WO2019076245A1 - 用于确定换电站内的欠电电池的充电策略的方法和装置 - Google Patents

用于确定换电站内的欠电电池的充电策略的方法和装置 Download PDF

Info

Publication number
WO2019076245A1
WO2019076245A1 PCT/CN2018/109982 CN2018109982W WO2019076245A1 WO 2019076245 A1 WO2019076245 A1 WO 2019076245A1 CN 2018109982 W CN2018109982 W CN 2018109982W WO 2019076245 A1 WO2019076245 A1 WO 2019076245A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
charged
vehicle
batteries
power
Prior art date
Application number
PCT/CN2018/109982
Other languages
English (en)
French (fr)
Inventor
邓小嘉
袁圣杰
何亮
杨勇
徐国栋
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Priority to EP18868001.1A priority Critical patent/EP3699836A4/en
Publication of WO2019076245A1 publication Critical patent/WO2019076245A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06316Sequencing of tasks or work
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06314Calendaring for a resource
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0281Customer communication at a business location, e.g. providing product or service information, consulting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to new energy vehicle technology, and more particularly to a method for determining a charging strategy for an underpowered battery within a power station, a control device implementing the method, a power station including the control device, and a computer storage medium embodying the method.
  • the mode of replenishing energy of a pure electric vehicle power battery generally includes two types of charging mode and power changing mode.
  • the disadvantage of the charging mode is mainly that the user experience is poor due to the long charging time.
  • the operation of the power-changing mode can solve a series of problems such as short battery life, difficult charging and high cost of electric vehicles, so it is a mode with better technology and market prospects.
  • the charging operator In the power-change mode, the charging operator is responsible for the unified management of the power battery, and the user obtains the service by renting the power battery to the power exchange operator.
  • the power station In order to ensure the need for power exchange, the power station usually needs to reserve a certain amount of full battery margin.
  • the source of a fully charged battery is usually derived from both the original reserve and the recharged underpowered battery.
  • the number of fully-charged batteries available at each time in the substation should match the changeover requirements as much as possible.
  • the under-charged battery In addition, in order to prolong the service life of the battery, the under-charged battery should be charged in a slow charging mode as much as possible, which further increases the difficulty of matching, especially when the operation scale of the power station is large.
  • a method for determining a charging strategy for an underpowered battery within a power station in accordance with an aspect of the present invention includes the following steps:
  • the charging strategy of the underpowered battery of the substation is determined according to the number of fully charged batteries required by the plurality of charging demand groups.
  • the estimated time of arrival at the substation is determined according to the distance between the vehicle to be charged and the substation and the estimated travel speed.
  • the determination of the required number of fully charged batteries for each charging demand group comprises the following steps:
  • ⁇ i,j is the power conversion index of the jth to-be-charged vehicle in the i-th charging demand group
  • C i,j is the charging of the jth to-be-charged vehicle in the i-th charging demand group.
  • T i,j is the total number of power changes of the jth to-be-charged vehicle in the i-th charging demand group
  • the power-changing index of the vehicle to be charged in the charging demand group is summed to obtain the required full-power battery quantity of the charging demand group.
  • the charging strategy is indicated by the charging rate of the underpowered battery.
  • the determining of the charging strategy comprises the following steps:
  • the matching charging rate is determined based on the combined value and the number of fully charged batteries currently available at the substation.
  • the determining of the charging strategy comprises the following steps:
  • the optimized charging rate is selected from a plurality of charging rates such that the number of fully charged batteries available for multiple time periods most closely matches the number of fully charged batteries required for each charging demand group.
  • Another object of the present invention is to provide a control device that contributes to improving the efficiency of use of a battery managed in a power-changing mode and extending its overall life.
  • a control device includes:
  • a first module configured to acquire an estimated time when the to-be-charged vehicle arrives at the power-changing station, where the to-be-charged vehicle is a vehicle whose state of charge is lower than a set threshold;
  • a second module configured to divide the vehicle to be charged into a plurality of charging demand groups according to an estimated time of its arrival at the power station;
  • a third module for determining the required number of fully charged batteries for each charging demand group
  • the fourth module is configured to determine a charging strategy of the underpowered battery of the power substation according to the number of fully charged batteries required by the plurality of charging demand groups.
  • a control device in accordance with another aspect of the present invention includes a memory, a processor, and a computer program stored on the memory and operative on the processor, wherein the program is executed to implement the method as described above.
  • a power station according to another aspect of the invention includes:
  • a charging device configured to charge the underpowered battery in accordance with a charging rate determined by the control device.
  • the present invention also provides a computer readable storage medium having stored thereon a computer program, characterized in that the program is implemented by a processor to implement the method as described above.
  • FIG. 1 is a flow chart of a method for determining a charging strategy for an underpowered battery within a power station, in accordance with one embodiment of the present invention.
  • FIG. 2 is a flow chart of a charging strategy determination routine applicable to the embodiment of FIG. 1.
  • FIG. 3 is an exemplary graph showing simulation results obtained using the charging strategy determination routine shown in FIG.
  • FIG. 4 is a flow chart of another charging strategy determination routine applicable to the embodiment of FIG. 1.
  • FIG. 5 is an exemplary graph showing simulation results obtained using the charging strategy determination routine shown in FIG.
  • FIG. 6 is a schematic block diagram of a control device in accordance with another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a control device in accordance with yet another embodiment of the present invention.
  • Figure 8 is a schematic block diagram of a power substation in accordance with yet another embodiment of the present invention.
  • Coupled should be understood to include the case of direct transfer of electrical energy or electrical signals between two units, or the indirect transfer of electrical or electrical signals via one or more third units.
  • a “full battery” is understood to mean a battery having a state of charge greater than or equal to a higher level, such as a state of charge of 100% or greater than 90%.
  • the estimated time to reach the power station and the power to be replaced by the vehicle to be charged by the charging demand and the vehicle to be charged (for example, the vehicle whose charging state is lower than the set threshold SOC LOW can be regarded as the vehicle to be charged)
  • the historical data is associated, and the charging demand at each moment can be predicted accurately and in real time, thereby implementing an optimized charging strategy for the under-powered battery of the power station.
  • the vehicle to be charged in the service area of the power station is divided into a plurality of charging demand groups according to the estimated time of its arrival at the power station, and the number of fully charged batteries required for the plurality of charging demand groups is determined, thereby determining the power exchange of the power station.
  • Charging strategy for under-powered batteries is determined, thereby determining the power exchange of the power station.
  • the service area described here can be understood as an area in which the possibility of the battery to be charged outside the area to the current power station to replace the battery is negligible.
  • the physical location of the substation can be used as a base point to reach the substation by passing the vehicle at the current time to the distance of the substation or at a set travel speed (eg, the average speed of the vehicle within the service area)
  • the estimated time is discretized, and the vehicle to be charged in the service area is divided into a plurality of charging demand groups.
  • the distance or estimated time can be classified into three intervals or three time periods, for example, the interval 1 is less than 10 kilometers or the time required to reach the power station is less than 10 minutes, and the interval 2 is between 10 kilometers and 20 kilometers or The time required to arrive at the power station is between 10 minutes and 20 minutes.
  • the interval 3 is between 20 and 30 kilometers or the time required to reach the power station is between 20 minutes and 30 minutes. Accordingly, the service area The vehicles to be charged are classified into their respective charging demand groups according to their distance or estimated time.
  • the charging strategy is represented by the rate of charge of the underpowered battery, i.e., utilizing a plurality of discrete values of the charging rate to represent different charging strategies.
  • the rate of charge can be defined as follows:
  • 1C is the current value corresponding to charging the battery from 0% to 100% in 1 hour.
  • a different weighting factor is applied to the number of fully charged batteries required for each charging demand group to obtain a combined value of the required number of fully charged batteries, and by examining the combined value and A match between the currently available full battery counts determines the corresponding charging strategy.
  • multiple sets of different weighting factors can be employed to obtain multiple combined values.
  • a corresponding charging strategy can be determined by examining the match between the number of fully charged batteries required for a plurality of charging demand groups and the number of fully charged batteries available over a plurality of time periods.
  • FIG. 1 is a flow chart of a method for determining a charging strategy for an underpowered battery within a power station, in accordance with one embodiment of the present invention.
  • a control device such as a substation management system acquires charging demand data in the service area of the current time substation.
  • the charging demand data described herein includes, for example, but is not limited to, a state of charge (SOC) of the vehicle within the service area, an estimated time of arrival of the vehicle at the power station, vehicle identification information (eg, a license plate), or a user ID (eg, a user's mobile phone number, registration) Name) and so on.
  • SOC state of charge
  • vehicle identification information eg, a license plate
  • user ID eg, a user's mobile phone number, registration
  • control device adds the vehicle whose current state of charge in the service area is lower than the set threshold SOC LOW to the vehicle queue Q to be charged.
  • the control device divides the vehicle to be charged in the queue Q into a plurality of charging demand groups according to the estimated time of its arrival at the power station.
  • the vehicle to be charged can be divided into three charging demand groups according to the foregoing manner, wherein the charging demand group 1 includes a vehicle to be charged that has a distance of less than 10 kilometers or a time required to reach the power station is less than 10 minutes, and the charging demand group 2 includes the distance medium.
  • the charging demand group 3 contains distances between 20 km and 30 km or the time required to reach the substation The vehicle to be charged between 20 minutes and 30 minutes.
  • the control device determines the number of fully charged batteries required for each charging demand group.
  • the number of fully charged batteries of each group can be determined in the following manner.
  • T i,j is the total number of power changes of the jth to-be-charged vehicle in the i-th charging demand group.
  • the power conversion index of the vehicle to be charged in the charging demand group is summed to obtain the required full battery quantity H i of the charging demand group, namely:
  • H i is the number of fully charged batteries required for the i-th charging demand group
  • ⁇ i,j is the power-changing index of the j-th to-be-charged vehicle in the i-th charging demand group
  • N i is the i-th charging demand. The number of vehicles to be charged in the group.
  • step 150 a charging strategy determination charging strategy determination routine is entered, and the control device determines a charging strategy of the underpowered battery of the power station according to the number of fully charged batteries required by the plurality of charging demand groups. This will be further described below.
  • the method illustrated in Figure 1 can be performed periodically to dynamically determine a charging strategy for an underpowered battery.
  • FIG. 2 is a flow chart of a charging strategy determination routine applicable to the embodiment of FIG. 1.
  • step 210 the number of fully charged batteries P_full currently available to the substation and the current charging rate are obtained.
  • step 220 one or more combined values of the number of fully charged batteries required for the plurality of charging demand groups are determined.
  • the combined value of the required number of fully charged batteries can be expressed by the following formula:
  • S i is the i-th combined value
  • H 1 , H 2 , and H 3 respectively represent the number of fully charged batteries required for the charging demand group 1, the charging demand group 2, and the charging demand group 3
  • ⁇ i , ⁇ i , and ⁇ i is a weighting factor assigned to the charging demand group 1-3 when calculating the i-th combined value.
  • the respective charging rate is determined based on the combined value and the number of fully charged batteries currently available to the substation.
  • the charging strategy can be determined according to the following criteria:
  • Criterion 1 If H 1 +0.8*H 2 +0.5*H 3 ⁇ P_full, the charging rate is set to C_super.
  • Criterion 3 When H 1 +1.5*H 2 +0.5*H 3 ⁇ P_full>H 1 +H 2 +H 3 , if the current charging rate is C_low, change it to C_normal if the current charging rate is C_normal, keep it unchanged.
  • Criterion 4 If P_full>H 1 +1.5*H 2 +0.5*H 3 , the current charging rate is maintained.
  • step 230 After completing step 230, the process proceeds to step 240, and the control device transmits the determined charging rate to the charging device.
  • FIG. 3 is an exemplary graph showing simulation results obtained using the charging strategy determination routine shown in FIG. 2, wherein the horizontal axis represents time in one day and the vertical axis is the number of fully charged batteries, exemplarily, assumed here
  • the initial fully charged battery at 5 o'clock in the morning is 400.
  • horizontal line segments having different high and low positions respectively represent periods in which the battery is charged at different charging rates. It can be seen from Fig. 3 that during the daytime, although the power-changing demand has been maintained at a high level, the under-powered battery can be charged by dynamically alternating the normal charging rate, the fast charging rate and the ultra-fast charging rate. Match the number of available full-battery batteries to the power-replacement requirements.
  • FIG. 4 is a flow chart of another charging strategy determination routine applicable to the embodiment of FIG. 1.
  • step 401 the control device acquires the number of fully charged batteries P_full currently available to the substation and the current charging rate.
  • the control device determines the number of batteries that can be charged at the end of the plurality of time periods at the current charging rate. Taking the above example as an example, suppose that the estimated time is divided into less than 10 minutes for arriving at the power station, 10 minutes to 20 minutes for arriving at the power station, and 20 minutes to 30 for reaching the power station. During these three time periods between minutes, the control device will calculate the number of batteries that can be charged at the end of the first time period when charging the underpowered battery at the current charging rate (ie, 10 minutes from the current time). The number of batteries that enable the state of charge to reach a higher level) and the number of batteries that can be charged at the end of the second period (ie, the number of batteries that achieve a higher level of state of charge from 20 minutes from the current time).
  • the control device determines the number of fully charged batteries available for a plurality of time periods based on the currently available number of fully charged batteries and the number of batteries that can be completed at the end of the plurality of time periods. Still taking the above example as an example, in the first time period of less than 10 minutes, the number of fully charged batteries available is the currently available full battery. In the second period of time between 10 minutes and 20 minutes, the number of fully charged batteries available is determined based on:
  • P _full_10 is the number of fully charged batteries available in the second time period
  • P _full is the number of fully available batteries currently available
  • C _full_10 is the number of batteries that can be charged at the end of the first time period
  • H 1 The number of fully charged batteries required for the first charging demand group or the first time period.
  • the number of fully charged batteries available is determined based on:
  • P _full_20 P _full +C _full_10 +C _full_20 -H 1 -H 2 (5)
  • P _full_20 is the number of fully charged batteries available in the second time period
  • P _full is the number of fully available batteries currently available
  • C _full_10 is the number of batteries that can be charged at the end of the first time period
  • C _full_20 For the number of batteries that can be charged at the end of the second time period, H 1 is the number of fully charged batteries required for the first charging demand group or the first time period, and H2 is the second charging demand group or the first The number of fully charged batteries required for the two time periods.
  • control device determines whether the following conditions are simultaneously established:
  • step 405 is entered, otherwise step 406 is entered.
  • step 405 the control device determines whether the current charging rate is the lowest level C_low, and if so, proceeds to step 407, in which the control device determines that the current charging rate remains unchanged; if not, proceeds to step 408, where The device drops the current charging rate by one level.
  • step 407 the process proceeds to step 409, and the control device transmits the set charging rate to the charging device.
  • step 408 the process proceeds to step 410 where the control device determines the number of batteries that can be charged in a plurality of time periods in the same manner as in step 402.
  • control device determines the number of fully charged batteries available for a plurality of time periods in accordance with the number of currently available fully charged batteries and the number of batteries capable of completing charging determined in step 410 in the same manner as step 403.
  • step 412 the control device determines whether the number of fully charged batteries available for the plurality of time periods determined in step 411 simultaneously satisfies the conditions described in step 404. If yes, return to step 405, otherwise proceed to step 413, in which the control device increases the rate of charge by one level and then proceeds to step 409.
  • step 406 of step 404 the control device increases the current charging rate by one level.
  • control device determines the number of batteries that can be charged in a plurality of time periods at the changed charging rate in the same manner as step 402.
  • control device determines the number of fully charged batteries available for a plurality of time periods based on the number of fully available batteries currently available and the number of batteries that can be completed in step 414, in the same manner as step 403.
  • step 416 the control device determines whether the number of fully charged batteries available for the plurality of time periods determined in step 415 simultaneously satisfies the conditions described in step 404. If yes, go to step 409, otherwise, go back to step 406.
  • FIG. 5 is an exemplary graph showing simulation results obtained using the charging strategy determination routine shown in FIG. 4, in which the horizontal axis represents time in one day and the vertical axis represents the number of batteries, and exemplarily, it is assumed here that morning 5
  • the initial full battery count at the time of the hour is 400.
  • horizontal line segments having different high and low positions respectively represent periods in which the battery is charged at different charging rates.
  • the normal charge rate period in Figure 5 is significantly increased in the case where the number of available fully charged batteries is well matched to the power change requirements.
  • the initial charging rate may also be set for the electric vehicle.
  • the charging rate can be set according to the travel time of the vehicle. Specifically, a natural day can be divided into three time periods according to the travel data, in 24 hours, 0 to 6 is the first time period, and 6 to 18 is the second time period, 18 to 24 The point is the third time period.
  • the first time period is the travel frequency climb phase, at which time the battery of the power station has a longer time to charge, so the charging rate of the first time period can be set to C_low.
  • the second period of time the vehicle travels at a high frequency, and the replacement battery demand is high, so the charging rate of the second period can be set to C_normal.
  • the vehicle travel frequency decreases, and the replacement battery demand decreases, so the charging rate for the time period can be set to C_low.
  • the initial charging rate can be adjusted by the above-described method of determining the charging strategy of the underpowered battery within the power station. For example, the examples described above in connection with Figs. 1 and 2 or the examples described above in connection with Figs. 1 and 4 are employed.
  • FIG. 6 is a schematic block diagram of an apparatus for determining a charging strategy for an underpowered battery within a power station, in accordance with another embodiment of the present invention.
  • the apparatus 60 for determining a charging strategy for an underpowered battery within a substation shown in FIG. 6 includes a first module 610, a second module 620, a third module 630, and a fourth module 640.
  • the first module 610 is configured to acquire an estimated time when the to-be-charged vehicle arrives at the power-changing station, wherein the to-be-charged vehicle is a vehicle whose state of charge is lower than a set threshold.
  • the second module 620 is configured to divide the vehicle to be charged into a plurality of charging demand groups according to an estimated time of its arrival at the power station.
  • the third module 630 is configured to determine the required number of fully charged batteries for each charging demand group.
  • the fourth module 640 is configured to determine a charging strategy of the underpowered battery of the power substation according to the number of fully charged batteries required by the plurality of charging demand groups.
  • each of the first, second, third, and fourth modules is implemented on separate hardware devices, and in another embodiment, the first, second, and third And at least two of the fourth modules are implemented on the same hardware device.
  • FIG. 7 is a schematic block diagram of a control device in accordance with yet another embodiment of the present invention.
  • the control device 70 shown in FIG. 7 includes a memory 710, a processor 720, and a computer program 730 stored on the memory 710 and operable on the processor 720, wherein the executing computer program 730 can be implemented as described above with reference to Figures 1-5.
  • the power station has the ability to communicate with the vehicle to be charged to obtain information such as the position and speed of the vehicle.
  • the aforementioned control devices 60 and 70 are configurable to obtain information of the exchanged vehicle from the substation (eg, the position, speed, etc. of the converted vehicle to the substation), thereby enabling determination of the time at which the converted vehicle arrives at the substation .
  • the above manner in which the control device acquires the information of the exchanged vehicle is not the only or necessary manner.
  • the changing vehicle can upload information such as its position and speed to the cloud so that the control device can download the information of the required changing vehicle from the cloud.
  • Figure 8 is a schematic block diagram of a power substation in accordance with yet another embodiment of the present invention.
  • control device 810 can be implemented using the control device described in connection with FIG. 7, which is configured to charge the underpowered battery in accordance with the rate of charge determined by control device 810.
  • a computer readable storage medium having stored thereon a computer program, which, when executed by a processor, implements the method described above with reference to Figures 1-5 for determining a power station The method of charging strategy for under-powered batteries.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Accounting & Taxation (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Finance (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Data Mining & Analysis (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种用于确定换电站内的欠电电池的充电策略的方法、实施该方法的控制装置、包含所述控制装置的换电站以及实施该方法的计算机存储介质,涉及新能源汽车技术。所述方法包含下列步骤:获取待充电车辆到达换电站的预计时间,其中,所述待充电车辆为荷电状态低于设定阈值的车辆;将待充电车辆按照其到达换电站的预计时间划分为多个充电需求组,其中,每个充电需求组对应于多个时间段中的其中一个;对于每个充电需求组,确定所需的满电电池数量;以及根据多个充电需求组所需的满电电池数量确定换电站的欠电电池的充电策略。

Description

用于确定换电站内的欠电电池的充电策略的方法和装置 技术领域
本发明涉及新能源汽车技术,特别涉及用于确定换电站内的欠电电池的充电策略的方法、实施该方法的控制装置、包含所述控制装置的换电站以及实施该方法的计算机存储介质。
背景技术
纯电动汽车动力电池补充能量的模式一般包括充电模式和换电模式两大类。充电模式的缺点主要是充电时间长导致的用户体验不佳。换电模式的运行可以解决电动汽车续航里程短、充电难和成本高等一系列问题,因此是一种具有较好技术和市场前景的模式。
在换电模式下,充电营运商负责对动力电池的统一管理,用户通过向换电站营运商租赁动力电池来获得服务。为了确保换电需求,换电站通常需要预留一定数量的满电电池裕量。满电电池的来源通常来自原先的储备和重新充电的欠电电池两个方面。出于效率和成本的考虑,换电站每个时刻可用的满电电池的数量应尽可能与换电需求匹配。但是由于换电需求的不确定性和动态性,要实现这种匹配并非易事。此外,为了延长电池的使用寿命,对欠电电池应尽量采用慢充方式充电,这进一步增加了匹配的难度,特别是在换电站的运营规模很大时。
发明内容
本发明的一个目的是提供一种用于确定换电站内的欠电电池的充电策略的方法,其有助于提高换电模式下所管理电池的使用效率和延长其总体寿命。
按照本发明一个方面的用于确定换电站内的欠电电池的充电策略的方法包含下列步骤:
获取待充电车辆到达换电站的预计时间,其中,所述待充电车辆为荷电状 态低于设定阈值的车辆;
将待充电车辆按照其到达换电站的预计时间划分为多个充电需求组,其中,每个充电需求组对应于多个时间段中的其中一个;
对于每个充电需求组,确定所需的满电电池数量;以及
根据多个充电需求组所需的满电电池数量确定换电站的欠电电池的充电策略。
优选地,在上述方法中,根据待充电车辆与换电站的距离和预计行驶速度确定其到达换电站的预计时间。
优选地,在上述方法中,每个充电需求组的所需的满电电池数量的确定包括下列步骤:
获取该充电需求组内的待充电车辆的换电指数,其中,所述换电指数按照下式得到:
Figure PCTCN2018109982-appb-000001
其中,γ i,j为第i个充电需求组内第j个待充电车辆的换电指数,C i,j为第i个充电需求组内第j个待充电车辆已经发生过的在荷电状态低于设定阈值时换电的次数,T i,j为第i个充电需求组内第j个待充电车辆的总换电次数;以及
对该充电需求组内的待充电车辆的换电指数求和以得到该充电需求组的所需的满电电池数量。
优选地,在上述方法中,利用对欠电电池的充电速率来表示充电策略。
优选地,在上述方法中,充电策略的确定包括下列步骤:
确定多个充电需求组所需的满电电池数量的组合值;以及
根据组合值和换电站当前可用的满电电池的数量确定相匹配的充电速率。
优选地,在上述方法中,充电策略的确定包括下列步骤:
确定在当前充电速率下,在多个时间段结束时能够完成充电的电池的数量;
根据当前可用的满电电池数量和在多个时间段结束时能够完成充电的电 池的数量确定多个时间段内可用的满电电池数量;以及
从多个充电速率中选择优化的充电速率,使得多个时间段内可用的满电电池数量与各个充电需求组所需的满电电池数量最为匹配。
本发明的另一个目的是提供一种控制装置,其有助于提高换电模式下所管理电池的使用效率和延长其总体寿命。
按照本发明另一个方面的控制装置包括:
第一模块,用于获取待充电车辆到达换电站的预计时间,其中,所述待充电车辆为荷电状态低于设定阈值的车辆;
第二模块,用于将待充电车辆按照其到达换电站的预计时间划分为多个充电需求组;
第三模块,用于对于每个充电需求组,确定所需的满电电池数量;以及
第四模块,用于根据多个充电需求组所需的满电电池数量确定换电站的欠电电池的充电策略。
模式下所管理电池的使用效率和延长其总体寿命。
按照本发明另一个方面的控制装置包含存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,执行所述程序以实现如上所述的方法。
本发明的还有一个目的是提供一种换电站,其有助于提高换电模式下所管理电池的使用效率和延长其总体寿命。
按照本发明另一个方面的换电站包括:
如上所述的控制装置;以及
充电装置,其配置为按照所述控制装置确定的充电速率对欠电电池进行充电。
本发明还提供一种计算机可读存储介质,其上存储计算机程序,其特征在于,该程序被处理器执行时实现如上所述的方法。
附图说明
本发明的上述和/或其它方面和优点将通过以下结合附图的各个方面的描述变得更加清晰和更容易理解,附图中相同或相似的单元采用相同的标号表示。附图包括:
图1为按照本发明一个实施例的用于确定换电站内的欠电电池的充电策略的方法的流程图。
图2为可应用于图1所示实施例的充电策略确定例程的流程图。
图3为示例性的图表,其示出采用图2所示充电策略确定例程获得的仿真结果。
图4为可应用于图1所示实施例的另一个充电策略确定例程的流程图。
图5为示例性的图表,其示出采用图4所示充电策略确定例程获得的仿真结果。
图6为按照本发明另一实施例的控制装置的示意框图。
图7为按照本发明还有一个实施例的控制装置的示意框图。
图8为按照本发明还有一个实施例的换电站的示意框图。
具体实施方式
下面参照其中图示了本发明示意性实施例的附图更为全面地说明本发明。但本发明可以按不同形式来实现,而不应解读为仅限于本文给出的各实施例。给出的上述各实施例旨在使本文的披露全面完整,以将本发明的保护范围更为全面地传达给本领域技术人员。
在本说明书中,诸如“包含”和“包括”之类的用语表示除了具有在说明书和权利要求书中有直接和明确表述的单元和步骤以外,本发明的技术方案也不排除具有未被直接或明确表述的其它单元和步骤的情形。
诸如“第一”和“第二”之类的用语并不表示单元在时间、空间、大小等方面的顺序而仅仅是作区分各单元之用。
“耦合”应当理解为包括在两个单元之间直接传送电能量或电信号的情形,或者经过一个或多个第三单元间接传送电能量或电信号的情形。
“满电电池”应当理解为荷电状态大于或等于一个较高水平的电池,例如荷电状态为100%或大于90%。
按照本发明的一个方面,通过将充电需求与待充电车辆(例如可以将荷电状态低于设定阈值SOC LOW的车辆视为待充电车辆)到达换电站的预计时间和待充电车辆的换电历史数据相关联,可以准确、实时地预测每个时刻的充电需求,从而对换电站的欠电电池实施优化的充电策略。
优选地,将换电站服务区域内的待充电车辆按照其到达换电站的预计时间划分为多个充电需求组,并且确定多个充电需求组所需的满电电池数量,由此确定换电站的欠电电池的充电策略。
需要指出的是,这里所述的服务区域可以理解为这样的区域,在该区域之外的待充电车辆到当前换电站来更换电池的可能性可以忽略不计。在一个示例性实例中,可以以换电站的物理位置作为基点,通过将当前时刻的车辆以到达换电站的距离或以设定行驶速度(例如该服务区域内的车辆平均速度)到达换电站的预计时间作离散化处理,将服务区域内的待充电车辆划分为多个充电需求组。例如可以将距离或预计时间分类为三个区间或三个时间段,例如区间1为距离小于10公里或到达换电站所需时间小于10分钟,区间2为距离介于10公里至20公里之间或到达换电站所需时间介于10分钟至20分钟之间,区间3为距离介于20公里至30公里之间或到达换电站所需时间介于20分钟至30分钟之间,相应地,服务区域内的待充电车辆根据其距离或预计时间被归类到各自的充电需求组。
按照本发明的另一个方面,利用对欠电电池的充电速率来表示充电策略,即,利用充电速率的多个离散化值来表示不同的充电策略。示例性地,充电速率可以按照等级逐级增加的方式定义如下:
C_low:0.2C(低速充电速率)
C_normal:0.5C(普通充电速率)
C_fast:1C(快速充电速率)
C_super:1.5C(超快速充电速率)
其中1C为1小时内将电池从0%电量充至100%电量所对应的电流数值。
按照本发明的另一个方面,在确定充电需求时,对各个充电需求组所需的 满电电池数量赋予不同的权重因子以得到所需的满电电池数量的组合值,并且通过考察组合值与当前可用的满电电池数量之间的匹配情况来确定相应的充电策略。优选地,可以采用多组不同的权重因子从而得到多个组合值。
按照本发明的另一个方面,可以通过考察多个充电需求组所需的满电电池数量与多个时间段内可用的满电电池数量之间的匹配情况来确定相应的充电策略。
图1为按照本发明一个实施例的用于确定换电站内的欠电电池的充电策略的方法的流程图。
如图1所示,在步骤110,诸如换电站管理系统之类的控制装置获取当前时刻换电站服务区域内的充电需求数据。这里所述的充电需求数据例如包括但不限于服务区域内车辆的荷电状态(SOC)、车辆到达换电站的预计时间、车辆标识信息(例如车牌)或用户ID(例如用户移动电话号码、注册名)等。
随后进入步骤120,控制装置将服务区域内当前时刻荷电状态低于设定阈值SOC LOW的车辆加入待充电车辆队列Q。
接着在步骤130,控制装置将队列Q中的待充电车辆按照其到达换电站的预计时间划分为多个充电需求组。例如可以按照前述方式将待充电车辆分入三个充电需求组,其中,充电需求组1包含距离小于10公里或到达换电站所需时间小于10分钟的待充电车辆,充电需求组2包含距离介于10公里至20公里之间或到达换电站所需时间介于10分钟至20分钟之间的待充电车辆,充电需求组3包含距离介于20公里至30公里之间或到达换电站所需时间介于20分钟至30分钟之间的待充电车辆。
随后进入步骤140,控制装置确定每个充电需求组所需的满电电池数量。优选地,可以依照下述方式确定各组满电电池的数量。
首先获取一个充电需求组内的待充电车辆的换电指数,其中,换电指数按照下式得到:
Figure PCTCN2018109982-appb-000002
其中,γ i,j为第i个充电需求组内第j个待充电车辆的换电指数,C i,j为第i个充 电需求组内第j个待充电车辆历史上在荷电状态低于前述设定阈值SOC LOW时换电的次数,T i,j为第i个充电需求组内第j个待充电车辆的总换电次数。
随后,对该充电需求组内的待充电车辆的换电指数求和以得到该充电需求组的所需的满电电池数量H i,即:
Figure PCTCN2018109982-appb-000003
其中,H i为第i个充电需求组所需的满电电池数量,γ i,j为第i个充电需求组内第j个待充电车辆的换电指数,N i为第i个充电需求组内待充电车辆的数量。
接着,在步骤150进入充电策略确定充电策略确定例程例程,控制装置根据多个充电需求组所需的满电电池数量确定换电站的欠电电池的充电策略。以下将对此作进一步的描述。
图1所示的方法可以周期性地执行以动态确定对欠电电池的充电策略。
图2为可应用于图1所示实施例的充电策略确定例程的流程图。
如图2所示,在步骤210,获取换电站当前可用的满电电池数量P_full和当前的充电速率。
随后进入步骤220,确定多个充电需求组所需的满电电池数量的一个或多个组合值。以上述三个充电需求组为例,所需满电电池数量的组合值可以用下式表示:
S i=α iH 1iH 2iH 3 (3)
其中,S i为第i个组合值,H 1、H 2、H 3分别表示充电需求组1、充电需求组2、充电需求组3所需的满电电池数量,α i、β i和γ i为在计算第i个组合值时赋予充电需求组1-3的权重因子。
示例性地,可以采用下列三个组合值:
组合值S 1:H 1+0.8*H 2+0.5*H 3
组合值S 2:H 1+H 2+H 3
组合值S 3:H 1+1.5*H 2+0.5*H 3
接着在步骤230,根据组合值以及换电站当前可用的满电电池的数量来确定相应的充电速率。示例性地,可以根据下述准则来确定充电策略:
准则1:如果H 1+0.8*H 2+0.5*H 3≥P_full,则将充电速率设定为C_super。
准则2:如果H 1+H 2+H 3≥P_full>H 1+0.8*H 2+0.5*H 3,则将充电速率设定为C_fast。
准则3:当H 1+1.5*H 2+0.5*H 3≥P_full>H 1+H 2+H 3时,如果当前的充电速率为C_low,则将其变为C_normal,如果当前的充电速率为C_normal,则维持其不变。
准则4:如果P_full>H 1+1.5*H 2+0.5*H 3,则维持当前的充电速率不变。
完成步骤230之后进入步骤240,控制装置向充电装置发送所确定的充电速率。
图3为示例性的图表,其示出采用图2所示充电策略确定例程获得的仿真结果,其中横轴表示一天内的时间,纵轴为满电电池的数量,示例性地,这里假设早晨5点钟时的起始满电电池数量为400。在图3中,高低位置不同的水平线段分别代表以不同充电速率对电池进行充电的时段。由图3可见,在白天,虽然换电需求一直保持在较高的水平,但是通过动态地交替采用普通充电速率、快速充电速率和超快速充电速率对欠电电池进行充电,在各个时刻都能够使可用的满电电池数量与换电需求较好地匹配。
图4为可应用于图1所示实施例的另一个充电策略确定例程的流程图。
如图4所示,在步骤401,控制装置获取换电站当前可用的满电电池数量P _full和当前的充电速率。
随后进入步骤402,控制装置确定在当前充电速率下,在多个时间段结束时能够完成充电的电池的数量。以上述示例为例,假设将预计时间分类为到达换电站所需时间小于10分钟、到达换电站所需时间介于10分钟至20分钟之间和到达换电站所需时间介于20分钟至30分钟之间这三个时间段,则控制装置将计算以当前充电速率对欠电电池充电时,在第一个时间段结束时能够完成充电的电池的数量(即从当前时刻起10分钟时才能使荷电状态达到较高水平 的电池数量)和第二个时间段结束时能够完成充电的电池的数量(即从当前时刻起20分钟时才能使荷电状态达到较高水平的电池数量)。
接着进入步骤403,控制装置根据当前可用的满电电池数量和在多个时间段结束时能够完成充电的电池的数量确定多个时间段内可用的满电电池数量。仍然以上述示例为例,在小于10分钟的第一个时间段,可用的满电电池数量即为当前可用的满电电池数量。在介于10分钟至20分钟的第二个时间段,可用的满电电池数量基于下式确定:
P _full_10=P _full+C _full_10-H 1 (4)
其中,P _full_10为在第二个时间段可用的满电电池数量,P _full为当前可用的满电电池数量,C _full_10为在第一个时间段结束时能够完成充电的电池的数量,H 1为第一个充电需求组或第1个时间段所需的满电电池数量。
在介于20分钟至30分钟的第三个时间段,可用的满电电池数量基于下式确定:
P _full_20=P _full+C _full_10+C _full_20-H 1-H 2 (5)
其中,P _full_20为在第二个时间段可用的满电电池数量,P _full为当前可用的满电电池数量,C _full_10为在第一个时间段结束时能够完成充电的电池的数量,C _full_20为在第二个时间段结束时能够完成充电的电池的数量,H 1为第1个充电需求组或第一个时间段所需的满电电池数量,H2为第2个充电需求组或第二个时间段所需的满电电池数量。
随后进入步骤404,控制装置判断下列条件是否同时成立:
条件1:H 1<P _full
条件2:H 2<P _full_10
条件3:H 3<P _full_20
如果条件1-条件3同时成立,则进入步骤405,否则进入步骤406。
在步骤405,控制装置判断当前的充电速率是否为最低的等级C_low,如果是,则进入步骤407,在该步骤中,控制装置确定当前充电速率维持不变;如果否,则进入步骤408,控制装置将当前充电速率下降一个等级。
在步骤407之后转入步骤409,控制装置向充电装置发送设定的充电速率。
在步骤408之后转入步骤410,控制装置按照与步骤402相同的方式,确定在改变后的充电速率下,在多个时间段内能够完成充电的电池的数量。
随后进入步骤411,控制装置按照与步骤403相同的方式,根据当前可用的满电电池数量和步骤410中确定的能够完成充电的电池的数量来确定多个时间段内可用的满电电池数量。
接着在步骤412,控制装置判断步骤411所确定的多个时间段内可用的满电电池数量是否同时满足在步骤404中所述的条件。如果满足,则返回步骤405,否则进入步骤413,在该步骤中,控制装置将充电速率增加一个等级并随后进入步骤409。
回到步骤404的另一个分支步骤406。在该步骤中,控制装置将当前充电速率提高一个等级。
随后进入步骤414,控制装置按照与步骤402相同的方式,确定在改变后的充电速率下,在多个时间段内能够完成充电的电池的数量。
随后进入步骤415,控制装置按照与步骤403相同的方式,根据当前可用的满电电池数量和步骤414中确定的能够完成充电的电池的数量来确定多个时间段内可用的满电电池数量。
接着在步骤416,控制装置判断步骤415所确定的多个时间段内可用的满电电池数量是否同时满足在步骤404中所述的条件。如果满足,则进入步骤409,否则,则返回步骤406。
图5为示例性的图表,其示出采用图4所示充电策略确定例程获得的仿真结果,其中横轴表示一天内的时间,纵轴为电池数量,示例性地,这里同样假设早晨5点钟时的起始满电电池数量为400。在图5中,高低位置不同的水平线段分别代表以不同充电速率对电池进行充电的时段。与图3相比,在使可用的满电电池数量与换电需求较好地匹配的情况下,图5中的普通充电速率时段明显增加。
可选地,在本发明的一些示例中,也可以为电动车设置初始充电速率。例如,可根据车辆的出行时间来设置充电速率。具体而言,可按照出行数据将一个自然日划分为三个时间段,以24小时计,0点到6点为第一时间段,6点到18点为第二时间段,18点到24点为第三时间段。在上述三个时间段中,第一时间段为出行频率爬升阶段,此时换电站的电池有较长时间来充电,因此可将第一时间段的充电速率设置为C_low。在第二时间段,车辆出行维持在高频率处,更换电池需求高,因此可将第二时间段的充电速率设置为C_normal。在第三时间段,车辆出行频率下降,更换电池需求降低,因此可将该时段的充电速率设置为C_low。在这些设置了初始充电速率的示例中,可采用上述确定换电站内的欠电电池的充电策略的方法来调整该初始充电速率。例如,采用如上结合图1与图2所描述的例子或采用如上结合图1与图4所描述的例子。
图6为按照本发明另一实施例的用于确定换电站内的欠电电池的充电策略的装置的示意框图。
图6所示的用于确定换电站内的欠电电池的充电策略的装置60包含第一模块610、第二模块620、第三模块630和第四模块640。在本实施例中,第一模块610用于获取待充电车辆到达换电站的预计时间,其中,所述待充电车辆为荷电状态低于设定阈值的车辆。第二模块620用于将待充电车辆按照其到达换电站的预计时间划分为多个充电需求组。第三模块630用于对于每个充电需求组,确定所需的满电电池数量。第四模块640用于根据多个充电需求组所需的满电电池数量确定换电站的欠电电池的充电策略。
需要指出的是,可以采用多种方式实施上述装置60。例如在其中一种实施方式中,第一、第二、第三和第四模块的每一个在相互独立的硬件装置上实现,而在另一种实施方式中,第一、第二、第三和第四模块中的至少两个在同一硬件装置上实现。
图7为按照本发明还有一个实施例的控制装置的示意框图。
图7所示的控制装置70包含存储器710、处理器720以及存储在存储器710上并可在处理器720上运行的计算机程序730,其中,执行计算机程序730可以实现上面借助图1-5所述的用于确定换电站内的欠电电池的充电策略的方法。
通常情况下,换电站具备与待充电车辆的通信能力以获取车辆的位置、速 度等信息。因此优选地,上述控制装置60和70可配置为从换电站获取换电车辆的信息(例如驶往换电站的换电车辆的位置、速度等),从而能够确定换电车辆到达换电站的时间。但是需要指出的是,控制装置获取换电车辆信息的上述方式并非是唯一的或必需的方式。在另一优选方式中,换电车辆可将其位置和速度之类的信息上传至云端,使得控制装置能够从云端下载所需要的换电车辆的信息。
图8为按照本发明还有一个实施例的换电站的示意框图。
如图8所示,换电站包括控制装置810和充电装置820。在本实施例中,控制装置810可以采用结合图7所述的控制装置来实现,充电装置820则被配置为按照控制装置810确定的充电速率对欠电电池进行充电。
按照本发明的另一方面,还提供了一种计算机可读存储介质,其上存储计算机程序,该程序被处理器执行时可实现上面借助图1-5所述的用于确定换电站内的欠电电池的充电策略的方法。
提供本文中提出的实施例和示例,以便最好地说明按照本技术及其特定应用的实施例,并且由此使本领域的技术人员能够实施和使用本发明。但是,本领域的技术人员将会知道,仅为了便于说明和举例而提供以上描述和示例。所提出的描述不是意在涵盖本发明的各个方面或者将本发明局限于所公开的精确形式。
鉴于以上所述,本公开的范围通过以下权利要求书来确定。

Claims (10)

  1. 一种用于确定换电站内的欠电电池的充电策略的方法,其特征在于,包含下列步骤:
    获取待充电车辆到达换电站的预计时间,其中,所述待充电车辆为荷电状态低于设定阈值的车辆;
    将待充电车辆按照其到达换电站的预计时间划分为多个充电需求组,其中,每个充电需求组对应于多个时间段中的其中一个;
    对于每个充电需求组,确定所需的满电电池数量;以及
    根据多个充电需求组所需的满电电池数量确定换电站的欠电电池的充电策略。
  2. 如权利要求1所述的方法,其中,根据待充电车辆与换电站的距离和预计行驶速度确定其到达换电站的预计时间。
  3. 如权利要求1所述的方法,其中,每个充电需求组的所需的满电电池数量的确定包括下列步骤:
    获取该充电需求组内的待充电车辆的换电指数,其中,所述换电指数按照下式得到:
    Figure PCTCN2018109982-appb-100001
    其中,γ i,j为第i个充电需求组内第j个待充电车辆的换电指数,C i,j为第i个充电需求组内第j个待充电车辆已经发生过的在荷电状态低于设定阈值时换电的次数,T i,j为第i个充电需求组内第j个待充电车辆的总换电次数;以及
    对该充电需求组内的待充电车辆的换电指数求和以得到该充电需求组的所需的满电电池数量。
  4. 如权利要求1所述的方法,其中,利用对欠电电池的充电速率来表示充电策略。
  5. 如权利要求4所述的方法,其中,充电策略的确定包括下列步骤:
    确定多个充电需求组所需的满电电池数量的组合值;以及
    根据组合值和换电站当前可用的满电电池的数量确定相匹配的充电速率。
  6. 如权利要求4所述的方法,其中,充电策略的确定包括下列步骤:
    确定在当前充电速率下,在多个时间段结束时能够完成充电的电池的数量;
    根据当前可用的满电电池数量和在多个时间段结束时能够完成充电的电池的数量确定多个时间段内可用的满电电池数量;以及
    从多个充电速率中选择优化的充电速率,使得多个时间段内可用的满电电池数量与各个充电需求组所需的满电电池数量最为匹配。
  7. 一种用于确定换电站内的欠电电池的充电策略的装置,其包含:
    第一模块,用于获取待充电车辆到达换电站的预计时间,其中,所述待充电车辆为荷电状态低于设定阈值的车辆;
    第二模块,用于将待充电车辆按照其到达换电站的预计时间划分为多个充电需求组;
    第三模块,用于对于每个充电需求组,确定所需的满电电池数量;以及
    第四模块,用于根据多个充电需求组所需的满电电池数量确定换电站的欠电电池的充电策略。
  8. 一种控制装置,包含存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,执行所述程序以实现如权利要求1-6中任一项所述的方法。
  9. 一种换电站,包括:
    如权利要求8所述的控制装置;以及
    充电装置,其配置为按照所述控制装置确定的充电速率对欠电电池进行充电。
  10. 一种计算机可读存储介质,其上存储计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-6中任一项所述的方法。
PCT/CN2018/109982 2017-10-17 2018-10-12 用于确定换电站内的欠电电池的充电策略的方法和装置 WO2019076245A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18868001.1A EP3699836A4 (en) 2017-10-17 2018-10-12 PROCEDURE FOR DETERMINING THE CHARGING STRATEGY OF USED BATTERIES IN A BATTERY EXCHANGE STATION AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710962513.4A CN109670661B (zh) 2017-10-17 2017-10-17 用于确定换电站内的欠电电池的充电策略的方法和装置
CN201710962513.4 2017-10-17

Publications (1)

Publication Number Publication Date
WO2019076245A1 true WO2019076245A1 (zh) 2019-04-25

Family

ID=66140271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109982 WO2019076245A1 (zh) 2017-10-17 2018-10-12 用于确定换电站内的欠电电池的充电策略的方法和装置

Country Status (4)

Country Link
EP (1) EP3699836A4 (zh)
CN (1) CN109670661B (zh)
TW (1) TWI774856B (zh)
WO (1) WO2019076245A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111177637A (zh) * 2019-12-05 2020-05-19 国网辽宁省电力有限公司大连供电公司 电动汽车换电站动力电池的容量配置方法
US11136008B2 (en) * 2017-12-29 2021-10-05 Gogoro Inc. Systems and methods for managing exchangeable energy storage device stations
EP4064173A4 (en) * 2019-11-19 2023-02-22 Honda Motor Co., Ltd. INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING PROGRAM AND METHOD
CN116215252A (zh) * 2023-03-11 2023-06-06 南京农业大学 动态交互式新能源交通系统及其交互方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110979041B (zh) * 2020-03-04 2020-06-19 恒大智慧充电科技有限公司 充电系统、充电方法、计算机设备及存储介质
CN111766523B (zh) * 2020-07-09 2022-01-14 东莞塔菲尔新能源科技有限公司 一种确定锂离子电池充电策略的方法及装置
CN113570094B (zh) * 2021-07-16 2024-05-07 科大数字(上海)能源科技有限公司 一种换电站服务管理系统及方法
CN113765198B (zh) * 2021-11-09 2022-02-18 北京胜能能源科技有限公司 一种换电电池的充电系统和方法
CN114228556B (zh) * 2021-12-06 2023-10-03 北京海博思创科技股份有限公司 重卡的换电调度方法、装置、设备、系统及介质
CN117413443A (zh) * 2022-03-01 2024-01-16 时代电服科技有限公司 一种电池充电控制方法、装置、电子设备和存储介质
CN115284965B (zh) * 2022-09-29 2022-12-13 西华大学 基于组合优化法的换电式商用车的换电站预选方法
JP2024075382A (ja) 2022-11-22 2024-06-03 トヨタ自動車株式会社 電池交換の制御方法および電池交換の制御システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534053A (ja) * 2007-07-18 2010-10-28 テスラ モーターズ, インコーポレイテッド コストおよび寿命に基づいたバッテリ充電
CN102496980A (zh) * 2011-11-29 2012-06-13 清华大学 电动汽车充换电站的电池组更换与充电优化控制方法
CN103646295A (zh) * 2013-11-28 2014-03-19 东南大学 基于服务站通用模型的电动汽车充换电网络一体化调度方法
CN105904985A (zh) * 2016-04-25 2016-08-31 东莞市联洲知识产权运营管理有限公司 一种电动汽车充电控制装置
CN106356922A (zh) * 2016-08-31 2017-01-25 南方电网科学研究院有限责任公司 充电站的充电控制方法和系统
CN106427654A (zh) * 2016-11-30 2017-02-22 郑州天迈科技股份有限公司 公交新能源纯电车充电功率动态分配方法
CN106926717A (zh) * 2016-11-21 2017-07-07 蔚来汽车有限公司 基于贪心算法的换电站充电方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010033517A2 (en) * 2008-09-19 2010-03-25 Better Place GmbH System and method for operating an electric vehicle
US9000722B2 (en) * 2011-07-01 2015-04-07 Honda Motor Co., Ltd. Electric vehicle charging strategy
CN103241130B (zh) * 2013-04-10 2015-07-22 华中科技大学 一种电动公交车充换电站的能量管理方法及系统
CN103269107B (zh) * 2013-05-31 2015-04-15 国家电网公司 一种电动汽车充换电站充换电控制方法
WO2015121852A1 (en) * 2014-02-13 2015-08-20 Reinhold Cohn And Partners Control system for electric vehicle service network
TW201642208A (zh) * 2015-05-22 2016-12-01 Quan Hong Logistics Co Ltd 整合式電動車充電電源之雲端管理方法及系統
CN109291826B (zh) * 2016-04-15 2020-10-02 郑州宇通客车股份有限公司 一种根据电动汽车特征自动搜索充电设备的方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534053A (ja) * 2007-07-18 2010-10-28 テスラ モーターズ, インコーポレイテッド コストおよび寿命に基づいたバッテリ充電
CN102496980A (zh) * 2011-11-29 2012-06-13 清华大学 电动汽车充换电站的电池组更换与充电优化控制方法
CN103646295A (zh) * 2013-11-28 2014-03-19 东南大学 基于服务站通用模型的电动汽车充换电网络一体化调度方法
CN105904985A (zh) * 2016-04-25 2016-08-31 东莞市联洲知识产权运营管理有限公司 一种电动汽车充电控制装置
CN106356922A (zh) * 2016-08-31 2017-01-25 南方电网科学研究院有限责任公司 充电站的充电控制方法和系统
CN106926717A (zh) * 2016-11-21 2017-07-07 蔚来汽车有限公司 基于贪心算法的换电站充电方法及系统
CN106427654A (zh) * 2016-11-30 2017-02-22 郑州天迈科技股份有限公司 公交新能源纯电车充电功率动态分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3699836A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11136008B2 (en) * 2017-12-29 2021-10-05 Gogoro Inc. Systems and methods for managing exchangeable energy storage device stations
EP4064173A4 (en) * 2019-11-19 2023-02-22 Honda Motor Co., Ltd. INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING PROGRAM AND METHOD
CN111177637A (zh) * 2019-12-05 2020-05-19 国网辽宁省电力有限公司大连供电公司 电动汽车换电站动力电池的容量配置方法
CN111177637B (zh) * 2019-12-05 2023-06-02 国网辽宁省电力有限公司大连供电公司 电动汽车换电站动力电池的容量配置方法
CN116215252A (zh) * 2023-03-11 2023-06-06 南京农业大学 动态交互式新能源交通系统及其交互方法
CN116215252B (zh) * 2023-03-11 2024-03-08 南京农业大学 动态交互式新能源交通系统及其交互方法

Also Published As

Publication number Publication date
TWI774856B (zh) 2022-08-21
EP3699836A1 (en) 2020-08-26
TW201923691A (zh) 2019-06-16
CN109670661A (zh) 2019-04-23
EP3699836A4 (en) 2021-06-30
CN109670661B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
WO2019076245A1 (zh) 用于确定换电站内的欠电电池的充电策略的方法和装置
WO2019076069A1 (zh) 用于确定换电站电池充电策略的方法和装置
US11989069B2 (en) Power distribution management based on distributed networking protocol analytics
Wang et al. Smart charging for electric vehicles: A survey from the algorithmic perspective
Zhou et al. Optimal coordination of electric vehicles for virtual power plants with dynamic communication spectrum allocation
WO2019085797A1 (zh) 充电设备输出功率调整方法
CN108955711A (zh) 一种应用于电动汽车智能充放电的导航方法
WO2018188496A1 (zh) 用于确定移动充电车充电路径的方法和设备
WO2019006819A1 (zh) 换电等待时间确定系统及方法、换电站、换电系统以及记录介质
CA2924006A1 (en) Control device, power storage device, battery control system, battery control device, control method, battery control method, and recording medium
US11820249B2 (en) Managing the charging of a fleet of vehicles to align with a renewable energy supply curve for an electric grid
Kong et al. Smart rate control and demand balancing for electric vehicle charging
Appino et al. Reliable dispatch of renewable generation via charging of time-varying PEV populations
KR20190068358A (ko) 전기자동차 충방전 시스템과 그 방법
JP2017225212A (ja) 充放電制御装置
WO2021090915A1 (ja) 充電システム、充電方法、及びプログラム
CN108321916B (zh) 一种具有能量协作功能的基站及能量协作方法
Yuan et al. Source: Towards solar-uncertainty-aware e-taxi coordination under dynamic passenger mobility
CN110481384A (zh) 基于多因素影响条件下的电动汽车调峰容量计算方法
CN114640133B (zh) 一种基于实时信息的城市电网电动汽车协同调控方法及系统
TW202109435A (zh) 電動車充電站電能管理方法
KR20150067860A (ko) 에너지 저장장치의 전력관리장치 및 전력관리방법
CN109063876B (zh) 一种电动汽车充电预约方法
WO2021090914A1 (ja) 提示システム、提示方法、及びプログラム
CN116307606B (zh) 一种基于区块链的共享储能灵活性运行调度方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018868001

Country of ref document: EP

Effective date: 20200518