WO2019075872A1 - 一种电-热耦合多能流系统的日内滚动调度方法 - Google Patents

一种电-热耦合多能流系统的日内滚动调度方法 Download PDF

Info

Publication number
WO2019075872A1
WO2019075872A1 PCT/CN2017/114465 CN2017114465W WO2019075872A1 WO 2019075872 A1 WO2019075872 A1 WO 2019075872A1 CN 2017114465 W CN2017114465 W CN 2017114465W WO 2019075872 A1 WO2019075872 A1 WO 2019075872A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
flow system
energy flow
electric
electro
Prior art date
Application number
PCT/CN2017/114465
Other languages
English (en)
French (fr)
Inventor
孙宏斌
郭庆来
王彬
陈瑜玮
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019075872A1 publication Critical patent/WO2019075872A1/zh
Priority to US16/842,566 priority Critical patent/US11306923B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the invention relates to an intraday rolling scheduling method for an electro-thermal coupled multi-energy flow system, belonging to the technical field of grid operation and control with multiple energy forms.
  • Multi-energy flow refers to multiple types of energy flows, which represent the mutual coupling, conversion and transmission of energy flows such as electricity, heat, cold, gas and traffic.
  • multi-energy flow systems include: 1) through the development and utilization of multi-type energy cascades and intelligent management, which can reduce energy consumption and waste, improve overall energy utilization efficiency, and help To reduce the total energy cost; 2) to use different energy characteristics and complementarity and conversion, to help improve the ability to absorb intermittent renewable energy; 3) through multi-energy transfer, complementarity and coordinated control, Help to improve the reliability of energy supply, and provide more controllable resources for the operation of the grid; 4) Through the collaborative planning and construction of multi-energy flow systems, it can reduce the redundant construction and waste of infrastructure and improve asset utilization.
  • Multi-energy flow systems have considerable benefits on the one hand and complex energy systems on the other.
  • the multi-energy flow system consists of multiple energy flow subsystems.
  • the interaction and influence between these energy flow subsystems makes the complexity of the multi-energy flow system significantly increase, reflecting many new features, and the traditional individual energy flow analysis methods. It has been difficult to adapt to new requirements and there is an urgent need to develop new methods for multi-energy analysis.
  • more and more coupling components such as cogeneration units, heat pumps and electric boilers have objectively enhanced the interconnection between electricity and heat, and promoted the development of electro-thermal coupled multi-energy flow systems, as well as electro-thermal
  • the operational and control techniques of coupled multi-energy flow systems have placed new demands.
  • Load forecasting is an important daily task of the dispatching agency, and effective load forecasting can ensure reasonable dispatch of the power supply equipment. However, there may be a large deviation between the current load forecast and the actual load.
  • the scheduling plan formulated recently may not meet the user's energy demand.
  • the intra-day rolling schedule uses 15 minutes as a step to carry out ultra-short-term load forecasting, and the rolling correction of the output plan of the energy-supplied equipment can obtain a more accurate intra-day rolling scheduling scheme.
  • Current day rolling The research on scheduling mainly focuses on a single independent system. In order to minimize the operating cost of the electro-thermal coupled multi-energy flow system, it is necessary to study the intra-day rolling scheduling method of the electro-thermal coupled multi-energy flow system.
  • the object of the present invention is to propose an intra-day rolling scheduling method for an electro-thermal coupled multi-energy flow system to make up for the gap in the existing field, and establish an intra-day rolling scheduling model of the electro-thermal coupled multi-energy flow system to realize electro-thermal Optimal scheduling of coupled multi-energy flow systems.
  • the intra-day rolling scheduling method of the electro-thermal coupled multi-energy flow system proposed by the invention comprises the following steps:
  • N is the total number of electro-thermal coupling units in the electro-thermal coupled multi-energy flow system
  • F(p b,t ,q b,t ) is The operating cost of the bth electric-thermal cogeneration unit in the t-th scheduling period in the electro-thermal coupled multi-energy flow system
  • p x, t is the t-th thermal power unit in the electro-thermal coupled multi-energy flow system at the tth
  • N TU is the total number of thermal power units in the grid of the electric-thermal coupled multi-energy flow system
  • F TU (p x,t ) is the xth
  • P i,t is the active power injected into the t-th scheduling period of the node i in the grid of the electro-thermal coupled multi-energy flow system
  • Q i,t is the reactive power of the node i in the t-th scheduling period in the grid Power
  • ⁇ i,t and ⁇ j,t are the voltage phase angles of node i and node j in the tth scheduling period , respectively
  • U i,t and U j,t are the t-th scheduling of node i and node j , respectively
  • G ij is the real part of the elements of the i-th row and the j-th column in the admittance matrix Y of the grid node
  • B ij is the imaginary part of the elements of the i-th row and the j-th column of the grid node admittance matrix Y
  • the grid The node admittance matrix Y is obtained from the energy management system of the electro-thermal coupled multi-
  • ⁇ H l,t is the pressure loss of the lth pipeline of the heating network in the electro-thermal coupled multi-energy flow system during the t-th scheduling period
  • S l is the resistance characteristic coefficient of the l-th pipeline
  • the range of S l is 10 Pa / (kg / s) 2 ⁇ S l ⁇ 500Pa / (kg / s) 2
  • m l, t is the flow of the lth pipeline in the tth scheduling period;
  • H P, t is a circulation pump head t-th scheduling period
  • H 0 is the circulation pump static head
  • S p is a circulation pump resistance coefficient
  • H 0 and S p specification acquired by the factory circulation pump
  • m P, t is the flow rate of the circulation pump flowing through the tth scheduling period
  • T e,l,t is the end temperature of the tth scheduling period of the lth pipeline in the heating network
  • T h,l,t is the temperature of the first end of the tth scheduling period of the lth pipeline
  • T a,l , t is the ambient temperature of the lth pipeline in the tth scheduling period
  • m l,t is the flow of the lth pipeline in the tth scheduling period
  • L l is the length of the lth pipeline
  • C p is water Specific heat capacity, the specific heat capacity is 4182 joules / (kg ⁇ Celsius)
  • is the heat transfer coefficient per unit length of the pipeline
  • is obtained from the energy management system of the electric-thermal coupled multi-energy flow system
  • e is the natural logarithm
  • T e,l,t is the end temperature of the tth scheduling period of the lth pipeline in the heat network
  • T h,l,t is The temperature at the head end of the tth scheduling period of the lth pipeline, a set of all pipe numbers that flow out of the hot network node n, For the set of all pipe numbers flowing into the hot network node n, Q J,n,t is the thermal power of the tth scheduled time of the nth hot network node;
  • p b,t is the active power of the bth electric-thermal cogeneration unit during the tth scheduling period
  • q is the thermal power of the bth electric-heat cogeneration unit during the tth scheduling period
  • the feasible domain approximates the abscissa of the k-th vertex of the polygon
  • the feasible field approximates the ordinate of the k-th vertex of the polygon
  • NK b is the operational feasible domain of the b-th electric-heat-supplied unit, and the number of vertices of the polygon is approximated.
  • the electro-thermal combined unit operation feasible domain approximate polygon is obtained from the factory manual of the electric-heat cogeneration unit;
  • P P,t is the active power consumed by the t-th scheduling period of the circulation pump
  • g is the gravity acceleration
  • ⁇ P is the circulation pump efficiency
  • ⁇ P is in the range of 0 ⁇ 1
  • m P,t is the tth
  • H P,t is the head of the t-th scheduling period of the circulation pump
  • Q hp,t is the heat power of the heat pump in the t-th scheduling period in the electro-thermal coupled multi-energy flow system
  • P hp,t is the electric power consumed by the heat pump in the t-th scheduling period
  • C hp is the heat-generating efficiency of the heat pump
  • C hp is obtained from the factory manual of the heat pump
  • the voltage amplitude U i,t of the t-th scheduling period of the i-th node in the grid of the electro-thermal coupled multi-energy flow system is at the upper limit and lower limit U of the set safe operating voltage of the grid i , Running between, U i is 0.95 times the rated voltage of the i-th node, 1.05 times the rated voltage of the i-th node:
  • ⁇ t is the time interval between two adjacent scheduling periods
  • p b, t and p b, t-1 are the t-th electric-heat supply unit at the tth Active power of the scheduling period and the t-1th scheduling period;
  • ⁇ t is the time interval between two adjacent scheduling periods
  • q b, t and q b, t-1 are the t-th electric-heat cogeneration unit at the tth Active power of the scheduling period and the t-1th scheduling period;
  • ⁇ t is the time interval between two adjacent scheduling periods
  • p x, t and p x, t-1 are the t-th scheduling period and the t-1 of the xth thermal power unit, respectively.
  • the active power p x,t of the t-th dispatching period of the xth thermal power unit in the grid of the electric-thermal coupled multi-energy flow system is the upper limit of the active power of the xth thermal power unit in the set grid safety operation Value p x and lower limit between:
  • the flow rate m l of the lth pipeline in the heating network of the electric-thermal coupled multi-energy flow system is less than or equal to the upper limit of the safe operation flow of the heat network
  • the return water temperature T i,t of the t-th scheduling period of the i-th heat exchange station in the heat-network of the electro-thermal coupled multi-energy flow system is set at the upper limit of the return water temperature of the safe operation of the heat network T and lower limit between:
  • the solution is obtained in the electro-thermal coupled multi-energy flow system.
  • the active power and thermal power of each electric-thermal cogeneration unit, the active power of each thermal power unit, the thermal power of each heat pump, and the active power consumed by each circulating pump, as an intra-day rolling of the electro-thermal coupled multi-energy flow system The scheduling scheme realizes the intra-day rolling scheduling of the electro-thermal coupled multi-energy flow system.
  • the intra-day rolling scheduling method of the electro-thermal coupled multi-energy flow system proposed by the invention has the characteristics and effects: the method considers the mutual influence of the electro-thermal system, and realizes the intra-day rolling scheduling of the electro-thermal coupled multi-energy flow system.
  • the method can continuously correct the daily scheduling plan and obtain a more accurate intraday rolling scheduling scheme. Compared with the independent optimization analysis of the power supply and heating system, not only can a better scheduling scheme (lower total operating cost), but also the flexibility of scheduling.
  • the method can be applied to the formulation of the intraday rolling scheduling of the electro-thermal coupled multi-energy flow system, which is beneficial to improving the energy efficiency and reducing the operating cost of the electro-thermal coupled multi-energy flow system.
  • Figure 1 is a block diagram showing the structure of an electro-thermal coupled multi-energy flow system involved in the method of the present invention.
  • the intra-day rolling scheduling method of the electro-thermal coupled multi-energy flow system proposed by the present invention wherein the structure of the electro-thermal coupled multi-energy flow system is as shown in FIG. 1 , the method comprises the following steps:
  • N is the total number of electro-thermal coupling units in the electro-thermal coupled multi-energy flow system
  • F(p b,t ,q b,t ) is The operating cost of the bth electric-thermal cogeneration unit in the t-th scheduling period in the electro-thermal coupled multi-energy flow system
  • p x, t is the t-th thermal power unit in the electro-thermal coupled multi-energy flow system at the tth
  • N TU is the total number of thermal power units in the grid of the electric-thermal coupled multi-energy flow system
  • F TU (p x,t ) is the xth
  • P i,t is the active power injected into the t-th scheduling period of the node i in the grid of the electro-thermal coupled multi-energy flow system
  • Q i,t is the reactive power of the node i in the t-th scheduling period in the grid Power
  • ⁇ i,t and ⁇ j,t are the voltage phase angles of node i and node j in the tth scheduling period , respectively
  • U i,t and U j,t are the t-th scheduling of node i and node j , respectively
  • G ij is the real part of the elements of the i-th row and the j-th column in the admittance matrix Y of the grid node
  • B ij is the imaginary part of the elements of the i-th row and the j-th column of the grid node admittance matrix Y
  • the grid The node admittance matrix Y is obtained from the energy management system of the electro-thermal coupled multi-
  • ⁇ H l,t is the pressure loss of the lth pipeline of the heating network in the electro-thermal coupled multi-energy flow system during the t-th scheduling period
  • S l is the resistance characteristic coefficient of the l-th pipeline
  • the range of S l is 10 Pa / (kg / s) 2 ⁇ S l ⁇ 500Pa / (kg / s) 2
  • m l, t is the flow of the lth pipeline in the tth scheduling period;
  • H P, t is a circulation pump head t-th scheduling period
  • H 0 is the circulation pump static head
  • S p is a circulation pump resistance coefficient
  • H 0 and S p specification acquired by the factory circulation pump
  • m P, t is the flow rate of the circulation pump flowing through the tth scheduling period
  • T e,l,t is the end temperature of the tth scheduling period of the lth pipeline in the heating network
  • T h,l,t is the temperature of the first end of the tth scheduling period of the lth pipeline
  • T a,l , t is the ambient temperature of the lth pipeline in the tth scheduling period
  • m l,t is the flow of the lth pipeline in the tth scheduling period
  • L l is the length of the lth pipeline
  • C p is water Specific heat capacity, the specific heat capacity is 4182 joules / (kg ⁇ Celsius)
  • is the heat transfer coefficient per unit length of the pipeline
  • is obtained from the energy management system of the electric-thermal coupled multi-energy flow system
  • e is the natural logarithm
  • T e,l,t is the end temperature of the tth scheduling period of the lth pipeline in the heat network
  • T h,l,t is The temperature at the head end of the tth scheduling period of the lth pipeline, a set of all pipe numbers that flow out of the hot network node n, For the set of all pipe numbers flowing into the hot network node n, Q J,n,t is the thermal power of the tth scheduled time of the nth hot network node;
  • p b,t is the active power of the bth electric-thermal cogeneration unit during the tth scheduling period
  • q is the thermal power of the bth electric-heat cogeneration unit during the tth scheduling period
  • the feasible domain approximates the abscissa of the k-th vertex of the polygon
  • the feasible field approximates the ordinate of the k-th vertex of the polygon
  • NK b is the operational feasible domain of the b-th electric-heat-supplied unit, and the number of vertices of the polygon is approximated.
  • the electro-thermal combined unit operation feasible domain approximate polygon is obtained from the factory manual of the electric-heat cogeneration unit;
  • P P,t is the active power consumed by the t-th scheduling period of the circulation pump
  • g is the gravity acceleration
  • ⁇ P is the circulation pump efficiency
  • ⁇ P is in the range of 0 ⁇ 1
  • m P,t is the tth
  • H P,t is the head of the t-th scheduling period of the circulation pump
  • Q hp,t is the heat power of the heat pump in the t-th scheduling period in the electro-thermal coupled multi-energy flow system
  • P hp,t is the electric power consumed by the heat pump in the t-th scheduling period
  • C hp is the heat-generating efficiency of the heat pump
  • C hp is obtained from the factory manual of the heat pump
  • ⁇ t is the time interval between two adjacent scheduling periods
  • p b, t and p b, t-1 are the t-th electric-heat supply unit at the tth Active power of the scheduling period and the t-1th scheduling period;
  • ⁇ t is the time interval between two adjacent scheduling periods
  • q b, t and q b, t-1 are the t-th electric-heat cogeneration unit at the tth Active power of the scheduling period and the t-1th scheduling period;
  • ⁇ t is the time interval between two adjacent scheduling periods
  • p x, t and p x, t-1 are the t-th scheduling period and the t-1 of the xth thermal power unit, respectively.
  • the active power p x,t of the t-th dispatching period of the xth thermal power unit in the grid of the electric-thermal coupled multi-energy flow system is the upper limit of the active power of the xth thermal power unit in the set grid safety operation Value p x and lower limit between:
  • the flow rate m l of the lth pipeline in the heating network of the electric-thermal coupled multi-energy flow system is less than or equal to the upper limit of the safe operation flow of the heat network
  • the solution is obtained in the electro-thermal coupled multi-energy flow system.
  • the active power and thermal power of each electric-thermal cogeneration unit, the active power of each thermal power unit, the thermal power of each heat pump, and the active power consumed by each circulating pump, as an intra-day rolling of the electro-thermal coupled multi-energy flow system The scheduling scheme realizes the intra-day rolling scheduling of the electro-thermal coupled multi-energy flow system.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种电-热耦合多能流系统的日内滚动调度方法,属于含多种能源形式的电网运行和控制技术领域。该方法考虑电-热系统的相互影响,实现了电-热耦合多能流系统的日内滚动调度,可以不断对日前调度计划进行修正,得到更加准确的日内滚动调度方案。相比独立地对供电、供热系统进行优化调度分析,不仅能得到更优的调度方案(总运行成本更低),还提高了调度的灵活性。可以应用于电-热耦合多能流系统的日内滚动调度计划制定,有利于提高电-热耦合多能流系统的用能效率,减少运行成本。

Description

一种电-热耦合多能流系统的日内滚动调度方法
相关申请的交叉引用
本申请要求清华大学于2017年10月22日提交的、发明名称为“一种电-热耦合多能流系统的日内滚动调度方法”的、中国专利申请号“201710989015.9”的优先权。
技术领域
本发明涉及一种电-热耦合多能流系统的日内滚动调度方法,属于含多种能源形式的电网运行和控制技术领域。
背景技术
能源综合利用是提高综合能源利用效率、促进可再生能源消纳的重要途径,通过打破原来电、热、冷、气、交通等能流子系统相对割裂的状态,实现多类型能源开放互联,构建多能流系统。多能流是指多种类型的能量流,表示电、热、冷、气、交通等能量流的相互耦合、转换和传输。多能流系统相比传统相互割裂的能源系统,其带来的效益包括:1)通过多类型能源的梯级开发利用和智能管理,可以降低能源消耗和浪费,提高综合能源利用效率,并有助于减少总的用能成本;2)利用不同能源的特性差异和互补、转换,有助于提高消纳间歇式可再生能源的能力;3)通过多能源的转供、互补和协调控制,有助于提高供能的可靠性,并为电网的运行提供更多可调控资源;4)通过多能流系统的协同规划和建设,可以减少基础设施的重复建设和浪费,提高资产利用率。
多能流系统一方面具有可观的效益,另一方面也使原本复杂的能源系统更加复杂。多能流系统由多个能流子系统组成,这些能流子系统之间相互作用和影响,使得多能流系统复杂度显著增加,体现出许多新的特性,传统各个能流单独分析的方法已经难以适应新的要求,亟需发展出新的多能流分析方法。在我国,越来越多的热电联产机组、热泵、电锅炉等耦合元件客观上增强了电-热之间的互联,促进了电-热耦合多能流系统的发展,也对电-热耦合多能流系统的运行和控制技术提出了新的要求。
负荷预测是调度机构每日的重要工作,有效的负荷预测可以保证供能设备出力的合理调度。但是,日前负荷预测相比实际负荷可能存在比较大的偏差,日前制定的调度计划可能无法满足用户的用能需求。日内滚动调度以15分钟为一个步长进行超短期负荷预测,滚动修正供能设备出力的出力计划,可以得到更加准确的日内滚动调度方案。目前日内滚动 调度方面的研究主要集中在单个独立的系统,为了使得电-热耦合多能流系统的运行成本最低,需要研究电-热耦合多能流系统的日内滚动调度方法。
发明内容
本发明的目的是提出一种电-热耦合多能流系统的日内滚动调度方法,以弥补现有领域研究的空白,建立电-热耦合多能流系统的日内滚动调度模型,实现电-热耦合多能流系统的优化调度。
本发明提出的电-热耦合多能流系统的日内滚动调度方法,包括以下步骤:
(1)建立一个电-热耦合多能流系统优化调度的目标函数:
Figure PCTCN2017114465-appb-000001
其中,pb,t为电-热耦合多能流系统中第b台电-热联供机组在第t个调度时段的有功功率,qb,t为电-热耦合多能流系统中第b台电-热联供机组在第t个调度时段的热功率,N为电-热耦合多能流系统中电-热联供机组的总台数,F(pb,t,qb,t)为电-热耦合多能流系统中第b台电-热联供机组在第t个调度时段的运行成本,px,t为电-热耦合多能流系统中第x台火电机组在第t个调度时段的有功功率,NTU为电-热耦合多能流系统的电网中火电机组的总台数,FTU(px,t)为电-热耦合多能流系统中电网的第x台火电机组在第t个调度时段的运行成本,Δt是相邻两个调度时刻的时间间隔,Δt的取值为15分钟;
(2)设定电-热耦合多能流系统中电网与热网稳态安全运行的等式约束条件,包括:
(2-1)电-热耦合多能流系统中的电网潮流方程如下:
Figure PCTCN2017114465-appb-000002
Figure PCTCN2017114465-appb-000003
其中,Pi,t为电-热耦合多能流系统的电网中节点i在第t个调度时段的注入有功功率,Qi,t为电网中节点i在第t个调度时段的注入无功功率,θi,t和θj,t分别为节点i和节点j在第t个调度时段的电压相角,Ui,t和Uj,t分别为节点i和节点j在第t个调度时段的电压幅值,Gij为电网节点导纳矩阵Y中第i行、第j列元素的实部,Bij为电网节点导纳矩阵Y第i行、第j列元素的虚部,电网节点导纳矩阵Y从电-热耦合多能流系统的能量管理系统中获取,n为 电网的节点总数;
(2-2)电-热耦合多能流系统中热网的管道压力损失方程如下:
ΔHl,t=Slml,t|ml,t|,t=1,2,...,16,
其中,ΔHl,t为电-热耦合多能流系统中热网的第l条管道在第t个调度时段的压力损失,Sl为第l条管道的阻力特性系数,Sl取值范围为10Pa/(kg/s)2≤Sl≤500Pa/(kg/s)2,ml,t为第l条管道在第t个调度时段的流量;
(2-3)电-热耦合多能流系统中热网的循环泵水力特性方程如下:
Figure PCTCN2017114465-appb-000004
其中,HP,t为循环泵在第t个调度时段的扬程,H0为循环泵静扬程,Sp为循环泵阻力系数,H0和Sp由循环泵的出厂说明书获取,mP,t为第t个调度时段流过循环泵的流量;
(2-4)电-热耦合多能流系统中热网管道热量损失方程如下:
Figure PCTCN2017114465-appb-000005
其中,Te,l,t为热网中第l条管道第t个调度时段的末端温度,Th,l,t为第l条管道第t个调度时段的首端温度,Ta,l,t为第l条管道在第t个调度时段的环境温度,ml,t为第l条管道在第t个调度时段的流量,Ll为第l条管道的长度,Cp为水的比热容,比热容的取值为4182焦耳/(千克·摄氏度),λ为管道单位长度的传热系数,λ从电-热耦合多能流系统的能量管理系统中获取,e为自然对数;
(2-5)电-热耦合多能流系统的热网中多管道汇合点的温度方程:
Figure PCTCN2017114465-appb-000006
其中,ml,t为第l条管道在第t个调度时段的流量,Te,l,t为热网中第l条管道第t个调度时段的末端温度,Th,l,t为第l条管道第t个调度时段的首端温度,
Figure PCTCN2017114465-appb-000007
为流出热网节点n的所有管道编号的集合,
Figure PCTCN2017114465-appb-000008
为流入热网节点n的所有管道编号的集合,QJ,n,t是第n个热网节点第t个调度时刻的热功率;
(2-6)通过电-热联供机组耦合的电-热耦合多能流系统中电网与热网之间的耦合方程:
Figure PCTCN2017114465-appb-000009
其中,pb,t为第b台电-热联供机组在第t个调度时段的有功功率,q为第b台电-热联供机组在第t个调度时段的热功率,
Figure PCTCN2017114465-appb-000010
为第b台电-热联供机组运行可行域近似多边形的第k个顶点的横坐标,
Figure PCTCN2017114465-appb-000011
为第b台电-热联供机组运行可行域近似多边形的第k个顶点的纵坐标,
Figure PCTCN2017114465-appb-000012
为第b台电-热联供机组在第t个调度时段的第k个组合系数,
Figure PCTCN2017114465-appb-000013
NKb为第b台电-热联供机组的运行可行域近似多边形的顶点个数,电-热联供机组运行可行域近似多边形从电-热联供机组的出厂说明书中获取;
(2-7)通过循环泵耦合的电-热耦合多能流系统中电网与热网之间的耦合方程:
Figure PCTCN2017114465-appb-000014
其中,PP,t为循环泵第t个调度时段消耗的有功功率,g为重力加速度,ηP为循环泵效率,ηP的取值范围为0~1,mP,t为第t个调度时段的流过循环泵的流量,HP,t为循环泵第t个调度时段的的扬程;
(2-8)通过热泵耦合的电-热耦合多能流系统中电网与热网之间的耦合方程:
Php,t=ChpQhp,t,t=1,2,...,16
其中,Qhp,t为电-热耦合多能流系统中第t个调度时段热泵发出的热功率,Php,t为第t个调度时段热泵消耗的电功率,Chp为热泵的产热效率,Chp从热泵的出厂说明书中获得;
(3)设定电-热耦合多能流系统中电网与热网稳态安全运行的不等式约束条件,包括:
(3-1)电-热耦合多能流系统的电网中第i个节点第t个调度时段的电压幅值Ui,t在设定的电网安全运行电压的上限值、下限值U i
Figure PCTCN2017114465-appb-000015
之间运行,U i为第i个节点额定电压的0.95倍,
Figure PCTCN2017114465-appb-000016
为第i个节点额定电压的1.05倍:
Figure PCTCN2017114465-appb-000017
(3-2)电-热耦合多能流系统的电网中第l条线路第t个调度时段的传输容量小于或等于设定的电网安全运行传输容量的最大值
Figure PCTCN2017114465-appb-000018
Figure PCTCN2017114465-appb-000019
(3-3)电-热耦合多能流系统的电网中电-热联供机组有功功率的爬坡约束:
Figure PCTCN2017114465-appb-000020
其中,
Figure PCTCN2017114465-appb-000021
Figure PCTCN2017114465-appb-000022
分别为第b台电-热联供机组有功功率的向上和向下爬坡速率,
Figure PCTCN2017114465-appb-000023
Figure PCTCN2017114465-appb-000024
从电-热联供机组的出厂说明书中获得,Δt为相邻两个调度时段的时间间隔,pb,t和pb,t-1分别为第b台电-热联供机组在第t个调度时段和第t-1个调度时段的有功功率;
(3-4)电-热耦合多能流系统的电网中电-热联供机组热功率的爬坡约束:
Figure PCTCN2017114465-appb-000025
其中,
Figure PCTCN2017114465-appb-000026
Figure PCTCN2017114465-appb-000027
分别为第b台电-热联供机组热功率的向上和向下爬坡速率,
Figure PCTCN2017114465-appb-000028
Figure PCTCN2017114465-appb-000029
从电-热联供机组的出厂说明书中获得,Δt为相邻两个调度时段的时间间隔,qb,t和qb,t-1分别为第b台电-热联供机组在第t个调度时段和第t-1个调度时段的有功功率;
(3-5)电-热耦合多能流系统的电网中火电机组有功功率的爬坡约束:
Figure PCTCN2017114465-appb-000030
其中,
Figure PCTCN2017114465-appb-000031
Figure PCTCN2017114465-appb-000032
分别为第x台火电机组有功功率的向上和向下爬坡速率,
Figure PCTCN2017114465-appb-000033
Figure PCTCN2017114465-appb-000034
从火电机组的出厂说明书中获得,Δt为相邻两个调度时段的时间间隔,px,t和px,t-1分别为第x台火电机组在第t个调度时段和第t-1个调度时段的有功功率;
(3-6)电-热耦合多能流系统的电网中第b台电-热联供机组第t个调度时段的有功功率pb,t在设定的电网安全运行第b台电-热联供机组有功功率的上、下限值
Figure PCTCN2017114465-appb-000035
p b之间:
Figure PCTCN2017114465-appb-000036
(3-7)电-热耦合多能流系统的电网中第b台电-热联供机组第t个调度时段的热功率qb,t在设定的电网安全运行第b台电-热联供机组热功率的上限值
Figure PCTCN2017114465-appb-000037
和下限值q b之间:
Figure PCTCN2017114465-appb-000038
(3-8)电-热耦合多能流系统的电网中第x台火电机组第t个调度时段的有功功率px,t在设定的电网安全运行第x台火电机组有功功率的上限值p x和下限值
Figure PCTCN2017114465-appb-000039
之间:
Figure PCTCN2017114465-appb-000040
(3-9)电-热耦合多能流系统的热网中第l条管道第t个调度时段的流量ml小于或等于热网安全运行流量的上限值
Figure PCTCN2017114465-appb-000041
Figure PCTCN2017114465-appb-000042
(3-10)电-热耦合多能流系统的热网中第i个换热站第t个调度时段回水温度Ti,t在设 定的热网安全运行回水温度的上限值T和下限值
Figure PCTCN2017114465-appb-000043
之间:
Figure PCTCN2017114465-appb-000044
(4)采用内点法,将上述步骤(1)中的方程作为目标函数,将上述步骤(2)和步骤(3)的所有方程作为约束条件,求解得到电-热耦合多能流系统中每台电-热联供机组的有功功率和热功率,每台火电机组的有功功率,每台热泵的热功率,每台循环泵消耗的有功功率,作为电-热耦合多能流系统的日内滚动调度方案,实现电-热耦合多能流系统的日内滚动调度。
本发明提出的电-热耦合多能流系统的日内滚动调度方法,其特点和效果是:本方法考虑电-热系统的相互影响,实现了电-热耦合多能流系统的日内滚动调度。本方法可以不断对日前调度计划进行修正,得到更加准确的日内滚动调度方案。相比独立地对供电、供热系统进行优化调度分析,不仅能得到更优的调度方案(总运行成本更低),还提高了调度的灵活性。该方法可以应用于电-热耦合多能流系统的日内滚动调度计划制定,有利于提高电-热耦合多能流系统的用能效率,减少运行成本。
附图说明
图1是本发明方法涉及的电-热耦合多能流系统的结构示意图。
具体实施方式
本发明提出的电-热耦合多能流系统的日内滚动调度方法,其中涉及的电-热耦合多能流系统的结构示意图如图1所示,该方法包括以下步骤:
(1)建立一个电-热耦合多能流系统优化调度的目标函数:
Figure PCTCN2017114465-appb-000045
其中,pb,t为电-热耦合多能流系统中第b台电-热联供机组在第t个调度时段的有功功率,qb,t为电-热耦合多能流系统中第b台电-热联供机组在第t个调度时段的热功率,N为电-热耦合多能流系统中电-热联供机组的总台数,F(pb,t,qb,t)为电-热耦合多能流系统中第b台电-热联供机组在第t个调度时段的运行成本,px,t为电-热耦合多能流系统中第x台火电机组在第t个调度时段的有功功率,NTU为电-热耦合多能流系统的电网中火电机组的总台 数,FTU(px,t)为电-热耦合多能流系统中电网的第x台火电机组在第t个调度时段的运行成本,Δt是相邻两个调度时刻的时间间隔,Δt的取值为15分钟;
(2)设定电-热耦合多能流系统中电网与热网稳态安全运行的等式约束条件,包括:
(2-1)电-热耦合多能流系统中的电网潮流方程如下:
Figure PCTCN2017114465-appb-000046
Figure PCTCN2017114465-appb-000047
其中,Pi,t为电-热耦合多能流系统的电网中节点i在第t个调度时段的注入有功功率,Qi,t为电网中节点i在第t个调度时段的注入无功功率,θi,t和θj,t分别为节点i和节点j在第t个调度时段的电压相角,Ui,t和Uj,t分别为节点i和节点j在第t个调度时段的电压幅值,Gij为电网节点导纳矩阵Y中第i行、第j列元素的实部,Bij为电网节点导纳矩阵Y第i行、第j列元素的虚部,电网节点导纳矩阵Y从电-热耦合多能流系统的能量管理系统中获取,n为电网的节点总数;
(2-2)电-热耦合多能流系统中热网的管道压力损失方程如下:
Figure PCTCN2017114465-appb-000048
其中,ΔHl,t为电-热耦合多能流系统中热网的第l条管道在第t个调度时段的压力损失,Sl为第l条管道的阻力特性系数,Sl取值范围为10Pa/(kg/s)2≤Sl≤500Pa/(kg/s)2,ml,t为第l条管道在第t个调度时段的流量;
(2-3)电-热耦合多能流系统中热网的循环泵水力特性方程如下:
Figure PCTCN2017114465-appb-000049
其中,HP,t为循环泵在第t个调度时段的扬程,H0为循环泵静扬程,Sp为循环泵阻力系数,H0和Sp由循环泵的出厂说明书获取,mP,t为第t个调度时段流过循环泵的流量;
(2-4)电-热耦合多能流系统中热网管道热量损失方程如下:
Figure PCTCN2017114465-appb-000050
其中,Te,l,t为热网中第l条管道第t个调度时段的末端温度,Th,l,t为第l条管道第t个调度时段的首端温度,Ta,l,t为第l条管道在第t个调度时段的环境温度,ml,t为第l条管道在第 t个调度时段的流量,Ll为第l条管道的长度,Cp为水的比热容,比热容的取值为4182焦耳/(千克·摄氏度),λ为管道单位长度的传热系数,λ从电-热耦合多能流系统的能量管理系统中获取,e为自然对数;
(2-5)电-热耦合多能流系统的热网中多管道汇合点的温度方程:
Figure PCTCN2017114465-appb-000051
其中,ml,t为第l条管道在第t个调度时段的流量,Te,l,t为热网中第l条管道第t个调度时段的末端温度,Th,l,t为第l条管道第t个调度时段的首端温度,
Figure PCTCN2017114465-appb-000052
为流出热网节点n的所有管道编号的集合,
Figure PCTCN2017114465-appb-000053
为流入热网节点n的所有管道编号的集合,QJ,n,t是第n个热网节点第t个调度时刻的热功率;
(2-6)通过电-热联供机组耦合的电-热耦合多能流系统中电网与热网之间的耦合方程:
Figure PCTCN2017114465-appb-000054
其中,pb,t为第b台电-热联供机组在第t个调度时段的有功功率,q为第b台电-热联供机组在第t个调度时段的热功率,
Figure PCTCN2017114465-appb-000055
为第b台电-热联供机组运行可行域近似多边形的第k个顶点的横坐标,
Figure PCTCN2017114465-appb-000056
为第b台电-热联供机组运行可行域近似多边形的第k个顶点的纵坐标,
Figure PCTCN2017114465-appb-000057
为第b台电-热联供机组在第t个调度时段的第k个组合系数,
Figure PCTCN2017114465-appb-000058
NKb为第b台电-热联供机组的运行可行域近似多边形的顶点个数,电-热联供机组运行可行域近似多边形从电-热联供机组的出厂说明书中获取;
(2-7)通过循环泵耦合的电-热耦合多能流系统中电网与热网之间的耦合方程:
Figure PCTCN2017114465-appb-000059
其中,PP,t为循环泵第t个调度时段消耗的有功功率,g为重力加速度,ηP为循环泵效率,ηP的取值范围为0~1,mP,t为第t个调度时段的流过循环泵的流量,HP,t为循环泵第t个调度时段的的扬程;
(2-8)通过热泵耦合的电-热耦合多能流系统中电网与热网之间的耦合方程:
Php,t=ChpQhp,t,t=1,2,...,16
其中,Qhp,t为电-热耦合多能流系统中第t个调度时段热泵发出的热功率,Php,t为第t个调度时段热泵消耗的电功率,Chp为热泵的产热效率,Chp从热泵的出厂说明书中获得;
(3)设定电-热耦合多能流系统中电网与热网稳态安全运行的不等式约束条件,包括:(3-1)电-热耦合多能流系统的电网中第i个节点第t个调度时段的电压幅值Ui,t在设定的电网安全运行电压的上限值、下限值U i
Figure PCTCN2017114465-appb-000060
之间运行,U i为第i个节点额定电压的0.95倍,
Figure PCTCN2017114465-appb-000061
为第i个节点额定电压的1.05倍:
Figure PCTCN2017114465-appb-000062
(3-2)电-热耦合多能流系统的电网中第l条线路第t个调度时段的传输容量小于或等于设定的电网安全运行传输容量的最大值
Figure PCTCN2017114465-appb-000063
Figure PCTCN2017114465-appb-000064
(3-3)电-热耦合多能流系统的电网中电-热联供机组有功功率的爬坡约束:
Figure PCTCN2017114465-appb-000065
其中,
Figure PCTCN2017114465-appb-000066
Figure PCTCN2017114465-appb-000067
分别为第b台电-热联供机组有功功率的向上和向下爬坡速率,
Figure PCTCN2017114465-appb-000068
Figure PCTCN2017114465-appb-000069
从电-热联供机组的出厂说明书中获得,Δt为相邻两个调度时段的时间间隔,pb,t和pb,t-1分别为第b台电-热联供机组在第t个调度时段和第t-1个调度时段的有功功率;
(3-4)电-热耦合多能流系统的电网中电-热联供机组热功率的爬坡约束:
Figure PCTCN2017114465-appb-000070
其中,
Figure PCTCN2017114465-appb-000071
Figure PCTCN2017114465-appb-000072
分别为第b台电-热联供机组热功率的向上和向下爬坡速率,
Figure PCTCN2017114465-appb-000073
Figure PCTCN2017114465-appb-000074
从电-热联供机组的出厂说明书中获得,Δt为相邻两个调度时段的时间间隔,qb,t和qb,t-1分别为第b台电-热联供机组在第t个调度时段和第t-1个调度时段的有功功率;
(3-5)电-热耦合多能流系统的电网中火电机组有功功率的爬坡约束:
Figure PCTCN2017114465-appb-000075
其中,
Figure PCTCN2017114465-appb-000076
Figure PCTCN2017114465-appb-000077
分别为第x台火电机组有功功率的向上和向下爬坡速率,
Figure PCTCN2017114465-appb-000078
Figure PCTCN2017114465-appb-000079
从火电机组的出厂说明书中获得,Δt为相邻两个调度时段的时间间隔,px,t和px,t-1分别为第x台火电机组在第t个调度时段和第t-1个调度时段的有功功率;
(3-6)电-热耦合多能流系统的电网中第b台电-热联供机组第t个调度时段的有功功率pb,t在设定的电网安全运行第b台电-热联供机组有功功率的上、下限值
Figure PCTCN2017114465-appb-000080
p b之间:
Figure PCTCN2017114465-appb-000081
(3-7)电-热耦合多能流系统的电网中第b台电-热联供机组第t个调度时段的热功率qb,t在设定的电网安全运行第b台电-热联供机组热功率的上限值
Figure PCTCN2017114465-appb-000082
和下限值q b之间:
Figure PCTCN2017114465-appb-000083
(3-8)电-热耦合多能流系统的电网中第x台火电机组第t个调度时段的有功功率px,t在设定的电网安全运行第x台火电机组有功功率的上限值p x和下限值
Figure PCTCN2017114465-appb-000084
之间:
Figure PCTCN2017114465-appb-000085
(3-9)电-热耦合多能流系统的热网中第l条管道第t个调度时段的流量ml小于或等于热网安全运行流量的上限值
Figure PCTCN2017114465-appb-000086
Figure PCTCN2017114465-appb-000087
(3-10)电-热耦合多能流系统的热网中第i个换热站第t个调度时段回水温度Ti,t在设定的热网安全运行回水温度的上限值T和下限值
Figure PCTCN2017114465-appb-000088
之间:
Figure PCTCN2017114465-appb-000089
(4)采用内点法,将上述步骤(1)中的方程作为目标函数,将上述步骤(2)和步骤(3)的所有方程作为约束条件,求解得到电-热耦合多能流系统中每台电-热联供机组的有功功率和热功率,每台火电机组的有功功率,每台热泵的热功率,每台循环泵消耗的有功功率,作为电-热耦合多能流系统的日内滚动调度方案,实现电-热耦合多能流系统的日内滚动调度。

Claims (1)

  1. 一种电-热耦合多能流系统的日内滚动调度方法,其特征在于该方法包括以下步骤:
    (1)建立一个电-热耦合多能流系统优化调度的目标函数:
    Figure PCTCN2017114465-appb-100001
    其中,pb,t为电-热耦合多能流系统中第b台电-热联供机组在第t个调度时段的有功功率,qb,t为电-热耦合多能流系统中第b台电-热联供机组在第t个调度时段的热功率,N为电-热耦合多能流系统中电-热联供机组的总台数,F(pb,t,qb,t)为电-热耦合多能流系统中第b台电-热联供机组在第t个调度时段的运行成本,px,t为电-热耦合多能流系统中第x台火电机组在第t个调度时段的有功功率,NTU为电-热耦合多能流系统的电网中火电机组的总台数,FTU(px,t)为电-热耦合多能流系统中电网的第x台火电机组在第t个调度时段的运行成本,Δt是相邻两个调度时刻的时间间隔,Δt的取值为15分钟;
    (2)设定电-热耦合多能流系统中电网与热网稳态安全运行的等式约束条件,包括:
    (2-1)电-热耦合多能流系统中的电网潮流方程如下:
    Figure PCTCN2017114465-appb-100002
    Figure PCTCN2017114465-appb-100003
    其中,Pi,t为电-热耦合多能流系统的电网中节点i在第t个调度时段的注入有功功率,Qi,t为电网中节点i在第t个调度时段的注入无功功率,θi,t和θj,t分别为节点i和节点j在第t个调度时段的电压相角,Ui,t和Uj,t分别为节点i和节点j在第t个调度时段的电压幅值,Gij为电网节点导纳矩阵Y中第i行、第j列元素的实部,Bij为电网节点导纳矩阵Y第i行、第j列元素的虚部,电网节点导纳矩阵Y从电-热耦合多能流系统的能量管理系统中获取,n为电网的节点总数;
    (2-2)电-热耦合多能流系统中热网的管道压力损失方程如下:
    ΔHl,t=Slml,t|ml,t|,t=1,2,...,16,
    其中,ΔHl,t为电-热耦合多能流系统中热网的第l条管道在第t个调度时段的压力损失, Sl为第l条管道的阻力特性系数,Sl取值范围为10Pa/(kg/s)2≤Sl≤500Pa/(kg/s)2,ml,t为第l条管道在第t个调度时段的流量;
    (2-3)电-热耦合多能流系统中热网的循环泵水力特性方程如下:
    Figure PCTCN2017114465-appb-100004
    其中,HP,t为循环泵在第t个调度时段的扬程,H0为循环泵静扬程,Sp为循环泵阻力系数,H0和Sp由循环泵的出厂说明书获取,mP,t为第t个调度时段流过循环泵的流量;
    (2-4)电-热耦合多能流系统中热网管道热量损失方程如下:
    Figure PCTCN2017114465-appb-100005
    其中,Te,l,t为热网中第l条管道第t个调度时段的末端温度,Th,l,t为第l条管道第t个调度时段的首端温度,Ta,l,t为第l条管道在第t个调度时段的环境温度,ml,t为第l条管道在第t个调度时段的流量,Ll为第l条管道的长度,Cp为水的比热容,比热容的取值为4182焦耳/(千克·摄氏度),λ为管道单位长度的传热系数,λ从电-热耦合多能流系统的能量管理系统中获取,e为自然对数;
    (2-5)电-热耦合多能流系统的热网中多管道汇合点的温度方程:
    Figure PCTCN2017114465-appb-100006
    其中,ml,t为第l条管道在第t个调度时段的流量,Te,l,t为热网中第l条管道第t个调度时段的末端温度,Th,l,t为第l条管道第t个调度时段的首端温度,
    Figure PCTCN2017114465-appb-100007
    为流出热网节点n的所有管道编号的集合,
    Figure PCTCN2017114465-appb-100008
    为流入热网节点n的所有管道编号的集合,QJ,n,t是第n个热网节点第t个调度时刻的热功率;
    (2-6)通过电-热联供机组耦合的电-热耦合多能流系统中电网与热网之间的耦合方程:
    Figure PCTCN2017114465-appb-100009
    其中,pb,t为第b台电-热联供机组在第t个调度时段的有功功率,q为第b台电-热联供机组在第t个调度时段的热功率,
    Figure PCTCN2017114465-appb-100010
    为第b台电-热联供机组运行可行域近似多边形的第k个顶点的横坐标,
    Figure PCTCN2017114465-appb-100011
    为第b台电-热联供机组运行可行域近似多边形的第k个顶点的纵坐 标,
    Figure PCTCN2017114465-appb-100012
    为第b台电-热联供机组在第t个调度时段的第k个组合系数,
    Figure PCTCN2017114465-appb-100013
    NKb为第b台电-热联供机组的运行可行域近似多边形的顶点个数,电-热联供机组运行可行域近似多边形从电-热联供机组的出厂说明书中获取;
    (2-7)通过循环泵耦合的电-热耦合多能流系统中电网与热网之间的耦合方程:
    Figure PCTCN2017114465-appb-100014
    其中,PP,t为循环泵第t个调度时段消耗的有功功率,g为重力加速度,ηP为循环泵效率,ηP的取值范围为0~1,mP,t为第t个调度时段的流过循环泵的流量,HP,t为循环泵第t个调度时段的的扬程;
    (2-8)通过热泵耦合的电-热耦合多能流系统中电网与热网之间的耦合方程:
    Php,t=ChpQhp,t,t=1,2,...,16
    其中,Qhp,t为电-热耦合多能流系统中第t个调度时段热泵发出的热功率,Php,t为第t个调度时段热泵消耗的电功率,Chp为热泵的产热效率,Chp从热泵的出厂说明书中获得;
    (3)设定电-热耦合多能流系统中电网与热网稳态安全运行的不等式约束条件,包括:
    (3-1)电-热耦合多能流系统的电网中第i个节点第t个调度时段的电压幅值Ui,t在设定的电网安全运行电压的上限值、下限值U i
    Figure PCTCN2017114465-appb-100015
    之间运行,U i为第i个节点额定电压的0.95倍,
    Figure PCTCN2017114465-appb-100016
    为第i个节点额定电压的1.05倍:
    Figure PCTCN2017114465-appb-100017
    (3-2)电-热耦合多能流系统的电网中第l条线路第t个调度时段的传输容量小于或等于设定的电网安全运行传输容量的最大值
    Figure PCTCN2017114465-appb-100018
    Figure PCTCN2017114465-appb-100019
    (3-3)电-热耦合多能流系统的电网中电-热联供机组有功功率的爬坡约束:
    Figure PCTCN2017114465-appb-100020
    其中,
    Figure PCTCN2017114465-appb-100021
    Figure PCTCN2017114465-appb-100022
    分别为第b台电-热联供机组有功功率的向上和向下爬坡速率,
    Figure PCTCN2017114465-appb-100023
    Figure PCTCN2017114465-appb-100024
    从电-热联供机组的出厂说明书中获得,Δt为相邻两个调度时段的时间间隔,pb,t和pb,t-1分别为第b台电-热联供机组在第t个调度时段和第t-1个调度时段的有功功率;
    (3-4)电-热耦合多能流系统的电网中电-热联供机组热功率的爬坡约束:
    Figure PCTCN2017114465-appb-100025
    其中,
    Figure PCTCN2017114465-appb-100026
    Figure PCTCN2017114465-appb-100027
    分别为第b台电-热联供机组热功率的向上和向下爬坡速率,
    Figure PCTCN2017114465-appb-100028
    Figure PCTCN2017114465-appb-100029
    从电-热联供机组的出厂说明书中获得,Δt为相邻两个调度时段的时间间隔,qb,t和qb,t-1分别为第b台电-热联供机组在第t个调度时段和第t-1个调度时段的有功功率;
    (3-5)电-热耦合多能流系统的电网中火电机组有功功率的爬坡约束:
    Figure PCTCN2017114465-appb-100030
    其中,
    Figure PCTCN2017114465-appb-100031
    Figure PCTCN2017114465-appb-100032
    分别为第x台火电机组有功功率的向上和向下爬坡速率,
    Figure PCTCN2017114465-appb-100033
    Figure PCTCN2017114465-appb-100034
    从火电机组的出厂说明书中获得,Δt为相邻两个调度时段的时间间隔,px,t和px,t-1分别为第x台火电机组在第t个调度时段和第t-1个调度时段的有功功率;
    (3-6)电-热耦合多能流系统的电网中第b台电-热联供机组第t个调度时段的有功功率pb,t在设定的电网安全运行第b台电-热联供机组有功功率的上、下限值
    Figure PCTCN2017114465-appb-100035
    p b之间:
    Figure PCTCN2017114465-appb-100036
    (3-7)电-热耦合多能流系统的电网中第b台电-热联供机组第t个调度时段的热功率qb,t在设定的电网安全运行第b台电-热联供机组热功率的上限值
    Figure PCTCN2017114465-appb-100037
    和下限值q b之间:
    Figure PCTCN2017114465-appb-100038
    (3-8)电-热耦合多能流系统的电网中第x台火电机组第t个调度时段的有功功率px,t在设定的电网安全运行第x台火电机组有功功率的上限值p x和下限值
    Figure PCTCN2017114465-appb-100039
    之间:
    Figure PCTCN2017114465-appb-100040
    (3-9)电-热耦合多能流系统的热网中第l条管道第t个调度时段的流量ml小于或等于热网安全运行流量的上限值
    Figure PCTCN2017114465-appb-100041
    Figure PCTCN2017114465-appb-100042
    (3-10)电-热耦合多能流系统的热网中第i个换热站第t个调度时段回水温度Ti,t在设定的热网安全运行回水温度的上限值T和下限值
    Figure PCTCN2017114465-appb-100043
    之间:
    Figure PCTCN2017114465-appb-100044
    (4)采用内点法,将上述步骤(1)中的方程作为目标函数,将上述步骤(2)和步骤(3)的所有方程作为约束条件,求解得到电-热耦合多能流系统中每台电-热联供机组的有 功功率和热功率,每台火电机组的有功功率,每台热泵的热功率,每台循环泵消耗的有功功率,作为电-热耦合多能流系统的日内滚动调度方案,实现电-热耦合多能流系统的日内滚动调度。
PCT/CN2017/114465 2017-10-22 2017-12-04 一种电-热耦合多能流系统的日内滚动调度方法 WO2019075872A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/842,566 US11306923B2 (en) 2017-10-22 2020-04-07 Intra-day rolling scheduling method for integrated heat and electricity system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710989015.9A CN107732983A (zh) 2017-10-22 2017-10-22 一种电‑热耦合多能流系统的日内滚动调度方法
CN201710989015.9 2017-10-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/842,566 Continuation US11306923B2 (en) 2017-10-22 2020-04-07 Intra-day rolling scheduling method for integrated heat and electricity system

Publications (1)

Publication Number Publication Date
WO2019075872A1 true WO2019075872A1 (zh) 2019-04-25

Family

ID=61213219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114465 WO2019075872A1 (zh) 2017-10-22 2017-12-04 一种电-热耦合多能流系统的日内滚动调度方法

Country Status (3)

Country Link
US (1) US11306923B2 (zh)
CN (1) CN107732983A (zh)
WO (1) WO2019075872A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112884191A (zh) * 2019-11-30 2021-06-01 国网天津市电力公司电力科学研究院 一种基于网源协调的热电日前调度模型及计算方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108985524B (zh) * 2018-08-07 2020-11-17 南京南瑞继保电气有限公司 一种多能互补系统的协调控制方法
CN112539449B (zh) * 2020-10-21 2022-02-01 西安交通大学 一种多能耦合的恒温供水系统及其优化方法
CN112906292B (zh) * 2021-01-26 2024-02-23 西安热工研究院有限公司 热电联产机组厂级热电负荷在线优化分配的方法、系统、设备及存储介质
CN114517984B (zh) * 2022-04-18 2023-07-28 国网天津市电力公司城南供电分公司 一种换热站蓄热式电锅炉设备控制装置及方法
CN115903549B (zh) * 2023-01-06 2023-05-30 国网浙江省电力有限公司金华供电公司 基于TwinCAT3的综合能源系统的调度策略筛选方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110066258A1 (en) * 2009-09-11 2011-03-17 Siemens Corporation System and Method for Energy Plant Optimization Using Mixed Integer-Linear Programming
CN105958531A (zh) * 2016-05-27 2016-09-21 清华大学 一种电-气耦合多能流网络状态估计方法
CN106022624A (zh) * 2016-05-27 2016-10-12 清华大学 一种电-热耦合多能流网络状态估计方法
CN106845671A (zh) * 2016-12-12 2017-06-13 长沙理工大学 一种多能流系统多目标最优潮流模型及其求解方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6021402A (en) * 1997-06-05 2000-02-01 International Business Machines Corporaiton Risk management system for electric utilities
US8126685B2 (en) * 2006-04-12 2012-02-28 Edsa Micro Corporation Automatic real-time optimization and intelligent control of electrical power distribution and transmission systems
US9335748B2 (en) * 2010-07-09 2016-05-10 Emerson Process Management Power & Water Solutions, Inc. Energy management system
JP6171600B2 (ja) * 2013-06-12 2017-08-02 日本電気株式会社 負荷分散システム、負荷分散装置、負荷分散方法およびプログラム
CN105046395B (zh) * 2015-05-15 2021-01-01 华南理工大学 一种含多类型新能源的电力系统日内滚动计划编制方法
CN106056251B (zh) * 2016-06-12 2019-06-18 清华大学 一种电-热耦合多能流系统的优化调度方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110066258A1 (en) * 2009-09-11 2011-03-17 Siemens Corporation System and Method for Energy Plant Optimization Using Mixed Integer-Linear Programming
CN105958531A (zh) * 2016-05-27 2016-09-21 清华大学 一种电-气耦合多能流网络状态估计方法
CN106022624A (zh) * 2016-05-27 2016-10-12 清华大学 一种电-热耦合多能流网络状态估计方法
CN106845671A (zh) * 2016-12-12 2017-06-13 长沙理工大学 一种多能流系统多目标最优潮流模型及其求解方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112884191A (zh) * 2019-11-30 2021-06-01 国网天津市电力公司电力科学研究院 一种基于网源协调的热电日前调度模型及计算方法

Also Published As

Publication number Publication date
CN107732983A (zh) 2018-02-23
US20200232654A1 (en) 2020-07-23
US11306923B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2019075872A1 (zh) 一种电-热耦合多能流系统的日内滚动调度方法
Pan et al. Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow
Liu et al. Coordinated operation of multi-integrated energy system based on linear weighted sum and grasshopper optimization algorithm
CN106339772B (zh) 基于供热管网储热效益的热-电联合优化调度方法
CN106056251B (zh) 一种电-热耦合多能流系统的优化调度方法
CN104734155B (zh) 一种获取电‑气互联能源系统可用输电能力的方法
CN106056478B (zh) 一种电-热耦合系统中热网的区间潮流计算方法
CN110110913A (zh) 大型园区综合能源系统能源站优化配置方法
CN107609680B (zh) 一种多热源环状集中供热管网水力工况优化调度方法
CN106096777B (zh) 一种电-气耦合多能流系统的优化调度方法
CN104967126A (zh) 一种面向区域电网的跨流域水电站群多电网联合调峰方法
CN109447323A (zh) 一种计及节点热价的综合能源系统两阶段容量配置方法
CN113141005B (zh) 一种面向新能源消纳的综合能源系统多时间尺度调度方法
CN110502791B (zh) 基于能源集线器的综合能源系统稳态建模方法
CN106339794A (zh) 一种电‑热耦合多能流网络节点能价计算方法
CN109670694B (zh) 一种多能源供给系统负荷预测方法
CN105955931A (zh) 面向高密度分布式光伏消纳的区域能源网络优化调度方法
CN112785065A (zh) 基于混合人工鱼群算法的综合能源系统规划方法及系统
CN107221965A (zh) 一种基于分布式设计的日前计划计算方法
CN113240204A (zh) 考虑可再生能源消纳区域能源站容量优化配置方法及系统
Yuan et al. A control strategy for distributed energy system considering the state of thermal energy storage
CN115860412A (zh) 一种电热耦合系统的协同规划方法及终端
CN105470957B (zh) 一种用于生产模拟仿真的电网负荷建模方法
Le Blond et al. Cost and emission savings from the deployment of variable electricity tariffs and advanced domestic energy hub storage management
Liu et al. A new power flow model for combined heat and electricity analysis in an integrated energy system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929334

Country of ref document: EP

Kind code of ref document: A1