WO2019076209A1 - 终端设备监测数据采集策略优化方法及装置 - Google Patents

终端设备监测数据采集策略优化方法及装置 Download PDF

Info

Publication number
WO2019076209A1
WO2019076209A1 PCT/CN2018/109409 CN2018109409W WO2019076209A1 WO 2019076209 A1 WO2019076209 A1 WO 2019076209A1 CN 2018109409 W CN2018109409 W CN 2018109409W WO 2019076209 A1 WO2019076209 A1 WO 2019076209A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
monitoring data
data
terminal device
collection
Prior art date
Application number
PCT/CN2018/109409
Other languages
English (en)
French (fr)
Inventor
续云勇
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Priority to EP18867359.4A priority Critical patent/EP3700135B1/en
Publication of WO2019076209A1 publication Critical patent/WO2019076209A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/04Processing captured monitoring data, e.g. for logfile generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • H04L67/025Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring

Definitions

  • the present invention relates to the field of charging/replacement technology, and in particular, to a terminal device monitoring data collection strategy optimization method and device.
  • the data acquisition strategy of the powered device is still relatively simple. It mainly uses millisecond-level acquisition frequency to collect data and uses fixed frequency to transmit data.
  • each power-on device involves multiple types. Different forms of data, if all data are transmitted in real time, will occupy a large amount of data transmission bandwidth, and will also generate a large amount of invalid or duplicate data, which not only wastes transmission bandwidth resources, but also causes network congestion during busy hours.
  • data acquisition equipment mainly transmits data through wireless networks such as WIFI, Bluetooth, 3G/4G, etc., which is not only susceptible to environmental factors but cannot be stably transmitted. It is easy to cause network congestion and transmission delay when transmitting large amounts of data. Will increase the working pressure of the data processing system.
  • the present invention provides a method and device for optimizing the monitoring data collection strategy of the terminal device.
  • the method for optimizing a data collection strategy of a terminal device in the present invention includes:
  • the steps of “matching the corresponding first-level acquisition strategy according to the judgment result” specifically include:
  • the monitoring data includes non-periodic fluctuation data, periodic fluctuation data, and mutation data;
  • the first-level acquisition strategies include obtaining an expected data average, a threshold, and an acquisition frequency according to data variation rules of the types of monitoring data.
  • the step of "determining whether the acquired first-level monitoring data is abnormal, and matching the corresponding second-level collection strategy when abnormal data exists" includes:
  • the second level of acquisition strategy steps.
  • the weighting value P(Dn) of the first level monitoring data Dn is as follows:
  • the x is a data association weight coefficient
  • the y is a data deviation degree weight coefficient
  • the z is a data safety distance weight coefficient
  • the Rn is a correlation value of the first level monitoring data Dn
  • Dn)
  • En is the expected average value of the data of the first level monitoring data
  • the L(Dn)
  • Tn is the threshold of the first level monitoring data.
  • the matching method of the first-level collection policy is: performing matching according to the working state of the terminal device based on the preset first-level collection policy matching table; wherein the first-level collection policy matching table includes a preset Each working state, and the preset working scheme corresponding to each working state; the execution content of the collecting scheme includes setting an expected average value of the monitoring data, and adjusting a threshold value and an acquisition frequency of the monitoring data in the initial collecting strategy;
  • the matching method of the second-level collection policy is: performing matching according to the weighting value of the first-level monitoring data based on the preset second-level collection policy matching table; wherein the second-level collection policy matching table includes a preset Each weighted interval, and the preset collection scheme corresponding to each weighted interval; the execution content of the collection scheme includes adjusting a reporting frequency of the monitoring data in the first-level acquisition strategy.
  • the matching method of the third-level collection strategy is: performing matching according to a correlation value between different types of first-level monitoring data based on a preset third-level collection policy matching table; wherein the third-level policy matching
  • the table includes preset preset value of the abnormality, and an collection scheme corresponding to each preset abnormal correlation value.
  • the execution content of the collection scheme includes increasing the reporting frequency of the monitoring data in the first-level collection policy.
  • the method further includes:
  • the terminal device sets the expected average value of the monitoring data according to the matched first-level acquisition strategy, and adjusts the threshold and the acquisition frequency of the monitoring data in the initial collection strategy.
  • the method further includes:
  • the terminal device adjusts the reporting frequency of the monitoring data in the first-level collection policy according to the matched second-level collection policy.
  • the method further includes:
  • the terminal device increases the reporting frequency of the monitoring data in the first-level collection policy according to the matched third-level collection policy.
  • the first level collection policy, the second level collection policy, and the third level collection policy are collection policies preset in a remote server; the method further includes:
  • the method further includes:
  • the data information with a larger preset priority includes abnormal data with large fluctuations and real-time business data.
  • the terminal device monitoring data collection strategy optimization apparatus of the present invention includes:
  • a first acquiring module configured to acquire initial monitoring data of the terminal device
  • the first matching module is configured to determine the working state of the terminal device according to the obtained initial monitoring data, and match the corresponding first-level collection policy according to the determination result;
  • a second acquiring module configured to acquire first-level monitoring data obtained by the terminal device under the first-level collection policy
  • the second matching module is configured to determine whether the acquired first-level monitoring data is abnormal, and match the corresponding second-level collection policy when abnormal data exists.
  • the first matching module includes:
  • an acquiring unit configured to acquire a data change rule of each type of monitoring data of the terminal device in the determined working state;
  • the monitoring data includes non-periodic fluctuation data, periodic fluctuation data, and mutation data;
  • the matching unit is configured to match the first-level collection policy corresponding to the current type of monitoring data; the first-level collection strategies include expected average values, thresholds, and data obtained according to data variation rules of the types of monitoring data. Acquisition frequency.
  • the second matching module includes:
  • a first calculating unit configured to calculate a weighting value of the first level monitoring data
  • the first determining unit is configured to determine whether the weighting value is in a preset weighting interval, and if yes, match the second-level collection strategy corresponding to the weighting interval.
  • the device further includes a third matching module; the third matching module includes:
  • a second calculating unit configured to calculate an association value between different types of first level monitoring data
  • the second determining unit is configured to determine whether the associated value is abnormal, and if there is an abnormal correlation value, the corresponding third-level collecting policy is matched, otherwise the second matching module is started.
  • the weighting value P(Dn) of the first level monitoring data Dn is as follows:
  • the x is a data association weight coefficient
  • the y is a data deviation degree weight coefficient
  • the z is a data safety distance weight coefficient
  • the Rn is a correlation value of the first level monitoring data Dn
  • Dn)
  • En is the expected average value of the data of the first level monitoring data
  • the L(Dn)
  • Tn is the threshold of the first level monitoring data.
  • the first matching module includes a first level collection policy matching table; the first level collection policy matching table includes preset working states, and an initial collection scheme corresponding to each preset working state; the collection scheme
  • the execution content includes setting the expected average value of the data of the monitoring data, and adjusting the threshold and the acquisition frequency of the monitoring data in the initial collection strategy;
  • the second matching module includes a second-level collection policy matching table; the second-level collection policy matching table includes preset weighted intervals, and an acquisition scheme corresponding to the preset weighted intervals; the collection scheme
  • the execution content includes adjusting the reporting frequency of the monitoring data in the first-level acquisition strategy.
  • the third matching module includes a third-level collection policy matching table, and the third-level policy matching table includes preset abnormal correlation values, and an collection scheme corresponding to the preset abnormal correlation values;
  • the execution content of the collection scheme includes increasing the reporting frequency of the monitoring data in the first-level acquisition strategy.
  • a storage device of the present invention wherein a plurality of programs are stored, the program being adapted to be loaded and executed by a processor to implement the terminal device monitoring data collection strategy optimization method described in the above technical solution.
  • a processing apparatus of the present invention comprising a processor, is adapted to execute a plurality of programs; and a storage device adapted to store a plurality of programs; the program being adapted to be loaded and executed by a processor to implement: the above technical solution
  • the terminal device monitors a data collection strategy optimization method.
  • the method for optimizing the data collection strategy of the terminal device in the present invention can dynamically optimize the data collection strategy according to the monitoring data of the terminal device, so that the terminal device in different working conditions can be applied to improve the data collection efficiency.
  • the method for optimizing the data collection strategy of the terminal device in the present invention by dynamically adjusting the acquisition frequency and reporting frequency of the monitoring data, can not only effectively collect abnormal data and frequent jitter change data, but also improve utilization of broadband resources and alleviate The pressure of network congestion.
  • the method for optimizing the data collection strategy of the terminal device in the present invention can control the abnormal data and the real-time data with large priority fluctuations when the terminal device and the cloud server are disconnected, and can timely detect the abnormal working state of the terminal device.
  • FIG. 1 is a flow chart of main steps of a method for optimizing a data collection strategy of a terminal device according to an embodiment of the present invention
  • FIG. 2 is a flow chart of main steps of another method for optimizing a data collection strategy of a terminal device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a device for monitoring data collection strategy of a terminal device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another apparatus for monitoring data collection strategy of a terminal device according to an embodiment of the present invention.
  • FIG. 1 exemplarily shows the main steps of a method for optimizing a data collection strategy of a terminal device in this embodiment.
  • the terminal device monitoring data collection strategy can be optimized according to the following steps:
  • Step S101 Acquire initial monitoring data of the terminal device.
  • the initial monitoring data in this embodiment refers to the monitoring data obtained by the terminal device after running for a certain period of time according to the preset initial collection policy.
  • the terminal device can be a charging device such as a charging pile, a power station or a mobile charging car.
  • the initial acquisition strategy of the terminal device can be set according to the following steps:
  • Step S1011 According to the device type of the terminal device, combined with the service requirements of the terminal device, set the weight and priority of each type of monitoring data; and set the threshold of each type of monitoring data according to the historical running data of the terminal device.
  • the threshold includes an upper limit value and a lower limit value of the monitoring data.
  • Step S1012 Set the acquisition accuracy, the acquisition frequency, the reporting frequency, and the QOS policy of the corresponding type of monitoring data according to the weight and priority set in step S1011.
  • Step S102 Determine the working state of the terminal device according to the obtained initial monitoring data, and match the corresponding first-level collection policy according to the determination result.
  • the working state of the terminal device in this embodiment refers to the working state of the terminal device in a certain service scenario.
  • the service scenario of the terminal device may be determined according to the initial monitoring data of the terminal device and the environment information in the corresponding time period of the initial monitoring data.
  • the service scenario may include a business scenario during the daytime of the working day, a business scenario of the working day and nighttime, a business scenario of the daytime during the rest day, and a business scenario of the rest day and nighttime.
  • the first-level acquisition strategy can be matched according to the following steps:
  • Step S1021 Acquire a data change rule of each type of monitoring data of the terminal device in the determined working state.
  • the monitoring data in this embodiment may include non-periodic fluctuation data, periodic fluctuation data, and mutation data.
  • Step S1022 Match the first-level acquisition strategy corresponding thereto according to the current type of monitoring data.
  • the first-level acquisition strategies in this embodiment may include data expected mean values, threshold values, and acquisition frequencies obtained according to data variation rules of each type of monitoring data.
  • the first-level acquisition strategy corresponding to the non-periodic fluctuation data may include a data expected mean value, a fluctuation range threshold value, and an acquisition frequency according to a data change rule.
  • the first acquisition strategy corresponding to the periodic fluctuation data may include an expected mean value, a fluctuation period, and an acquisition frequency obtained according to the variation rule.
  • the first-level acquisition strategy corresponding to the mutation data may include obtaining a loop change threshold according to a variation rule thereof, and the loop change threshold refers to a change threshold of the mutation data in the current time period and the previous time period.
  • each first-level collection policy in this embodiment may further include a year-on-year change threshold of each type of monitoring data, where the year-on-year change threshold refers to a change threshold of the current time period and the historical synchronization period.
  • the terminal device is a substation and it is in an operating state during the working daytime period, the monitoring data changes faster to increase the acquisition frequency.
  • the monitoring data changes slowly to reduce the acquisition frequency.
  • the terminal device is a power station and it is in the working state of the working day and night time
  • the monitoring data changes slowly to reduce the acquisition frequency.
  • the terminal device is a household charging pile and is in an operating state at night
  • the monitoring data changes faster and the acquisition frequency can be increased.
  • the terminal device is a household charging pile and is in a working state during the daytime period
  • the monitoring data changes slowly to reduce the acquisition frequency.
  • the first-level collection policy may be obtained according to the preset first-level collection policy matching table and matched according to the working state of the terminal device.
  • the first-level collection policy matching table includes preset working states, and preset collection schemes corresponding to the working states; the execution content of the collection scheme includes setting an expected data average value of the monitoring data, and adjusting the monitoring in the initial collection strategy.
  • the threshold and acquisition frequency of the data is not limited to the threshold-level collection policy matching table and matched according to the working state of the terminal device.
  • Step S103 Acquire first-level monitoring data obtained by the terminal device under the first-level acquisition policy.
  • Step S104 determining whether the acquired first-level monitoring data is abnormal, and matching the corresponding second-level collection strategy when abnormal data exists, specifically:
  • Step S1041 Calculate the weighting value of the first level monitoring data.
  • the weighting value of the first level monitoring data can be calculated according to the following formula (1):
  • x is the data correlation weight coefficient
  • y is the data deviation degree weight coefficient
  • z is the data safety distance weight coefficient
  • Rn is the correlation value of the first level monitoring data Dn
  • S(Dn)
  • En is the first The expected average of the data of the primary monitoring data
  • L(Dn)
  • Tn is the threshold of the first level monitoring data.
  • the data expected mean En and the threshold Tn are the expected data averages and thresholds determined in the first-level acquisition strategy.
  • the associated value of the first level monitoring data Dn may be calculated according to the following steps: First, the available data relevance function is selected according to the data type of the first level monitoring data Dn, and the available data is utilized. The selected data correlation function calculates the correlation value corresponding to the plurality of sets of first-level monitoring data Dn, that is, the interval value of each data correlation. Then, set the associated value for all interval values. Finally, the absolute value
  • Step S1042 Determine whether the weighting value is in a preset weighting interval, and if yes, match the second-level collection strategy corresponding to the weighting interval.
  • the second level acquisition policy may be obtained by performing matching according to the preset second level collection policy matching table according to the weighting value of the first level monitoring data.
  • the second-level collection strategy matching table includes preset weighted intervals, and preset collection schemes corresponding to the weighted intervals; and the execution content of the collection scheme includes adjusting the reporting frequency of the monitoring data in the first-level collection strategy.
  • the second level collection policy matching table in this embodiment may be as shown in Table 1 below:
  • the weighted value P1 of the first-level monitoring data is in the weighted interval H1, and the corresponding second-level acquisition strategy is K1.
  • the weighted value P2 of the first level monitoring data is in the weighting interval H2, and the corresponding second level acquisition strategy is K2.
  • the weighting value Pn of the first level monitoring data is in the weighting interval Hn, and the corresponding second level acquisition strategy is Kn.
  • the device type of the terminal device, the data type of the monitoring data, the change rule, and the environment information can be comprehensively considered, and the monitoring data collection strategy of the terminal device can be dynamically adjusted, which can not only reduce the bandwidth load and the pressure of the service processing, but also Improve data collection efficiency.
  • FIG. 2 exemplarily shows the main steps of another method for optimizing the data collection strategy of the terminal device in this embodiment.
  • the terminal device monitoring data collection strategy can be optimized according to the following steps:
  • Step S201 Acquire initial monitoring data of the terminal device.
  • the initial monitoring data of the terminal device may be acquired according to the terminal device monitoring data collection policy optimization method shown in FIG. 1 .
  • Step S202 Determine the working state of the terminal device according to the obtained initial monitoring data, and match the corresponding first-level collection policy according to the determination result.
  • the terminal device monitoring data collection policy optimization method shown in FIG. 1 can be matched with the first level collection strategy.
  • Step S203 Acquire first-level monitoring data obtained by the terminal device under the first-level acquisition policy.
  • the first-level monitoring data of the terminal device can be obtained according to the terminal device monitoring data collection policy optimization method shown in FIG. 1 .
  • Step S204 Calculate the correlation value between the different types of first level monitoring data.
  • Step S205 determining whether an abnormality occurs in the associated value: if yes, executing step S206, if otherwise, executing step S207.
  • Step S206 Match the corresponding third-level collection policy when there is an abnormal correlation value.
  • the third-level collection policy can be obtained according to the preset third-level collection policy matching table, and the third-level acquisition strategy is obtained according to the correlation value between the different types of first-level monitoring data;
  • the table includes preset preset correlation values, and an collection scheme corresponding to the preset abnormal correlation values; the execution content of the collection scheme includes increasing the reporting frequency of the monitoring data in the first-level collection strategy.
  • Step S207 Determine whether the acquired first-level monitoring data is abnormal, and match the corresponding second-level collection strategy when abnormal data exists.
  • the terminal device monitoring data collection strategy optimization method shown in FIG. 1 can be matched to the second level collection strategy.
  • the third-level collection policy can be matched according to the abnormal correlation value, so that the terminal device can be adapted to the working state in the special service scenario.
  • Sex adjustment monitoring data collection strategy For example, when the terminal device is powered on and self-test, the monitoring data such as voltage or current will generate a small amount of abnormal value, and the abnormal correlation value is matched to the third-level acquisition strategy, thereby increasing the reporting frequency, and the abnormal information of the terminal device can be obtained in time.
  • terminal device monitoring data collection strategy optimization method shown in FIG. 1 in this embodiment may further include the following steps:
  • Step 1 The terminal device sets the expected data average value of the monitoring data according to the matched first-level acquisition strategy, and adjusts the threshold and the acquisition frequency of the monitoring data in the initial collection strategy.
  • Step 2 The terminal device adjusts the reporting frequency of the monitoring data in the first-level collection policy obtained in step 1 according to the matched second-level collection policy.
  • terminal device monitoring data collection strategy optimization method shown in FIG. 2 in this embodiment may further include the following steps:
  • Step 1 The terminal device sets the expected data average value of the monitoring data according to the matched first-level acquisition strategy, and adjusts the threshold and the acquisition frequency of the monitoring data in the initial collection strategy.
  • Step 2 The terminal device adjusts the reporting frequency of the monitoring data in the first-level collection policy obtained in step 1 according to the matched second-level collection policy.
  • Step 3 The terminal device increases the reporting frequency of the monitoring data in the first-level collection policy obtained in step 1 according to the matched third-level collection policy.
  • the first level acquisition strategy, the second level collection strategy, and the third level collection strategy are acquisition policies preset in the remote server.
  • the terminal device monitoring data collection strategy optimization method shown in FIG. 2 may further include the following steps:
  • the remote server sends any one of the first level collection policy, the second level collection policy, and the third level collection policy to the terminal device. Then, it is judged whether the terminal device receives the response information fed back by the remote server after transmitting the monitoring data to the remote server: if the terminal device does not receive the data information with the preset priority higher priority.
  • the data information with a preset priority value includes abnormal data with large fluctuations and real-time service data.
  • the remote server may be a cloud platform.
  • the terminal device can use the communication technology such as 3G/4G/5G to exchange information with the cloud platform.
  • the wireless WLAN technology Wireless Fidelity, WiFi
  • the platform can exchange information with the cloud platform by using BT communication mode.
  • ZigBee a low-power LAN technology based on the IEEE 802.15.4 standard, can be used for information interaction with the cloud platform.
  • the embodiment of the present invention further provides a terminal device monitoring data collection strategy optimization device.
  • the terminal device monitoring data collection strategy optimization device will be specifically described below with reference to FIGS. 3 and 4.
  • FIG. 3 exemplarily shows the structure of a terminal device monitoring data collection strategy optimization apparatus in this embodiment.
  • the terminal device monitoring data collection strategy optimization apparatus in this embodiment includes a first obtaining module 11, a first matching module 12, a second obtaining module 13, and a second matching module 14.
  • the first obtaining module 11 may be configured to acquire initial monitoring data of the terminal device.
  • the first matching module 12 may be configured to determine the working state of the terminal device according to the obtained initial monitoring data, and match the corresponding first-level collection policy according to the determination result.
  • the second obtaining module 13 may be configured to acquire first-level monitoring data obtained by the terminal device under the first-level acquisition policy.
  • the second matching module 14 may be configured to determine whether the acquired first-level monitoring data is abnormal, and match the corresponding second-level collection policy when abnormal data exists.
  • the first matching module 12 in this embodiment may include an obtaining unit and a matching unit.
  • the obtaining unit may be configured to obtain a data change rule of each type of monitoring data of the terminal device in the determined working state.
  • the matching unit may be configured to match the first-level acquisition strategy corresponding thereto according to the current type of monitoring data.
  • the monitoring data in this embodiment may include non-periodic fluctuation data, periodic fluctuation data, and mutation data.
  • Each first-level acquisition strategy includes data expected mean, threshold, and acquisition frequency obtained from data variation laws of various types of monitoring data.
  • the first matching module 12 in this embodiment further includes a first-level collection policy matching table.
  • the first-level acquisition strategy matching table includes preset working states, and preset collection schemes corresponding to the working states; the execution content of the collection scheme includes setting an expected data average value of the monitoring data, and adjusting monitoring data in the initial collection strategy. Threshold and acquisition frequency.
  • the second matching module 13 in this embodiment may include a first calculating unit and a first determining unit.
  • the first calculating unit may be configured to calculate a weighting value of the first level monitoring data.
  • the first determining unit may be configured to determine whether the weighting value is in a preset weighting interval, and if yes, match the second-level collection strategy corresponding to the weighting interval.
  • the second matching module 13 in this embodiment further includes a second level collection policy matching table.
  • the second-level acquisition strategy matching table includes preset weighted intervals, and preset collection schemes corresponding to the weighted intervals; and the execution content of the collection scheme includes adjusting the reporting frequency of the monitoring data in the first-level collection strategy.
  • the first calculating unit may calculate the weighting value of the first level monitoring data according to the method shown in the formula (1).
  • FIG. 4 exemplarily shows the structure of another terminal device monitoring data collection strategy optimization apparatus in this embodiment.
  • the terminal device monitoring data collection strategy optimization apparatus in this embodiment includes a first obtaining module 11, a first matching module 12, a second obtaining module 13, a second matching module 14, and a third matching module 15.
  • the third matching module 15 in this embodiment may include a second calculating unit and a second determining unit.
  • the second computing unit may be configured to calculate an association value between different types of first level monitoring data.
  • the second determining unit may be configured to determine whether an abnormality occurs in the associated value, and match the corresponding third-level collecting policy when there is an abnormal correlation value, otherwise start the second matching module.
  • the third matching module 15 in this embodiment further includes a third-level collection policy matching table.
  • the third-level policy matching table includes a preset abnormality association value, and an collection scheme corresponding to the preset abnormal correlation value.
  • the execution content of the collection scheme includes increasing the reporting frequency of the monitoring data in the first-level collection policy.
  • the foregoing embodiment of the terminal device monitoring data collection strategy optimization device may be used to implement the foregoing terminal device monitoring data collection strategy optimization method embodiment, and the technical principle, the solved technical problem and the generated technical effect are similar, and those skilled in the art may It is clearly understood that, for the convenience and simplicity of the description, the specific working process and related description of the terminal device monitoring data acquisition strategy optimization described above may refer to the corresponding process in the foregoing terminal device monitoring data collection strategy optimization method embodiment, where No longer.
  • the foregoing terminal device monitoring data collection strategy optimization apparatus further includes some other well-known structures, such as a processor, a controller, a memory, and the like, wherein the memory includes but is not limited to a random access memory, a flash memory, a read only memory, or the like.
  • the embodiments of the present disclosure are blurred, and these well-known structures are not shown in FIGS. 3 and 4.
  • modules in the apparatus of the embodiments can be adaptively changed and placed in one or more devices different from the embodiment.
  • the modules or units or components of the embodiments may be combined into one module or unit or component, and further they may be divided into a plurality of sub-modules or sub-units or sub-components.
  • any combination of the features disclosed in the specification, including the accompanying claims, the abstract and the drawings, and any methods so disclosed, or All processes or units of the device are combined.
  • Each feature disclosed in this specification (including the accompanying claims, the abstract and the drawings) may be replaced by alternative features that provide the same, equivalent or similar purpose.
  • the present invention further provides a storage device, wherein a plurality of programs are stored, the programs are adapted to be loaded and executed by the processor to implement the terminal device monitoring data collection strategy optimization. method.
  • the present invention further provides a processing device, where the processing device includes a processor and a storage device.
  • the processor is adapted to execute a plurality of programs
  • the storage device is adapted to store a plurality of programs, the programs being adapted to be loaded and executed by the processor to implement the terminal device monitoring data collection strategy optimization method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Mining & Analysis (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明涉及充/换电技术领域,具体提供了一种终端设备监测数据采集策略优化方法及装置,旨在解决如何对终端设备进行有序数据采集。为此目的,本发明中终端设备监测数据采集策略优化方法包括:获取终端设备的初始监测数据;依据所获取的初始监测数据判断终端设备的工作状态,并依据判断结果匹配对应的第一级采集策略;获取终端设备在第一级采集策略下得到的第一级监测数据;判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略。同时,本发明提供的装置可以执行上述方法。本发明的技术方案能够动态优化数据采集策略,适用处于不同工况的终端设备,从而可以提高数据采集效率。

Description

终端设备监测数据采集策略优化方法及装置 技术领域
本发明涉及充/换电技术领域,具体涉及一种终端设备监测数据采集策略优化方法及装置。
背景技术
随着电动汽车及其充/换电技术的快速发展和应用,电动汽车加电设备也呈现多样化发展。但是加电设备的数据采集策略仍较为单一,主要采用毫秒级采集频率采集数据,以及采用固定频率发送数据,当对大量的加电设备进行信息采集时,由于每个加电设备均涉及多种不同形式的数据,若对所有数据都进行实时传输将会占用大量的数据传输带宽,同时也会产生大量的无效或重复数据,不仅浪费了传输带宽资源,在业务繁忙时段还会造成网络拥塞。
目前,数据采集设备主要通过WIFI、蓝牙、3G/4G等无线网络传输数据,不仅容易受到环境因素的影响而不能稳定传输,在对大量数据进行传输时极易造成网络拥塞和传输延时,也会增大数据处理系统的工作压力。
发明内容
为了解决现有技术中的上述问题,即为了解决如何对终端设备进行有序数据采集的技术问题,本发明提供了一种终端设备监测数据采集策略优化方法及装置。
在第一方面,本发明中终端设备监测数据采集策略优化方法包括:
获取终端设备的初始监测数据;
依据所获取的初始监测数据判断所述终端设备的工作状态,并依据判断结果匹配对应的第一级采集策略;
获取所述终端设备在第一级采集策略下得到的第一级监测数据;
判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略。
进一步地,本发明提供的一个优选技术方案为:
“依据判断结果匹配对应的第一级采集策略”的步骤具体包括:
获取在所判断的工作状态下,所述终端设备的各类型监测数据的数据变化规律;所述监测数据包括非周期性波动数据、周期性波动数据和突变数据;
依据当前类型的监测数据,匹配与其对应的第一级采集策略;所述各第一级采集策略包括依据所述各类型监测数据的数据变化规律得到数据预期均值、阈值和采集频率。
进一步地,本发明提供的一个优选技术方案为:
“判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略”的步骤具体包括:
计算第一级监测数据的加权值;
判断所述加权值是否处于预设的加权区间,若是则匹配该加权区间对应的第二级采集策略。
进一步地,本发明提供的一个优选技术方案为:
“判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略”的步骤之前包括下述步骤:
计算不同类型的第一级监测数据之间的关联值;
判断所述关联值是否发生异常,当存在异常关联值时匹配对应的第三级采集策略,否则执行所述“判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略”的步骤。
进一步地,本发明提供的一个优选技术方案为:
所述第一级监测数据Dn的加权值P(Dn)如下式所示:
P(Dn)=x×Rn+y×S(Dn)+z×L(Dn)
其中,所述x为数据关联性权重系数,所述y为数据偏离程度权重系数,所述z为数据安全距离权重系数;所述Rn为第一级监测数据Dn的关联值;所述S(Dn)=|Dn-En|,En为第一级监测数据的数据预期均值;所述L(Dn)=|Dn-Tn|,Tn为第一级监测数据的阈值。
进一步地,本发明提供的一个优选技术方案为:
所述第一级采集策略的匹配方法为:基于预设的第一级采集策略匹配表,依据所述终端设备的工作状态进行匹配;其中,所述第一级采集策略匹配表包括预设的各工作状态,以及所述预设的各工作状态对应的采集方案;所述采集方案的执行内容包括设置监测数据的数据预期均值,并调整初始采集策略中监测数据的阈值和采集频率;
所述第二级采集策略的匹配方法为:基于预设的第二级采集策略匹配表,依据第一级监测数据的加权值进行匹配;其中,所述第二级采集策略匹配表包括预设的各加权区间,以及所述预设的各加权区间对应的采集方案;所述采集方案的执行内容包括调整第一级采集策略中监测数据的上报频率。
进一步地,本发明提供的一个优选技术方案为:
所述第三级采集策略的匹配方法为:基于预设的第三级采集策略匹配表,依据不同类型的第一级监测数据之间的关联值进行匹配;其中,所述第三级策略匹配表包括预设的各异常关联值,以及与所述预设的各异常关联值对应的采集方案;所述采集方案的执行内容包括增大第一级采集策略中监测数据的上报频率。
进一步地,本发明提供的一个优选技术方案为:
所述方法还包括:
终端设备依据匹配出的第一级采集策略,设置监测数据的数据预期均值,并调整初始采集策略中监测数据的阈值和采集频。
进一步地,本发明提供的一个优选技术方案为:
所述方法还包括:
终端设备依据匹配出的第二级采集策略,调整所述第一级采集策略中监测数据的上报频率。
进一步地,本发明提供的一个优选技术方案为:
所述方法还包括:
终端设备依据匹配出的第三级采集策略,增大所述第一级采集策略中监测数据的上报频率。
进一步地,本发明提供的一个优选技术方案为:
所述第一级采集策略、第二级采集策略和第三级采集策略为预先设置在远程服务器中的采集策略;所述方法还包括:
通过所述远程服务器向终端设备发送所述第一级采集策略、第二级采集策略和第三级采集策略中的任一采集策略。
进一步地,本发明提供的一个优选技术方案为:
所述方法还包括:
判断所述终端设备在向远程服务器发送监测数据后,是否接收到所述远程服务器反馈的应答信息:若未收到所述终端设备优先存储预设优先级较大的数据信息;
所述预设优先级较大的数据信息包括波动较大的异常数据和实时业务数据。
在第二方面,本发明中终端设备监测数据采集策略优化装置包括:
第一获取模块,配置为获取终端设备的初始监测数据;
第一匹配模块,配置为依据所获取的初始监测数据判断所述终端设备的工作状态,并依据判断结果匹配对应的第一级采集策略;
第二获取模块,配置为获取所述终端设备在第一级采集策略下得到的第一级监测数据;
第二匹配模块,配置为判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略。
进一步地,本发明提供的一个优选技术方案为:
所述第一匹配模块包括:
获取单元,配置为获取在所判断的工作状态下,所述终端设备的各类型监测数据的数据变化规律;所述监测数据包括非周期性波动数据、周期性波动数据和突变数据;
匹配单元,配置为依据当前类型的监测数据,匹配与其对应的第一级采集策略;所述各第一级采集策略包括依据所述各类型监测数据的数据变化规律得到的数据预期均值、阈值和采集频率。
进一步地,本发明提供的一个优选技术方案为:
所述第二匹配模块包括:
第一计算单元,配置为计算第一级监测数据的加权值;
第一判断单元,配置为判断所述加权值是否处于预设的加权区间,若是则匹配该加权区间对应的第二级采集策略。
进一步地,本发明提供的一个优选技术方案为:
所述装置还包括第三匹配模块;所述第三匹配模块包括:
第二计算单元,配置为计算不同类型的第一级监测数据之间的关联值;
第二判断单元,配置为判断所述关联值是否发生异常,当存在异常关联值时匹配对应的第三级采集策略,否则启动所述第二匹配模块。
进一步地,本发明提供的一个优选技术方案为:
所述第一级监测数据Dn的加权值P(Dn)如下式所示:
P(Dn)=x×Rn+y×S(Dn)+z×L(Dn)
其中,所述x为数据关联性权重系数,所述y为数据偏离程度权重系数,所述z为数据安全距离权重系数;所述Rn为第一级监测数据Dn的关联值;所述S(Dn)=|Dn-En|,En为第一级监测数据的数据预期均值;所述L(Dn)=|Dn-Tn|,Tn为第一级监测数据的阈值。
进一步地,本发明提供的一个优选技术方案为:
所述第一匹配模块包括第一级采集策略匹配表;所述第一级采集策略匹配表包括预设的各工作状态,以及所述预设的各工作状态对应的采集方案;所述采集方案的执行内容包括设置监测数据的数据预期均值,并调整初始采集策略中监测数据的阈值和采集频率;
所述第二匹配模块包括第二级采集策略匹配表;所述第二级采集策略匹配表包括预设的各加权区间,以及所述预设的各加权区间对应的采集方案;所述采集方案的执行内容包括调整第一级采集策略中监测数据的上报频率。
进一步地,本发明提供的一个优选技术方案为:
所述第三匹配模块包括第三级采集策略匹配表;所述第三级策略匹配表包括预设的各异常关联值,以及与所述预设的各异常关联值对应的采集方案;所述采集方案的执行内容包括增大第一级采集策略中监测数据的上报频率。
在第三方面,本发明中存储装置,其中存储有多条程序,所述程序适于由处理器加载并执行以实现上述技术方案所述的终端设备监测数据采集策略优化方法。
在第四方面,本发明中处理装置,包括处理器,适于执行各条程序;以及存储设备,适于存储多条程序;所述程序适于由处理器加载并执行以实现:上述技术方案所述的终端设备监测数据采集策略优化方法。
与现有技术相比,上述技术方案至少具有以下有益效果:
1、本发明中终端设备监测数据采集策略优化方法,可以根据终端设备的监测数据,动态优化数据采集策略,从而可以适用处于不同工况的终端设备,提高数据采集效率。
2、本发明中终端设备监测数据采集策略优化方法,通过动态调节监测数据的采集频率和上报频率,不仅可以有效采集到异常数据和频繁抖动变化的数据,还可以提高宽带资源的利用率,缓解网络拥塞的压力。
3、本发明中终端设备监测数据采集策略优化方法,可以在终端设备与云端服务器失联时,控制其优先缓存波动较大的异常数据和实时数据,能够及时监测到终端设备的异常工作状态。
附图说明
图1是本发明实施例中一种终端设备监测数据采集策略优化方法的主要步骤流程图;
图2是本发明实施例中另一种终端设备监测数据采集策略优化方法的主要步骤流程图;
图3是本发明实施例中一种终端设备监测数据采集策略优化装置的结构示意图;
图4是本发明实施例中另一种终端设备监测数据采集策略优化装置的结构示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
下面结合附图1和2,对本发明提供的终端设备监测数据采集策略优化方法进行说明。
参阅附图1,图1示例性示出了本实施例中一种终端设备监测数据采集策略优化方法的主要步骤。如图1所示,本实施例中可以按照下述步骤优化终端设备监测数据采集策略:
步骤S101:获取终端设备的初始监测数据。
具体地,本实施例中初始监测数据指的是,终端设备按照预设的初始采集策略运行一定时间后得到的监测数据。终端设备可以为充电桩、换电站或移动充电车等加电设备。
在本实施例的一个优选实施方案中,可以按照下述步骤设置终端设备的初始采集策略:
步骤S1011:依据终端设备的设备类型,并结合终端设备的业务需要,设定其各类型监测数据的权重和优先级;依据终端设备的历史运行数据,设定其各类型监测数据的阈值。其中,阈值包括监测数据的上限值和下限值。
步骤S1012:依据步骤S1011中设定的权重和优先级,设定对应类型监测数据的采集精确度、采集频率、上报频率和QOS策略。
步骤S102:依据所获取的初始监测数据判断终端设备的工作状态,并依据判断结果匹配对应的第一级采集策略。
本实施例中终端设备的工作状态指的是终端设备处于一定业务场景下的工作状态。在本实施例的一个优选实施方案中,可以依据终端设备的初始监测数据,以及该初始监测数据对应时间段内的环境信息,确定终端设备的业务场景。例如,终端设备为换电站时其业务场景可以包括工作日白天时段的业务场景、工作日晚上时段的业务场景、休息日白天时段的业务场景和休息日晚上时段的业务场景等。
本实施例中可以按照下述步骤匹配第一级采集策略:
步骤S1021:获取在所判断的工作状态下,终端设备的各类型监测数据的数据变化规律。本实施例中监测数据可以包括非周期性波动数据、周期性波动数据和突变数据。
步骤S1022:依据当前类型的监测数据,匹配与其对应的第一级采集策略。本实施例中各第一级采集策略可以包括依据各类型监测数据的数据变化规律得到的数据预期均值、阈值和采集频率。其中,非周期性波动数据对应的第一级采集策略,可以包括依据其数据变化规律得到的数据预期均值、波动范围阈值和采集频率。周期性波动数据对应的 第一采集策略可以包括依据其变化规律得到的数据预期均值、波动周期和采集频率。突变数据对应的第一级采集策略可以包括依据其变化规律得到环比变化阈值,该环比变化阈值指的是当前时间周期与上一个时间周期内突变数据的变化阈值。同时,本实施例中各第一级采集策略还可以包括各类型监测数据的同比变换阈值,该同比变化阈值指的是当前时间周期与历史同期的变化阈值。在本实施例的一个优选实施方案中,当终端设备为换电站且其处于工作日白天时段的工作状态时,监测数据变化较快可以增大采集频率。当终端设备为换电站且其处于工作日晚上时段的工作状态时,监测数据变化较慢可以减小采集频率。当终端设备为家用充电桩且处于晚上时段的工作状态时,监测数据变化较快可以增大采集频率。当终端设备为家用充电桩且处于白天时段的工作状态时,监测数据变化较慢可以减小采集频率。
具体地,本实施例中可以基于预设的第一级采集策略匹配表,依据终端设备的工作状态进行匹配得到第一级采集策略。其中,第一级采集策略匹配表包括预设的各工作状态,以及预设的各工作状态对应的采集方案;采集方案的执行内容包括设置监测数据的数据预期均值,并调整初始采集策略中监测数据的阈值和采集频率。
步骤S103:获取终端设备在第一级采集策略下得到的第一级监测数据。
步骤S104:判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略,具体为:
步骤S1041:计算第一级监测数据的加权值。
本实施例中可以按照下式(1)计算第一级监测数据的加权值:
P(Dn)=x×Rn+y×S(Dn)+z×L(Dn)       (1)
公式(1)中各参数含义为:
x为数据关联性权重系数,y为数据偏离程度权重系数,z为数据安全距离权重系数;Rn为第一级监测数据Dn的关联值;S(Dn)=|Dn-En|,En为第一级监测数据的数据预期均值;L(Dn)=|Dn-Tn|,Tn为第一级监测数据的阈值。其中,数据预期均值En和阈值Tn均为第一级采集策略中确定的数据预期均值和阈值。
在本实施例的一个优选实施方案中,可以按照下述步骤计算第一级监测数据Dn的关联值:首先,依据第一级监测数据Dn的数据类型选定可用的数据关联性函数,利用所选定的数据关联性函数计算得到多组第一级监测数据Dn对应的相关值,即各数据相关性的区间值。然后,设定所有区间值对应的关联值。最后,计算当前第一级监测数据Dn与前一时刻第一级监测数据Dn-1差的绝对值|Dn-Dn-1|,判断该绝对值所在的区间,将判断得到区间值所对应的关联值设置为当前第一级监测数据Dn的关联值。
步骤S1042:判断加权值是否处于预设的加权区间,若是则匹配该加权区间对应的第二级采集策略。
具体地,本实施例中可以基于预设的第二级采集策略匹配表,依据第一级监测数据的加权值进行匹配得到第二级采集策略。其中,第二级采集策略匹配表包括预设的各加权区间,以及预设的各加权区间对应的采集方案;采集方案的执行内容包括调整第一级采集策略中监测数据的上报频率。
本实施例中第二级采集策略匹配表可以如下表1所示:
表1
加权值 加权区间 第二级采集策略
P1 H1 K1
P2 H2 K2
…. …. ….
Pn Hn Kn
依据表1可以得到,第一级监测数据的加权值P1处于加权区间H1内,对应的第二级采集策略为K1。第一级监测数据的加权值P2处于加权区间H2内,对应的第二级采集策略为K2。第一级监测数据的加权值Pn处于加权区间Hn内,对应的第二级采集策略为Kn。
本实施例中可以综合考虑终端设备的设备类型、监测数据的数据类型、变化规律和环境信息等因素,动态调整终端设备的监测数据采集策略,不仅可以降低带宽负载和业务处理的压力,还可以提高数据采集效率。
继续参阅附图2,图2示例性示出了本实施例中另一种终端设备监测数据采集策略优化方法的主要步骤。如图2所示,本实施例中可以按照下述步骤优化终端设备监测数据采集策略:
步骤S201:获取终端设备的初始监测数据。具体地,本实施例中可以按照图1所示的终端设备监测数据采集策略优化方法获取终端设备的初始监测数据。
步骤S202:依据所获取的初始监测数据判断终端设备的工作状态,并依据判断结果匹配对应的第一级采集策略。具体地,本实施例中可以按照图1所示的终端设备监测数据采集策略优化方法匹配第一级采集策略。
步骤S203:获取终端设备在第一级采集策略下得到的第一级监测数据。具体地,本实施例中可以按照图1所示的终端设备监测数据采集策略优化方法获取终端设备的第一级监测数据。
步骤S204:计算不同类型的第一级监测数据之间的关联值。
步骤S205:判断关联值是否发生异常:若是则执行步骤S206,若否则执行步骤S207。
步骤S206:当存在异常关联值时匹配对应的第三级采集策略。具体地,本实施例中可以基于预设的第三级采集策略匹配表,依据不同类型的第一级监测数据之间的关联值进行匹配得到第三级采集策略;其中,第三级策略匹配表包括预设的各异常关联值,以及与预设的各异常关联值对应的采集方案;采集方案的执行内容包括增大第一级采集策略中监测数据的上报频率。
步骤S207:判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略。具体地,本实施例中可以按照图1所示的终端设备监测数据采集策略优化方法匹配第二级采集策略。
本实施例中在不同类型的第一级监测数据之间的关联值发生异常时,可以依据异常关联值匹配第三级采集策略,使得终端设备处于特殊业务场景下的工作状态时,也可以适应性调整监测数据采集策略。例如,当终端设备开机自检时电压或电流等监测数据会产生少量的异常值,通过异常关联值匹配到第三级采集策略,进而增大上报频率,可以及时获取到终端设备的异常信息。
进一步地,本实施例中图1所示的终端设备监测数据采集策略优化方法还可以包括下述步骤:
步骤1:终端设备依据匹配出的第一级采集策略,设置监测数据的数据预期均值,并调整初始采集策略中监测数据的阈值和采集频。
步骤2:终端设备依据匹配出的第二级采集策略,调整步骤1得到的第一级采集策略中监测数据的上报频率。
进一步地,本实施例中图2所示的终端设备监测数据采集策略优化方法还可以包括下述步骤:
步骤1:终端设备依据匹配出的第一级采集策略,设置监测数据的数据预期均值,并调整初始采集策略中监测数据的阈值和采集频。
步骤2:终端设备依据匹配出的第二级采集策略,调整步骤1得到的第一级采集策略中监测数据的上报频率。
步骤3:终端设备依据匹配出的第三级采集策略,增大步骤1得到的第一级采集策略中监测数据的上报频率。
在本实施例的一个优选实施方案中,第一级采集策略、第二级采集策略和第三级采集策略为预先设置在远程服务器中的采集策略。图2所示的终端设备监测数据采集策略优化方法还可以包括下述步骤:
首先,通过远程服务器向终端设备发送第一级采集策略、第二级采集策略和第三级采集策略中的任一采集策略。然后,判断终端设备在向远程服务器发送监测数据后,是否接收到远程服务器反馈的应答信息:若未收到终端设备优先存储预设优先级较大的数据信息。其中,预设优先级较大的数据信息包括波动较大的异常数据和实时业务数据。
本实施例中远程服务器可以为云平台。终端设备可以采用3G/4G/5G等通信技术与云平台进行信息交互,可以采用基于IEEE802.11b标准的无线局域网技术(Wireless Fidelity,WiFi)与云平台进行信息交互,可以采用TCP通信方式与云平台进行信息交互,可以采用BT通信方式与云平台进行信息交互,可以采用基于IEEE 802.15.4标准的低功耗局域网技术ZigBee与云平台进行信息交互。
上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。
基于与方法实施例相同的技术构思,本发明实施例还提供一种终端设备监测数据采集策略优化装置。下面结合附图3和4,对该终端设备监测数据采集策略优化装置进行具体说明。
参阅附图3,图3示例性示出了本实施例中一种终端设备监测数据采集策略优化装置的结构。如图3所示,本实施例中终端设备监测数据采集策略优化装置包括第一获取模块11、第一匹配模块12、第二获取模块13和第二匹配模块14。其中,第一获取模块11可以配置为获取终端设备的初始监测数据。第一匹配模块12可以配置为依据所获取的初始监测数据判断终端设备的工作状态,并依据判断结果匹配对应的第一级采集策略。第二获取模块13可以配置为获取终端设备在第一级采集策略下得到的第一级监测数据。第二匹配模块14可以配置为判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略。
进一步地,本实施例中第一匹配模块12可以包括获取单元和匹配单元。其中,获取单元可以配置为获取在所判断的工作状态下,终端设备的各类型监测数据的数据变化规律。匹配单元可以配置为依据当前类型的监测数据,匹配与其对应的第一级采集策略。本实施例中监测数据可以包括非周期性波动数据、周期性波动数据和突变数据。各第一级采集策略包括依据各类型监测数据的数据变化规律得到的数据预期均值、阈值和采集频率。
本实施例中第一匹配模块12还包括第一级采集策略匹配表。该第一级采集策略匹配表包括预设的各工作状态,以及预设的各工作状态对应的采集方案;采集方案的执行内容包括设置监测数据的数据预期均值,并调整初始采集策略中监测数据的阈值和采集频率。
进一步地,本实施例中第二匹配模块13可以包括第一计算单元和第一判断单元。其中,第一计算单元可以配置为计算第一级监测数据的加权值。第一判断单元可以配置为判断加权值是否处于预设的加权区间,若是则匹配该加权区间对应的第二级采集策略。
本实施例中第二匹配模块13还包括第二级采集策略匹配表。该第二级采集策略匹配表包括预设的各加权区间,以及预设的各加权区间对应的采集方案;采集方案的执行内容包括调整第一级采集策略中监测数据的上报频率。
本实施例中第一计算单元可以按照公式(1)所示的方法计算第一级监测数据的加权值。
继续参阅附图4,图4示例性示出了本实施例中另一种终端设备监测数据采集策略优化装置的结构。如图4所示,本实施例中终端设备监测数据采集策略优化装置包括第一获取模块11、第一匹配模块12、第二获取模块13、第二匹配模块14和第三匹配模块15。
本实施例中第三匹配模块15可以包括第二计算单元和第二判断单元。其中,第二计算单元可以配置为计算不同类型的第一级监测数据之间的关联值。第二判断单元可以配置为判断关联值是否发生异常,当存在异常关联值时匹配对应的第三级采集策略,否则启动第二匹配模块。
本实施例中第三匹配模块15还包括第三级采集策略匹配表。该第三级策略匹配表包括预设的各异常关联值,以及与预设的各异常关联值对应的采集方案;采集方案的执行内容包括增大第一级采集策略中监测数据的上报频率。
上述终端设备监测数据采集策略优化装置实施例可以用于执行上述终端设备监测数据采集策略优化方法实施例,其技术原理、所解决的技术问题及产生的技术效果相似,所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的终端设备监测数据采集策略优化的具体工作过程及有关说明,可以参考前述终端设备监测数据采集策略优化方法实施例中的对应过程,在此不再赘述。
本领域技术人员可以理解,上述终端设备监测数据采集策略优化装置还包括一些其他公知结构,例如处理器、控制器、存储器等,其中,存储器包括但不限于随机存储器、闪存、只读存储器、可编程只读存储器、易失性存储器、非易失性存储器、串行存储器、并行存储器或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等,为了不必要地模糊本公开的实施例,这些公知的结构未在图3和4中示出。
应该理解,图3和4中的各个模块的数量仅仅是示意性的。根据实际需要,各模块可以具有任意的数量。
本领域技术人员可以理解,可以对实施例中的装置中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设 备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的PC来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
基于上述终端设备监测数据采集策略优化方法实施例,本发明还提供了一种存储装置,其中存储有多条程序,这些程序适于由处理器加载并执行以实现上述终端设备监测数据采集策略优化方法。
基于上述终端设备监测数据采集策略优化方法实施例,本发明还提供了一种处理装置,该处理装置包括处理器、存储设备。其中,处理器适于执行各条程序,存储设备适于存储多条程序,这些程序适于由处理器加载并执行以实现上述终端设备监测数据采集策略优化方法。
本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域 技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (21)

  1. 一种终端设备监测数据采集策略优化方法,其特征在于,所述方法包括:
    获取终端设备的初始监测数据;
    依据所获取的初始监测数据判断所述终端设备的工作状态,并依据判断结果匹配对应的第一级采集策略;
    获取所述终端设备在第一级采集策略下得到的第一级监测数据;
    判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略。
  2. 根据权利要求1所述的方法,其特征在于,
    “依据判断结果匹配对应的第一级采集策略”的步骤具体包括:
    获取在所判断的工作状态下,所述终端设备的各类型监测数据的数据变化规律;所述监测数据包括非周期性波动数据、周期性波动数据和突变数据;
    依据当前类型的监测数据,匹配与其对应的第一级采集策略;所述各第一级采集策略包括依据所述各类型监测数据的数据变化规律得到的数据预期均值、阈值和采集频率。
  3. 根据权利要求1所述的方法,其特征在于,
    “判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略”的步骤具体包括:
    计算第一级监测数据的加权值;
    判断所述加权值是否处于预设的加权区间,若是则匹配该加权区间对应的第二级采集策略。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,
    “判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略”的步骤之前包括下述步骤:
    计算不同类型的第一级监测数据之间的关联值;
    判断所述关联值是否发生异常,当存在异常关联值时匹配对应的第 三级采集策略,否则执行所述“判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略”的步骤。
  5. 根据权利要求3所述的方法,其特征在于,
    所述第一级监测数据Dn的加权值P(Dn)如下式所示:
    P(Dn)=x×Rn+y×S(Dn)+z×L(Dn)
    其中,所述x为数据关联性权重系数,所述y为数据偏离程度权重系数,所述z为数据安全距离权重系数;所述Rn为第一级监测数据Dn的关联值;所述S(Dn)=|Dn-En|,En为第一级监测数据的数据预期均值;所述L(Dn)=|Dn-Tn|,Tn为第一级监测数据的阈值。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,
    所述第一级采集策略的匹配方法为:基于预设的第一级采集策略匹配表,依据所述终端设备的工作状态进行匹配;其中,所述第一级采集策略匹配表包括预设的各工作状态,以及所述预设的各工作状态对应的采集方案;所述采集方案的执行内容包括设置监测数据的数据预期均值,并调整初始采集策略中监测数据的阈值和采集频率;
    所述第二级采集策略的匹配方法为:基于预设的第二级采集策略匹配表,依据第一级监测数据的加权值进行匹配;其中,所述第二级采集策略匹配表包括预设的各加权区间,以及所述预设的各加权区间对应的采集方案;所述采集方案的执行内容包括调整第一级采集策略中监测数据的上报频率。
  7. 根据权利要求4所述的方法,其特征在于,
    所述第三级采集策略的匹配方法为:基于预设的第三级采集策略匹配表,依据不同类型的第一级监测数据之间的关联值进行匹配;其中,所述第三级策略匹配表包括预设的各异常关联值,以及与所述预设的各异常关联值对应的采集方案;所述采集方案的执行内容包括增大第一级采集策略中监测数据的上报频率。
  8. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包 括:
    终端设备依据匹配出的第一级采集策略,设置监测数据的数据预期均值,并调整初始采集策略中监测数据的阈值和采集频。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    终端设备依据匹配出的第二级采集策略,调整所述第一级采集策略中监测数据的上报频率。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    终端设备依据匹配出的第三级采集策略,增大所述第一级采集策略中监测数据的上报频率。
  11. 根据权利要求4所述的方法,其特征在于,
    所述第一级采集策略、第二级采集策略和第三级采集策略为预先设置在远程服务器中的采集策略;所述方法还包括:
    通过所述远程服务器向终端设备发送所述第一级采集策略、第二级采集策略和第三级采集策略中的任一采集策略。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    判断所述终端设备在向远程服务器发送监测数据后,是否接收到所述远程服务器反馈的应答信息:若未收到所述终端设备优先存储预设优先级较大的数据信息;
    所述预设优先级较大的数据信息包括波动较大的异常数据和实时业务数据。
  13. 一种终端设备监测数据采集策略优化装置,其特征在于,所述装置包括:
    第一获取模块,配置为获取终端设备的初始监测数据;
    第一匹配模块,配置为依据所获取的初始监测数据判断所述终端设备的工作状态,并依据判断结果匹配对应的第一级采集策略;
    第二获取模块,配置为获取所述终端设备在第一级采集策略下得到的第一级监测数据;
    第二匹配模块,配置为判断所获取的第一级监测数据是否发生异常,当存在异常数据时匹配对应的第二级采集策略。
  14. 根据权利要求13所述的装置,其特征在于,所述第一匹配模块包括:
    获取单元,配置为获取在所判断的工作状态下,所述终端设备的各类型监测数据的数据变化规律;
    匹配单元,配置为依据当前类型的监测数据,匹配与其对应的第一级采集策略;所述各第一级采集策略包括依据所述各类型监测数据的数据变化规律得到的数据预期均值、阈值和采集频率。
  15. 根据权利要求13所述的装置,其特征在于,所述第二匹配模块包括:
    第一计算单元,配置为计算第一级监测数据的加权值;
    第一判断单元,配置为判断所述加权值是否处于预设的加权区间,若是则匹配该加权区间对应的第二级采集策略。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,所述装置还包括第三匹配模块;所述第三匹配模块包括:
    第二计算单元,配置为计算不同类型的第一级监测数据之间的关联值;
    第二判断单元,配置为判断所述关联值是否发生异常,当存在异常关联值时匹配对应的第三级采集策略,否则启动所述第二匹配模块。
  17. 根据权利要求15所述的装置,其特征在于,
    所述第一级监测数据Dn的加权值P(Dn)如下式所示:
    P(Dn)=x×Rn+y×S(Dn)+z×L(Dn)
    其中,所述x为数据关联性权重系数,所述y为数据偏离程度权重系数,所述z为数据安全距离权重系数;所述Rn为第一级监测数据Dn的关联值;所述S(Dn)=|Dn-En|,En为第一级监测数据的数据预期均值;所述L(Dn)=|Dn-Tn|,Tn为第一级监测数据的阈值。
  18. 根据权利要求13-15任一项所述的装置,其特征在于,
    所述第一匹配模块包括第一级采集策略匹配表;所述第一级采集策略匹配表包括预设的各工作状态,以及所述预设的各工作状态对应的采集方案;所述采集方案的执行内容包括设置监测数据的数据预期均值,并调整初始采集策略中监测数据的阈值和采集频率;
    所述第二匹配模块包括第二级采集策略匹配表;所述第二级采集策略匹配表包括预设的各加权区间,以及所述预设的各加权区间对应的采集方案;所述采集方案的执行内容包括调整第一级采集策略中监测数据的上报频率。
  19. 根据权利要求16所述的装置,其特征在于,
    所述第三匹配模块包括第三级采集策略匹配表;所述第三级策略匹配表包括预设的各异常关联值,以及与所述预设的各异常关联值对应的采集方案;所述采集方案的执行内容包括增大第一级采集策略中监测数据的上报频率。
  20. 一种存储装置,其中存储有多条程序,其特征在于,所述程序适于由处理器加载并执行以实现权利要求1-12任一项所述的终端设备监测数据采集策略优化方法。
  21. 一种处理装置,包括
    处理器,适于执行各条程序;以及
    存储设备,适于存储多条程序;
    其特征在于,所述程序适于由处理器加载并执行以实现:
    权利要求1-12任一项所述的终端设备监测数据采集策略优化方法。
PCT/CN2018/109409 2017-10-16 2018-10-09 终端设备监测数据采集策略优化方法及装置 WO2019076209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18867359.4A EP3700135B1 (en) 2017-10-16 2018-10-09 Method and apparatus for optimizing monitoring data collection policy for terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710970303.X 2017-10-16
CN201710970303.XA CN109672579B (zh) 2017-10-16 2017-10-16 终端设备监测数据采集策略优化方法、装置及介质

Publications (1)

Publication Number Publication Date
WO2019076209A1 true WO2019076209A1 (zh) 2019-04-25

Family

ID=66141524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109409 WO2019076209A1 (zh) 2017-10-16 2018-10-09 终端设备监测数据采集策略优化方法及装置

Country Status (3)

Country Link
EP (1) EP3700135B1 (zh)
CN (1) CN109672579B (zh)
WO (1) WO2019076209A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110704282A (zh) * 2019-10-15 2020-01-17 广东电网有限责任公司 一种监控信息检漏方法及系统
CN113435686A (zh) * 2021-04-28 2021-09-24 国网冀北电力有限公司计量中心 蓄热式电采暖系统评价方法及装置
CN114693328A (zh) * 2020-12-31 2022-07-01 奥动新能源汽车科技有限公司 换电行为数据的处理方法、系统、设备和存储介质
CN114896309A (zh) * 2022-05-17 2022-08-12 三峡高科信息技术有限责任公司 一种水电站监测数据转换展示的方法及系统
CN116414420A (zh) * 2023-06-09 2023-07-11 山东华邦农牧机械股份有限公司 禽类养殖控制系统的自动化升级方法
CN116664114A (zh) * 2023-08-02 2023-08-29 华能信息技术有限公司 一种电厂检修系统及方法
CN117391644A (zh) * 2023-12-12 2024-01-12 国网物资有限公司 一种参数调整方法、装置、设备及存储介质
CN117950703A (zh) * 2024-03-26 2024-04-30 成都赛力斯科技有限公司 维测数据的自适应更新方法、装置、电子设备及存储介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247816B (zh) * 2019-05-13 2021-05-25 中国联合网络通信集团有限公司 指标监控方法及装置
CN110362020A (zh) * 2019-08-28 2019-10-22 四川省东宇信息技术有限责任公司 智能三维姿态与振动监测仪及其监测方法
CN110867968B (zh) * 2019-11-28 2021-03-26 广州供电局有限公司 无线配网相量测量装置数据上送控制方法及装置
CN110968483B (zh) * 2019-12-20 2023-08-11 支付宝实验室(新加坡)有限公司 业务数据采集方法、装置及电子设备
CN113672447B (zh) * 2020-05-15 2024-02-27 杭州海康威视系统技术有限公司 数据采集方法及装置
CN111882382A (zh) * 2020-06-30 2020-11-03 上海万位科技有限公司 基于数据和风险关联模型的共享汽车数据存储管理方法
CN111800503B (zh) * 2020-07-03 2023-04-18 湖南工业大学 一种减少数据采集终端的物联网通讯数据拓扑方法及系统
CN114715139B (zh) * 2020-12-18 2024-04-16 北京百度网讯科技有限公司 自动泊车异常数据采集方法、装置、存储介质及产品
CN112783725B (zh) * 2021-01-26 2024-04-09 中国工商银行股份有限公司 指标采集方法及装置
CN113256845B (zh) * 2021-05-31 2022-05-20 岚图汽车科技有限公司 一种数据采集方法、装置、存储介质及系统
CN115329243B (zh) * 2022-08-18 2024-02-27 合众新能源汽车股份有限公司 一种车辆远程动态配置方法、装置、电子设备及存储介质
CN116449081B (zh) * 2023-06-15 2023-08-15 深圳市北汉科技有限公司 具有自适应调控功能的数据采集系统、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986619A (zh) * 2014-05-09 2014-08-13 浙江中烟工业有限责任公司 光纤通道交换机的端口状态监控方法
CN105375572A (zh) * 2015-11-26 2016-03-02 上海循道新能源科技有限公司 一种电动汽车交流充电桩的智能检测装置
CN106502868A (zh) * 2016-11-18 2017-03-15 国云科技股份有限公司 一种适用于云计算的动态调整监测频率方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050071457A1 (en) * 2003-08-27 2005-03-31 Siew-Hong Yang-Huffman System and method of network fault monitoring
KR101292881B1 (ko) * 2009-12-21 2013-08-02 한국전자통신연구원 단말 원격 모니터링 장치 및 방법
US20140068569A1 (en) * 2012-08-31 2014-03-06 Microsoft Corporation User directed profiling
CN103064363A (zh) * 2012-12-07 2013-04-24 广东电网公司佛山供电局 用电小区配电房的远程智能实时在线感知监控系统和方法
US9872122B2 (en) * 2013-08-22 2018-01-16 Nec Corporation Network information collection and analysis of a plurality of mobile networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986619A (zh) * 2014-05-09 2014-08-13 浙江中烟工业有限责任公司 光纤通道交换机的端口状态监控方法
CN105375572A (zh) * 2015-11-26 2016-03-02 上海循道新能源科技有限公司 一种电动汽车交流充电桩的智能检测装置
CN106502868A (zh) * 2016-11-18 2017-03-15 国云科技股份有限公司 一种适用于云计算的动态调整监测频率方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110704282A (zh) * 2019-10-15 2020-01-17 广东电网有限责任公司 一种监控信息检漏方法及系统
CN114693328A (zh) * 2020-12-31 2022-07-01 奥动新能源汽车科技有限公司 换电行为数据的处理方法、系统、设备和存储介质
CN113435686A (zh) * 2021-04-28 2021-09-24 国网冀北电力有限公司计量中心 蓄热式电采暖系统评价方法及装置
CN114896309A (zh) * 2022-05-17 2022-08-12 三峡高科信息技术有限责任公司 一种水电站监测数据转换展示的方法及系统
CN114896309B (zh) * 2022-05-17 2023-02-03 三峡高科信息技术有限责任公司 一种水电站监测数据转换展示的方法及系统
CN116414420B (zh) * 2023-06-09 2023-10-13 山东华邦农牧机械股份有限公司 禽类养殖控制系统的自动化升级方法
CN116414420A (zh) * 2023-06-09 2023-07-11 山东华邦农牧机械股份有限公司 禽类养殖控制系统的自动化升级方法
CN116664114A (zh) * 2023-08-02 2023-08-29 华能信息技术有限公司 一种电厂检修系统及方法
CN116664114B (zh) * 2023-08-02 2023-10-31 华能信息技术有限公司 一种电厂检修系统及方法
CN117391644A (zh) * 2023-12-12 2024-01-12 国网物资有限公司 一种参数调整方法、装置、设备及存储介质
CN117391644B (zh) * 2023-12-12 2024-02-06 国网物资有限公司 一种合同管理过程中参数调整方法、装置、设备及介质
CN117950703A (zh) * 2024-03-26 2024-04-30 成都赛力斯科技有限公司 维测数据的自适应更新方法、装置、电子设备及存储介质
CN117950703B (zh) * 2024-03-26 2024-05-31 成都赛力斯科技有限公司 维测数据的自适应更新方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN109672579A (zh) 2019-04-23
EP3700135B1 (en) 2023-08-16
EP3700135A1 (en) 2020-08-26
CN109672579B (zh) 2021-09-14
EP3700135A4 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
WO2019076209A1 (zh) 终端设备监测数据采集策略优化方法及装置
US9571345B2 (en) System and method for locally optimized managing of network appliances in a closed area network
US8510374B2 (en) Polling protocol for automatic load limiting
CN112332889B (zh) 数据传输方法及装置、电力线通信网络、电力系统
US10916945B2 (en) Demand and supply adjustment system, control apparatus, control method, and program
US9729418B2 (en) Method for heterogeneous network policy based management
US11710979B2 (en) Method and apparatus for charging a battery with AC power based on state of battery related information
WO2015192613A1 (zh) 电力系统控制方法和装置
US8947066B2 (en) Control apparatus
CN104053162A (zh) 可再生能源基站及其覆盖调整方法、无线蜂窝系统
US10440591B2 (en) Method and apparatus for generating policies for improving network system performance
Huang Research on balanced energy consumption of wireless sensor network nodes based on clustering algorithm
CN104038360A (zh) 基于新无线接入控制器架构的网管实现系统及实现方法
CN104469959B (zh) 一种信道配置方法及系统、接入控制器
CN107832192A (zh) 一种服务器启停智能控制系统
US20180110010A1 (en) Extending battery life in low signal conditions
CN113759210A (zh) 配电房状态监测系统和配电房监测数据传输方法
Lee et al. Monitoring of IoT data for reducing network traffic
US10051569B2 (en) Methods for enterprise based socially aware energy budget management and devices thereof
CN109389516B (zh) 一种实时智能的土壤污染监测系统
Seyedi Controlled sampling using an energy harvesting sensor
KR20130128074A (ko) 적응형 트래픽 보고 주기 조정 방법 및 그 시스템
Zhang et al. Furion: Towards energy-efficient wifi offloading under link dynamics
WO2023078547A1 (en) Allocating computing tasks to radio network nodes
US9813918B2 (en) Method and device for determining working mode, network element, element management system (EMS) and network management system (NMS)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018867359

Country of ref document: EP

Effective date: 20200518