WO2019075631A1 - 弯曲锥形光子晶体激光器及阵列、阵列光源组 - Google Patents

弯曲锥形光子晶体激光器及阵列、阵列光源组 Download PDF

Info

Publication number
WO2019075631A1
WO2019075631A1 PCT/CN2017/106496 CN2017106496W WO2019075631A1 WO 2019075631 A1 WO2019075631 A1 WO 2019075631A1 CN 2017106496 W CN2017106496 W CN 2017106496W WO 2019075631 A1 WO2019075631 A1 WO 2019075631A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
curved
array
angle
laser
Prior art date
Application number
PCT/CN2017/106496
Other languages
English (en)
French (fr)
Inventor
郑婉华
周旭彦
张小富
陈忠浩
Original Assignee
中国科学院半导体研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院半导体研究所 filed Critical 中国科学院半导体研究所
Priority to PCT/CN2017/106496 priority Critical patent/WO2019075631A1/zh
Publication of WO2019075631A1 publication Critical patent/WO2019075631A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers

Definitions

  • the invention belongs to the technical field of semiconductor optoelectronic devices, and relates to a curved cone photonic crystal laser and an array and an array light source group.
  • the semiconductor laser is the light source with the highest electro-optical conversion efficiency, and has the advantages of wide coverage range, long life, direct modulation, small size, and low cost. It has a wide range of applications in the fields of laser ranging, laser imaging, and optical information storage. Early sources of laser ranging and laser imaging were ruby lasers and CO 2 gas lasers, but solid-state lasers and gas lasers faced the disadvantages of large size, low efficiency, and poor reliability compared to semiconductor lasers. And with the maturity of the manufacturing process of semiconductor lasers, the output power of semiconductor lasers continues to increase, and the cost is continuously reduced. The rapid development of laser radars using semiconductor lasers as light sources has become a hot spot in the research and development of laser radars.
  • the light source in order to effectively perform laser imaging and laser ranging, the light source needs to be wide-angle, large-range, high-precision scanning and irradiation, wherein the larger the scanning range, the larger the imaging range, and the surrounding information can be sensed.
  • the commercial semiconductor laser has a horizontal divergence angle of 10 to 25 degrees and a vertical divergence angle of about 40 degrees.
  • the detectable range is limited and the angular resolution is poor. It is often used with a series of compression collimating optical systems.
  • the present invention provides a curved cone photonic crystal laser and an array, array light source group, to simplify the optical collimation and compression system, and can realize multi-angle and wide range without rotating the machine. Laser output.
  • a curved conical photonic crystal laser comprising: The ridge waveguide portion, the curved waveguide portion and the tapered optical amplifying portion are sequentially connected; wherein the ridge waveguide portion is a straight waveguide, the curved waveguide portion has a curvature, and the tapered optical amplifying portion is gradually expanded in the direction of the light output.
  • the epitaxial structure of the ridge waveguide portion, the curved waveguide portion, and the tapered optical amplifying portion is a laminated structure including, in order from bottom to top, an N-type substrate, an N-type confinement layer a photonic crystal layer, an active layer, a P-type confinement layer, a P-type cap layer; the sequentially connected ridge waveguide portion, the curved waveguide portion, and the tapered optical amplifying portion are engraved from the upper surface of the laminated structure to the P-type cap layer
  • the ridge waveguide portion, the curved waveguide portion and the tapered light amplifying portion are formed as convex portions, and the remaining recessed portions are P-type cap layers remaining after etching.
  • the curved conical photonic crystal laser further includes: a lower electrode formed under the N-type substrate; an electrically insulating layer over the recessed portion; and an upper electrode located at the bulge Part of it.
  • the ridge waveguide portion is a straight waveguide having a width between 300 nm and 200 ⁇ m; and/or the ridge waveguide profile comprises: a rectangle, a trapezoid or a triangle; and/or a bend
  • the width of the waveguide portion is between 300 nm and 200 m, the bending radius is between 50 ⁇ m and 500 ⁇ m, and the length is between 50 ⁇ m and 500 ⁇ m; and/or the width of the starting end of the tapered optical amplifying portion is between 300 nm and 50 ⁇ m.
  • the opening angle ⁇ 1 is between 0° and 15°
  • the inclination angle ⁇ 2 is between 0° and 15°
  • the length is between 50 ⁇ m and 500 ⁇ m.
  • the structure of the active layer includes: a quantum well, a quantum wire or a quantum dot, and the material of the active layer is a III-V semiconductor material or a II-VI semiconductor material, and the active layer
  • the gain spectrum peak wavelength range covers the near ultraviolet to infrared range; and/or the material of the electrically insulating layer includes: SiO 2 , SiN 4 or Al 2 O 3 .
  • a curved conical photonic crystal laser array comprising: at least two of the curved conical photonic crystal lasers of the present invention.
  • the radius and length of the curved waveguide portion, and the opening angle and the tilt angle of the tapered optical amplifying portion are ensured in different portions.
  • the lateral far-field output of different off-angles is achieved under the condition of waveguide mode matching.
  • the spacing between the respective curved conical photonic crystal lasers is between 300 nm and 500 [mu]m, where the spacing means the spacing between the ridge waveguide portions.
  • an array of array light sources comprising at least two arrays of curved conical photonic crystal lasers arranged in an upper and a lower order, by spatial displacement and different curvature of the respective curved conical photonic crystal lasers Arranged to achieve a staggered distribution of the far-field lateral yaw angles of at least two of the upper and lower photonic crystal laser arrays.
  • the number of the curved cone-shaped photonic crystal laser arrays is N, including: a first light source array, a second light source array, ..., an ith light source array, ..., an Nth light source array Wherein, N ⁇ 2;
  • the lateral off-angle output of the light-emitting unit in the first light source array includes: ..., -4°, 0°, 4°, 8°, ...;
  • the imaging area of the array of light source sets covers a range of -30° to 30°, and the angular resolution of the array of light sources is better than 2°.
  • the intracavity mode is controlled to achieve narrow vertical and horizontal divergence angles, which simplifies the optical collimation and compression system, and by properly designing the waveguide structure, the waveguide modes of different parts are matched, without rotating the machine Multi-angle, wide-range laser output can be achieved, and the range and accuracy of laser irradiation and scanning are increased, with adjustable, low angular resolution, compact structure, high stability, and low cost. It has broad application prospects in the fields of laser ranging, laser imaging, and laser radar.
  • FIG. 1 is a top plan view of a curved cone-shaped photonic crystal laser array for laser imaging in accordance with an embodiment of the present invention.
  • FIG. 2 is a front elevational view of an array of array light sources for laser imaging in accordance with an embodiment of the present invention.
  • FIG. 3 is a horizontal far field view of a curved cone-shaped photonic crystal laser for laser imaging in accordance with an embodiment of the present invention.
  • FIG. 4 is a vertical far field view of a curved cone-shaped photonic crystal laser for laser imaging in accordance with an embodiment of the present invention.
  • 5A is a single curved cone photonic crystal in a first source array in accordance with an embodiment of the present invention.
  • the far field output spot of the optical device is located at an angle of 0° in the horizontal position.
  • 6A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angle of 4° from a horizontal position, in accordance with an embodiment of the present invention.
  • FIG. 7A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angle of 8° from a horizontal position, in accordance with an embodiment of the present invention.
  • FIG. 8A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angle of 12° from a horizontal position, in accordance with an embodiment of the present invention.
  • 9A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angular position at a horizontal position, in accordance with an embodiment of the present invention.
  • 10A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angle of 20[deg.] at a horizontal position, in accordance with an embodiment of the present invention.
  • Figure 11A is a schematic illustration of the far field output spot of a single curved cone photonic crystal laser in a first source array in the horizontal position at an angle of 24°, in accordance with an embodiment of the present invention.
  • Figure 12A is a schematic illustration of the far field output spot of a single curved cone photonic crystal laser in a first source array in the horizontal position at an angle of 28°, in accordance with an embodiment of the present invention.
  • 5B is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a second source array in an angle of 2° from a horizontal position, in accordance with an embodiment of the present invention.
  • 6B is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a second source array in an angle of 6° from a horizontal position, in accordance with an embodiment of the present invention.
  • FIG. 7B is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a second source array in an angle of 10° from a horizontal position, in accordance with an embodiment of the present invention.
  • 8B is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a second source array in an angle of 14° from a horizontal position, in accordance with an embodiment of the present invention.
  • 9B is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a second source array in an 18° horizontal position at a horizontal position in accordance with an embodiment of the present invention.
  • Figure 10B is a schematic illustration of the far field output spot of a single curved cone photonic crystal laser in a second source array in the horizontal position at an angle of 22°, in accordance with an embodiment of the present invention.
  • Figure 11B is a schematic illustration of the far field output spot of a single curved cone photonic crystal laser in a second source array in the horizontal position at an angle of 26°, in accordance with an embodiment of the present invention.
  • the far field output spot of the laser is located at an angle of 30° from the horizontal position.
  • the invention provides a curved cone-shaped photonic crystal laser and an array and an array light source group.
  • the intracavity mode is controlled to realize a narrow vertical and horizontal divergence angle, which simplifies the optical collimation and compression system, and Reasonable design of the waveguide structure, matching the waveguide modes of different parts, enabling multi-angle, wide-range laser output without the need of a rotating machine, and increasing the range and accuracy of laser irradiation and scanning, with adjustable
  • the low angular resolution, compact structure, high stability and low cost have broad application prospects in the fields of laser ranging, laser imaging and laser radar.
  • the laser exit direction is offset from the axial direction by a certain angle, and the waveguide structure can be changed to achieve different angles of exit, thereby realizing multi-angle wide range laser output, increasing laser irradiation and scanning. range.
  • the photonic crystal can adjust the intracavity mode to achieve a horizontal divergence angle of only 4 degrees and a vertical divergence angle of less than 10 degrees, which can effectively simplify the complexity of the optical system.
  • a curved conical photonic crystal laser is provided.
  • 1 is a top plan view of a curved cone-shaped photonic crystal laser array for laser imaging in accordance with an embodiment of the present invention.
  • 2 is a front elevational view of an array of array light sources for laser imaging in accordance with an embodiment of the present invention.
  • the curved conical photonic crystal of the present invention is shown with reference to one of the light-emitting units of FIGS. 1 and 2.
  • the laser includes: a ridge waveguide portion 3 connected in series, a curved waveguide portion 4, and a taper optical amplifying portion 5; wherein the ridge waveguide portion 3 is a straight waveguide, the curved waveguide portion has a curvature, and the tapered optical amplifying portion is along The direction of the light output is gradually diverging.
  • the epitaxial structure of the ridge waveguide portion 3, the curved waveguide portion 4, and the tapered optical amplifying portion 5 is a laminated structure including: an N-type substrate 102; a lower electrode 101 formed on the N-type substrate 102 a lower surface; an N-type confinement layer 103 formed on an upper surface of the N-type substrate 102; a photonic crystal layer 104 formed on the N-type confinement layer 103; and an active layer 105 formed on the photonic crystal layer 104; A type limiting layer 106 is formed over the active layer 105; and a P-type cap layer 107 is formed over the P-type confinement layer 106; the sequentially connected ridge waveguide portion 3, the curved waveguide portion 4, and the Taper optical amplifying portion 5
  • the P-type cap layer 107 is etched from the upper surface of the laminated structure, and the convex portion includes: a ridge waveguide portion 3, a curved waveguide portion 4, and a tapered light amplifying portion 5, and the
  • the length of the ridge waveguide portion 3 is d 1 , which represents the length of the ridge waveguide portion 3 along the y direction;
  • the curved waveguide portion 4 has a curvature having an arc length corresponding to a radius R, and the curved waveguide
  • the length of the portion 4 along the y direction is d 2 ;
  • the tapered light amplifying portion 5 is gradually diverged along the direction of the light output, having an opening angle ⁇ 1 and an inclination angle ⁇ 2 , wherein the opening angle is the cone light amplification
  • the opening angle formed by the two sides of the part, the inclination angle is the angle between the more inclined side and the positive direction of the y-axis, and the direction and the opening size of the tapered light amplifying portion 5 can be determined by the two parameters; the tapered optical amplifying portion 5
  • the length along the y direction is d 3 .
  • the ridge waveguide portion 3 is a straight waveguide, and the width of the ridge waveguide portion 3 is between 300 nm and 200 ⁇ m; the cross section of the ridge waveguide includes, but is not limited to, a rectangle, a trapezoid or a triangle.
  • the curved waveguide portion 4 has a width of between 300 nm and 200 ⁇ m, a bending radius of between 50 ⁇ m and 500 ⁇ m, and a length of between 50 ⁇ m and 500 ⁇ m.
  • the width of the starting end of the tapered light amplifying portion 5 is between 300 nm and 50 ⁇ m
  • the opening angle ⁇ 1 is between 0° 15°
  • the tilt angle ⁇ 2 is between 0° and 15°. Its length is between 50 ⁇ m and 500 ⁇ m.
  • the photonic crystal layer 104 is a common photonic crystal structure, but the invention is not limited thereto, and may be other symmetric and asymmetric waveguide structures.
  • the structure of the active layer 105 includes: a quantum well, a quantum wire or a quantum dot, and the material used is a III-V semiconductor material or a II-VI semiconductor material, and the peak wavelength range of the gain spectrum covers the near ultraviolet to Infrared band.
  • the material of the electrically insulating layer 108 includes: SiO 2 , SiN 4 or Al 2 O 3 or the like.
  • the fabrication of the curved conical photonic crystal laser is performed using an epitaxial wafer of a photonic crystal semiconductor laser emitting a GaAs substrate having a wavelength of 980 nm.
  • the fabrication process mainly includes: 1. Fabricating an epitaxial wafer: sequentially growing an N-type confinement layer, a photonic crystal layer, an active layer, a P-type confinement layer, and a P-type cap layer on a GaAs substrate to prepare an epitaxial wafer; a waveguide portion, a curved waveguide portion, and a taper optical amplifying portion: etching a ridge waveguide portion, a curved waveguide portion, and a taper optical amplifying portion by a basic photolithography, inductively coupled plasma etching (ICP) process; 3.
  • ICP inductively coupled plasma etching
  • fabricating an electrode and electricity Insulating layer a layer of silicon dioxide insulating material is deposited on the entire epitaxial wafer, and the silicon dioxide on the implanted surface is etched away by photolithography and wet etching to form an implantation window, and finally Ti/Pt is grown on the p-plane.
  • the /Au material is used as a front electrode, and after the substrate is thinned, a gold-nickel-nickel gold material is grown on the n-plane as a back surface electrode.
  • the ridge waveguide portion 3, the curved waveguide portion 4, and the Taper light amplifying portion 5 can be uniformly electrically injected to form a Taper laser, or by making an electrically isolated region between the curved waveguide portion 4 and the Taper optical amplifying portion 5 on the electrode 109.
  • a power amplifier (MOPA) structure that forms a master oscillator.
  • a curved conical photonic crystal laser array wherein a curved conical photonic crystal laser array includes at least two curved conical photonic crystals as shown in the first embodiment Laser; by changing the length of the ridge waveguide portion 3 in each of the curved conical photonic crystal lasers, the radius and length of the curved waveguide portion 4, and the opening angle and the tilt angle of the Taper optical amplifying portion 5, ensuring waveguide pattern matching in different portions The lateral far-field output with different declination is achieved under the conditions.
  • each curved cone-shaped photonic crystal laser is the same or different, and the formed array is arranged in a uniform or non-uniform manner; the spacing between the respective light-emitting units is between 300 nm and 500 ⁇ m, where the ridge waveguide is used. The spacing between the two shall prevail.
  • the ninth light-emitting unit located from the left to the right has a beam pointing at a 0 degree angle
  • the other 16 light-emitting units The image is symmetrically distributed on both sides of the light-emitting unit, and the image-forming area covers an area ranging from -30 degrees to 30 degrees.
  • 3 is a horizontal far field view of a curved cone-shaped photonic crystal laser for laser imaging in accordance with an embodiment of the present invention.
  • 4 is a vertical far field view of a curved cone-shaped photonic crystal laser for laser imaging in accordance with an embodiment of the present invention.
  • the curved cone-shaped photonic crystal laser array in this embodiment achieves a horizontal divergence angle of only 4° by adjusting the intracavity mode, and the value of the half-value width in FIG. 3 is 4°.
  • the vertical divergence angle is less than 10°, as shown by the value of the half-value width in Figure 4 as 9.2°.
  • a curved cone-shaped photonic crystal laser array can achieve an angular precision of at least 4° in the horizontal direction.
  • the present invention provides the inclusion of the third embodiment.
  • an array light source group comprising two curved cone-shaped photonic crystal laser arrays
  • the two curved cone-shaped photonic crystal laser arrays being arranged up and down, spatially Displacement and different arrangements of the respective curved cone-shaped photonic crystal lasers to realize the staggered distribution of the far-field lateral yaw angles of the upper and lower two curved cone-shaped photonic crystal laser arrays, thereby achieving smaller precision angular resolution adjustment .
  • the upper and lower two curved cone-shaped photonic crystal laser arrays are arranged correspondingly, and the upper light source array shown in FIG. 2 is referred to as a first light source array, and the lower light source array is referred to as And a second light source array, wherein the first light source array comprises 15 curved cone photonic crystal lasers, and the lateral declination output of the light emitting unit of the first light source array is: 0°, 4°, 8°, ..., 28°; in the second light source array, including 16 curved cone photonic crystal lasers, the lateral output of the light emitting unit of the second light source array is: 2°, 6°, 10°, ..., 30 °.
  • the lateral off-angle output of the two curved cone-shaped photonic crystal laser arrays has an off-angle misalignment value, which is 2 in this embodiment, thereby achieving a lower angular resolution.
  • the photonic crystal array source can be extended to multiple arrays.
  • the lateral off-angle output of the illumination unit in the first array of light sources comprises: 0°, 4°, 8°, ...;
  • the offset value of the yaw angle with the array of the previous light source can be matched with the corresponding eccentricity misalignment value and the number of arrays as long as the parameters and requirements of the actual device are met; in addition, referring to the situation in the second embodiment,
  • the output angle can also be a negative angle, and the arrangement of the light-emitting units can be realized in the form of a mirror-symmetrical distribution.
  • FIG. 5A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angle of 0° from a horizontal position, in accordance with an embodiment of the present invention.
  • the far-field output spot is located at an angle of 0° in the horizontal position, wherein the length of the ridge waveguide portion is 800 nm, and there is no curved waveguide portion, and the length of the taper optical amplifying portion is 400 nm, and the opening angle is 2. °, no tilt angle.
  • FIG. 6A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angle of 4° from a horizontal position, in accordance with an embodiment of the present invention.
  • the far-field output spot is located at an angle of 4° in the horizontal position, wherein the length of the ridge waveguide portion is 500 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplification portion is 400 nm, and the opening angle is It is 2° and the inclination angle is 1°.
  • FIG. 7A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angle of 8° from a horizontal position, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 8° in the horizontal position, wherein the length of the ridge waveguide portion is 300 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 2° and the tilt angle is 2.5°.
  • FIG. 8A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angle of 12° from a horizontal position, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 12° in the horizontal position, wherein the length of the ridge waveguide portion is 200 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 2° and the tilt angle is 3°.
  • FIG. 9A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angular position at a horizontal position, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 16° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, the length of the taper optical amplifying portion is 400 nm, the opening angle is 2°, and the tilt angle It is 3.5°.
  • FIG. 10A is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a first source array in an angle of 20[deg.] at a horizontal position, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 20° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 2° and the tilt angle is 4.5°.
  • Figure 11A is a schematic illustration of the far field output spot of a single curved cone photonic crystal laser in a first source array in the horizontal position at an angle of 24°, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 24° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm, opening The angle is 2° and the tilt angle is 5.5°.
  • Figure 12A is a schematic illustration of the far field output spot of a single curved cone photonic crystal laser in a first source array in the horizontal position at an angle of 28°, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 28° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 2° and the tilt angle is 6.5°.
  • 5B is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a second source array in an angle of 2° from a horizontal position, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 2° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 1.5° and the tilt angle is 0.5°.
  • FIG. 6B is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a second source array in an angle of 6° from a horizontal position, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 6° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 1.5° and the tilt angle is 1.5°.
  • FIG. 7B is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a second source array in an angle of 10° from a horizontal position, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 10° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, the length of the taper optical amplifying portion is 400 nm, the opening angle is 1.5°, and the tilt angle It is 2.5°.
  • FIG. 8B is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a second source array in an angle of 14° from a horizontal position, in accordance with an embodiment of the present invention.
  • the far-field output spot is located at an angle of 14° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 1.5° and the tilt angle is 3.5°.
  • FIG. 9B is a schematic diagram of a far field output spot of a single curved cone photonic crystal laser in a second source array in an 18° horizontal position at a horizontal position in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 18° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 1.5° and the tilt angle is 4.5°.
  • Figure 10B is a schematic illustration of the far field output spot of a single curved cone photonic crystal laser in a second source array in the horizontal position at an angle of 22°, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 22° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 1.5° and the tilt angle is 5°.
  • Figure 11B is a schematic illustration of the far field output spot of a single curved cone photonic crystal laser in a second source array in the horizontal position at an angle of 26°, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 26° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 1.5° and the tilt angle is 6°.
  • Figure 12B is a schematic illustration of the far field output spot of a single curved cone photonic crystal laser in a second source array in an angle of 30° from a horizontal position, in accordance with an embodiment of the present invention.
  • the far field output spot is located at an angle of 30° in the horizontal position, wherein the length of the ridge waveguide portion is 100 nm, the radius of the curved waveguide portion is 1 mm, and the length of the taper optical amplifying portion is 400 nm.
  • the angle is 1.5° and the tilt angle is 6.5°.
  • the present invention provides a curved cone-shaped photonic crystal laser and an array and an array of light source groups.
  • the intracavity mode is controlled to achieve narrow vertical and horizontal emission.
  • the divergence angle simplifies the optical collimation and compression system, and by properly designing the waveguide structure, the waveguide modes of different parts are matched, and the multi-angle, wide-range laser output can be realized without the need of a rotating machine, and the increase is achieved.
  • the range and accuracy of laser irradiation and scanning with adjustable, low angular resolution, compact structure, high stability, low cost, and wide application in laser ranging, laser imaging, laser radar and other fields. prospect.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种弯曲锥形光子晶体激光器及阵列、阵列光源组。其中,弯曲锥形光子晶体激光器包括:依次相连的脊波导部分(3),弯曲波导部分(4)和锥形光放大部分(5);其中,脊波导部分(3)为直波导,弯曲波导部分(4)具有一弧度,锥形光放大部分(5)沿着光输出的方向渐扩。通过引入光子晶体结构,调控腔内模式实现较窄的垂直和水平发散角,简化了光学准直、压缩系统,并且通过合理设计波导结构,使不同部分的波导模式匹配,在不需要旋转机台的情况下便可实现多角度、宽范围的激光输出,且增加了激光辐照和扫描的范围和精度,具有可调的、较低的角分辨率,结构紧凑,稳定性高,成本低,在激光测距、激光成像、激光雷达等领域中具有广阔的应用前景。

Description

弯曲锥形光子晶体激光器及阵列、阵列光源组 技术领域
本发明属于半导体光电子器件技术领域,涉及一种弯曲锥形光子晶体激光器及阵列、阵列光源组。
背景技术
半导体激光器是电光转换效率最高的光源,具有覆盖波段范围广、寿命长、能直接调制、体积小、成本低等优点。在激光测距、激光成像、光信息存储等领域具有广泛的应用。早期用于激光测距和激光成像的光源为红宝石激光器和CO2气体激光器,但是固体激光器和气体激光器相比于半导体激光器面临体积大、效率低和可靠性差等缺点。并且随着半导体激光器制造工艺的成熟,半导体激光器的输出功率不断提高,成本不断降低,促使以半导体激光器为光源的激光雷达迅速发展,成为激光雷达研究和发展的热点。
在激光雷达装置中,为有效进行激光成像和激光测距,需要光源进行宽角度、大范围、高精度扫描和辐照,其中,扫描范围越大,可成像范围越大,可感知周围的信息越多;用于扫描的光源发散角越小,可获得的数据点越多,成像精度越高。现阶段商用半导体激光器水平发散角在10~25度,垂直发散角约40度,可探测范围有限,并且角分辨率较差,常配合一系列压缩准直光学系统才能使用。为了增加扫描范围,一些商用激光雷达装置将半导体激光器置于可旋转的机台上,通过机台的旋转,增加半导体激光器的扫描范围,不过这显著增加了激光雷达装置的体积、系统复杂性和不稳定性,也增加了其成本。
发明内容
(一)要解决的技术问题
针对上述问题,本发明提供了一种弯曲锥形光子晶体激光器及阵列、阵列光源组,以简化光学准直、压缩系统,在不需要旋转机台的情况下便可实现多角度、宽范围的激光输出。
(二)技术方案
根据本发明的一个方面,提供了一种弯曲锥形光子晶体激光器,包括: 依次相连的脊波导部分,弯曲波导部分和锥形光放大部分;其中,脊波导部分为直波导,弯曲波导部分具有一弧度,锥形光放大部分沿着光输出的方向渐扩。
在本发明的一些实施例中,脊波导部分、弯曲波导部分和锥形光放大部分的外延结构为叠层结构,该叠层结构自下而上依次包括:N型衬底,N型限制层,光子晶体层,有源层,P型限制层,P型盖层;该依次相连的脊波导部分、弯曲波导部分和锥形光放大部分是从叠层结构上表面对P型盖层进行刻蚀形成的,该脊波导部分、弯曲波导部分和锥形光放大部分成为凸出的部分,其余凹陷的部分为刻蚀后剩下的P型盖层。
在本发明的一些实施例中,弯曲锥形光子晶体激光器,还包括:下电极,形成于N型衬底的下方;电绝缘层,位于凹陷的部分之上;以及上电极,位于凸出的部分之上。
在本发明的一些实施例中,脊波导部分为直波导,该脊波导部分的宽度介于300nm~200μm之间;和/或该脊波导的剖面包括:矩形、梯形或者三角形;和/或弯曲波导部分的宽度介于300nm~200m之间,弯曲半径介于50μm~500μm之间,长度介于50μm~500μm之间;和/或锥形光放大部分的起始端宽度介于300nm~50μm之间,开口角θ1介于0°~15°之间,倾斜角θ2介于0°~15°之间,长度介于50μm~500μm之间。
在本发明的一些实施例中,有源层的结构包括:量子阱、量子线或量子点,有源层的材料为III-V族半导体材料或II-VI族半导体材料,该有源层的增益谱峰值波长范围覆盖近紫外到红外波段;和/或电绝缘层的材料包括:SiO2、SiN4或Al2O3
根据本发明的另一个方面,提供了一种弯曲锥形光子晶体激光器阵列,包括:至少两个本发明提到的任一种弯曲锥形光子晶体激光器。
在本发明的一些实施例中,通过改变每个弯曲锥形光子晶体激光器中脊波导的长度,弯曲波导部分的半径和长度,以及锥形光放大部分的开口角和倾斜角,在保证不同部分的波导模式匹配的条件下,实现不同偏角的侧向远场输出。
在本发明的一些实施例中,各个弯曲锥形光子晶体激光器之间的间距介于300nm~500μm之间,这里的间距含义为脊波导部分之间的间距。
根据本发明的又一个方面,提供了一种阵列光源组,包括至少两个上、下排布的弯曲锥形光子晶体激光器阵列,通过空间上的移位和各自弯曲锥形光子晶体激光器的不同排布,以实现上、下至少两个光子晶体激光器阵列远场侧向偏角呈交错分布。
在本发明的一些实施例中,弯曲锥形光子晶体激光器阵列的个数为N个,包括:第一光源阵列,第二光源阵列,…,第i个光源阵列,…,第N个光源阵列;其中,N≥2;第一光源阵列中发光单元的侧向偏角输出包括:…,-4°,0°,4°,8°,…;在第i个光源阵列中发光单元的侧向偏角输出包括:…,(ki-4)°,ki°,(ki+4)°,(ki+8)°,…;其中,i=1,2,…,N,N为阵列的总个数;ki为第i个光源阵列与前一个光源阵列的偏角错位值。
在本发明的一些实施例中,阵列光源组的成像区域覆盖-30°至30°的范围,且该阵列光源组的角分辨率优于2°。
(三)有益效果
从以上技术方案可以看出,本发明的弯曲锥形光子晶体激光器及阵列、阵列光源组,具有下列有益效果:
通过引入光子晶体结构,调控腔内模式实现较窄的垂直和水平发散角,简化了光学准直、压缩系统,并且通过合理设计波导结构,使不同部分的波导模式匹配,在不需要旋转机台的情况下便可实现多角度、宽范围的激光输出,且增加了激光辐照和扫描的范围和精度,具有可调的、较低的角分辨率,结构紧凑,稳定性高,成本低,在激光测距、激光成像、激光雷达等领域中具有广阔的应用前景。
附图说明
图1为根据本发明实施例面向激光成像的弯曲锥形光子晶体激光器阵列的俯视图。
图2为根据本发明实施例面向激光成像的阵列光源组的主视图。
图3为根据本发明实施例面向激光成像的弯曲锥形光子晶体激光器的水平远场图。
图4为根据本发明实施例面向激光成像的弯曲锥形光子晶体激光器的垂直远场图。
图5A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激 光器的远场输出光斑位于水平位置0°角处示意图。
图6A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置4°角处示意图。
图7A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置8°角处示意图。
图8A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置12°角处示意图。
图9A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置16°角处示意图。
图10A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置20°角处示意图。
图11A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置24°角处示意图。
图12A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置28°角处示意图。
图5B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置2°角处示意图。
图6B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置6°角处示意图。
图7B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置10°角处示意图。
图8B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置14°角处示意图。
图9B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置18°角处示意图。
图10B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置22°角处示意图。
图11B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置26°角处示意图。
图12B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体 激光器的远场输出光斑位于水平位置30°角处示意图。
【符号说明】
101-下电极;                 102-N型衬底;
103-N型限制层;              104-光子晶体层;
105-有源层;                 106-P型限制层;
107-P型盖层;                108-电绝缘层;
109-上电极;
3-脊波导部分;               4-弯曲波导部分;
5-锥形光放大部分。
具体实施方式
本发明提供了一种弯曲锥形光子晶体激光器及阵列、阵列光源组,通过引入光子晶体结构,调控腔内模式实现较窄的垂直和水平发散角,简化了光学准直、压缩系统,并且通过合理设计波导结构,使不同部分的波导模式匹配,在不需要旋转机台的情况下便可实现多角度、宽范围的激光输出,且增加了激光辐照和扫描的范围和精度,具有可调的、较低的角分辨率,结构紧凑,稳定性高,成本低,在激光测距、激光成像、激光雷达等领域中具有广阔的应用前景。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明通过合理设计和优化波导结构,使激光出射方向偏离轴向方向一定的角度,并且改变波导结构可以实现不同的角度出射,从而实现多角度宽范围的激光输出,增加激光的辐照和扫描范围。同时光子晶体可以调控腔内模式实现水平发散角仅为4度,垂直发散角小于10度,可以有效简化光学系统的复杂度。
在本发明的第一个示例性实施例中,提供了一种弯曲锥形光子晶体激光器。
图1为根据本发明实施例面向激光成像的弯曲锥形光子晶体激光器阵列的俯视图。图2为根据本发明实施例面向激光成像的阵列光源组的主视图。
参照图1和图2中某一个发光单元所示,本发明的弯曲锥形光子晶体 激光器,包括:依次相连的脊波导部分3,弯曲波导部分4和锥形(Taper)光放大部分5;其中,脊波导部分3为直波导,弯曲波导部分具有一弧度,锥形光放大部分沿着光输出的方向渐扩。
下面结合图1和图2,对本发明的弯曲锥形光子晶体激光器的各个部分进行详细介绍。
参照图2所示,脊波导部分3、弯曲波导部分4和锥形光放大部分5的外延结构为叠层结构,包括:N型衬底102;下电极101,形成于N型衬底102的下表面;N型限制层103,形成于N型衬底102的上表面;光子晶体层104,形成于N型限制层103之上;有源层105,形成于光子晶体层104之上;P型限制层106,形成于有源层105之上;及P型盖层107,形成于P型限制层106之上;该依次相连的脊波导部分3、弯曲波导部分4和Taper光放大部分5是从叠层结构上表面对P型盖层107进行刻蚀形成的,凸出的部分包括:脊波导部分3、弯曲波导部分4和锥形光放大部分5,凹陷的部分为刻蚀后剩下的P型盖层107上表面;电绝缘层108,位于凹陷的部分之上;上电极109,位于凸出的部分中的P型盖层107之上。
参照图1所示,脊波导部分3的长度为d1,该长度表示脊波导部分3沿着y方向的长度;弯曲波导部分4具有一弧度,其弧长对应的半径为R,该弯曲波导部分4沿着y方向的长度为d2;锥形光放大部分5沿着光输出的方向渐扩,具有一开口角θ1,一倾斜角θ2,其中,开口角为该锥形光放大部分的两边形成的张角,倾斜角为较为倾斜的一边与y轴正方向的夹角,通过这两个参数可以确定该锥形光放大部分5的走向和张口大小;该锥形光放大部分5沿着y方向的长度为d3
本实施例中,脊波导部分3为直波导,脊波导部分3的宽度介于300nm~200μm之间;该脊波导的剖面包括但不限于是:矩形、梯形或者三角形。
本实施例中,弯曲波导部分4的宽度介于300nm~200μm之间,弯曲半径介于50μm~500μm之间,长度介于50μm~500μm之间。
本实施例中,锥形光放大部分5的起始端宽度介于300nm~50μm之间,开口角θ1介于0°15°之间,倾斜角θ2介于0°~15°之间,其长度介于 50μm~500μm之间。
本实施例中,光子晶体层104为常见的光子晶体结构,但本发明不限于此,也可以是其他对称和非对称波导结构。
本实施例中,有源层105采用的结构包括:量子阱、量子线或量子点,采用的材料为III-V族半导体材料或II-VI族半导体材料,增益谱峰值波长范围覆盖近紫外到红外波段。
本实施例中,电绝缘层108的材料包括:SiO2、SiN4或Al2O3等。
本实施例中,采用发射波长是980nm的GaAs衬底的光子晶体半导体激光器的外延片进行该弯曲锥形光子晶体激光器的制作。制作过程主要包括:一、制作外延片:在GaAs衬底上依次生长N型限制层、光子晶体层、有源层、P型限制层以及P型盖层,制备出外延片;二、制作脊波导部分,弯曲波导部分和taper光放大部分:通过基本的光刻、感应耦合等离子体刻蚀(ICP)工艺刻蚀出脊波导部分,弯曲波导部分和taper光放大部分;三、制作电极和电绝缘层:在整个外延片上沉积一层二氧化硅绝缘材料,再通过光刻和湿法刻蚀将注入区台面上的二氧化硅刻蚀掉,形成注入窗口,最后在p面生长Ti/Pt/Au材料作为正面电极,衬底减薄之后在n面生长金锗镍金材料作为背面电极。
该脊波导部分3、弯曲波导部分4和Taper光放大部分5,可以一致进行电注入形成Taper激光器,或者通过在电极109上,在弯曲波导部分4和Taper光放大部分5之间制作电隔离区,形成主控振荡器的功率放大器(MOPA)结构。
在本发明的第二个示例性实施例中,提供了一种弯曲锥形光子晶体激光器阵列,一个弯曲锥形光子晶体激光器阵列中至少包括2个第一实施例所示的弯曲锥形光子晶体激光器;通过改变每个弯曲锥形光子晶体激光器中脊波导部分3的长度、弯曲波导部分4的半径和长度,以及Taper光放大部分5的开口角和倾斜角,在保证不同部分的波导模式匹配的条件下,实现不同偏角的侧向远场输出。
每个弯曲锥形光子晶体激光器之间的间距相同或不同,形成的阵列以均匀或不均匀的方式进行排布;各个发光单元之间的间距介于300nm~500μm之间,这里以脊波导之间的间距为准。
本实施例中,弯曲锥形光子晶体激光器阵列中有17个弯曲锥形光子晶体激光器,其中从左至右位于中间的第9个发光单元,其光束指向0度角处,其他16个发光单元成镜像对称分布于该发光单元两侧,成像区域覆盖-30度至30度范围区域。
图3为根据本发明实施例面向激光成像的弯曲锥形光子晶体激光器的水平远场图。图4为根据本发明实施例面向激光成像的弯曲锥形光子晶体激光器的垂直远场图。
参照图3和图4可知,本实施例中的弯曲锥形光子晶体激光器阵列通过调控腔内模式,实现的水平发散角仅为4°,如图3中半峰宽的值为4°所示;垂直发散角小于10°,如图4中半峰宽的值为9.2°所示。
那么由上可知,一个弯曲锥形光子晶体激光器阵列在水平方向能够实现的角度精度最小为4°,为了能够实现更低精度的角度调控,本发明提供了第三个实施例所示的包含多个上、下排布弯曲锥形光子晶体激光器阵列的光子晶体激光器,通过将每个弯曲锥形光子晶体激光器阵列中进行空间上的移位和各自弯曲锥形光子晶体激光器的不同排布,以实现上下两个光子晶体激光器阵列的远场侧向偏角呈交错分布,进而实现更小精度的角度输出调节。
在本发明的第三个示例性实施例中,提供了包括两个弯曲锥形光子晶体激光器阵列的阵列光源组,这两个弯曲锥形光子晶体激光器阵列上、下排布,通过空间上的移位和各自弯曲锥形光子晶体激光器的不同排布,以实现上、下两个弯曲锥形光子晶体激光器阵列的远场侧向偏角呈交错分布,进而实现更小精度的角分辨率调节。
参照图2所示,在本实施例中,上、下两个弯曲锥形光子晶体激光器阵列对应排布,将图2所示的上方的光源阵列称为第一光源阵列,下方的光源阵列称为第二光源阵列,其中,在第一光源阵列中,包括15个弯曲锥形光子晶体激光器,该第一光源阵列的发光单元的侧向偏角输出为:0°,4°,8°,…,28°;在第二光源阵列中,包括16个弯曲锥形光子晶体激光器,该第二光源阵列的发光单元的侧向偏角输出为:2°,6°,10°,…,30°。这两个弯曲锥形光子晶体激光器阵列的侧向偏角输出存在一个偏角错位值,本实施例中为2°,从而实现了更低的角分辨率。
由此,为实现更低的角分辨率,光子晶体阵列光源可拓展至多个阵列。按照上述类似的方式,在第一光源阵列中发光单元的侧向偏角输出包括:0°,4°,8°,…;在第i个光源阵列中发光单元的侧向偏角输出包括:ki°,(ki+4)°,(ki+8)°,…;其中,i=1,2,…,N,N为阵列的总个数;ki为第i个光源阵列与前一个光源阵列的偏角错位值,只要符合实际的器件的参数和需求,可以进行相应的偏角错位值和阵列个数的匹配选择;另外,参照第二个实施例中的情形,该输出角也可以是负的角度,按照镜像对称分布的形式进行发光单元的排布便可实现。
图5A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置0°角处示意图。参照图5A所示,本实施例中,远场输出光斑位于水平位置0°角处,其中脊波导部分的长度为800nm,无弯曲波导部分,taper光放大部分的长度为400nm,开口角为2°,无倾斜角。
图6A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置4°角处示意图。参照图6A所示,本实施例中,远场输出光斑位于水平位置4°角处,其中脊波导部分的长度为500nm,弯曲波导部分的半径为1mm,taper光放大部分长度为400nm,开口角为2°,倾斜角为1°。
图7A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置8°角处示意图。参照图7A所示,本实施例中,远场输出光斑位于水平位置8°角处,其中脊波导部分的长度为300nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为2.5°。
图8A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置12°角处示意图。参照图8A所示,本实施例中,远场输出光斑位于水平位置12°角处,其中脊波导部分的长度为200nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为3°。
图9A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置16°角处示意图。参照图9A所示,本 实施例中,远场输出光斑位于水平位置16°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为3.5°。
图10A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置20°角处示意图。参照图10A所示,本实施例中,远场输出光斑位于水平位置20°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为4.5°。
图11A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置24°角处示意图。参照图11A所示,本实施例中,远场输出光斑位于水平位置24°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为5.5°。
图12A为根据本发明实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置28°角处示意图。参照图12A所示,本实施例中,远场输出光斑位于水平位置28°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为6.5°。
图5B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置2°角处示意图。参照图5B所示,本实施例中,远场输出光斑位于水平位置2°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为0.5°。
图6B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置6°角处示意图。参照图6B所示,本实施例中,远场输出光斑位于水平位置6°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为1.5°。
图7B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置10°角处示意图。参照图7B所示,本 实施例中,远场输出光斑位于水平位置10°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为2.5°。
图8B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置14°角处示意图。参照图8B所示,本实施例中,远场输出光斑位于水平位置14°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为3.5°。
图9B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置18°角处示意图。参照图9B所示,本实施例中,远场输出光斑位于水平位置18°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为4.5°。
图10B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置22°角处示意图。参照图10B所示,本实施例中,远场输出光斑位于水平位置22°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为5°。
图11B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置26°角处示意图。参照图11B所示,本实施例中,远场输出光斑位于水平位置26°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为6°。
图12B为根据本发明实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置30°角处示意图。参照图12B所示,本实施例中,远场输出光斑位于水平位置30°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为6.5°。
综上所述,本发明提供了一种弯曲锥形光子晶体激光器及阵列、阵列光源组,通过引入光子晶体结构,调控腔内模式实现较窄的垂直和水平发 散角,简化了光学准直、压缩系统,并且通过合理设计波导结构,使不同部分的波导模式匹配,在不需要旋转机台的情况下便可实现多角度、宽范围的激光输出,且增加了激光辐照和扫描的范围和精度,具有可调的、较低的角分辨率,结构紧凑,稳定性高,成本低,在激光测距、激光成像、激光雷达等领域中具有广阔的应用前景。
需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本发明的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本发明的理解造成混淆时,将省略常规结构或构造。并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本发明实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近似值,能够根据通过本发明的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的含量、反应条件等等的数字,应理解为在所有情况中是受到「约」的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。
再者,单词“包含”或“包括”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。
说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个 权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面发明的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种弯曲锥形光子晶体激光器,包括:
    依次相连的脊波导部分,弯曲波导部分和锥形光放大部分;
    其中,脊波导部分为直波导,弯曲波导部分具有一弧度,锥形光放大部分沿着光输出的方向渐扩。
  2. 根据权利要求1所述的弯曲锥形光子晶体激光器,其中,所述脊波导部分、弯曲波导部分和锥形光放大部分的外延结构为叠层结构,该叠层结构自下而上依次包括:N型衬底,N型限制层,光子晶体层,有源层,P型限制层,P型盖层;所述依次相连的脊波导部分、弯曲波导部分和锥形光放大部分是从叠层结构上表面对P型盖层进行刻蚀形成的,所述脊波导部分、弯曲波导部分和锥形光放大部分成为凸出的部分,其余凹陷的部分为刻蚀后剩下的P型盖层。
  3. 根据权利要求2所述的弯曲锥形光子晶体激光器,还包括:
    下电极,形成于N型衬底的下方;
    电绝缘层,位于凹陷的部分之上;以及
    上电极,位于凸出的部分之上。
  4. 根据权利要求1所述的弯曲锥形光子晶体激光器,其中:
    所述脊波导部分为直波导,该脊波导部分的宽度介于300nm~200μm之间;和/或该脊波导的剖面包括:矩形、梯形或者三角形;和/或
    所述弯曲波导部分的宽度介于300nm~200μm之间,弯曲半径介于50μm~500μm之间,长度介于50μm~500μm之间;和/或
    所述锥形光放大部分的起始端宽度介于300nm~50μm之间,开口角θ1介于0°~15°之间,倾斜角θ2介于0°~15°之间,长度介于50μm~500μm之间。
  5. 根据权利要求2所述的弯曲锥形光子晶体激光器,其中,
    所述有源层的结构包括:量子阱、量子线或量子点,有源层的材料为III-V族半导体材料或II-VI族半导体材料,该有源层的增益谱峰值波长范围覆盖近紫外到红外波段;和/或
    所述电绝缘层的材料包括:SiO2、SiN4或Al2O3
  6. 一种弯曲锥形光子晶体激光器阵列,包括:
    至少两个权利要求1至5中任一项所述的弯曲锥形光子晶体激光器。
  7. 根据权利要求6所述的弯曲锥形光子晶体激光器阵列,通过改变每个所述弯曲锥形光子晶体激光器中脊波导的长度,弯曲波导部分的半径和长度,以及锥形光放大部分的开口角和倾斜角,在保证不同部分的波导模式匹配的条件下,实现不同偏角的侧向远场输出。
  8. 根据权利要求6所述的弯曲锥形光子晶体激光器阵列,其中,各个所述弯曲锥形光子晶体激光器之间的间距介于300nm~500μm之间,这里的间距含义为脊波导部分之间的间距。
  9. 一种阵列光源组,包括至少两个上、下排布的如权利要求6所述的弯曲锥形光子晶体激光器阵列,通过空间上的移位和各自弯曲锥形光子晶体激光器的不同排布,以实现上、下至少两个光子晶体激光器阵列远场侧向偏角呈交错分布。
  10. 根据权利要求9所述的阵列光源组,其中,所述弯曲锥形光子晶体激光器阵列的个数为N个,包括:第一光源阵列,第二光源阵列,...,第i个光源阵列,...,第N个光源阵列;其中,N≥2;
    所述第一光源阵列中发光单元的侧向偏角输出包括:...,-4°,0°,4°,8°,...;在第i个光源阵列中发光单元的侧向偏角输出包括:...,(ki-4)°,ki°,(ki+4)°,(ki+8)°,...;其中,i=1,2,...,N,N为阵列的总个数;ki为第i个光源阵列与前一个光源阵列的偏角错位值。
  11. 根据权利要求9或10所述的阵列光源组,所述阵列光源组的成像区域覆盖-30°至30°的范围,且所述阵列光源组的角分辨率优于2°。
PCT/CN2017/106496 2017-10-17 2017-10-17 弯曲锥形光子晶体激光器及阵列、阵列光源组 WO2019075631A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/106496 WO2019075631A1 (zh) 2017-10-17 2017-10-17 弯曲锥形光子晶体激光器及阵列、阵列光源组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/106496 WO2019075631A1 (zh) 2017-10-17 2017-10-17 弯曲锥形光子晶体激光器及阵列、阵列光源组

Publications (1)

Publication Number Publication Date
WO2019075631A1 true WO2019075631A1 (zh) 2019-04-25

Family

ID=66173011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106496 WO2019075631A1 (zh) 2017-10-17 2017-10-17 弯曲锥形光子晶体激光器及阵列、阵列光源组

Country Status (1)

Country Link
WO (1) WO2019075631A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052941A (ja) * 1996-08-09 1998-02-24 Fuji Xerox Co Ltd 光走査装置および画像形成装置
CN102088161A (zh) * 2009-12-03 2011-06-08 深圳大学 高速大功率半导体光源
CN103219650A (zh) * 2013-03-29 2013-07-24 中国科学院半导体研究所 低发散角近衍射极限输出啁啾光子晶体边发射激光器阵列
CN103346478A (zh) * 2013-06-13 2013-10-09 中国科学院半导体研究所 镓锑基中红外圆斑输出低发散角边发射光子晶体激光器
CN105098006A (zh) * 2015-09-09 2015-11-25 中国科学院福建物质结构研究所 一种超辐射发光二极管芯片的制备方法及制得的发光二极管芯片
CN105680320A (zh) * 2016-03-16 2016-06-15 中国科学院长春光学精密机械与物理研究所 一种高功率可调谐窄线宽外腔半导体激光器
CN106300017A (zh) * 2016-09-07 2017-01-04 华中科技大学 多波长分布反馈脊波导半导体激光器阵列及应用
CN107785776A (zh) * 2017-10-17 2018-03-09 中国科学院半导体研究所 弯曲锥形光子晶体激光器及阵列、阵列光源组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052941A (ja) * 1996-08-09 1998-02-24 Fuji Xerox Co Ltd 光走査装置および画像形成装置
CN102088161A (zh) * 2009-12-03 2011-06-08 深圳大学 高速大功率半导体光源
CN103219650A (zh) * 2013-03-29 2013-07-24 中国科学院半导体研究所 低发散角近衍射极限输出啁啾光子晶体边发射激光器阵列
CN103346478A (zh) * 2013-06-13 2013-10-09 中国科学院半导体研究所 镓锑基中红外圆斑输出低发散角边发射光子晶体激光器
CN105098006A (zh) * 2015-09-09 2015-11-25 中国科学院福建物质结构研究所 一种超辐射发光二极管芯片的制备方法及制得的发光二极管芯片
CN105680320A (zh) * 2016-03-16 2016-06-15 中国科学院长春光学精密机械与物理研究所 一种高功率可调谐窄线宽外腔半导体激光器
CN106300017A (zh) * 2016-09-07 2017-01-04 华中科技大学 多波长分布反馈脊波导半导体激光器阵列及应用
CN107785776A (zh) * 2017-10-17 2018-03-09 中国科学院半导体研究所 弯曲锥形光子晶体激光器及阵列、阵列光源组

Similar Documents

Publication Publication Date Title
CN107785776B (zh) 弯曲锥形光子晶体激光器及阵列、阵列光源组
US10355441B2 (en) Laser module and laser processing apparatus
WO2020078197A1 (zh) 一种半导体激光器
WO2020047828A1 (zh) 窄垂直远场发散角的隧道结光子晶体激光器
JP4866108B2 (ja) 単一光子発生デバイス、単一光子検出デバイス及び光量子ゲート
CN111029900B (zh) 基于宇称时间对称性的三腔耦合激光器
KR102319348B1 (ko) 메타 구조 리플렉터를 구비하는 수직 공진형 표면 발광 레이저 및 이를 포함하는 광학 장치
US11664642B2 (en) Vertical cavity surface emitting laser including meta structure reflector and optical device including the vertical cavity surface emitting laser
US20200328574A1 (en) Increase VCSEL Power Using Multiple Gain Layers
CN105680319B (zh) 基于模式增益损耗调控的高亮度半导体激光器
CN106654857A (zh) 一种高光束质量大规模vcsel同相耦合阵列
US20020039376A1 (en) Micro-lens built-in vertical cavity surface emitting laser
CN109412019B (zh) 延长腔面光源vcsel及其应用
WO2019075631A1 (zh) 弯曲锥形光子晶体激光器及阵列、阵列光源组
CN109038219B (zh) 窄垂直远场发散角的隧道结光子晶体激光器
EP4297207A1 (en) Laser element, laser element array, and laser element manufacturing method
CN114825034B (zh) 自带非对称微盘腔光泵浦的单光子源
TW202315255A (zh) 垂直腔面發射雷射器
CN209766858U (zh) 延长腔面光源vcsel及光纤通信系统
CN111181000A (zh) 一种半导体芯片及半导体激光器
US11894660B2 (en) QCL with branch structure and related methods
CN110233426A (zh) 一种泄漏波耦合锁相阵列半导体激光器
CN112736645B (zh) 一种大功率半导体光放大器增益介质的制备方法
CN214280428U (zh) 一种大功率半导体光放大器
CN114188822B (zh) 离轴发射的线偏振态单光子发射器及工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929346

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17929346

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17929346

Country of ref document: EP

Kind code of ref document: A1