WO2019077689A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019077689A1
WO2019077689A1 PCT/JP2017/037609 JP2017037609W WO2019077689A1 WO 2019077689 A1 WO2019077689 A1 WO 2019077689A1 JP 2017037609 W JP2017037609 W JP 2017037609W WO 2019077689 A1 WO2019077689 A1 WO 2019077689A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
control unit
current
power conversion
motor
Prior art date
Application number
PCT/JP2017/037609
Other languages
French (fr)
Japanese (ja)
Inventor
洋寿 小倉
田村 建司
貴宏 磯田
正博 田村
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to CN201780003344.XA priority Critical patent/CN110326210B/en
Priority to PCT/JP2017/037609 priority patent/WO2019077689A1/en
Priority to JP2018511291A priority patent/JP6364573B1/en
Priority to TW106146220A priority patent/TWI643444B/en
Publication of WO2019077689A1 publication Critical patent/WO2019077689A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • the present invention relates to an air conditioner.
  • Patent Document 1 reduces the switching loss during PWM control by stopping the PWM output for a certain period based on the motor current phase during motor drive.
  • the invention described in Patent Document 1 is limited to a specific condition (lower than rotational speed / lower than average motor current), and is not a technology that can achieve high efficiency in a wide range.
  • this invention makes it a subject to provide the air conditioner which enables reduction of the switching loss accompanying a motor drive, and reduction of a motor copper loss, avoiding deterioration of a motor vibration and a motor stop.
  • an air conditioner of the present invention is provided with an electric motor and a power converter which performs electric power conversion for driving the electric motor by PWM control using a vector control system.
  • the power converter includes a pulse control unit that outputs a pulse signal for performing the PWM control, and a switch element having a three-phase configuration, and uses the pulse signal output from the pulse control unit.
  • Power control circuit for converting direct current power to alternating current power, current detection unit for detecting current flowing in the power conversion circuit, and vector control based on current detected by the current detection unit, to the pulse control unit
  • the pulse is generated in a section determined on the basis of the current phase of the power conversion circuit in order to stop the vector control unit generating the command voltage and the positive and negative switch elements of the predetermined phase of the power conversion circuit.
  • a pulse stop control unit for generating a pulse stop control signal for stopping the signal and outputting the pulse stop control signal to the pulse control unit.
  • the vector control unit starts the operation of the pulse stop control unit if the motor current of the motor is within a predetermined range with respect to the motor current at no load of the current rotational speed.
  • FIG. 7 is a waveform diagram showing a relationship between an AC voltage, an AC current, and a pulse signal flowing through the motor during intermittent energization operation and a phase pulse stop control signal. It is a wave form diagram showing the relation of U phase voltage, U phase current, and a pulse signal at the time of driving an actual machine provided with a power conversion device.
  • the power conversion device is a power conversion circuit (inverter) that converts DC power into AC power using a pulse signal of PWM control, and detects a current flowing in the power conversion circuit to vector the power conversion circuit. And a vector control unit for controlling.
  • the power converter further includes an open phase section for stopping the switch elements of the upper and lower arms in phase by stopping the pulse signal of the section determined based on the zero crossing point of the current phase flowing through the power conversion circuit.
  • the power conversion device can reduce the switching loss by reducing the number of switchings at the time of PWM control.
  • the power conversion device can acquire accurate position information of the magnet position of the motor by the zero crossing point of the current phase. As a result, stable vector control can be performed to improve the efficiency of the power conversion circuit (inverter) and the motor.
  • FIG. 1 shows a circuit configuration of a power conversion device 1 of a PWM control method according to the present embodiment.
  • the power conversion device 1 of the present embodiment in the case where the AC motor 3 which is a permanent magnet synchronous motor is driven by vector control by the power conversion circuit 4 consisting of a three phase inverter driven by PWM control.
  • the power conversion circuit 4 consisting of a three phase inverter driven by PWM control.
  • a control method when a phase pulse stop section (that is, an open phase section) is provided in the pulse signal of the power conversion circuit 4 will be described.
  • the power conversion device 1 is configured to include a power conversion circuit 4, a phase current detection unit 6, and a control device 5.
  • the power conversion circuit 4 is configured to include a three-phase inverter that converts DC power into AC power.
  • the phase current detection unit 6 detects the motor current flowing through the AC motor (motor) 3 connected to the power conversion circuit 4.
  • the control device 5 performs vector control using a pulse signal that performs PWM control based on the phase current information (current) ⁇ detected by the phase current detection unit 6.
  • a DC voltage Vd is applied to the power conversion circuit 4 by the power supply 2.
  • the power conversion circuit 4 is configured to include a power conversion main circuit 41 and a gate driver 42.
  • the gate driver 42 generates a gate signal supplied to an IGBT (Insulated Gate Bipolar Transistor) of the power conversion main circuit 41 based on the pulse signal ⁇ from the pulse control unit 7.
  • the power conversion main circuit 41 is composed of switching elements Q1 to Q6 of a three-phase configuration in which an IGBT and a diode are connected in parallel in the reverse direction.
  • the power conversion main circuit 41 has U-phase, V-phase, and W-phase switching legs, and converts DC power into AC power using the pulse signal ⁇ output from the pulse control unit 7.
  • the U-phase switching leg is configured by connecting switching elements Q1 and Q2 in series between the positive electrode and the negative electrode.
  • the collector of switching element Q1 is connected to the positive electrode
  • the emitter of switching element Q2 is connected to the collector of switching element Q2.
  • the emitter of the switching element Q2 is connected to the negative electrode.
  • a connection node between the emitter of switching element Q1 and the collector of switching element Q2 is connected to the U-phase coil of AC motor 3.
  • a voltage at a connection node between the emitter of the switching element Q1 and the collector of the switching element Q2 is referred to as a voltage Vu.
  • the current flowing through the U-phase coil of the AC motor 3 is referred to as a U-phase alternating current Iu.
  • the pulse signal GPU + output from the gate driver 42 is applied to the gate of the switching element Q1.
  • the pulse signal GPU- output from the gate driver 42 is applied to the gate of the switching element Q2.
  • the switching leg of the V phase is configured by connecting switching elements Q3 and Q4 in series between the positive electrode and the negative electrode.
  • the collector of switching element Q3 is connected to the positive electrode, and the emitter of switching element Q3 is connected to the collector of switching element Q4.
  • the emitter of switching element Q4 is connected to the negative electrode.
  • a connection node between the emitter of switching element Q3 and the collector of switching element Q4 is connected to the V-phase coil of AC motor 3.
  • Pulse signals output from the gate driver 42 are applied to the gates of the switching elements Q3 and Q4, respectively.
  • the switching leg of the W phase is configured by connecting switching elements Q5 and Q6 in series between the positive electrode and the negative electrode.
  • the collector of switching element Q5 is connected to the positive electrode, and the emitter of switching element Q5 is connected to the collector of switching element Q6.
  • the emitter of switching element Q6 is connected to the negative electrode.
  • a connection node between the emitter of switching element Q5 and the collector of switching element Q6 is connected to the W-phase coil of AC motor 3.
  • Pulse signals output from the gate driver 42 are applied to the gates of the switching elements Q5 and Q6, respectively.
  • control device 5 is configured to include a pulse control unit 7, a vector control unit 8, and a pulse stop control unit 9.
  • the pulse control unit 7 supplies a pulse signal ⁇ controlled based on the applied voltage command (command voltage) V * to the gate driver 42 to perform PWM control.
  • the vector control unit 8 performs vector control using the phase current information ⁇ detected by the phase current detection unit 6 to calculate an applied voltage command V * .
  • the pulse stop control unit 9 is a phase pulse stop control signal for stopping the pulse signal ⁇ of the phase pulse stop section (open phase section) ⁇ near the current zero cross based on the phase information (current phase) of the current calculated by vector control.
  • (Pulse stop control signal) ⁇ is output to the pulse control unit 7.
  • the phase pulse stop control signal (pulse stop control signal) ⁇ stops the switching elements on the positive side and the negative side of the predetermined phase of the power conversion circuit 4.
  • Non-Patent Document 1 Sudmoto et al., “Simple Vector Control of Position Sensorless Permanent Magnet Synchronous Motor for Home Appliances”) Theory of Electrical Engineering D, Vol. 124, No. 11 (2004) pp. 1131-3140
  • Non-Patent Document 2 Tobari et al., "Study of New Vector Control Method for Permanent Magnet Synchronous Motor for High Speed," Electrology D, Vol. 129, Vol. 1, No. 1 (2009) pp.
  • the inverter output current is detected, three-phase to two-phase conversion (dq conversion; direct-quadrature conversion) is fed back to the control system, and the two-phase to three-phase conversion is performed again to drive the inverter It can be realized by using general vector control, and the control method is not specified. Therefore, since the operation of the vector control unit 8 is a known technique, the detailed description will be omitted.
  • FIG. 2 is a front view of the indoor unit 100, the outdoor unit 200, and the remote control Re of the air conditioner A in the present embodiment.
  • the air conditioner A is called a so-called room air conditioner.
  • the air conditioner A includes an indoor unit 100, an outdoor unit 200, a remote controller Re, and the power conversion device 1 (not shown in FIG. 2) shown in FIG.
  • the indoor unit 100 and the outdoor unit 200 are connected by a refrigerant pipe 300, and the air in the room where the indoor unit 100 is installed is air-conditioned by a known refrigerant cycle.
  • the indoor unit 100 and the outdoor unit 200 mutually transmit and receive information via a communication cable (not shown).
  • the outdoor unit 200 is connected by a wire (not shown), and an AC voltage is supplied via the indoor unit 100.
  • the power conversion device 1 (see FIG. 1) is included in the outdoor unit 200, and converts alternating current power supplied from the indoor unit 100 side into direct current power.
  • the remote control Re is operated by the user, and transmits an infrared signal to the remote control transmission / reception unit Q of the indoor unit 100.
  • the contents of the infrared signal are commands such as an operation request, a change of the set temperature, a timer, a change of the operation mode, and a stop request.
  • the air conditioner A performs the air conditioning operation such as the cooling mode, the heating mode, and the dehumidifying mode based on the instruction of the infrared signals.
  • the indoor unit 100 transmits data such as room temperature information, humidity information, and electricity cost information from the remote control transmission / reception unit Q to the remote control Re.
  • the operation of the power conversion device 1 mounted on the air conditioner A will be described.
  • the power conversion device 1 converts the DC voltage Vd supplied from the power supply 2 into an AC again to drive an AC motor 3 (not shown in FIG. 2).
  • the AC motor 3 (not shown) is a DC fan motor, but may be applied to a compressor motor.
  • FIG. 3 is a waveform diagram showing the relationship between AC voltage, AC current, and pulse signal flowing in the AC motor 3 in the comparative example, the horizontal axis representing voltage phase, and the vertical axis representing each level of voltage, current and pulse signal. ing.
  • the control device 5 compares the PWM carrier signal with the applied voltage command V * to generate a PWM pulse signal (pulse signal ⁇ ) in the pulse control unit 7. Further, the command value of the applied voltage command V * is obtained by the calculation of the vector control unit 8 based on the phase current information ⁇ detected by the phase current detection unit 6.
  • acquisition of the phase current information ⁇ by the phase current detection unit 6 is, for example, directly detecting an AC output current by CT (Current Transformer) as disclosed in FIG. 1 of JP-A-2004-48886.
  • CT Current Transformer
  • current information of a DC bus may be acquired by a shunt resistor, and a phase current may be reproduced based on the current information.
  • the first graph of FIG. 3 shows the PWM carrier signal and the applied voltage command V * , and shows the U-phase applied voltage command Vu * as a representative.
  • ⁇ v indicates a voltage phase with reference to the U phase.
  • the pulse control unit 7 In the PWM control method, as shown in the first graph of FIG. 3, the pulse control unit 7 generates the third graph of FIG. 3 based on the U-phase applied voltage command Vu * and the triangular wave carrier signal (PWM carrier signal).
  • the pulse signals GPU + and GPU ⁇ shown are generated, and the pulse signals GPU + and GPU ⁇ are output to the gate driver 42 for driving the power conversion main circuit 41.
  • the pulse signal GPU + is voltage-converted by the gate driver 42 and applied to the gate of the switching element Q1 on the upper side of the U phase.
  • the pulse signal GPU- is voltage-converted by the gate driver 42 and applied to the gate of the switching element Q2 on the lower side of the U phase. That is, the pulse signal GPU + and the pulse signal GPU- are opposite in polarity (1, 0).
  • a U-phase alternating current Iu as shown in the second graph of FIG. 3 flows in the alternating current motor 3.
  • indicates the phase difference between the voltage and the current.
  • the vector control unit 8 performs vector control based on phase current information ⁇ including the U-phase alternating current Iu to control the voltage amplitude and the phase difference ⁇ between the voltage and the current.
  • FIG. 4 is a waveform diagram showing a relationship between an AC voltage, an AC current and a pulse signal flowing in the AC motor 3 and a phase pulse stop control signal in the present embodiment, in which the horizontal axis represents voltage phase and the vertical axis represents voltage; The respective levels of the current, the pulse signal and the open phase control signal (phase pulse stop control signal) are shown. That is, FIG. 4 is a waveform chart at the time of intermittent energization operation shown in comparison with the waveform chart at the time of normal operation of FIG.
  • the pulse stop control unit 9 generates the phase ⁇ and the phase ⁇ + ⁇ with reference to the zero-crossing point ⁇ of the current phase controlled by the vector control as shown in the following equation (1) Further, a phase pulse stop control signal (open phase control signal) ⁇ for stopping switching of both the pulse signals GPU + and GPU ⁇ is output to the pulse control unit 7 during the phase pulse stop interval (open phase interval) ⁇ .
  • the phase pulse stop control signal ⁇ outputs “0” when stopping switching of both the pulse signals GPU + and GPU ⁇ , and outputs “1” when performing switching of the PWM control method without stopping the switching.
  • the voltage phase ⁇ v with reference to the U phase is ⁇ / When 2 ⁇ v ⁇ + ⁇ / 2 and ⁇ + ⁇ / 2 ⁇ v ⁇ + ⁇ + ⁇ / 2, switching by the pulse signals GPU + and GPU ⁇ is stopped. And switching by pulse signal GPU + and GPU- is performed at other times.
  • both of the pulse signals GPU + and GPU ⁇ are turned off in the phase pulse stop interval ⁇ of the phase pulse stop control signal ⁇ . Therefore, as shown in the third graph of FIG. 4, the pulse control unit 7 outputs a signal train of pulse signals paused in the phase pulse stop interval ⁇ .
  • the phase pulse stop interval (open phase interval) ⁇ is set twice over one cycle of the voltage and current.
  • the target PWM control modulation method is not limited to the sine wave PWM control method, and the same phase pulse can be used in the two-phase modulation PWM control method or the third harmonic addition PWM control method. It is possible to provide the stop section ⁇ .
  • the pulse signals GPU + and GPU- provided with a period for stopping the switching operation by the pulse stop control unit 9 reference the applied voltage phase and the induced voltage phase of the AC motor 3 in the switching stop period and the switching operation period.
  • the shape is not provided. That is, the switching stop period and the switching operation period of the pulse signals GPU + and GPU ⁇ are set with reference to the zero cross point of the current phase.
  • the pulse signal train has an ON / OFF duty before and after the zero cross point of voltage. Is symmetrical.
  • the phase pulse stop section ⁇ is provided based on the current phase (that is, because it is not a pulse signal based on the voltage phase), as shown in the third graph of FIG.
  • the ON / OFF duty of the pulse signal train is not symmetrical. That is, in the present embodiment, the ON / OFF duty of the pulse signal train is asymmetrical before and after the current zero cross point.
  • the phase pulse stop section ⁇ is provided in the section including the zero cross point of the current, so as shown in the third graph of FIG.
  • the front and rear pulse signal trains A and B have an asymmetrical shape. From this, when the phase pulse stop section ⁇ is provided in the section including the zero cross point of the current, the present embodiment is implemented by observing whether the pulse signals before and after the phase pulse stop section ⁇ are asymmetrical. It can be easily determined whether or not the intermittent energization operation of the above is applied.
  • FIG. 5 is a waveform diagram showing the relationship between the U-phase voltage, the U-phase current, and the pulse signal when driving an actual device provided with the power conversion device 1 of the present embodiment, the horizontal axis representing voltage phase and the vertical axis The respective levels of voltage, current, and pulse signal are shown. That is, FIG. 5 is a method in which the phase pulse stop section is provided in the vicinity including the zero cross point of the current due to the intermittent energization operation of this embodiment, and the phase pulse stop section is set in the two-phase modulation type PWM control method Shows the voltage, current and pulse signal when driving
  • the first graph of FIG. 5 shows U-phase terminal voltage Vun of the power conversion main circuit 41
  • the second graph of FIG. 5 shows U-phase AC current Iu flowing through the AC motor 3
  • the switching signals of the pulse signals GPU + and GPU ⁇ are both off in the section (indicated by ⁇ ) sandwiched by the one-dot chain line, and the phase pulse stop section ⁇ is set. Can be confirmed. In addition, since the phase pulse stop section ⁇ is set, it can be confirmed at the same time that the U-phase alternating current Iu becomes zero in the section sandwiched by the one-dot chain line.
  • FIG. 6 is a characteristic diagram showing the relationship between the power conversion circuit loss, the motor loss and the total loss obtained by adding them to the phase pulse stop interval (open phase interval) ⁇ by the power conversion device 1 of the present embodiment.
  • the axis represents a phase pulse stop section (open phase section) ⁇
  • the vertical axis represents a loss. That is, FIG. 6 shows the characteristics of the total loss obtained by combining the phase pulse stop interval ⁇ set by the pulse stop control unit 9 and the loss of the power conversion circuit 4, the loss of the AC motor 3, and these two losses.
  • the loss (power conversion circuit loss) of the power conversion circuit 4 of the present embodiment is reduced because the number of times of switching decreases as the phase pulse stop interval ⁇ increases. Do. Further, the loss (motor loss) of the AC motor 3 is increased because the harmonic component of the current is increased by providing the phase pulse stop section ⁇ . Furthermore, since the increase of the harmonic component of the current becomes remarkable due to the increase of the phase pulse stop interval ⁇ , the increase of the loss (motor loss) of the AC motor 3 resulting from this also becomes remarkable. Therefore, as shown in FIG. 6, there is a phase pulse stop interval ⁇ opt in which the total loss obtained by adding these two losses (power conversion circuit loss and motor loss) is minimized. By setting the phase pulse stop interval ⁇ to this phase pulse stop interval ⁇ opt , it is possible to reduce the overall loss of the power conversion device 1.
  • the pulse stop control unit 9 As described above, by using the pulse stop control unit 9, it is possible to reduce the number of switching times of the pulse signal for performing the PWM control. In other words, when the pulse stop control unit 9 performed by the control of the microcomputer is configured by software, the configuration of the power conversion circuit 4 of the comparative example is not changed, and the addition of new hardware is not performed. It becomes possible to achieve high efficiency. Further, since the switching operation is stopped near the zero cross of the current of the AC motor 3, it is possible to suppress an increase in torque pulsation with respect to the 150-degree conduction method.
  • the vector control method of the present embodiment is position sensorless simple vector control, and is simplified based on conventional vector control.
  • This position sensorless simple vector control can exhibit the same performance as ideal vector control except for a transient state in which the speed and load torque fluctuate.
  • position sensorless simple vector control can not be expected to perform as well as ideal vector control in transient conditions in which speed and load torque change. In such a transient state, if the PWM output is stopped by the intermittent current supply operation, the vibration may be deteriorated or stopped.
  • the intermittent energization operation is performed only when it is determined that the motor is stably driven, thereby preventing the deterioration of the motor vibration and the stop of the motor.
  • FIG. 7 is a graph showing an execution area and a hysteresis area of the intermittent energization operation when applied to a DC fan.
  • the horizontal axis of the graph indicates the number of rotations per minute, that is, the rotation speed.
  • the vertical axis of the graph indicates the current flowing through the AC motor 3.
  • the Im reference value is a current value which is a high frequency rotation speed at no load.
  • the motor current Im can be calculated by the following equation (2).
  • the solid line graph shows the relationship between the actual rotation speed N and the motor current Im at no load.
  • the middle broken line graph shows the relationship between the actual rotation speed N and the motor current Im when the predetermined positive load is applied to the AC motor 3, and is a value higher than the solid line graph by the current I r2 .
  • the fine broken line graph shows the relationship between the actual rotation speed N and the motor current Im when a larger positive load is applied to the AC motor 3, which is higher than the medium broken line graph by the current Ih2 . For example, when a headwind blows on the DC fan, a positive load is applied to the AC motor 3 and swings in the direction of a medium broken line graph or a fine broken line graph.
  • the alternate long and short dash line graph indicates the relationship between the actual rotation speed N and the motor current Im when the predetermined negative load is applied to the AC motor 3, and is a value lower than the solid line graph by the current I r1 .
  • the rough broken line graph shows the relationship between the actual rotation speed N and the motor current Im when a further negative load is applied to the AC motor 3, which is lower than the medium broken line graph by the current Ih1 .
  • a forward wind blows on a DC fan a negative load is applied to the AC motor 3 and swings in the direction of a dashed dotted line graph or a rough broken line graph.
  • Execution region Z 1 is a region of dense hatching indicates a region to begin executing the intermittent power supply operation.
  • the execution region Z 1 is a region between the dashed graph and dashed line graphs moderate. That is, a load within a predetermined range is applied to the motor.
  • the control device 5 starts the intermittent energization operation.
  • FIG. 7 is a case where it applies to a DC fan, it is thought that the load concerning AC motor 3 is substantially the same in positive / negative. Therefore, the current I r1 and the current I r2 are set equal.
  • Execution region Z 1 further is directed to Im lower limit value or more regions plus current I h1 to the limiter.
  • the phase current detection unit 6 of the present embodiment detects a current by a shunt resistor (not shown). Therefore, there is a detectable Im lower limit. Therefore, there is provided a lower limit to execution region Z 1.
  • Hysteresis region Z 2 is a region of the thin hatching, when running intermittent energization operation, it indicates a region to continue the execution.
  • Hysteresis region Z 2 is a region between the fine broken line graph and long dashed line graph.
  • the control device 5 when the offset or hysteresis to the execution area Z 1, which stops the intermittent power supply operation. By providing the hysteresis, it is possible to prevent chattering at the boundary of the execution region Z 1.
  • FIG. 7 is a case where it applies to a DC fan, it is thought that the load concerning AC motor 3 is substantially the same in positive / negative. Therefore, the current I h1 and the current I h2 are set equal.
  • Hysteresis region Z 2 are as Im lower limit limiter or more regions.
  • execution region Z 1 and the hysteresis region Z 2 are a high-frequency rotational speed following areas.
  • FIG. 8 is a graph showing an execution region and a hysteresis region of the intermittent energization operation when applied to a compressor.
  • the solid line shows the relationship between the actual rotation speed N and the motor current Im at no load.
  • the middle broken line shows the relationship between the actual rotation speed N and the motor current Im when the predetermined positive load is applied to the AC motor 3, and is a value higher than the solid line by the current I r4 .
  • the fine broken line shows the relationship between the actual rotation speed N and the motor current Im when a larger positive load is applied to the AC motor 3, which is higher than the medium broken line by the current I h4 .
  • the alternate long and short dash line indicates the relationship between the actual rotation speed N and the motor current Im when a predetermined negative load is applied to the AC motor 3, and is a value lower than the solid line by the current I r3 .
  • the rough broken line shows the relationship between the actual rotation speed N and the motor current Im when a further large negative load is applied to the AC motor 3, which is a value lower than the middle broken line by the current Ih3 .
  • Execution region Z 3 is a region of dense hatching indicates a region to begin executing the intermittent power supply operation.
  • the execution region Z 3 is an area between the medium dashed and dashed line. That is, a load within a predetermined range is applied to the motor. At this time, the control device 5 starts the intermittent energization operation.
  • FIG. 8 is a case applied to a compressor, it is considered that the load applied to the AC motor 3 is mostly positive. Therefore, the current I r2 is set larger than the current I r1 .
  • Execution region Z 3 further has a value or more regions plus current I h3 in Im lower limit limiter.
  • the phase current detection unit 6 of the present embodiment detects a current by a shunt resistor (not shown). Therefore, there is a detectable Im lower limit. Therefore, there is provided a lower limit to execution region Z 3.
  • Hysteresis region Z 4 is a region of the thin hatching, when running intermittent energization operation, it indicates a region to continue the execution. Hysteresis region Z 4 is a region between the fine broken line and long dashed line.
  • FIG. 8 is a case where it applies to a compressor, it is thought that the case where it applies to the AC motor 3 is mostly positive. Therefore, the current I h4 is set larger than the current I h3 .
  • Hysteresis region Z 2 are as Im lower limit limiter or more regions. Furthermore the execution region Z 1 and the hysteresis region Z 2, are a high-frequency rotational speed following areas.
  • FIG. 9 is a diagram showing an execution region and a hysteresis region of the intermittent energization operation defined by the modulation factor.
  • the modulation factor exceeds M 1
  • the intermittent energization operation starts.
  • the modulation rate becomes smaller than (M 1 -M h ) after M 1 is exceeded, the intermittent power supply operation is stopped.
  • the intermittent energization operation is stopped when the modulation factor exceeds M 2 during the intermittent energization operation.
  • the modulation rate becomes smaller than (M 2 -M h ) after M 2 is exceeded, the intermittent power supply operation is started.
  • the intermittent energization operation is performed when the modulation rate is in the middle range, and the intermittent energization operation is stopped when the middle zone is deviated beyond a predetermined hysteresis. Thereby, it can be more accurately determined that the motor is stably driven.
  • FIG. 10 is a diagram showing an execution region and a hysteresis region of the intermittent energization operation defined by the rotational speed.
  • the intermittent energization operation is stopped.
  • the intermittent energization operation is started.
  • the intermittent energization operation is performed when the rotational speed is in the middle range, and the intermittent energization operation is stopped when the middle range is deviated beyond a predetermined hysteresis. Thereby, it can be more accurately determined that the motor is stably driven.
  • FIG. 11 is a diagram showing an execution region and a hysteresis region of the intermittent energization operation defined by the outside air temperature.
  • the intermittent energization operation when the outside air temperature exceeds T 2, the intermittent power supply operation is stopped. In after the outside air temperature exceeds T 2, when it becomes less than (T 2 -T h), the intermittent energization operation is started.
  • the intermittent energization operation is performed when the outside air temperature is in the middle range, and the intermittent energization operation is stopped when the middle zone is deviated beyond the predetermined hysteresis. Thereby, it can be more accurately determined that the motor is stably driven.
  • FIG. 12 is a graph showing a phase adjustment method in the case where the intermittent energization is stopped and in the case where it is permitted.
  • the intermittent power supply operation is permitted before time t0.
  • the control device 5 performs the intermittent power supply operation of the power conversion circuit 4 at the intermittent phase ⁇ .
  • control device 5 determines that the intermittent energization operation is stopped. After that, the control device 5 gradually decreases the intermittent phase until time t1, and stops the intermittent power supply operation at time t1. At time t2, the control device 5 determines the start of the intermittent power supply operation. After this, the control device 5 gradually increases the intermittent phase until time t3 and performs intermittent current supply operation at intermittent phase ⁇ at time t3. As described above, since the intermittent phase is gradually changed, it is possible to alleviate the switching shock accompanying the start and stop of the intermittent energization operation.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the above-described embodiments are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. It is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
  • Each of the configurations, functions, processing units, processing means, etc. described above may be realized partially or entirely by hardware such as an integrated circuit.
  • Each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function.
  • Information such as programs, tables, and files that implement each function can be placed in a memory, hard disk, recording device such as a solid state drive (SSD), or recording medium such as a flash memory card or a digital versatile disk (DVD) it can.
  • SSD solid state drive
  • DVD digital versatile disk
  • control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in a product are shown. In practice, almost all configurations may be considered to be connected to each other.
  • control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in a product are shown. In practice, almost all configurations may be considered to be connected to each other.
  • the invention is not limited to a DC fan or a motor of a compressor, and may be applied to any motor.
  • the execution region may not have to be lower than or equal to the high frequency rotation number.
  • Determining stable driving is not limited to the area indicated by the motor current Im and the number of revolutions per minute, but may be the area indicated by the torque and the number of revolutions per minute.
  • the torque value is calculated by the sum of the torque theoretical formula calculated value and the offset value, as shown in equation (3).
  • the torque can be used instead of the motor current Im to determine whether or not stable driving is performed.
  • Determining stable driving is not limited to the area indicated by the motor current Im and the number of revolutions per minute, but may be the area indicated by the modulation rate and the number of revolutions per minute. When the applied voltage is constant, the modulation factor can be uniquely calculated from the motor current Im.

Abstract

This air conditioner is provided with an electric motor (1), and a power conversion device (1) which uses a vector control method to perform power conversion. The power conversion device (1) is provided with: a pulse control unit (7) for outputting a pulse signal; a power conversion circuit (41) which uses the pulse signal to convert DC power into AC power; a current detection unit (6) which detects the current of the power conversion circuit (41); a vector control unit (8) for generating a command voltage for the pulse control unit (7); and a pulse stopping control unit (9) which generates a pulse stopping control signal for stopping the pulse signal in an interval determined using the current phase as a reference, and outputs the pulse stopping control signal to the pulse control unit (7). The vector control unit (8) starts operation of the pulse stopping control unit (9) if the motor current of the electric motor (1) is within a prescribed range of the motor current at the present rotational speed when there is no load.

Description

空気調和機Air conditioner
 本発明は、空気調和機に関する。 The present invention relates to an air conditioner.
 空気調和機のモータ駆動装置において、高効率と高出力化を実現する技術が様々開発されている。例えばモータ駆動装置からモータへ流れる電流を正弦波状にPWM(Pulse Width Modulation)制御をスイッチングする「180度通電」の技術が開示されている。また、モータが駆動することで発生する誘起電圧の位相を基準としてモータへ流れる電流が間欠するようにPWM制御をスイッチングする「120度通電」の技術が開示されている。 Various techniques have been developed to realize high efficiency and high output in a motor drive device of an air conditioner. For example, there has been disclosed a "180-degree conduction" technique of switching PWM (Pulse Width Modulation) control in a sine wave in the current flowing from the motor drive device to the motor. There is also disclosed a "120-degree conduction" technique in which PWM control is switched so that the current flowing to the motor is intermittent with reference to the phase of the induced voltage generated by driving the motor.
 例えば特許文献1には、ベクトル制御180度通電方式で、モータ駆動中のモータ電流位相を基準としてある一定期間のPWM出力を停止することで、ゲート・ドライバの仕様を満足しつつ、PWM制御時のスイッチング損失を低減させ、高効率な電力変換装置を提供することができると記載されている。 For example, in patent document 1, at the time of PWM control, the specification of the gate driver is satisfied by stopping PWM output for a certain period based on the motor current phase during motor drive by the vector control 180 degree conduction method. It is described that it is possible to reduce the switching loss of the power converter and to provide a highly efficient power converter.
特開2013-115955号公報JP, 2013-115955, A
 特許文献1に記載されている発明は、モータ駆動中のモータ電流位相を基準としてある一定期間のPWM出力を停止することでPWM制御時のスイッチング損失を低減させている。しかし、特許文献1に記載の発明は、ある特定条件(回転速度以下/モータ平均電流以下)に限定されており、広範囲において高効率化が図れる技術となっていない。また、DCファン制御でPWM出力を停止する場合は、圧縮機などと違い風などの外乱の影響を考慮する必要がある。運転状態に関わらずPWM出力を停止すると、振動の悪化や停止に至るおそれがある。 The invention described in Patent Document 1 reduces the switching loss during PWM control by stopping the PWM output for a certain period based on the motor current phase during motor drive. However, the invention described in Patent Document 1 is limited to a specific condition (lower than rotational speed / lower than average motor current), and is not a technology that can achieve high efficiency in a wide range. Moreover, when stopping PWM output by DC fan control, it is necessary to consider the influence of disturbance such as wind unlike a compressor etc. If the PWM output is stopped regardless of the operating state, there is a possibility that the vibration may deteriorate or be stopped.
 そこで、本発明は、モータ振動の悪化やモータ停止を回避しつつ、モータ駆動に伴うスイッチング損失の低減とモータ銅損の低減を可能とする空気調和機を提供することを課題とする。 Then, this invention makes it a subject to provide the air conditioner which enables reduction of the switching loss accompanying a motor drive, and reduction of a motor copper loss, avoiding deterioration of a motor vibration and a motor stop.
 前記した課題を解決するため、本発明の空気調和機は、電動機と、ベクトル制御方式を用いて、PWM制御によって前記電動機を駆動するための電力変換を行う電力変換装置を備える。前記電力変換装置は、前記PWM制御を行うためのパルス信号を出力するパルス制御部と、三相構成のスイッチ素子を備えて構成され、前記パルス制御部から出力された前記パルス信号を用いて、直流電力を交流電力に変換する電力変換回路と、前記電力変換回路に流れる電流を検出する電流検出部と、前記電流検出部で検出された電流に基づいてベクトル制御を行い、前記パルス制御部への指令電圧を生成するベクトル制御部と、前記電力変換回路の所定相の正側および負側のスイッチ素子を停止するために、前記電力変換回路の電流位相を基準として定められた区間において前記パルス信号を停止させるパルス停止制御信号を生成し、当該パルス停止制御信号を前記パルス制御部へ出力するパルス停止制御部とを具備する。前記ベクトル制御部は、前記電動機のモータ電流が、現在の回転速度の無負荷時におけるモータ電流に対して所定範囲内ならば、前記パルス停止制御部の動作を開始させる。 In order to solve the above-mentioned subject, an air conditioner of the present invention is provided with an electric motor and a power converter which performs electric power conversion for driving the electric motor by PWM control using a vector control system. The power converter includes a pulse control unit that outputs a pulse signal for performing the PWM control, and a switch element having a three-phase configuration, and uses the pulse signal output from the pulse control unit. Power control circuit for converting direct current power to alternating current power, current detection unit for detecting current flowing in the power conversion circuit, and vector control based on current detected by the current detection unit, to the pulse control unit The pulse is generated in a section determined on the basis of the current phase of the power conversion circuit in order to stop the vector control unit generating the command voltage and the positive and negative switch elements of the predetermined phase of the power conversion circuit. And a pulse stop control unit for generating a pulse stop control signal for stopping the signal and outputting the pulse stop control signal to the pulse control unit. The vector control unit starts the operation of the pulse stop control unit if the motor current of the motor is within a predetermined range with respect to the motor current at no load of the current rotational speed.
 その他の手段については、発明を実施するための形態のなかで説明する。 Other means will be described in the form for carrying out the invention.
 本発明によれば、モータ振動の悪化やモータ停止を回避しつつ、モータ駆動に伴うスイッチング損失の低減とモータ銅損の低減が可能となる。 According to the present invention, it is possible to reduce switching loss and motor copper loss associated with driving of a motor while avoiding deterioration of motor vibration and stop of the motor.
本実施形態におけるPWM制御方式の電力変換装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the power converter device of the PWM control system in this embodiment. 本実施形態における空気調和機の室内機、室外機、およびリモコンの正面図である。It is a front view of the indoor unit of the air conditioner in this embodiment, an outdoor unit, and a remote control. 通常動作時において電動機に流れる交流電圧、交流電流およびパルス信号の関係を示す波形図である。It is a wave form diagram which shows the relation of the exchange voltage which flows into a motor at the time of normal operation, exchange current, and a pulse signal. 間欠通電動作時において電動機に流れる交流電圧、交流電流およびパルス信号と、相パルス停止制御信号との関係を示す波形図である。FIG. 7 is a waveform diagram showing a relationship between an AC voltage, an AC current, and a pulse signal flowing through the motor during intermittent energization operation and a phase pulse stop control signal. 電力変換装置を備える実機を駆動した場合の、U相電圧、U相電流およびパルス信号の関係を示す波形図である。It is a wave form diagram showing the relation of U phase voltage, U phase current, and a pulse signal at the time of driving an actual machine provided with a power conversion device. 本実施形態の電力変換装置による、相パルス停止区間(開放相区間)に対する電力変換回路損失、電動機損失およびそれらを足し合わせた総合損失の関係を示す特性図である。It is a characteristic view showing the relation of the power conversion circuit loss to the phase pulse stop section (open phase section), the motor loss, and the total loss which added them by the power converter of this embodiment. DCファンに適用した場合の間欠通電動作の実行領域とヒステリシス領域とを示すグラフである。It is a graph which shows the execution field and hysteresis field of intermittent energization operation at the time of applying to a DC fan. 圧縮機に適用した場合の間欠通電動作の実行領域とヒステリシス領域とを示すグラフである。It is a graph which shows the execution field and hysteresis field of intermittent energization operation at the time of applying to a compressor. 変調率で定義された間欠通電動作の実行領域とヒステリシス領域とを示す図である。It is a figure which shows the execution area | region and hysteresis area | region of the intermittent electricity supply operation | movement defined by the modulation rate. 回転速度で定義された間欠通電動作の実行領域とヒステリシス領域とを示す図である。It is a figure which shows the execution area | region and hysteresis area | region of the intermittent electricity supply operation | movement which were defined by the rotational speed. 外気温で定義された間欠通電動作の実行領域とヒステリシス領域とを示す図である。It is a figure which shows the execution area | region and hysteresis area | region of intermittent electricity supply operation | movement which were defined by external temperature. 間欠通電を停止した場合と許可した場合の位相調整方法を示すグラフである。It is a graph which shows the phase adjustment method when the intermittent energization is stopped and when it permits.
 以降、本発明を実施するための形態を、各図を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
《概要》
 本実施形態に係る電力変換装置は、PWM制御のパルス信号を用いて直流電力を交流電力に変換する電力変換回路(インバータ)と、電力変換回路に流れる電流を検出してその電力変換回路をベクトル制御するベクトル制御部とを備えている。
"Overview"
The power conversion device according to the present embodiment is a power conversion circuit (inverter) that converts DC power into AC power using a pulse signal of PWM control, and detects a current flowing in the power conversion circuit to vector the power conversion circuit. And a vector control unit for controlling.
 電力変換装置は更に、電力変換回路に流れる電流位相のゼロクロス点を基準として定められた区間のパルス信号を停止させて、同相の上下アームのスイッチ素子を停止させる開放相区間を設けている。これにより電力変換装置は、PWM制御時のスイッチング回数を低減させてスイッチング損失を低下させることができる。更に電力変換装置は、開放相区間を設けることで電流位相のゼロクロス点によって、電動機の磁石位置の正確な位置情報を取得することができる。その結果、安定したベクトル制御を行って、電力変換回路(インバータ)および電動機の効率を向上させることが可能となる。 The power converter further includes an open phase section for stopping the switch elements of the upper and lower arms in phase by stopping the pulse signal of the section determined based on the zero crossing point of the current phase flowing through the power conversion circuit. Thus, the power conversion device can reduce the switching loss by reducing the number of switchings at the time of PWM control. Furthermore, by providing the open phase section, the power conversion device can acquire accurate position information of the magnet position of the motor by the zero crossing point of the current phase. As a result, stable vector control can be performed to improve the efficiency of the power conversion circuit (inverter) and the motor.
 以下、本発明に係る電力変換装置の実施形態について図面を参照しながら詳細に説明する。なお、各実施形態を説明するための全図において、同一の構成要素は原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of a power conversion device according to the present invention will be described in detail with reference to the drawings. In all the drawings for describing each embodiment, the same component is attached with the same symbol in principle, and the repeated explanation is omitted.
 図1は、本実施形態に係るPWM制御方式の電力変換装置1の回路構成を示している。
 本実施形態の電力変換装置1では、図1に示すように、PWM制御で駆動する三相インバータからなる電力変換回路4によって、永久磁石同期電動機である交流電動機3をベクトル制御で駆動する場合において、電力変換回路4のパルス信号に相パルス停止区間(すなわち、開放相区間)を設けたときの制御方法について説明する。
FIG. 1 shows a circuit configuration of a power conversion device 1 of a PWM control method according to the present embodiment.
In the power conversion device 1 of the present embodiment, as shown in FIG. 1, in the case where the AC motor 3 which is a permanent magnet synchronous motor is driven by vector control by the power conversion circuit 4 consisting of a three phase inverter driven by PWM control. A control method when a phase pulse stop section (that is, an open phase section) is provided in the pulse signal of the power conversion circuit 4 will be described.
《電力変換装置の回路構成》 
 図1に示すように、電力変換装置1は、電力変換回路4と、相電流検出部6と、制御装置5とを備えて構成される。電力変換回路4は、直流電力を交流電力に変換する3相インバータを含んで構成される。相電流検出部6は、電力変換回路4に接続された交流電動機(電動機)3に流れる電動機電流を検出する。制御装置5は、相電流検出部6で検出された相電流情報(電流)αに基づいてPWM制御を行うパルス信号を用いてベクトル制御を行う。この電力変換回路4には、電源2によって直流電圧Vdが印加される。
Circuit configuration of power converter
As shown in FIG. 1, the power conversion device 1 is configured to include a power conversion circuit 4, a phase current detection unit 6, and a control device 5. The power conversion circuit 4 is configured to include a three-phase inverter that converts DC power into AC power. The phase current detection unit 6 detects the motor current flowing through the AC motor (motor) 3 connected to the power conversion circuit 4. The control device 5 performs vector control using a pulse signal that performs PWM control based on the phase current information (current) α detected by the phase current detection unit 6. A DC voltage Vd is applied to the power conversion circuit 4 by the power supply 2.
 また、電力変換回路4は、電力変換主回路41とゲートドライバ42とを備えて構成される。ゲートドライバ42は、パルス制御部7からのパルス信号γに基づいて電力変換主回路41のIGBT(Insulated Gate Bipolar Transistor)へ供給されるゲート信号を発生する。電力変換主回路41は、IGBTとダイオードとが逆方向に並列接続された三相構成のスイッチング素子Q1~Q6から構成されている。この電力変換主回路41は、U相、V相、W相のスイッチングレグを有し、パルス制御部7から出力されたパルス信号γを用いて、直流電力を交流電力に変換する。 Further, the power conversion circuit 4 is configured to include a power conversion main circuit 41 and a gate driver 42. The gate driver 42 generates a gate signal supplied to an IGBT (Insulated Gate Bipolar Transistor) of the power conversion main circuit 41 based on the pulse signal γ from the pulse control unit 7. The power conversion main circuit 41 is composed of switching elements Q1 to Q6 of a three-phase configuration in which an IGBT and a diode are connected in parallel in the reverse direction. The power conversion main circuit 41 has U-phase, V-phase, and W-phase switching legs, and converts DC power into AC power using the pulse signal γ output from the pulse control unit 7.
 U相のスイッチングレグは、正極と負極との間にスイッチング素子Q1,Q2が直列接続されて構成される。スイッチング素子Q1のコレクタは正極に接続され、スイッチング素子Q2のエミッタはスイッチング素子Q2のコレクタに接続される。スイッチング素子Q2のエミッタは負極に接続される。スイッチング素子Q1のエミッタとスイッチング素子Q2のコレクタとの接続ノードは、交流電動機3のU相コイルに接続される。なお、本実施形態では、スイッチング素子Q1のエミッタとスイッチング素子Q2のコレクタとの接続ノードの電圧を電圧Vuとする。交流電動機3のU相コイルに流れる電流を、U相交流電流Iuとする。 The U-phase switching leg is configured by connecting switching elements Q1 and Q2 in series between the positive electrode and the negative electrode. The collector of switching element Q1 is connected to the positive electrode, and the emitter of switching element Q2 is connected to the collector of switching element Q2. The emitter of the switching element Q2 is connected to the negative electrode. A connection node between the emitter of switching element Q1 and the collector of switching element Q2 is connected to the U-phase coil of AC motor 3. In the present embodiment, a voltage at a connection node between the emitter of the switching element Q1 and the collector of the switching element Q2 is referred to as a voltage Vu. The current flowing through the U-phase coil of the AC motor 3 is referred to as a U-phase alternating current Iu.
 スイッチング素子Q1のゲートには、ゲートドライバ42が出力するパルス信号GPU+が印加される。スイッチング素子Q2のゲートには、ゲートドライバ42が出力するパルス信号GPU-が印加される。 The pulse signal GPU + output from the gate driver 42 is applied to the gate of the switching element Q1. The pulse signal GPU- output from the gate driver 42 is applied to the gate of the switching element Q2.
 V相のスイッチングレグは、正極と負極との間にスイッチング素子Q3,Q4が直列接続されて構成される。スイッチング素子Q3のコレクタは正極に接続され、スイッチング素子Q3のエミッタはスイッチング素子Q4のコレクタに接続される。スイッチング素子Q4のエミッタは負極に接続される。スイッチング素子Q3のエミッタとスイッチング素子Q4のコレクタとの接続ノードは、交流電動機3のV相コイルに接続される。 The switching leg of the V phase is configured by connecting switching elements Q3 and Q4 in series between the positive electrode and the negative electrode. The collector of switching element Q3 is connected to the positive electrode, and the emitter of switching element Q3 is connected to the collector of switching element Q4. The emitter of switching element Q4 is connected to the negative electrode. A connection node between the emitter of switching element Q3 and the collector of switching element Q4 is connected to the V-phase coil of AC motor 3.
 スイッチング素子Q3,Q4のゲートには、ゲートドライバ42が出力するパルス信号がそれぞれ印加される。 Pulse signals output from the gate driver 42 are applied to the gates of the switching elements Q3 and Q4, respectively.
 W相のスイッチングレグは、正極と負極との間にスイッチング素子Q5,Q6が直列接続されて構成される。スイッチング素子Q5のコレクタは正極に接続され、スイッチング素子Q5のエミッタはスイッチング素子Q6のコレクタに接続される。スイッチング素子Q6のエミッタは負極に接続される。スイッチング素子Q5のエミッタとスイッチング素子Q6のコレクタとの接続ノードは、交流電動機3のW相コイルに接続される。 The switching leg of the W phase is configured by connecting switching elements Q5 and Q6 in series between the positive electrode and the negative electrode. The collector of switching element Q5 is connected to the positive electrode, and the emitter of switching element Q5 is connected to the collector of switching element Q6. The emitter of switching element Q6 is connected to the negative electrode. A connection node between the emitter of switching element Q5 and the collector of switching element Q6 is connected to the W-phase coil of AC motor 3.
 スイッチング素子Q5,Q6のゲートには、ゲートドライバ42が出力するパルス信号がそれぞれ印加される。 Pulse signals output from the gate driver 42 are applied to the gates of the switching elements Q5 and Q6, respectively.
 また、制御装置5は、パルス制御部7と、ベクトル制御部8と、パルス停止制御部9とを含んで構成される。パルス制御部7は、印加電圧指令(指令電圧)Vに基づいて制御されたパルス信号γをゲートドライバ42へ供給してPWM制御を行わせる。ベクトル制御部8は、相電流検出部6で検出された相電流情報αを用いてベクトル制御を行い、印加電圧指令Vを算出する。パルス停止制御部9は、ベクトル制御により算出された電流の位相情報(電流位相)に基づいて電流ゼロクロス付近で相パルス停止区間(開放相区間)δのパルス信号γを停止させる相パルス停止制御信号(パルス停止制御信号)βをパルス制御部7へ出力する。この相パルス停止制御信号(パルス停止制御信号)βは、この電力変換回路4の所定相の正側および負側のスイッチング素子を停止させる。 Further, the control device 5 is configured to include a pulse control unit 7, a vector control unit 8, and a pulse stop control unit 9. The pulse control unit 7 supplies a pulse signal γ controlled based on the applied voltage command (command voltage) V * to the gate driver 42 to perform PWM control. The vector control unit 8 performs vector control using the phase current information α detected by the phase current detection unit 6 to calculate an applied voltage command V * . The pulse stop control unit 9 is a phase pulse stop control signal for stopping the pulse signal γ of the phase pulse stop section (open phase section) δ near the current zero cross based on the phase information (current phase) of the current calculated by vector control. (Pulse stop control signal) β is output to the pulse control unit 7. The phase pulse stop control signal (pulse stop control signal) β stops the switching elements on the positive side and the negative side of the predetermined phase of the power conversion circuit 4.
 ここで、ベクトル制御部8は、例えば、非特許文献1(坂本他、「家電機器向け位置センサレス永久磁石同期モータの簡易ベクトル制御」電学論D、Vol.124巻11号(2004年)pp.1133-1140)や非特許文献2(戸張他、「高速用永久磁石同期モータの新ベクトル制御方式の検討」電学論D、Vol.129巻1号(2009年)pp.36-45)に記載されているように、インバータ出力電流を検出して3相-2相変換(dq変換;direct-quadrature変換)して制御系にフィードバックし、再び2相-3相変換してインバータを駆動する一般的なベクトル制御を用いることで実現可能であり、制御方式については特定するものではない。したがって、ベクトル制御部8の動作は周知の技術であるので詳細な説明は省略する。 Here, the vector control unit 8 is described, for example, in Non-Patent Document 1 (Sakamoto et al., “Simple Vector Control of Position Sensorless Permanent Magnet Synchronous Motor for Home Appliances”) Theory of Electrical Engineering D, Vol. 124, No. 11 (2004) pp. 1131-3140) and Non-Patent Document 2 (Tobari et al., "Study of New Vector Control Method for Permanent Magnet Synchronous Motor for High Speed," Electrology D, Vol. 129, Vol. 1, No. 1 (2009) pp. 36-45) As described in, the inverter output current is detected, three-phase to two-phase conversion (dq conversion; direct-quadrature conversion) is fed back to the control system, and the two-phase to three-phase conversion is performed again to drive the inverter It can be realized by using general vector control, and the control method is not specified. Therefore, since the operation of the vector control unit 8 is a known technique, the detailed description will be omitted.
 図2は、本実施形態における空気調和機Aの室内機100、室外機200、およびリモコンReの正面図である。 FIG. 2 is a front view of the indoor unit 100, the outdoor unit 200, and the remote control Re of the air conditioner A in the present embodiment.
 図2に示すように、空気調和機Aは、いわゆるルームエアコンと呼ばれている。空気調和機Aは、室内機100と、室外機200と、リモコンReと、図1に示した電力変換装置1(図2において不図示)を備えている。室内機100と室外機200とは冷媒配管300で接続され、周知の冷媒サイクルによって、室内機100が設置されている室内を空調する。また、室内機100と室外機200とは、通信ケーブル(図示せず)を介して互いに情報を送受信するようになっている。更に室外機200には配線(図示せず)で繋がれており室内機100を介して交流電圧が供給されている。電力変換装置1(図1参照)は、室外機200に備えられており、室内機100側から供給された交流電力を直流電力に変換している。 As shown in FIG. 2, the air conditioner A is called a so-called room air conditioner. The air conditioner A includes an indoor unit 100, an outdoor unit 200, a remote controller Re, and the power conversion device 1 (not shown in FIG. 2) shown in FIG. The indoor unit 100 and the outdoor unit 200 are connected by a refrigerant pipe 300, and the air in the room where the indoor unit 100 is installed is air-conditioned by a known refrigerant cycle. Moreover, the indoor unit 100 and the outdoor unit 200 mutually transmit and receive information via a communication cable (not shown). Furthermore, the outdoor unit 200 is connected by a wire (not shown), and an AC voltage is supplied via the indoor unit 100. The power conversion device 1 (see FIG. 1) is included in the outdoor unit 200, and converts alternating current power supplied from the indoor unit 100 side into direct current power.
 リモコンReは、ユーザによって操作されて、室内機100のリモコン送受信部Qに対して赤外線信号を送信する。この赤外線信号の内容は、運転要求、設定温度の変更、タイマ、運転モードの変更、停止要求などの指令である。空気調和機Aは、これら赤外線信号の指令に基づいて、冷房モード、暖房モード、除湿モードなどの空調運転を行う。また、室内機100は、リモコン送受信部QからリモコンReへ、室温情報、湿度情報、電気代情報などのデータを送信する。 The remote control Re is operated by the user, and transmits an infrared signal to the remote control transmission / reception unit Q of the indoor unit 100. The contents of the infrared signal are commands such as an operation request, a change of the set temperature, a timer, a change of the operation mode, and a stop request. The air conditioner A performs the air conditioning operation such as the cooling mode, the heating mode, and the dehumidifying mode based on the instruction of the infrared signals. Also, the indoor unit 100 transmits data such as room temperature information, humidity information, and electricity cost information from the remote control transmission / reception unit Q to the remote control Re.
 空気調和機Aに搭載された電力変換装置1の動作について説明する。電力変換装置1は、電源2から供給される直流電圧Vdを再び交流に変換して交流電動機3(図2において不図示)を駆動するものである。不図示の交流電動機3は、DCファンモータであるが、圧縮機モータに適用してもよい。 The operation of the power conversion device 1 mounted on the air conditioner A will be described. The power conversion device 1 converts the DC voltage Vd supplied from the power supply 2 into an AC again to drive an AC motor 3 (not shown in FIG. 2). The AC motor 3 (not shown) is a DC fan motor, but may be applied to a compressor motor.
《通常動作時の波形》
 ここで、電力変換装置1による間欠通電動作時のPWM制御を明確化するため、通常動作時のPWM制御について、図3を用いて説明する。図3は、比較例における、交流電動機3に流れる交流電圧、交流電流およびパルス信号の関係を示す波形図であり、横軸に電圧位相、縦軸に電圧、電流およびパルス信号の各レベルを示している。
波形 Waveform at normal operation》
Here, in order to clarify PWM control at the time of intermittent electricity supply operation | movement by the power conversion device 1, PWM control at the time of normal operation is demonstrated using FIG. FIG. 3 is a waveform diagram showing the relationship between AC voltage, AC current, and pulse signal flowing in the AC motor 3 in the comparative example, the horizontal axis representing voltage phase, and the vertical axis representing each level of voltage, current and pulse signal. ing.
 制御装置5は、パルス制御部7において、図3の第1グラフに示すように、PWMキャリア信号と印加電圧指令Vとを比較してPWMパルス信号(パルス信号γ)を生成する。また、この印加電圧指令Vの指令値は、相電流検出部6で検出された相電流情報αを基にベクトル制御部8で演算を行って得られたものである。ここで、相電流検出部6による相電流情報αの取得は、例えば、特開2004-48886号公報の図1に開示されているように、CT(Current Transformer)によって交流出力電流を直接検出してもよいし、同公報の図12に開示されているように、シャント抵抗によって直流母線の電流情報を取得し、この電流情報に基づいて相電流を再現させる方式でもよい。 As shown in the first graph of FIG. 3, the control device 5 compares the PWM carrier signal with the applied voltage command V * to generate a PWM pulse signal (pulse signal γ) in the pulse control unit 7. Further, the command value of the applied voltage command V * is obtained by the calculation of the vector control unit 8 based on the phase current information α detected by the phase current detection unit 6. Here, acquisition of the phase current information α by the phase current detection unit 6 is, for example, directly detecting an AC output current by CT (Current Transformer) as disclosed in FIG. 1 of JP-A-2004-48886. Alternatively, as disclosed in FIG. 12 of the same publication, current information of a DC bus may be acquired by a shunt resistor, and a phase current may be reproduced based on the current information.
 次に、図3を用いて、通常動作時に電力変換装置1から交流電動機3へ供給される交流電圧および交流電流とパルス信号との関係について詳細に説明する。図3の第1グラフはPWMキャリア信号と印加電圧指令Vとを示しており、代表としてU相印加電圧指令Vuを示している。ここで、θvはU相を基準とする電圧位相を示している。 Next, the relationship between the AC voltage and AC current supplied from the power conversion device 1 to the AC motor 3 during normal operation and the pulse signal will be described in detail with reference to FIG. The first graph of FIG. 3 shows the PWM carrier signal and the applied voltage command V * , and shows the U-phase applied voltage command Vu * as a representative. Here, θv indicates a voltage phase with reference to the U phase.
 PWM制御方式では、パルス制御部7は、図3の第1グラフに示す通り、U相印加電圧指令Vuと三角波キャリア信号(PWMキャリア信号)とを基にして、図3の第3グラフに示すパルス信号GPU+,GPU-を生成し、このパルス信号GPU+,GPU-を電力変換主回路41の駆動のためにゲートドライバ42へ出力する。パルス信号GPU+は、ゲートドライバ42で電圧変換されて、U相上側のスイッチング素子Q1のゲートに印加される。パルス信号GPU-は、ゲートドライバ42で電圧変換されて、U相下側のスイッチング素子Q2のゲートに印加される。すなわち、パルス信号GPU+とパルス信号GPU-は正負(1,0)が逆の信号となっている。 In the PWM control method, as shown in the first graph of FIG. 3, the pulse control unit 7 generates the third graph of FIG. 3 based on the U-phase applied voltage command Vu * and the triangular wave carrier signal (PWM carrier signal). The pulse signals GPU + and GPU− shown are generated, and the pulse signals GPU + and GPU− are output to the gate driver 42 for driving the power conversion main circuit 41. The pulse signal GPU + is voltage-converted by the gate driver 42 and applied to the gate of the switching element Q1 on the upper side of the U phase. The pulse signal GPU- is voltage-converted by the gate driver 42 and applied to the gate of the switching element Q2 on the lower side of the U phase. That is, the pulse signal GPU + and the pulse signal GPU- are opposite in polarity (1, 0).
 このパルス信号GPU+,GPU-によって電力変換主回路41がPWM制御を行うことにより、交流電動機3には図3の第2グラフに示すようなU相交流電流Iuが流れる。ここで、φは電圧と電流の位相差を示している。 When the power conversion main circuit 41 performs PWM control by the pulse signals GPU + and GPU−, a U-phase alternating current Iu as shown in the second graph of FIG. 3 flows in the alternating current motor 3. Here, φ indicates the phase difference between the voltage and the current.
 また、ベクトル制御部8では、U相交流電流Iuを含む相電流情報αを基に、ベクトル制御を行うことで、電圧の振幅および電圧と電流の位相差φの制御を行っている。 The vector control unit 8 performs vector control based on phase current information α including the U-phase alternating current Iu to control the voltage amplitude and the phase difference φ between the voltage and the current.
 図3に示す通り、通常動作時におけるPWM制御では、電圧・電流の一周期の間は常にスイッチング動作を行って180度通電しており、スイッチング動作が停止する期間が存在する120度通電方式や150度通電方式よりスイッチング回数が多い。したがって、180度通電では、これに起因するスイッチング損失が多くなる。 As shown in FIG. 3, in PWM control during normal operation, switching operation is always performed during one cycle of voltage and current, and 180 degrees of conduction are conducted, and there is a period of 120 degrees conduction method in which there is a period in which switching operation stops. The number of switching times is larger than that of the 150 ° conduction method. Therefore, at 180 degree conduction, the switching loss resulting from this increases.
《間欠通電動作時の波形》
 以下の説明においては、PWM制御を行うパルス信号のスイッチング動作を一時停止させるパルス停止制御部9(図1参照)の動作について、図1と図4を用いて説明する。
<< Waveform at the time of intermittent energization operation >>
In the following description, the operation of the pulse stop control unit 9 (see FIG. 1) for temporarily stopping the switching operation of the pulse signal for performing the PWM control will be described with reference to FIG. 1 and FIG.
 図4は、本実施形態における、交流電動機3に流れる交流電圧、交流電流およびパルス信号と、相パルス停止制御信号との関係を示す波形図であり、横軸に電圧位相、縦軸に電圧、電流、パルス信号および開放相制御信号(相パルス停止制御信号)の各レベルを示している。すなわち、図4は、図3の通常動作時の波形図と対比して示した間欠通電動作時の波形図である。 FIG. 4 is a waveform diagram showing a relationship between an AC voltage, an AC current and a pulse signal flowing in the AC motor 3 and a phase pulse stop control signal in the present embodiment, in which the horizontal axis represents voltage phase and the vertical axis represents voltage; The respective levels of the current, the pulse signal and the open phase control signal (phase pulse stop control signal) are shown. That is, FIG. 4 is a waveform chart at the time of intermittent energization operation shown in comparison with the waveform chart at the time of normal operation of FIG.
 パルス停止制御部9は、図4の第4グラフに示すように、ベクトル制御により制御された電流位相のゼロクロス点φを基準として、位相φと位相φ+πにおいて、下記の式(1)に示すように、相パルス停止区間(開放相区間)δの間、パルス信号GPU+,GPU-共にスイッチングを停止する相パルス停止制御信号(開放相制御信号)βをパルス制御部7へ出力する。この相パルス停止制御信号βは、パルス信号GPU+,GPU-共にスイッチングを停止する場合は“0”、スイッチングを停止せずにPWM制御方式のスイッチングを行う場合は“1”を出力する。 As shown in the fourth graph of FIG. 4, the pulse stop control unit 9 generates the phase φ and the phase φ + π with reference to the zero-crossing point φ of the current phase controlled by the vector control as shown in the following equation (1) Further, a phase pulse stop control signal (open phase control signal) β for stopping switching of both the pulse signals GPU + and GPU− is output to the pulse control unit 7 during the phase pulse stop interval (open phase interval) δ. The phase pulse stop control signal β outputs “0” when stopping switching of both the pulse signals GPU + and GPU−, and outputs “1” when performing switching of the PWM control method without stopping the switching.
Figure JPOXMLDOC01-appb-M000001
 
 
 
 
Figure JPOXMLDOC01-appb-M000001
 
 
 
 
 すなわち、式(1)からわかるように、φを電圧と電流の位相差、δを相パルス停止区間(開放相区間)としたとき、U相を基準とする電圧位相θvが、φ-δ/2<θv<φ+δ/2のときおよびφ+π-δ/2<θv<φ+π+δ/2のときは、パルス信号GPU+およびGPU-によるスイッチングを停止する。そして、それ以外のときはパルス信号GPU+およびGPU-によるスイッチングを行う。 That is, as can be seen from the equation (1), assuming that φ is a phase difference between the voltage and the current, and δ is a phase pulse stop interval (open phase interval), the voltage phase θv with reference to the U phase is φ−δ / When 2 <θv <φ + δ / 2 and φ + π−δ / 2 <θv <φ + π + δ / 2, switching by the pulse signals GPU + and GPU− is stopped. And switching by pulse signal GPU + and GPU- is performed at other times.
 このため、パルス制御部7からの出力状態は、相パルス停止制御信号βの相パルス停止区間δでは、パルス信号GPU+,GPU-が共にオフとなる。したがって、パルス制御部7からは、図4の第3グラフに示すように、相パルス停止区間δで休止したパルス信号の信号列が出力される。言い換えると、電圧および電流の一周期の間に2回に亘って相パルス停止区間(開放相区間)δを設定することとなる。なお、本実施形態の構成の場合、対象となるPWM制御の変調方式は正弦波PWM制御方式のみではなく、二相変調型PWM制御方式や三次調波加算型PWM制御方式でも、同様の相パルス停止区間δを設けることが可能となる。 Therefore, in the output state from the pulse control unit 7, both of the pulse signals GPU + and GPU− are turned off in the phase pulse stop interval δ of the phase pulse stop control signal β. Therefore, as shown in the third graph of FIG. 4, the pulse control unit 7 outputs a signal train of pulse signals paused in the phase pulse stop interval δ. In other words, the phase pulse stop interval (open phase interval) δ is set twice over one cycle of the voltage and current. In addition, in the case of the configuration of the present embodiment, the target PWM control modulation method is not limited to the sine wave PWM control method, and the same phase pulse can be used in the two-phase modulation PWM control method or the third harmonic addition PWM control method. It is possible to provide the stop section δ.
 このように、パルス停止制御部9によりスイッチング動作を停止する期間が設けられたパルス信号GPU+,GPU-は、スイッチング停止区間とスイッチング動作区間では、印加電圧位相および交流電動機3の誘起電圧位相を基準として設けられていない形状となる。すなわち、パルス信号GPU+,GPU-のスイッチング停止区間とスイッチング動作区間は、電流位相のゼロクロス点を基準として設定される。 As described above, the pulse signals GPU + and GPU- provided with a period for stopping the switching operation by the pulse stop control unit 9 reference the applied voltage phase and the induced voltage phase of the AC motor 3 in the switching stop period and the switching operation period. The shape is not provided. That is, the switching stop period and the switching operation period of the pulse signals GPU + and GPU− are set with reference to the zero cross point of the current phase.
 言い換えると、通常動作時は、誘起電圧の電圧位相を基準にしたパルス信号であるため、図3の第3グラフに示すように、パルス信号列は、電圧のゼロクロス点の前後においてON/OFFデューティが対称となる形状になっている。ところが、間欠通電動作時では、電流位相を基準として相パルス停止区間δが設けられているため(つまり、電圧位相を基準にしたパルス信号ではないため)、図4の第3グラフに示すように、電圧のゼロクロス点の前後において、パルス信号列のON/OFFデューティは対称にはならない。すなわち、本実施形態では、電流のゼロクロス点の前後において、パルス信号列のON/OFFデューティは非対称となっている。 In other words, during normal operation, since the pulse signal is based on the voltage phase of the induced voltage, as shown in the third graph of FIG. 3, the pulse signal train has an ON / OFF duty before and after the zero cross point of voltage. Is symmetrical. However, in the intermittent energization operation, since the phase pulse stop section δ is provided based on the current phase (that is, because it is not a pulse signal based on the voltage phase), as shown in the third graph of FIG. Before and after the zero crossing point of the voltage, the ON / OFF duty of the pulse signal train is not symmetrical. That is, in the present embodiment, the ON / OFF duty of the pulse signal train is asymmetrical before and after the current zero cross point.
 このように、間欠通電動作時では、電流のゼロクロス点を含んだ区間に相パルス停止区間δを設けているので、図4の第3グラフに示すように、相パルス停止区間δを中心とした前後のパルス信号列AおよびBが非対称な形状となる。このことから、電流のゼロクロス点を含んだ区間に相パルス停止区間δを設けた場合は、相パルス停止区間δの前後のパルス信号が非対称であるか否かを観測することにより、本実施形態の間欠通電動作が適用されたか否かを容易に判別することができる。 Thus, at the time of the intermittent energization operation, the phase pulse stop section δ is provided in the section including the zero cross point of the current, so as shown in the third graph of FIG. The front and rear pulse signal trains A and B have an asymmetrical shape. From this, when the phase pulse stop section δ is provided in the section including the zero cross point of the current, the present embodiment is implemented by observing whether the pulse signals before and after the phase pulse stop section δ are asymmetrical. It can be easily determined whether or not the intermittent energization operation of the above is applied.
《実機による駆動時の波形》
 図5は、本実施形態の電力変換装置1を備える実機を駆動した場合の、U相電圧、U相電流、およびパルス信号の関係を示す波形図であり、横軸に電圧位相、縦軸に電圧、電流、およびパルス信号の各レベルを示している。すなわち、図5は、本実施形態の間欠通電動作による電流のゼロクロス点を含んだ近傍に相パルス停止区間を設けた手法で、二相変調型PWM制御方式において相パルス停止区間を設定して実機を駆動した場合の電圧、電流およびパルス信号を示している。
波形 Waveform when driving by actual machine》
FIG. 5 is a waveform diagram showing the relationship between the U-phase voltage, the U-phase current, and the pulse signal when driving an actual device provided with the power conversion device 1 of the present embodiment, the horizontal axis representing voltage phase and the vertical axis The respective levels of voltage, current, and pulse signal are shown. That is, FIG. 5 is a method in which the phase pulse stop section is provided in the vicinity including the zero cross point of the current due to the intermittent energization operation of this embodiment, and the phase pulse stop section is set in the two-phase modulation type PWM control method Shows the voltage, current and pulse signal when driving
 図5の第1グラフは電力変換主回路41のU相端子電圧Vun、同図の第2グラフは交流電動機3に流れるU相交流電流Iu、同図の第3グラフにパルス信号GPU+,GPU-を示している。 The first graph of FIG. 5 shows U-phase terminal voltage Vun of the power conversion main circuit 41, the second graph of FIG. 5 shows U-phase AC current Iu flowing through the AC motor 3, and the third graph of FIG. Is shown.
 図5の第3グラフに示すように、一点鎖線で挟まれた区間(δで表示)においてパルス信号GPU+,GPU-のスイッチング信号が共にオフとなっており、相パルス停止区間δが設定されていることが確認できる。また、相パルス停止区間δが設定されているため、一点鎖線で挟まれた区間ではU相交流電流Iuがゼロとなることもあわせて確認することができる。 As shown in the third graph of FIG. 5, the switching signals of the pulse signals GPU + and GPU− are both off in the section (indicated by δ) sandwiched by the one-dot chain line, and the phase pulse stop section δ is set. Can be confirmed. In addition, since the phase pulse stop section δ is set, it can be confirmed at the same time that the U-phase alternating current Iu becomes zero in the section sandwiched by the one-dot chain line.
《間欠通電動作の効果》
 図6は、本実施形態の電力変換装置1による、相パルス停止区間(開放相区間)δに対する電力変換回路損失、電動機損失およびそれらを足し合わせた総合損失の関係を示す特性図であり、横軸に相パルス停止区間(開放相区間)δ、縦軸に損失を表わしている。すなわち、図6は、パルス停止制御部9で設定する相パルス停止区間δと電力変換回路4の損失、交流電動機3の損失およびこれらの二つの損失を合わせた総合損失の特性を示している。
<< The effect of intermittent power operation >>
FIG. 6 is a characteristic diagram showing the relationship between the power conversion circuit loss, the motor loss and the total loss obtained by adding them to the phase pulse stop interval (open phase interval) δ by the power conversion device 1 of the present embodiment. The axis represents a phase pulse stop section (open phase section) δ, and the vertical axis represents a loss. That is, FIG. 6 shows the characteristics of the total loss obtained by combining the phase pulse stop interval δ set by the pulse stop control unit 9 and the loss of the power conversion circuit 4, the loss of the AC motor 3, and these two losses.
 図6に示すように、本実施形態の電力変換回路4の損失(電力変換回路損失)は、相パルス停止区間δを大きくしてゆくにしたがってスイッチング回数が低減するため、これに起因して低減する。また、交流電動機3の損失(電動機損失)は、相パルス停止区間δを設けることで電流の高調波成分が増加するため、これに起因して大きくなる。更に、相パルス停止区間δが大きくなることにより、電流の高調波成分の増加が顕著となるため、これに起因する交流電動機3の損失(電動機損失)の増加も顕著となる。このため、図6に示すように、これら二つの損失(電力変換回路損失と電動機損失)を加算した総合損失が最少となる相パルス停止区間δoptが存在する。相パルス停止区間δを、この相パルス停止区間δoptに設定することで、電力変換装置1全体の損失を低減させることが可能となる。 As shown in FIG. 6, the loss (power conversion circuit loss) of the power conversion circuit 4 of the present embodiment is reduced because the number of times of switching decreases as the phase pulse stop interval δ increases. Do. Further, the loss (motor loss) of the AC motor 3 is increased because the harmonic component of the current is increased by providing the phase pulse stop section δ. Furthermore, since the increase of the harmonic component of the current becomes remarkable due to the increase of the phase pulse stop interval δ, the increase of the loss (motor loss) of the AC motor 3 resulting from this also becomes remarkable. Therefore, as shown in FIG. 6, there is a phase pulse stop interval δ opt in which the total loss obtained by adding these two losses (power conversion circuit loss and motor loss) is minimized. By setting the phase pulse stop interval δ to this phase pulse stop interval δ opt , it is possible to reduce the overall loss of the power conversion device 1.
 以上、説明したように、パルス停止制御部9を用いることで、PWM制御を行うパルス信号のスイッチング回数を低減させることが可能となる。言い換えると、マイコンの制御で行われるパルス停止制御部9をソフトウェアで構成した場合は、比較例の電力変換回路4の構成は変えずに、新規のハードウェアを追加することなく電力変換装置1の高効率化を達成することが可能となる。また、交流電動機3の電流のゼロクロス付近でスイッチング動作を停止させるため、150度通電方式に対してトルク脈動の増加を抑制することができる。 As described above, by using the pulse stop control unit 9, it is possible to reduce the number of switching times of the pulse signal for performing the PWM control. In other words, when the pulse stop control unit 9 performed by the control of the microcomputer is configured by software, the configuration of the power conversion circuit 4 of the comparative example is not changed, and the addition of new hardware is not performed. It becomes possible to achieve high efficiency. Further, since the switching operation is stopped near the zero cross of the current of the AC motor 3, it is possible to suppress an increase in torque pulsation with respect to the 150-degree conduction method.
 ただし、本実施形態のベクトル制御方式は、位置センサレス簡易ベクトル制御であり、従来のベクトル制御をベースに簡単化したものである。この位置センサレス簡易ベクトル制御は、速度や負荷トルクが変動する過渡状態を除けば、理想的なベクトル制御と同等の性能を出すことができる。言い換えると、位置センサレス簡易ベクトル制御は、速度や負荷トルクが変動する過渡状態において理想的なベクトル制御ほどの性能を見込めない。このような過渡状態において、間欠通電動作によりPWM出力を停止すると、振動の悪化や停止に至るおそれがある。 However, the vector control method of the present embodiment is position sensorless simple vector control, and is simplified based on conventional vector control. This position sensorless simple vector control can exhibit the same performance as ideal vector control except for a transient state in which the speed and load torque fluctuate. In other words, position sensorless simple vector control can not be expected to perform as well as ideal vector control in transient conditions in which speed and load torque change. In such a transient state, if the PWM output is stopped by the intermittent current supply operation, the vibration may be deteriorated or stopped.
 本発明は、モータが安定して駆動していると判断した場合のみ間欠通電動作を実行することでモータ振動の悪化やモータの停止を回避するものである。 According to the present invention, the intermittent energization operation is performed only when it is determined that the motor is stably driven, thereby preventing the deterioration of the motor vibration and the stop of the motor.
 図7は、DCファンに適用した場合の間欠通電動作の実行領域とヒステリシス領域とを示すグラフである。
 グラフの横軸は、1分間あたりの回転数、すなわち回転速度を示している。グラフの縦軸は、交流電動機3に流れる電流を示している。Im基準値は、無負荷時に高域回転数となる電流値である。モータ電流Imは、以下の式(2)で算出することができる。
FIG. 7 is a graph showing an execution area and a hysteresis area of the intermittent energization operation when applied to a DC fan.
The horizontal axis of the graph indicates the number of rotations per minute, that is, the rotation speed. The vertical axis of the graph indicates the current flowing through the AC motor 3. The Im reference value is a current value which is a high frequency rotation speed at no load. The motor current Im can be calculated by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
 
 
Figure JPOXMLDOC01-appb-M000002
 
 
 実線グラフは、無負荷時の実回転数Nとモータ電流Imの関係を示している。
 中程度の破線グラフは、所定の正の負荷が交流電動機3に掛かった場合の実回転数Nとモータ電流Imの関係を示し、実線グラフに対して電流Ir2だけ高い値である。細かな破線グラフは、更に大きな正の負荷が交流電動機3に掛かった場合の実回転数Nとモータ電流Imの関係を示し、中程度の破線グラフに対して電流Ih2だけ高い値である。例えばDCファンに逆風が吹くと、正の負荷が交流電動機3に掛かり、中程度の破線グラフや細かな破線グラフの方向に振れる。
The solid line graph shows the relationship between the actual rotation speed N and the motor current Im at no load.
The middle broken line graph shows the relationship between the actual rotation speed N and the motor current Im when the predetermined positive load is applied to the AC motor 3, and is a value higher than the solid line graph by the current I r2 . The fine broken line graph shows the relationship between the actual rotation speed N and the motor current Im when a larger positive load is applied to the AC motor 3, which is higher than the medium broken line graph by the current Ih2 . For example, when a headwind blows on the DC fan, a positive load is applied to the AC motor 3 and swings in the direction of a medium broken line graph or a fine broken line graph.
 一点鎖線グラフは、所定の負の負荷が交流電動機3に掛かった場合の実回転数Nとモータ電流Imの関係を示し、実線グラフに対して電流Ir1だけ低い値である。粗い破線グラフは、更に大きな負の負荷が交流電動機3に掛かった場合の実回転数Nとモータ電流Imの関係を示し、中程度の破線グラフに対して電流Ih1だけ低い値である。例えばDCファンに順風が吹くと、負の負荷が交流電動機3に掛かり、一点鎖線グラフや粗い破線グラフの方向に振れる。 The alternate long and short dash line graph indicates the relationship between the actual rotation speed N and the motor current Im when the predetermined negative load is applied to the AC motor 3, and is a value lower than the solid line graph by the current I r1 . The rough broken line graph shows the relationship between the actual rotation speed N and the motor current Im when a further negative load is applied to the AC motor 3, which is lower than the medium broken line graph by the current Ih1 . For example, when a forward wind blows on a DC fan, a negative load is applied to the AC motor 3 and swings in the direction of a dashed dotted line graph or a rough broken line graph.
 実行領域Z1は濃いハッチングの領域であり、間欠通電動作を実行開始する領域を示している。この実行領域Z1は、中程度の破線グラフと一点鎖線グラフとの間の領域である。つまり、モータに対して所定範囲内の負荷が掛かっている状態である。このとき、制御装置5は、間欠通電動作を開始する。なお、図7はDCファンに適用した場合なので、交流電動機3に掛かる負荷は正負ともに略同じであると考えられる。よって、電流Ir1と電流Ir2とは等しく設定されている。 Execution region Z 1 is a region of dense hatching indicates a region to begin executing the intermittent power supply operation. The execution region Z 1 is a region between the dashed graph and dashed line graphs moderate. That is, a load within a predetermined range is applied to the motor. At this time, the control device 5 starts the intermittent energization operation. In addition, since FIG. 7 is a case where it applies to a DC fan, it is thought that the load concerning AC motor 3 is substantially the same in positive / negative. Therefore, the current I r1 and the current I r2 are set equal.
 実行領域Z1は更に、Im下限値リミッタに電流Ih1を加えた値以上の領域としている。本実施形態の相電流検出部6は、不図示のシャント抵抗によって電流を検出している。そのため検出可能なIm下限値が存在する。そのため、実行領域Z1にも下限を設けている。 Execution region Z 1 further is directed to Im lower limit value or more regions plus current I h1 to the limiter. The phase current detection unit 6 of the present embodiment detects a current by a shunt resistor (not shown). Therefore, there is a detectable Im lower limit. Therefore, there is provided a lower limit to execution region Z 1.
 ヒステリシス領域Z2は薄いハッチングの領域であり、間欠通電動作を実行していた場合、この実行を継続する領域を示している。ヒステリシス領域Z2は、細かな破線グラフと粗い破線グラフとの間の領域である。制御装置5は、実行領域Z1に対してヒステリシス以上ずれた場合に、間欠通電動作を停止している。ヒステリシスを設けることにより、実行領域Z1の境界におけるチャタリングを防ぐことができる。 Hysteresis region Z 2 is a region of the thin hatching, when running intermittent energization operation, it indicates a region to continue the execution. Hysteresis region Z 2 is a region between the fine broken line graph and long dashed line graph. The control device 5, when the offset or hysteresis to the execution area Z 1, which stops the intermittent power supply operation. By providing the hysteresis, it is possible to prevent chattering at the boundary of the execution region Z 1.
 なお、図7はDCファンに適用した場合なので、交流電動機3に掛かる負荷は正負ともに略同じであると考えられる。よって、電流Ih1と電流Ih2とは等しく設定されている。
 ヒステリシス領域Z2はIm下限値リミッタ以上の領域としている。
In addition, since FIG. 7 is a case where it applies to a DC fan, it is thought that the load concerning AC motor 3 is substantially the same in positive / negative. Therefore, the current I h1 and the current I h2 are set equal.
Hysteresis region Z 2 are as Im lower limit limiter or more regions.
 実行領域Z1とヒステリシス領域Z2とは更に、高域回転数以下の領域としている。 Furthermore the execution region Z 1 and the hysteresis region Z 2, are a high-frequency rotational speed following areas.
 図8は、圧縮機に適用した場合の間欠通電動作の実行領域とヒステリシス領域とを示すグラフである。
 実線は、無負荷時の実回転数Nとモータ電流Imの関係を示している。
FIG. 8 is a graph showing an execution region and a hysteresis region of the intermittent energization operation when applied to a compressor.
The solid line shows the relationship between the actual rotation speed N and the motor current Im at no load.
 中程度の破線は、所定の正の負荷が交流電動機3に掛かった場合の実回転数Nとモータ電流Imの関係を示し、実線に対して電流Ir4だけ高い値である。細かな破線は、更に大きな正の負荷が交流電動機3に掛かった場合の実回転数Nとモータ電流Imの関係を示し、中程度の破線に対して電流Ih4だけ高い値である。無負荷状態の圧縮機を回転させると、多くの場合において正の負荷が交流電動機3に掛かるため、中程度の破線や細かな破線の方向に振れる。 The middle broken line shows the relationship between the actual rotation speed N and the motor current Im when the predetermined positive load is applied to the AC motor 3, and is a value higher than the solid line by the current I r4 . The fine broken line shows the relationship between the actual rotation speed N and the motor current Im when a larger positive load is applied to the AC motor 3, which is higher than the medium broken line by the current I h4 . When the non-loaded compressor is rotated, a positive load is applied to the AC motor 3 in many cases, so that it swings in the direction of a medium broken line or a fine broken line.
 一点鎖線は、所定の負の負荷が交流電動機3に掛かった場合の実回転数Nとモータ電流Imの関係を示し、実線に対して電流Ir3だけ低い値である。粗い破線は、更に大きな負の負荷が交流電動機3に掛かった場合の実回転数Nとモータ電流Imの関係を示し、中程度の破線に対して電流Ih3だけ低い値である。圧縮機を回転させたとき、負の負荷が交流電動機3に掛かる場合はほとんどないため、電流Ir3は電流Ir4よりも小さく設定され、電流Ih3は電流Ih4よりも小さく設定されている。 The alternate long and short dash line indicates the relationship between the actual rotation speed N and the motor current Im when a predetermined negative load is applied to the AC motor 3, and is a value lower than the solid line by the current I r3 . The rough broken line shows the relationship between the actual rotation speed N and the motor current Im when a further large negative load is applied to the AC motor 3, which is a value lower than the middle broken line by the current Ih3 . When there is little negative load on the AC motor 3 when the compressor is rotated, the current I r3 is set smaller than the current I r4 and the current I h3 is set smaller than the current I h4 .
 実行領域Z3は濃いハッチングの領域であり、間欠通電動作を実行開始する領域を示している。この実行領域Z3は、中程度の破線と一点鎖線との間の領域である。つまり、モータに対して所定範囲内の負荷が掛かっている状態である。このとき、制御装置5は、間欠通電動作を開始する。なお、図8は圧縮機に適用した場合なので、交流電動機3に掛かる負荷は正である場合がほとんどであると考えられる。よって、電流Ir2は電流Ir1よりも大きく設定されている。 Execution region Z 3 is a region of dense hatching indicates a region to begin executing the intermittent power supply operation. The execution region Z 3 is an area between the medium dashed and dashed line. That is, a load within a predetermined range is applied to the motor. At this time, the control device 5 starts the intermittent energization operation. In addition, since FIG. 8 is a case applied to a compressor, it is considered that the load applied to the AC motor 3 is mostly positive. Therefore, the current I r2 is set larger than the current I r1 .
 実行領域Z3は更に、Im下限値リミッタに電流Ih3を加えた値以上の領域としている。本実施形態の相電流検出部6は、不図示のシャント抵抗によって電流を検出している。そのため検出可能なIm下限値が存在する。そのため、実行領域Z3にも下限を設けている。 Execution region Z 3 further has a value or more regions plus current I h3 in Im lower limit limiter. The phase current detection unit 6 of the present embodiment detects a current by a shunt resistor (not shown). Therefore, there is a detectable Im lower limit. Therefore, there is provided a lower limit to execution region Z 3.
 ヒステリシス領域Z4は薄いハッチングの領域であり、間欠通電動作を実行していた場合、この実行を継続する領域を示している。ヒステリシス領域Z4は、細かな破線と粗い破線との間の領域である。制御装置5は、実行領域Z3に対してヒステリシス以上ずれた場合に、間欠通電動作を停止している。なお、図8は圧縮機に適用した場合なので、交流電動機3に掛かる正である場合がほとんどであると考えられる。よって、電流Ih4は電流Ih3よりも大きく設定されている。 Hysteresis region Z 4 is a region of the thin hatching, when running intermittent energization operation, it indicates a region to continue the execution. Hysteresis region Z 4 is a region between the fine broken line and long dashed line. The control device 5, when the offset or hysteresis to the execution region Z 3, has stopped intermittent energization operation. In addition, since FIG. 8 is a case where it applies to a compressor, it is thought that the case where it applies to the AC motor 3 is mostly positive. Therefore, the current I h4 is set larger than the current I h3 .
 ヒステリシス領域Z2はIm下限値リミッタ以上の領域としている。
 実行領域Z1とヒステリシス領域Z2とは更に、高域回転数以下の領域としている。
Hysteresis region Z 2 are as Im lower limit limiter or more regions.
Furthermore the execution region Z 1 and the hysteresis region Z 2, are a high-frequency rotational speed following areas.
 図9は、変調率で定義された間欠通電動作の実行領域とヒステリシス領域とを示す図である。
 変調率がM1を超えたとき、間欠通電動作が開始する。変調率がM1を超えたのちに、(M1-Mh)よりも小さくなったならば間欠通電動作が停止する。
FIG. 9 is a diagram showing an execution region and a hysteresis region of the intermittent energization operation defined by the modulation factor.
When the modulation factor exceeds M 1 , the intermittent energization operation starts. When the modulation rate becomes smaller than (M 1 -M h ) after M 1 is exceeded, the intermittent power supply operation is stopped.
 間欠通電動作中に、変調率がM2を超えたとき、間欠通電動作が停止する。変調率がM2を超えたのちに、(M2-Mh)よりも小さくなったとき、間欠通電動作が開始する。このように、変調率が中域である場合に間欠通電動作を実行し、かつ所定のヒステリシスを超えて中域を外れたときに間欠通電動作を停止している。これにより、モータが安定駆動していることをより正確に判定可能である。 The intermittent energization operation is stopped when the modulation factor exceeds M 2 during the intermittent energization operation. When the modulation rate becomes smaller than (M 2 -M h ) after M 2 is exceeded, the intermittent power supply operation is started. Thus, the intermittent energization operation is performed when the modulation rate is in the middle range, and the intermittent energization operation is stopped when the middle zone is deviated beyond a predetermined hysteresis. Thereby, it can be more accurately determined that the motor is stably driven.
 図10は、回転速度で定義された間欠通電動作の実行領域とヒステリシス領域とを示す図である。
 回転速度がR1を超えたとき、間欠通電動作が開始する。回転速度がR1を超えたのちに、(R1-Rh)よりも小さくなったならば間欠通電動作が停止する。
FIG. 10 is a diagram showing an execution region and a hysteresis region of the intermittent energization operation defined by the rotational speed.
When the rotational speed exceeds R 1 , the intermittent energization operation starts. If the rotational speed becomes smaller than (R 1 -R h ) after the rotational speed exceeds R 1 , the intermittent energization operation is stopped.
 間欠通電動作中に、回転速度がM2を超えたとき、間欠通電動作が停止する。回転速度がR2を超えたのちに、(R2-Rh)よりも小さくなったとき、間欠通電動作が開始する。このように、回転速度が中域である場合に間欠通電動作を実行し、かつ所定のヒステリシスを超えて中域を外れたときに間欠通電動作を停止している。これにより、モータが安定駆動していることをより正確に判定可能である。 When the rotational speed exceeds M 2 during the intermittent energization operation, the intermittent energization operation is stopped. In after the rotational speed has exceeded the R 2, when it becomes smaller than the (R 2 -R h), the intermittent energization operation is started. As described above, the intermittent energization operation is performed when the rotational speed is in the middle range, and the intermittent energization operation is stopped when the middle range is deviated beyond a predetermined hysteresis. Thereby, it can be more accurately determined that the motor is stably driven.
 図11は、外気温で定義された間欠通電動作の実行領域とヒステリシス領域とを示す図である。
 外気温がT1を超えたとき、間欠通電動作が開始する。外気温がT1を超えたのちに、(T1-Th)よりも小さくなったとき、間欠通電動作が停止する。
FIG. 11 is a diagram showing an execution region and a hysteresis region of the intermittent energization operation defined by the outside air temperature.
When the outside air temperature exceeds T 1, the intermittent energization operation is started. When the outside air temperature becomes lower than (T 1 -T h ) after T 1 is exceeded, the intermittent energization operation is stopped.
 間欠通電動作中に、外気温がT2を超えたとき、間欠通電動作が停止する。外気温がT2を超えたのちに、(T2-Th)よりも小さくなったとき、間欠通電動作が開始する。このように、外気温が中域である場合に間欠通電動作を実行し、かつ所定のヒステリシスを超えて中域を外れたときに間欠通電動作を停止している。これにより、モータが安定駆動していることをより正確に判定可能である。 During the intermittent energization operation, when the outside air temperature exceeds T 2, the intermittent power supply operation is stopped. In after the outside air temperature exceeds T 2, when it becomes less than (T 2 -T h), the intermittent energization operation is started. Thus, the intermittent energization operation is performed when the outside air temperature is in the middle range, and the intermittent energization operation is stopped when the middle zone is deviated beyond the predetermined hysteresis. Thereby, it can be more accurately determined that the motor is stably driven.
 図12は、間欠通電を停止した場合と許可した場合の位相調整方法を示すグラフである。
 時刻t0以前には間欠通電動作は許可されている。このとき、制御装置5は、間欠位相θで電力変換回路4を間欠通電動作させている。
FIG. 12 is a graph showing a phase adjustment method in the case where the intermittent energization is stopped and in the case where it is permitted.
The intermittent power supply operation is permitted before time t0. At this time, the control device 5 performs the intermittent power supply operation of the power conversion circuit 4 at the intermittent phase θ.
 時刻t0において、制御装置5は間欠通電動作の停止を判定する。これ以降、時刻t1までの間、制御装置5は徐々に間欠位相を減少させ、時刻t1で間欠通電動作を停止させる。
 時刻t2において、制御装置5は間欠通電動作の開始を判定する。これ以降、時刻t3までの間、制御装置5は徐々に間欠位相を増加させ、時刻t3で間欠位相θで間欠通電動作させる。このように、間欠位相を徐々に変化させているので、間欠通電動作の開始や停止に伴う切替えショックを緩和することができる。
At time t0, control device 5 determines that the intermittent energization operation is stopped. After that, the control device 5 gradually decreases the intermittent phase until time t1, and stops the intermittent power supply operation at time t1.
At time t2, the control device 5 determines the start of the intermittent power supply operation. After this, the control device 5 gradually increases the intermittent phase until time t3 and performs intermittent current supply operation at intermittent phase θ at time t3. As described above, since the intermittent phase is gradually changed, it is possible to alleviate the switching shock accompanying the start and stop of the intermittent energization operation.
(変形例)
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
(Modification)
The present invention is not limited to the embodiments described above, but includes various modifications. For example, the above-described embodiments are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. It is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
 上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリ、ハードディスク、SSD(Solid State Drive)などの記録装置、または、フラッシュメモリカード、DVD(Digital Versatile Disk)などの記録媒体に置くことができる。 Each of the configurations, functions, processing units, processing means, etc. described above may be realized partially or entirely by hardware such as an integrated circuit. Each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that implement each function can be placed in a memory, hard disk, recording device such as a solid state drive (SSD), or recording medium such as a flash memory card or a digital versatile disk (DVD) it can.
 各実施形態において、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてもよい。
 本発明の変形例として、例えば、次の(a)~(e)のようなものがある。
In each embodiment, control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in a product are shown. In practice, almost all configurations may be considered to be connected to each other.
As a modification of the present invention, there are, for example, the following (a) to (e).
(a) DCファンや圧縮機のモータに限定されず、任意のモータに適用してもよい。
(b) 実行領域は、高域回転数以下としなくてもよい。
(c) 安定駆動を判定するのは、モータ電流Imと1分間あたりの回転数で示される領域に限定されず、トルクと1分間あたりの回転数で示される領域であってもよい。
 なお、トルク値は、式(3)に示すように、トルク理論式算出値とオフセット値との和によって算出される。
Figure JPOXMLDOC01-appb-M000003
 
 
(A) The invention is not limited to a DC fan or a motor of a compressor, and may be applied to any motor.
(B) The execution region may not have to be lower than or equal to the high frequency rotation number.
(C) Determining stable driving is not limited to the area indicated by the motor current Im and the number of revolutions per minute, but may be the area indicated by the torque and the number of revolutions per minute.
The torque value is calculated by the sum of the torque theoretical formula calculated value and the offset value, as shown in equation (3).
Figure JPOXMLDOC01-appb-M000003

 更にトルク理論式算出値は、式(4)によって算出される。
Figure JPOXMLDOC01-appb-M000004
 
 
Further, the calculated value of the torque theoretical equation is calculated by equation (4).
Figure JPOXMLDOC01-appb-M000004

 つまり、トルクは、モータ電流Imによって一意に算出されるため、モータ電流Imの代わりにトルクを用いて安定駆動か否かを判定することができる。
(d) 安定駆動を判定するのは、モータ電流Imと1分間あたりの回転数で示される領域に限定されず、変調率と1分間あたりの回転数で示される領域であってもよい。なお、印加電圧が一定である場合、変調率はモータ電流Imから一意に算出可能である。
(e) 交流電動機(電動機)に流れるモータ電流を検出する以外にも、電力変換回路に流れる電流を検出して、これをモータ電流としてもよい。
That is, since the torque is uniquely calculated by the motor current Im, the torque can be used instead of the motor current Im to determine whether or not stable driving is performed.
(D) Determining stable driving is not limited to the area indicated by the motor current Im and the number of revolutions per minute, but may be the area indicated by the modulation rate and the number of revolutions per minute. When the applied voltage is constant, the modulation factor can be uniquely calculated from the motor current Im.
(E) In addition to detecting the motor current flowing to the AC motor (motor), the current flowing to the power conversion circuit may be detected and used as the motor current.
1 電力変換装置
2 電源
3 交流電動機(電動機)
4 電力変換回路
41 電力変換主回路
42 ゲートドライバ
5 制御装置
6 相電流検出部
7 パルス制御部
8 ベクトル制御部
9 パルス停止制御部
Q1~Q6 スイッチング素子
Vd 直流電圧
A 空気調和機
100 室内機
200 室外機
Re リモコン
Q リモコン送受信部
300 冷媒配管
α 相電流情報(電流)
β 相パルス停止制御信号(パルス停止制御信号)
γ パルス信号 (PWMパルス信号)
ζ 位相情報
δ 相パルス停止区間(開放相区間)
GPU+ パルス信号
GPU- パルス信号
Iu U相交流電流
φ 位相差
1 power converter 2 power supply 3 AC motor (motor)
4 power conversion circuit 41 power conversion main circuit 42 gate driver 5 control device 6 phase current detection unit 7 pulse control unit 8 vector control unit 9 pulse stop control unit Q1 to Q6 switching element Vd DC voltage A air conditioner 100 indoor unit 200 outdoor unit Machine Re Remote control Q Remote control transmission / reception unit 300 Refrigerant piping α phase current information (current)
β-phase pulse stop control signal (pulse stop control signal)
γ pulse signal (PWM pulse signal)
Phase information δ phase pulse stop section (open phase section)
GPU + pulse signal GPU-pulse signal Iu U phase AC current φ phase difference

Claims (8)

  1.  電動機と、
     ベクトル制御方式を用いて、PWM制御によって前記電動機を駆動するための電力変換を行う電力変換装置を備え、
     前記電力変換装置は、
     前記PWM制御を行うためのパルス信号を出力するパルス制御部と、
     三相構成のスイッチ素子を備えて構成され、前記パルス制御部から出力された前記パルス信号を用いて、直流電力を交流電力に変換する電力変換回路と、
     前記電力変換回路に流れる電流を検出する電流検出部と、
     前記電流検出部で検出された電流に基づいてベクトル制御を行い、前記パルス制御部への指令電圧を生成するベクトル制御部と、
     前記電力変換回路の所定相の正側および負側のスイッチ素子を停止するために、前記電力変換回路の電流位相を基準として定められた区間において前記パルス信号を停止させるパルス停止制御信号を生成し、当該パルス停止制御信号を前記パルス制御部へ出力するパルス停止制御部と、
     を具備し、
     前記ベクトル制御部は、前記電動機のモータ電流が、現在の回転速度の無負荷時におけるモータ電流に対して所定範囲内ならば、前記パルス停止制御部の動作を開始させる、
     ことを特徴とする空気調和機。
    Electric motor,
    A power conversion device that performs power conversion for driving the motor by PWM control using a vector control method;
    The power converter is
    A pulse control unit that outputs a pulse signal for performing the PWM control;
    A power conversion circuit including a three-phase switch element and converting DC power into AC power using the pulse signal output from the pulse control unit;
    A current detection unit that detects a current flowing through the power conversion circuit;
    A vector control unit that performs vector control based on the current detected by the current detection unit, and generates a command voltage to the pulse control unit;
    A pulse stop control signal for stopping the pulse signal in a section determined based on the current phase of the power conversion circuit to stop the positive and negative switch elements of the predetermined phase of the power conversion circuit; A pulse stop control unit that outputs the pulse stop control signal to the pulse control unit;
    Equipped with
    The vector control unit starts the operation of the pulse stop control unit if the motor current of the motor is within a predetermined range with respect to the motor current at no load of the current rotational speed.
    An air conditioner characterized by
  2.  前記ベクトル制御部は、前記パルス停止制御部の動作を開始させる場合、前記パルス停止制御信号を生成する区間を零から前記定められた区間になるまで徐々に増加させる、
     ことを特徴とする請求項1に記載の空気調和機。
    When the operation of the pulse stop control unit is started, the vector control unit gradually increases a section for generating the pulse stop control signal from zero to the determined section.
    The air conditioner according to claim 1, characterized in that.
  3.  前記ベクトル制御部は、前記パルス停止制御部を動作させている場合に前記電動機のモータ電流が、前記所定範囲に対して所定ヒステリシス量を超えて外れたならば、前記パルス停止制御部の動作を停止させる、
     ことを特徴とする請求項1に記載の空気調和機。
    The vector control unit operates the pulse stop control unit when the motor current of the motor deviates from the predetermined range by exceeding the predetermined hysteresis amount when the pulse stop control unit is operated. Stop it,
    The air conditioner according to claim 1, characterized in that.
  4.  前記ベクトル制御部は、前記パルス停止制御部の動作を停止させる場合、前記パルス停止制御信号を生成する区間が前記定められた区間から零になるまで徐々に減少させる、
     ことを特徴とする請求項3に記載の空気調和機。
    When the operation of the pulse stop control unit is stopped, the vector control unit gradually reduces the interval for generating the pulse stop control signal from the determined interval to zero.
    The air conditioner according to claim 3, characterized in that.
  5.  電動機と、
     ベクトル制御方式を用いて、PWM制御によって前記電動機を駆動するための電力変換を行う電力変換装置を備え、
     前記電力変換装置は、
     前記PWM制御を行うためのパルス信号を出力するパルス制御部と、
     三相構成のスイッチ素子を備えて構成され、前記パルス制御部から出力された前記パルス信号を用いて、直流電力を交流電力に変換する電力変換回路と、
     前記電力変換回路の電流を検出する電流検出部と、
     前記電流検出部で検出された電流に基づいてベクトル制御を行い、前記パルス制御部への指令電圧を生成するベクトル制御部と、
     前記電力変換回路の所定相の正側および負側のスイッチ素子を停止するために、前記電力変換回路の電流位相を基準として定められた区間において前記パルス信号を停止させるパルス停止制御信号を生成し、当該パルス停止制御信号を前記パルス制御部へ出力するパルス停止制御部と、
     を具備し、
     前記ベクトル制御部は、前記電動機のトルクが、現在の回転速度の無負荷時におけるトルクに対して所定範囲内ならば、前記パルス停止制御部の動作を開始させる、
     ことを特徴とする空気調和機。
    Electric motor,
    A power conversion device that performs power conversion for driving the motor by PWM control using a vector control method;
    The power converter is
    A pulse control unit that outputs a pulse signal for performing the PWM control;
    A power conversion circuit including a three-phase switch element and converting DC power into AC power using the pulse signal output from the pulse control unit;
    A current detection unit that detects the current of the power conversion circuit;
    A vector control unit that performs vector control based on the current detected by the current detection unit, and generates a command voltage to the pulse control unit;
    A pulse stop control signal for stopping the pulse signal in a section determined based on the current phase of the power conversion circuit to stop the positive and negative switch elements of the predetermined phase of the power conversion circuit; A pulse stop control unit that outputs the pulse stop control signal to the pulse control unit;
    Equipped with
    The vector control unit starts the operation of the pulse stop control unit if the torque of the motor is within a predetermined range with respect to the torque at no load of the current rotational speed.
    An air conditioner characterized by
  6.  前記ベクトル制御部は、前記パルス停止制御部を動作させている場合に前記電動機のトルクが前記所定範囲に対して所定ヒステリシス量を超えて外れたならば、前記パルス停止制御部の動作を停止させる、
     ことを特徴とする請求項5に記載の空気調和機。
    The vector control unit stops the operation of the pulse stop control unit when the torque of the electric motor deviates from the predetermined range beyond the predetermined hysteresis amount while operating the pulse stop control unit. ,
    The air conditioner according to claim 5, characterized in that:
  7.  電動機と、
     ベクトル制御方式を用いて、PWM制御によって前記電動機を駆動するための電力変換を行う電力変換装置を備え、
     前記電力変換装置は、
     前記PWM制御を行うためのパルス信号を出力するパルス制御部と、
     三相構成のスイッチ素子を備えて構成され、前記パルス制御部から出力された前記パルス信号を用いて、直流電力を交流電力に変換する電力変換回路と、
     前記電力変換回路の電流を検出する電流検出部と、
     前記電流検出部で検出された電流に基づいてベクトル制御を行い、前記パルス制御部への指令電圧を生成するベクトル制御部と、
     前記電力変換回路の所定の相の正側および負側のスイッチ素子を停止するために、前記電力変換回路の電流位相を基準として定められた区間において前記パルス信号を停止させるパルス停止制御信号を生成し、当該パルス停止制御信号を前記パルス制御部へ出力するパルス停止制御部と、
     を具備し、
     前記ベクトル制御部は、前記電動機の変調率が、現在の回転速度の無負荷時における変調率に対して所定範囲内ならば、前記パルス停止制御部の動作を開始させる、
     ことを特徴とする空気調和機。
    Electric motor,
    A power conversion device that performs power conversion for driving the motor by PWM control using a vector control method;
    The power converter is
    A pulse control unit that outputs a pulse signal for performing the PWM control;
    A power conversion circuit including a three-phase switch element and converting DC power into AC power using the pulse signal output from the pulse control unit;
    A current detection unit that detects the current of the power conversion circuit;
    A vector control unit that performs vector control based on the current detected by the current detection unit, and generates a command voltage to the pulse control unit;
    In order to stop positive and negative switch elements of a predetermined phase of the power conversion circuit, a pulse stop control signal is generated to stop the pulse signal in a section determined with reference to the current phase of the power conversion circuit. A pulse stop control unit that outputs the pulse stop control signal to the pulse control unit;
    Equipped with
    The vector control unit starts the operation of the pulse stop control unit if the modulation factor of the motor is within a predetermined range with respect to the modulation factor at the time of no load of the current rotational speed.
    An air conditioner characterized by
  8.  前記ベクトル制御部は、前記パルス停止制御部を動作させている場合に前記電動機の変調率が前記所定範囲に対して所定ヒステリシス量を超えて外れたならば、前記パルス停止制御部の動作を停止させる、
     ことを特徴とする請求項7に記載の空気調和機。
    The vector control unit stops the operation of the pulse stop control unit if the modulation factor of the motor deviates from the predetermined range by exceeding the predetermined hysteresis amount while operating the pulse stop control unit. Let
    The air conditioner according to claim 7, characterized in that.
PCT/JP2017/037609 2017-10-17 2017-10-17 Air conditioner WO2019077689A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780003344.XA CN110326210B (en) 2017-10-17 2017-10-17 Air conditioner
PCT/JP2017/037609 WO2019077689A1 (en) 2017-10-17 2017-10-17 Air conditioner
JP2018511291A JP6364573B1 (en) 2017-10-17 2017-10-17 Air conditioner
TW106146220A TWI643444B (en) 2017-10-17 2017-12-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037609 WO2019077689A1 (en) 2017-10-17 2017-10-17 Air conditioner

Publications (1)

Publication Number Publication Date
WO2019077689A1 true WO2019077689A1 (en) 2019-04-25

Family

ID=62976577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037609 WO2019077689A1 (en) 2017-10-17 2017-10-17 Air conditioner

Country Status (4)

Country Link
JP (1) JP6364573B1 (en)
CN (1) CN110326210B (en)
TW (1) TWI643444B (en)
WO (1) WO2019077689A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014388A (en) * 2004-06-22 2006-01-12 Matsushita Electric Ind Co Ltd Inverter controller
WO2013042437A1 (en) * 2011-09-21 2013-03-28 日立アプライアンス株式会社 Electric power conversion device, motor drive device and air conditioner
JP2013115955A (en) * 2011-11-30 2013-06-10 Hitachi Appliances Inc Power conversion device, motor drive device, and air conditioner
JP2014166044A (en) * 2013-02-26 2014-09-08 Hitachi Appliances Inc Refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149683A (en) * 1995-11-20 1997-06-06 Ebara Densan:Kk Driver of dc brushless motor
DE10128839B4 (en) * 2001-06-15 2006-11-23 Otis Elevator Co., Farmington Method and device for controlling the drive of a conveyor
JP2009055748A (en) * 2007-08-29 2009-03-12 Sanyo Electric Co Ltd Current detector unit and motor control device
CN100586003C (en) * 2008-10-17 2010-01-27 清华大学 Vector control method for speed-free sensor for AC asynchronous motor
US8427123B2 (en) * 2009-07-08 2013-04-23 Microchip Technology Incorporated System, method and apparatus to transition between pulse width modulation and pulse-frequency modulation in a switch mode power supply
CN102739009A (en) * 2012-06-05 2012-10-17 西安交通大学 Power modulation method for selecting passive compensation pulse generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014388A (en) * 2004-06-22 2006-01-12 Matsushita Electric Ind Co Ltd Inverter controller
WO2013042437A1 (en) * 2011-09-21 2013-03-28 日立アプライアンス株式会社 Electric power conversion device, motor drive device and air conditioner
JP2013115955A (en) * 2011-11-30 2013-06-10 Hitachi Appliances Inc Power conversion device, motor drive device, and air conditioner
JP2014166044A (en) * 2013-02-26 2014-09-08 Hitachi Appliances Inc Refrigerator

Also Published As

Publication number Publication date
JPWO2019077689A1 (en) 2019-11-14
CN110326210B (en) 2021-03-05
CN110326210A (en) 2019-10-11
JP6364573B1 (en) 2018-07-25
TW201918013A (en) 2019-05-01
TWI643444B (en) 2018-12-01

Similar Documents

Publication Publication Date Title
JP6342079B2 (en) Inverter control device and air conditioner
JP6411701B1 (en) Power conversion device and refrigeration air conditioner
JP5718474B2 (en) Power conversion device, electric motor drive device, and air conditioner
WO2013080610A1 (en) Power converter, electric motor drive device, and air conditioner
JP2004048951A (en) Motor drive apparatus
JP3644391B2 (en) Inverter device, compressor control device, refrigeration / air conditioning device control device, motor control method, compressor, refrigeration / air conditioning device
KR101474263B1 (en) Motor control device, and air-conditioner using the same
JP6046446B2 (en) Vector control device, motor control device using the same, and air conditioner
JP6826928B2 (en) Inverter device, air conditioner, control method and program of inverter device
JP6364573B1 (en) Air conditioner
KR101445201B1 (en) Motor control device, and air conditioner using the same
JP2008160915A (en) Inverter controller for driving motor and apparatus employing the same
JP6591081B2 (en) Inverter device, compressor drive device and air conditioner
JP6087167B2 (en) refrigerator
JPWO2020213045A1 (en) Inverter device, compressor drive device and air conditioner
JP2018183004A (en) Inverter control device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511291

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929077

Country of ref document: EP

Kind code of ref document: A1