)107を備える。CPU102と各要素は、バス109を介して互いに接続され、CPU102によりコンピュータ100全体が制御される。ただし、CPU102などを互いに接続する方法は、バス接続に限定されない。
FIG. 13 is a block diagram showing an example of a hardware configuration of a computer that implements each device of the electrode sheet manufacturing system according to the embodiment of the present invention.
The slurry application device 20, the compression device 40, and the cutting device 60 are each realized by at least one computer 100. The computer 100 includes a central processing unit (CPU) 102, a memory 104, a program 110 for realizing each device loaded in the memory 104, a storage 105 for storing the program 110, an input / output (I / O) 106, and a network connection. Communication interface (I / F) 107. The CPU 102 and each element are connected to one another via a bus 109, and the CPU 102 controls the entire computer 100. However, the method of connecting the CPUs 102 and the like to each other is not limited to the bus connection.
 CPU102が、ストレージ105に記憶されるプログラム110をメモリ104に読み出して実行することにより、各装置の各機能を実現することができる。 Each function of each device can be realized by the CPU 102 reading the program 110 stored in the storage 105 to the memory 104 and executing it.
 スラリ塗布装置20、圧縮装置40、および裁断装置60は、それぞれコンピュータ100のハードウェアとソフトウェアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。 The slurry application device 20, the compression device 40, and the cutting device 60 are each realized by any combination of the hardware and software of the computer 100. And it is understood by those skilled in the art that there are various modifications in the implementation method and apparatus.
 プログラム110は、コンピュータ100で読み取り可能な記録媒体に記録されてもよい。記録媒体は特に限定されず、様々な形態のものが考えられる。また、プログラムは、記録媒体からコンピュータ100のメモリ104にロードされてもよいし、ネットワークを通じてコンピュータ100にダウンロードされ、メモリ104にロードされてもよい。 The program 110 may be recorded on a recording medium readable by the computer 100. The recording medium is not particularly limited, and various forms can be considered. Also, the program may be loaded from the recording medium into the memory 104 of the computer 100, or may be downloaded to the computer 100 through the network and loaded into the memory 104.
 プログラム110を記録する記録媒体は、非一時的な有形のコンピュータ100が使用可能な媒体を含み、その媒体に、コンピュータ100が読み取り可能なプログラムコードが埋め込まれる。プログラム110が、コンピュータ100上で実行されたとき、コンピュータ100に、各装置を実現させる電極シート10の製造方法を実行させる。 A recording medium for recording the program 110 includes a medium that can be used by the non-transitory tangible computer 100, in which the program code readable by the computer 100 is embedded. When the program 110 is executed on the computer 100, the computer 100 causes the computer 100 to execute a method of manufacturing the electrode sheet 10 for realizing each device.
 図14は、本発明の実施形態に係る電極シート10の製造方法の工程を示すフローチャートである。
 本発明の実施形態の電極シート10の製造方法は、塗布工程(S1)と、圧縮工程(S5)と、裁断工程(S6)と、を含む。本発明の実施形態に係る集電体電極シート10は、図14に示される製造方法によって製造される。
FIG. 14 is a flowchart showing steps of a method of manufacturing the electrode sheet 10 according to the embodiment of the present invention.
The manufacturing method of electrode sheet 10 of an embodiment of the present invention contains an application process (S1), a compression process (S5), and a cutting process (S6). The current collector electrode sheet 10 according to the embodiment of the present invention is manufactured by the manufacturing method shown in FIG.
 図2は、本発明の実施形態に係る両面塗布後の集電体電極シート10の上面から見た平面と断面の関係を示す図である。図2(a)は、電極シート10に形成された活物質の塗布領域11の一部を含む電極シート10の上面図であり、図2(b)は、図2(a)の線I-Iについての塗布領域11が形成された電極シート10の断面図である。 FIG. 2 is a view showing a relationship between a plane and a cross section as viewed from the top surface of the current collector electrode sheet 10 after double-sided application according to the embodiment of the present invention. 2 (a) is a top view of the electrode sheet 10 including a part of the application region 11 of the active material formed on the electrode sheet 10, and FIG. 2 (b) is a line I- of FIG. 2 (a). It is sectional drawing of the electrode sheet 10 in which the application area | region 11 about I was formed.
 塗布領域11の厚さが一定の領域の終端16は、塗布領域11の終端13側の電極部分に対して、塗布領域11の長手方向Dxの中央部側に存在する。塗布領域11の厚さが一定(t1)の領域の終端16を境に尾引き部14となり、その尾引き部14の部分の厚さt2はt1より薄くなっている。つまり、尾引き部14は塗布領域11の終端13側に位置しており、尾引き部14の厚さt2は塗布領域11の長手方向Dxの中央部の厚さt1よりも薄くなっている。なお、図に示すように、尾引き部14の厚さt2は、尾引き部14の開始位置から長手方向Dxの終端に向かって徐々に薄くなっている。 The end 16 of the region where the thickness of the application region 11 is constant is present on the central portion side in the longitudinal direction Dx of the application region 11 with respect to the electrode portion on the end 13 side of the application region 11. The tail end portion 14 is a trailing portion 14 at the end 16 of the region where the thickness of the application region 11 is constant (t1), and the thickness t2 of the portion of the trailing portion 14 is thinner than t1. That is, the tailing portion 14 is located on the end 13 side of the application area 11, and the thickness t2 of the tailing portion 14 is thinner than the thickness t1 of the central portion in the longitudinal direction Dx of the application area 11. As shown in the figure, the thickness t2 of the tailing portion 14 gradually decreases from the start position of the tailing portion 14 toward the end of the longitudinal direction Dx.
 図3は、本発明の実施形態に係る電極シート10の圧縮装置40の概要を示す模式図である。
 図1の金属箔9の両面に活物質塗布領域11と非塗布領域12と塗布領域11の終端13側の電極部分に尾引き部14が形成された電極シート10を、図3に示すように一対の圧縮ロール51で圧縮する。電極シート10は、一対の圧縮ロール51の隙間を通過する際に圧縮されて、長手方向Dxに巻き取られる。
FIG. 3 is a schematic view showing an outline of the compression device 40 of the electrode sheet 10 according to the embodiment of the present invention.
As shown in FIG. 3, the electrode sheet 10 has tails 14 formed on the electrode portions on the end 13 side of the active material coated area 11, the non-coated area 12, and the coated area 11 on both sides of the metal foil 9 of FIG. The pair of compression rolls 51 compresses. The electrode sheet 10 is compressed when passing through the gap between the pair of compression rolls 51 and taken up in the longitudinal direction Dx.
 図4は、図3の線II-IIについての圧縮ローラ50を電極シート10の長手方向から見た断面図である。圧縮ローラ50は、上下2つのロール51を一対として構成されており、上下の各ロール51は、活物質塗布領域11の圧縮に係るロール本体52と、ロール本体52の両端に左右対称に形成される端部53と、を備えている。また、ロール本体52は、ロール51の回転軸A方向に沿って両端部から中央部に向かって迫り出した湾曲した樽型の形状を有している。 FIG. 4 is a cross-sectional view of the compression roller 50 taken along line II-II in FIG. The compression roller 50 is configured as a pair of upper and lower two rolls 51, and the upper and lower rolls 51 are formed symmetrically on both ends of the roll main body 52 and the roll main body 52 related to the compression of the active material application region 11. And an end portion 53. In addition, the roll main body 52 has a curved barrel shape protruding from the both ends toward the center along the rotation axis A direction of the roll 51.
 言い換えると、本実施形態の圧縮ローラ50において、対向する一対の圧縮ロール51の第2の範囲(中央部)において、回転軸A方向の両端側から中央に向かって連続的に側面同士の距離が短い。 In other words, in the compression roller 50 of the present embodiment, in the second range (central portion) of the pair of opposing compression rollers 51, the distance between the side surfaces is continuously from the both end sides in the rotation axis A direction toward the center. short.
 図5および図6は、本発明の実施形態に係る圧縮ローラ50と電極シート10の関係を示したものである。図5および図6は、図3のII-IIについての圧縮ローラ50を電極シート10の長手方向から見た断面図であり、圧縮工程(図14のS5)において、それぞれ電極シート10の塗布領域11および尾引き部14を圧縮している状態を示している。
 なお、図1の電極シート10は、図示しない長手方向裁断予定線17に沿って、予め長手方向両端が裁断されているものとする。
5 and 6 show the relationship between the compression roller 50 and the electrode sheet 10 according to the embodiment of the present invention. 5 and 6 are cross-sectional views of the compression roller 50 for II-II in FIG. 3 when viewed from the longitudinal direction of the electrode sheet 10, and in the compression step (S5 in FIG. 14) 11 shows a state in which 11 and the tailing portion 14 are compressed.
In addition, the electrode sheet 10 of FIG. 1 shall be beforehand cut | judged to the longitudinal direction both ends along the longitudinal direction cutting scheduled line 17 which is not shown in figure.
 本実施形態の圧縮ローラ50は、集電体電極シート10を、その厚さ方向に連続的に圧縮する一対の圧縮ロール51を有する。各圧縮ロール51は、その回転軸が、集電体電極シート10の短手方向と平行になるように設置される。
 各圧縮ロール51は、回転軸A方向の両端の円形の端面を有する端部53と、両端の端部53の間に延在する曲面状の側面とを有する。
 圧縮ロール51の側面は、集電体電極シート10を圧縮する際に、圧縮ロール51の両端各々の周辺の第1の範囲と、圧縮ロール51の回転軸A方向の中央部分の第2の範囲とを含む。
 対向する一対の圧縮ロール51の第1の範囲(以後、凹部形成部とも呼ぶ)における側面同士の距離(図6のd4)より、対向する一対の圧縮ロール51の第2の範囲(以後、中央部とも呼ぶ)における側面同士の距離(図6のd3)の方が短い。
The compression roller 50 of the present embodiment has a pair of compression rolls 51 that continuously compress the current collector electrode sheet 10 in the thickness direction. Each compression roll 51 is installed such that its rotation axis is parallel to the short direction of the current collector electrode sheet 10.
Each compression roll 51 has an end portion 53 having circular end surfaces at both ends in the rotation axis A direction, and a curved side surface extending between the end portions 53 at both ends.
When compressing the current collector electrode sheet 10, the side surface of the compression roll 51 has a first range around each end of the compression roll 51 and a second range of a central portion in the rotation axis A direction of the compression roll 51. And.
The second range (hereinafter referred to as the center) of the pair of compression rolls 51 opposed from the distance (d4 in FIG. 6) between the side surfaces in the first range (hereinafter also referred to as a recess forming portion) of the pair of compression rolls 51 opposed The distance between the side faces (also referred to as “d” in FIG. 6) is shorter.
 この構成により、集電体電極シート10を圧縮する際に、対応する一対のロール51の端部53同士が当接すると、凹部形成部同士の距離d4より、中央部同士の距離d3の方が短いので、中央部(第1の範囲)は電極シート10と接触し、凹部形成部(第2の範囲)は電極シート10と接触しない。 With this configuration, when compressing the current collector electrode sheet 10, when the end portions 53 of the corresponding pair of rolls 51 abut, the distance d3 between the central portions is smaller than the distance d4 between the recessed portion forming portions. Because it is short, the central portion (first range) is in contact with the electrode sheet 10, and the recess forming portion (second range) is not in contact with the electrode sheet 10.
 さらに、本実施形態の集電体電極シート10の塗布領域11は、第1の領域と、形成された塗布膜の厚さが第1の領域より薄い第2の領域(尾引き部14)とを含む。
 対向する一対の圧縮ロール51の端部53同士が当接した時の、一対の圧縮ロール51の第1の範囲における側面同士の距離(図6のd3)が、集電体電極シート10の第1の領域(塗布領域11)における厚さ(t1)の値よりも小さく、かつ、集電体電極シート10の第2の領域(尾引き部14)の厚さ(t2)の値よりも大きい。
 さらに、一対の圧縮ロール51の第1の範囲における側面同士の距離(図6のd3)は、集電体電極シート10の非塗布領域12の厚さ、すなわち、金属箔9の厚さの値よりも大きい。
Furthermore, the coated region 11 of the current collector electrode sheet 10 of the present embodiment includes a first region, and a second region (tail portion 14) in which the thickness of the formed coating film is thinner than the first region. including.
When the end portions 53 of the pair of opposing compression rolls 51 abut, the distance (d3 in FIG. 6) between the side surfaces in the first range of the pair of compression rolls 51 is the number of the collector electrode sheet 10. The value is smaller than the value of thickness (t1) in the area 1 (application area 11) and is larger than the value of thickness (t2) of the second area (tail portion 14) of current collector electrode sheet 10 .
Furthermore, the distance between the side surfaces in the first range of the pair of compression rolls 51 (d3 in FIG. 6) is the thickness of the non-coated area 12 of the current collector electrode sheet 10, that is, the value of the thickness of the metal foil 9. Greater than.
 圧縮工程(図14のS5)では、圧縮ローラ50の上下のロール51の間に電極シート10が挿入され、対向する一対のロール51のロール本体52が電極シート10を両側から圧縮する。図5に示すように、まず、ロール本体52の中央部が電極シート10の両面と当接した後、電極シート10を厚さ方向に圧縮しながら対向するロール51の端部53同士が当接し、電極シート10を所定の圧縮圧力で圧縮することができる。
 このとき、ロール51のロール本体52の中央部同士の距離はd1、ロール51の端部53同士の距離はd2とする。このように、電極シート10の圧縮前は、ロール51の端部53同士は距離d2だけ離れているが、電極シート10を圧縮するために対向するロール51を互いに接近させて距離d2を縮め、最終的に端部53同士を当接させることで電極シート10を圧縮する。
In the compression step (S5 in FIG. 14), the electrode sheet 10 is inserted between the upper and lower rolls 51 of the compression roller 50, and the roll bodies 52 of the pair of opposing rolls 51 compress the electrode sheet 10 from both sides. As shown in FIG. 5, first, after the central portion of the roll main body 52 abuts on both surfaces of the electrode sheet 10, the end portions 53 of the opposing roll 51 abuts while compressing the electrode sheet 10 in the thickness direction The electrode sheet 10 can be compressed at a predetermined compression pressure.
At this time, the distance between the central portions of the roll main body 52 of the roll 51 is d1, and the distance between the end portions 53 of the roll 51 is d2. As described above, before the electrode sheet 10 is compressed, the end portions 53 of the rolls 51 are separated by the distance d2, but in order to compress the electrode sheet 10, the opposing rolls 51 are brought close to each other to shorten the distance d2. Finally, the electrode sheet 10 is compressed by bringing the end portions 53 into contact with each other.
 このように、圧縮ローラ50の対向するロール51の端部53同士が当接して、上下のロール51のロール本体52が電極シート10を両側から圧縮する際、ロール51の柔軟性のために、ロール51のロール本体52は、回転軸A方向の中央部と、端部53近傍の部分とでは、電極シート10に対して掛けられる圧縮圧力が均一にならず、ロール本体52の中央部に歪みが生じる。 As described above, when the end portions 53 of the opposing rolls 51 of the compression roller 50 abut each other, and the roll bodies 52 of the upper and lower rolls 51 compress the electrode sheet 10 from both sides, In the roll body 52 of the roll 51, the compression pressure applied to the electrode sheet 10 is not uniform between the central portion in the direction of the rotation axis A and the portion in the vicinity of the end portion 53, and the central portion of the roll body 52 is distorted. Will occur.
 そのため、本実施形態では、ロール51によって電極シート10の短手方向Dyの各範囲に対して掛かる圧縮力と、電極シート10の塗布領域11の応力とに応じて、ロール51の本体部52の両端側に、所定の範囲に所定の深さを有する湾曲した凹部を設ける。このようにしてロール本体52を樽型形状とすることで、対向する一対のロール51が接近し、端部53が当接して電極シート10に圧縮圧力をかける際、図16に示すように、電極シート10の塗布領域11の表面を短手方向Dy全面にわたって均一に圧縮圧力をかけることができ、電極シート10の短手方向Dy全面が一様に圧縮されることとなる。 Therefore, in the present embodiment, depending on the compressive force applied to each range of the transverse direction Dy of the electrode sheet 10 by the roll 51 and the stress of the application region 11 of the electrode sheet 10, At both ends, curved recesses having a predetermined depth in a predetermined range are provided. By forming the roll main body 52 into a barrel shape in this manner, when the pair of opposing rolls 51 approaches and the end 53 abuts and applies a compression pressure to the electrode sheet 10, as shown in FIG. The compression pressure can be applied uniformly over the entire surface of the application region 11 of the electrode sheet 10 in the short direction Dy, and the entire surface in the short direction Dy of the electrode sheet 10 is uniformly compressed.
 図5では、上下2つのロール51を一対として構成された圧縮ローラ50の、2つの圧縮ロール51の間を電極シート10の活物質の塗布領域11が通過することによって、活物質の塗布領域11が圧縮されている。図に示すように、上下2つのロール51の電極シート10の短手方向Dyの長さL2は、電極シート10の短手方向Dyの長さL1よりも長くなるようになっている。また、一対になった上下2つのロール51は、ロール本体52の中央部同士の距離d3が、圧縮後における電極シート10の両面の活物質の塗布領域11の厚みと、金属箔9の厚みの値よりも小さくなるように設置される。また、電極シート10の活物質の塗布領域11が圧縮された状態において、上下2つのロール51の両端の端部53同士が接触しないように、端部53同士の距離が設定されている。
 このようにロール本体52の中央部同士の距離d3を、電極シート10の活物質の塗布領域11の厚みに応じて設定することで、電池セルとして望ましい活物質の塗布領域11の密度を達成することができる。
In FIG. 5, the application region 11 of the active material of the electrode sheet 10 passes between the two compression rollers 51 of the compression roller 50 configured as a pair of upper and lower rollers 51, thereby applying the active material application region 11. Is compressed. As shown in the figure, the length L2 of the short direction Dy of the electrode sheet 10 of the upper and lower two rolls 51 is longer than the length L1 of the short direction Dy of the electrode sheet 10. In the pair of upper and lower rolls 51, the distance d3 between the central portions of the roll main body 52 is the thickness of the application area 11 of the active material on both sides of the electrode sheet 10 after compression and the thickness of the metal foil 9. It is set to be smaller than the value. Further, the distance between the end portions 53 is set so that the end portions 53 of the two ends of the upper and lower rolls 51 do not contact in a state where the application region 11 of the active material of the electrode sheet 10 is compressed.
By thus setting the distance d3 between the central portions of the roll main body 52 in accordance with the thickness of the application area 11 of the active material of the electrode sheet 10, the density of the application area 11 of the active material desired as a battery cell is achieved. be able to.
 図6は、上下2つのロール51を一対として構成された圧縮ローラ50の、2つの圧縮ロール51の間を電極シート10が長手方向Dxに移動している間のうち、尾引き部14がロール51の間を通過している状態を示している。図に示すように、上下2つの対向するロール51の両端に設置された端部53同士が当接した際に、対向する一対のロール51のロール本体52の中央部同士の距離d3は、電極シート10の両面の尾引き部14を含む厚さ、および/または、塗布領域11が形成されていない非塗布領域12に相当する金属箔9の厚さ、の値よりも大きくなるように、ロール本体52の中央部平面と端部53の外周端との高低差の距離hは決められる。 6, while the electrode sheet 10 is moving in the longitudinal direction Dx between the two compression rolls 51 of the compression roller 50 configured as a pair of upper and lower rolls 51, the trailing portion 14 is a roll It shows a state of passing between 51. As shown in the figure, when the end portions 53 installed at both ends of the upper and lower two opposing rolls 51 abut, the distance d3 between the central parts of the roll bodies 52 of the opposing pair of rolls 51 is the electrode The roll is made to be larger than the thickness including the tailing portion 14 on both sides of the sheet 10 and / or the thickness of the metal foil 9 corresponding to the non-coated area 12 where the coated area 11 is not formed. The distance h of the height difference between the center plane of the main body 52 and the outer peripheral end of the end 53 is determined.
 本発明の実施の形態に係る集電体電極シート10の製造方法は、シート状の金属箔9の両面に活物質が塗布された集電体電極シート10を、上下2つで以って一対となる圧縮ロールで構成される圧縮ローラ50を用いて、集電体電極シート10の厚さ方向に圧縮する圧縮工程(図14のS5)を含む。集電体電極シート10は、活物質を含むスラリを塗布した塗布領域11と、スラリを塗布しない非塗布領域12とを含む。集電体電極シート10の塗布領域11は、第1の領域(塗布領域11の塗布開始位置から長手方向Dxに向かって終端16までの厚さt1の領域)と、形成された塗布膜の厚さが第1の領域より薄い第2の領域(尾引き部14)とを含む。
 圧縮工程(図14のS5)において、一対のロール51が、塗布領域11と非塗布領域12が交互に形成された集電体電極シート10を連続して圧縮する際、第1の領域に圧縮ローラ50(ロール51)を接触させて圧縮する(図5および図16)(図6)。
In the method of manufacturing the current collector electrode sheet 10 according to the embodiment of the present invention, the current collector electrode sheet 10 having the active material coated on both sides of the sheet-like metal foil 9 is a pair of upper and lower two. 14 includes a compression step (S5 in FIG. 14) of compressing the current-collector electrode sheet 10 in the thickness direction using the compression roller 50 configured by the compression roll. The collector electrode sheet 10 includes an application region 11 to which a slurry containing an active material is applied, and a non-application region 12 to which no slurry is applied. The application area 11 of the current collector electrode sheet 10 is a first area (an area of a thickness t1 from the application start position of the application area 11 to the end 16 in the longitudinal direction Dx) and the thickness of the formed coating And a second area (tail portion 14) thinner than the first area.
In the compression step (S5 in FIG. 14), when the pair of rolls 51 successively compresses the current collector electrode sheet 10 in which the coated areas 11 and the non-coated areas 12 are alternately formed, the first area is compressed. The roller 50 (roll 51) is brought into contact and compressed (FIGS. 5 and 16) (FIG. 6).
 言い換えれば、圧縮工程(図14のS5)において、圧縮ローラ50は、塗布領域11と非塗布領域12が交互に形成された集電体電極シート10を連続して圧縮する際、第1の領域(塗布領域11)のみを圧縮する。さらに、圧縮工程(図14のS5)において、圧縮ローラ50は、第2の領域(尾引き部14)と非塗布領域12を含む領域は圧縮しない。 In other words, in the compression step (S5 in FIG. 14), when the compression roller 50 successively compresses the current collector electrode sheet 10 in which the coated regions 11 and the non-coated regions 12 are alternately formed, the first region Only the (application area 11) is compressed. Furthermore, in the compression process (S5 in FIG. 14), the compression roller 50 does not compress the area including the second area (tail portion 14) and the non-coated area 12.
 図6に示すように、端部53とロール本体52との高低差の距離hを設定することで、電極シート10の尾引き部14がロール本体52と接触する前に、対向する上下のロール51の端部53同士が当接するため、電極シート10の尾引き部14はロール51のロール本体52と接触せずに、加圧されない。このように、本実施形態によれば、尾引き部14および非塗布領域12において、電極シート10が圧縮されないため、尾引き部14の部分で活物質粒子70が金属箔9に大きく食い込む現象を防ぐことができる。 As shown in FIG. 6, by setting the distance h between the end 53 and the roll body 52, the upper and lower rolls face each other before the tailing portion 14 of the electrode sheet 10 contacts the roll body 52. Since the end portions 53 of 51 are in contact with each other, the tailing portion 14 of the electrode sheet 10 does not contact the roll main body 52 of the roll 51 and is not pressurized. As described above, according to the present embodiment, since the electrode sheet 10 is not compressed in the tailing portion 14 and the non-coated region 12, a phenomenon in which the active material particles 70 bite into the metal foil 9 largely in the tailing portion 14 is described. It can prevent.
 また、上下各ロール51のロール本体52の中央部から端部にしたがってロール51の軸方向に向かって湾曲した凹部を設けることによって、上下のロール51の端部53同士が当接した際の歪があっても、電極シート10がロール本体52によって確実に圧縮されないようにすることができる。 Further, by providing a concave portion which is curved in the axial direction of the roll 51 from the central portion to the end portion of the roll main body 52 of each of the upper and lower rolls 51, distortion when the end portions 53 of the upper and lower rolls 51 abut The electrode sheet 10 can be prevented from being reliably compressed by the roll main body 52 even if the
 なお、圧縮工程では、電極シート10がロール51の間を移動する方向、すなわち長手方向Dxを塗布終端側から塗布始端側になるように設定しても、反対に塗布始端側から塗布終端側になるように設定しても良い。
 また、圧縮工程では、電極シート10の圧縮開始後、対向する一対のロール51の端部53同士は、電極シート10の圧縮が終了するまで当接したままでよい。
In the compression step, even if the electrode sheet 10 moves in the direction between the rolls 51, that is, the longitudinal direction Dx is set from the coating end side to the coating start end, the coating start end to the coating end side It may be set to be
Further, in the compression step, after the compression of the electrode sheet 10 is started, the end portions 53 of the opposing pair of rolls 51 may be kept in contact until the compression of the electrode sheet 10 is completed.
 図7は、本発明の実施形態における加圧成型後の集電体電極シートの断面図である。
 本実施形態の集電体電極シート10は、シート状の金属箔9の長手方向に、両面に活物質層が形成された集電体電極シートであって、活物質層は塗布膜の厚さの厚い第1の塗布領域11と、第1の塗布領域11よりも塗布膜の厚さの薄い第2の塗布領域(尾引き部14)とによって形成され、金属箔9の厚さ方向に圧縮後の第1の塗布領域11における金属箔9の厚さが、第2の塗布領域(尾引き部14)および非塗布領域12における金属箔9の厚さよりも薄い。
FIG. 7 is a cross-sectional view of a current-collector electrode sheet after pressure-molding in the embodiment of the present invention.
The current collector electrode sheet 10 of this embodiment is a current collector electrode sheet in which an active material layer is formed on both sides in the longitudinal direction of the sheet-like metal foil 9, and the active material layer has a thickness of the coating film. Of the first coating area 11 and the second coating area (tail portion 14) having a thinner coating film thickness than the first coating area 11, and are compressed in the thickness direction of the metal foil 9. The thickness of the metal foil 9 in the subsequent first application area 11 is thinner than the thickness of the metal foil 9 in the second application area (tail portion 14) and the non-application area 12.
 尾引き部14には、圧縮工程を経てもロール51のロール本体52が電極シート10に接触しない構成となっており、尾引き部14に線圧はかからないため、活物質粒子70の金属箔に対する食い込みは発生しない。このため、尾引き部14部分の金属箔9に活物質粒子が食い込んで箔の残肉が薄くなることがなく、クラックの発生が起こらない電極シート10を作製することが可能となる。 In the tailing portion 14, the roll main body 52 of the roll 51 is not in contact with the electrode sheet 10 even after the compression process, and no linear pressure is applied to the tailing portion 14. There is no bite. Therefore, the active material particles do not bite into the metal foil 9 at the tailing portion 14 to make the residual thickness of the foil thin, and it is possible to produce the electrode sheet 10 in which the occurrence of a crack does not occur.
 次に、裁断工程(図15のS6)において、加圧成型された電極シート10を、図1に示すように電極シート10の箔の巻取方向Dx、すなわち長手方向裁断予定線17に沿って、電極シート10を、ローラ90を使って巻き取りを行いながら、一方向に(図中、左方向に向かって)引出し、電極シート10の上下両面に設置されたスリット刃(不図示)によって連続的に裁断する。 Next, in the cutting process (S6 in FIG. 15), the pressure-formed electrode sheet 10 is taken along the winding direction Dx of the foil of the electrode sheet 10, that is, the longitudinal direction 17 as shown in FIG. The electrode sheet 10 is drawn out in one direction (in the figure, toward the left) while being wound up using a roller 90, and continuous by slit blades (not shown) installed on both the upper and lower surfaces of the electrode sheet 10. Cut into pieces.
 電極シート10を所定の大きさに切断して複数の電極を得ることができる。電極シート10から電極を切り出す方法は特に限定されないが、例えば、電極シート10の長手方向と平行に切断し(図1の長手方向裁断予定線17に沿って切断)、所定幅の複数の電極を切り出す方法が挙げられる。さらに用途に応じて所定の寸法に打ち抜いて、電池用の電極を得ることができる。
 ここで、電極シート10の切断方法は特に限定されず、例えば金属等からなる刃を用いて電極シート10を切断することができる。
The electrode sheet 10 can be cut into a predetermined size to obtain a plurality of electrodes. The method of cutting out the electrode from the electrode sheet 10 is not particularly limited. For example, the electrode sheet 10 is cut parallel to the longitudinal direction of the electrode sheet 10 (cut along the longitudinal cutting scheduled line 17 in FIG. 1). There is a method of cutting out. Furthermore, it is possible to obtain an electrode for a battery by punching out to a predetermined size according to the application.
Here, the method of cutting the electrode sheet 10 is not particularly limited. For example, the electrode sheet 10 can be cut using a blade made of metal or the like.
 本発明の実施の形態によれば、簡単な構成で、製造コストの増大を招くことなく、集電体電極シート10の圧縮工程における活物質の塗布領域11端でのシートの破断やクラックの発生を防止することができるという効果を奏する。さらに、集電体電極シート10の裁断工程におけるバリの発生を抑制することができるという効果も奏する。 According to the embodiment of the present invention, the sheet is broken or cracked at the end of the application region 11 of the active material in the compression process of the current collector electrode sheet 10 with a simple configuration and without increasing the manufacturing cost. The effect of preventing the Furthermore, the effect that the generation | occurrence | production of the burr | flash in the cutting process of the collector electrode sheet 10 can be suppressed is also show | played.
 図8は、本発明の実施形態における電極シート10を裁断した後の、裁断面80を上面から見た模式図である。 FIG. 8 is a schematic view of the cutting surface 80 seen from the top after cutting the electrode sheet 10 in the embodiment of the present invention.
 図7に示すように、尾引き部14においても活物質粒子の金属箔に対する食い込みはほとんど発生していないので、裁断に掛かる十分な箔の残肉厚さが確保されている。したがって、刃の流れる方向にのみ金属箔9が切断され、刃が当たった衝撃により横方向Dyに金属箔9が破断することはない。よって、図8に示すように、裁断面80には活物質層のバリが発生しない形状となる。 As shown in FIG. 7, little biting of the active material particles into the metal foil also occurs in the tailing portion 14, so a sufficient residual thickness of the foil for cutting is secured. Therefore, the metal foil 9 is cut only in the flowing direction of the blade, and the metal foil 9 is not broken in the transverse direction Dy by the impact of the blade hitting. Therefore, as shown in FIG. 8, the cut surface 80 has a shape in which burrs of the active material layer do not occur.
 一方、図9は、本発明の比較形態となる、各ロール51のロール本体52の両端に端部53が形成されていない圧縮ローラ50の概要を示す模式図である。 On the other hand, FIG. 9 is a schematic view showing an outline of the compression roller 50 in which the end portions 53 are not formed at both ends of the roll main body 52 of each roll 51, which is a comparative embodiment of the present invention.
 また、図10は、本発明の比較形態となる、各ロール51のロール本体52の両端に端部53が形成されていない圧縮ローラ50を用いて、加圧成型した後の集電体電極シート10の断面図である。 Further, FIG. 10 shows a current collector electrode sheet after pressure molding using a compression roller 50 in which the end portions 53 are not formed at both ends of the roll main body 52 of each roll 51, which is a comparative embodiment of the present invention. 10 is a cross-sectional view of FIG.
 図9に示すように、本発明の実施形態と異なり、各ロール51のロール本体52の両端に端部53が形成されていない圧縮ローラ50を用いた場合には、圧縮工程で各ロール51のロール本体52が尾引き部14に接触する。こうした尾引き部14は、図1に示すように箔の流れる方向、すなわち巻取方向Dxと垂直な方向Dyに活物質層が断続的にしか存在していないため、箔の流れる方向、すなわち巻取方向Dxと垂直な方向Dyに活物質層が連続的に存在する活物質の塗布領域11よりも局所的に大きな線圧がかかる。このため、図10に断面図を示すように、尾引き部14では、活物質粒子70が金属箔9に食い込んで金属箔9の残肉量がきわめて薄くなる。 As shown in FIG. 9, unlike the embodiment of the present invention, in the case of using the compression roller 50 in which the end portions 53 are not formed at both ends of the roll main body 52 of each roll 51, The roll main body 52 contacts the tailing portion 14. Since the tailing portion 14 has only an intermittent active material layer in the flowing direction of the foil, that is, the direction Dy perpendicular to the winding direction Dx as shown in FIG. A linear pressure that is locally greater than the application region 11 of the active material in which the active material layer continuously exists in the direction Dy perpendicular to the taking direction Dx is applied. For this reason, as shown in the cross-sectional view of FIG. 10, in the tailing portion 14, the active material particles 70 bite into the metal foil 9, and the remaining thickness of the metal foil 9 becomes extremely thin.
 次に、本発明の実施形態と同様に、電極シート10を金属箔9の長手方向Dxに長手方向裁断予定線17に沿って裁断する。 Next, as in the embodiment of the present invention, the electrode sheet 10 is cut in the longitudinal direction Dx of the metal foil 9 along the planned longitudinal cutting line 17.
 図11は、本発明の比較形態となる、圧縮ロール本体52の両端に端部53が形成されていない圧縮ローラ50を用いて、加圧成型した集電体電極シート10を裁断した後の、裁断面80を上面から見た模式図である。 FIG. 11 is a comparative embodiment of the present invention, in which the pressure-collected current-collector electrode sheet 10 is cut using the compression roller 50 in which the end portions 53 are not formed at both ends of the compression roll main body 52 It is the model which looked at the cutting plane 80 from the upper surface.
 上述したように、尾引き部14では、箔の残肉厚さがスラリ塗布領域11やスラリ非塗布領域12に比べ薄くなっており、刃が当たった際の衝撃で、刃の流れる方向以外に破断が生じてしまう。このため、図11に断面図を示すように、この破断の発生した箇所の尾引き部14から脱落したスラリ合材層がバリ19となってしまう。 As described above, in the tailing portion 14, the remaining thickness of the foil is thinner than the slurry coated area 11 and the non-slurry coated area 12, and the impact when the blade hits causes the blade to flow other than the flowing direction. It will break. For this reason, as shown in a cross-sectional view in FIG. 11, the slurry mixture layer dropped from the tailing portion 14 in the portion where the breakage occurs becomes the burrs 19.
 このような過程で発生したバリ19を含む電極を用いて、電池を組み立てた場合、組立工程中や、電池完成後にバリが脱落し、対向する異電位の電極に短絡することになり、電池の不良率が高まる。しかし、本実施形態では、以上述べたように、このようなバリ19の発生することがないため、電池の不良率は低く抑えられる。 When a battery is assembled using an electrode including burrs 19 generated in such a process, the burrs fall off during the assembly process or after the battery is completed, and a short circuit is caused to electrodes of different potentials. Defect rate increases. However, in the present embodiment, as described above, since such burrs 19 do not occur, the defective rate of the battery can be suppressed to a low level.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
Although the embodiments of the present invention have been described above with reference to the drawings, these are merely examples of the present invention, and various configurations other than the above can also be adopted.
Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
 たとえば、上記実施形態の製造方法により作製された電極シート10を用いて電池を製造することができる。
 本発明の電極の製造方法は、金属箔等の厚さの薄い集電体上に活物質層を形成し、乾燥後に圧縮、裁断する工程(図14のS5、S6)を経て電極を作製する場合に生じる集電体のバリの発生を抑制した電池等電気化学デバイスの組み立てを実施することができ、特性が良好な電池等電気化学デバイスを提供することが可能となる。
For example, a battery can be manufactured using the electrode sheet 10 manufactured by the manufacturing method of the said embodiment.
The method for producing an electrode of the present invention forms an active material layer on a thin current collector such as a metal foil, and after drying, compresses and cuts it (S5 and S6 in FIG. 14) to produce an electrode. It is possible to carry out the assembly of an electrochemical device such as a battery in which the occurrence of burrs of the current collector which may occur is suppressed, and it is possible to provide an electrochemical device such as a battery having good characteristics.
 図15は、本発明の実施の形態に係る電池150の構成の一例を示す概略図である。
 本実施形態に係る電池は、上記実施形態で説明した電極シート10から作製される電極を備える。以下、本実施形態に係る電池について、電池がリチウムイオン電池の積層型電池150である場合を代表例として説明する。
 積層型電池150は、正極121と負極126とが、セパレータ120を介して交互に複数層積層された電池要素を備えており、これらの電池要素は電解液(図示せず)とともに可撓性フィルム140からなる容器に収納されている。電池要素には正極端子131および負極端子136が電気的に接続されており、正極端子131および負極端子136の一部または全部が可撓性フィルム140の外部に引き出されている構成になっている。
FIG. 15 is a schematic view showing an example of the configuration of the battery 150 according to the embodiment of the present invention.
The battery which concerns on this embodiment is equipped with the electrode produced from the electrode sheet 10 demonstrated by the said embodiment. Hereinafter, as a battery according to the present embodiment, a case where the battery is a laminated battery 150 of a lithium ion battery will be described as a representative example.
The stacked battery 150 includes battery elements in which a positive electrode 121 and a negative electrode 126 are alternately stacked in a plurality of layers with the separator 120 in between, and these battery elements are a flexible film together with an electrolyte (not shown). It is housed in a container consisting of 140. The positive electrode terminal 131 and the negative electrode terminal 136 are electrically connected to the battery element, and a part or all of the positive electrode terminal 131 and the negative electrode terminal 136 are drawn out of the flexible film 140. .
 正極121には正極集電体層123の表裏に、正極活物質の塗布部(正極活物質層122)と未塗布部がそれぞれ設けられており、負極126には負極集電体層128の表裏に、負極活物質の塗布部(負極活物質層127)と未塗布部が設けられている。 The coated portion (positive electrode active material layer 122) and uncoated portion of the positive electrode active material are provided on the front and back of the positive electrode collector layer 123 on the positive electrode 121, and the negative electrode 126 is provided on the front and back of the negative electrode collector layer 128. In addition, the coated portion of the negative electrode active material (negative electrode active material layer 127) and the uncoated portion are provided.
 正極集電体層123における正極活物質の未塗布部を正極端子131と接続するための正極タブ130とし、負極集電体層128における負極活物質の未塗布部を負極端子136と接続するための負極タブ125とする。
 正極タブ130同士は正極端子131上にまとめられ、正極端子131とともに超音波溶接等で互いに接続され、負極タブ125同士は負極端子136上にまとめられ、負極端子136とともに超音波溶接等で互いに接続される。そのうえで、正極端子131の一端は可撓性フィルム140の外部に引き出され、負極端子136の一端も可撓性フィルム140の外部に引き出されている。
The uncoated portion of the positive electrode active material in the positive electrode current collector layer 123 is used as the positive electrode tab 130 for connecting to the positive electrode terminal 131, and the uncoated portion of the negative electrode active material in the negative electrode current collector layer 128 is connected to the negative electrode terminal 136. And the negative electrode tab 125 of FIG.
The positive electrode tabs 130 are assembled on the positive electrode terminal 131, and are connected together by ultrasonic welding etc. together with the positive electrode terminal 131, and the negative electrode tabs 125 are assembled together on the negative electrode terminal 136, and are connected together by ultrasonic welding etc. together with the negative electrode terminal 136. Be done. In addition, one end of the positive electrode terminal 131 is drawn out of the flexible film 140, and one end of the negative electrode terminal 136 is also drawn out of the flexible film 140.
 正極活物質の塗布部(塗布領域11)(正極活物質層122)と未塗布部(非塗布領域12)の境界部124には、必要に応じて絶縁部材を形成することができ、当該絶縁部材は境界部124だけでなく、正極タブ130と正極活物質の双方の境界部付近に形成することができる。 An insulating member can be formed as necessary at the boundary 124 between the coated part (coated area 11) (positive electrode active material layer 122) of the positive electrode active material and the non-coated part (non-coated area 12). The member can be formed not only at the boundary 124 but also near the boundary between the positive electrode tab 130 and the positive electrode active material.
 負極活物質の塗布部(負極活物質層127)と未塗布部の境界部129にも同様に、必要に応じて絶縁部材を形成することができ、負極タブ125と負極活物質の双方の境界部付近に形成することができる。 Similarly, an insulating member can be formed on the boundary portion 129 between the coated portion (negative electrode active material layer 127) and the non-coated portion of the negative electrode active material as required, and the boundary between both the negative electrode tab 125 and the negative electrode active material It can be formed near the part.
 通常、負極活物質層127の外形寸法は正極活物質層122の外形寸法よりも大きく、セパレータ120の外形寸法よりも小さい。 Generally, the outer dimensions of the negative electrode active material layer 127 are larger than the outer dimensions of the positive electrode active material layer 122 and smaller than the outer dimensions of the separator 120.
(リチウム塩を含有する非水電解液)
 本実施形態に用いるリチウム塩を含有する非水電解液は、電極活物質の種類やリチウムイオン電池の用途等に応じて公知のものの中から適宜選択することができる。
(Non-aqueous electrolyte containing lithium salt)
The non-aqueous electrolytic solution containing a lithium salt used in the present embodiment can be appropriately selected from known ones depending on the type of electrode active material, the use of the lithium ion battery, and the like.
 具体的なリチウム塩の例としては、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等を挙げることができる。 Specific examples of the lithium salt, for example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB Examples include (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, and lower fatty acid carboxylate lithium.
 リチウム塩を溶解する溶媒としては、電解質を溶解させる液体として通常用いられるものであれば特に限定されるものではなく、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC),ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素溶媒;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらは、一種単独で使用してもよいし、二種以上を組み合わせて使用してもよい。 The solvent for dissolving the lithium salt is not particularly limited as long as it is generally used as a liquid for dissolving the electrolyte, and ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), carbonates such as vinylene carbonate (VC); lactones such as γ-butyrolactone and γ-valerolactone; trimethoxymethane Ethers such as 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, etc. Sulfoxides such as dimethylsulfoxide, etc. 1,3-Dioxolane, 4-methyl-1,3-dioxola Nitrogenous solvents such as acetonitrile, nitromethane, formamide and dimethylformamide; methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate and the like; organic acid esters such as phosphoric acid triester And diglymes; triglymes; sulfolanes such as sulfolane and methyl sulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; and sultones such as 1,3-propane sultone, 1,4-butane sultone and naphtha sultone. . These may be used singly or in combination of two or more.
(容器)
 本実施形態において容器には公知の部材を用いることができ、電池の軽量化の観点からは可撓性フィルム140を用いることが好ましい。可撓性フィルム140は、基材となる金属層の表裏面に樹脂層が設けられたものを用いることができる。金属層には電解液の漏出や外部からの水分の侵入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼等を用いることができる。金属層の少なくとも一方の面には変性ポリオレフィン等の熱融着性の樹脂層が設けられ、可撓性フィルム140の熱融着性の樹脂層同士を電池要素を介して対向させ、電池要素を収納する部分の周囲を熱融着することで外装体を形成する。熱融着性の樹脂層が形成された面と反対側の面となる外装体表面にはナイロンフィルム、ポリエステルフィルム等の樹脂層を設けることができる。
(container)
A well-known member can be used for a container in this embodiment, and it is preferable to use the flexible film 140 from a viewpoint of weight reduction of a battery. The flexible film 140 can use what provided the resin layer in front and back of the metal layer used as a base material. The metal layer can be selected to have a barrier property to prevent leakage of the electrolytic solution and entry of moisture from the outside, and aluminum, stainless steel, etc. can be used. A heat-sealable resin layer such as modified polyolefin is provided on at least one surface of the metal layer, and the heat-sealable resin layers of the flexible film 140 are opposed to each other through the battery element to make the battery element The sheath is formed by heat-sealing the periphery of the part to be stored. A resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body opposite to the surface on which the heat-fusible resin layer is formed.
(端子)
 本実施形態において、正極端子131にはアルミニウムやアルミニウム合金で構成されたもの、負極端子136には銅や銅合金あるいはそれらにニッケルメッキを施したもの等を用いることができる。それぞれの端子は容器の外部に引き出されるが、それぞれの端子における外装体の周囲を熱溶着する部分に位置する箇所には熱融着性の樹脂をあらかじめ設けることができる。
(Terminal)
In the present embodiment, the positive electrode terminal 131 can be made of aluminum or an aluminum alloy, and the negative electrode terminal 136 can be made of copper or a copper alloy, or those plated with nickel. Each terminal is drawn to the outside of the container, but a heat fusible resin can be provided in advance in a portion located at a portion of the respective terminal where the periphery of the package is heat welded.
(絶縁部材)
 活物質の塗布部と未塗布部の境界部124、129に絶縁部材を形成する場合には、ポリイミド、ガラス繊維、ポリエステル、ポリプロピレンあるいはこれらを構成中に含むものを用いることができる。これらの部材に熱を加えて境界部124、129に溶着させるか、または、ゲル状の樹脂を境界部124、129に塗布、乾燥させることで絶縁部材を形成することができる。
(Insulation member)
In the case of forming the insulating member at the boundary portions 124 and 129 of the coated portion and the non-coated portion of the active material, it is possible to use polyimide, glass fiber, polyester, polypropylene or those containing these in the structure. Heat can be applied to these members to weld them to the boundaries 124, 129, or a gel-like resin can be applied to the boundaries 124, 129 and dried to form an insulating member.
(セパレータ)
 本実施形態に係るセパレータ120は、耐熱性樹脂を主成分として含む樹脂層を備えることが好ましい。
 ここで、上記樹脂層は主成分である耐熱性樹脂により形成されている。ここで、「主成分」とは、樹脂層中における割合が50質量%以上であることを言い、好ましくは70質量%以上であり、さらに好ましくは90質量%以上であり、100質量%であってもよいことを意味する。
 本実施形態に係るセパレータ120を構成する樹脂層は、単層であっても、二種以上の層であってもよい。
(Separator)
The separator 120 according to the present embodiment preferably includes a resin layer containing a heat resistant resin as a main component.
Here, the resin layer is formed of a heat resistant resin which is a main component. Here, the "main component" means that the proportion in the resin layer is 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, and 100% by mass. It means that you may.
The resin layer constituting the separator 120 according to the present embodiment may be a single layer or two or more layers.
 上記樹脂層を形成する耐熱性樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ-m-フェニレンテレフタレート、ポリ-p-フェニレンイソフタレート、ポリカーボネート、ポリエステルカーボネート、脂肪族ポリアミド、全芳香族ポリアミド、半芳香族ポリアミド、全芳香族ポリエステル、ポリフェニレンサルファイド、ポリパラフェニレンベンゾビスオキサゾール、ポリイミド、ポリアリレート、ポリエーテルイミド、ポリアミドイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホン、フッ素系樹脂、ポリエーテルニトリル、変性ポリフェニレンエーテル等から選択される一種または二種以上を挙げることができる。 Examples of the heat resistant resin forming the above resin layer include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, polycarbonate, polyester carbonate, aliphatic polyamide, all Aromatic polyamide, semiaromatic polyamide, wholly aromatic polyester, polyphenylene sulfide, polyparaphenylene benzobisoxazole, polyimide, polyarylate, polyetherimide, polyamideimide, polyacetal, polyetheretherketone, polysulfone, polyethersulfone, One or more selected from fluorine resins, polyether nitriles, modified polyphenylene ethers and the like can be mentioned.
 これらの中でも、耐熱性や機械的強度、伸縮性、価格等のバランスに優れる観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、脂肪族ポリアミド、全芳香族ポリアミド、半芳香族ポリアミドおよび全芳香族ポリエステルから選択される一種または二種以上が好ましく、ポリエチレンテレフタレート、ポリブチレンテレフタレート、脂肪族ポリアミド、全芳香族ポリアミドおよび半芳香族ポリアミドから選択される一種または二種以上がより好ましく、ポリエチレンテレフタレートおよび全芳香族ポリアミドから選択される一種または二種以上がさらに好ましく、ポリエチレンテレフタレートがより好ましい。 Among them, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, aliphatic polyamide, wholly aromatic polyamide, semiaromatic polyamide and all aromatic from the viewpoint of excellent balance of heat resistance, mechanical strength, stretchability, price and the like. Family of polyesters, one or more selected from polyethylene terephthalates, polybutylene terephthalates, aliphatic polyamides, wholly aromatic polyamides and semiaromatic polyamides are more preferred, and polyethylene terephthalates are preferred. One or more selected from wholly aromatic polyamides are more preferable, and polyethylene terephthalate is more preferable.
 本実施形態に係るセパレータ120を構成する樹脂層は多孔性樹脂層であることが好ましい。これにより、リチウムイオン電池に異常電流が発生し、電池の温度が上昇した場合等に多孔性樹脂層の微細孔が閉塞して電流の流れを遮断することができ、電池の熱暴走を回避することができる。 It is preferable that the resin layer which comprises the separator 120 which concerns on this embodiment is a porous resin layer. Thereby, when an abnormal current occurs in the lithium ion battery and the temperature of the battery rises, etc., the fine pores of the porous resin layer can be blocked to block the flow of the current, thereby avoiding the thermal runaway of the battery. be able to.
 上記多孔性樹脂層の空孔率は、機械的強度およびリチウムイオン伝導性のバランスの観点から、20%以上80%以下が好ましく、30%以上70%以下がより好ましく、40%以上60%以下が特に好ましい。
 空孔率は、下記式から求めることができる。
 ε={1-Ws/(ds・t)}×100
 ここで、ε:空孔率(%)、Ws:目付(g/m)、ds:真密度(g/cm)、t:膜厚(μm)である。
From the viewpoint of the balance between mechanical strength and lithium ion conductivity, the porosity of the porous resin layer is preferably 20% to 80%, more preferably 30% to 70%, and still more preferably 40% to 60%. Is particularly preferred.
The porosity can be determined from the following equation.
ε = {1-Ws / (ds · t)} × 100
Here, ε: porosity (%), Ws: basis weight (g / m 2 ), ds: true density (g / cm 3 ), t: film thickness (μm).
 本実施形態に係るセパレータ120の平面形状は、特に限定されず、電極や集電体の形状に合わせて適宜選択することが可能であり、例えば、矩形とすることができる。 The planar shape of the separator 120 according to the present embodiment is not particularly limited, and can be appropriately selected according to the shapes of the electrode and the current collector, and can be, for example, rectangular.
 本実施形態に係るセパレータ120の厚みは、機械的強度およびリチウムイオン伝導性のバランスの観点から、好ましくは5μm以上50μm以下である。 The thickness of the separator 120 according to the present embodiment is preferably 5 μm or more and 50 μm or less from the viewpoint of the balance between mechanical strength and lithium ion conductivity.
 以上、説明したように、本実施形態によれば、上記実施形態の製造方法により作製された電極シート10を用いて電池を製造することができる。
 本発明の電極シート10によれば、金属箔等の厚さの薄い集電体上に活物質層を形成し、乾燥後に圧縮、裁断する工程(図14のS5、S6)を経て電極を作製する場合に生じる集電体のバリの発生を抑制、もしくはバリの発生した電極シートの使用を未然に防止した電池等の電気化学デバイスの組み立てを実施することができ、特性が良好な電池等の電気化学デバイスを提供することが可能となる。
As described above, according to this embodiment, a battery can be manufactured using the electrode sheet 10 manufactured by the manufacturing method of the above embodiment.
According to the electrode sheet 10 of the present invention, an active material layer is formed on a thin current collector such as a metal foil, and after drying, it is compressed and cut (S5 and S6 in FIG. 14) to produce an electrode. Can be assembled for electrochemical devices such as batteries that suppress the generation of burrs on the current collector that occur in the case of using the electrode sheet or that prevent the use of electrode sheets that generate burrs in advance. It becomes possible to provide an electrochemical device.
 以下、具体的な実施例について、さらに詳しく説明する。 Hereinafter, specific examples will be described in more detail.
(実施例1)
 正極活物質として、粒度分布測定値から求めた50%累積径(D50)が8μm、同じく90%累積径(D90)が12μmである、Li(Ni0.6Co0.2Mn0.2)Oを質量94.8%、導電補助材として黒鉛材料を質量2.5%、バインダーとしてポリフッ化ビニリデンを質量2.7%とを混合したものに、N-メチルピロリドンを加えてさらに混合して正極スラリを作製した。
Example 1
As a positive electrode active material, 50% cumulative diameter determined from the particle size distribution measurement value (D50) is 8 [mu] m, also 90% cumulative diameter (D90) is 12μm, Li (Ni 0.6 Co 0.2 Mn 0.2) N-methyl pyrrolidone is added to a mixture of 94.8% by weight of O 2 , 2.5% by weight of a graphite material as a conductive aid, and 2.7% by weight of polyvinylidene fluoride as a binder and further mixed. The positive electrode slurry was prepared.
 前記スラリを、ダイヘッドから吐出することで、バックアップローラ上を移動する厚さ12μmの帯状アルミ箔集電箔面上に、塗布領域11と非塗布領域12が箔の巻取方向に交互に形成されるように間欠的に塗布し、引き続き設置された乾燥炉によって、アルミ箔に塗布された前記活物質等含むスラリを、乾燥固化させた。 By discharging the slurry from the die head, the coated area 11 and the non-coated area 12 are alternately formed in the winding direction of the foil on the 12 μm thick aluminum foil current collector foil surface moving on the backup roller. The slurry containing the active material and the like applied to the aluminum foil was dried and solidified by a drying furnace which was intermittently applied.
 次に、圧縮装置40は、上下2個で一対を成すロール51を以下の通り調整して設置した。各ロール51は、回転軸方向の両端の半径が250mmの円形の両端の端面と、回転軸方向の長さ700mmの側面(曲面)を有する円柱形状から、研磨により凹部を形成して端部53と湾曲した樽型形状のロール本体52を作製した。 Next, the compression apparatus 40 adjusted and installed the roll 51 which makes a pair with two upper and lower sides as follows. Each roll 51 has a concave portion formed by polishing from a cylindrical shape having circular end surfaces with a radius of 250 mm at both ends in the rotation axis direction and side surfaces (curved surfaces) with a length of 700 mm in the rotation axis direction. Thus, a barrel-shaped roll main body 52 was produced.
 各ロール51の側面の回転軸A方向の長さL2(図5)は、電極シート10の短手方向Dyの長さL1(図5)より長い。各ロール51の側面は、研磨されない非研磨領域と、研磨される研磨領域とを含む。非研磨領域は、側面の表面において、両側の端面側から回転軸A方向の中央に向かって45mmの幅にわたる範囲に含まれ、端部53に相当する。研磨領域において、各ロール51の側面(ロール本体52に相当)が研磨される。 The length L2 (FIG. 5) of the side surface of each roll 51 in the direction of the rotation axis A is longer than the length L1 (FIG. 5) of the electrode sheet 10 in the short side direction Dy. The side of each roll 51 includes a non-polished area that is not polished and a polished area that is polished. The non-abrasive area is included in the surface of the side surface in a range extending 45 mm from the end face side on both sides toward the center in the rotation axis A direction, and corresponds to the end 53. In the polishing area, the side surface (corresponding to the roll main body 52) of each roll 51 is polished.
 以下、研磨量は、側面から回転軸Aに向かった深さで示すものとする。研磨領域における研磨量は、ロール51の側面の非研磨領域の端から回転軸A方向の中央に向かった距離に応じて変わる。研磨量は、ロール51の側面の非研磨領域の端から回転軸方向の中央に向かって単調的に少なくなる。つまり、ロール51の非研磨領域の端(端部53)近辺ほど、研磨量が多い。 Hereinafter, the polishing amount is indicated by the depth toward the rotation axis A from the side surface. The amount of polishing in the polishing region changes in accordance with the distance from the end of the non-polishing region on the side surface of the roll 51 toward the center in the rotation axis A direction. The polishing amount monotonously decreases from the end of the non-polishing region on the side surface of the roll 51 toward the center in the rotation axis direction. That is, the amount of polishing is larger near the end (end portion 53) of the non-polishing region of the roll 51.
 一例として、ロール51の回転軸A方向の中央部は、深さ20.0μmの研磨量であり、ロール51の側面の非研磨領域の端から回転軸A方向に内側各4mmの幅にわたる範囲では、前記ロール51の中央部よりも深さが9.6μm深い。 As an example, the central portion in the rotation axis A direction of the roll 51 has a polishing amount of 20.0 μm in depth, and in the range extending from the end of the non-polished area on the side of the roll 51 inward in the rotational axis A direction 4 mm each The depth is 9.6 μm deeper than the central portion of the roll 51.
 圧縮装置40において、圧縮ローラ50の上下一対のロール51の端部53を当接させた時の中央部の間の距離d3が130μmになるように調整した。そして、圧縮工程において、圧縮装置40を用いて、間欠的にスラリが塗布された、短手方向の幅が595mmの電極シート10が、前記のように調整された対向するロール51の間を通し、巻取張力が230Nになるよう設置し、バックアップローラ90上を回転速度60m/minで移動させることで電極シート10の加圧圧縮を行った。 In the compression device 40, the distance d3 between the center portions when the end portions 53 of the pair of upper and lower rolls 51 of the compression roller 50 abut is adjusted to be 130 μm. Then, in the compression step, the electrode sheet 10 having a width of 595 mm in the width direction, to which the slurry is intermittently applied using the compression device 40, passes between the opposing rolls 51 adjusted as described above. The electrode sheet 10 was pressed and compressed by moving it on the backup roller 90 at a rotational speed of 60 m / min.
 このとき、圧縮圧は活物質スラリの塗工域(塗布領域11)上の線圧が1.8t/cmになるように調整しており、上下圧縮ロール51の圧縮圧は平均19MPaとなった。得られた電極シート10の一部を抽出し、片面活物質層(塗布領域11)の厚さは62.6μmであり、シート全体の厚さは137.2μmであった。 At this time, the compression pressure was adjusted so that the linear pressure on the application area (application area 11) of the active material slurry was 1.8 t / cm, and the compression pressure of the upper and lower compression rolls 51 averaged 19 MPa. . A part of the obtained electrode sheet 10 was extracted, the thickness of the single-sided active material layer (application region 11) was 62.6 μm, and the thickness of the entire sheet was 137.2 μm.
 なお、尾引き部14の最大厚さは、活物質粒子の最大粒径とみなせば良く、このとき用いた活物質粒子をマイクロトラック法で計測した最大粒子径は24μmであった。ここから、尾引き部14における電極シート10の最大厚さは60μmと求められる。 The maximum thickness of the tailing portion 14 may be regarded as the maximum particle diameter of the active material particles, and the maximum particle diameter obtained by measuring the active material particles used at this time by the microtrack method was 24 μm. From this, the maximum thickness of the electrode sheet 10 in the tailing portion 14 is determined to be 60 μm.
 一方、上記の条件で電極シート10を加圧圧縮すると、ロールベンディング変位が対となる圧縮ロール1つ当たり10μmとなるため、上下の圧縮ロール51の各々の両端の端部53が当接するとき、一対のロール51の中央部の間の距離d3は60μmとなる。したがって、電極シート10の尾引き部14の領域(第2の領域)が圧縮ロール51の間を通過しても、尾引き部14の領域では電極シート10と上下の圧縮ロール51とは接触しない構成になっている。 On the other hand, when the electrode sheet 10 is pressure-compressed under the above conditions, the roll-bending displacement becomes 10 μm per pair of compression rolls, so when the end portions 53 of both ends of the upper and lower compression rolls 51 abut, The distance d3 between the central portions of the pair of rolls 51 is 60 μm. Therefore, even if the region (second region) of the tailing portion 14 of the electrode sheet 10 passes between the compression rolls 51, the electrode sheet 10 and the upper and lower compression rolls 51 do not contact in the region of the tailing portion 14 It is configured.
 引き続き、裁断工程(図14のS6)において、上部にシャー刃、下部にギャング刃を備えた裁断装置50を用いて、圧縮工程(図14のS5)で加圧圧縮された電極シート10を、前記刃の間を通し、巻取張力が一定になるよう設置し、バックアップローラ90上を一定速度で移動させることで裁断を行った。得られた裁断シートの一部を抽出し、裁断工程(図14のS6)後の尾引き部14からのバリの有無を確認した。 Subsequently, in the cutting step (S6 in FIG. 14), the electrode sheet 10 compressed in the compression step (S5 in FIG. 14) is cut using the cutting device 50 including the shear blade at the upper portion and the gang blade at the lower portion. The blade was inserted between the blades, installed so that the take-up tension was constant, and was cut by moving on the backup roller 90 at a constant speed. A part of the obtained cut sheet was extracted, and the presence or absence of a burr from the tailing portion 14 after the cutting step (S6 in FIG. 14) was confirmed.
(比較例1)
 前記実施例1に対し、前記各ロール51の両端部53に非研磨領域を残さずに、ロール51の中央部に向かって単調的に研磨量が少なくなるように研磨した圧縮ローラ50を用いた以外は、実施例1と同様の方法を用いて電極シート10を作製し、裁断後のバリの有無を確認した。
(Comparative example 1)
In contrast to the first embodiment, a compression roller 50 is used which has been polished so that the amount of polishing monotonously decreases toward the central portion of the roll 51 without leaving non-polished regions at both end portions 53 of the respective rolls 51. An electrode sheet 10 was produced using the same method as in Example 1 except for the above, and the presence or absence of burrs after cutting was confirmed.
 実施例1、および比較例1について、尾引き部14の圧縮後のクラックの発生有無と、裁断後のバリの発生有無とを、それぞれ10検体の観察を行った結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 10検体観察し、バリ発生が3検体以下の場合を発生量小、4検体以上の場合を発生量大とした。
In Example 1 and Comparative Example 1, ten specimens were observed for each of the presence or absence of cracks after compression of the tail portion 14 and the occurrence of burrs after cutting, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Ten samples were observed, and the case where the burr generation was 3 or less was regarded as a small generation amount, and the case where the burr generation was 4 or more samples as a large generation amount.
 実施例1の製造方法で作製した電極シート10では、クラックおよびバリの発生がそれぞれ観察されなかったのに対し、比較例1の製造方法で作製した電極シートでは、クラックおよびバリの発生がそれぞれ観察された。 In the electrode sheet 10 produced by the production method of Example 1, the occurrence of cracks and burrs was not observed, while in the electrode sheet produced by the production method of Comparative Example 1, the occurrence of cracks and burrs was observed. It was done.
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments and the examples, the present invention is not limited to the above embodiments and the examples. The configurations and details of the present invention can be modified in various ways that can be understood by those skilled in the art within the scope of the present invention.
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下に限られない。
1. シート状の金属箔の長手方向に、両面に活物質層が形成された集電体電極シートであって、前記活物質層は塗布膜の厚さの厚い第1の塗布領域と、前記第1の塗布領域よりも塗布膜の厚さの薄い第2の塗布領域とによって形成され、前記金属箔の厚さ方向に圧縮後の前記第1の塗布領域における前記金属箔の厚さが、前記第2の塗布領域および非塗布領域における前記金属箔の厚さよりも薄い集電体電極シート。
2. 1.に記載の集電体電極シートにおいて、
 前記集電体電極シートは、前記金属箔の前記長手方向に、前記両面に前記活物質層が間欠的に形成され、前記第2の塗布領域は、前記金属箔の前記長手方向に間欠的に形成された前記塗布領域の長手方向終端部に形成されたものである、集電体電極シート。
3. シート状の金属箔の両面に活物質が塗布された集電体電極シートを、2つの圧縮ロールを一対として構成される圧縮ローラを用いて、前記集電体電極シートの厚さ方向に圧縮する圧縮工程を含み、
 前記集電体電極シートは、前記活物質を含むスラリを塗布した塗布領域と、前記スラリを塗布しない非塗布領域とを含み、
 前記集電体電極シートの前記塗布領域は、第1の領域と、形成された塗布膜の厚さが前記第1の領域より薄い第2の領域とを含み、
 前記圧縮工程において、前記一対の圧縮ロールが、前記塗布領域と前記非塗布領域が交互に形成された前記集電体電極シートを連続して圧縮する際、前記第1の領域に前記圧縮ロールを接触させて圧縮する、集電体電極シートの製造方法。
4. 3.に記載の集電体電極シートの製造方法において、
 前記圧縮工程において、前記一対の圧縮ロールが、前記塗布領域と前記非塗布領域が交互に形成された前記集電体電極シートを連続して圧縮する際、前記第2の領域および前記非塗布領域を含む領域は圧縮しない、集電体電極シートの製造方法。
5. 3.又は4.に記載の集電体電極シートの製造方法において、
 前記集電体電極シートは、前記金属箔の両面に前記活物質を含む領域が前記金属箔の長手方向に間欠的に形成される、集電体電極シートの製造方法。
6. 3.乃至5.いずれか一つに記載の集電体電極シートの製造方法において、
 前記集電体電極シートは、前記スラリを前記金属箔の両面に間欠的に塗布して、前記塗布領域と、前記非塗布領域の境界に、前記第2の領域を形成する、集電体電極シートの製造方法。
7. シート状の金属箔の両面に活物質が塗布された集電体電極シートを、その厚さ方向に連続的に圧縮する一対の圧縮ロールを有し、
 各前記圧縮ロールは、その回転軸が、前記集電体電極シートの短手方向と平行になるように設置され、
 各前記圧縮ロールは、前記回転軸方向の両端の円形の端面を有する端部と、前記両端の前記端部の間に延在する曲面状の側面とを有し、
 前記圧縮ロールの前記側面は、前記圧縮ロールの前記両端各々の周辺の第1の範囲と、前記圧縮ロールの前記回転軸方向の中央部分の第2の範囲とを含み、
 対向する前記一対の圧縮ロールの前記第1の範囲における前記側面同士の距離より、対向する前記一対の圧縮ロールの前記第2の範囲における前記側面同士の距離の方が短い、圧縮ローラ。
8. 7.に記載の圧縮ローラにおいて、
 前記集電体電極シートの前記活物質を塗布した塗布領域は、第1の領域と、形成された塗布膜の厚さが前記第1の領域より薄い第2の領域とを含み、
 対向する前記一対の圧縮ロールの前記端部同士が当接した時の、前記一対の圧縮ロールの前記第1の範囲における前記側面同士の距離は、前記集電体電極シートの前記第1の領域における厚さの値よりも小さく、かつ、前記集電体電極シートの前記第2の領域の厚さの値よりも大きい、圧縮ローラ。
9. 7.又は8.に記載の圧縮ローラにおいて、
 対向する前記一対の圧縮ロールの前記第2の範囲において、前記回転軸方向の前記両端側から中央に向かって連続的に前記側面同士の距離が短い、圧縮ローラ。
10. 3.乃至6.のいずれか一つに記載の集電体電極シートの製造方法において、
 前記圧縮工程において、各前記圧縮ロールは、その回転軸が、前記集電体電極シートの短手方向と平行になるように設置され、
 各前記圧縮ロールは、前記回転軸方向の両端の円形の端面を有する端部と、前記両端の前記端部の間に延在する曲面状の側面とを有し、
 前記圧縮ロールの前記側面は、前記圧縮ロールの前記両端各々の周辺の第1の範囲と、前記圧縮ロールの前記回転軸方向の中央部分の第2の範囲とを含み、
 対向する前記一対の圧縮ロールの前記第1の範囲における前記側面同士の距離が、対向する前記一対の圧縮ロールの前記第2の範囲における前記側面同士の距離よりも短い、集電体電極シートの製造方法。
11. 3.乃至6.および10.のいずれか一つに記載の集電体電極シートの製造方法において、
 前記集電体電極シートの前記スラリを塗布した塗布領域は、第1の領域と、形成した塗布膜の厚さが前記第1の領域より薄い第2の領域とを含み、
 各前記圧縮ロールは、前記回転軸方向の両端の円形の端面を有する端部と、前記両端の前記端部の間に延在する曲面状の側面とを有し、
 前記圧縮ロールの前記側面は、前記圧縮ロールの前記両端各々の周辺の第1の範囲と、前記圧縮ロールの前記回転軸方向の中央部分の第2の範囲とを含み、
 前記圧縮工程において、対向する前記一対の圧縮ロールの前記端部同士が当接した時の、前記一対の圧縮ロールの前記第1の範囲における対向する前記圧縮ロールの前記側面同士の距離は、前記集電体電極シートの前記第1の領域の厚さの値よりも小さく、かつ、前記集電体電極シートの前記第2の領域の厚さの値よりも大きい、集電体電極シートの製造方法。
12. 3.乃至6.、10.および11.のいずれか一つに記載の集電体電極シートの製造方法において、
 各前記圧縮ロールは、前記回転軸方向の両端の円形の端面を有する端部と、前記両端の前記端部の間に延在する曲面状の側面とを有し、
 前記圧縮ロールの前記側面は、前記圧縮ロールの前記両端各々の周辺の第1の範囲と、前記圧縮ロールの前記回転軸方向の中央部分の第2の範囲とを含み、
 前記圧縮工程において、対向する前記一対の圧縮ロールは、前記第2の範囲において、前記第1の範囲との境界から前記圧縮ロールの回転軸方向の中央部に向かって連続的に前記圧縮ロール同士の距離が短い、集電体電極シートの製造方法。
13 3.~6.、および10.乃至12.のいずれか一つに記載の集電体電極シートの製造方法を用いて製造された集電体電極シート。
14. 13.に記載の集電体電極シートを用いて製造された電池。
Some or all of the above embodiments may be described as in the following appendices, but is not limited to the following.
1. A current collector electrode sheet in which an active material layer is formed on both sides in the longitudinal direction of a sheet-like metal foil, wherein the active material layer is a first coated region having a thick coating film, and the first coated region. The thickness of the metal foil in the first application area after compression in the thickness direction of the metal foil is formed by the second application area having a thickness smaller than that of the application area; A collector electrode sheet thinner than the thickness of the metal foil in the coated area and the non-coated area of 2.
2. 1. In the current collector electrode sheet described in
In the current collector electrode sheet, the active material layer is intermittently formed on the both surfaces in the longitudinal direction of the metal foil, and the second application region is intermittently in the longitudinal direction of the metal foil. A current collector electrode sheet, which is formed at the longitudinal direction end of the formed application region.
3. The current collector electrode sheet in which the active material is coated on both sides of the sheet metal foil is compressed in the thickness direction of the current collector electrode sheet using a compression roller constituted by a pair of two compression rolls. Including a compression step,
The current collector electrode sheet includes a coated region coated with a slurry containing the active material, and a non-coated region not coated with the slurry.
The application region of the current collector electrode sheet includes a first region, and a second region in which the thickness of the applied film formed is thinner than the first region.
In the compression step, when the pair of compression rolls continuously compress the current collector electrode sheet in which the coated area and the non-coated area are alternately formed, the compression roll is placed in the first area. The manufacturing method of a collector electrode sheet which makes it contact and compresses.
4. 3. In the method of producing a current collector electrode sheet according to
In the compression step, when the pair of compression rolls sequentially compress the current collector electrode sheet in which the coated area and the non-coated area are alternately formed, the second area and the non-coated area A method of producing a current collector electrode sheet, wherein the region containing the is not compressed.
5. 3. Or 4. In the method of producing a current collector electrode sheet according to
The method for producing a current collector electrode sheet, wherein regions containing the active material are intermittently formed in the longitudinal direction of the metal foil on both surfaces of the metal foil.
6. 3. To 5. In the method of manufacturing a current collector electrode sheet according to any one,
The current collector electrode sheet intermittently applies the slurry on both surfaces of the metal foil to form the second region at the boundary between the coated region and the non-coated region. Sheet manufacturing method.
7. It has a pair of compression rolls which continuously compress the current collector electrode sheet having the active material coated on both sides of the sheet metal foil in the thickness direction,
Each of the compression rolls is installed so that its rotation axis is parallel to the lateral direction of the current collector electrode sheet,
Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
The side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
A compression roller, wherein a distance between the side surfaces in the second range of the pair of opposing compression rolls is shorter than a distance between the side surfaces in the first range of the pair of opposing opposing compression rolls.
8. 7. In the compression roller described in
The application region of the current collector electrode sheet to which the active material is applied includes a first region and a second region in which the thickness of the formed coating film is thinner than the first region.
The distance between the side surfaces in the first range of the pair of compression rolls when the ends of the opposing pair of compression rolls abut is the first area of the current collector electrode sheet. A compression roller which is smaller than the thickness value of and larger than the thickness value of the second region of the current collector electrode sheet.
9. 7. Or 8. In the compression roller described in
A compression roller, wherein the distance between the side surfaces is continuously short from the both end sides in the rotation axis direction toward the center in the second range of the pair of compression rolls that face each other.
10. 3. To 6. In the method of producing a current collector electrode sheet according to any one of the above,
In the compression step, each of the compression rolls is installed so that its rotation axis is parallel to the short direction of the current collector electrode sheet,
Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
The side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
A collector electrode sheet, wherein the distance between the side surfaces in the first range of the pair of compression rolls facing each other is shorter than the distance between the side surfaces in the second range of the pair of compression rolls facing each other Production method.
11. 3. To 6. And 10. In the method of producing a current collector electrode sheet according to any one of the above,
The application region of the current collector electrode sheet to which the slurry is applied includes a first region and a second region in which the thickness of the formed coating film is thinner than the first region,
Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
The side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
In the compression step, when the ends of the pair of opposing compression rolls abut, the distance between the side surfaces of the opposing opposing compression rolls in the first range of the pair of compression rolls is the above Producing a current collector electrode sheet smaller than the value of the thickness of the first region of the current collector electrode sheet and larger than the value of the thickness of the second region of the current collector electrode sheet Method.
12. 3. To 6. , 10. And 11. In the method of producing a current collector electrode sheet according to any one of the above,
Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
The side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
In the compression step, in the second range, the pair of opposing compression rolls are continuously coupled to each other from the boundary with the first range toward the central portion in the rotation axis direction of the compression rolls. The method for producing a current collector electrode sheet, wherein the distance between the two is short.
13 3. To 6. And 10. To 12. The collector electrode sheet manufactured using the manufacturing method of the collector electrode sheet as described in any one of these.
14. 13. A battery manufactured using the current collector electrode sheet described in 4.
 この出願は、2017年10月25日に出願された日本出願特願2017-206571号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-206571 filed on October 25, 2017, the entire disclosure of which is incorporated herein.

Claims (14)

  1.  シート状の金属箔の長手方向に、両面に活物質層が形成された集電体電極シートであって、前記活物質層は塗布膜の厚さの厚い第1の塗布領域と、前記第1の塗布領域よりも塗布膜の厚さの薄い第2の塗布領域とによって形成され、前記金属箔の厚さ方向に圧縮後の前記第1の塗布領域における前記金属箔の厚さが、前記第2の塗布領域および非塗布領域における前記金属箔の厚さよりも薄い集電体電極シート。 A current collector electrode sheet in which an active material layer is formed on both sides in the longitudinal direction of a sheet-like metal foil, wherein the active material layer is a first coated region having a thick coating film, and the first coated region. The thickness of the metal foil in the first application area after compression in the thickness direction of the metal foil is formed by the second application area having a thickness smaller than that of the application area; A collector electrode sheet thinner than the thickness of the metal foil in the coated area and the non-coated area of 2.
  2.  請求項1に記載の集電体電極シートにおいて、
     前記集電体電極シートは、前記金属箔の前記長手方向に、前記両面に前記活物質層が間欠的に形成され、前記第2の塗布領域は、前記金属箔の前記長手方向に間欠的に形成された前記塗布領域の長手方向終端部に形成されたものである、集電体電極シート。
    In the current collector electrode sheet according to claim 1,
    In the current collector electrode sheet, the active material layer is intermittently formed on the both surfaces in the longitudinal direction of the metal foil, and the second application region is intermittently in the longitudinal direction of the metal foil. A current collector electrode sheet, which is formed at the longitudinal direction end of the formed application region.
  3.  シート状の金属箔の両面に活物質が塗布された集電体電極シートを、2つの圧縮ロールを一対として構成される圧縮ローラを用いて、前記集電体電極シートの厚さ方向に圧縮する圧縮工程を含み、
     前記集電体電極シートは、前記活物質を含むスラリを塗布した塗布領域と、前記スラリを塗布しない非塗布領域とを含み、
     前記集電体電極シートの前記塗布領域は、第1の領域と、形成された塗布膜の厚さが前記第1の領域より薄い第2の領域とを含み、
     前記圧縮工程において、前記一対の圧縮ロールが、前記塗布領域と前記非塗布領域が交互に形成された前記集電体電極シートを連続して圧縮する際、前記第1の領域に前記圧縮ロールを接触させて圧縮する、集電体電極シートの製造方法。
    The current collector electrode sheet in which the active material is coated on both sides of the sheet metal foil is compressed in the thickness direction of the current collector electrode sheet using a compression roller constituted by a pair of two compression rolls. Including a compression step,
    The current collector electrode sheet includes a coated region coated with a slurry containing the active material, and a non-coated region not coated with the slurry.
    The application region of the current collector electrode sheet includes a first region, and a second region in which the thickness of the applied film formed is thinner than the first region.
    In the compression step, when the pair of compression rolls continuously compress the current collector electrode sheet in which the coated area and the non-coated area are alternately formed, the compression roll is placed in the first area. The manufacturing method of a collector electrode sheet which makes it contact and compresses.
  4.  請求項3に記載の集電体電極シートの製造方法において、
     前記圧縮工程において、前記一対の圧縮ロールが、前記塗布領域と前記非塗布領域が交互に形成された前記集電体電極シートを連続して圧縮する際、前記第2の領域および前記非塗布領域を含む領域は圧縮しない、集電体電極シートの製造方法。
    In the method of manufacturing a current collector electrode sheet according to claim 3,
    In the compression step, when the pair of compression rolls sequentially compress the current collector electrode sheet in which the coated area and the non-coated area are alternately formed, the second area and the non-coated area A method of producing a current collector electrode sheet, wherein the region containing the is not compressed.
  5.  請求項3又は4に記載の集電体電極シートの製造方法において、
     前記集電体電極シートは、前記金属箔の両面に前記活物質を含む領域が前記金属箔の長手方向に間欠的に形成される、集電体電極シートの製造方法。
    In the method of producing a current collector electrode sheet according to claim 3 or 4,
    The method for producing a current collector electrode sheet, wherein regions containing the active material are intermittently formed in the longitudinal direction of the metal foil on both surfaces of the metal foil.
  6.  請求項3乃至5いずれか一項に記載の集電体電極シートの製造方法において、
     前記集電体電極シートは、前記スラリを前記金属箔の両面に間欠的に塗布して、前記塗布領域と、前記非塗布領域の境界に、前記第2の領域を形成する、集電体電極シートの製造方法。
    In the manufacturing method of the current collector electrode sheet according to any one of claims 3 to 5,
    The current collector electrode sheet intermittently applies the slurry on both surfaces of the metal foil to form the second region at the boundary between the coated region and the non-coated region. Sheet manufacturing method.
  7.  シート状の金属箔の両面に活物質が塗布された集電体電極シートを、その厚さ方向に連続的に圧縮する一対の圧縮ロールを有し、
     各前記圧縮ロールは、その回転軸が、前記集電体電極シートの短手方向と平行になるように設置され、
     各前記圧縮ロールは、前記回転軸方向の両端の円形の端面を有する端部と、前記両端の前記端部の間に延在する曲面状の側面とを有し、
     前記圧縮ロールの前記側面は、前記圧縮ロールの前記両端各々の周辺の第1の範囲と、前記圧縮ロールの前記回転軸方向の中央部分の第2の範囲とを含み、
     対向する前記一対の圧縮ロールの前記第1の範囲における前記側面同士の距離より、対向する前記一対の圧縮ロールの前記第2の範囲における前記側面同士の距離の方が短い、圧縮ローラ。
    It has a pair of compression rolls which continuously compress the current collector electrode sheet having the active material coated on both sides of the sheet metal foil in the thickness direction,
    Each of the compression rolls is installed so that its rotation axis is parallel to the lateral direction of the current collector electrode sheet,
    Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
    The side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
    A compression roller, wherein a distance between the side surfaces in the second range of the pair of opposing compression rolls is shorter than a distance between the side surfaces in the first range of the pair of opposing opposing compression rolls.
  8.  請求項7に記載の圧縮ローラにおいて、
     前記集電体電極シートの前記活物質を塗布した塗布領域は、第1の領域と、形成された塗布膜の厚さが前記第1の領域より薄い第2の領域とを含み、
     対向する前記一対の圧縮ロールの前記端部同士が当接した時の、前記一対の圧縮ロールの前記第1の範囲における前記側面同士の距離は、前記集電体電極シートの前記第1の領域における厚さの値よりも小さく、かつ、前記集電体電極シートの前記第2の領域の厚さの値よりも大きい、圧縮ローラ。
    The compression roller according to claim 7
    The application region of the current collector electrode sheet to which the active material is applied includes a first region and a second region in which the thickness of the formed coating film is thinner than the first region.
    The distance between the side surfaces in the first range of the pair of compression rolls when the ends of the opposing pair of compression rolls abut is the first area of the current collector electrode sheet. A compression roller which is smaller than the thickness value of and larger than the thickness value of the second region of the current collector electrode sheet.
  9.  請求項7又は8に記載の圧縮ローラにおいて、
     対向する前記一対の圧縮ロールの前記第2の範囲において、前記回転軸方向の前記両端側から中央に向かって連続的に前記側面同士の距離が短い、圧縮ローラ。
    The compression roller according to claim 7 or 8
    A compression roller, wherein the distance between the side surfaces is continuously short from the both end sides in the rotation axis direction toward the center in the second range of the pair of compression rolls that face each other.
  10.  請求項3乃至6のいずれか一項に記載の集電体電極シートの製造方法において、
     前記圧縮工程において、各前記圧縮ロールは、その回転軸が、前記集電体電極シートの短手方向と平行になるように設置され、
     各前記圧縮ロールは、前記回転軸方向の両端の円形の端面を有する端部と、前記両端の前記端部の間に延在する曲面状の側面とを有し、
     前記圧縮ロールの前記側面は、前記圧縮ロールの前記両端各々の周辺の第1の範囲と、前記圧縮ロールの前記回転軸方向の中央部分の第2の範囲とを含み、
     対向する前記一対の圧縮ロールの前記第1の範囲における前記側面同士の距離が、対向する前記一対の圧縮ロールの前記第2の範囲における前記側面同士の距離よりも短い、集電体電極シートの製造方法。
    In the method of manufacturing a current collector electrode sheet according to any one of claims 3 to 6,
    In the compression step, each of the compression rolls is installed so that its rotation axis is parallel to the short direction of the current collector electrode sheet,
    Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
    The side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
    A collector electrode sheet, wherein the distance between the side surfaces in the first range of the pair of compression rolls facing each other is shorter than the distance between the side surfaces in the second range of the pair of compression rolls facing each other Production method.
  11.  請求項3乃至6、および10のいずれか一項に記載の集電体電極シートの製造方法において、
     前記集電体電極シートの前記スラリを塗布した塗布領域は、第1の領域と、形成した塗布膜の厚さが前記第1の領域より薄い第2の領域とを含み、
     各前記圧縮ロールは、その回転軸方向の両端の円形の端面を有する端部と、前記両端の前記端部の間に延在する曲面状の側面とを有し、
     前記圧縮ロールの前記側面は、前記圧縮ロールの前記両端各々の周辺の第1の範囲と、前記圧縮ロールの前記回転軸方向の中央部分の第2の範囲とを含み、
     前記圧縮工程において、対向する前記一対の圧縮ロールの前記端部同士が当接した時の、前記一対の圧縮ロールの前記第1の範囲における対向する前記圧縮ロールの前記側面同士の距離は、前記集電体電極シートの前記第1の領域の厚さの値よりも小さく、かつ、前記集電体電極シートの前記第2の領域の厚さの値よりも大きい、集電体電極シートの製造方法。
    A method of manufacturing a current collector electrode sheet according to any one of claims 3 to 6 and 10,
    The application region of the current collector electrode sheet to which the slurry is applied includes a first region and a second region in which the thickness of the formed coating film is thinner than the first region,
    Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
    The side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
    In the compression step, when the ends of the pair of opposing compression rolls abut, the distance between the side surfaces of the opposing opposing compression rolls in the first range of the pair of compression rolls is the above Producing a current collector electrode sheet smaller than the value of the thickness of the first region of the current collector electrode sheet and larger than the value of the thickness of the second region of the current collector electrode sheet Method.
  12.  請求項3乃至6、10、および11のいずれか一項に記載の集電体電極シートの製造方法において、
     各前記圧縮ロールは、その回転軸方向の両端の円形の端面を有する端部と、前記両端の前記端部の間に延在する曲面状の側面とを有し、
     前記圧縮ロールの前記側面は、前記圧縮ロールの前記両端各々の周辺の第1の範囲と、前記圧縮ロールの前記回転軸方向の中央部分の第2の範囲とを含み、
     前記圧縮工程において、対向する前記一対の圧縮ロールは、前記第2の範囲において、前記第1の範囲との境界から前記圧縮ロールの回転軸方向の中央部に向かって連続的に前記圧縮ロール同士の距離が短い、集電体電極シートの製造方法。
    A method of manufacturing a current collector electrode sheet according to any one of claims 3 to 6, 10, and 11.
    Each of the compression rolls has an end having circular end faces at both ends in the direction of the rotation axis, and a curved side surface extending between the ends at the both ends.
    The side surface of the compression roll includes a first range around each of the ends of the compression roll and a second range of a central portion of the compression roll in the rotational axis direction.
    In the compression step, in the second range, the pair of opposing compression rolls are continuously coupled to each other from the boundary with the first range toward the central portion in the rotation axis direction of the compression rolls. The method for producing a current collector electrode sheet, wherein the distance between the two is short.
  13.  請求項3乃至6、および10乃至12のいずれか一項に記載の集電体電極シートの製造方法を用いて製造された集電体電極シート。 The current collector electrode sheet manufactured using the manufacturing method of the current collector electrode sheet as described in any one of Claims 3-6 and 10-12.
  14.  請求項13に記載の集電体電極シートを用いて製造された電池。 A battery manufactured using the current collector electrode sheet according to claim 13.
PCT/JP2018/035351 2017-10-25 2018-09-25 Current collector electrode sheet manufacturing method, compression roller, current collector electrode sheet, and battery WO2019082575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019549958A JPWO2019082575A1 (en) 2017-10-25 2018-09-25 Manufacturing method of current collector electrode sheet, compression roller, current collector electrode sheet, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017206571 2017-10-25
JP2017-206571 2017-10-25

Publications (1)

Publication Number Publication Date
WO2019082575A1 true WO2019082575A1 (en) 2019-05-02

Family

ID=66247404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035351 WO2019082575A1 (en) 2017-10-25 2018-09-25 Current collector electrode sheet manufacturing method, compression roller, current collector electrode sheet, and battery

Country Status (2)

Country Link
JP (1) JPWO2019082575A1 (en)
WO (1) WO2019082575A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116080A1 (en) * 2018-12-03 2020-06-11 株式会社エンビジョンAescエナジーデバイス Collector electrode sheet and battery
WO2021145061A1 (en) * 2020-01-17 2021-07-22 パナソニックIpマネジメント株式会社 Coating method and coating device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012220A (en) * 1996-06-19 1998-01-16 Toshiba Battery Co Ltd Manufacture of sheet-like plate and nonaqueous electrolyte battery using this
JPH10214617A (en) * 1997-01-29 1998-08-11 Fuji Film Selltec Kk Sheet type electrode and non-aqueous secondary battery using the same
JP2000208134A (en) * 1998-11-12 2000-07-28 Dainippon Printing Co Ltd Nonaqueous electrolyte secondary battery electrode and manufacture thereof
JP2005183181A (en) * 2003-12-19 2005-07-07 Dainippon Ink & Chem Inc Electrode plate for nonaqueous electrolyte secondary battery and manufacturing method of the same
WO2005074057A1 (en) * 2004-01-28 2005-08-11 Ishikawajima-Harima Heavy Industries Co., Ltd. Battery electrode plate and battery electrode plate manufacturing method
JP2006024710A (en) * 2004-07-07 2006-01-26 Tdk Corp Electrode manufacturing method and electrode
JP2006107787A (en) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd Manufacturing method and manufacturing device of electrode plate
JP2012009376A (en) * 2010-06-28 2012-01-12 Nec Energy Devices Ltd Method of manufacturing collector electrode plate
JP2015069747A (en) * 2013-09-27 2015-04-13 株式会社日立パワーソリューションズ Slitter facility for electrode material and electrode material production facility

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012220A (en) * 1996-06-19 1998-01-16 Toshiba Battery Co Ltd Manufacture of sheet-like plate and nonaqueous electrolyte battery using this
JPH10214617A (en) * 1997-01-29 1998-08-11 Fuji Film Selltec Kk Sheet type electrode and non-aqueous secondary battery using the same
JP2000208134A (en) * 1998-11-12 2000-07-28 Dainippon Printing Co Ltd Nonaqueous electrolyte secondary battery electrode and manufacture thereof
JP2005183181A (en) * 2003-12-19 2005-07-07 Dainippon Ink & Chem Inc Electrode plate for nonaqueous electrolyte secondary battery and manufacturing method of the same
WO2005074057A1 (en) * 2004-01-28 2005-08-11 Ishikawajima-Harima Heavy Industries Co., Ltd. Battery electrode plate and battery electrode plate manufacturing method
JP2006024710A (en) * 2004-07-07 2006-01-26 Tdk Corp Electrode manufacturing method and electrode
JP2006107787A (en) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd Manufacturing method and manufacturing device of electrode plate
JP2012009376A (en) * 2010-06-28 2012-01-12 Nec Energy Devices Ltd Method of manufacturing collector electrode plate
JP2015069747A (en) * 2013-09-27 2015-04-13 株式会社日立パワーソリューションズ Slitter facility for electrode material and electrode material production facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116080A1 (en) * 2018-12-03 2020-06-11 株式会社エンビジョンAescエナジーデバイス Collector electrode sheet and battery
WO2021145061A1 (en) * 2020-01-17 2021-07-22 パナソニックIpマネジメント株式会社 Coating method and coating device

Also Published As

Publication number Publication date
JPWO2019082575A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP6531652B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP4347759B2 (en) Electrode manufacturing method
JP6237791B2 (en) Anode for non-aqueous electrolyte secondary battery
JP7144433B2 (en) METHOD FOR MANUFACTURING COLLECTOR ELECTRODE SHEET
US20220173388A1 (en) Positive electrode for lithium ion secondary battery, positive electrode sheet for lithium ion secondary battery, and method for manufacturing the same
JP2007329050A (en) Sheet type battery and its manufacturing method
KR102202013B1 (en) An electrode for an electrochemical device and a method for manufacturing the same
JP7281944B2 (en) Positive electrode for lithium ion secondary battery, positive electrode sheet for lithium ion secondary battery, and manufacturing method thereof
WO2013098970A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
JP6211595B2 (en) Nonaqueous electrolyte secondary battery
CN102117931A (en) High-rate cylindrical lithium ion battery with anode of modified lithium manganese oxide
WO2020137349A1 (en) Positive electrode slurry, positive electrode, secondary battery, and positive electrode manufacturing method
WO2019082575A1 (en) Current collector electrode sheet manufacturing method, compression roller, current collector electrode sheet, and battery
JP6610692B2 (en) Electrode and storage element
WO2019111616A1 (en) Current collector electrode sheet, method of manufacturing same, battery, and method of manufacturing same
JP2019145378A (en) Compressing device, current collector electrode sheet manufacturing method, current collector electrode sheet, and battery
JP2018170142A (en) Lithium ion secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP6962231B2 (en) Non-aqueous electrolyte secondary battery
JP2012028086A (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2020091944A (en) Manufacturing method of collector electrode sheet, collector electrode sheet, and battery
JP2011187270A (en) Method of manufacturing electrode for lithium secondary battery, and manufacturing method of lithium secondary battery
WO2020116080A1 (en) Collector electrode sheet and battery
WO2019077931A1 (en) Method for manufacturing electrode, electrode, and cell
CN111656577A (en) Electrode for lithium ion battery and lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549958

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871091

Country of ref document: EP

Kind code of ref document: A1